Approximating definite integrals; or how to derive Simpson's and other rules

Brailey Sims

June 29, 2019

The definite integral

$$
\int_{a}^{b} f(x) d x
$$

corresponds to the total area of the regions between the graph of $f(x)$ on $[a, b]$ and the x-axis (with regions below the x -axis assigned negative areas), consequently it has a number of special properties. Two important properties are:

$$
\int_{a}^{b}[f(x)+g(x)] d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x \quad \text { - additivity }
$$

and

$$
\int_{a}^{b} c f(x) d x=c \int_{a}^{b} f(x) d x \quad \text { - scalar homogeneity }
$$

A simpler, more easily evaluated, expression that also enjoys these two properties is

$$
\mathcal{A}_{a}^{b} f(x):=A f(a)+M f(m)+B f(b),
$$

where $m:=\frac{a+b}{2}$, and A, M and B are constants.
Additivity follows since,

$$
\begin{aligned}
\mathcal{A}_{a}^{b}[f(x)+g(x)] & =A[f(a)+g(a)]+M[f(m)+g(m)]+B[f(b)+g(b)] \\
& =A f(a)+M f(m)+B f(b)+A g(a)+M g(m)+B g(b) \\
& =\mathcal{A}_{a}^{b} f(x)+\mathcal{A}_{a}^{b} g(x) .
\end{aligned}
$$

Scalar homogeneity is verified by a similar, but even simpler, calculation.
Our strategy is to choose values of A, M and B so that $\mathcal{A}_{a}^{b} f(x)$ approximates $\int_{a}^{b} f(x) d x$.

Figure 1: Simpson's Rule

REmark (1): Technically, we are regarding the definite integral as a linear functional from the space of (continuous) functions f on $[a, b]$ onto the real numbers, and are seeking to approximate it by a simpler linear functional comprised of a linear combination of point evaluations; that is functionals of the form $f \mapsto f(c)$ with $c \in[a, b]$.

To obtain Simpson's rule, we do this by making the 'approximation' exact when $f(x)$ equals $1, x$, and x^{2}. That is, we require,

$$
\begin{align*}
A+M+B & =\int_{a}^{b} 1 d x=b-a \tag{1}\\
A a+M(a+b) / 2+B b & =\int_{a}^{b} x d x=\left(b^{2}-a^{2}\right) / 2 \tag{2}\\
A a^{2}+M(a+b)^{2} / 4+B b^{2} & =\int_{a}^{b} x^{2} d x=\left(b^{3}-a^{3}\right) / 3 \tag{3}
\end{align*}
$$

three simultaneous equations in the three unknowns A, M and B.
REmARK (2): Appealing to additivity and scalar homogeneity we see that these requirements ensure the approximation is exact for all quadratic polynomials (linear combinations of $1, x$ and x^{2}).

Rearranging (1) as $M=b-a-(A+B)$, using this to eliminate M from (2), followed by some simple algebra leads to $B=A$. Substituting into (3) using both of these yields $(b-a)^{2} A / 2=\left(b^{3}-a^{3}\right) / 3-(b-a)(a+b)^{2} / 4$, which after a little interesting algebra gives $A=B=(b-a) / 6$ and $M=4(b-a) / 6$. Introducing the step size $h=(b-a) / 2$ we have the approximation,

$$
\int_{a}^{b} f(x) d x \approx \frac{h}{3}[f(a)+4 f(m)+f(b)]
$$

Remark (3): From Remark (2) we also see that the approximation equals $\int_{a}^{b} P(x) d x$, where $P(x)$ is the quadratic taking the same values as $f(x)$ at a, m and b.

REMARK (4): If the above algebraic machinations prove too tedious, one could always solve for A, M and B in the special case when $a=0$ and $b=1$ to obtain an approximation to $\int_{0}^{1} g(t) d t$, and apply it when $g(t):=(b-a) f(a+(b-a) t)$, which using the substitution $t=\frac{x-a}{b-a}$ equals $\int_{a}^{b} f(x) d x$.

To derive the simpler trapezoidal rule,

$$
\int_{a}^{b} f(x) d x \approx \frac{b-a}{2}[f(a)+f(b)]
$$

we disregard the $f(m)$ term (set $M=0$) and solve for A and B by requiring the approximation be exact for $f(x)$ equal to 1 and x, thereby rendering it exact for all linear functions. This leads to the pair of simultaneous equations,

$$
\begin{aligned}
A+B & =(b-a) \\
a A+b B & =\left(b^{2}-a^{2}\right) / 2
\end{aligned}
$$

Remark (5): It should be clear how these derivations could be extended to obtain approximations to the definite integral that are exact for polynomials of a higher degree (or indeed for any linear combination of a finite number of specified functions; for instance, linear combinations of $1, \sin (x)$ and $\cos (x)$ on $[0,2 \pi]$), and how to derive modified approximation rules that involve values of the function at points other than the limits of the integration or their midpoint.

REmark (6): We might ask: what characteristic feature of the definite integral distinguishes it from the simpler approximating linear functionals we have constructed? The answer resides in the property,

$$
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x
$$

School of Mathematical and Physical Sciences
The University of Newcastle, 2308, Australia
brailey.sims@newcastle.edu.au

