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On certain Drinfeld modular forms of higher rank

par Dirk Basson et Florian Breuer

Résumé. Nous donnons une introduction aux formes modulaires
de Drinfeld pour des sous-groupes de congruence principaux de
GLr(Fq[t]), et puis nous construisons un analogue en rang r de
la fonction h. Nous montrons que cette fonction est cuspidale de
poids (qr−1)/(q−1) et de type 1 et qu’elle satisfait une formule de
produit. Dans ce but, nous calculons le développement à l’infini
des séries d’Eisenstein de poids 1 et de nivaux N ∈ Fq[t].

Abstract. We give an introduction to Drinfeld modular forms
for principal congruence subgroups of GLr(Fq[t]), and then con-
struct a rank r analogue of the h-function. We show that this
function is a cusp form of weight (qr − 1)/(q − 1) and type 1
which satisfies a product formula. Along the way, we compute
the expansion at infinity of weight one Eisenstein series of level
N ∈ Fq[t].

Dedicated to the memory of David Goss

1. Introduction and Outline

This paper is a companion to [2] and may serve as a sneak preview of
joint work in progress [3] with Richard Pink, where the analytic theory of
Drinfeld modular forms of higher rank is developed in greater generality.

The main protagonist of this note is the higher rank version of the func-
tion Gekeler denoted h. It is defined essentially as the (q − 1)-st root of
the discriminant function ∆. As (q − 1)-st roots are only defined up to a
unit, we take some care to make it explicit which (q − 1)-st root is taken.
As a corollary to the first author’s product formula for ∆ we then give a
product formula for h (Theorem 5.3).

We also discuss other examples of higher rank Drinfeld modular forms,
namely Eisenstein series for the full modular group, Eisenstein series for
principal congruence subgroups, coefficient forms and exponential coeffi-
cient forms. In Section 3, we calculate the leading coefficients of these
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forms and in Section 6 we show that the weight one Eisenstein series for
principal congruence subgroups also have a product expansion that gener-
alizes one obtained by Gekeler [7] in the rank 2 case (Theorem 6.2).

Finally, we have sketched an outline of the history of Drinfeld modular
forms of higher rank in Section 7, since we believe that it would be of
interest to the community.

2. Basic Definitions

Let A = Fq[t] be the polynomial ring over the finite field of order q, let
F∞ = Fq((1

t )) be the completion of Fq(t) at the place with uniformizer 1
t ,

and denote by C∞ = ˆ̄F∞ the completion of an algebraic closure of F∞.
Fix an integer r ≥ 2, called the rank. Drinfeld’s period domain is the

rigid analytic space

Ωr := Pr(C∞) r {F∞-rational hyperplanes},

on which the group GLr(F∞) acts from the left as usual. We represent
elements of Ωr as column vectors ω = (ω1, ω2, . . . , ωr)

T , normalized so that
ωr = π̄, where

π̄ = q−1
√
t− tq

∞∏
i=1

(
1− tq

i − t
tqi+1 − t

)
is a period of the Carlitz module, defined up to a multiplicative constant
in F∗q .

For γ ∈ GLr(A) and ω ∈ Ωr, we define

j(γ, ω) := π̄−1 · (last entry of γω),

where γω denotes the matrix product. Then

γ(ω) := j(γ, ω)−1γω

defines an action of GLr(A) on Ωr which preserves our choice of normal-
ization.

Definition 2.1. Let k ∈ Z>0 and m ∈ Z/(q− 1)Z. Let Γ ⊂ GLr(A) be an
arithmetic subgroup. A weak modular form of weight k and type m for Γ is
a holomorphic (in the rigid analytic sense) function f : Ωr → C∞ satisfying

(2.1) f
(
γ(ω)

)
= (det γ)−mj(γ, ω)kf(ω), for all γ ∈ Γ.

If m = 0, or det Γ = {1}, we suppress any mention of the type.

Suppose Γ = GLr(A), then plugging scalars of the form γ = εI ∈
GLr(A), where ε ∈ F∗q , into (2.1), we find that if f is a non-zero weak
modular form of weight k and type m, then

(2.2) k ≡ rm (mod q − 1).
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Let 0 6= N ∈ A, then we are particularly interested in the principal
congruence group

Γ(N) := ker
(

GLr(A) −→ GLr(A/NA)
)
.

Elements of Ar or (N−1A)r will be represented by row vectors, so when
a = (a1, a2, . . . , ar) ∈ Ar and ω ∈ Ωr, then

aω =

r∑
i=1

aiωi ∈ C∞

will denote the matrix product. The set Arω = Aω1 + · · ·+Aωr ⊂ C∞ is a
lattice of rank r, i.e. a projective A-submodule of rank r which has finite
intersection with any ball of finite radius in C∞. To a lattice Λ ⊂ C∞ we
associate its exponential function

eΛ : C∞ → C∞; eΛ(z) := z
∏′

λ∈Λ

(
1− z

λ

)
,

where as usual the prime denotes a product over non-zero indices. This
function is entire, surjective, Fq-linear and has simple zeros precisely at the
elements of Λ. It satisfies

1

eΛ(z)
=
∑
λ∈Λ

1

z + λ
and ecΛ(z) = ceΛ(c−1z) for all c ∈ C∞.

See [17, Chapter 4] for more details on lattices and Drinfeld modules.
Next, we construct a suitable parameter to allow expansions at infinity

of Drinfeld modular forms of rank r ≥ 2. This parameter appears first in
[8], in a more general setting. For more detail, see [1], although the action
of GLr(F∞) on Ωr in that thesis differs from the action described here by
the automorphism γ 7→ (γT )−1.

Definition 2.2. Let 0 6= N ∈ A. For ω = (ω1, ω2, . . . , ωr)
T ∈ Ωr, we write

ω = (ω1, ω
′)T , where ω′ = (ω2, . . . , ωr)

T ∈ Ωr−1. Its associated lattice is
Λ′ = Ar−1ω′ ⊂ C∞. We set

(2.3) uN := eΛ′(N
−1ω1)−1.

This is the parameter at infinity for Γ(N). When N = 1, we write u := u1

for the parameter at infinity for Γ(1) = GLr(A).

This parameter also differs from the one constructed in [1] and [3] by a
factor of N , but will allow slightly neater expressions.

Theorem 2.3 ([3]). Every weak modular form f : Ωr → C∞ of weight k
and type m for Γ(N) admits a uN -expansion

(2.4) f(ω) =
∑
n∈Z

fn(ω′)unN ,
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where the fn : Ωr−1 → C∞ are weak modular forms of weight k−n and type
m for Γ′(N) = ker

(
GLr−1(A) → GLr−1(A/NA)

)
, uniquely determined

by f . The series (2.4) converges uniformly on suitable neighbourhoods of
the boundary of Ωr.

If N = 1, then from (2.2) follows that the function fn is identically zero
unless

(2.5) n ≡ k − (r − 1)m (mod q − 1).

Using the above expansions, we can define the notion of a modular form
for Γ(N):

Definition 2.4 ([3]). A function f : Ωr → C∞ satisfying an expansion
of the form (2.4) is holomorphic at infinity if the functions fn in (2.4) are
identically zero for all n < 0. We say f vanishes at infinity if f0 is also
identically zero.

A weak modular form f of weight k and type m for GLr(A) is a modular
form if it is holomorphic at infinity, and a cusp form if it vanishes at infinity.

A weak modular form f of weight k for Γ(N) with N ∈ A non-constant
is a modular form if j(γ, ω)−kf

(
γ(ω)

)
is holomorphic at infinity for every

γ ∈ GLr(A). Furthermore, f is a cusp form if j(γ, ω)−kf
(
γ(ω)

)
vanishes

at infinity for every γ ∈ GLr(A).

3. First examples of Drinfeld modular forms for GLr(Fq[t])

We describe here the standard examples of Drinfeld modular forms for
GLr(A); in essence, these constructions already appear in the early work
of Drinfeld [6] and Goss [14]. For more details, see also [1, §§3.4 and 3.5],
where these examples are studied for more general rings A.

Example 3.1 (Eisenstein series of level 1). Let k ∈ Z>0 and ω ∈ Ωr. The
Eisenstein series of weight k for GLr(A) is

Ek(ω) :=
∑′

a∈Ar

1

(aω)k
.

For γ ∈ GLr(A) we easily compute

Ek
(
γ(ω)

)
=
∑′

a∈Ar

1(
aj(γ, ω)−1γω

)k = j(γ, ω)k
∑′

a∈Arγ

1

(aω)k
= j(γ, ω)kEk(ω),

so Ek is a weak modular form of weight k for GLr(A). By (2.2), Ek is
identically zero unless k is a multiple of q − 1.

Example 3.2 (Exponential coefficient forms). Let ω ∈ Ωr, then the expo-
nential function associated to the lattice Λ = Arω is given by the Fq-linear
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power series

eΛ(z) =
∞∑
i=0

ei(ω)zq
i
, with e0(ω) = 1.

Let γ ∈ GLr(A). Then the exponential function associated to the lattice
γ(Λ) := Arγ(ω) = j(γ, ω)−1Arω = j(γ, ω)−1Λ satisfies

(3.1) eγ(Λ)(z) = ej(γ,ω)−1Λ(z) = j(γ, ω)−1eΛ

(
j(γ, ω)z

)
,

so for each i ≥ 0

ei
(
γ(ω)

)
= j(γ, ω)q

i−1ei(ω),

and ei is a weak modular form of weight qi − 1 for GLr(A).

Example 3.3 (Drinfeld coefficient forms). Let ϕω be the rank r Drinfeld
module associated to the lattice Arω ⊂ C∞ and a ∈ A. Then

ϕωa (X) =

r deg a∑
i=0

gi,a(ω)Xqi ,

where g0,a(ω) = a and ∆a(ω) := gr deg a,a(ω) 6= 0.

Let γ ∈ GLr(A), then from

(3.2) eΛ(aX) = ϕωa
(
eΛ(X)

)
and (3.1) we get

ϕγ(ω)
a (X) = j(γ, ω)−1ϕωa

(
j(γ, ω)X

)
,

so the coefficients gi,a are weak modular forms of weight qi− 1 for GLr(A).
These three constructions are interrelated by the following identities (see

also [1, §3.4]):

ei(ω) = Eqi−1(ω) +

i−1∑
j=1

ej(ω)Eqi−j−1(ω)q
j
, see e.g. [4, (9)],

(3.3)

(aq
i − a)ei(ω) = gi,a(ω) +

i−1∑
j=1

gj,a(ω)ei−j(ω)q
j
, from (3.2),

(3.4)

gi,a(ω) = (aq
i − a)Eqi−1(ω) +

i−1∑
j=1

Eqj−1(ω)gi−j,a(ω)q
j
, see e.g. [9, (2.10)].

(3.5)

In (3.4) and (3.5) we adopt the convention that gi,a ≡ 0 if i > r deg a.
To show that these weak modular forms are holomorphic at infinity, it

suffices to compute the u-expansion of the Eisenstein series Ek. In the next
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computation, we write a = (a1, a2, . . . , ar) ∈ Ar and a′ = (a2, a3, . . . , ar) ∈
Ar−1.

Ek(ω) =
∑′

a∈Ar

1

(aω)k

=
∑′

a′∈Ar−1

1

(a′ω′)k︸ ︷︷ ︸
a1=0

+
∑′

a1∈A

∑
a′∈Ar−1

1

(a1ω1 + a′ω′)k︸ ︷︷ ︸
a1 6=0

= E′k(ω
′) +

∑′

a1∈A
Pk

 ∑
a′∈Ar−1

1

(a1ω1 + a′ω′)


= E′k(ω

′) +
∑′

a1∈A
Pk
(
eΛ′(a1ω1)−1

)
= E′k(ω

′) +
∑′

a1∈A
Pk
(
u(a1ω1)

)
= E′k(ω

′) +
∑′

a1∈A
Pk

(
1

ϕω′a1(u−1)

)
= E′k(ω

′) +O(uq−1).(3.6)

Here Pk(X) is the degree k Goss polynomial associated to the lattice Λ′, first
introduced by Goss in [15], see also [9, §3]. We denote by E′k(ω

′) the weight
k Eisenstein series associated to the rank r − 1 lattice Λ′ = Ar−1ω′ ⊂ C∞.
The term O(uq−1) denotes a sum of higher-degree terms in u, starting with
cq−1(ω′)uq−1, whose coefficients are functions of ω′ ∈ Ωr−1. The exponent
q − 1 here comes from (2.5). The last equality follows because Pk(0) = 0.

The above computation is due to Goss [14] in rank r = 2, and appears
in [4, §3.3] for arbitrary rank, see also [1, Prop. 3.5.3].

From (3.3), (3.5) and (3.6) we obtain, by induction on r and on i,

ei(ω) = e′i(ω
′) +O(uq−1) i = 1, 2, 3, . . . , and(3.7)

gi,a(ω) = g′i,a(ω
′) +O(uq−1), i = 1, 2, . . . , r deg a,(3.8)

where e′i and g′i,a denote the corresponding forms associated to the rank

r − 1 lattics Λ′ = Ar−1ω′ ⊂ C∞. These identities essentially appear in [4,
§3.3], and are computed via a different method in [1, §3.5.3].

Note that if i > (r− 1) deg a then g′i,a ≡ 0, so that gi,a is a cusp form for

i > (r − 1) deg a.
In particular, we have
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Proposition 3.4. The Eisenstein series Ek, exponential coefficient forms
ei and Drinfeld coefficient forms ga,i are Drinfeld modular forms of type 0
and weights k, qi − 1 and qi − 1, respectively, for Γ = GLr(A).

It is shown in [3] that the Drinfeld coefficient forms g1,t, g2,t, . . . , gr,t are
algebraically independent and generate the algebra of Drinfeld modular
forms of type 0 and arbitrary weight for GLr(A).

4. Eisenstein series for Γ(N)

Now let N ∈ A be non-constant and recall that Γ(N) = ker
(

GLr(A) −→
GLr(A/NA)

)
.

Example 4.1 (Eisenstein series of level N). Set VN := (N−1A/A)r. Let
k ∈ Zk>0. To each v ∈ VNr{0} we associate the weight k Eisenstein series

Ek,v(ω) :=
∑
a∈Ar

1(
(a+ v)ω

)k .
By abuse of notation, the v on the right hand side above actually denotes
a representative in (N−1A)r for the class in (N−1A/A)r.

When k = 1 we drop the k from the notation, and we have, additionally,

(4.1) Ev(ω) := E1,v(ω) =
1

eΛ(vω)
.

It is again easy to show that Ek,v is a weak modular form of weight k
for Γ(N). A computation similar to (3.6), but more complicated, again
shows that Ek,v is holomorphic at infinity. This was essentially carried out
by Kapranov in [20]. To show that Ek,v is actually a modular form, we

need to show that j(γ, ω)−kEk,v
(
γ(ω)

)
is holomorphic at infinity for all

γ ∈ GLr(A), which will follow from the next result.

Proposition 4.2. Let N ∈ A r F∗q, v ∈ VN r {0}, ε ∈ F∗q, k ≥ 1 and
γ ∈ GLr(A). Then

(1) Ek,εv(ω) = ε−kEk,v(ω).

(2) j(γ, ω)−kEk,v
(
γ(ω)

)
= Ek,vγ(ω).

In particular, Ek,v is a modular form of weight k for Γ(N).

Proof. For (1), we have

Ek,εv(ω) =
∑
a∈Ar

1(
(a+ εv)ω

)k = ε−k
∑

a∈ε−1Ar

1(
(a+ v)ω

)k = ε−kEk,v(ω).



8 Dirk Basson, Florian Breuer

For (2), we compute

Ek,v
(
γ(ω)

)
=
∑
a∈Ar

1(
(a+ v)j(γ, ω)−1γω

)k
= j(γ, ω)k

∑
a∈Arγ

1(
(a+ vγ)ω

)k = j(γ, ω)kEk,vγ(ω).

�

In this paper, we will obtain an alternative expression, due to Gekeler
[7] in the rank r = 2 case, for the uN -expansion of Ev = E1,v.

5. The cusp forms ∆ and h

The cusp form gr,t is non-vanishing on Ωr and is called the Drinfeld
discriminant form:

∆(ω) := gr,t(ω).

Let V := Vt = (t−1A/A)r ∼= Frq. The weight 1 Eisenstein series of level
N = t are the reciprocals of the non-zero t-torsion points of ϕω, by (4.1),
i.e.

ϕωt (X) = tX
∏′

v∈V

(
1−XEv(ω)

)
.

In particular,

(5.1) ∆(ω) = t
∏′

v∈V
Ev(ω).

So far, all of our examples have had type m = 0. The first example of a
(weak) modular form in rank r = 2 of non-zero type was a Poincaré series
in [13, Chapter X]. Gekeler showed in [9] that this is indeed a modular
form, now called the h-function, which has many interesting properties.

Our goal is to define a rank r generalization of the h-function and relate
it to ∆.

Definition 5.1. Let

S = t−1{(1, ∗, . . . , ∗), (0, 1, ∗, . . . , ∗), . . . , (0, . . . , 0, 1)} ⊂ V = (t−1A/A)r

be a set of representatives of the quotient space (V r {0})/F∗q ∼= Pr(Fq).
Let λt := eAωr(t−1ωr) = π̄−1eA(t−1). Note that λt generates the t-

torsion of the Carlitz module, and λq−1
t = −t.

Then we set

(5.2) h(ω) := −λt
∏
v∈S

Ev(ω).
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For a ∈ A, we define

d(a) :=

{
q(r−1) deg a if a 6= 0,
0 if a = 0.

Let ω′ ∈ Ωr−1 and denote by ϕω
′

the rank r− 1 Drinfeld module associ-
ated to the lattice Λ′ = Ar−1ω′. If a 6= 0 we let ∆′a(ω

′) denote the leading

coefficient of ϕω
′

a (X), so that

ϕω
′

a (X) = aX + · · ·+ ∆′a(ω
′)Xd(a).

To 0 6= a ∈ A and ω′ ∈ Ωr−1 we associate the polynomial fa(X), defined
by

(5.3) fa(X) := Xd(a)∆′a(ω
′)−1ϕω

′
a (X−1)− 1.

We have

(5.4) ϕω
′

a (X−1) = ∆′a(ω
′)X−d(a)

(
1 + fa(X)

)
.

The polynomial fa(X) has degree d(a) − 1 in X and is divisible by

X(q−1)q(r−1) deg a−1
= X(1−1/q)d(a).

In [2], the first author proves the following product formula for ∆. Denote
by A+ ⊂ A the subset of monic elements.

Theorem 5.2 ([2]). The discriminant ∆ satisfies

(5.5) ∆(ω) = −∆′(ω′)quq−1
∏
a∈A+

(
1 + fa(u)

)(qr−1)(q−1)
.

Here ∆′(ω′) is the rank r− 1 Drinfeld discriminant function (defined to be
∆′ := 1 if r = 2), and the product converges in suitable neighbourhoods of
the boundary of Ωr.

Our main goal will be to the prove the following.

Theorem 5.3.

(1) h is a cusp form of weight k = (qr − 1)/(q − 1) and type m = 1 for
GLr(A).

(2) ∆(ω) = (−1)r−1h(ω)q−1

(3) h(ω) = −λtM
(
Ewr(ω)−1, . . . , Ew1(ω)−1

)−1
, where M(x1, . . . , xr) =

det
(
xq

j

i

)
denotes the Moore determinant of x1, x2, . . . , xr ∈ C∞ and

the wi = t−1(0, . . . , 0, 1, 0 . . . , 0) (with the 1 in position i) form a
standard basis for V .

(4) h satisfies the product formula

(5.6) h(ω) = (−1)rh′(ω′)qu
∏
a∈A+

(
1 + fa(u)

)qr−1
,

where h′(ω′) denotes the rank r− 1 h-function, which is defined to be
−1 when r = 2.
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This generalizes known results for the rank 2 case, see [5].

Remark 5.4. It has come to our attention that the construction of h in
higher rank has been known to Ernst-Ulrich Gekeler since the mid 1980’s
(unpublished); it appears in [11].

Remark 5.5. Assuming that there are no non-constant modular forms of
weight 0 for GLr(A) (which follows from the results in [3]), one shows in the
usual way that there are no modular forms of negative weight, and thus h
(vanishing with order one at infinity) is a cusp form for GLr(A) of minimal
weight, and furthermore generates the space of modular forms of weight
k = (qr−1)/(q−1). In particular, h is proportional to the reciprocal of the
Legendre determinant form constructed by Gekeler in [10] and developed
further by Perkins [21].

A natural approach to proving (5.6) is to repeat the first author’s proof
of (5.5), starting with (5.2) instead of (5.1). Then Theorem 5.3.2 will
automatically yield (5.5). Instead, we start with (5.5) and Theorem 5.3.2
to deduce that (5.6) must hold up to multiplication by a unit in F∗q , and
then compute the first term of the u-expansion of h to show that this unit
is 1. This will be an instructive computation.

We first prove part (2) of Theorem 5.3. Notice that V r {0} =
⋃
ε∈F∗q

εS.

Then

∆(ω) = t
∏′

v∈V
Ev(ω) = −λq−1

t

∏
ε∈F∗q

∏
v∈S

Eεv(ω)

= −λq−1
t

∏
ε∈F∗q

∏
v∈S

ε−1Ev(ω)

= −λq−1
t

∏
ε∈F∗q

ε−1

k(∏
v∈S

Ev(ω)

)q−1

= −(−1)k

(
−λt

∏
v∈S

Ev(ω)

)q−1

= (−1)r−1h(ω)q−1

since #S = k ≡ r (mod 2) when q is odd and
∏
ε∈F∗q ε

−1 = −1.



Drinfeld modular forms 11

We next prove part (3) using the Moore Determinant Formula [17, Cor.
1.3.7]:

h(ω) = −λt

(∏
v∈S

eΛ(vω)

)−1

= −λtM
(
eΛ(wrω), eΛ(wr−1ω), . . . , eΛ(w1ω)

)−1
.

Now we can show that h is a weak modular form of weight k and type 1.
Let γ ∈ GLr(A). Then

h
(
γ(ω)

)
= −λtM

(
Ewr

(
γ(ω)

)−1
, Ewr−1

(
γ(ω)

)−1
, . . . , Ew1

(
γ(ω)

)−1
)−1

= −λtM
(
j(γ, ω)−1Ewrγ(ω)−1, j(γ, ω)−1Ewr−1γ(ω)−1,

. . . , j(γ, ω)−1Ew1γ(ω)−1
)−1

= −λtj(γ, ω)kM
(
eΛ(wrγω), eΛ(wr−1γω), . . . , eΛ(w1γω)

)−1

= −λtj(γ, ω)k(det γ)−1M
(
eΛ(wrω), eΛ(wr−1ω), . . . , eΛ(w1ω)

)−1

= (det γ)−1j(γ, ω)kh(ω).

Alternatively, one can prove the above functional equation directly from
the product definition (5.2) of h(ω) using the following amusing lemma.

Lemma 5.6. Let S = {s1, s2, . . . , sk} ⊂ V be any set of representatives of
(V r {0})/F∗q ∼= Pr−1(Fq). Let γ ∈ GLr(Fq). Then Sγ is again a set of
representatives, so we have (in some order) Sγ = {c1s1, c2s2, . . . , cksk} for

factors ci ∈ F∗q. Then
∏k
i=1 ci = det γ.

We leave the proof as an exercise for the reader (hint: decompose γ as a
product of elementary matrices and diag(1, . . . , 1, det(γ))).

6. Expansions of weight-one Eisenstein series

Our main goal in this section is a product formula for the uN -expansion
of the weight 1 Eisenstein series Ev. Combined with the following result,
this will give us the first term in the u-expansion of h, thus completing the
proof of Theorem 5.3.

Proposition 6.1. Let N ∈ A be non-constant. For ω′ ∈ Ωr−1, denote by
∆′N (ω′) the leading coefficient of ϕω

′
N (X). Then

u = ∆′N (ω′)−1u
d(N)
N

(
1 + fN (uN )

)−1

= ∆′N (ω′)−1u
d(N)
N

(
1 +O(u

(1−1/q)d(N)
N )

)
.(6.1)
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Proof. This is a straightforward calculation:

u =
1

eΛ′(ω1)
=

1

ϕω
′

N

(
eΛ′(N−1ω1)

) = ϕω
′

N (u−1
N )−1

(5.4)
= ∆′N (ω′)−1u

d(N)
N

(
1 + fN (uN )

)−1

= ∆′N (ω′)−1u
d(N)
N

(
1 +O(u

(1−1/q)d(N)
N )

)
.

Here the last equality comes from expanding
(
1+fN (uN )

)−1
as a geometric

series. �

Theorem 6.2. Let N ∈ A be non-constant. Let v = (v1, . . . , vr) ∈ VNr{0}
and write v1 = N−1α with α ∈ A satisfying degα < degN and v′ =
(v2, . . . , vr). Then

(6.2) Ev(ω) =
u
d(α)
N

∆′α(ω′)
(
1 + fα(uN )

)
+ eΛ′(v′ω′)u

d(α)
N

×

∏
a∈A+

(
1 + faN (uN )

)q−1[ (
1 + faN (uN )

)q−1 −∆′aN (ω′)1−q u
(q−1)(d(aN)−d(α))
N ×[

∆′α(ω′)
(
1 + fα(uN )

)
+ eΛ(v′ω′)u

d(α)
N

]q−1

] ,
where we recall that d(a) = q(r−1) deg(a), and d(0) := 0.

In particular,

(6.3) Ev(ω) =


E′v′(ω

′) +O(uN ) if α = 0

∆′α(ω′)−1u
d(α)
N

(
1 +O(u

d(α)(1−1/q)
N )

)
if α 6= 0,

where E′v′(ω
′) = eΛ′(v

′ω′)−1 is the corresponding rank r − 1 Eisenstein
series.

The weight 1 Eisenstein series Ev are thus modular forms of weight 1
for Γ(N).

The expansion (6.3) appears also in [1, Prop. 3.5.6], but the normaliza-
tion ωr = π̄ and definition of uN leads to a slightly simpler expression.

Corollary 6.3. h(ω) = (−1)rh′(ω′)qu + O(uq). In particular, the product
formula (5.6) holds and h is a cusp form.

Proof. By Theorem 5.2 and Theorem 5.3.2 the product formula (5.6) holds
up to a constant factor in F∗q . In particular, h(ω) has a u-expansion; we now

compute its ut-expansion. In this computation, we let V ′ := (t−1A/A)r−1
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and S′ ⊂ V ′ the corresponding set of representatives for (V ′ r {0})/F∗q ∼=
Pr−1(Fq).

h(ω) = −λt
∏
v∈S

Ev(ω) = −λt
( ∏

v ∈ S
α = 0

Ev(ω)
)( ∏

v ∈ S
α = 1

Ev(ω)
)

= −λt
( ∏
v′∈S′

(
E′v′(ω

′) +O(ut)
))
·
( ∏′

v′∈V ′

(
ut +O(u2

t )
))

= h′(ω′)uq
r−1

t +O(uq
r−1+1
t )

(6.1)
= h′(ω′)∆′(ω′)u+O(uq)

= (−1)rh′(ω′)qu+O(uq), since ∆′(ω′) = (−1)rh′(ω′)q−1.

Again, the exponent in O(uq) comes from (2.5). �

Proof of Theorem 6.2. We generalize the argument leading up to [7, (2.1)].
We break up the product over a = (a1, . . . , ar) ∈ Ar for eΛ(vω) into

parts where a1 = 0 and a1 6= 0, respectively:

eΛ(vω) = vω
∏′

a∈Ar

(
1− vω

aω

)
=
(
vω

∏′

a′∈Ar−1

(
1− vω

a′ω′

))
︸ ︷︷ ︸

a1=0

·
(∏′

a1∈A

∏
a′∈Ar−1

(
1− vω

a1ω1 + a′ω′

)
︸ ︷︷ ︸

a1 6=0

)
.(6.4)

The a1 = 0 part of (6.4) simplifies to

vω
∏′

a′∈Ar−1

(
1− vω

a′ω′

)
= eΛ′(vω)

= eΛ′(v1ω1 + v′ω′) = eΛ′(αN
−1ω1 + v′ω′) = eΛ′(αN

−1ω1) + eΛ′(v
′ω′)

= ϕω
′

α

(
eΛ′(N

−1ω1)
)

+ eΛ′(v
′ω′) = ϕω

′
α (u−1

N ) + eΛ′(v
′ω′)

(5.4)
=

∆′α(ω′)
(
1 + fα(uN )

)
+ eΛ′(v

′ω′)u
d(α)
N

u
d(α)
N

.

(6.5)

Now suppose a1 6= 0. The function

z 7→
∏

a′∈Ar−1

(
1− z

a1ω1 + a′ω′

)
has a (simple) zero at z precisely when z−a1ω1 ∈ Λ′, thus it is proportional
to eΛ′(z−a1ω1). The constant of proportionality is found by setting z = 0,
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so ∏
a′∈Ar−1

(
1− z

a1ω1 + a′ω′

)
=
eΛ′(z − a1ω1)

eΛ′(−a1ω1)
.

Set a1 = εa with a ∈ A+ and ε ∈ F∗q . Then we obtain the following
expression for the a1 6= 0 part of (6.4):

∏
a′∈Ar−1

(
1− vω

a1ω1 + a′ω′

)
=
eΛ′(vω − a1ω1)

eΛ′(−a1ω1)
=
eΛ′(a1ω1 − vω)

eΛ′(a1ω1)

=
eΛ′
(
(a1 − v1)ω1

)
− eΛ′(v

′ω′)

eΛ′(a1ω1)
=
eΛ′
(
(a1N − α)N−1ω1

)
− eΛ′(v

′ω′)

eΛ′(a1N ·N−1ω1)

=
ϕω
′

a1N−α
(
eΛ′(N

−1ω1)
)
− eΛ′(v

′ω′)

ϕω
′

a1N

(
eΛ′(N−1ω1)

) =
ϕω
′

a1N−α(u−1
N )− eΛ′(v

′ω′)

ϕω
′

a1N
(u−1
N )

=
εϕω

′
aN (u−1

N )− ϕω′α (u−1
N )− eΛ′(v

′ω′)

εϕω
′

aN (u−1
N )

=
ϕω
′

aN (u−1
N )− ε−1

[
ϕω
′

α (u−1
N ) + eΛ′(v

′ω′)
]

ϕω
′

aN (u−1
N )

(5.4)
=

[ (
1 + faN (uN )

)
− ε−1∆′aN (ω′)−1×[

∆′α(ω′)u
−d(α)
N

(
1 + fα(uN )

)
+ eΛ′(v

′ω′)
]
u
d(aN)
N

]
(
1 + faN (uN )

)

=

[ (
1 + faN (uN )

)
− ε−1∆′aN (ω′)−1 u

d(aN)−d(α)
N ×[

∆′α(ω′)
(
1 + fα(uN )

)
+ eΛ′(v

′ω′)u
d(α)
N

] ](
1 + faN (uN )

) .

Taking the product of this last expression as ε ranges over F∗q , we obtain

(6.6)
∏
ε∈F∗q

∏
a′∈Ar−1

(
1− vω

v1a1 + a′ω′

)
=

[ (
1 + faN (uN )

)q−1 −∆′aN (ω′)1−q u
(q−1)(d(aN)−d(α))
N ×[

∆′α(ω′)
(
1 + fα(uN )

)
+ eΛ′(v

′ω′)u
d(α)
N

]q−1

]
(
1 + faN (uN )

)q−1 .

The result follows after plugging (6.5) and (6.6) into (6.4).
Since Ev is holomorphic at infinity for every v ∈ VN r {0}, it follows

from Proposition 4.2 that the Ev’s are modular forms for Γ(N). �
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7. A brief history of Drinfeld modular forms in higher rank

Drinfeld modular forms were first defined in David Goss’s 1977 Harvard
thesis (partially published in [14]), both algebraically in arbitrary rank
using Katz’s formalism, and analytically in the rank 2 case, where a com-
pactification of the moduli curve was available and a parameter at infinity
could be defined. He wrote [18]:

Barry Mazur saw Deligne lecture on Drinfeld’s work [6] in Paris
and came back to Harvard and suggested to me circa ’75 that
the cusps should generate subgroups of finite order in the Ja-
cobian of Drinfeld’s modular curves based on the analogy with
elliptic modular forms. But Barry stated that he did not know
how to define Eisenstein series. I looked at it and the defini-
tion just worked (though it took me a while to truly prove that
these series were rigid analytic on Ω2). Then the definitions
of modular forms basically wrote themselves. The main thing
was to show that they had analytic expansions at the cusps and
that took a bit of work.

The rank 2 theory has since developed rapidly, especially in the hands of
Goss, Ernst-Ulrich Gekeler and others. In higher rank, the next step came
when Mikhail Kapranov [20] constructed a compactification of the moduli
variety of Drinfeld Fq[t]-modules with level-N structure, and studied the
behaviour of Eisenstein series at the boundary components; in the process
he also computed the uN -expansions of Eisenstein series of level N . This
allowed him to sketch a proof of finite-dimensionality of spaces of Drinfeld
modular forms of higher rank, as related by Goss in [16, §6.4].

Around the same time, Gekeler investigated Drinfeld modular forms of
higher rank, including the form h, but most of this work remained unpub-
lished. In [8] he outlined a compactification of Drinfeld modular varieties
in greater generality, although the details were never worked out. That
paper contains a parameter at infinity in full generality, and states a result
on the order of vanishing of a generalization of ∆ at the cusps. The form
h appears as a weak modular form in [10, §4] as a Legendre determinant
involving Anderson generating functions.

Around the turn of the millenium, Yoshinori Hamahata [19] gave a prod-
uct formula for the rank r Drinfeld discriminant function in terms of r− 1
separate parameters.

In [4] expansions are computed for Eisenstein series, coefficient forms
and modular functions, using a parameter at infinity for GLr(Fq[t]), equiv-
alent to u above, but normalized so that ∆′(ω′) = 1 (this parameter was
constructed by Hans-Georg Rück, unaware of [8]). Inspired by this, the
second author and Richard Pink initiated a project in 2009, later joined
by the first author, to develop the theory of Drinfeld modular forms of
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arbitrary rank [3]. In [22], Pink constructed a Satake compactification of
Drinfeld moduli schemes in great generality (a construction which differs
from that outlined in [8]), and defined algebraic modular forms in terms of
these. In the case A = Fq[t] and level-t, Pink’s construction is very explicit
and leads to a complete description of algebraic modular forms for Γ, where
Γ(t) ⊂ Γ ⊂ GLr(Fq[t]).

In [3] Drinfeld modular forms are defined analytically in terms of u-
expansions (for general A and Γ), and it is shown that such modular forms
correspond to Pink’s algebraic modular forms. In his thesis [1], the first
author also studied Hecke operators on modular forms and the coefficients
of u-expansions, obtaining amongst other results a new product formula
for ∆ [2].

Rudolph Perkins [21] has used the u-expansions from [1] to show that
Gekeler’s rank r Legendre determinant from [10, §4] is indeed a modu-
lar form, and furthermore starts to develop the notion of deformations of
vectorial Drinfeld modular forms of higher rank.

Most recently, in [11, 12] Gekeler has written up a construction of Drin-
feld modular forms for GLr(Fq[t]) and studied in detail the growth order
and vanishing of the forms ∆, h and Ev.

Acknowledgements. This paper is a spin-off of joint work in progress [3]
with Richard Pink, without whom none of this would have been possible.
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