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Abstract

This monograph provides a foundation for the theory of Drinfeld modular forms
of arbitrary rank r and is subdivided into three parts. In the first part, we develop the
analytic theory. Most of the work goes into defining and studying the u-expansion of
a weak Drinfeld modular form, whose coefficients are weak Drinfeld modular forms
of rank r — 1. Based on that we give a precise definition of when a weak Drinfeld
modular form is holomorphic at infinity and thus a Drinfeld modular form in the
proper sense.

In the second part, we compare the analytic theory with the algebraic one that
was begun in a paper of the third author. For any arithmetic congruence subgroup
and any integral weight we establish an isomorphism between the space of analytic
modular forms with the space of algebraic modular forms defined in terms of the
Satake compactification. From this we deduce the important result that this space
is finite dimensional.

In the third part, we construct and study some examples of Drinfeld modular
forms. In particular, we define Eisenstein series, as well as the action of Hecke
operators upon them, coefficient forms and discriminant forms. In the special case
A = Fy[t] we show that all modular forms for GL,(I'(t)) are generated by certain
weight one Fisenstein series, and all modular forms for GL,(A) and SL,(A) are
generated by certain coefficient forms and discriminant forms. We also compute the
dimensions of the spaces of such modular forms.
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Introduction

In [Dr74], Drinfeld introduced elliptic modules, now called Drinfeld modules, in order to
prove a special case of the Langlands conjectures for GLj over function fields. These objects
share many properties with elliptic curves, though their rank can be an arbitrary integer
r 2 1. In particular, Drinfeld constructed a moduli space of Drinfeld modules of rank r with
a suitable level structure, both as an algebraic variety and with an analytic uniformisation
as a quotient of an r —1 dimensional symmetric space 2". This 2" is a rigid analytic space
over a field C,, of positive characteric and plays the role of the complex upper half plane.
In the case r = 2 Drinfeld [Dr77] used automorphic forms on Q" with values in Q, to prove a
case of the Langlands conjectures for the associated automorphic representations on GLs.

But there is also a natural definition of Drinfeld modular forms on " with values in
the field C, of positive characteristic. Goss [Go80b] was the first to explicitly refer to
these, defining them both algebraically, in the way Katz did in [Ka73], and analytically as
(rigid analytic) holomorphic functions on Q7. In the case r = 2, where these are functions
of one variable, it was relatively straightforward to write down the necessary condition of
holomorphy at infinity. This led to the development of a theory of Drinfeld modular forms
of rank 2, for instance by Gekeler [Ge86]; see [Ge99b] for a survey.

For r > 3 the situation concerning holomorphy at infinity is more subtle. In the related
case of Siegel modular forms of genus > 2 the problem disappears, because the necessary
condition at infinity holds automatically by the Kocher principle. One explanation for
this is the fact that in the Satake compactification of the Siegel moduli space of abelian
varieties the boundary has codimension > 2. By contrast, the moduli space of Drinfeld
modules is always affine, so in any compactification as an algebraic variety the boundary
has codimension 1; hence a condition at infinity is always required.

That condition is important for several reasons. On the one hand many relevant modu-
lar forms that one can construct naturally, such as Eisenstein series, satisfy it automatically.
On the other hand a condition at infinity is necessary for one of the main structural results,
the fact that the space of modular forms of given level and weight is finite dimensional.

The condition at infinity can be expressed in two quite different ways. The analytic way
says that the u-expansion (which is a kind of Fourier expansion) of a modular form consists
only of terms with non-negative index. For the algebraic way one identifies the analytic
modular forms with sections of an invertible sheaf on a moduli space. Then one requires
a compactification of this moduli space as a projective algebraic variety over C,, together
with an extension of the invertible sheaf. The crucial step is to prove that a modular form
satisfies the analytic condition at infinity if and only if the corresponding section on the
moduli space extends to a section on that compactification. The finite dimensionality is
then a direct consequence of the fact that the space of sections of a coherent sheaf on a
projective algebraic variety is always finite dimensional. Using the Satake compactification
of a Drinfeld moduli space, the third author [Pil3] has already established much of the
necessary algebro-geometric theory for this.

The present monograph aims to provide the rest of the theory and thereby a foundation
for the theory of Drinfeld modular forms of arbitrary rank. It is subdivided into three



parts, corresponding to three preprints released in 2018. Part I develops the basic analytic
theory, including u-expansions and holomorphy at infinity. Part II identifies the analytic
modular forms discussed here with the algebraic modular forms defined in [Pil3] and
deduces qualitative consequences such as the finite dimensionality of the space of modular
forms of given level and weight. Part III illustrates the general theory by constructing and
studying some important families of modular forms.

For a discussion on the history of Drinfeld modular forms of higher rank, see [BB17,
§7].

We briefly mention here some recent developments. In a series of papers [Gel9al [Gel,
Gel9b), [Gel8| [Gel19d, [Ge21] Gekeler constructs the building map from Q" to the Bruhat-Tits
building of GL, and uses this to study the growth and vanishing behaviours of important
families of modular forms for GL,(F,[t]). This is a valuable complement to the theory
presented in this monograph.

In [Sul§], Sugiyama studies integrality of Drinfeld modular forms for GL,(F,[t]).

In a recent preprint [HY20], Hartl and Yu develop an arithmetic Satake compactification
of Drinfeld moduli schemes and study arithmetic Drinfeld modular forms of arbitrary rank.

An approach to higher rank Drinfeld modular forms via lattices is treated in the Ph.D.
thesis of Baker [Ba20].

In another direction [CG21], Chen and Gezmis define and study the weight 2 “false
Eisenstein series”, a first example of a Drinfeld quasi-modular form in arbitrary rank.
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Part 1
Analytic Theory

Outline of Part 1

In Section [1] we introduce our notation and define the Drinfeld period domain 2" with its
action by GL,(F') for a global function field F. Weak modular forms for an arithmetic
subgroup I' < GL,(F') are defined as holomorphic functions from " to C,, satisfying the
functional equation linking f(vy(w)) to f(w) for every vy el

Further preparations are made in the next two sections. In Section [2| we collect basic
properties of exponential functions associated to strongly discrete subgroups of C.,, and
we outline the rigid analytic structure of Q" in Section [3

Based on our choice of coordinates on Q, we identify a standard boundary component,
whose translates by GL,.(F') form all boundary components of codimension 1. Thus a weak
modular form is holomorphic at all boundary components if and only if all its translates
by GL,(F) are holomorphic at the standard boundary component. The holomorphy at
the standard boundary component is tested using the expansion with respect to a certain
parameter u.

This parameter is defined in Section : We decompose elements w € Q" as w = (“j}),
where w; € C,, is the first coordinate of w and w’ € ™! consists of the remaining coordi-
nates. Next, we assign to I a subgroup A’ ¢ F"~! isomorphic to the subgroup I';y < T' of
translations which fix w’. Then A’w’ c C,, is a strongly discrete subgroup and we can form
the associated exponential function epr,. Now epr,(wi) is invariant under the translations
['y and we define our parameter as its reciprocal u = u(w1) = eprr(wr) ™! in (4.14).

In Definition we define neighbourhoods of infinity in 2", then Theorem [4.16] states
that the map (‘;}) > (;‘,) induces rigid analytic isomorphisms from quotients of neighbour-
hoods of infinity by I';y to so-called pierced tubular neighbourhoods in C%, x 71,

This allows us to show in Section [5| that every weak modular form f admits a u-

expansion
f(w) = %fn(w’)uw'(wl)”
ne

converging on a neighbourhood of infinity (Proposition , whose coefficients f,, are them-
selves weak modular forms on ©"~! (Theorem [5.9)). These are the main results of Part L

Finally, we define modular forms in Section [0] as weak modular forms all of whose
translates by elements of GL,(F') admit u-expansions with terms of non-negative index.
It follows from Propositions and that this condition only needs to be tested for
finitely many elements of GL,.(F). It will be shown in Part II of this monograph that this
definition agrees with the algebraic definition of modular forms in [Pil3].



1 Weak modular forms

Throughout this monograph we fix a global function field F' of characteristic p > 0, with
exact field of constants F, of cardinality ¢. We fix a place co of F' and let A denote the
ring of elements of F' which are regular away from oo. This is a Dedekind domain with
finite class group and group of units A* = Fy. Let m € F' be a uniformising parameter at
00, s0 that |r| = g79¢>. Let Fi = F ace ((7)) denote the completion of F' at oo, and Ce,
the completion of an algebraic closure of Fi,.

We fix an unspecified non-zero constant £ € CX , whose value can be set for normalisation
purposes. For example, if F'=F,(t) and A = F,[t], there are certain advantages in letting
¢ be a period of the Carlitz module. For more general function fields F', a natural choice of
¢ is a period of a certain sign-normalised rank-one Drinfeld module, see [Ge86, Chapter IV
(2.14) and (5.1)]. However, we will not explicitly need the normalisation in this monograph,
so the reader loses nothing by assuming that £ = 1.

The Drinfeld period domain of rank r > 1 over F,, is usually defined as the set of
points (wy :...:w,) € Pr~1(Cy) for which wy,...,w, are Fy-linearly independent. Any
such point possesses a unique representative with w, = £&. We shall only work with these
representatives, so we identify 2" with the following subset of C7_:

(1.1) Q= {(wl, Lw)TeCr, | wi,...,w, F-linearly independent and w, = §}

We write the elements of )" as r x 1 matrices, i.e. column vectors.

For any point w € 2" and any matrix v € GL,.(F), the matrix product yw is again a
column vector with F,.-linearly independent entries. In particular its last entry is non-zero.
Defining

(1.2) j(y,w) =&t (last entry of yw) € CX,
we thus find that
(1.3) Y(w) = j (7, w) w

again lies in ". This defines a left action of GL,(F) on ". Also, for any v, 6 € GL,.(F)
a direct calculation shows that

(1.4) J(v8,w) = 5(v,6(w))j(6,w).

For any function f: Q" - C, and any integers k£ and m we define the function fli .7 :
Q" - Cqy by

(1.5) (fleam ) (@) = det(7)™j (7, 0) " f(7(w))-
By direct calculation we deduce from that
(1.6) (flem0) (@) = ((flrm¥)lemd) (w).
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Thus ((1.5)) defines a right action of GL,(F.) on the space of all functions f: Q" - C...
For later use note also that, if v = a - Id, for the identity matrix Id, € GL,(F"), then
Jj(v,w) =a and y(w) = w and det(y) = a”; and hence

(1.7) flem(a-1d,) = a™ " f.

Remark 1.8 There are different conventions about whether Q2" consists of row or column
vectors and about how GL,(F.) acts on it. For instance, the first and third authors
[Bal4], [Pil3] like Drinfeld [Dr74] use row vectors and the action (vy,w) = w7y, whereas
Kapranov [Ka87] uses column vectors and the action by left multiplication (7y,w) ~ yw.
These conventions differ not only by transposition, but also by the outer automorphism
v+ (yT)1 of GL,. The present monograph uses column vectors and left multiplication in
order to make things compatible with the existing literature on rank 2 Drinfeld modular
forms.

The set 2" can be endowed with the structure of a rigid analytic space. Experts may
be content with the fact that 2" is an admissible open subset of P7~!(C,,) and inherits
its rigid analytic structure, while others may consult Section [3| for more details. A holo-
morphic function on Q7 is a global section of the structure sheaf of €27, but a more useful
characterisation is that a function f: Q" - C,, is holomorphic if and only if it is a uniform
limit of rational functions on P"~1(C,,) whose poles all lie outside 2.

Definition 1.9 Consider integers k and m and an arithmetic subgroup I' < GL,.(F). A
weak modular form of weight k& and type m for I' is a holomorphic function f: Q" - C,,
which for all v € I' satisfies

f|k,m/7 = /.
The space of these functions is denoted by Wy, (T).

Since I' is an arithmetic subgroup of GL,.(F), its determinant det(T") is a finite subgroup
of I and therefore contained in the multiplicative group of the field of constants Fy. Thus
its order is a divisor of ¢ — 1, and the definition depends only on m modulo this divisor; in
other words we have

(1.10) Wi (I') = Wi (I') whenever m = m/ modulo |det(I")].
On the other hand, for any a € F} we have fl,(a-1d,) = o™ f by (1.7). Thus
(1.11) Wim(I') = 0 unless k = rm modulo ‘F N {scalars}|.

In the case m = 0 we will suppress all mention of m and abbreviate f|7y := flx.my and

Wi (T') :== Wym(T'). By (1.10) we may always do this when I" < SL,.(F).
For later use we note the following direct consequence of (|1.6]):

Proposition 1.12 For any 6 € GL,(F) we have f € Wym(L') if and only if flemd €
ka(é‘lI‘(S).

In general the space W), (L") is infinite dimensional. A finite dimensional subspace of
‘non-weak’ modular forms will be characterised by conditions at infinity. The formulation
of these conditions requires some preparation in the next two sections.
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2 Exponential functions

A subgroup H c C,, is called strongly discrete if its intersection with every ball of finite
radius is finite. For any such subgroup, any z € C,,, and any ¢ > 0, there are at most
finitely many elements h € H ~ {0} with |§‘ > e. In this case the product

(2.1) en(z) == [] (1—%)

heH~{0}

converges in C,,, defining the exponential function ey : Co. - Co associated to H.

Proposition 2.2 For any strongly discrete subgroup H c C,,, the function ey : Coo > Cq
1s holomorphic, surjective, and has simple zeros at the points in H and no other zeros. It
induces an isomorphism of additive groups and rigid analytic spaces

Coo/H —> Cop.

The function ey possesses an everywhere convergent power series expansion
0 .
X2
en(2) =) empia?
i=0

with e i € Coo and ey = 1. If H is an Fy-subspace, the expansion has the form
ep(z) = ZeHﬂquj.
=0

If H is finite, then ey (z) is a polynomial of degree |H| in z.

Proof. When H c C is an A-lattice (see below), this is proved in [Go96, §4.2] and
[Go80b, Prop. 1.27]. The case where H c C,, is merely a strongly discrete subgroup
follows in exactly the same way. O

Proposition 2.3  (a) For any two strongly discrete subgroups H' ¢ H c Co,, the subgroup
e (H) c Co is strongly discrete and isomorphic to H/H', and we have

€H = Ceppy(H) CEH-

(b) For any strongly discrete subgroup H c Co and any a € C%,, the subgroup aH c Cy
18 strongly discrete, and we have

eqan(az) = aey(2).

Proof. For (a) see [Ge88bl (1.12)], and (b) follows immediately from the definition. O

An A-lattice of rank r in C, is a strongly discrete projective A-submodule A c C,, of
rank r.



Proposition 2.4 Let H c C,, be an A-lattice of rank r. Then for any a € A there exists a
unique F,-linear polynomial @ (z) of degree |a|" satisfying

vu (en(2)) = en(az)
for all z€ Cy. The map o :a— o is a Drinfeld A-module of rank r.

Proof. [Go96, Thm.4.3.1] o

3 The rigid analytic structure of ()"

Throughout the following we denote by B(0,p) := {z € C : |2| < p} the closed disk of
radius p > 0 centred at 0, and by B(0,p)" = B(0,p) ~ {0} the associated punctured disk.
We will also consider the annulus D(0,0,p) := {z € Cs | 0 <|z| < p}. Note that B(0, p) and
D(0,0,p) are affinoid whenever o, p € |CX|.

We will describe the rigid analytic structure of (2" by covering it by suitable affinoid
subspaces. Two such coverings already appear in [Dr74], and one of them is described in
more detail in [SS91]. We follow the approach in [SS91], but adapt it to our convention
that w, = €.

We say that a linear form F7, — F, is unimodular if its largest coefficient has absolute
value 1. For any F.-rational hyperplane H c P*~!(C,,), we choose a unimodular linear
form ¢y that defines it. Then |[(y(w)| is well-defined and non-zero for any w € Q7. Using
the standard norm |w| := max ¢y, |w;| on CZ,, we set
(3.1) hw) = o inf{{lu(w)|: H an Fo hyperplane},
which measures the distance from w € Q" to all boundary components combined. For any
n € 279 we also define

(3.2) Qr={weQ : h(w) ="}
Since |7| < 1, these subsets satisfy Qf c Q5 c ... and their union is Q.
Lemma 3.3 Every w € Y satisfies |£| < |w| < [&]|7|™.

Proof. The first inequality follows from w, = £. Next, since w — w, is a unimodular F,.-
linear form, (3.1)) implies that |w|h(w) < [¢], from which the second inequality follows. O

Proposition 3.4 For each n € 7°°, the set Q is an affinoid subdomain of P"~1(Cy).
Together they form an admissible covering of QO, endowing it with the structure of an
admissible open subset of P~1(Cy,).



Proof. See version (C) of the proof of [SS91 Prop. 1]. o

Using the second (finer) covering in [Dr74], §6.2B], Drinfeld showed that, for any arith-
metic subgroup I' < GL,(F"), the quotient I'\Q2" exists as a rigid analytic space.

For the following recall that a function f : U - C,, on an admissible open subset U c )"
is called holomorphic if it is a section of the sheaf of functions on this space, or equivalently,
if it is a uniform limit f = lim,,_. f, of rational functions f, : P"~1(C,) -» C. with no
poles in U.

In the next section we shall need bounds on the values of certain exponential functions
when we restrict to w € Q7' For this we require the following estimates:

Lemma 3.5 For any v € GL,(FL) there exist positive constants c¢1, co and c3 such that
for every w € Q" we have

(a) h(w) <cali(y,w)llwl™ < 1;
(b) [y(w)l < c2h(w)™; and
(¢) h(y(w)) > esh(w).

Proof. Let z be an entry of the last row of 7 of maximal absolute value, and set
1 :=|xz71€| > 0. Then by the definition (1.2)) of j(v,w), the value z71£;j(y,w) is a unimodular
F..-linear combination of the w;’s, so we obtain

77165 (v, W)
h(w) < T <1

This proves (a).

Next, let ¢} be the largest absolute value of an entry of v. Then the matrix product
satisfies |yw| < dy|w| and so |y(w)| = |7 (7, w) | |yw| < |7 (7, w) b |w| € erchh(w)~t, where the
last inequality follows from (a). This proves (b) with s = ¢1c5.

For (c) let ¢4 denote the largest absolute value of an entry of v~1. Let ¢ be an arbitrary
unimodular F,-linear form, which we write as a row vector, so that ¢(w) = fw. Choose
my € CX, such that £, := myly is a unimodular linear form. Then the entries of m,{ =
mel7y -y~! have absolute value at most ¢j; hence |my| < ¢§. Since y(w) = j(7,w) 1w, using
the linearity of ¢ and the definition of h(w) we find that

L) _ el _ sl | el | h(w)

@l hel el 7 alkl T e

Varying ¢, the definition of h(y(w)) now implies (c¢) with c5:= (chej) L. o
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4 Neighbourhoods of infinity

From now on we assume that r > 2. Let U denote the algebraic subgroup of GL, r of
matrices of the form

‘*...*

1
0

(4.1) : 1,
0

where Id,_; denotes the identity matrix of size (r—1) x (r-1). Fix an arithmetic subgroup
I' < GL,(F) and set

(4.2) Ty =T nU(F).

Then for all v € I'y and w € Q" we have det() = j(v,w) = 1; hence every weak modular
form for I' is a I'-invariant function on 2"
Viewing elements of F7~! as 1 x (r—1)-matrices (row vectors), consider the isomorphism

~ 1
. r—1 /
(4.3) LT L U(F), v ”(o Idr_l).

Since I' is commensurable with GL,.(A), the subgroup

(4.4) N =1YTy)cFrt
is commensurable with A™~!. On the other hand, recall that Q" is the set of column vectors
w=(w,...,w)T € C, with F-linearly independent entries and w, = . For any such w
we have w’ := (wy, ..., w,)T € Q1 hence

QO c (Coo x Qr—l

inside C, = C,, x C'5t. Accordingly we write w = (“:J%) The definition then directly
implies that h(w) < h(w’) and hence Q7 c C,, x Q1.

For any element A’ € A’ we can form the matrix product Nw’ € C,,. The definition (1.3|)
of the action on €2 then implies that

(4.5) () ((#)) = (0,

which extends the action to C,, x 27! by the same formula. For any w’ € Q7~! observe that
ANw':={Nw"| M e A’} is a strongly discrete subgroup of C,,, because A’ is commensurable
with A™"! and the entries of w’ are Fy-linearly independent. Thus the function

(4.6) Coo x Q1 > Coo, [(“)] 7 ewrar(wr)

w

is well-defined and I'y-invariant.
As usual in a metric space, for any point z € C,, and any subset X c C,, we write
d(z,X) :=inf{|z = 2| : 2 € X}. Then we have:

11



Proposition 4.7  (a) The function (4.6) is holomorphic.

(b) For any n € Z>° and c > 0 there exists a constant ¢, >0, such that for any w' € Qr-!
and any wy € Coo with |wq| < ¢ we have |epry(wr)| < ¢p.

(c) For anyn e Z>° and R, >0 there ezists a constant ¢, >0, such that for any w' e Qr-!
and any wy € Coo with d(wy, FI71w') < R, we have |epr, (w1)] < ¢y.

(d) For any w' € Q™! and wy € Coo we have |epry(wr)] > d(wy, FL7'w').

Proof. The function is defined by the product e,/a(w1) = w1 - [Togven (1 = 57 ), whose
factors we examine in turn. First, as A’ ¢ F7~! is commensurable with A1, there exists a
constant a € A\ {0} with A’ c a7t A™!. Let 0 # \ € A’. Recall that X determines an Fl,
linear map C;! - C,, by matrix multiplication v - Mv, and denote by ¢, the associated
unimodular F,-linear map. For any w'e Qr-l it follovvs that

(48) = N \ﬁx(w’)\ V] h(w)- Iw’l XS N e

As ) runs through A’ \ {0}, the value |Nw’| thus goes to co uniformly over -1, Varying
n this implies that the function is holomorphic, proving (a).

To prove (b) observe next that all factors 1 - 57 with |Nw’| > |w| have absolute value
less than or equal to 1. Since now |wq| < ¢, we deduce that

(49) |ewaf(w1)| < C- H ¢

0<|Nw'|<c |>\,w,| ’

Since A’ c a7 A1, for any X € A’ ~ {0} we have || > |i From 1} we thus deduce that

INw!| > |7r é' In particular each factor in the product 1} satisfies < dal . hence it

_c ¢ dal
[Nw!| = rmg]
is bounded by a constant that is independent of w’. On the other hand, if |\w’| < ¢, the

inequality (4.8) implies that [X'[ < =7. Thus each coefficient of a)’ € A™"! has absolute

value < |§|f£|> the number of possibilities for which is bounded independently of w’. The

number of factors in is thus also bounded independently of w’, and so is therefore the
total value of the product, proving (b).

To prove (c) write wy = 2w’ +y, where x € FZ;1 and y € C, with |y| < R,. Since
A’ ¢ F1 is commensurable with A™1, the factor group FZ;'/A’ is compact. Thus there
exists a constant o > 0 depending only on A and A’, such that every z € F7-! can be
written in the form z = X + zy for some X € A’ and 7z € C, with |zg| < a. Together
we then have wy = Nw' + (zow’ + y) with |zow'| < a|w’| < af¢7~"| by Lemma 3.3 and hence
|zow’ +y| < max{a|{m™|, R, }. By part (b) this implies that |epr, (w1)| = |ean (Tow’+y)| < ¢y
for some constant ¢, > 0 that is independent of w; and w’, proving (c).

To prove (d) write wy = Ajw’ +y with A\j € A’ and y € Co such that |y| is minimal. Then
for all X € A’ we have |y — Nw'| > |y|. If |y| > |Nw'], this implies that |y MW 2 [N
and hence |1 - 55| > 1. If |y| < [Nw’|, we directly deduce that |1 - | = 1. Writing
ew/A/(wl) = ewn(y) = Y Togven (1= 557), we conclude that all factors in the product satisfy
1- | > 1. Thus it follows that |euar(wi)| > [y > d(wi, FL'w’), proving (d). i
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Proposition 4.10 The quotient T'y\(Co x Q1) exists as a rigid analytic space. Moreover
we have an isomorphism of rigid analytic spaces

€+ Tu\(Ca x 1) —> Coo x 21, [(4)] 7> (42 ).

w w

Proof. The existence of I'y\(Co x 2771) as a rigid analytic space is shown in Simon
Héberli’s thesis, [Ha21].

By Proposition we obtain a well-defined bijective and holomorphic map £. As the
derivative of ey (X) with respect to X is identically 1, the morphism is also étale. By
Proposition below it is therefore an isomorphism. o

Proposition 4.11 Let f: X =Y be a morphism of rigid analytic spaces defined over an
algebraically closed field K which is étale and bijective. Then f is an isomorphism.

Proof. (The proof is based on the analogous argument for schemes at [Stacks, Tag
02LC]J.) First we show that f is universally injective, i.e., for any morphism ¢ : Y’ - Y
the morphism f’: X’ := X xy Y’ - Y is injective. So consider any points z/, 2" € X’
mapping to the same point 3’ € Y. Then they also map to the same point y € Y, and by
the bijectivity of f they therefore also map to the same point € X. Thus 2’ and 2" lie
in the fiber product z x, ¢’ which, since all these points have the same residue field K, is
Sp(K ®x K) = Sp(K) and therefore consists of a single point. This proves that x’ = ", as
desired.

In particular, taking Y’ = X, the projection fyx : X xy X - X is injective, and hence
the diagonal morphism A : X — X xy X is surjective (since fx o A is the identity on X).
On the other hand A is an open immersion, because f is étale. It follows that A and
hence fx are isomorphisms. On the other hand f is flat by étaleness and even faithfully
flat by surjectivity. Since being an isomorphism is local for the étale topology, and fx is
an isomorphism, it follows that f is an isomorphism, as desired. O

Now we look at the situation near the standard boundary component.
Definition 4.12 For any n € Z°° and R,, > 0 consider the I'y-invariant subset
I(n,Ry) = {w=(2)eQ |weQ?, d(w, F'w') > R, }.

An arbitrary Ty-invariant admissible open subset N' c Qr, such that for each n > 0 there
exists an R, >0 with I(n, R,) c N, will be called a neighbourhood of infinity.

Note that every subset of the form I(n,R,) is contained in Q" by construction; hence
neighbourhoods of infinity exist and 2" is itself one.

Definition 4.13 Any subset of Co, x Q=1 of the form
T = UB0,r) <™

nx1

for numbers r,, € |CX| will be called a tubular neighbourhood of {0} x Q1. or just a tubular
neighbourhood for the sake of brevity. The intersection of a tubular neighbourhood with
Cx, x Q=1 will be called a pierced tubular neighbourhood.
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Any tubular neighbourhood is an admissible subset, because it is the union of affinoid
sets of the form B(0,p) x Q=1 for p € |C%| and the intersection of any two such affinoid
sets is again of this form. The same holds for pierced tubular neighbourhoods, but in this
case we must use affinoids of the form D(0, 0, p) x QL.

Next recall that epr(w1) # 0 whenever wy; ¢ A'w’. In particular this holds for any

W= (‘;}) € )", and so

1

(4.14) Uy (wy) = ]

X
e C},

is well-defined for all w = (‘:}) e Q).

Example 4.15 Suppose that A =TF,[t], r =2, A= A% and £ = 7 is a period of the Carlitz
module. Then for w = (wg) € ()2 we have

1 1

ecal(wr) B wea(z)’

Uy (wl) =

where 2z = wy /€ € C, \ F,, is the usual parameter at infinity in the rank 2 literature (see,
e.g., [Ge88al).

Theorem 4.16 (a) The morphism

v Ty\Qr — Cx x Q1) [(‘:})] — (“w’(‘,”l))

w

induces an isomorphism of rigid analytic spaces from T'y\Q" to an admissible open
subset of Cx, x =1,

(b) For any neighbourhood of infinity N c Qr, the image 9(Ty\N') contains a pierced
tubular neighbourhood.

(¢) For any pierced tubular neighbourhood T' c CX x Q=1 contained in the image of 9,
there is a neighbourhood of infinity N c Q" such that 9(Ty\N) = T', and 9 induces
an 1somorphism

To\W =5 77,

Proof. Part (a) is a direct consequence of Proposition 4.10, To prove (b) we must show
that for any n >0 and R,, > 0 there exists 7, > 0 such that

B(0,r,) x 7t < 9(Tp\I(n, Ry)).

For this let ¢, be the constant from Proposition (c) and set r, = ¢;!. Consider any
point (j,) € B(0,7,) xQr=1. As the map epr, : Coo N A'w’ - CX is surjective by Proposition
, and u, = ey, by definition, there exists a point wy € Coo \ A'w’ with u,(wy) = 2.
Since z € B(0,r,)’, we then have |exry(w1)| > ¢,. By Proposition (c¢) we thus have
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d(wy, F7'w') 2 R, and so (Z}) € I(n,R,). Therefore (j,) = 19([(‘13)]) e W(Ty\I(n,R,)),
proving (b).

To prove (c), let N c Q" denote the preimage of T, this is an admissible subset of "
since 7" is an admissible subset of C%, x Q"~1. It remains to show that A is a neighborhood
of infinity. We must show that for any n > 0 and r,, > 0 there exists R, >0 such that

I(To\(n,R,)) © B(0,r,) = QL.

For this set R, := ;! and consider any point (“) € I(n, R,). Then by Proposition (d)
we have |ear(wi)| > d(wi, FIo'w’) > R, and hence |uy(w;)| € 7. Therefore 9([(“1)]) e
B(0,7,)" x Q-1 as desired. The isomorphy I'y\' — T’ then follows from (a). o

5 Expansion at infinity

In this section we show that every I['y-invariant holomorphic function admits a Laurent
series expansion in u,,(w;) which converges near infinity. As usual, we measure the size of
a holomorphic function g : Q7! - C,, by the supremum norm

gl = sup{lg(w)]: ' e Q7).

Note that any rational function is bounded outside of a neighbourhood of its poles. In
particular, a rational function with no poles on Q" is bounded on €27. Since g is a uniform
limit of rational functions on {27, the supremum defined above will always be finite.

Lemma 5.1 Let n € Z>° and p € |Cul|. Any holomorphic function f: B(0,p)’ x Qr=1 - C,,
has a unique Laurent series expansion

(5.2) flzw') = fu(w)z,

keZ

which converges uniformly on every affinoid subset, where the functions fi : Q71 - Cq are
holomorphic and satisfy the conditions

lirknsup Vifeln < p7" and kl_lf_noo Vel = 0.

Proof. Write p = ¢* with a € Q. Then the punctured disk B(0,p)’ is the union of the
affinoid annuli

D(0,0,p) = {z€Cx|o<|2|<p} = Spm(Coo(%, )

for all o = ¢* < p with b e Q. Since Q77! is also affinoid, say Q7' = Spm A7, the product
is affinoid and more precisely

L

b

D(0,0,p) x 7t = Spm AN, %),

15



Thus the restriction of f to D(0,0,p) x Q-1 has a uniformly convergent expansion of the
form ([5.2)) with unique holomorphic functions f; : Q-1 - C,, that satisfy

lim sup ¥ ”kan < p71 and limsup RV, ||fk||n < 0.
k—oo k——o0

By uniqueness, the functions f; are independent of o, so the proposition follows by letting
o go to 0. |

Lemma 5.3 For any pierced tubular neighbourhood T' c CX xQ =1 any holomorphic func-
tion f:T" - Cy has a unique Laurent series expansion

f(z,w') = Z fe(w)2"

keZ

with holomorphic functions f : Q=1 - C, which converges uniformly on every affinoid

subset of T".

Proof. Suppose that 7' = U,»; B(0,7,)" x Qr~! with r, € |C%|. By Lemma for any
n > 1 the restriction of f to B(0,7,)" x Qr~! admits a unique Laurent series expansion
Ykez fk(;")zk with holomorphic functions f,g") : Qr-1 > C, which converges uniformly on
every affinoid subset. For any n > m > 1, the uniqueness in Lemma for the restriction
of f to B(0,min{r,,r,})" x Q71 implies that f{™ |- = f™ . By the sheaf property for
admissible coverings, there are therefore unique holomorphic functions f, : Q7! - C,, with
fr Q1 = f,gn) for all n, and they satisfy the desired conditions. O

Proposition 5.4 For any I'y-invariant holomorphic function f : Q" - C. there exist
unique holomorphic functions f, : Q1 - C,, such that the series

D fu(W) vt (w1)"

nez

converges to f((“;})) on some neighbourhood of infinity, and uniformly on every affinoid
subset thereof.

Proof. Being I'y-invariant f corresponds to a function f : I'y\Q" - C.. By Theorem
4.16] (c) the function f o' then induces a holomorphic function on a pierced tubular
neighbourhood 7' ¢ CX, x Q1 where T' = 9(Ty\ V) c C%, x ! for a neighbourhood of
infinity /" ¢ ". By Lemma [5.3| that function has a unique expansion of the form

Foo((5)) = 2 falw)z"

nez

By the definition of 9 this yields a unique expansion

FUE)) = 2 fulw) e (wr)”

nez

on N, which again converges uniformly on every affinoid subset, as desired. O
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Remark 5.5 The series in Proposition does not necessarily converge on all of Q.
For example, in [Ge99, Corollary 2.2], Gekeler shows that the u-expansion of the rank
2 Drinfeld discriminant function has the radius of convergence ¢=*/(¢=1) only. This is in
contrast with the classical case, where the g-expansion of a modular form converges on the
entire upper half plane.

Any weak modular form for the group I is a I'y-invariant function; hence it possesses a
u-expansion as in Proposition[5.4, Our next aim is to study its behaviour under conjugation
by the “stabiliser of the standard boundary component”. For this consider the algebraic
subgroups

* ‘ * ... % * ‘ 0...0
(56) P = 0 * * and M := 0 * .k
0 | * ... % 0 | % ... %

of GL, p, so that P = U x M is parabolic with unipotent radical U and Levi subgroup M.

Lemma 5.7 Consider any element of the form ~ = (8‘ 70,) € M(F) with o € F* and vy €
GL,_1(F) and any point w = (“}) € Q". Then:

7w

(a) n=j(v,w)=j(v,w") and y(w) = (1,50
(b) A= (v Tyy) = a7t Ay
(¢) Uy (w1) = enre (W)™ = N7t a g (7 owy).
(d) There exist constants k >0 and ¢y >0 such that for alln >0 and R >0 we have
v(I(n,R)) c I(n+k,cuR).
(e) For any neighbourhood of infinity N c Q" the subset v~(N') is also a neighbourhood
of infinity.

(f) For any U'y-invariant holomorphic function f: Q" — Co, with the expansion in Propo-
sition on N and any integers k and m we have the following expansion on y~1(N):

(e ((2)) = 2 ™ " (faleongmy ) (W) -ty r (wr)".

nez

Proof. Assertion (a) follows directly from the definitions (1.2)) and ([1.3]), with 7/(w’) =
n~ty'w’. Assertion (b) follows by direct calculation from the definition (4.3)) of . Using (b)
and Proposition (b) we deduce that

eAﬁyw’(wl) = ea_lA"y’w’(wl) = ea‘lnA’-'y’(w’)(wl) = a_ln'e/\’-'y’(w’)(n_lawl)

Taking reciprocals thus shows (c).
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To prove (d) consider any n > 0 and w’ € Q7~'. Then by definition and Lemma
(¢), both with r — 1 in place of r, we have h(w’) > |r|* and h(7'(w')) > czh(w') for some
constant ¢z depending only on 7'. Together we deduce that h(~/(w’)) > |r|™** for some
k > 0 depending only on +'. By the definition again this means that »'(w’) € Q1.
Next, by Lemmas (a) and [3.3] again with r — 1 in place of 7, we have |n| = |j(v',w’)| <
lw’|ett < |€]|m| et for another constant ¢; depending only on 4. Note also that, since
(W) = n~ty'w’, the associated Fo-vector space is FZ; 1y (w') = n tFL'w’. For any wy € Co

we therefore have

d(n " awy, F7Y (W) = d(n awy, o P W)

= In7tal-d(wy, F5MW') > |ar™e ey - d(wy, FLMW).

In view of Definition this implies (d) with ¢4 := |am™E|c;.
To deduce (e) choose R,, >0 such that U,so I(n, R,) c N. Then (d) implies that

7(Un>0[(nvclen+k)) c Un>OI(n+kaRn+k) c N7

and hence U0 I(n,c¢;'Ryyr) © v H(N). Thus v 1(N) is a neighbourhood of infinity,
proving (e).
Finally, using the definition 1D for any (“:J%) e v 1(N') we can now calculate

o) ()2 7 (dety)™ 1 ((1,85)
= E(det 7)™ Y fa (7 (@) -ty (7 L)

nez

D Radety)™ S LoV (@) - (@ s (wr))"

nez

= D o R (det )" fu(Y (W) Uy (w1)"

nez

= 20" (falbonm¥ )W) - Uy r (w1)",

neZ
proving (f). o
For a first application consider the subgroup
(5.8) Ty = {y' €GL1(F) | (y ) eTnM(F)}.

Theorem 5.9 Let f be a weak modular form of weight k and type m for the group I', and
let f,, be its coefficients in the u-expansion from Proposition|b.4. Then, for each n € Z, the
function f, is a weak modular form of weight k—n and type m for the group Ty < GL,_1(F).

Proof. Consider any 7' € I'); and set v := ((1] 3,), so that a = 1 in the notation of Lemma

. Since the subgroup I'y is normalised by ~, Lemma (b) implies that A’ = A’ and

hence ., (w1) = u,(wr). Let N be a neighbourhood of infinity on which the expansion
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from Proposition converges. Then by Lemma (e) the intersection N N~y 1(N) is
another neighbourhood of infinity. For any w = (Z}EE N ny Y (N) we can compare the
expansions of f(w) = (flgm7)(w) from Proposition and (f). Since o = 1, by the
uniqueness part of Proposition we conclude that f,, = fu|k-nmy’ for all n € Z, proving

the theorem. O

Corollary 5.10 Let f be a weak modular form of weight k and type m for the group T.
Then for any n € Z, the coefficient f,, in the u-expansion from Proposition 1s identically
zero unless

n=k-(r-1)m modulo |I'y;n{scalars}|.

Proof. Combine Theorem with (1.11]) for 7 -1 in place of r. ]
Lemma 5.11 Consider any element of the form ~ = (S Igﬂ) e U(F) for some row vector

B e F! and any point w = (:”J}) e Q. Then:

(a) j(7,w) = det(y) = 1 and y(w) = (' ).
(b) For any neighbourhood of infinity N c Q" the subset
N = {(Z}) ey H(WN) | lear (Bw) -t (wr)| < 1}
15 also a neighbourhood of infinity.

(¢) For any T'y-invariant holomorphic function f : Q" — Co, with the expansion in Propo-
sition on N and any integers k and m we have the following expansion on N':

Fln)()) = 3 (2 (5 - Froa@) - e (B - ()"

neZ — k=0

Proof. Assertion (a) follows directly from the definitions and (L.3).

To prove (b) choose R,, > 0 such that U,-oI(n, R,) c N. Since fw’ € FZ7'w’, we have
d(wy + pw', Fi7'w') = d(wy, Foy'w') and therefore y~1(I(n, R,)) = I(n, R,) by Definition
4.12, On the other hand we have d(fw’, FZ;'w') = 0; applying Proposition (c) thus
yields constants ¢,, > 0, such that |epr, (Bw’)| < ¢, for any w’ € Qr~1. By Proposition |4.7] (d)
and Definition , for any (“}) € I(n,c,) we therefore have

learw (wi)| > d(w, FSMW) 2 cp > lean (Bw')|.

By the definition of u,,(w;) this implies that |epr (Sw’) -ty (wr)| < 1. Together this shows
that I(n, max{R,,c,}) c N’. Varying n we conclude that N’ is a neighbourhood of infinity,
proving (b).

Next, by (a) and the definition (L.5), the expansion from Proposition [5.4] yields

(Pl () = LAY = 2 falw!) e (wr + Bw)"

nez
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Using the additivity of the exponential function we can rewrite

Uy (wr + W) = epr(wr + Bw)™
(enrr(wi) +enw (Bw)) "
(1 + eA/w/(ﬁw')uw/ (wl))—n . uw/(wl)”.

For (‘:}}) € N we have |epr(Bw") -ty (w1)| < 1, so we can plug the binomial series into the
above expansion and rearrange terms, yielding

(Pl = S5 (F () enr ) s r)"™)

nez k>0
) %kz (%) (@) - enrr (Bw)* - g (wr )™

neZ k>0
) ,ZZ ( kzg (k_kn’) S (W) 'eA'wf(ﬁw’)k) e (wp)”

with the substitution n + k = n’. Thus the stated expansion holds on N7, proving (c). 0O

Definition 5.12 Let f: Q" - Co be a I'y-invariant holomorphic function and let f, be
its coefficients in the u-expansion from Proposition|5.4l. Then the order at infinity of f is

ordr, (f) := inf{n €eZ | fa(w") #0 for some w' € Q’”_l} € Zu{zoo}.

The function f is called meromorphic at infinity if ordr,, (f) > —oo, that is, if f, is identi-
cally zero for all n < 0. It is called holomorphic at infinity if ordr, (f) > 0, that is, if f,
1s identically zero for all n < 0.

Proposition 5.13 Consider a IU'y-invariant holomorphic function f:Q" — C., and an el-
ement v € P(F). Then flim7 is invariant under I = (v 1I'y) nU(F), and we have

ordr, (f) = ordr , (flkm?Y)-

In particular f is meromorphic, respectively holomorphic at infinity if and only if flimy
has the corresponding property.

Proof. Since P = U x M, it suffices to prove this separately for elements of M (F) and
U(F). In both cases the I', y-invariance follows by direct calculation from the formula
(1.6). The rest follows from the expansion in Lemma for v € M(F), respectively by
close inspection of the expansion in Lemma for vy e U(F). i

Proposition 5.14 Let I'y < I' and hence I'yy := Ty nU(F) < 'y be subgroups of finite
index. Then for any I'y-invariant holomorphic function f we have

ordr, , (f) = ordr, (f) - [I'v : Iiu].

In particular f is meromorphic, respectively holomorphic at infinity with respect to I'y if
and only if it s so with respect to I'y .
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Proof. The lattice associated to I'y iy is A} := 71 (I'1 ) ¢ A’ =71 (T'y), so that [A’: A]] =
[[y:Typ] =p? for an integer d > 0. For any w’ € Q™! we then also have [A'w’: Ajw'] = p?.
Let B be a set of representatives for A’ \ A7 modulo Aj. By Proposition (a) we then
have (@)
EATw \W1
eA’w’(wl) = eA’w’(wl)' (1_1—)
! ﬁell EAj W (BW,)
Taking reciprocals, we can therefore express the expansion parameter u,, (wy) = epr(wy) ™!
with respect to A’ in terms of the expansion parameter u . (wy) := e A o (w1)~! with respect
to A} by the formula

v (1) = ) T1 enrw (Bw’)

BeB eA’lw’(Bwl)ul,w’(wl) -1 )

The expansion from Proposition [5.4] thus yields

FUE)) = 2 fal@) (@)™ = X fal@) - urer(wn)™ - T]

nez nez BeB

( enpwr (Bw') )n

enrwr (Bw)uyw(w) =1

for all points (‘:}}) in some neighbourhood of infinity. By Lemma u (b) with I'; 7 in
place of I'y, for each 8 € B we have |eA/1wf(ﬁw’)uLw1(w1)‘ < 1 on some neighbourhood of
infinity. On the intersection of these neighbourhoods, we can plug the binomial series into
the above expansion and rearrange terms. We conclude that the expansion with respect
to u,(wy) has the first non-zero term f,(w’) - u,s (wy)™ if and only if the expansion with
respect to uy s (wy) has the first non-zero term

fa(@) - (@)™ TT (meaur (Bu))"

BeB

Then ordr, , (f) = np? = ordp, (f) - [I'v : T1,v], and the proposition follows. o

Next, we restate holomorphy at infinity (Definition in terms of boundedness cri-
teria in certain neighborhoods of infinity. This is a natural consideration and, though not
used elsewhere in this monograph, may be useful for future work.

We call a subset X ¢ Q! analytically Zariski-dense if any holomorphic f: Q™! - C,,
that vanishes on X also vanishes identically on Q1.

Definition 5.15 Let X c Q™1 be a subset.

We say that f is bounded on vertical lines supported on X if for every w’ € X there
exist constants N, R > 0 such that if d(wr, FL7'w') > R, then |f((°‘:}))| < N. If for every
w'e X and every N >0, there exists an R >0 with this property, we say that f tends to 0
on vertical lines supported on X.

We say that f is bounded (resp. tends to 0) on vertical strips supported on X if for
every z' € X there exists an admissible neighbourhood U ¢ X of z' and constants N, R > 0
such that if d(wy, FI7'w') > R and W' € U, then \f((“oj}))| < N. (resp. if for all N >0 there
exists R >0 with this property).
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Proposition 5.16 Let f: )" — C., be a I'y-invariant holomorphic function. The follow-
ing conditions are equivalent:

1. f s bounded on wvertical strips supported on an analytically Zariski-dense set X c
Qr—l’.

2. f is bounded on vertical lines supported on an analytically Zariski-dense set X c Q71;

3. f 1is holomorphic at infinity.

Moreover, ordr, (f) > 1 if and only if f tends to 0 on vertical lines (equivalently, vertical
strips) supported on an analytically Zariski-dense set X c Q1.

Proof. By Proposition [5.4] the function f is given by its u-expansion

(5.17) FUE)) = 2 fr(@uw (w)",

keZ

which converges uniformly on any affinoid subset of a suitable neighborhood of infinity. By
Theorem 4.16|(b), this means that there exists a sequence (r, € |C%|),s1 such that (5.17))
converges to a holomorphic function on

U, = {(“:J}) € Q| (uy(wr),w") € B(0,7,) x Qr=1},

for each n > 1.

It is trivial that = ([2)), so we proceed to prove that = (3).
Let X c Q! R>0 and N >0 be the objects provided in the definition of , and let

w'e X.

Choose n sufficiently large that w’ € Qr~! and enlarge R, if necessary, so that R > 1/r,.

Now let w; € C%, be such that d(ws, FZ;'w’) > R. By Proposition [1.7(d) |u. (w1)| < 1/R,
and so (“) € U,. Furthermore |f(w)| < N for all w € U,.

Now consider the Newton polygon of the series , that is the lower convex hull of
the set of points (k,~log,|fix(w’)|) in the Euclidean plane.

Lemma [5.1] implies that limy_ || fx[n""* = 0, and hence limy_e | fi(w’)|"//* = 0. This
means that the slopes of the Newton polygon tend to —oo as k - —oo, so either the series
has a finite tail, or infinitely many points lie on the Newton polygon for negative k.

Consider the line y = mx + ¢ with slope m = log, Ju, (w1 )| and tangent to the Newton
polygon. By slightly perturbing w;, we may assume this line touches the Newton polygon
in only one point (k,-log,|fx(w')]). The corresponding term in then dominates the
series, and the y-intercept of the line equals

¢ = =log, | fu(w")uws (w1)*| = ~log, | f(w)].

Now, if there exist points on the Newton polygon with k < 0, then by choosing m =
log, |u, (w1 )| sufficiently small (i.e. d(wy, F 'w’) sufficiently large), we find that |f(w)| can
be made larger than the bound N, i.e. f is not bounded on the vertical line.
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This contradiction shows that fi(w’) =0 for all k£ < 0. Since this holds for all w’ in the
analytically Zariski-dense set X, it follows that f; vanishes identically on Q7! for every
k <0, thus proving that f is holomorphic at infinity.

Furthermore, if there exists a point with £ = 0, then the same argument shows that
If(w)| =|fo(w")|, so f cannot vanish on the vertical line.

To prove that = ), suppose that f is holomorphic at infinity. Then the expansion
has no polar terms. Let X = U = Q7! consider any w’ € X and let n > 1 be such
that w’ € Qr-1. Let R=1/r,.

Since the u-expansion ({5.17]) converges to a holomorphic function on U,, it follows from
Lemma that liminfy_ |fi(w')|'/* < R. Now suppose that d(wy, FZ'w’) > R. Then
|t (w1)| < 1/R by Proposition [4.7[(d) and we obtain liminfy_,e | fi(w’)uw (wi)*| < 1, and so
f(w) is bounded by some N > 0. Thus f is bounded on vertical strips.

Lastly, if fo =0, then we may write

(@) = Tuwr (@) -] Y fron (@)t (wr)],

k>0

where the sum on the right is bounded as before, and |u,/(w;)| = 0 as R — oo, so f vanishes
on vertical strips. O

Remark 5.18 Proposition [5.16) above gives three equivalent formulations of being holo-
morphic at infinity. Gekeler [Gel9b, (1.7) € Prop 1.8] also defines higher rank modular
forms and provides another definition of being holomorphic at infinity. He defines a fun-
damental domain for Q" and defines f to be holomorphic at infinity if f is bounded on
this fundamental domain. It s an interesting question whether Gekeler’s definition is also
equivalent to the ones in Proposition [5.10.

6 Modular forms

Now we impose holomorphy conditions at all boundary components, not just the standard
one. We achieve this by conjugating the standard boundary component by arbitrary el-
ements ¢ € GL,(F). Recall from Proposition that for any weak modular form f of
weight k& and type m for I', and for any ¢ € GL,(F'), the function fl;,,d is a weak mod-
ular form of weight k and type m for the arithmetic subgroup 6-'I'd. Determining the
behaviour of f at all boundary components is equivalent to determining the behaviour of
all conjugates f|i,0 at the standard boundary component.

Definition 6.1 Let f be a weak modular form of weight k and type m for T'.
(a) If ords-1rsynu(F) (flemd) 20 for all 6 € GL,(F), we call f a modular form.
(b) If ord(s-1rs)nu(m) (flrmd) 2 1 for all § € GL,(F'), we call f a cusp form.
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In particular, a modular form is a weak modular form f such that f|xm0 is holomorphic
at infinity for all § € GL,(F). The space of these functions is denoted by My,,(I"). The
space of cusp forms is denoted by Sim(I'). As with weak modular forms, we abbreviate

Mk(l“) = Mk70(1—‘) and Sk(l“) = S]ﬁ()(r)

It may seem extravagant to impose conditions for infinitely many 6. However, the next
two facts show that for fixed I', we only need to check these conditions for ¢ in a fixed
finite set.

Proposition 6.2 The numbers in Definition[0.1] depend only on the double coset T6P(F).

Proof. Since f is a weak modular form of weight k£ and type m for I, for any ¢’ = 79y with
7 eI and v € P(F) we have fl;m0" = (flem0)|kmy and hence ords-1rsynu(r) (flemd’) =
ord(5-1p5)nU(F)(f|k,m5) by PI‘OpOSitiOH m O

Proposition 6.3 The double coset space I'\ GL,.(F)/P(F) is finite. More precisely, let
Cl(A) denote the class group of A. Then:

(a) GL.(A)\GL,.(F)/P(F) is in bijection with C1(A).

(b) For any arithmetic subgroup T' < GL,(F), the set I'\GL,.(F)/P(F) has cardinality
at most |C1(A)|- [GL,(A) : GL,(A) nT].

(¢c) If T' < GL,(A) then the double cosets of I'\GL,.(F)/P(F) can be represented by
elements of GL,.(A) if and only if C1(A) = {1}.

Proof. By the orbit-stabiliser theorem the set GL,.(F)/P(F) is in bijection with the set
of one-dimensional subspaces of F" and hence with P*~*(F'). This bijection is equivariant
under the left action of GL,.(F"). To prove (a) it thus suffices to find a bijection between
GL,(A)\P1(F) and CI(A).

For this we associate to any column vector x = (x;); € F" ~ {0} the fractional ideal
I(z) :== ¥, Ax; c F. This ideal depends only on the GL,.(A)-orbit of z, and its ideal
class depends only on the corresponding point of P*~1(F'). Together we therefore obtain
a well-defined map GL,(A)\P"~1(F) - CI(A). This map is surjective, because r > 2 and
every ideal of a Dedekind domain can be generated by 2 elements. We claim that it is also
injective.

To see this we view A" as a space of row vectors, so that right multiplication by x
determines a surjective homomorphism of A-modules p, : A" — [(z). Since I(x) is a
projective A-module, the associated short exact sequence 0 - ker(p,) - A" - I(z) - 0
splits. Moreover, since the isomorphism class of a finitely generated projective A-module
depends only on its rank and its highest exterior power, the isomorphism class of ker(p,)
is determined by that of I(x).

Suppose now that two vectors x, y € F" ~ {0} correspond to the same ideal class. Then
I(y) =u-I(x) for some u € F*, and by the preceding remarks there exists an isomorphism
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of A-modules f : ker(p,) - ker(p,). Combining these via suitable splittings we find an
isomorphism of A-modules g: A" - A" making the following diagram commute:

0 — ker(p,) Ar 5 [ (z) 0

i) L il

0 — ker(py) Ar 2 I1(y) 0.

Writing ¢ as right multiplication by a matrix v € GL,.(A), the commutativity on the right
hand side then means that ayy = azu for all a € A”. Thus vy = zu for some v € GL,.(A)
and u € [, which is precisely the desired injectivity.

This finishes the proof of (a). Parts (b) and (c) are direct consequences of (a). o

Corollary 6.4 Suppose that T' = GL,.(A) for a principal ideal domain A. Then:
(a) The condition in Definition is independent of §.

(b) If m #0 mod (¢-1), any modular form of weight k and type m for T is a cusp form.

Proof. Part (a) follows from Propositions and (a). To prove (b) let f be a
modular form of weight k£ and type m for I'; and let f,, be its coefficients in the u-expansion
from Proposition which are weak modular forms for the group I'jy; = GL,_1(A). By
assumption we then have f,, = 0 for all n < 0. If f is not a cusp form, then f, is not
identically zero, so Corollary implies that k& = (r — 1)m modulo |I'y; n {scalars}| =
g — 1. But then f itself is also not identically zero, so gives k = rm modulo |T' n
{scalars}| = ¢ — 1. Both congruences together imply that m = 0 modulo (¢- 1), contrary to
the assumption. O

Remark 6.5 By Theorem the coefficient f, of the u-expansion of a modular form f
is a weak modular form of weight k£ —n for a subgroup I'y; < GL,_1(F). In contrast to the
case of modular forms in characteristic zero, the weight k£ —n here goes to —oco for n — oo.
In Theorem [11.1] (b) of Part IT we will see that any modular forms of weight < 0 for I'y
must be zero if r =1 > 2. Thus for > 3 and n large enough, the coefficient f,, will not be
a modular form (only failing the holomorphic at infinity condition). However, one expects
that there will be some rank r — 1 discriminant function A, and integer N for which AY f,
will be holomorphic at infinity. It may be interesting to find bounds on N in terms of n.

Proposition 6.6 For any § € GL,.(F) we have f € My (L) if and only if flrmd €
Mhm(é*ll“d).

Proof. Direct consequence of Proposition and the formula (1.6)). m]
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In particular, whenever I'; < I" is a normal subgroup of finite index, the map f ~ f|im7
for all y e I' defines a right action of I' on My, ,,(I';1). As a direct consequence of Definition
and Proposition the subspace of invariants is then

(6.7) M (L)' = My (T).
Moreover, ((1.10) and (1.11]) imply that
(6.8) M (T) = My (I') whenever m = m/ modulo |det(T")], and

(6.9) Miom(L)

0 unless k = rm modulo ‘I’ N {scalars}|.

As a direct consequence of the definitions we also have
(610) Mk,m(r) : Mk’,m’(r) c Mk+k”,m+m’(r)
for all k, k', m,m’. In particular we can form the graded ring of modular forms

(6.11) M. (D) = @ My (D).

k>0
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Part 11
Comparison with the algebraic
theory

Introduction

In this part, we identify the analytic modular forms from Part I with the algebraic
modular forms defined in [Pil3] and deduce qualitative consequences such as the finite
dimensionality of the space of modular forms of given level and weight.

By definition, weak Drinfeld modular forms of weight k are holomorphic functions on
the rigid analytic Drinfeld period domain 2" that satisfy a certain twisted transformation
law under the action of an arithmetic congruence subgroup I" < GL,.(F’). Drinfeld modular
forms are weak Drinfeld modular forms that are holomorphic at infinity after transforma-
tion by all elements of GL,(F'). By construction these seem to be purely analytic objects,
but in this part we identify them with objects from algebraic geometry, as follows.

Roughly speaking, the quotient I'\2" is the set of Cq.-valued points of a certain moduli
space of Drinfeld modules M, which is an algebraic variety over C.,. The transformation
law means that weak modular forms of weight k£ can be interpreted as holomorphic sections
of L* for a certain invertible sheaf £ on M, at least if I' is sufficiently small. Here £ is the
dual of the relative Lie algebra of the universal Drinfeld module over M. Since M is affine
of dimension r — 1, for r > 2 there is an abundance of non-algebraic holomorphic sections
of £*. (So the analogue of the Kocher principle for Siegel modular forms does not hold.)

To algebraise Drinfeld modular forms, we translate the condition at infinity into a
condition on a compactification M of the moduli space M. For this we use the Satake
compactification that was constructed analytically by Kapranov [Ka87] in the special case
A =F,[t] and by Héaberli [Ha21] in general, and algebraically by the third author in [Pil3].
By [Pil3] the sheaf £ extends naturally to an invertible sheaf on M, again denoted L,
which is constructed as the dual of the relative Lie algebra of the unique generalised
Drinfeld module over M that extends the universal Drinfeld module over M.

The main result of Part II, Theorem [10.9] states that the analytic Drinfeld modular
forms of weight & correspond precisely to the sections of £¥ over M. Since M is a projective
algebraic variety, it follows that the space of modular forms of each weight £ is finite
dimensional, and that the graded ring of modular forms of all weights for fixed I" is a
normal integral domain that is finitely generated as a Co-algebra: see Theorem [11.1} In
the case r = 2 all this was done in Goss’s thesis [Go80b].

Establishing these results with adequate precision requires a fair amount of technical
details. For later use we also discuss the action of GL,(F') as well as Hecke operators.
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Outline of Part II

As a preparation for the modular interpretation of T'\Q2", in Section [7| we construct the
universal family of Drinfeld modules over Q" and its level structures. We also study its
behaviour at the standard boundary component. In Proposition we show that the
universal family descends to a family over I';/\QQ"™ which extends naturally to a generalised
Drinfeld module over the larger domain U obtained by adjoining a copy of 2.

In Section [§f we construct the precise identification of I'\Q2" with a moduli space of Drin-
feld modules. This requires working with the ring of finite adeéles Af, of F' and identifying
'\ with a connected component of a double quotient of the form

GL.(F)\ (9" x GL,(AL)/K)

for an open compact subgroup K < GLT(A). That in turn can be identified naturally with
the space of Ce-valued points M’ ,(Cs) on a certain algebraic moduli space of Drinfeld
modules M7 . This identification requires a precise description of the universal family
and its level structure. Working adelically also entails that M7, . is an algebraic variety
over the given global field F' itself, which eventually shows that the space of modular forms
for I' comes from a vector space over a certain finite abelian extension of F' instead of C.,.

As explained in Remark [I.8] there are different conventions about whether Q" consists
of row or column vectors and about how GL,(F) acts on it. In this monograph we have
chosen to use column vectors and left multiplication. This affects the way that the uni-
versal family of Drinfeld modules on GL, (F)\(9" x GL,(AL)/K) must be described. As
our convention differs from that of [Pil3], several formulas from there have to be trans-
formed to be used here. For instance, in the isomorphism a double coset [(w,g)]
now corresponds to a point on the moduli space that was represented by the double coset
[(w”,(¢g")~1)] in [Pil3]. The change in convention also affects the functoriality in Propo-
sition in whose proof the precise relationship is indicated. We wish to apologise for
the resulting inconvenience.

In Section @ we review the relevant facts about the Satake compactification of M WK
of M} ;. The crucial properties in Proposition are that the composite map I'yy\Q" -
NQ" — M) (Cs) extends to an étale morphism U — M’A’K(Cm) for the larger domain
U from Section [7| and that, repeating this after transformation by arbitrary elements of
GL,(A%,), the images of these maps cover a Zariski open subset M} (Co) of M’ ;(Cy)
whose closed complement has codimension > 2. Using this map we can identify the pﬁllbaek
of the generalised Drinfeld module on M ".x With that constructed over U in Section .

In Section 10| we use these facts to show that an analytic modular form is holomorphic
at infinity if and only if the corresponding section of L* over My (Cs) extends holomor-
phically to a section over M:;(((Coo). By rigid analytic analogues of the Hartogs principle
and of GAGA the latter condition is equivalent to being the restriction of a section of LF
over M " (Cs) in the algebro-geometric sense, thereby establishing our first main result,
Theorem 0.9

This earns us our piece of cake in Section |11, where we deduce that the space of modular
forms of each weight k is finite dimensional, and that the graded ring of modular forms of
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all weights for fixed I" is a normal integral domain that is finitely generated as a C.,-algebra.
The final Section [12] explains how the comparison isomorphism between analytic and
algebraic modular forms behaves under Hecke operators on both sides.

7 Universal family of Drinfeld modules

As a preparation for the following sections, we construct the universal family of Drinfeld
modules on I'\Q)" associated to an A-lattice L ¢ F" and study its behaviour at the standard
boundary component. We first review the necessary details about Drinfeld modules and
generalised Drinfeld modules.

Consider any scheme S over F. For any line bundle E on S, let Endg, (E) denote the
ring of F -linear endomorphisms of the group scheme underlying E. (These endomorphisms
need not commute with scalar multiplication by Og.) By [Dr74, §5], any such endomor-
phism is a finite sum Y, b;7¢ for sections b; € HO(S, E'"¢"), where 7 : E —» E4, 2+ 21
denotes the g-power Frobenius morphism. Set deg(a) := dimg, (A/(a)) for any a € A~ {0}
and deg(0) := —o0.

Recall that a Drinfeld A-module of rank r over S is a pair (E, ) consisting of a line
bundle E over S and a ring homomorphism

rdeg(a) '
(7.1) p: A= Endp,(E), am¢a= Y @ail’

i=0
with ¢, ; € H(S, E'-7") satisfying the two conditions:
(a) The derivative dg: a = @, is the structure homomorphism A - F' - H°(S, Og).
(b) For any a € A\ {0} the term ¢, , geg(a) is & nowhere vanishing section of Ei-amies@,
If instead of (b) we require only:
(c) For any point s € S and any non-constant a € A there exists ¢ > 0 with ¢, ; # 0;

we obtain the notion of a generalised Drinfeld A-module of rank < r over S from [Pil3]
Def. 3.1]. Over any point s € S, the map ¢ then defines a Drinfeld A-module of some rank
rs satisfying 1 <rg < 7.

An isomorphism of (generalised or not) Drinfeld A-modules over S is an isomorphism of
line bundles that is equivariant with respect to the action of A on both sides. Furthermore,
following [Pil3l, Def.3.8|, a generalised Drinfeld A-module (E,¢) over S is called weakly
separating if, for any Drinfeld A-module (E’,¢’) over any field F’ containing F', at most
finitely many fibers of (F, ) over F'-valued points of S are isomorphic to (E’,¢").

The analogous notions are used over a rigid analytic base S.

For the following construction we fix a finitely generated projective A-submodule L c F"
of rank r. Recall that elements of F" are viewed as row vectors and points in 2" as column
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vectors. Any w € " thus determines an A-lattice Lw c C,, of rank r. Let ey, be the
associated exponential function from (2.1). For any a € A\ {0} we have an inclusion of
A-lattices Lw c a~!Lw of finite index, so e, (a"'Lw) is a finite F -subspace of C,,. Thus

(7.2) R )

is a polynomial in Endg, (G, c.,) which by Proposition[2.3)(a) and (b) satisfies the functional
equation ¥ (er,(2)) = er,(az). Setting also ¥}~ := 0, we obtain the Drinfeld A-module
(Gac.., ™) over Co that is uniformised by the lattice Lw. As w varies over {27, the
exponential function ey, (2) is holomorphic in (z,w) € Co x Q7; hence 1L« is holomorphic
in w e Q" for each a € A. Together this therefore defines a Drinfeld A-module

(7.3) (Gagr, ¥")

of rank r over €27.
Also, any element ¢ € F" determines a holomorphic section

(7.4) pr s we e, (w)

of G, which depends only on the residue class ¢ + L. For any non-zero ideal N c A
with N c L this section lies in the N-torsion subgroup [ N] of ¢*. Varying ¢+ L over
N-1L/L this endows the Drinfeld A-module (G, or, 1) with a full level structure of level N

by mapping
(7.5) NL/L — ¢*[N], ¢+ L uk.

Next consider an arbitrary element v € GL,(F). Then for any w € Q" we have
Lw = Ly 'yw = j(y,w) - Lyt - y(w) by (1.3). Multiplication by j(v,w)! thus induces
an isomorphism of Drinfeld A-modules

(7.6) (Gaco, ¥07) 5 (Gaco, ™ 7)),

Here the target is the pullback of the Drinfeld A-module (G, qor,%%") via the isomorphism
v Q- Q' w e~ y(w), evaluated at w. Multiplication by the holomorphic function
j(7v,_)7t thus induces an isomorphism of Drinfeld A-modules

(7.7) (Gagr ") = 7" (Gagr, M)
over Q. Also, for any ¢ € F", using Proposition (b) we can calculate
,uf(w) = ery,(w)

= ej('y,w)-L‘y‘l-'y(w) (J(fya w) : efy_l : ’y(w))

= J(1,0) eryiqw) (7 (w))
J(7,w) - ((w)).

(7.8)

Multiplication by j(-y,_)~! thus also sends the level N structure ¢+ L = pf of (G, qr, ¥F)
to the level N structure ¢y~ + Lyt ’y*,uli?__ll of Y*(Gaqr, 7).
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Now let I' < GL,.(F") be an arithmetic subgroup whose right action on F" normalises the
lattice L. Recall from [Dr74, Prop.6.2] that I' < GL,(F') acts discontinuously on §2"; hence
the quotient I'\Q" exists as a rigid analytic space by [EvdP04] §6.4]. Let 7p : Q" - T'\Q"
denote the projection morphism.

Assume that I' acts freely on 2". Then I' also acts freely on G, or = G, x (2" through
v(z,w) = (j(v,w)tz,7(w)), so the quotient Er :=T'\(G, x ") exists and is a line bundle
on I'\Q2". By construction the space of its sections over any open subset U c I'\Q" is

(7.9) Er(U) = {f: 7' (U) - Co holomorphic |¥yel: f(y(w))=j(v,w) ™ f(w)}.
This line bundle comes with a natural isomorphism
(710) 7TI>:E[‘ — Ga,QT-

For any v € I' the equality 7 = 7 o v induces a commutative diagram

(710)
W;EF ~ Ga,QT
(7.11) lz
! (710) .
vrpEr ——— 7*Gaor = G0,

where the vertical map on the right is multiplication by j(v,_)~'. The isomorphism ([7.7))
for all v € T" implies that there is a unique Drinfeld A-module of the form (Er, %) over
'\Q" such that (7.10)) induces an isomorphism

(7.12) m(Er, ") — (Gagr, ¥h).

Moreover, since I' normalises L, it acts on N-'L/L for any non-zero ideal N c A.
For any residue class ¢+ L that is fixed by I', the formula (|7.8)) implies that the associated
torsion point x% descends to a torsion point iZ of (Er,1"). In particular, if T acts trivially
on N7'L/L, the level N structure descends to a unique level N structure of (Er,t)

(7.13) N'L/L — ¢ [N], ¢+ L~ it

Now set I'y :=T'nU(F) as in (4.2)) and let A’ := .71(I'y) c¢ F™1 be the corresponding
subgroup from (4.4)), which is commensurable with A™~!. Then by Theorem there
exist an admissible open subset U ¢ Co x 27! containing {0} x 2"~ and a holomorphic
map
1 9Tt [(2)] o ()
which induces an isomorphism of rigid analytic spaces I'y\Q" — U N (Cx x Q1). Also 7
factors through projection morphisms

r
ﬂ'r‘U ﬂ'FU

Qr

T\ T\

T
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For all v € I'y, the definition ([1.2) implies that j(y,w) = 1 and hence er () = er, and

Pl 2 Iw For ease of notation we denote the function on G, x I'y;\Q2" induced by i«
again by ¢Z«. Then the Drinfeld A-module (G, q,%") is the pullback under 7r, of a
unique Drinfeld A-module of the form (G, \or, ¥) over I'y\Q". Moreover the isomor-

phism ([7.12)) descends to a natural isomorphism
(7.15) (7)) (Br, ) — (Garpor, v5).

Proposition 7.16 There exists a unique generalised Drinfeld A-module of the form (G, y, &L)
over U such that

(Garprar ¥F) = 9 (Gap, 01).

Its restriction to {0} x Q"' cU is a Drinfeld A-module of constant rank r — 1.

Proof. Since 9 defines an isomorphism between 'y \Q2" and its image U’ :==U N (C%, x Q1
it is trivial to transfer the rank r Drinfeld module % from I';;\Q2" to Y. The real content
of the Proposition is that it extends to a generalised Drinfeld module on . The strat-
egy of the proof is to start with the exponential function Co, x (U n (CL x Q1)) — C,,
(z,9([w])) = erw(2) associated to the Drinfeld A-module ! rather than the Drinfeld
module ¥” itself, because the Drinfeld module can always be reconstructed from the expo-
nential function. In the first part of the proof, we translate the formula for the exponential
function associated to ¥* to U’. More specifically, by writing w = (‘:}}) as before, we will
express er,,(2) as an infinite product in the variables (z, u,w’) for u = uy(wy) = epryr(wy) L.

For this we define subgroups L’ and L; by the commutative diagram with exact rows

O - Frfl Fr F 0
@] v/ (0,0") U (vi,w)=v1 U
0 L' L Ly 0.

Since L is commensurable with A", the subgroups L’ and L; are commensurable with A™!
and A, respectively. Next, for any (¢1,v') € L and any A\’ € A’ we have ((1) ’}/) € I'y and hence
(1,0")(; ’}/) = (01, 01N +v") € L. In particular this implies that ¢;A’ ¢ L’. As both A’ and
L’ are commensurable with A7~!/ this is an inclusion of finite index if ¢; # 0.

Next we fix a subgroup L, ¢ L which maps isomorphically to L; under the projection
F" — F. Then for any w = (“}) € Q" we have Lw = Lyw@® L'w'. Using Proposition (a)
and the definition of the exponential function, for any z € C,, we thus have

z
(7.17) erw(2) = ee, (e (2)) = 2- 1-—
L (Lw)\€L Hll_\[{o}( eL'w'(&U))

with Z = ey (2). To transform the denominator write £ € Ly ~ {0} in the form £ = (¢;,v")
with ¢ € L1 ~x {0} and v" € F™-'. Then we have an inclusion of lattices A’'w’ c ({1 L'w’, and
by the F.-linear independence of the coefficients of w’ the index is precisely [L': {1A’] < oo.
By the additivity of the exponential function we have

epr ((THW) = epng(wp +70'W) = u™ + epry (U710'W)
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with u = epr(w1)~t. Using Proposition again we deduce that

gl . €£;1L’w’(611€w)
= ‘gl . eeA/w/(ZilL'w’)(eAlwl(gilgw))

=l ~eeA,w,(ZI1L,w,)(u_1 +epr ((TH0'W")).

eLW(&u)

By the definition and the additivity of the exponential function this in turn yields

u™t + epny (U7 M0'w")
GAIMI(KIIE'W')

(A 9RY (Ew) = 61 N (U_l + eA'w'(£IIUIWI>) ’ H (1 -

eleL!~eq A
modulo £ A/

. —1(pr _ .y Ny _ -1
ﬁl-(u71+6A/w,(€I1U'w')). H eAw(gl (g U)W) u

Z’EL’\ZIA’ 6Arw/(511£'w')

modulo £ A/
_ 0 1+ epn ((H0'W") - u . e (C7H (0 =0 - u =1

ulFaN] S INY EATW (€I1€/w/)
modulo ZlA’
(1= enur (66 1)) -u)
B gl ) 0'el’ mod (1A'
ulL 0] H 6/\@/(6116,&},) ’

Vel’~¢1 A" mod 1A/

where the last transformation uses the fact that (=1)[£*1A1-1 = 1 because [L': (;A'] is a
power of ¢q. Plugging this into the formula ([7.17)) we conclude that

[ H eA/w/(Eflﬁ’w’)
~ -~ U f’EL’\flA' mod flA'
(7.18)  erw(2) = 2+ [] 1-z- : —
(£1,0")eL {0} b H (1 - 6A'w'(£11(£ -0 )w’) U)

¢'el’ mod ¢\’

L' A']

As (01,0') runs through L ~ {0}, the index [L': £;A’] goes to infinity. Using the geometric
series we can therefore expand the right hand side of ((7.18)) as a power series in u whose
coefficients are functions of (Z,w;).

In the second part of the proof, we will show that this expression converges locally
uniformly for all Z € C,, and all (u,w;) in a suitable tubular neighbourhood of {0} x Q1.
In particular, it will also converge for all z € C,, when v = 0 and thus extends to an
exponential function on a tubular neighbourhood containing {0} x Q1.

For this take any n > 0. By Proposition (c) there exists a constant ¢, > 0, such
that for any w’ € Qr-! and any v’ € FZ;! we have |epr(v'w')| < ¢,. In particular this
inequality holds for ¢;1¢" and ¢;'(¢' - v") in place of v'. Thus if |u| < 1, == (2¢,)7!, we have
lear (0710 = v")w') - u| < 271 so the geometric series for

1
1—epnr (E7H(0 = 0")') - u
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converges uniformly to a value of norm 1. Combining the inequalities yields the bound

eprer (L7100
ulF0A] éleL/\ZlAl’_[mod eﬁ’s’( ' ) ‘ rLLI:glA,]cLLI:KIA’]_l ~ 2-[L"1 0]
41 [] (1 —enn (G0 = 0")W') u) ) |1 [l1lcn
0'el’ mod 1A'

As both |¢4] and [L’: ¢;A’] go to infinity with ¢, for any R > 0 this proves that the right
hand side of converges uniformly for all (Z,u,w’) € B(0, R)x B(0,r,)xQr-1. Varying
n and R it therefore converges locally uniformly on C,, x 7 for the tubular neighbourhood
T :=Ups1 B(0,7,) x Q=1 and the limit is a holomorphic function of (2, u,w’). Substituting
Z = epn(2), which is already a holomorphic function of (z,w") € Co, x 2771, thus yields a
holomorphic function E(z,u,w’) on C, x T such that

(7.19) ero(2) = E(z,epn(w) W)

for all z € Co, and w = (*4) € Q" with J([w]) € T.

In the third and final part of the proof, we show how this exponential function on
Co x T gives rise to a generalised Drinfeld module and do all the necessary checks to show
that it is a generalised Drinfeld module whose restriction to {0} x Q7! has constant rank
r—1.

Recall that for any w € Q7, the Drinfeld A-module ¥ is characterised by the fact that
for each a € A~ {0} the function ¥« is an F,-linear polynomial in C,[z] satisfying the
functional equation ¥ (er,(2)) = er,(az). Writing this as an identity of power series
in z and observing that er,(z) = z + (higher terms), it follows that each coefficient of )L«
is a certain polynomial with coefficients in A in finitely many coefficients of ey, (z). By
what we have just proved, these coefficients, as functions of (epr(w;)™,w’), extend to
holomorphic functions of (u,w’) € T. Thus the same is true for the coefficients of v, In
other words, there is a unique holomorphic function 1/;{;4 on C, x T, which is an F,-linear
polynomial of degree < rdeg(a) in z, such that

(720) ¢£w(z) = &5(2761\’0.)’(0‘)1)717“},)

for all 2 € Coo and w = (“4) € Q" with ¥([w]) € T. Setting YL = 0, the fact that a ~ F is an

F,-algebra homomorphism by continuity implies that a + zﬁﬁ is also Fg-algebra homomor-
phism. Moreover, the fact that %¢£ = a identically implies that %wg = a identically as
well. Furthermore, by continuity the functional equation ¥ (er,(2)) = er.(az) extends
to a functional equation

(7.21) &g(E(z,u,w'),u,w’) = E(az,u,w")

for all z € Cq, and (u,w’) € T. If we substitute u := 0, the right hand side of ([7.18) becomes
just Z = e (2); hence E(z,0,w’) = epry(z). Thus (7.21]) reduces to the equation

(7.22) FH(enwr(2),0.0) = ep(az).
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For any w’ € 07~1 the map a ~ £(_,0,w’) is therefore the Drinfeld A-module of rank r—1
associated to the lattice L'w’ ¢ C,,. All this together proves that a — 1@5 constitutes a
generalised Drinfeld A-module of rank <7 over 7, whose restriction to the locus u =0 is a
Drinfeld A-module of constant rank r — 1.

We have thus proved the desired statement over 7. Since ¥ is already given over
Un (Cx x Q1) the existence and uniqueness also follows over U, as desired. O

8 Drinfeld moduli spaces

Let A [1, A, be the profinite completion of A and AL = A® 4 F the ring of finite adeles of F.

For any open compact subgroup K < GL, (A) let M:x i be the Drinfeld modular variety of
level K, which is a normal integral affine algebraic Varlety over F'. The associated rigid
analytic space over C,, possesses a natural isomorphism

(8.1) GL,(F)\ (" x GL,(AL)/K) — M} x(Cw),

whose precise characterisation we shall describe below. For any g € GL,(AL) let 7, denote
the composite morphism

(8.2) Q0 —— GL.(F)\ (92" x GL, (AL, )/K) M;;K(C ),
[w] [(w,9)].

Consider the arithmetic subgroup

(8.3) [, == GL.(F)ngKg™.

Then 7, factors through an isomorphism I',\Q2" — M, (C,) for a unique connected com-
ponent My of M, ;- Xspec 7 Spec Coo. In other words we have a commutative diagram

r — M} (C)
(8.4) i”/ U
L\ My(Co).

For any v € GL,.(F') and k € K we have [(w,g)] = [(7(w),vgk)] and hence
(8.5) Ty = Toygk © Y-

For any two elements g, g’ € GL,(AL) we have M, = M, if and only if g and ¢’ represent
the same double coset in GL,(F)\GL,(AL)/K. Thus for any choice of representatives
G1,-- -, 9n € GL.(AL)) we have

(8.6) MY g Xspeer SpecCoo = [ [ My,
i=1
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Since M} j 1s integral, these connected components over Co, are Galois conjugate over F'.
Let Fi denote the field of constants of M} i (which is a certain ray class field of F' that
can be characterised uniquely by abelian class field theory). Then the different connected
components My, are just the varieties obtained by base change M ;- Xspec e SpPec Coo for
all F-linear embeddings Fix < C.,. 7

For later use we also record:

Proposition 8.7 Elements g1,...,g, € GL,.(AL) form representatives of the double quo-
tient GL,(F)\ GL, (A%)/K if and only if their determinants det(gy),...,det(g,) form rep-
resentatives of F*\(AL)*/det(K).

Proof. Direct consequence of strong approximation [Ma91l, (6.8)], [Pr77] for the simply
connected reductive group SL, to the effect that the closure of SL,.(F) in GL,(AL) is
SL,(AL). O

Now assume that K is fine, which by [Pil3, Def.1.4] means that the image of K in
GL,(A/p) is unipotent for some maximal ideal p ¢ A. Then by [Pil3, Prop. 1.5] there is
a natural universal family of Drinfeld A-modules (E,p) over M} i, using which one can
interpret M ;- as a fine moduli space of Drinfeld A- modules with some generalised level
structure. The pullback of (E, ) under the morphism ({8.1) can be described as follows.
Viewing elements of F" and A" and (A")™ as row vectors, for any g € GL,(AL) we set

(8.8) Ly = A"g'nF" c (AR,

which is a finitely generated projective A-module of rank r. Since K < GLT(A), by con-
struction the right action of I'y; on F" normalises L,. Moreover, the assumption that
K is fine implies that all torsion elements of I'y are unipotent; hence I'y acts freely on
Q. There is therefore a natural Drinfeld A-module (Er,,¢%s) over I'j\€2" such that

W;g(Epg,@ELg) ~ (Gagqr,¥ts) by 1} For this there is a natural isomorphism
(89) Z;(EaSO) — (EFgJZLg)'
Moreover, suppose that K is the principal congruence subgroup of level N
K(N) = {keGL,(A) | k=1d, mod N}

for some non-zero ideal N c¢ A. Then M?, A k() Tepresents the functor which to any scheme S

over F' associates the set of 1somorphlsm classes of tuples (E, ¢, ) consisting of a Drinfeld
A-module (E,p) of rank r over S and a full level N structure pu: N-tA"/A" - o[ N]. For
any g € GL,(AL) we then have

= {veGL(F)| (0+ Lg)y=C+ Ly forall Le N"'L}.

Thus the Drinfeld A-module (Er ,¢"s) on T,\Q" is endowed with a full level N structure
fls s NV L,/L, - ¢*s[N] by (7.13)). To any coset £+ A" ¢ N-' A" associate the coset

(8.10) b+ Ly = (L+A")g ' nF" ¢ N'L,
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This induces an isomorphism N-*Ar/Ar 5 N-1L,/L,. The isomorphism (8.9) sends the
level N structure £+ A" = i*pu(f + A") to the level N structure £+ A" = £y + Ly = . In
fact this characterises the isomorphism uniquely. Moreover, since MZL K(N) is a fine
moduli space for Drinfeld A-modules with a full level NV structure, this also characterises

the isomorphism (8.1)) uniquely in this case.

For an arbitrary open compact subgroup K, choose any N such that K(N) < K. Then
the finite group K/K(N) acts on M} . yy by transforming the level N structure, and
the quotient is naturally isomorphic to M} ;. The group K/K(N) also acts by right
multiplication on GL,(F)\(" x GL,(AL)/K(N)), and the isomorphism in the case
of K is obtained from that in the case of K(N) by taking quotients. In particular, the two
instances of the map i, from for K and K(N) form a commutative diagram with the
projection MQ’K(N) - MQ’K.

Similarly, if K is fine, in [Pil3 Prop. 1.5] the universal family on M7 - was constructed
precisely so that its pullback is the given universal family over Mz’ K( N).’ The isomorphism
in the case of K is the unique one whose pullback yields the isomorphism in the
case of K(IV).

It is useful to know that isomorphisms of Drinfeld modules can be characterised uniquely
by using just one torsion point. Since K is fine, by definition its image in GL,(A/p) is
unipotent for some maximal ideal p c A, and so it fixes some non-zero coset £+ Ar c p—lflr.

For each g € GL,(AL) the subgroup I, then fixes the corresponding coset ¢, + L, c p~'L,

defined by (8.10)). The associated torsion point MZ" thus descends to a nowhere zero p-

torsion point of (Epg,zZLg) over I')\Q". On the other hand, choosing N c p, the group
K/K(N) fixes the coset £+ A™; hence the associated p-torsion point coming from the level
N structure descends to a nowhere zero p-torsion point of the universal family (£, ¢) over
M, . By construction the isomorphism identifies the respective p-torsion points. As
any isomorphism of Drinfeld modules is scalar and hence determined by the image of any
non-zero point, it follows that the isomorphism is uniquely characterised by this.

In the following we care mostly about the composite isomorphism
* * gk * I
(811)  m(E,p) =7 is (B ) —2w iz (Bp,,dt0) — T2 (G, 7).

This changes with g as follows. Consider any g € GL,(AL) and v € GL,(F) and k € K.
Since K < GL,(A), from (8.8)) we deduce that

L'ygk — Ark}_lg_l’y_lﬂFT — (Arg—lmFr),y—l — Lg'y_l-

The isomorphisms from (8.11]) for g and for ygk thus fit into a diagram

(BT for

m2(B, ) — LR (G, g, t)

(8.12) B5) zj
for'ygk

f}/*ﬂ-;gk’(E790) ﬁy*(Ga,Qr’wngk)a
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where the vertical map on the right is multiplication by j(v, )~'. Using (7.8)) one veri-
fies that the isomorphisms preserve some nowhere vanishing torsion point. Thus the two
composites must coincide; in other words the diagram (8.12)) commutes.

We end this section by looking at functoriality. Consider a second open compact sub-
group K’ < GL,(A) and an element h € GL,(Af) such that hK’h~! < K. Then there is a
well-defined map

(8.13) Jp+ GL(F)\ (€ x GL,(AL)/K') — GL.(F)\ (" x GL,(AL)/K),
[(w,gh)]! [(w,9)].

If h has coefficients in fl, we have A" ¢ A”h! and hence

= Ag'nFT c Ahlg nFT = L,

for any g € GL,(AL). Thus for any w € Q" we have L, w c Ly, -w, and using Proposition
(a) we obtain an isogeny of Drinfeld modules

(814) f’h = eeng(Lgh‘W) : (Ga7ﬂr7¢Lg) - (Ga,QTangh)'

By contrast, if A~! has coefficients in fl, we have A"h-1 ¢ A" and hence Ly, ©¢ Ly, which
yields an isogeny of Drinfeld modules

(815) gh = eeLgh-w(Lg'w): (Ga,QT,@Zngh) — (Ga7Qr7q/}Lg).

By construction the isogenies 7, and &, are mutually inverse isomorphisms if & e GLT(A).
In analogy with (8.2)) write

Tyt O ——=GL,(F)\ (2" x GL, (AL, )/K’)—.—>M§1K,((Coo),
[w]i [(w, gh)].

Proposition 8.16 (a) Via the map Jy corresponds to a morphism of varieties

Jh : MIZ,K’ — MQ,K

(b) For every g € GL,.(AL) we have m, = Jj o T

Now assume that K and K' are fine, and let (E,p) and (E',¢") denote the respective
unwersal families on M} 1 and M} 4. Then:

(¢) If h has coefficients in A, there is a natural isogeny ny, : JH(E, ) = (E',¢") which
for every g € GL,(AL) makes the following diagram commute:

Trl* 77h
73 (B, ) =2 s Ji (B, ) — e (B, )
ZLforg zlforgh
(Ga,QT7 ng) o (Ga,Qra ngh )
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(d) If h=! has coefficients in A, there is a natural isogeny &, : (E', ') — Ji(E, ) which
for every g € GL,(AL) makes the following diagram commute:

. ™ En A (b) .
ﬂ;h(E”Qp') : W;th (E7S0) Trg (E,QO)
zlforgh zjforg
(Gagr, $Fo1) = (Gar, YP0).

(¢) For any a € A~ {0} such that both h and ah™' have coefficients in A, we have
Ny 0 Ea-1h = @l and Eg-1p, 0Ny = J} 0.

(f) If h € GL,(AL) is a scalar matriz and K = K', then J, is the identity morphism.
If in addition h = a-1d, for a € A~ {0}, then n, = @,. If instead h = a~! - 1d, for
ae€ AN{0}, then &, = ¢q.

Proof. (Sketch) The formulas in (b), (e), and (f) follow by direct calculation from the
constructions in and and , once the remaining assertions are proved.

The constructions of J, and &, in (a) and (d) are those of [Pil3] Props. 2.6-7]. (Except
that due to the change of convention explained in Remark the present morphism Jj,
corresponds to the morphism Jg,ry-1 from [Pil3, Prop.2.6], and the present isogeny &,
to the isogeny &(,r)-1 from [Pil3, Prop.2.7].) Roughly speaking, by taking invariants
everything reduces to the case that K = K(N) and K’ = K(N’), where J, and &, can be
described explicitly using the modular interpretation.

The construction of 7, in (c) is dual to that of &, and follows the same principles. For an
alternative construction observe that the formulas in (e) characterise 7, uniquely in terms
of ,-15,. Noting that the endomorphism ¢! of (E’,¢") also factors through the isogeny
Eamn s (B, ¢") = JF(E, ) constructed via the modular interpretation, one can construct
nn, by the formula 7y, o &,-1j, = ¢/, and deduce its properties from that. |

Proposition 8.17 Consider open compact subgroups K, K', K" < GLT(A) and elements
h,h' € GL,(AL) such that hK'h™' < K and WK"h'"' < K'. Then we have:

(CL) th/ = Jh o Jh/.
(b) N = © Jimn if K,K', K" are fine and h, ' have coefficients in A.

(c) & = J3&n 0 & if K, K', K" are fine and h™',h/~! have coefficients in A.

Proof. Direct calculation for the maps in (8.13]) and (8.14)) and (8.15)). o
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9 Satake compactification

According to [Pil3] Def.4.1], any normal integral proper algebraic variety ]\_4 W over F
which contains M7 - as an open dense subvariety, such that the universal famlly (E,p)
extends to a Weakly separating generalised Drinfeld A-module (E, @) over M’ "Lk 1s called
a Satake compactification of M} ;. By [Pil3l Thm.4.2], such a Satake compactlﬁcation
exists and is projective over I, and together with its “universal family” (E, ) it is uniquely
determined up to unique isomorphism. The proof, however, tells us very little about what
the boundary of this compactification looks like.

A rigid analytic construction of the same Satake compactification was given by Kapra-
nov |[Ka87] in the special case A =F,[t] and by Héaberli [Ha21] in general. They explicitly
construct a rigid analytic space that is projective over C,, and has a natural stratifica-
tion by finitely many rigid analytic spaces of the form I'"\Q" for integers 1 < r’ < r and
arithmetic subgroups I'V < GL,.(F"). Héberli also proves that the result is naturally iso-
morphic to M N (Cs). What we need from this is an analytic description of M "k along
all boundary strata of codimension 1, where the fibers of the universal family (E, @) are
Drinfeld modules of rank r — 1.

Since M ". i 1s integral and contains M}, ;- as an open dense subvariety, each connected
component M of M e Xspec F SpecCoo is open and dense in a connected component M
of M WK XSpec F Spec (Coo, and the decomposition (8.6)) extends to a decomposition

(9.1) Mi\,K Xgpec F Opec Cop = ]_[Mgi.
i=1

Also, the field of constants of M "Lk s again Fi, and the connected components M g: are just
the varieties obtained by base change M "L K XSpec Fi Spec C,, for all F-linear embeddings
Frg = Cy

Assume that K is fine. Consider any g e GL,(AL), and set 'y =Ty nU(F) and
A= (Tyy) ¢ 71 as in and (4.4). By Theorem there exist an admissible
open subset U, c Co, x Q71 containing {0} x QT Land a holomorphlc map
(9.2) Oyt Do\ — Uy, [(2)] — (@07,

which induces an isomorphism of rigid analytic spaces T’y /\Q" — U, n (C%, x Q7-1).

Proposition 9.3 (a) There exists a unique morphism of rigid analytic spaces 7, : U, —
M ,(Cs) making the following diagram commute:

T
Tg,u

Qr L\ e—2 1,

- lﬂg

M 4 (Coo) M7 1 (Coo).

(b) This morphism is étale and its image is a Zariski open subset of ]\_JTA’K(COO).
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(¢) Varying g € GL.(AL), the union of the images of the different maps T, is equal to
M} (Co) for a certain Zariski open subset MYy of M", . whose complement has
codimension > 2.

Proof. This is due to Kapranov [Ka87| in the special case A = F,[t], and to Haberli
[H&21] in the general case. o

Remark 9.4 For our application of Proposition 9.3|in the proof of Lemma [10.7] it would
suffice to have, for every g, an étale morphism on some arbitrarily small open subset V, c U,
that is not contained in C% x Q71 such that every connected component of codimension
1 of MTA,K(CDO) \ M), 1 (Cs) contains a point in the image of V, for some g. It is probably
possible to prove this without the explicit description of M, ,(Co) by Kapranov and
Héberli, using only the fact from [Pil3, Prop.4.10] that the fiber of the universal family
(E, @) over the generic point of any irreducible component of codimension 1 of M e
is a Drinfeld A-module of rank r — 1. But it would be a shame not to use the wonderful
results from [Ka87] and [Ha21] when they are available.

Next let (Gay,, L) be the generalised Drinfeld A-module over U, that is furnished by
Proposition [7.16]

Proposition 9.5 There exists a unique isomorphism of generalised Drinfeld modules over U,
/ﬁ; (E7 @) — (GaJ/{g ) &Lg%

whose pullback under 9,0 mr, , : Q" > U, 1s the isomorphism

N - (I E1D) T .
Tr vy (E,(p)-—WQ(E,QO)—N>(G&QT,@DL9)7T ,Uﬁg(Ga,Mgvdng)'

gU 99 Ly

Proof. Over U,n(Cx xQ 1) the isomorphism is obtained from the construction preceding
(7.15)). The extension to U, follows from analytic versions of [Pil3 Props. 3.7-8], which say
that homomorphisms and isomorphisms of generalised Drinfeld modules extend uniquely
under open dense embeddings of normal integral schemes, and whose proofs work equally
well in the analytic setting. O

Proposition 9.6 In the situation of Proposition [8.16 we have:

(a) The morphism Jy, : My .. > M, ;- extends uniquely to a morphism Jp : ]\72‘ 5t = ]\_4TA K-

Now assume that K and K' are fine, and let (E,p) and (E',@') denote the respective
universal families on My o and My 1. Then:
(b) If h has coefficients in /Al,ithe isogeny ny, 2 Jy (B, ) = (E',¢") estends uniquely to an
isogeny My : Jy (E,¢) - (E',¢').
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(¢) If h™1 has coefficients in 141, the isogeny &§n (B, ¢") = Jy(E,¢) extends uniquely to
an isogeny &5 (',@) » T2 (E, ).

Proof. (Sketch) Assertions (a) and (c) are proved in [Pil3, Prop.4.11]. The same kinds
of arguments establish (b). O

Finally, the formulas in Proposition [8.16| (¢), (f) and in Proposition automatically
extend to the respective Satake compactification, because the extended morphisms already
exist and two morphisms on an integral scheme are equal if they coincide on an open dense
subscheme.

10 Analytic versus algebraic modular forms

We keep the notation from the preceding section, and first we also assume that K is fine.
Let Lie F/ denote the Lie algebra of F, which is an invertible coherent sheaf of modules on
M " - (It is naturally isomorphic to the sheaf of sections of E, but in the present context
it is safer to view it as the Lie algebra.) Consider the dual invertible sheaf £ := (Lie )V,
By [Pil3, Thm.5.3] this is ample. For any integer k we abbreviate £* := L& Following
[Pi13l Def.5.4] we have:

Definition 10.1 An algebraic Drinfeld modular form of weight k and level K is an ele-
ment of the space

MM ) = HO(M i, LF).

Since M ".x 18 a projective algebraic variety with field of constants Fl, this is a finite-
dimensional vector space over F or, depending on one’s point of view, over F'. Our aim
is to relate it with a space of analytic modular forms. Note that the decomposition (9.1)
yields natural isomorphisms

(10.2) MM} ) ®F Coo = HO(My ¢ Xspecr Spec Coo, £¥) = @ HO(M,,, L").
i=1
Also, any irreducible component M g of M "\K XSpec F SpecC,, has field of definition F;

hence pullback induces an isomorphism

(10.3) MMy ) @ Coo = HO(M,, L"),

112

Let £ denote the invertible sheaf on the rigid analytic space M . (Cs) obtained from L.
Its pullback 73 £ is an invertible sheaf on ", which must be trivial, because 2" is a Stein
space ([SS91) Prop.4]). In fact, we have an explicit trivialisation: The isomorphism of line
bundles 7} E' — G, o underlying the isomorphism of Drinfeld modules (8.11]) induces an
isomorphism for the dual of the sheaf of sections

(10.4) T L — Ogr.

Via this trivialisation, the pullback of any section s € H?(M} ;(Co), (£*)*) becomes a
holomorphic function U O - Cg.
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Lemma 10.5 For any section s € HO(M} ,(Coo), (L2™)F) and any g € GL,(AL) and v €
GL,.(F) and k € K we have

T8 = (ﬂ;gks)|k7.

Proof. Since £ is the dual of the invertible sheaf of sections of E, the commutative
diagram (8.12) yields a commutative diagram

(10.4) for g
ey @ o
(8-5) ¢ | multiplication by j(v, )*
(10.4) for vgk
Vg (L) B! 7 Oar = Oqr.

For any w € Q, evaluating s at the point 7y(w) = 7y, (7(w)) therefore yields the equality

J(r,w)t - (mgs)(w) = (mg8) (V(w).-

In view of (1.5)) this implies that

(mgs)(w) = j(7,@) ™ (W) (VW) = (Tus)lk7) (W),

as desired. a

Lemma 10.6 The map 7; induces an isomorphism
HO(MQ(Coo)v (Ean)k) — Wk(rg)

Proof. By definition the pullback by 7, yields an isomorphism from H°(M,(Cy ), (L))
to the space of I'j-invariant sections in HO(Q", 7(L*)*). But for every v € I'y we have
Tyg = Tg0y L =m, by (8.5); so by Lemma the ~-invariance translates into the formula

mys = (mrs)|ry. By Definition the image of 7 is therefore just the space of weak

modular forms W (T'y). m]

Lemma 10.7 The map 7; induces an isomorphism
HO(M,, LF) — M(T,).

Proof. By rigid analytic GAGA due to Kopf [K674, Satz 4.7], analytification yields an
isomorphism HO(Mg, L) > H(M 4(C.), (L)) Next, set My = MM (Cy,) for the
Zariski open subset Mg} of M "1 from Proposition (c). Since M, is normal integral
and the complement M, \ M has codimension > 2, by Bartenwerfer [Ba76], Satz 10] the
restriction map induces an isomorphism H°(My(Cy), (£2")*) = HO(M;(Cs), (L2™)F).
By Lemma any section s € HO(M,(C), (£2%)¥) corresponds to a weak modular form
755 € Wi(T'y). It remains to determine when s extends to a section in HO(M; (Cs ), (£2™)F).
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We first analyse when it extends to the image of the map 7, from Proposition (a).
Recall that £ was defined as the dual of the invertible sheaf of sections of E. Thus the
isomorphism of generalised Drinfeld modules in Proposition [9.5| induces an isomorphism

(10.8) TIL = Oy,

Let 9:Qr —» U, be the composite morphism in the top row of the diagram in Proposition
m (a). Then by construction the pullback of the trivialisation to Q via 0 is just
the trivialisation in (10.4]). Thus s extends to a section of (£2*)* over the image of 7, if
and only if the function m;s : Q" - Cs is the pullback via Y of a holomorphic function
Uy - Co. Here my s is already a ['y-invariant function and therefore possesses a u-expansion
by Proposition [5.4f Thus it is the pullback of a holomorphic function on U, if and only if
it is holomorphic at infinity in the sense of Definition [5.12]

Now recall that for any g, ¢’ € GL,(AL) we have M, = M if and only if ¢’ = ygk for some
v €GL,.(F) and k € K. By Proposition (c) the partial compactification M; is therefore
the union of the images of the maps 74 for all such v and k. By the above argument
for ygk in place of g, it follows that s extends to a section in HO(M;(Cs), (L)) if and
only if for all 7 and k the pullback 77 , s is holomorphic at infinity. But by Lemma W
we have T kS = (mys)|ey~!. Varying v we thus conclude that 7 induces an isomorphism
from HO(M}(Cs), (L>)*) to the space of modular forms My (I'y). Combining everything
yields the desired result. O

Theorem 10.9 If K is fine, the maps 7; and the isomorphisms respectively
mduce isomorphisms

ME(M i) @ Coo —> M(Ty),
ME(M} ) ®8 Coo — D M(T,).
i=1
Proof. Direct consequence of Lemma [10.7] O

The above isomorphisms are functorial in the following sense. Consider a second fine
open compact subgroup K’ < GLT(A) and an element h € GL, (Al) such that hK'h™' < K.
By Proposition (a) this data determines a morphism J, : M WK T M "wic- As before
let (E’,@') denote the universal generalised Drinfeld module on M "wx- Let L' denote the
dual of the invertible sheaf of sections of £’

With & fixed, consider any sufficiently divisible scalar a € A\ {0}, so that the element

ha € GL,(AL) has coefficients in A. As a consequence of Propositions (f) and [8.17, we
(

then have Jp, = Jj,. The derivative of the isogeny 7, in Proposition b) thus induces
an isomorphism

(dine)" = JiL=J5 L— L.
Lemma 10.10 The isomorphism
pr = a- (dijpa)’ s JpL — L'

is independent of the choice of a.
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Proof. Consider a second element b € A\ {0} such that kb has coefficients in A. Then
so does hab, and Propositions (b) and (f) imply that Mhe = 76 © Nha = @} © Nha-
Taking derivatives we deduce that dnpa, = dgj o dnpe = b - dnp, and hence ab - (dnpay)Y =
ab- b7t (dnpe)Y = a- (dnpe)Y. Interchanging a and b implies that ab- (dnpes)Y = b+ (dnpe)V
and hence a - (dnp,)¥ = b- (dnpy)¥. Finally, this equality over the dense open subscheme
M, j, automatically extends to an equality over M WK O

Using pullback and the isomorphism p; we can now define a natural F-linear pullback
map on modular forms, again denoted .J;, by the commutative diagram

Tis MM ) MM} o)
(10.11) I . " I
Wis h WS T* h Wis
HO(M, o, L) —2= HO(M, o, i £F) — HO(M?, ), L%).

To describe its behavior under the isomorphisms from Theorem [10.9} for any g € GL,(AL)
consider the arithmetic subgroup I'}, := GL,(F) n ghK'(gh)~", which by construction is
contained in the arithmetic subgroup I', := GL,.(F) ngKg*.

Proposition 10.12 For any g € GL,(A%) the diagram

MM ) — e MM )
lw; lw;*h
My (Ty) ————— M (I'y,)
commutes, where the horizontal map on the bottom is the inclusion map.

Proof. Assume first that h has coefficients in A. As £ and £’ are the duals of the invertible
sheaves of sections of E and E’, Proposition m (c) yields a commutative diagram

mon PR = oy, (dnp )Y

* ffan — /* J* an I* lan
5 —Wthhﬁ 7Tgh£
2|| (@04 for g 2|| (W04 for gh
(diin)Y
OQ’I‘ OQT‘

By the construction of 7, we have dn, = 1. The desired commutativity thus follows
from the definition of 7; and 77} .

In the general case take any a € A~ {0} such that ha € GL,(AL) has coefficients
in A. Repeating the above calculation twice with (g,h) replaced by (g,ha) and (gh,a),
respectively, and noting that W;ha = W;h, yields a commutative diagram

cpan a0 Tha(e) o pran
Ty Tgha Ty
o|| @A) for g || @A) for gha 2| (@A) for gh
id id
Oqr Oqr Oqr.
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Here dn, = d¢!, = a by Proposition m (f), hence the upper horizontal arrow on the right
is multiplication by a~!. Together we thus obtain the commutative diagram

I% _ % v
ﬂ'ghph = CL’TK‘ghE (dnha)

* [*an I* [lan
T, L T
2|| (@04 for g 2|| (@A) for gh
id
Oqr - OQT.,
and again the desired commutativity follows from the definition of w7 and ;. O

Proposition 10.13  (a) If K = K’ and h € K, then J;! =id.
(b) If K =K' and h=a-1d, for ae AN {0} then J; =a-id.

(c) For any fine open compact subgroups K, K', K" < GLT(A) and elements h,h' €
GL,(AL) such that hK'h™' < K and W K"h'-' < K', we have J},, = J}, o J;.

Proof. Direct computation using Proposition |8.1 |

Now recall that the elements ¢y, ..., g, appearing in Theorem [10.9| are the representa-
tives of the double quotient GL,(F)\ GL, (AL )/K used in . Likewise choose represen-
tatives g1, ..., ¢!, of the double quotient GL,(F)\ GL,(AL)/K’. For each 1 < j <n’ consider
the arithmetic subgroup I, := GL,(F") n g;K'g;", and choose 1 <i; <n and v; € GL,(F)
and k; € K such that ;g;h'k; = g;;. Then direct calculations show that ;I", vt < Ly,

and that the following diagram commutes:

n' , (ﬂ;/‘) , ) )
11 I\ %> GL,(F) \ (2 x GL,(AL)/K') —— M 1(Coo)
L%

(10.14) ’ L L T

m (ﬂ'gi) ~ -

[1T,\ —GL,(F)\ (2" x GL,(A%)/K) —— M} ,-(Cs),

i1
where the vertical map in the middle is [(w, g)] = [(w,gh~!)] and the one on the left sends
a coset I'),w in the j-th subset to the coset ngj 7vj(w) in the i;-th subset.

Proposition 10.15 If K and K’ are fine, the map J; from (10.11) and the isomorphisms
from Theorem for K" and K fit into a commutative diagram

: Ji®id alg /2 o
ME(MY 1) ®F Coo ——= M (MY 1)) ®F Co
Alione) mm
@1 Mu(Ly,) @1 Mi(Ty,)
i= j=
(fi)iy s (fij|k’7j)?;1-
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Proof. For each 1< j <n’ we have a commutative diagram

In

ME(MY ) MM )

* * I%
T, T -1 T
9i . h A
/ \gJ 9;

fo flevs incl. ’
M (T, ) e My (T ) S M),

which commutes on the left by the equation fng}hflkrj = gi; and Lemma |10.5) and on the
right by Proposition [10.12{for g = g}h‘l. Summing over all j yields the desired formula. ©

Finally consider an arbitrary open compact subgroup K < GL,(A). Let K be any
open normal subgroup of K which is fine, for instance, the principal congruence subgroup
K(N) for a sufficiently divisible non-zero ideal N ¢ A. Then by Proposition the
maps J; for all h € K induce a right action of K /f( on the space of modular forms of
level K. In [Pil3] Def.5.4] we defined:

Definition 10.16 The space of algebraic Drinfeld modular forms of weight k& and arbi-
trary level K is the space of K-invariants

ME(M ) = MM o).

Once defined using one choice of K, the same equality then holds for arbitrary open
compact subgroups K < K < GL,(Af,). This makes ./\/lzlg(M;L &) independent of the choice

of K. Moreover, for any g € GL,(A) we define the pullback map Ty on leg(Mz x)
as the restriction of the map 7 on /\/lzlg(sz(). Using Proposition |10.12| in the case

h = Id, we find that this is again independent of the choice of K. Likewise we can define
a map J; : M¥S(M7 ) - MYB(M, ) for arbitrary h, K, K’ as the restriction to K-,
resp. K'-invariants from suitable smaller open compact subgroups. With this we can now
conclude:

Proposition 10.17 Theorem and Propositions [10.19 and [10.13 and hold for

arbitrary open subgroups.

Proof. (Sketch) For all h € K we have hK'h~! = K’ so using Proposition [10.15| with
K replaced by K’ we can translate the right action of K/K' on leg(M;l,K’) ®r Co to

the space 69]-2'1 ./\/lk(F;,_). This action interchanges the summands /\/lk(l“;,_) whenever g}
J J

lies in the same coset GL,(F)g;K, and the stabiliser of such a summand acts through
the action of all v e I'y, by f +~ f|yy. But the space of invariants in ./\/lk(F;,_) under this
J

action is simply My(L,,). Taking invariants we thus deduce the second isomorphism in
Theorem for the group K. The remaining statements follow in the same way by taking
invariants in each case. O
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11 Finiteness results

Theorem 11.1 For any congruence subgroup I' < GL,.(F') we have:
(a) dimc_ My () < 0o for any integers k and m.
(b) Mpm(I') =0 whenever k<0 and r > 2.

(c) The graded ring M, (I") := @50 Mi(T') is a normal integral domain that is finitely
generated as a C-algebra.

Proof. First assume that I' is the principal congruence subgroup I'(N) associated to
some level 0 # N ¢ A. Setting K := K(N), for g = 1 the arithmetic subgroup I'; from
1D is then I'. By Theorem we thus have HO(]\7[7:47K,£’“) O Coo @ Mi(T'). As
space of sections of a coherent sheaf on a projective algebraic variety it is therefore finite
dimensional, proving (a). Moreover, since £ is ample by [Pil3, Thm.5.3], this space is
zero if k < 0 and every irreducible component of the variety has dimension > 1, proving (b).
Also, the ring @z HO(M", ., £¥) is a normal integral domain that is finitely generated as
an F-algebra by [Pil3, Thm.5.6], from which (c) follows.

Next, for any two congruence subgroups I'V < I', the respective space or graded ring
for I' is obtained from that for I by taking invariants under a certain action of the finite
group I'/T”. The statements for T" thus follow from those for I'".

Finally, for an arbitrary congruence subgroup I' < GL,.(F) consider the finitely gener-
ated A-submodule L :=T"-A" c F'", and choose an ideal 0 # I ¢ A such that /L c A”. Let I"
be the subgroup of elements of I" that act trivially on L/IL. Then IV < T" and I'" < GL,.(A).
Also I'" is again a congruence subgroup, so it contains I'(N') for some level 0 # N ¢ A. As
I'" < GL,(A), we then have I'(V) < " < I', and the statements for I" follow from those for
['(N) by applying the above reduction step twice. m]

Proposition 11.2 Let I' < GL,(A) be a congruence subgroup whose image in GL.(A[p)
is unipotent for some maximal ideal p ¢ A. Then for every k > 0 there exists a non-zero
cusp form of weight k for I

For an explicit construction of such cusp forms using Eisenstein series see Remark|16.11

Proof. Choose a level 0 # N ¢ A such that T'(N) < T, and set K := K(N)-T' < GL,(A).
Then K is fine, and for g = 1 we have I'y = K n GL,(A) =I". Let oo denote the reduced
divisor on M WK with support M wx N M} k. By Theorem and the definition of cusp
forms we then have

HO(]\7[T47K,£’€(—00))®FK Co = Si(D).

As L is ample, the left hand side is non-zero for all £ > 0, as desired. O
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12 Hecke operators

Consider any element h € GL,(AL) and any open compact subgroups K, K’ < GLT(A)
such that hK’h~! < K. Then by ({10.11)) and Proposition [10.17], there is a well-defined
pullback map

(12.1) Tis ME(M} ) — MM o)

satisfying Proposition [10.13]

We can also construct a natural map in the other direction. Since J; is an isomorphism
if hK'h™! = K, we restrict ourselves to the case that h =1d, and K’ < K. Choose an open
subgroup K < K’ which is normal in K. Then by Definition we have

Jx—
MEB(M o) " MM, o)

(12.2) || | T

MM} ) e MM ) e MEEME ).

We define the dotted arrow by

(12.3) [ trace(f) =) Jif,

where A’ runs through a set of representatives of the quotient K’\K. The composite of
this trace map with the vertical isomorphisms in ((12.2)) is the pushforward map

(12.4) Jrd, leg(Mz,K') - MZIg(M/S,K)-

Now consider any element h € GL,(Al,) and any open compact subgroup K < GL,(A),
bearing no particular relation with each other. Then we call the pair of morphisms

r Jn r
(12.5) MA,K =~ MA,KmhflKh

the Hecke correspondence on M .. associated to h. The composite map

J1dy,

a T Th a T a T
(12.6) Th: Mklg(MA,K)_)h Mklg(MA,Knh—lKh) ’ Mklg(MA,K)
is called the Hecke operator on leg(MQ, ) associated to h. It depends only on the double

coset KhK.

The composites of Hecke operators are calculated as follows:
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Proposition 12.7 For any h, i/ € GL,(AL)) and any open compact subgroup K < GL, (A)
the Hecke operators on MZIg(MQ,K) satisfy

TpoTy = Y [Knh"'Kh": Knh ' Khah" ' Kh']- Ty
hll

where h'" runs through a set of representatives of the double quotient
(hKh™'n K)\hKh'|(K nhTKR).
Proof. This is [Pil3, Prop. 6.10] with the change of conventions taken into account. O

In the rest of this section we work out how the maps Jiq4, . and T}, translate under the
isomorphism from Theorem [10.9,

Proposition 12.8 Consider any open compact subgroups K' < K < GL, (121) and any
representatives gi, ..., g, of the double quotient GL,(F)\ GL,(A%L)/K and representatives
g1s---, 9. of the double quot@ent GL,(F)\GL,(AL)/K'. For each 1 <i < n consider the
arithmetic subgroup Ty, := GL,.(F)ng;Kg;' and for each 1 <j <n' the amthmetzc subgroup
F’ = GL.(F) n gJK’ - 1. Then the map Jia, . from (12.4]) and the isomorphisms from

Theorem [10.9 for K" and K fit into a commutative diagram

JIdr,x—®id

leg(M:l,K’) ®rC ax) @rC
|09 zLﬂIEEZI
b Mr) b Mir,),
j= i=
(fj ?Lli (Z fj|k7):l17
2,

where, for each index i, the sum extends over all pairs of indices 1 < 7 < n' and elements
veGL.(F)n g}Kg;l up to left multiplication by F;,,
J

Proof. Suppose first that K’ < K. Then for any h € K and any 1 <7 < n there is an index
1 < Jin <0/ and an element 7;;, € GL,.(F) such that g;.ih € vingih ' K'. By Propositions|10.15
and (10.17| the map J; ®id thus corresponds to the map

(fj ?;1 — (fjm|k:%h)?=1-

Next observe that j;;, is unique and ~;;, is unique up to multiplication on the left by F’, ,

and both depend only on ¢ and the coset K’h. Summing over all cosets K'h c K thus
shows that Jiq4, . ® id corresponds to the map

(fj ;‘; — 3 (Finlevin)i = (me)z 1

K'h
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with the indicated summation over (j,7). This proves the assertion in the case K’ < K.
In the general case, one must take an open compact subgroup K < K’ which is nor-
mal in K, choose representatives for GL,(F)\GL,(AL)/K, write down the commutative
diagrams from Proposition |10.15| for the maps Jy; /\/l,aclg(MQ,K) - /\/lzlg(Mj;‘j{) and
Ty, t MRE(M] o) > MRE(M ) and Jie MRB(MG ) — ME(Mjg) for all he K,
and eliminate everything concerning K from the resulting expression for Jid, » ® id. We
leave this direct and tedious calculation to the reader. ]

Proposition 12.9 Consider any element h € GL.(AL), any open compact subgroup K <
GL,(A) and any representatives g1,...,gn of the double quotient GL,.(F)\GL,(AL)/K.
Then the Hecke operator Ty, from and the isomorphism from Theoremﬁt mnto
a commutative diagram

T, ®id

leg(M:l,K) ®p Coo —— leg(M:l,K) ®r Co

Illl!] Illl!]

Gf? Mk(rgz) @ Mk‘(rgi)7

(f) (32 fole0)

where, for each index i, the sum extends over all pairs of indices 1 < i’ < n and elements
6 € GL.(F) ngsKhKg;' up to left multiplication by T'y,. Moreover, the index i’ that
actually occurs in the sum depends only i and h.

Proof. Set K':= K nh™'Kh and choose representatives gi,..., g/, of the double quotient
GL,.(F)\GL,(AL)/K'. For each 1 < j < n’ select an index 1 < i; < n and elements
7; € GL,(F) and kj € K such that v;g7h~'k; = g;,. Then by Propositions [10.15/and [12.8 we
have a commutative diagram

a Jreid a . Jrayp«®id o .
Mklg(M:},K) ®F Coo — Mklg(MA,K’) ®p Coo — Mklg(MA,K) ®r Coo
: |IT3 Ilm] ZLIJIEEI
G?Mk(rgi) G?Mk(rlg;) EBle(ng)a
1= J= 1=
(fi)iey ! (i l) e (Z fi; |k |W)Z1,
3y

where, for each index i, the sum extends over all pairs of indices 1 < j < n/ and elements
v € GL,(F) ngjKg;' up to left multiplication by GL,(F') ngjK'g;". Using the fact that
fi;lkv5 ey = fi;le 757 we can rewrite this as

(12.10) (fi)ies — (2; Fisli 5)?:1,
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where, for each index i, the sum extends over all pairs of indices 1 < j < n/ and elements
0 € GL,(F) nv;g;Kg;" up to left multiplication by GL,(F)n~;g/K g ;"

To analyse this sum note first that by construction we have v;g; = g; k’jflh. For each
J the element § therefore runs through GL,(F) ng;, k:jflhK g;' up to left multiplication by
GL,(F) ngi;k; ' hK'h kg !

For any j and ¢ that occur in the sum this shows that dg; € g;, k:JTlhK . Taking determi-
nants and using the fact that k; € K we deduce that det(g;) and det(g;,h) represent the
same coset in F*\(AL)*/det(K). The coset of det(g;,) therefore depends only on i and h,
but not on j. By Proposition it follows that ¢; depends only on i and h, but not on j.
For the rest of the proof we therefore fix indices ¢ and i’ such that det(g;) and det(g;h)
represent the same coset in F*\(AL)*/det(K), and we can restrict ourselves to indices j
with 4; = .

Note that this already proves the last statement of the proposition. It also shows
that ¢ lies in GL,.(F) ngsKhKg;'. Moreover, since hK'h™! < K and k; € K, we have
GL,(F)ngak;'hK'hkjg;' € GL(F)ngiKg;' =T,,. Thus any equivalence class of pairs
(4,0) in the sum determines a unique coset Iy, 4.

Suppose that two pairs (j,¢) and (j’,¢") determine the same coset I'y, 0 = T'y,6’. Write
' = 0 with € € I'y,. Since ¢ € gyk;'hKg;' and 0’ € gok;'hKg;", it follows that ¢’ lies
in both egyk;'hKg;" and g«k;'hKg;'. Multiplying by g; from the right we deduce that
egik;'hk = gukj'h for some k € K. By the definition of I'y, we have g;'c7'gy € K, and
since kj, kj € K, we find that k = h™'k;g; e gik;'h € K nh™'Kh = K'. The calculation
v;95k = eguk; hk = gik;'h = g}, now implies that g} and g}, represent the same double
coset in GL,(F)\GL,(A)/K’. By the choice of g},...,g!, as representatives of these
double cosets it follows that j = j'. Thus both ¢ and ¢’ lie in GL,(F) n gik;'hKg;", and
hence € = ¢’6! lies in GL,(F) nguk;'hEKh™'k;g;'. Since also € € Ty, = GL,(F) n g« K g;;!
and k; € K and hKh™'nK = hK’h™!, we then actually have e € GL, (F')ngik; ' hK'h"'k;g;".
This shows that the map sending an equivalence class of pairs (7,d) in the sum ((12.10) to
the coset I'y,d is injective.

Consider now an arbitrary element 6 € GL,(F) n gy KhKg;'. Choose k € K such that
§ € gk 'hKg;!'. By the choice of ¢f,..., g/, there exists an index j with GL,(F)gykthK' =
GL,(F)g;K'. Since v;g; = gi;k;'h, we deduce that GL,(F)gik*hK' = GL,(F)gi k; hK".
By the same argument as above it follows that i’ = i;, and we can find an element ¢ € GL, (F")
such that egyk'h € gyk;'hK'. Since hK'h™' < K and k;, k € K, we then have ¢ €
GL,.(F)n gifkjflhK’h‘lk:g;,l <GL.(F)ngyKg;' =T,,. Thus €6 € GL,(F) negykthKg;' =
GL,(F)ngik; hKg;', and so the coset T, d arises from the pair (j,0) in the su.
In other words the map sending an equivalence class of pairs (j,9) in the sum ((12.10]) to
the coset I'y, 0 is surjective.

All this together shows that in (12.10) we can equivalently sum over all 6 € GL,.(F) n
gy KhK g;' up to left multiplication by I'y,. Also, since fi, = fir e My(T'y, ), the function
firlk & depends only on the coset I'y,d. This finishes the proof. O

Finally, we define Hecke operators on analytic Drinfeld modular forms as follows:
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Definition 12.11 For any arithmetic subgroups T, T" < GL.(F) and any element § €
GL,.(F) we define the associated Hecke operator by

Ts: Mp(I'") — My(T), fr— ZW fle,
where v runs through a set of representatives of the quotient T'\I'"dT .

Using (1.6 and Proposition one finds that this is well-defined, and by construction
it depends only on the double coset I'dT". Also, since the action of GL,.(F") preserves cusp
forms and Mg (T') nSe(T'n071170) = Sk(T'), the Hecke operator induces a map

(12.12) Ts: Si(T") — Si(T).
We can now rewrite the formula in Proposition [12.9] as follows.
Theorem 12.13 The map on the bottom in Proposition[12.9 is equal to
(i (LB

where, for each index i, the sum extends over all pairs of indices 1 < i’ < n and double
cosets I'y, 0Ly, ¢ GL,.(F) NngyKhKg7'. Again the index i’ that actually occurs depends only
ont and h.

Proof. By construction the set GL,(F)ngy KhKg;' is invariant under left multiplication
by I'y, = GL.(F) n gy Kg;" and right multiplication by T'y, = GL,(F) n g;Kg;*, and it is a
finite disjoint union of double cosets I'y,0I'y,. The formula results by direct computation
from (|1.6)). O

Remark 12.14 In Theorem it can happen that GL,(F) n g» KhKg;' decomposes
into several double cosets. This is related to the fact that the algebraic Hecke operator Ty,
is by construction defined over F', whereas the analytic Hecke operator Ty is only defined
over Coo. Thus if M, ;1 (Coo) has more connected components than M} ¢ (Co), their
common field of definition F 157, 1S @ proper extension of the field of definition Fx of the
connected components of M} (Cs), and the algebraic Hecke operator 7}, can be viewed

as an analytic Hecke operator T followed by a trace map with respect to Frnp-1xn/Fk.
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Part 111
Examples

Introduction

In the present Part III we illustrate the general theory constructed in Parts I and II by
constructing some important families of modular forms.

Let L be a finitely generated projective A-submodule of rank r of F", viewed as a set
of row vectors. For any w € Q)" we thus obtain a strongly discrete A-lattice Lw c C,, of
rank r. Our convention on row vectors implies that GL,(F') acts on F" from the right. We
denote the stabiliser of L by

I'p = {yeGL.(F)|Ly=L}.

For L = A" we simply have I';, = GL,.(A). Note that for any non-zero ideal N c A, an
element of GL,(F") stabilises the lattice L if and only if it stabilises the lattice N='L; thus
['y-17, =T'. More generally, for any coset v + L ¢ F'™ we consider the congruence subgroup

Torr = {ve€GL.(F)|vy+Ly=v+L} < Ty,
Also, for any non-zero ideal N c¢ A we consider the principal congruence group

[r(N) == () Tuwr = ker(I'p — Aut(N7'L/L)).

veN-1L

All these groups are arithmetic subgroups of GL,(F).

Outline of Part II1

In Section [13| we construct the Eisenstein series of all weights & > 1 associated to all cosets
v+ L and compute their u-expansions in Proposition [I13.10] In Theorem we show
that they are modular forms of weight k for the groups I'y, .

In Section (14| we determine the action of Hecke operators (defined in Section on
Eisenstein series, restricting ourselves to Hecke operators that are supported away from the
level of the Eisenstein series (see Assumption [14.1). In each case, Theorem identifies
the Hecke image of an Eisenstein series as a linear combination of Eisenstein series. In
particular, we deduce that Eisenstein series are eigenforms under many Hecke operators.

Coefficient forms are defined in Section [15], they are modular forms for 'y which occur
as coefficients of Drinfeld modules, isogenies or exponential functions associated to the
lattice Lw.

Section [16| deals with discriminant forms, which arise as highest coefficients of Drinfeld
modules or as roots thereof. These are always cusp forms. Certain (¢ — 1)-st roots are
examples of modular forms with non-zero type m.
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Lastly, we discuss the special case of A = F,[t] and L = A" in Section Here we
exploit the explicit description of algebraic modular forms for I'(¢) from [PS14] and [Pil3]
together with our identification of analytic and algebraic modular forms from Part II. This
allows us to prove in Theorem that the graded ring M, (I'(t)) of modular forms of all
weights for I'(¢) is generated over Co by the weight one Eisenstein series £ ., for all v e
t~1L ~ L. Using invariants, we then deduce that the rings M, (GL,(A)) and M, (SL,(A))
are generated by suitable algebraically independent coefficient forms. This generalises
known results from the r = 2 case due to Cornelissen, Goss and Gekeler, respectively.
Lastly, we give some dimension formulae in Theorem [17.11}

13 Eisenstein series

For any integer k > 1 and any vector v € F" we define the Eisenstein series of weight k
associated to the coset v+ L by

(13.1) Erpir(w) = Z (zw)7*.
0#xzev+L
Proposition 13.2 This series defines a holomorphic function Q2" — Co,.
Proof. By Proposition [3.4] it suffices to show that the series converges uniformly on the

affinoid set Q7 from (3.2)) for every n. For this observe that any x € F" \ {0} determines a
unimodular F,-linear form é—| on FZ . For any w € Q" it follows that

B3
G N N S N R S

1)
jow] = Ja]- || 3 J2]- h(w) - |l
As 2 runs through (v + L) \ {0}, the norm |x| goes to infinity; hence |zw|™ goes to zero
uniformly over 27 . as desired. ]

Some basic transformation properties of Eisenstein series are:
Proposition 13.3  (a) For every v € GL,.(F) we have Ey 1|k = Ek oy Ly -
(b) In particular Ey .1, is a weak modular form of weight k for the group T'y.p.

(¢) For any A-submodule of finite index L' ¢ L we have Eyyir, = ¥ yrirr Exwrerr, where
the sum extends over all L'-cosets v/ + L' c v+ L.

Proof. (a) results from the calculation

(Broerhn) (@) B2 () 3 (@ y(w) ™

0#xev+L

= Y (Ohw)z-y(w)™”

0#zev+L

> ()t

0#zev+L
= Ek,v'erL'y(w)-
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(b) is a direct consequence of (a), and (c) is obvious from the definition ([13.1]). o

Our next goal is to determine the u-expansion of Ej ., which requires some prepara-
tion. For any strongly discrete Fy-subspace H c C,, consider the power series expansion
of the exponential function

(13.4) en(z) = z- [] (1—%) = ZBH’inqi
heH~{0} =0

with ep 4 € Coo and ey = 1 that is furnished by Proposition [2.2]

Proposition 13.5 (a) For any strongly discrete F,-subspace H c Co we have

en(2)™ = Y (z-h)".

heH

(b) For every k > 1, there exists a unique so-called Goss polynomial Gp(X,Y1,Y>,...)
with coefficients in ¥, in the variables X and Y; for all integers 1 <i <log,k, such
that for every strongly discrete F,-subspace H c Co we have

Grlen(2)™, emg, emgz, --.) = D (z=h)™

heH

(¢) These polynomials further satisfy:

(i) Gy is monic of degree k in X and divisible by X .

(ii) Gy =X and Gy = X(Gro1 + Licictog, k YiGrqi) for all k> 1.
(iii) Gy =GP,
(ZU) Xza%Gk = kZGk+1.

Proof. The existence of these polynomials was first obtained by Goss in [Go80c, Prop.
6.6], but in this generality see Gekeler [Gel3, Thm. 2.6]. o

Remark 13.6 We shall see in Proposition that the vanishing order at infinity of the
Eisenstein series Ej .1, is controlled by the vanishing order of the Goss polynomial G}, at
X =0. By part (i) of Proposition [13.5 (¢) this vanishing order is > 1, and part (ii) implies
that it is equal to k for all k < ¢. In [Gel3|, Gekeler gives a formula for the order of the
Goss polynomial at X =0 in the case A =F,[t] and H = 7 A, where p is prime and 7 is the
Carlitz period. This determines the vanishing order of the Eisenstein series in the rank 2
case for A =T,[t].
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Corollary 13.7 For any v e F" ~ L we have
Elpin(w) = epo(vw)™.
Proof. Direct computation using the substitution z = v — £ and Proposition (a):
Eipn(w) = > (aw)™ = D (w-tw)™ = ep,(vw)™.

0#xev+L leL

Now define A-submodules L’ and L; by the commutative diagram with exact rows

(13.8) 0— Fr-1 Fr F——0
U '+ (0,2") U (z1,2")»z1 U
0 L' L Ly 0.

Since L is finitely generated projective of rank r, the A-modules L' and L, are finitely
generated projective of ranks r —1 and 1, respectively. Also fix a subgroup L; ¢ L which
maps isomorphically to Ly, so that L = Ly & ({0} x L"). Write v = (vq,v") € F" = F x =1,

Lemma 13.9 The subgroup A’ c¢ F™! from that corresponds to Ty, nU(F) is the
finitely generated A-submodule of rank r —1

N o= {NeF|(v+L)Ncl}.
Moreover, for any x1 € (vy + L1) ~ {0} the inclusion x1 A’ c L' has finite index.

Proof. Forany X € Fr~! and (z1,2') € F" = FxF"! we have ([El,ZB')((l) ’}’) = (z1, N +2').
By the definition of I',,; in the introduction it follows that A’ € A’ if and only if for every
(z1,2') € v+ L we have (0,2,)\) € L, or equivalently z1\ € L’. As (x1,2') runs through
v+ L, its first component z; runs through v; + L, so the formula for A’ follows.

Since L' and L; are finitely generated A-modules of ranks r — 1 and 1, respectively,
the formula implies that A’ is a finitely generated A-submodule of rank r — 1. For z; €
(v1 + Ly) ~ {0} it follows that z1A’ c L’ is an inclusion of finitely generated A-modules of
the same rank and hence of finite index. O

As before we write w = (‘:j) € " c Co x Q1. Then the expansion parameter from
(4.14])) is the function w = g (w1) = epror(wr) ™t

Proposition 13.10 We have

Ek,v+L((L:;)) = Z

:1:=(x1,x’)ev+l~/1

Ej i (W) if ©1=0,
Gk(eL'w'(xw)_l, €Lw gy CL'W g2 ) if 7£ 0,
where Gy, is the k-th Goss polynomial from Proposition |15.5 and in the second case

H eA/w/(xflé’w')

Vel’~z1 A" mod z1A’

T [T (1-enw(@i (¢ -2")') u)

Vel mod x1 A/

ull @1\

Err (xw)’l =

Moreover, the right hand side converges locally uniformly for all (u,w’) in a suitable tubular
neighbourhood of {0} x -1,
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Proof. Using the fact that L =L, ® ({0} x L"), we break up the series defining Ej .1, as

(13.11) Brps(w) = > (aw)™ = Y ( > (yw)_k).

0#¢zev+L zev+Ly \OFyex+({0}xL")

Write z = (x1,2') € F" = F x F'~1 and observe that for any y = (y1,y') € F" = F x F™1 we
have yw = ywy +y'w'.

If 1 =0, the inner sum of (13.11)) is just
>, W) = B (w).

04y ex’+L’

Such a term occurs only if v lies in L + ({0} x F™~1), and then it occurs for a unique z.
If 21 £ 0, we write y = x — (0,¢'), so that yw = zw — 'w’. By Proposition (b) the
inner sum of (13.11]) then becomes

Z (2w —0'W)™* = Gk(ewa(xw)_l, €L gs CLIw g2 )
0el’

To transform ey (xw) we proceed as in the proof of Proposition First, by Lemma
we have an inclusion of finite index A'w’ c 27! L'w’, and by the F,.-linear independence
of the coefficients of w the index is precisely [ L’ : 21A’]. By the additivity of the exponential
function we have

e (271 2w) = enn(wr + 27 0'w’) = ut +ep (a7t 2'W’)
with u = epr(wp)~t. Using Proposition we deduce that
ep(Tw) = a1+ exI1L,w,(xI1xw)
= 2q- GeA,w,(xilwaf)(GA'w'($IleW))
= 2 eeA,w,(xilL,w,)(u‘l +ean (271 2'w")).
By the definition and the additivity of the exponential function this in turn yields

(1 ul + eprg (27ta’w") )

EAlw’ (Jiilglw’)

21 (0 + enr (a7'2'w’)) - T
lel!~zq A
modulo z1 A/

=z '(u_1 +e xla'w’ )
1 Afw’( 1 ) /z’eLI:LA’ eAlw,(mzlglw/)

modulo z7 A’

6Llw/(l'OJ)

e (20 = 2")w') —ut

1+ eArwr(l‘le’w’) ‘u H GA'w'(l’Il(f' —2 )W) u—-1
= - :
! U[L’:IIA,] e~z A eA’W’(xilflw,)
modulo z1 A’
H (1 —eA/w/(xil(ﬁ'—x')w’) U)
X1 e’ mod 1A

Lo A ST )
U[ 1 ] 1_[ eA,w,(xl g w )
Vel’~x1A’ mod z1 A’
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where the last transformation uses the fact that (-1)[F1A1-1 = 1 because [L': 2;A'] is a
power of q. Combining everything we obtain the desired formula.

For the convergence take any n > 0. By Proposition (c) there exists a constant
¢, > 0, such that for any w’ € 7~ and any 2/ € FZ;! we have |epr,(2'w’)| < ¢,. In particular
this inequality holds for z7'¢ and z7' (¢ - 2') in place of /. Thus if |u| < ry, := (2¢,)7!, we
have |epr (271 (¢ = 2")w') - u| < 271, so the geometric series for

1
1-epnn (a7t (0 = 2")w') - u

converges uniformly to a value of norm 1. Combining the inequalities yields the bound

=1pr, 1

e xylw
U[L/:mlAl] . f’eL’\gmAI’—[mod xi\ll\of,( ' ) < r7[LL/:£1A’]C7['LL,:Z1A/]_1 _ 2_[L/:€1A’]
1 | | (1—eA/w/(xfl(é'—x')w’)-u) h |21] lz1|e,

{'el’ mod x1 A’/

Also recall that Gy is a polynomial of fixed degree in X which is divisible by X, and
the values epiy 4, €pnr g2, ... for the other variables are holomorphic functions on Q!
and hence bounded on Qr=1. As both |z;| and [L’ : 21A’] go to infinity with z;, this
proves that the right hand side of the formula for Ej /. (w’) converges uniformly for all
(u,w") € B(0,7,) x Qr=1. Varying n it therefore converges locally uniformly on the tubular
neighbourhood U,,»; B(0,r,) x Qr-1. i

Remark 13.12 In principle, the u-expansion of Ej,.; in terms of powers of u can be
computed from Proposition by multiplying out the geometric series involved. As it
stands, however, the sum is essentially a sum over a coset of Ly c F', which is a fractional
ideal of A. In the rank 2 case, Petrov [Pel3| has shown that there are many Drinfeld mod-
ular forms with such expansions and that they exhibit many desirable properties because
of it. One may ask if there are other examples in the higher rank case.

Proposition 13.13  (a) The u-expansion of Ej,.(w) has constant term Ej yrop(w') if
veL+(0,2") for some x' € F™=1, and constant term 0 otherwise.

(b) If v ¢ L+ ({0} x F"=1Y), the order at infinity of Ej,.r(w) with respect to the group
Lo NU(F) is at least

ordx (Gy) -min{[L’ cxp '] | Ty €V + Ll}.

Proof. Assertion (a) follows from Proposition[13.10]and the fact that the Goss polynomial
Gy, is divisible by X. In (b) let d := ordx (G},) denote the vanishing order at X =0 of Gy as a
polynomial in independent variables X,Y7,Y5, ... and write G = X?H (Y1,Y53,...) + (higher
terms in X). Then each summand in Proposition contributes

_ d
[T eaw(ar'tw)
U[L’:CclA,] Vel’~x1A’ mod z1 A’

. ~H(€Lrwr7q, CLiw g2 - - ) + (higher terms in u)
1
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to the u-expansion of Ej, ,,z(w). Recall that v = (v1,v’), so that as x = (z1,2’) runs through
v+ Ly, its first component z; runs through v; + L;. Combining this yields the desired lower
bound. O

Remark 13.14 For the purposes explained in Remark below, one should hope that
the inequality in Proposition |13.13]is always an equality in the case k = 1. By (|16.2)) this
would yield a formula for the order at infinity of every discriminant form. For example we
have:

Proposition 13.15 If A =F [t], for any v e t"LL \ L the order at infinity of Ej ,+1, with
respect to the group Tyop NU(F) is 0 if ve L+ ({0} x F™1) and 1 otherwise.

Proof. As above write v = (vy,v’). If v; € Ly, the u-expansion of E ,., has constant term
E, 41 by Proposition (a), which is non-zero by Corollary ; hence the order is 0
in this case.

Otherwise we have t71L; = F,-v; + Ly and this A-module is generated by a unique
element z1 € v1 + L;. By Lemma we deduce that A’ = 27! L. This x; is then the unique
element of the coset v; + Ly that satisfies [L’ : x;A’] = 1. Since, moreover, G1(X) = X by
Proposition m (b), Proposition implies that Ey . (w) = ;- + (higher terms in u).
The order is therefore 1 in that case. O

Theorem 13.16 The Eisenstein series Ey .1 15 a modular form of weight k for the group
Fv+L-

Proof. By Proposition m (b) it is already a weak modular form for I',,;. Moreover,
for every v € GL,(F') we have Ej s1|xy = Ekvy+1, by Proposition (a), and the latter
is holomorphic at infinity by Proposition [13.10 O

14 Hecke action on Eisenstein series

For any coset v+ L the quotient (Av + L)/L is a finite A-module that is generated by one
element; hence it is isomorphic to A/N for a unique non-zero ideal N. Equivalently N is
the largest ideal of A such that I',,; contains the principal congruence subgroup I'r(N).
We can therefore view N as a kind of level of the Eisenstein series Ej .. In this section
we compute the effect on Ej .1 of a Hecke operator that is supported away from N.

For any finitely generated A-submodule L c F" of rank r and any prime p c A let L,
denote the closure of L in F}, which is a finitely generated Ap-submodule of rank r. Note
that L can be recovered from the submodules L, for all p as the intersection F" n[], L,
within (AL)". Consider finitely generated projective A-submodules L, L’ c¢ " of rank r,
vectors v, v’ € F", and an element § € GL,.(F"), which together satisfy:

Assumption 14.1 For every prime p ¢ A we have:
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(a) vo+ Lyd cv'+ L,
(b) vé+ Lyd =o' + L, whenever v ¢ Ly, and
(¢) Lyd ¢ pLy.

Here (a) is equivalent to vd + Lo c v’ + L', which includes the fact that LJ c L’. Given
(a), condition (b) means that Fj .., and Ej,.r are Eisenstein series of the same level N
and that Ts is supported only at primes not dividing N. Property (c) is equivalent to
Lé ¢ pL’ for any prime p, which serves as normalisation. If L = L’ = A", then (a) means
that  has coefficients in A and maps v into v'+ A”. Then, in addition, condition (b) means
that the determinant of ¢ is relatively prime to N, and (c) means that § is not congruent
to the zero matrix modulo any prime of A. Assumption [14.1] will remain in force until

Theorem [14.11] below.

To begin with we abbreviate

F, = F,UI+LI’
I o= 571FU+L50F’U’+L’ = Dysirs N Dyripr < TV,

For any prime p c A we consider the open compact subgroups

K} = {keGL.(F) |v'k+Ljk=v+Lj},
Ky = {keGL(F) |v'k + Ljk =o'+ Lj and vk + Lydk = vd + Lyd } < K.

Since L'/L¢ is finite, for any prime p not dividing its annihilator we have L,0 = L] and
hence v6 + Lyd = v’ + L. Thus for almost all p we have K, = K;. By Assumption (b)
this is so in particular if v ¢ L,. Also, the equalities L' = F" n ][, Lj and L = F" nT], L,
imply that I'V = GL,(F) n[1, K; and I' = GL,.(F) n [T, K.

Lemma 14.2 For every p we have det(K,) = det(K]).

Proof. Ifv ¢ L,, this follows from the fact that & » = K. Otherwise by assumption we have
Lyd =vd + Lyo c v’ + Lj = Ly, and both are free Ap-modules of rank r within F;". To prove
the desired statement we can conjugate everything by an arbitrary element of GL,.(F"). By
the elementary divisor theorem we may thus without loss of generality assume that Lj = A}
and that 1,0 = Ajh for some diagonal matrix h € GL,(F,). For any a € Ay the diagonal
matrix diag(1,...,1,a) then lies in K, with determinant a; hence A} < det(K,). As Ay
is the unique largest compact subgroup of Fy, it follows that det(/,) = det(K}) = Ay, as
desired. O

Lemma 14.3 There is a natural bijection

T\

[y ————— (Ky7),.

Hp Kp\Kéa
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Proof. If two cosets I'y; and I'y, have the same image, we have K,y = K,7, and hence
175" € Ky for all p. Thus v175" € GL.(F) n I, K, = I, and so I'y; = I'yo. The map is
therefore injective. For the surjectivity consider any collection of cosets Kk, c K;. By
Lemma we may without loss of generality assume that k, € SL,.(F,) n K. By strong
approximation in the group SL, there then exists an element v € SL,.(F") n [1, Kykyp. This
element lies in GL,(F") n[], K; =I"; hence the map is surjective. o

Next observe that for any v € IV the subset vdvy + Loy ¢ F™ depends only on the coset
[y. For any x € F" we let C(x) denote the number of such cosets for which = € vdy + Lo~y.
Similarly, for any k € K the subset vdk + L,dk c Fy depends only on the coset Kyk. For
any x € Iy we let Cy(x) denote the number of such cosets for which x € vék + L,dk. For
any fixed z € F" the module (Az + Av' + L")/LJ is finite, so for any prime p not dividing
its annihilator we have x € v' + L = vé + L,0 and K| = K, and hence C,(z) = 1.

Lemma 14.4 For any v € F" we have C(x) =[], Cy(x).

Proof. Since v e F” and L = F" n[], L,, for any v € I we have the equality vy + Loy =
Fr 0 (vdy + I, Lpdy) within (AL)". Since x € Fr, it follows that x € vdy + Lév if and only
if x € voy + L,oy for all p. But the latter condition depends only on the coset K,v, so the
product formula follows from Lemma, [14.3] O

Now let g, denote the order of the residue field k(p) := A/p. In principle one can give
an explicit formula for C,(z) as a polynomial in g, with coefficients in Z. But we are only
interested in Cy(x) modulo (p), so we restrict ourselves to determining this residue class.
Let chary denote the characteristic function of a subset X c Fy.

Lemma 14.5 For any prime p consider the unique integers fu1 > ... > by, 2 0 such that
Ly Lyd = @, Alptwi. Then for any x € F we have

charUI+L;(a:) if ppa <1
Cy(z) = | charpr (2) if 2<pup1 <pipra+ 1 mod (gp).
0 if b1 2 pp o1+ 2

Proof. By Assumption (a) we have vé + Ly6 c v’ + L}, so for any k € K] we also have
vék + Lyok c v' + Ly. Thus Cy(7) =0 if 2 ¢ v' + Lj. So till the end of the proof we assume
that z € v’ + Ly. If in addition vd + Lyd = v" + Ly, we have K, = K; and vok + L,0k =o' + L}
and hence Cy(z) = 1. Till the end of the proof we therefore assume that vé + L,6 # v' + L.
By Assumption m (b) this implies that v € L, and hence Ly0 = vd + L6 $ v' + Ly, = L.
For ease of notation we abbreviate the chosen exponents to p; = pp,;. Then py > 1, and
Assumption (c) requires that 1, = 0.

Both Lyd c Lj are free Ap-modules of rank r within F};". To prove the desired statement
we can conjugate everything by an arbitrary element of GL,.(F"). By the elementary divisor
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theorem we may thus without loss of generality assume that Lj = A} and Lyd = @j_; pHiA,.
Then K = GL,(A,) and

Ky, = ' GL(A)hnGL(Ay) = { (aij)ij € GL.(A,) | Vi > ji aj; € phirid, }.

Next observe that p“1 L) c Lyo c L. Consider the factor module L = Ly L =
(A/prr)r and its submodule L = Ly§/p L = @] piA,/p»A,. Then K surjects to
K’ := GL,(A/p*), and the image K < K’ of K, < Kj is the stabiliser of L. In partic-
ular we have [K’: K] =[K] : K,]. To compute this number note that the image of K, in
GL,(k(p)) is the parabolic subgroup

P(k(p)) = { (@ij)ij € GL,(k(p)) ‘ Vi2 g p>p = a;;=0 },

and a straightforward calculation shows that [GL, (k(p)) : P(k(p))] = 1 modulo (g,). From
this we deduce that

(14.6) (K] K] € [Lap™ ™™V (1+¢,2).
i>j
Also, let 7 € L’ denote the image of x € v/ + Ly, = L;. Then
{keK'|zeLk}|

Cy(x) = i = (K} K]

(ke K" |7k € L]
Iy '
If z = 0, we deduce that Cy(x) = [K; : K,]. Otherwise 7 lies in the subset S, := p* L'~ p*1 L/

for a unique exponent 0 < v < ;. Since S, is an orbit under K, the last fraction is equal
to the proportional size of L n S, versus S,; hence

ILnS,|

(14.7) Co(z) = [K}:K,]- 5

To compute these cardinalities observe that
Lop’L' = @ (pA, np Ay)[p"A, = @ pmtmmid, fpriA,
j=1 j=1

and hence .
)

Jj=1

The same calculation with v + 1 in place of v shows that
T v+l T - —max{p;,v+1}
LoD = [,
fi4
Together this implies that

|Z N S' | = qzy:l(m_max{“j"/}) _ ngzl(ﬂl_max{ﬂj7l/+l})
e b :
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Since py > p = 0, we certainly have uy — max{u,,v} > pg — max{p,,v + 1}, so the first
exponent is greater than the second. Therefore

(14.8) LnS,| ¢ qu;l(urmax{uj,wl}) -1+ 7).

A similar, but simpler, computation shows that

(14.9) 15, € WY (<14 ¢,Z).

Combining the formulas through we deduce that
Co(z) € - (1+g,2)

for
c(v) = Y max{0,p; — p; — 1} + Y (1 — max{pj, v+ 1}) = r(p —v - 1).

i>j j=1
By (14.6)), the same formula is true in the case T = 0 if we set v := ;.

It remains to find out when this exponent is greater than 0. Combining the terms for
1 =1 with the rest of the formula and using the fact that u, = 0 yields

C(V) = Zr>i>j max{O, Mg — b = 1} + Z;:l(maX{()? Ky = 1} - maX{Ov Hj —V = 1})
= Zr>7j>j maX{07 g — i — 1} + Z;:l IIlaX{O, min{:uj -1, V}}

Here all summands are > 0. Since pq > ... > p,, the first sum contains a positive term if
and only if p1 — -1 —1 > 1, and the second sum contains a positive term if and only if
min{p; — 1,v} > 1. Thus

c(v)>0 if puy 2 ppy+2o0r (g 22 and v 2 1),
c(v)=0 if pg <ppy+1 and (ug <1 orv=0).

Combining all the cases we conclude that

Cy(z)=0 if v ¢ o'+ Ly,

Cp(z)=1 if v ev'+ Ly =vd + Ly,

Cp(z) =0 mod (qp) ifxev'+ Ly #vd+ Lyd and (1 > pty—y +2 or (p1y > 2 and € pLy)),
Co(z) =1 mod (gqp) if wev' + Ly #vd+Lyd and piy <ppqy + 1 and (py <1 or z ¢ ply),

Since v’ + L), = vd + Lyd if and only if Lj = L,0 if and only if y; = 0, the desired formula
follows. O

Now recall from Definition [12.11{that the Hecke operator associated to the double coset
FU+L5F'U/+L/ is defined by

(14.10) Ts: Mi(Tosr) — Mi(Tonrr), fr— 30 fle,

where « runs through a set of representatives of the quotient Iy, \['ys 1,041/
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Theorem 14.11 Under Assumption consider the integers i, ; from Lemma [1{.9 If
Hp1 = P -1 + 2 for some p, we have

TsEk v, = 0.

Otherwise let S be the finite set of primes p for which 2 < py1 < ppr—1 + 1. For any subset
IcS set Ly =Tl p- L'. Then v' + L' =v" + L for some element v" € (v' + L") N Nypes P L,
and

T5Erwer = Y (~DI By ppy.
IcS

Proof. By the construction of I' and IV we have Tsf = 2 Ejvirlk 0y, where v runs
through a set of representatives R of I'\['". Using the transformation rule from Proposition
13.3| (a) and the definition (13.1)) of Eisenstein series we deduce that

(T3Eroe)(@) = 2 Brumersn(@) = Y 2 (@) * = 3 Cr)- (aw) ™

YER Y€R 0#xevdy+Loy 0#xeFT

Here C'(z) is determined by Lemmas and [T4.5} If yu, 1 > 1,1 + 2 for some p, we have
C(x) =0 for all x € F". Otherwise, for any prime p in the indicated set S, we have v € L,
and hence v’ € Lj by Assumption m (b). Thus p does not divide the annihilator N of
the coset v/ + L’/L'. By the Chinese remainder theorem there therefore exists an element
a € Nyes P with @ = 1 modulo N, and then v := av’ lies in (v + L") N Npeg pLy. For any
subset I c S we then have
r v+ Ly 1fp¢l7 " r Ly 1fp¢la " /
F mH{ pLZ ifpe[,} = v +(F mH{pLZ ifpe[,}) = v"+ L.

all p all p

Lemmas and then imply that

C(z) = [] chary s () - [ charr;pr; () modulo (q)

pes peS

= [lchary,p(2)-] [char%(x) - Charp%(x)]
pesS peS

= []chary, g (x)- SO T charg, () - [ ] chary (x)
PéES IcS peS\TI pel

= (D] chary,z; () - I charyr, ()
IcS pel pel

= Z(—l)m -charvrf+LrI(a:).
IcS

The desired formula now follows from the definition ((13.1]) of Eisenstein series. o

Corollary 14.12 Consider any ¢ € GL,(F') such that for every prime p c A we have:
(a) vo+ Lyd cv'+ L,
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(b) vé+ Lyd =o' + L, whenever v ¢ Ly, and
(c) pLy & Lyo.

Then the Hecke operator Ty associated to the double coset T, 01y 1 satisfies
T5Epper = Epwerr

Proof. In that case Assumption holds with f,; < 1 for all p; hence we are in the
second case of Theorem [14.11] with S = @. |

Proposition 14.13 Consider any arithmetic subgroups I', I'" < GL,.(F"), any element 6 €
GL,(F), and any scalar a € F*. Then the Hecke operators Ty and T,-15 associated to the
double cosets TOI'" and Ta™16T" satisfy

Ta—15 = ak-Tg.

Proof. As v runs through a set of representatives of T\I'0I”, the element a~'7y runs
through a set of representatives of T'\I'a™10I". Since f|x(a™1v) = flx(a™-Id,)|xy = a® - flxy
by (1.6)) and ((1.7]), the formula follows from the definition of Hecke operators [12.11] i

Remark 14.14 Using Proposition [14.13] one can express any Hecke operator in terms of
another Hecke operator that is associated to a matrix with coefficients in A. If one prefers,
one can also require that the inverse matrix has coefficients in A.

Remark 14.15 Combining Proposition [14.13| with Theorem or Corollary (14.12] one
obtains an explicit formula for T,-15E} .1 as well. In the special case v/ + L' = v + L one
obtains many Hecke operators for which E,,; is an eigenform with eigenvalue 1 or a*.

Remark 14.16 In the case r = 2 Theorem [14.11| was proved by Gekeler [Ge86, VIII.1].
For instance, for L = L’ = A%, the Hecke operator in [Ge86] associated to a prime element

7€ A is Ty for the matrix § = ((1) 7?,1) and satisfies TsEy ;, = 7% - Ey. .

15 Coeflicient forms

As before we fix a finitely generated projective A-submodule L c F" of rank r. We will
show that the coefficients of the exponential function ey, and of the associated Drinfeld
A-module are modular forms for the group I';; these are the coefficient forms in the title.
We will also exhibit them as polynomials in Eisenstein series. The coefficients of ey, have
been studied in a special case, for instance in [Ge86, 11.2] and [Gell].

For every k > 0 we write ey, (W) = €p,, g+, 50 that er,(2) = Nog ex,r(w)z?" with egz = 1.
Then by [BR09. (9)] we have
k-1 ;
(151) €k, L = Eq’“—l,L + z; ej,L . Egk*j—l,L'
Jj=
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By direct calculation [Bal4, Lemma 3.4.13] this is equivalent to the more suggestive fact
that z — Y5 Eyi1.r(w)z9 is the compositional inverse of er,,, in other words, that for all
w € Q" and z € C we have

(15.2) eLw<Z—ZEqi_LL((.U)Zqi) = z.

121

By induction on k the recursion formula ((15.1)) implies that ey 1, is a universal polynomial
with coefficients in I, in the Eisenstein series F,i_; 1, for all 1 <7<k,

Proposition 15.3 For all k>0 we have:

(a) ek |17 = er,ry for all v € GL.(F).
(b) ek is a modular form of weight ¢* — 1 for the group I'.

(¢) The u-expansion of ey has constant term ey, with L' as in . In particular
e, 15 not a cusp form.

Proof. For any v € GL,(F') the exponential function associated to the lattice Ly(w) c C
satisfies

23 . _ .
CLyw) = € 1Lw(2) = (1 w) erw(i(,w)z).

Comparing coefficients of 29" in the respective power series expansions yields

6L,qk (fy(w)) = j(fy’ w)qk_lelxy,qk (w)u

proving (a). Part (b) follows from Theorem [13.16] and the formula (15.1) by induction
on k. To prove (c), write w = (Z}) as before. For any fixed w’ € Q"1 if w; goes to infinity,

the defining formula (13.4)) shows that er,, goes to ers, coefficientwise. Thus e 1, goes to
er.1r, and since the latter is non-zero, it follows that ey ;, is not a cusp form. O

Next let (G, or, ") be the Drinfeld A-module of rank r over 2" that was associated

to L in (7.3). Following ([7.2)) and (2.1)) and Corollary for any a € A~ {0} and any

w € )" we then have

(15.4) VX)) = a- X [ (1-Eiprn(w)-X).
vea 'INL
modulo L

This is an F,-linear polynomial of degree [a'L: L] = ¢"9°8(%) in X. We expand it as

(15.5) Ui (X) = Ygki(w) - X7

120

with holomorphic functions g%; on Q, which are non-zero for i = 0 and i = r deg(a) but
zero whenever ¢ > rdeg(a). The formula l} implies that each g%, is a homogeneous
symmetric polynomial of degree ¢* — 1 in the functions E} ..
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For an alternative description recall that 12« can be characterised as the unique F,-
linear polynomial such that ¥« (e, (2)) = ern(az). Plugging the expansions for ¢t~ and
er. into this functional equation and using the fact that e;; = 1, we deduce that for all
k>0 we have

k-1 .
i k
(15.6) gik + Zgéi-eg_i’L = epr-a’ .
i=0
By induction on k& this recursion relation implies that g%, is a universal polynomial with
coefficients in A in the functions e, for all 1 < j < k, or again in the Eisenstein series
Egjiqp forall 1<i<k.

More generally, consider any non-zero ideal N ¢ A. Then some positive power of N is
a principal ideal, say N™ = (a) for a € A~ {0}, and we choose an element N* € C,, such
that (N*)" = a. This element is well-defined up to multiplication by a root of unity, and
for any principal ideal (a) the value (a)* is equal to a times a root of unity. We also set
deg(N) := dimg,(A/N), so that [N1L: L] = g"4e(™)_ In analogy with the definition (7.2)
of pLv we define

(15.7) o= N e v

Note that for any principal ideal we have g(I;l )i ggj ; times a root of unity; hence everything
that follows about gf ; applies equally to g~ ;.

For general N, by (2.1)) and Corollary we have

(15.8) VE(X) = N X+ [] (1-Eipr(w)-X).
ve N1LNL
modulo L

As in ([15.5) we define holomorphic functions g5 ; on Q" by expanding
(15.9) VRX) = Y gka(w)- X,
i>0

which are non-zero for ¢ = 0 and i = rdeg(N) but zero whenever i > rdeg(/N). The formula
(15.8]) implies that each g]’(,’k is a homogeneous symmetric polynomial of degree ¢* — 1 in
the functions £y 4.

For an alternative description observe that by the definition of ¢%* and Proposition
(a) we have

(15.10) Vi (erw(2)) = N*-en1r(2).

Plugging the respective expansions into this functional equation and using the fact that
er,1 = 1, we deduce that for all £ > 0 we have

k-1 )
(15.11) IRk * 2 IN €l = N epn-r.
=0
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By induction on k this recursion relation implies that g%, is a polynomial with coefficients
in F,[ N*] in the functions e; , and e; y-1, for all 1 < j <k, or again in the Eisenstein series
Ej i and Ejiy vy forall 1<o<k.

Proposition 15.12 For any non-zero ideal N c A and any k > 0 we have:
(a) g% o1y = gn for all v € GL.(F).
(b) gﬁ,’k is a modular form of weight ¢* — 1 for the group T'r.

(c) The u-expansion of gﬁﬂk has constant term g]LV'k with L' as in . In particular
g%, is a cusp form whenever k> (r—1)deg(N), but not for k = (r — 1) deg(N).

Proof. By construction g%, is a homogeneous symmetric polynomial of degree ¢' - 1
in the functions .. Thus the transformation formula in Proposition [13.3] (a) directly
implies (a). Part (b) follows from Theorem and the formula (15.11)) by induction
on k. To prove (c), write w = (‘:}) as before. For any fixed w’ € Q1 if w; goes to
infinity, the defining formula shows that ey, and ey-17,, go to epr and en-ip/.,
respectively. The functional equation ¥4 (e, (2)) = N*-en-17,,(z) and its counterpart for
L'w" in place of Lw thus imply that ¢4+ goes to ]LV""'. Taking coefficients this shows that
the u-expansion of each gJLV’k has constant term g]LV', - Finally, that constant term is zero

for k> (r - 1) deg(N) and non-zero for k= (r - 1) deg(N). o

16 Discriminant forms

Definition 16.1 For any non-zero proper ideal N ¢ A we call Ak : the dis-

_ L

T gN,r deg(N)
L
a,rdeg(a)”

Since [N-1L: L] is a power of ¢, we have (-1)(¥""ELI-L = 1 in F,; hence by (15.8) and
(15.9) the above definition means that

(16.2) Af(w) = N*- J] Eresr(w).
veN"1INL
modulo L

Proposition 16.3  (a) AL (w) #0 for all we Q.

criminant form associated to N. Likewise we set AL :=g

(b) AL is a cusp form of weight q"de(N) —1 for the group I'y.
(¢) A =ql=a" " AL for any aeF.

Proof. (a) follows from ((16.2)) and Corollary[13.7, and (b) is a special case of Proposition
15.12] Assertion (c) results from applying Proposition [15.12] (a) to v = a - 1d,.. o

Next recall that for any a € AN {0} the degree deg(a) is a multiple of the degree deg(oo)
of the residue field at co over F,. Therefore ¢"9°8(4) — 1 is a multiple of g7 dee(®) — 1.
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Proposition 16.4 There exists a non-zero cusp form AL (cf. [Ge86, VI.(5.14) & 5.15])
of weight q7¢8(=) — 1 for the group T'r, such that for every a € A~ {0} we have

qrdeg(a)_l
AL = (ALYar 31 (some root of unity).

Moreover this AL is unique up to multiplication by some root of unity.

Proof. Since ¢’ is a Drinfeld module, for all a,be A~ {0} we have 9% (X) = L (¢ (X)).
Substituting the expansions from for oI, and oL and ¢} and taking highest coeffi-
cients implies that AL = AL . (ALY **”  Ag the ring A is commutative, interchanging a
and b yields the same value; hence

rdeg(b)

AL - (AL = AL (AL,

By Proposition we may divide by AZAL, obtaining the equality
(16.5) (ALY =1 (ALY =1

To exploit this fact, recall that by the Riemann-Roch theorem, every sufficiently large
multiple of deg(oo) arises as deg(a) for some element a € AN {0}. In particular we can find
non-constant elements b, ¢ € A such that deg(b) = deg(c) + deg(oo). Then by Proposition

the quotient
(16.6) AL - Aé/(Af)qucg(w)

is a well-defined holomorphic function on Q7. The fact that A} and A% are modular forms
of respective weights ¢ d¢8(®) — 1 and ¢rdee(¢) — 1 for I';, implies that AL is a weak modular

form of weight
(qrdeg(b) _ 1) _ (qrdeg(c) _ 1) . qrdeg(oo) — qrdeg(oo) -1

for I';,. Also, by direct calculation the formula ((16.5]) in the case a = ¢ implies that
(AL)qrdeg(b)_l _ (Af)qrdeg(m)_l.
Combining this with the formula (16.5]) for arbitrary a we deduce that
(AL)(qrdeg(oo)_l)(qrdeg(b)_l) _ (AL)(qrdeg(a)_l)(qrdeg(b)_l).

rdeg(a)_,
Thus AL/(AF) TEEE g g holomorphic function on " whose (g"dee(e) —1) (g7 dee(®) —1)-th
power is identically 1. As the rigid analytic space 2" is connected, this function is therefore
constant and a root of unity. The last formula also shows that a positive power of Al is
holomorphic at every boundary component; hence the same holds for AL, Thus A’ has
all the desired properties. Finally, the uniqueness is clear from the stated condition. O

70



Proposition 16.7 For every non-zero proper ideal N ¢ A we have
ANTLL (ALY o (ALY (some constant).
Proof. The formulas (15.7) and (15.10) imply that ¢k~ = N*-h%, where hk is an
isogeny of Drinfeld modules (G, or, ) = (Gaqr, ¥ 'L). For any a € A we then have
YN Lo bk = bk oL, Taking highest coefficients implies that
ANTL (ALY o AL L (AE)T ™ L (some constant).

Dividing by A% and substituting the formulas for AN 'L and AL from Proposition we
obtain

Ly el r deg(a) g7 des(V), a" 28D
(AN Lygrdest=)n . (ALY 1= (AD) q"48(>=)-1 . (some constant).
Varying a or extracting roots as in Proposition yields the desired formula. O

Remark 16.8 If the class group CI(A) of A is trivial, the above relations show that AL
is the unique fundamental discriminant form for I';.

In general, for any non-zero proper ideal M & A we have I'y;-1, = I';. The discriminant
forms AM 'L and AM 'L and AN 'L are therefore cusp forms for the same group I'z. Let
‘H denote the multiplicative group generated by all of them, modulo constants, which thus
consists of nowhere vanishing holomorphic functions on 2". Then the formulas in Propo-
sitions m (c) and and imply that as N runs through a set of representatives
of the ideal class group CI(A), the functions AN 'L generate a subgroup of finite index,
say H'.

On the other hand each discriminant form corresponds to a section of a certain invertible
sheaf on the Satake compactification of T'/\Q2. As such, its divisor is a formal Z-linear
combination of the irreducible components of codimension 1 of the boundary of the Satake
compactification. These irreducible components are in bijection with CI(A), so the group
D of divisors supported on the boundary of the compactification is a free abelian group of
rank CI(A). Taking divisors maps the above group H injectively into D.

One can expect that the image of H has finite index in D. In fact, precisely such a
statement is proved for an arbitrary congruence subgroup in the case r = 2 by Gekeler
[Ge86l, VII Thm. 5.11] and |Ge97, Thm. 4.1], and by Kapranov [Ka87, top of page 546] for
arbitrary r in the case A =F,[t].

Note that, since H' is generated by |Cl(A)| elements and has finite index in H, the
expectation is equivalent to saying that H is a free abelian group of rank |CI(A)|. This in
turn means that, up to taking roots, the formulas in Propositions (c) and and
16.7] generate all multiplicative relations up to constant factors between the discriminant
forms.
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Example 16.9 Suppose that Spec A is a rational curve and oo is a point of degree 2
over F,. Let P c A be the prime ideal associated to a point of degree 1 over [F,. Then
the ideal class group of A has order 2 and is generated by the class of P. Write P? = (a)
for an element a € A of degree 2. Then by Proposition we have AL ~ AL where “~”
denotes equality up to a constant. Also, in the notation of the proof of Proposition we
have a-h5 ' Fohk = L. Taking highest coefficients implies that AE™ L. (AL)d" ~ AL ~ AL,
Together with the same relation for P-'L in place of L and with the fact that AE™L =
AL ~ AL by Proposition (c), we conclude that

AETL (ALY ~ AL and
AL (ALY~ APTL

In this case we can therefore view AL and AgflL as the two fundamental discriminant
forms for I'p, and by Remark they should be multiplicatively independent.

Remark 16.10 In the case A = F,[¢] one can take AF = Al in Proposition In [Bal6]
this function is shown to satisfy a product formula which generalises the Jacobi product
formula in the rank 2 case of Gekeler |[Ge85]. Another product formula, involving r -1
separate parameters with constant coefficients, rather than wu-expansions treated in the
present monograph, was obtained by Hamahata [Ha02].

Remark 16.11 For any v € F'"\ L, the Eisenstein series E} ,.z, is a non-zero modular form
of weight 1 for the group I',,; by Corollary and Theorem [13.16, Using Proposition
it follows that for any integer k > 0, the product AL - Efv .1 is a non-zero cusp form of
weight ¢"dee(=) — 1 +k for I',, . In this way we can explicitly produce non-zero cusp forms
for I',,; of any sufficiently large weight, giving more substance to the abstract result of
Proposition [11.2

To finish this section we construct Drinfeld modular forms of non-zero type by extract-
ing roots from discriminant forms. This rests on the observation that for every a € Fy,
applying Proposition [13.3] (a) to v = o - Id, implies that

(1.7) _
(16.12) Eiaoir = Brprho1d, & alp

Plugging this into ([16.2), we can write each discriminant form as a (g — 1)-st power of
another holomorphic function on €.
Specifically, choose a set of representatives R% of N='L \ L modulo addition by L and

multiplication by Fy. Choose an element Ay € C,, satisfying )\?\;1 = —-N*. Consider the
function
(16.13) (W) = Av- [] Brosr(w).

veRE

Proposition 16.14  (a) We have (6%)97' = AL In particular, another choice of repre-
sentatives or of Ay changes 0% only by a factor in F.
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eg(N)_q

(b) The function 6% is a cusp form of weight q—

—— and type deg(N) for the group T'r.

'rdeg(N) 1

Proof. Abbreviate k := |[Ry| = ©——— and note that (IMaer a)k = (-1)k = -1. Using
this, the definitions of 6% and A% and (16.12)) imply that
(o) = -N"-TT Bf,.p = N T] H o' Brop = N TT [ Brawr = A%(w),

veR% UE’RL aely UERL aelFy

proving (a). The proof of (b) rests on properties of the Moore determinant, assembled in
[Go96l, Chapter 1.3]: For any elements xy,...,x, of an F -algebra the Moore determinant
is defined as

xl cee xn

xd T
(16.15) M(zy,xo,...,2,) = ! "

CCcz{nfl l.%nfl

Its most important property is [Go96, Cor. 1.3.7]

(16.16) M(z1,20,...,2,) = ] (Zale),

(al ~~~~~ an) i=1

where the product extends over all tuples in F? \ {(0,...,0)} whose first non-zero entry
is 1. Also, for any matrix B = ()i j-1..., With coefficients in [F, we have ﬁfj = f3;;; hence
the multiplicativity of the determinant implies that

(1617) M(Zn: Bﬂxi, ceey Zn:ﬂmxz) = det(B) : M(IL‘l,ZE27 e ,l’n).
i=1 i=1

To apply this, choose elements vy,...,v, € N"'L \ L whose residue classes form a basis
of the F,-vector space N~'L/L. Then the set R% of all elements of the form Y a;v;, for
tuples (ay,...,ay,) € F2 N {(0,...,0)} whose first non-zero entry is 1, is a set of represen-
tatives of N~'L \ L modulo addition by L and multiplication by Fy. The formula
and the additivity of the exponential function then imply that

M(eLw(vlw),...,eLw(vnw)) = H (Zn:aiem(viw» = H ere(vw).

(01 yeees an) =1 veRJL\,
Take an arbitrary element v € I'y. Then the same calculation with the basis v17y,..., v,y
yields
M(eLw(vww), .. ,eLw(v,ﬁw)) = H erw(vyw).

L
veR Y

For each j choose 3;; € F, such that v;y = i, B;;v; modulo L. Then by the F,-linearity
of the exponential function we have e, (v;yw) = Yy fijerw(viyw); hence with B :=

(Bij)ij=1,..n the formula (16.17) implies that
M(eLw(vww),...,eLw(vnvw)) = det(B)-M(eLw(vlw),...,eLw(Unw)).
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Combining these computations we deduce that

[ erw(vyw) = det(B)- [] erw(vw).

L L
veER Y VER

Using Proposition [13.3] (a) and Corollary we find that

OxlN W) = Av+ [T (Broechr) @) = Ave [T Bropr(w)
UERJLV UGRJL\,
= Ay det(B)™ - [] Erprr(w) = det(B)™-dk(w).
1)673%

To determine det(B) note that since L is a projective module of rank r over A, the module
N-1L/L is a free module of rank r over A/N. Without loss of generality we may therefore
assume that the F,-basis vy, ..., v, is formed by multiplying an A/N-basis of N-*L/L with
an F -basis of A/N. For a suitable order of this basis, the matrix A is then simply a block
diagonal matrix with m := dimg, (A/N) = deg(N) copies of v on the diagonal. Therefore
det(B) = det(y)™. In view of the above calculation thus implies that

ONlbmy = det(y)™ - Oxlwy = 0.

In other words 6% is a weak modular form of weight k and type m for the group I'y,. But by
Theorem and construction it is already a modular form for the congruence subgroup
[ (N). It is therefore a modular form for I';. Finally, since A% is a cusp form, assertion
(a) implies that §% is a cusp form as well. This finishes the proof of (b). O

Remark 16.18 In the case A =F,[t] and L = A", the cusp form 6} was first constructed
by Gekeler in the 1980’s, and is called h(w) in the literature. The r = 2 case appears in
|Ge88al while the r > 2 case was unpublished until [Gel7]. In the meantime, it made an
appearance as a weak modular form in [Ge89] and was shown to be holomorphic at infinity
by Perkins [Peld]. In [BB17, Thm.5.3] it is shown to satisfy a product formula derived
from the product formula of AL.

17 The special case A =F[¢]

Throughout this section we set A := F [t] and L := A". Then I'y = GL,(A), and I'(¢) :=
I'.((t)) is the subgroup of matrices in GL,.(A) which are congruent to the identity matrix
modulo (¢). Recall from (6.11]) that the graded ring of modular forms of all weights for an
arithmetic group I is defined as
M.(T) = @M, (D).
k>0

For T" = I'(¢) this ring can be described very explicitly, and for a subgroup containing I'(¢) a
description can be deduced by taking invariants. In the case r = 2 the ring was determined
by Cornelissen [Co96] for I'(t), by Goss |[Go80a] for GLy(A), and by Gekeler [Ge88a] for
SLo(A).
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Theorem 17.1 The ring M.(I'(t)) is generated over Co, by the Eisenstein series Ey yir,
of weight 1 for all v et 'L~ L, and all polynomial equations between them are induced by
the relations

Eiopir = a1 By pip forallvetL~ L and a € Fy, and

El,v+L . El,'u’+L = El,v+v’+L . (El,v+L + El,v’+L) fOT' all v, v et VL~ L with v+’ ¢ L.

Proof. Let K(t) < GL,(A) denote the subgroup of matrices that are congruent to the
identity matrix modulo (¢). By construction it is open compact and fine in the sense of

[Pi13l Def. 1.4]. Let M) () be the associated fine moduli space of Drinfeld A-modules of
rank r with a full level (¢) structure. Then GL,(AL) = GL,(F) - K(t), and so (8.4) with
g = 1 provides an isomorphism 7y : T'(£)\Q" — M g (1y(Ce). The Satake compactification
M) gy Was described explicitly in [PS14] and [PilSj, as follows.

Abbreviate V' := t"1L/L, and let Ay denote the graded polynomial ring over F, in
independent variables Y; of degree 1 for all v € V \ {0}. Let ay ¢ Ay be the homogeneous

ideal that is generated by the elements of the form

Yoo —a 1Yy for all 7€ V'~ {0} and v € Fy, and
Y Yy — Youw - (Yo + Yy)  for all o, o/ € V N {0} with © + ¢ # 0.

Let Ry := Ay /ay denote the graded factor ring. Then by [Pil3] Thm. 7.4] there is a natural
isomorphism

(17.2) M, ki 2 Proj(Ry @g, F),

which also identifies the invertible sheaf £ from Section [L0| with the ample sheaf O(1) on
Proj(Ry ®r, F'). Combined with Theorem we thus obtain an isomorphism of graded
Coo-algebras

(17.3) M.(T(t)) = Ry @, Co.

By the proof of [Pil3, Thm. 7.4], the isomorphism ([17.2) also realises the universal gen-
eralised Drinfeld A-module over M, .. p 85 the pair (F, ) consisting of the line bundle
whose sheaf of sections is the invertible sheaf dual to O(1) and the generalised Drinfeld

A-module with

(X)) = t-X- [ (1-Ys-X),
eV {0}

where Y; € Ry denotes the residue class of V3. On the other hand from we have a

natural isomorphism

W;(Ev @) = (Ga,Qra wL)a
and by equation ((15.4) we have

th(X) =t X. H (1—E1,v+L(w)'X)‘
vet ' INL
modulo L
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Furthermore, the respective level structures send a non-zero residue class v = v + L to the
element Y; ™ in one case and to the function Fj ,,7(w)™! = e, (vw) in the other. Under the
isomorphism the element Y therefore corresponds precisely to the Eisenstein series
E, ,+1. By the construction of Ry these Eisenstein series therefore generate M., (I'(t)) and
satisfy precisely the stated algebraic relations. O

Corollary 17.4 The quotient field of M, (I'(t)) is a rational function field over Co, that
is generated by the algebraically independent elements E .1, as v; + L runs through any
[F,-basis of t*L/L.

Proof. By [PS14] the ring Ry is an integral domain and its quotient field is a rational
function field over I, that is generated by the algebraically independent elements Y3, for
any basis v1,...,0, of V. The corollary thus follows from the isomorphism ((17.3)). O

Theorem 17.5 (a) The ring M.(GL,(A)) is generated over Co, by the coefficient forms
gfi of weight ¢ =1 for all 1 <i < r, which are algebraically independent over Co,. The
same statement holds with the coefficient forms e;;, or the Eisenstein series Egi_q p,
in place of gf;.

(b) The ring M.(SL,(A)) is generated over Co by the coefficient forms gf; of weight
¢ -1 for all 1 <i<r-1 and the determinant form 6F of weight %, which are
algebraically independent over Co. The same statement holds with the coefficient

. . . . . L
forms e; 1, or the Eisenstein series Eg iy 1, in place of g;;.

(c¢) Let T'y(t) denote the subgroup of matrices in GL,.(A) which are congruent modulo
(t) to an upper triangular matriz with diagonal entries 1. The ring M, (I'1(t)) is
generated over C,, by the modular forms

Z El,t‘l(O,...,O,l,aiﬂ,...,aT)JrL

aHl,,..,oarqu
of weight 1 for all 1 <i<r, which are algebraically independent over C.,.

Proof. For any subgroup I' < GL,(A) containing I'(¢), the formula shows that
M., (T') is the subring of I'-invariants in M, (I'(¢)) for the natural action by f ~ f|xy on
each M, (T'(t)). By Proposition[13.3] (a) the action is given on the generators of M., (I'(¢))
by Eiuirl1y = Eipy+r. This action factors through the factor group I'/I'(t), which is
GL,(F,) in the case (a), respectively SL,(F,) in the case (b), respectively the subgroup
of upper triangular matrices with diagonal entries 1 in the case (c¢). Using a theorem of
Dickson, the respective ring of invariants was shown in [PS14, Theorem 3.1] to have the
set of generators that is first named in each case. The recursion relations and
imply that by induction on ¢, each generator g(i ; can be replaced by e; 1, or again by Egi_q .

Since we are taking invariants under a finite group, the ring M, (I'(¢)) is an integral
extension of M, (T'(¢))F. The respective quotient fields therefore have the same transcen-
dence degree over Co. For the former this transcendence degree is r by Corollary [17.4] In
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each case the r given generators of the subring M, (I'(¢))" must therefore be algebraically
independent over C.,. |

Theorem 17.6 For any integer k we have

Mi(SL(A)) = D Mym(GL:(A)).

0<m<q-1

In addition, for any integer 0 < m < q—1 we have
Min(GL(A)) = ()" My, 2 (GL, (4)).
In particular, every modular form for GL,.(A) of type # 0 modulo (q¢—1) is a cusp form.

Proof. The determinant induces an isomorphism GL,(F,)/SL,(F,) — F}; hence the
action f + fly of GL,(F,) on My (SL,(A)) factors through an action of Fy. As any
linear action of ) on an F -vector space is diagonalisable, it follows that M, (SL,(A)) is a
direct sum of eigenspaces. By Definition and these eigenspaces are just the spaces
M.m(GL,(A)), proving the first equality.

The descriptions from Theorem (a) and (b) imply that M, (SL,(A)) is a free mod-
ule with basis 1,0%,...,(6F)472 over the subring M, (GL,(A)). Since (6£)™ is a modular

form of weight m%, this results in the second assertion. The last one now follows from

the fact that 6F is a cusp form. m

Remark 17.7 The last statement of Theorem [17.6] was already established independently
in Corollary (b) using the u-expansion. Combined with Proposition below and
the fact that 67 is a modular form of weight qu_—_l and type 1 it directly implies the second

i
statement of Theorem by induction on m.

Proposition 17.8 The Satake compactification ]\_47;1 QL (A) has only one boundary compo-

nent of codimension 1, and the cusp form 0F has vanishing order 1 there.

Proof. The first statement can be deduced from the fact from Proposition (a) that
GL,(AL) = GL,(A) - P(F) with the parabolic subgroup P < GL, from ({.6)).

!Thus AL = (6£)97! has vanishing order ¢ — 1 here! This is at odds with the intuition that AL should
have algebraic order of vanishing 1 at the cusp.

We point out that the identification of analytic modular forms with sections of a line bundle (Theorem
i is only established when the moduli scheme is fine, which M:LGLT (4) is not. Indeed, since GL,.(A) N
U(F)=SL.(A)nU(F), the u-parameter does not even distinguish between GL,(A)\Q" and SL,(A)\Q".

We can rescue our intuition as follows. By Corollary the coefficient forms gtL,k (and thus, by
Theorem all modular forms for GL,(A4)) have u-expansions in which the only non-zero terms have
exponent divisible by ¢ — 1. Therefore, these forms have expansions in the parameter u’ = u9~!, and with
respect to this parameter, AL has order of vanishing 1 at the cusp, as expected.

We thank Mihran Papikian for raising this issue.
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For the second statement note first that under the isomorphism ¢ of the subgroups
I'(t)nU(F) < GL,(A) nU(F) correspond to the subgroups (At)"! c A7=! of F~!, which
have index ¢! in each other. Now consider any element v € t-'L \ L. By the proof
of Proposition the subgroup I'y.p nU(F) corresponds to the subgroup (At)™1 if
vé¢ L+ ({0} x F™-1). By Proposition we thus have

0 ifveL+({0}xFr1),

Ordr(t)mU(F)(E1,v+L) = OrdFU+LmU(F)(E1,v+L) = { 1 otherwise.

Taking the product over a set of representatives as in (16.13]), where the second case occurs

qr_qrfl

4 = g™ times, we deduce that
q-1

ordrnu(ry (6F) = ¢

Since [GL,(A) nU(F) : T'(t) nU(F)] = ¢", it follows that ordgr, (4w () (6F) = 1, as
desired. ]

Corollary 17.9 The cusp forms of all weights and type 0 for GL.(A) form the principal
ideal of M, (GL,(A)) that is generated by AL. In other words, for every integer k we have

Su(GL(A)) = AL My (GL(A)).

Proof. The cusp form ¢} is non-zero everywhere by Propositions (a) and [16.14] (a).

Thus for every cusp form f € S, ("), the quotient f/0F is again a weak modular form,

and by Proposition [17.8|it is holomorphic at infinity; hence f/6f € M, -1 (GL,(A)).
q-1"

By Theorem [17.6| with m = ¢ — 2 this in turn implies that f € (61)7 ' My_4ri10(GL-(A)),
as desired. O

Corollary 17.10 The space of cusp forms Sp(GL.(A)) is zero for k < ¢" — 1 and one-
dimensional with basis AF for k=q" —1. In particular AL is an eigenform for the Hecke
operator associated to any double coset GL,.(A)d GL,(A) c GL,(F).

Proof. By Theorem [17.5] (a) we have M (GL,(A)) =0 for k<0 and = C,, for k = 1. By
Corollary this implies the first statement, which in turn implies the second. O

Theorem 17.11 We have the following dimension formulas for all k>0 and m:

() dme, MTO) = ¥ = ()

i1,eyip—1€{0,1} Zu il/
(b) Denote by Ps(k) the number of partitions of k with parts in S = {qg-1,¢*>-1,...,q"-1}.
Then
0 if (=1) +k,
dime,, M(GL,.(A)) = Ps(k) = 1 Er-1 o
= — : +O(k" if (¢ -1)|k.
R VA A
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qT—l ¢"-1 _1
(¢) dimg, Mg, (GL,(A)) ={ OPS(k me— ) sz>m

otherwzse.
(d) dime, M(T1(2)) = (*771).

Proof. Assertion (a) follows from Theorem together with [PS14, Thm. 1.10]. The
first equality in (b) results from T heorem( ). Clearly Ps(k) is the number of partitions

of —1 with parts in {q 1, q2__11, . } which by [Na0O, Thm. 15.2] has the asymptotic
behav1our given in (b). Assertlon 1s a direct consequence of Theorem m Finally, by
Theorem [17.5] (¢) the dimension in (d) is just the dimension of the space of homogeneous

polynomials of degree & in the polynomial ring C,,[ X7, ..., X, ], which is well-known to be
(k+r—1) O
r-1/°

Remark 17.12 Taking invariants one may obtain similar dimension formulas for arbitrary
arithmetic subgroups I' containing I'(¢). In particular [Pil3, Thm. 8.4] gives an explicit
formula when I'(¢) < ' < I'1(¢). It seems an interesting problem to find a dimension formula
in general.

Remark 17.13 Combining Theorem and [PS14, Thm. 1.7] shows that M, (T'(t)) is
a Cohen-Macaulay normal integral domain. By taking invariants, the argument in [PS14]
§2] shows the same for M, (I') whenever I'(¢) < I" < I'y(¢). For I' = GL,(A) and SL,.(A)
the same follows from the explicit description in Theorem One may ask: Is this only
a rare event for small level, or is it a general phenomenon?

Remark 17.14 In the case of classical modular forms and also in the case of rank 2
Drinfeld modular forms, there are two approaches to dimension formulas. The one is
algebro-geometric, similar to the approach in|17.11. The other uses valence formulas and
vector space homomorphisms from My(I') - Co, mapping a modular form f to the con-
stant coefficient fy in its u-expansion. One may wonder whether Gekeler’s recent valence
formula [Gel8] could be used in the same way.
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