• CARMA SEMINAR
  • Speaker: Prof David Bailey, Berkeley, California
  • Title: Normality and non-normality of mathematical constants
  • Location: Room V129, Mathematics Building (Callaghan Campus) The University of Newcastle
  • Time and Date: 4:00 pm, Thu, 30th Aug 2012
  • Abstract:

    Given a positive integer b, we say that a mathematical constant alpha is "b-normal" or "normal base b" if every m-long string of digits appears in the base-b expansion of alpha with precisely the limiting frequency 1/b^m. Although it is well known from measure theory that almost all real numbers are b-normal for all integers b > 1, nonetheless proving normality (or nonnormality) for specific constants, such as pi, e and log(2), has been very difficult.

    In the 21st century, a number of different approaches have been attempted on this problem. For example, a recent study employed a Poisson model of normality to conclude that based on the first four trillion hexadecimal digits of pi, it is exceedingly unlikely that pi is not normal. In a similar vein, graphical techniques, in most cases based on the digit-generated "random" walks, have been successfully employed to detect certain nonnormality in some cases.

    On the analytical front, it was shown in 2001 that the normality of certain reals, including log(2) and pi (or any other constant given by a BBP formula), could be reduced to a question about the behavior of certain specific pseudorandom number generators. Subsequently normality was established for an uncountable class of reals (the "Stoneham numbers"), the simplest of which is: alpha_{2,3} = Sum_{n >= 0} 1/(3^n 2^(3^n)), which is provably normal base 2. Just as intriguing is a recent result that alpha_{2,3}, for instance, is provably NOT normal base 6. These results have now been generalized to some extent, although many open cases remain.

    In this talk I will present an introduction to the theory of normal numbers, including brief mention of new graphical- and statistical-based techniques. I will then sketch a proof of the normality base 2 (and nonnormality base 6) of Stoneham numbers, then suggest some additional lines of research. Various parts of this research were conducted in collaboration with Richard Crandall, Jonathan and Peter Borwein, Francisco Aragon, Cristian Calude, Michael Dinneen, Monica Dumitrescu and Alex Yee.


  • [Permanent link]