PERIODS OF DUCCI SEQUENCES AND ODD SOLUTIONS TO A PELLIAN EQUATION

FLORIAN BREUER

Abstract

A Ducci sequence is a sequence of integer n-tuples generated by iterating the map $$
D:\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mapsto\left(\left|a_{1}-a_{2}\right|,\left|a_{2}-a_{3}\right|, \ldots,\left|a_{n}-a_{1}\right|\right) .
$$

Such a sequence is eventually periodic and we denote by $P(n)$ the maximal period of such sequences for given n. Upper bounds on $P(n)$ have been known since the 1980's. In this paper, we prove a new upper bound in the case where n is a power of a prime $p \equiv 5 \bmod 8$ for which 2 is a primitive root and the Pellian equation

$$
x^{2}-p y^{2}=-4
$$

has no solutions in odd integers x and y.
2010 Mathematics subject classification: primary 11B83; secondary 11D09, 11R18.
Keywords and phrases: Ducci sequences, Pellian equation, Cyclotomic fields, Real quadratic units.

1. Introduction

Let n be a positive integer and consider the map $D: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n}$ defined by

$$
D:\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mapsto\left(\left|a_{1}-a_{2}\right|,\left|a_{2}-a_{3}\right|, \ldots,\left|a_{n}-a_{1}\right|\right) .
$$

A sequence of integer n-tuples obtained by iterating this map is known as a Ducci sequence, in honor of E. Ducci, who first studied them in the 1930s and discovered that every such sequence of integer n-tuples eventually stabilizes at $(0,0, \ldots, 0)$ if and only if n is a power of 2 , see [8].

Ducci sequences and their generalizations have received much attention in the literature, see for example $[4-7,9,11,18]$ and the references therein, and they have been independently rediscovered in various guises by various authors, for example in [1-3, 12, 16].

Since the entries in a Ducci sequence remain bounded, the sequence eventually becomes periodic, and in this paper, we're interested in the period $P(n)$ of the Ducci sequence starting with $(0, \ldots, 0,1)$.

The function $P(n)$ was studied in detail in [11], where the following results may be found: The period of any Ducci sequence of n-tuples divides $P(n), n$ divides $P(n)$
and $P\left(2^{k} n\right)=2^{k} P(n)$, thus it suffices to study $P(n)$ for odd n. Furthermore, one has the following upper bounds on $P(n)$.

Theorem 1.1. Suppose n is odd.

1. Denote by $m=\operatorname{ord}_{n}(2)$ the multiplicative order of 2 modulo n. Then $P(n)$ divides $B_{1}(n):=2^{m}-1$.
2. Suppose there exists an integer M for which $2^{M} \equiv-1 \bmod n$, in this case we say that " n is with $a-1$ ". Let M be the smallest such integer, then $P(n)$ divides $B_{2}(n):=n\left(2^{M}-1\right)$.

In [4] we list the first few odd values of n satisfying various sharpness conditions relative to the bounds in Theorem 1.1. In particular, the first examples of n with a -1 for which $P(n)<B_{2}(n)$ were found to be $n=37,101,197,269,349,373,389,541,557$ and 677. Searching the Online Encyclopedia of Integer Sequences we find that, with the exception of 541, these are the first nine entries of Sequence A130229 [15]: the primes of the form $p \equiv 5 \bmod 8$ for which the Pellian equation

$$
\begin{equation*}
x^{2}-p y^{2}=-4 \tag{1.1}
\end{equation*}
$$

has no solution in odd integers x and y.
Our goal is to prove the following result, which explains this discovery.
Theorem 1.2. Let $p \equiv 5 \bmod 8$ be a prime such that 2 is a primitive root modulo p, and for which the equation (1.1) has no solution in odd integers x and y. Then $P(p)$ divides $\frac{1}{3} B_{2}(p)$.

Iffurthermore p is not a Wieferich prime, then $P\left(p^{k}\right)$ divides $\frac{1}{3} B_{2}\left(p^{k}\right)$ for all positive integers k.

Recall that an integer a is a primitive root modulo n if $\operatorname{ord}_{n}(a)=\varphi(n)$, i.e. a generates $(\mathbb{Z} / n \mathbb{Z})^{*}$. Artin's Conjecture states every non-square integer $a \neq-1$ is a primitive root modulo p for infinitely many primes p. When 2 is a primitive root modulo n, then $2^{\operatorname{ord}_{n}(2) / 2} \equiv-1 \bmod n$, so n is with a -1 .

A prime p is called a Wieferich prime if $2^{p-1} \equiv 1 \bmod p^{2}$. Only two Wieferich primes are known, 1093 and 3511, neither of which satisfies the hypothesis of Theorem 1.2. However, a standard heuristic argument suggests that the number of Wieferich primes $p \leq x$ should grow like $\log \log (x)$, see [5, §9].

The condition that 2 be a primitive root modulo p in Theorem 1.2 is essential: the first entry in sequence A130229 which for which 2 is not a primitive root is 997 and in fact we have $P(997)=B_{2}(997)=997\left(2^{166}-1\right)$.

The case $n=541$ does not fit into our scheme, instead $P(541)=\frac{1}{7} B_{2}(541)$.

2. Periods and cyclotomy

It is known (see e.g. [7]) that the tuples in the periodic part of a Ducci sequence all lie in $\{0, c\}^{n}$, for some constant c. Therefore, after discarding the common factor c,
we may assume that all entries lie in $\{0,1\}^{n}=\mathbb{F}_{2}^{n}$, in which case the Ducci operator D becomes linear:

$$
D: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n} ; \quad\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mapsto\left(a_{1}+a_{2}, a_{2}+a_{3}, \ldots, a_{n}+a_{1}\right)
$$

Next, mapping a tuple $u=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ to the element represented by the polynomial $f=a_{1} x^{n-1}+a_{2} x^{n-2}+\cdots+a_{n}$ in the ring $R=\mathbb{F}_{2}[x] /\left\langle x^{n}-1\right\rangle$, we find that the Ducci sequence $u, D u, D^{2} u, \ldots \in \mathbb{F}_{2}^{n}$ corresponds to the sequence $f,(x+1) f,(x+1)^{2} f, \ldots \in R$, an idea going back to [18].

We thus find that $P(n)$ equals the multiplicative period of $x+1$ in R. Realizing R as the ring of cyclotomic integers modulo 2, we thus obtain (see [5, Thm. 5.2])
Theorem 2.1. Suppose n is odd. Denote by $L=\mathbb{Q}\left(\zeta_{n}\right)$ the $n^{\text {th }}$ cyclotomic field, where $\zeta_{n} \in \mathbb{C}$ is a primitive $n^{\text {th }}$ root of unity. Denote by $O_{L}=\mathbb{Z}\left[\zeta_{n}\right]$ the ring of integers in L. Let $\mathfrak{B} \subset O_{L}$ be a prime ideal containing 2. Then $P(n)$ equals the lowest common multiple of the multiplicative orders of $\zeta+1$ modulo \mathfrak{P}, where ζ ranges over all $n^{\text {th }}$ roots of unity $\zeta \neq 1$.

Since $\left(O_{L} / \mathfrak{P}\right)^{*}$ has order $B_{1}(n)$, we recover the bound $P(n) \mid B_{1}(n)$. Note that $\zeta+1=$ $\left(1-\zeta^{2}\right) /(1-\zeta)$ is a unit in O_{L} by [10, Prop. 3.5.5], so one source of sharper bounds on $P(n)$ is when the units of O_{L} generate a proper subgroup of $\left(O_{L} / \mathfrak{P}\right)^{*}$. Determining the units of O_{L} is generally difficult, but under certain circumstances this phenomenon can be detected already at the level of a quadratic subfield $\mathbb{Q}(\sqrt{d}) \subset L=\mathbb{Q}\left(\zeta_{n}\right)$, which is where the Pellian equation (1.1) comes into play.

3. Proof of Theorem 1.2

Suppose that $p \equiv 5 \bmod 8$ and that 2 is a primitive root modulo $n=p^{k}$. If p is not a Wieferich prime, then this follows if 2 is a primitive root modulo p, by [10, Prop. 2.1.24]. Now 2 remains prime in $\mathbb{Q}\left(\zeta_{n}\right)$, i.e. $\mathfrak{P}=2 O_{L}$, by [10, Prop. 3.5.18].

By [10, Prop. 3.4.1 and Prop. 3.5.14], $\mathbb{Q}\left(\zeta_{p}\right)$, and thus also L, contains the real quadratic field $K=\mathbb{Q}(\sqrt{p})$, whose ring of integers is $O_{K}=\mathbb{Z}[(1+\sqrt{p}) / 2]$. Let $\mathfrak{p}=\mathfrak{P} \cap K=2 O_{K}$.

Since \mathfrak{p} is inert in L / K, we have $\operatorname{Gal}(L / K) \cong \operatorname{Gal}\left(\left(O_{L} / \mathfrak{P}\right) /\left(O_{K} / \mathfrak{p}\right)\right)$, and thus the norm $N_{L / K}: L \rightarrow K$ induces the commutative diagram

where the second vertical map is the norm of finite fields, which is surjective by [10, Prop. 2.4.12].

The group of units O_{K}^{*} is generated by -1 and the fundamental unit $\varepsilon=(x+$ $y \sqrt{p}) / 2$, where (x, y) is the fundamental solution to the equation (1.1), see [10, Prop.
6.3.16] and [17]. Therefore, we see that the units O_{K}^{*} generate the trivial subgroup $\{1\}<\left(O_{K} / \mathfrak{p}\right)^{*} \cong \mathbb{F}_{4}^{*}$ if and only if (1.1) has no odd solutions. In this case, the image of the bottom horizontal arrow is a subgroup of index 3. It follows that the image of the top arrow lies in a subgroup of index 3 and thus $P(n) \left\lvert\, \frac{1}{3} B_{1}(n)\right.$. Since $p \equiv 1 \bmod 4$, we have $3 \mid B_{2}(n)=n\left(2^{p^{k-1}(p-1) / 2}-1\right)$ and so the following lemma completes the proof of Theorem 1.2.

Lemma 3.1. Suppose n is with $a-1$. Let $\ell \nmid n$ be an odd prime with $\ell \mid B_{2}(n)$. Then $P(n) \left\lvert\, \frac{1}{\ell} B_{2}(n)\right.$ if and only if $P(n) \left\lvert\, \frac{1}{\ell} B_{1}(n)\right.$.

Proof. Let $m=\operatorname{ord}_{n}(2)$, then $B_{2}(n)=n\left(2^{m / 2}-1\right)$. Since $\ell \mid B_{2}(n)$ and $\ell \nmid n$, we have $\ell \mid 2^{m / 2}-1$. Since ℓ is odd, $\ell \nmid 2^{m / 2}+1$. Now denote by $v_{\ell}(x)$ the ℓ-adic order of x. We have
$v_{\ell}\left(B_{1}(n)\right)=v_{\ell}\left(2^{m}-1\right)=v_{\ell}\left(\left(2^{m / 2}-1\right)\left(2^{m / 2}+1\right)\right)=v_{\ell}\left(2^{m / 2}-1\right)=v_{\ell}\left(n\left(2^{m / 2}-1\right)\right)=v_{\ell}\left(B_{2}(n)\right)$.
The result follows.

4. Remarks

As the example of $p=997$ shows, our argument requires 2 to remain prime in $\mathbb{Q}\left(\zeta_{n}\right)$. This means that 2 generates $(\mathbb{Z} / n \mathbb{Z})^{*}$ and so $n=p^{k}$ for some prime p. We must have $p \equiv 3$ or $5 \bmod 8$, otherwise 2 is a square modulo p. Furthermore, we need $3 \mid B_{2}(n)$, which requires $p \equiv 1 \bmod 4$. This explains the condition $p \equiv 5 \bmod 8$.

We expect that there are infinitely many primes p for which (1.1) has no odd solutions. Heuristically, we expect the fundamental unit to fall in each of the three nonzero residue classes modulo \mathfrak{p} with equal probability, which suggests that these primes have density $1 / 3$ in the set of all primes $p \equiv 5 \bmod 8$. Meanwhile, the Generalised Riemann Hypothesis implies that the proportion of primes $p \equiv 5 \bmod 8$ for which 2 is a primitive root is $A / 2$, where $A \approx 0.3739558$ is Artin's constant, as follows from the main result of [14]. Assuming that these two conditions on p are independent, we thus expect that the primes satisfying the hypothesis of Theorem 1.2 have density $A / 6 \approx 0.0623259689$.

Numerically, we find that for primes up to 10^{9}, this proportion is 0.0612819 , but this proportion creeps up as one considers ever larger upper bounds on p, see Figure 1. This suggests that a Chebychev bias-type phenomenon might be at work.

It is known that there are infinitely many squarefree integers $d \equiv 5 \bmod 8$ for which the equation

$$
x^{2}-d y^{2}=4
$$

has no odd solutions, see [17]. (One can replace -4 by 4 in (1.1), this has the effect of merely squaring the fundamental unit).

Finally, our argument is related to that in [13]. That paper considers the same fields $K \subset L$ as we do, and uses the unit $N_{L / K}\left(1+\zeta_{n}\right) \in O_{K}^{*}$ to produce a relatively small solution to (1.1).

Figure 1. Proportion $\delta(x)$ of primes $p \leq x$ for which the hypothesis of Theorem 1.2 holds

Acknowledgement

The author would like to thank the anonymous referee for useful comments and for pointing out the reference [14].

References

[1] V. I. Arnold, Complexity of finite sequences of zeroes and ones and geometry of finite spaces of functions, Funct. Anal. Other Math. 1 (2006), 1-15.
[2] A. Behn, C. Kribs-Zaleta, V. Ponomarenko, The convergence of difference boxes, Amer. Math. Monthly 112 (5) (2005) 426-439.
[3] E. R. Berlekamp, The design of slowly shrinking labelled squares, Math. Comp. 29 (1975) 25-27.
[4] F. Breuer, E. Lötter, A.B. van der Merwe, Ducci sequences and cyclotomic polynomials, Finite Fields Appl. 13 (2007), 293-304.
[5] F. Breuer, Ducci sequences and cyclotomic fields, J. Difference Equ. Appl. 16 (2010), no. 7, 847862.
[6] G. Brockman, R. J. Zerr, Asymptotic behaviour of certain Ducci sequences, Fibonacci Quart. 45 (2) (2007) 155-163.
[7] M. Burmester, R. Forcade and E. Jacobs, Circles of numbers, Glasgow Math. J. 19 (1978), 115119.
[8] C. Ciamberlini and A. Marengoni, Su una interessante curiosità numerica, Periodiche di Matematiche 17 (1937), 25-30.
[9] A. Clausing, Ducci Matrices, Amer. Math. Monthly, to appear.
[10] H. Cohen, Number Theory, Volume I: Tools and Diophantine Equations, Graduate Texts in Mathematics 239, Springer-Verlag, 2007.
[11] A. Ehrlich, Periods of Ducci's N-number game of differences, Fibonacci Quart. 28 (4) (1990), 302-305.
[12] B. Freedman, The four number game, Scripta Math. 14 (1948) 35-47, reprinted in arXiv:1109.0051v1.
[13] P. G. Hartung, On the Pellian equation, J. Number Theory 12 (1) (1980), 110-112.
[14] P. Moree, On primes in arithmetic progression having a prescribed primitive root. II, Funct. Approx. Comment. Math. 39 (2008), 133-144.
[15] On-line Encyclopedia of Integer Sequences, entry \#A130229. https://oeis.org/A130229.
[16] G. J. Simmons, The structure of the differentiation digraphs of binary sequences, Ars Combin. 35 (1993), A, 71-88.
[17] P. Stevenhagen, On a problem of Eisenstein, Acta Arith. 74 (3) (1996), 259-268.
[18] P. Zvengrowski, Iterated absolute differences, Math. Mag. 52 (1) (1979), 36-40.

Florian Breuer, University of Newcastle, Australia
e-mail: florian.breuer@newcastle.edu.au

