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PERIODS OF DUCCI SEQUENCES AND ODD SOLUTIONS
TO A PELLIAN EQUATION

FLORIAN BREUER

Abstract
A Ducci sequence is a sequence of integer n-tuples generated by iterating the map

D : (a1, a2, . . . , an) 7→ (|a1 − a2|, |a2 − a3|, . . . , |an − a1|).

Such a sequence is eventually periodic and we denote by P(n) the maximal period of such sequences for
given n. Upper bounds on P(n) have been known since the 1980’s. In this paper, we prove a new upper
bound in the case where n is a power of a prime p ≡ 5 mod 8 for which 2 is a primitive root and the
Pellian equation

x2 − py2 = −4

has no solutions in odd integers x and y.
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1. Introduction

Let n be a positive integer and consider the map D : Zn → Zn defined by

D : (a1, a2, . . . , an) 7→ (|a1 − a2|, |a2 − a3|, . . . , |an − a1|).

A sequence of integer n-tuples obtained by iterating this map is known as a Ducci
sequence, in honor of E. Ducci, who first studied them in the 1930s and discovered
that every such sequence of integer n-tuples eventually stabilizes at (0, 0, . . . , 0) if and
only if n is a power of 2, see [8].

Ducci sequences and their generalizations have received much attention in the
literature, see for example [4–7, 9, 11, 18] and the references therein, and they have
been independently rediscovered in various guises by various authors, for example in
[1–3, 12, 16].

Since the entries in a Ducci sequence remain bounded, the sequence eventually
becomes periodic, and in this paper, we’re interested in the period P(n) of the Ducci
sequence starting with (0, . . . , 0, 1).

The function P(n) was studied in detail in [11], where the following results may
be found: The period of any Ducci sequence of n-tuples divides P(n), n divides P(n)
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and P(2kn) = 2kP(n), thus it suffices to study P(n) for odd n. Furthermore, one has the
following upper bounds on P(n).

Theorem 1.1. Suppose n is odd.

1. Denote by m = ordn(2) the multiplicative order of 2 modulo n. Then P(n) divides
B1(n) := 2m − 1.

2. Suppose there exists an integer M for which 2M ≡ −1 mod n, in this case we
say that “n is with a −1”. Let M be the smallest such integer, then P(n) divides
B2(n) := n(2M − 1).

In [4] we list the first few odd values of n satisfying various sharpness conditions
relative to the bounds in Theorem 1.1. In particular, the first examples of n with a −1
for which P(n) < B2(n) were found to be n = 37, 101, 197, 269, 349, 373, 389, 541, 557
and 677. Searching the Online Encyclopedia of Integer Sequences we find that, with
the exception of 541, these are the first nine entries of Sequence A130229 [15]: the
primes of the form p ≡ 5 mod 8 for which the Pellian equation

x2 − py2 = −4 (1.1)

has no solution in odd integers x and y.
Our goal is to prove the following result, which explains this discovery.

Theorem 1.2. Let p ≡ 5 mod 8 be a prime such that 2 is a primitive root modulo p,
and for which the equation (1.1) has no solution in odd integers x and y. Then P(p)
divides 1

3 B2(p).
If furthermore p is not a Wieferich prime, then P(pk) divides 1

3 B2(pk) for all positive
integers k.

Recall that an integer a is a primitive root modulo n if ordn(a) = ϕ(n), i.e. a
generates (Z/nZ)∗. Artin’s Conjecture states every non-square integer a , −1 is a
primitive root modulo p for infinitely many primes p. When 2 is a primitive root
modulo n, then 2ordn(2)/2 ≡ −1 mod n, so n is with a −1.

A prime p is called a Wieferich prime if 2p−1 ≡ 1 mod p2. Only two Wieferich
primes are known, 1093 and 3511, neither of which satisfies the hypothesis of Theorem
1.2. However, a standard heuristic argument suggests that the number of Wieferich
primes p ≤ x should grow like log log(x), see [5, §9].

The condition that 2 be a primitive root modulo p in Theorem 1.2 is essential: the
first entry in sequence A130229 which for which 2 is not a primitive root is 997 and in
fact we have P(997) = B2(997) = 997(2166 − 1).

The case n = 541 does not fit into our scheme, instead P(541) = 1
7 B2(541).

2. Periods and cyclotomy

It is known (see e.g. [7]) that the tuples in the periodic part of a Ducci sequence
all lie in {0, c}n, for some constant c. Therefore, after discarding the common factor c,
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we may assume that all entries lie in {0, 1}n = Fn
2, in which case the Ducci operator D

becomes linear:

D : Fn
2 → F

n
2; (a1, a2, . . . , an) 7→ (a1 + a2, a2 + a3, . . . , an + a1).

Next, mapping a tuple u = (a1, a2, . . . , an) to the element represented by the polyno-
mial f = a1xn−1 +a2xn−2 + · · ·+an in the ring R = F2[x]/〈xn−1〉, we find that the Ducci
sequence u,Du,D2u, . . . ∈ Fn

2 corresponds to the sequence f , (x+1) f , (x+1)2 f , . . . ∈ R,
an idea going back to [18].

We thus find that P(n) equals the multiplicative period of x + 1 in R. Realizing R
as the ring of cyclotomic integers modulo 2, we thus obtain (see [5, Thm. 5.2])

Theorem 2.1. Suppose n is odd. Denote by L = Q(ζn) the nth cyclotomic field, where
ζn ∈ C is a primitive nth root of unity. Denote by OL = Z[ζn] the ring of integers in
L. Let P ⊂ OL be a prime ideal containing 2. Then P(n) equals the lowest common
multiple of the multiplicative orders of ζ + 1 modulo P, where ζ ranges over all nth

roots of unity ζ , 1.

Since (OL/P)∗ has order B1(n), we recover the bound P(n)|B1(n). Note that ζ + 1 =

(1 − ζ2)/(1 − ζ) is a unit in OL by [10, Prop. 3.5.5], so one source of sharper bounds
on P(n) is when the units of OL generate a proper subgroup of (OL/P)∗. Determining
the units of OL is generally difficult, but under certain circumstances this phenomenon
can be detected already at the level of a quadratic subfield Q(

√
d) ⊂ L = Q(ζn), which

is where the Pellian equation (1.1) comes into play.

3. Proof of Theorem 1.2

Suppose that p ≡ 5 mod 8 and that 2 is a primitive root modulo n = pk. If p is not
a Wieferich prime, then this follows if 2 is a primitive root modulo p, by [10, Prop.
2.1.24]. Now 2 remains prime in Q(ζn), i.e. P = 2OL, by [10, Prop. 3.5.18].

By [10, Prop. 3.4.1 and Prop. 3.5.14], Q(ζp), and thus also L, contains the real
quadratic field K = Q(

√
p), whose ring of integers is OK = Z[(1 +

√
p)/2]. Let

p = P ∩ K = 2OK .
Since p is inert in L/K, we have Gal(L/K) � Gal

(
(OL/P)/(OK/p)

)
, and thus the

norm NL/K : L→ K induces the commutative diagram

O∗L
//

NL/K

��

(
OL/P

)∗
N
����

O∗K
//
(
OK/p)∗

where the second vertical map is the norm of finite fields, which is surjective by [10,
Prop. 2.4.12].

The group of units O∗K is generated by −1 and the fundamental unit ε = (x +

y
√

p)/2, where (x, y) is the fundamental solution to the equation (1.1), see [10, Prop.
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6.3.16] and [17]. Therefore, we see that the units O∗K generate the trivial subgroup
{1} < (OK/p)∗ � F∗4 if and only if (1.1) has no odd solutions. In this case, the image of
the bottom horizontal arrow is a subgroup of index 3. It follows that the image of the
top arrow lies in a subgroup of index 3 and thus P(n)| 13 B1(n). Since p ≡ 1 mod 4, we
have 3|B2(n) = n(2pk−1(p−1)/2 − 1) and so the following lemma completes the proof of
Theorem 1.2.

Lemma 3.1. Suppose n is with a −1. Let ` - n be an odd prime with `|B2(n). Then
P(n)| 1

`
B2(n) if and only if P(n)| 1

`
B1(n).

Proof. Let m = ordn(2), then B2(n) = n(2m/2 − 1). Since `|B2(n) and ` - n, we have
`|2m/2 − 1. Since ` is odd, ` - 2m/2 + 1. Now denote by v`(x) the `-adic order of x. We
have

v`
(
B1(n)

)
= v`(2m−1) = v`

(
(2m/2−1)(2m/2+1)

)
= v`(2m/2−1) = v`

(
n(2m/2−1)

)
= v`
(
B2(n)

)
.

The result follows. �

4. Remarks

As the example of p = 997 shows, our argument requires 2 to remain prime in
Q(ζn). This means that 2 generates (Z/nZ)∗ and so n = pk for some prime p. We
must have p ≡ 3 or 5 mod 8, otherwise 2 is a square modulo p. Furthermore, we need
3|B2(n), which requires p ≡ 1 mod 4. This explains the condition p ≡ 5 mod 8.

We expect that there are infinitely many primes p for which (1.1) has no odd
solutions. Heuristically, we expect the fundamental unit to fall in each of the three non-
zero residue classes modulo p with equal probability, which suggests that these primes
have density 1/3 in the set of all primes p ≡ 5 mod 8. Meanwhile, the Generalised
Riemann Hypothesis implies that the proportion of primes p ≡ 5 mod 8 for which 2
is a primitive root is A/2, where A ≈ 0.3739558 is Artin’s constant, as follows from
the main result of [14]. Assuming that these two conditions on p are independent,
we thus expect that the primes satisfying the hypothesis of Theorem 1.2 have density
A/6 ≈ 0.0623259689.

Numerically, we find that for primes up to 109, this proportion is 0.0612819, but
this proportion creeps up as one considers ever larger upper bounds on p, see Figure 1.
This suggests that a Chebychev bias-type phenomenon might be at work.

It is known that there are infinitely many squarefree integers d ≡ 5 mod 8 for which
the equation

x2 − dy2 = 4

has no odd solutions, see [17]. (One can replace −4 by 4 in (1.1), this has the effect of
merely squaring the fundamental unit).

Finally, our argument is related to that in [13]. That paper considers the same fields
K ⊂ L as we do, and uses the unit NL/K(1 + ζn) ∈ O∗K to produce a relatively small
solution to (1.1).
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Figure 1. Proportion δ(x) of primes p ≤ x for which the hypothesis of Theorem 1.2 holds
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