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1. Introduction. Let E and E′ be two elliptic curves over a number
field, linked by an isogeny f : E → E′. Can we compare their heights? In
the case of the Faltings height, a classical result [Fal83, Ray85] states that

(1.1) |hFalt(E)− hFalt(E′)| ≤ 1
2 ln deg f.

A more elementary height is h(j(E)), the Weil height of the j-invariant of E.
For this height, the second author [Paz19] proved

(1.2) |h(j(E))− h(j(E′))| ≤ 9.204 + 12 ln deg f.

The proof of (1.2) involves modifying the Faltings height at the infinite places
so that the result can be deduced from (1.1).

In the present paper, we consider function field analogues of these results.
Consider two Drinfeld Fq[t]-modules of rank r ≥ 2 linked by an isogeny
f : φ → φ′. There are several notions of height of a Drinfeld module; the
best analogue of the Faltings height was defined by Taguchi [Tag93], who
also proved a variant of (1.1) for Drinfeld modules (see Lemma 4.4 below).

For the more elementary height hG associated to the coefficients of a
Drinfeld module, we prove an analogue of (1.2) of the form

(1.3) |hG(φ′)− hG(φ)| ≤ logq deg f +

(
q

q − 1
− qr

qr − 1

)
.

Our basic approach is somewhat similar to that in [Paz19], with some
natural changes: we use analytic estimates based on the technology developed
by Gekeler [Gek97, Gek17, Gek19], notably the fundamental domain for the
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moduli space of Drinfeld modules, Bruhat–Tits buildings, and we conclude
by invoking Taguchi’s Isogeny Lemma. Combined with a deeper result of
David–Denis [DD99], this allows us to give a new proof of the finiteness of
isomorphism classes of Drinfeld modules over a global function field within
each isogeny class (see Corollary 3.4). A variant of (1.3) in the special case
r = 2 allows us to deduce explicit estimates on the height of Drinfeld modular
polynomials in the rank 2 case (see Proposition 6.5 and equation (6.9) below).

The layout of this paper is as follows. In Section 2 we define heights
associated to Drinfeld modules. Our main results are stated in Section 3.

In Section 4 we introduce the notion of a reduced Drinfeld module and
define Taguchi’s height. Our main results are then proved in Section 5, where
we compute various analytic estimates. Finally, we deduce the upper bound
on the coefficients of Drinfeld modular polynomials (in the rank 2 case) in
Section 6.

2. Heights of Drinfeld modules

2.1. Places. Let A = Fq[t] and F = Fq(t). To each place v of F we asso-
ciate an absolute value |·|v normalized as follows. A place of F corresponding
to a monic irreducible polynomial P ∈ A is called a finite place, and we have
|x|v = q−(degP )vP (x) for x ∈ F . There is one more place, denoted ∞ ∈ MF ,
with |x|∞ = qdeg x.

For a finite extension K/F we denote by MK the set of places of K.
A place v ∈ MK is called infinite if it is an extension of ∞, otherwise it is
called finite. The sets of finite and infinite places of K are denoted by Mf

K
and M∞K , respectively.

To each place v ∈MK we associate its absolute value normalized so that
for every x ∈ F we have |x|v = |x|w, where w ∈MF lies beneath v.

To each place v ∈ MK we also associate the ramification index ev (so
|K|v ⊂ q(1/ev)Z), the residual degree fv and the local degree nv = [Kv : Fv]
= evfv.

We have the following two important properties:

• Product formula: For every x ∈ K,
∏
v∈MK

|x|nv
v = 1.

• Extension formula: For every w ∈MF , [K : F ] =
∑

v|w nv.

Note that in articles like [DD99] and [Tag93], the absolute values are nor-
malized differently; the exponent ev is included in |x|v, so in their situation
the product formula holds with nv replaced by fv.

Finally, for the remainder of this article, log always means the logarithm
to base q.
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We will associate to a Drinfeld module a number of different heights.
Every height h will be decomposed into a sum of local heights,

h =
1

[K : F ]

∑
v∈MK

hv.

We also write

hf =
1

[K : F ]

∑
v∈Mf

K

hv and h∞ =
1

[K : F ]

∑
v∈M∞

K

hv

for the finite and infinite components, respectively.

2.2. Naïve heights. Let φ be a Drinfeld Fq[t]-module of rank r over K.
We assume throughout this paper that r ≥ 2 and that our Drinfeld modules
are of generic characteristic. Then φ is characterized by

φt(X) = tX + g1X
q + g2X

q2 + · · ·+ grX
qr , gi ∈ K, gr 6= 0.

We refer to the g1, . . . , gr as the coefficients of φ.
Let d = lcm{q − 1, q2 − 1, . . . , qr − 1}. For k = 1, . . . , r, set

(2.1) jk :=
g
d/(qk−1)
k

g
d/(qr−1)
r

∈ K, and J = J(φ) = (j1, . . . , jr).

Clearly jr = 1. These are isomorphism invariants of φ.

Remark 2.1. These invariants differ from those defined by Potemine
in [Pot98, (2.5)] in their exponents: we have chosen exponents such that
each jk has the same denominator, whereas Potemine used the least integer
exponents for each jk. Nevertheless, it follows from [Pot98, Theorem 2.2]
that for each tuple (a1, . . . , ar−1) ∈ F̄ r−1, there are at most finitely many
F̄ -isomorphism classes of Drinfeld modules φ with J(φ) = (a1, . . . , ar−1, 1).

Now we define the J-height of φ:

(2.2) hJ(φ) := h(J) =
1

[K : F ]

∑
v∈MK

nv log max{|j1|v, . . . , |jr|v},

which is just the logarithmic Weil height of the tuple J . This height, and its
local components hvJ(φ) for v ∈MK , are invariant under isomorphisms of φ.

In the special case r = 2, we see that j1 = j = gq+1
1 /g2 is the usual

j-invariant and h(J) = h(j) is the usual height of j ∈ K.
Next, consider the weighted projective space

WP := P(q − 1, q2 − 1, . . . , qr − 1),

which is Proj of the graded polynomial ring K[g1, . . . , gr], where the inde-
terminates are assigned the weights deg gk = qk − 1.
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It is well-known thatWP−V (gr = 0) is the coarse moduli space of rank r
Drinfeld modules. Indeed, if φ′ is another Drinfeld module with φ′t(X) =

tX+g′1X
q +g′2X

q2 + · · ·+g′rX
qr , then (g1, . . . , gr) and (g′1, . . . , g

′
r) represent

the same point in WP if and only if φ and φ′ are isomorphic over some
algebraically closed field.

One can define heights on weighted projective spaces in the obvious way,
and the height associated to the point representing φ is called the graded
height of φ:

(2.3)

hG(φ) :=
1

[K : F ]

∑
v∈MK

nv log max{|g1|1/(q−1)v , |g2|1/(q
2−1)

v , . . . , |gr|1/(q
r−1)

v }.

For a finite place v∈Mf
K , the local component hvG(φ) = nv log maxi|gi|1/(q

i−1)
v

equals Taguchi’s v(φ) (see [Tag93, §2]).
From the product formula, we see that

(2.4) dhG(φ) = hJ(φ),

and so again hG(φ) is invariant under isomorphism. However, the local com-
ponents hvG(φ) depend on the choice of φ in its isomorphism class.

Proposition 2.2. Let F = Fq(t) and let K/F be a finite extension.
Let C > 0. Then there are only finitely many F̄ -isomorphism classes of
rank r Drinfeld modules φ defined over K such that hJ(φ) < C (respectively
hG(φ) < C).

Proof. The usual Northcott Theorem for the Weil height implies that
there are only finitely many (j1, . . . , jr−1) ∈ Kr−1 for which h(j1, . . . , jr−1, 1)
< C. The result now follows from Remark 2.1 and the identity (2.4).

3. Main results. Let f : φ → φ′ be an isogeny of Drinfeld modules
(still of generic characteristic) of degree deg f := # ker f . We may associate
to f a (not necessarily unique) dual isogeny f̂ : φ′ → φ of degree deg f̂ ≤
(deg f)r−1, such that f̂ ◦ f = φN , where N ∈ A is an element of minimal
degree for which ker f ⊂ φ[N ], and similarly f ◦ f̂ = φ′N . In particular,
degN = 1

r (log deg f + log deg f̂) ≤ log deg f . See for example [DD99, Lem-
me 2.19].

Denote by K̄ an algebraic closure of K. We now state our main result.

Theorem 3.1. Let f : φ→ φ′ be an isogeny of rank r Drinfeld modules
over K̄ and suppose ker f ⊂ φ[N ].

(1) We have

(3.1) |hG(φ′)− hG(φ)| ≤ degN +

(
q

q − 1
− qr

qr − 1

)
.
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(2) Suppose r = 2. Then we have the following variant. Let j = j1(φ) and
j′ = j1(φ

′). Then

(3.2) h(j′)− h(j) ≤ q2 − 1

2
log deg f +

q2 − 1

2
log

[
1 +

1

q
h(j′)

]
+ q.

This is the analogue of Theorem 1.1 of [Paz19].

Remark 3.2. If r ≥ 3, we cannot hope to get a similar result replacing
hG with the height h(jk) of a single invariant, as the following example shows.

Fix a Drinfeld module φ and consider all isogenies f : φ → φ′ of kernel
ker f ∼= A/tA, where

φt(X) = tX + g1X
q +Xq3 , φ′t(X) = tX + g′1X

q + g′2X
q2 +Xq3 ,

f(X) = f0X +Xq.

From f ◦ φt = φ′t ◦ f , comparing coefficients of Xq and Xq3 , we obtain

(3.3) g′1 = f−q0 (f0g1 + tq − t) and g′2 = f0 − f q
3

0 , respectively.

Since ker f ⊂ kerφt, we write φt = P ◦ f for some P (X) = aX + bXq +Xq2 .
Again, comparing coefficients gives

a = f−10 t, b = −f q
2

0 and f−10 t− f q
2+q

0 = g1.

Thus f0 is a root of

(3.4) Xq2+q+1 + g1X − t = 0.

Conversely, every root f0 of (3.4) produces an isogeny f : φ → φ′ as above.
For each such root, from (3.3) we obtain

(3.5) g′1 = −f q
2+1

0 + f−q0 tq, g′2 = f0 − f q
3

0 .

In particular, if h(g1) is very large, then at least one of the roots f0 of (3.4)
has large height, and thus so does the corresponding g′2. Then h(j2(φ

′)) is
large, whereas h(j2(φ)) = 0 and deg f = q.

The following result follows from Theorem 3.1 and [DD99, Thm. 1.3]:

Corollary 3.3. There exists an effectively computable constant C, de-
pending only on r and q, such that the following holds. Suppose φ and φ′ are
rank r Drinfeld Fq[t]-modules, defined over a finite extension K/F , which
are isogeneous over K̄. Then

|hG(φ′)− hG(φ)| ≤ 10(r + 1)7 log
(
[K : F ]hG(φ)

)
+ C.

Proof. By [DD99, Thm. 1.3], there exists an effectively computable con-
stant c2 = c2(r, q) and an isogeny f : φ→ φ′ of degree

deg f ≤ c2
(
[K : F ]h(φ)

)10(r+1)7
.
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Here h(φ) denotes a height function defined in terms of the coefficients of φ
by h(φ) = max{h(g1), . . . , h(gr)}. It is easy to see that h(φ) ≤ (qr−1)hG(φ),
so

|hG(φ′)− hG(φ)| ≤ degN +

(
q

q − 1
− qr

qr − 1

)
≤ log deg f +

(
q

q − 1
− qr

qr − 1

)
≤ log

(
c2([K : F ](qr − 1)hG(φ))10(r+1)7

)
+

(
q

q − 1
− qr

qr − 1

)
.

The result follows.

Applying Proposition 2.2, we recover the following result, which was orig-
inally proved by Taguchi [Tag99].

Corollary 3.4. Each K̄-isogeny class of Drinfeld modules defined over
K contains only finitely many K̄-isomorphism classes of Drinfeld modules.

Note that our approach would lead the interested reader to an explicit
bound on the number of K̄-isomorphism classes within a K̄-isogeny class.

4. Lattices and Taguchi’s height

4.1. Lattices. Let F∞ = Fq((1/t)) be the completion of F at the
place ∞, and C∞ = ˆ̄F∞ the completion of an algebraic closure of F∞; it
is complete and algebraically closed and plays the role of the complex num-
bers in characteristic p > 0. Recall that A = Fq[t].

A lattice of rank r ≥ 1 is an A-submodule Λ ⊂ C∞ of the form Λ =
ω1A+ · · ·+ ωrA, where the ω1, . . . , ωr ∈ C∞ are F∞-linearly independent.

A successive minimum basis for a lattice Λ is an A-basis (ω1, . . . , ωr) for
Λ satisfying the properties

|ω1| ≥ · · · ≥ |ωr|

and, for k = 1, . . . , r,

|ωk| = inf
({
λ−

r∑
i=k+1

aiωi

∣∣∣ ak+1, . . . , ar ∈ A, λ ∈ Λ
}
r {0}

)
.

In other words, ωr is a minimal non-zero element of Λ and each ωk is minimal
among the non-zero elements of Λ not spanned by the ωk+1, . . . , ωr. We can
think of such a basis as being an “orthogonal” basis. Every lattice has a
successive minimum basis, and we define the covolume of Λ by

(4.1) D(Λ) := |ω1| · · · |ωr|,
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where (ω1, . . . , ωr) is any successive minimum basis of Λ. By [Tag93, (4.1)] or
[Gek19, Prop. 3.1], this is independent of the choice of successive minimum
basis.

The covolume of a lattice satisfies the following desirable properties.

Lemma 4.1. Let Λ ⊂ C∞ be a lattice of rank r.

(1) Choose an Fq[t]-basis (ω1, . . . , ωr) of Λ. Let γ ∈ GLr(F∞) and denote by
γΛ the lattice spanned by (ω1, . . . , ωr)γ

T. Then

D(γΛ) = |det γ|D(Λ).

(2) Let c ∈ C∞. Then
D(cΛ) = |c|rD(Λ).

(3) Let Λ′ be a lattice of rank r such that Λ ⊂ Λ′ ⊂ C∞. Then

(Λ′ : Λ) = D(Λ)/D(Λ′).

Proof. Part (1) is [Tag93, Prop. 4.4] applied to the A-lattice Λ inside the
F∞-vector space V ⊂ C∞ spanned by (ω1, . . . , ωr).

Part (2) follows from the definition. Part (3) follows from (1) as Λ = γΛ′

for a suitable γ ∈ GLr(F ) with coefficients in A and |det γ| = (Λ′ : Λ).

A lattice Λ ⊂ C∞ is said to be reduced if it has a successive minimum
basis (ω1, . . . , ωr) with ωr = 1. Equivalently,

Λ is reduced if and only if 1 ∈ Λ and every non-zero λ ∈ Λ satisfies
|λ| ≥ 1.

Every Drinfeld module φ over C∞ is associated to a rank r lattice Λ ⊂ C∞
and vice versa. We call a Drinfeld module φ reduced if its associated lattice is
reduced. Every Drinfeld module is isomorphic over C∞ to a reduced Drinfeld
module. (The analogous condition on an elliptic curve is to correspond to a
point in the fundamental domain of the upper half-plane.)

Lemma 4.2 (Analytic Isogeny Lemma). Let f : φ→ φ′ be an isogeny of
reduced Drinfeld modules over C∞ with associated reduced lattices Λ,Λ′⊂C∞,
respectively. Then

(4.2) − log deg f̂ ≤ logD(Λ)− logD(Λ′) ≤ log deg f.

Proof. Analytically, the isogeny f : φ→ φ′ is given by multiplication by
α ∈ C∞ for which αΛ ⊂ Λ′ and ker f ∼= Λ′/αΛ. Thus

deg f = (Λ′ : αΛ) = D(αΛ)/D(Λ′) = |α|rD(Λ)/D(Λ′),

so D(Λ)/D(Λ′) = |α|−r deg f . Since Λ is reduced, 1 ∈ Λ and thus α · 1 ∈ Λ′.
Since Λ′ is reduced, we must have |α| ≥ 1, giving

D(Λ)/D(Λ′) ≤ deg f.
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This proves the upper bound, and the lower bound follows by applying this
to f̂ : φ′ → φ.

4.2. Taguchi’s height. Let φ be a Drinfeld module defined over a finite
extension K/F . We recall that φ is said to have stable reduction at a place
v ∈ Mf

K if it is isomorphic over K to a Drinfeld module φ̃ defined over the
valuation ring Ov ⊂ K of v whose reduction modulo the maximal ideal mv

of Ov is a Drinfeld module of positive rank over the residue field Ov/mv.
Equivalently, hvG(φ) ∈ Z (see [Tag93, p. 301]). We say that φ has everywhere
stable reduction if it has stable reduction at every finite place v ∈ Mf

K ,
equivalently if hvG(φ) ∈ Z for every v ∈ Mf

K . By [DD99, Lemme 2.10],
every Drinfeld module over K acquires everywhere stable reduction after
replacing K by a finite extension thereof.

In [Tag93] Taguchi defines the differential height of φ as the degree of the
metrized conormal line bundle along the unit section associated to a minimal
model of φ. It serves as the analogue of the Faltings height. All we need here
is the identity (5.9.1) of [Tag93], valid for Drinfeld modules with everywhere
stable reduction, which we adopt as our definition:

hTag(φ) :=
1

[K : F ]

[ ∑
v∈Mf

K

hvG(φ)−
∑

v∈M∞
K

nv logD(Λv)
1/r
]

(4.3)

= hfTag(φ) + h∞Tag(φ),

where we set

hfTag(φ) =
1

[K : F ]

∑
v∈Mf

K

hvG(φ),

h∞Tag(φ) = − 1

[K : F ]

∑
v∈M∞

K

nv logD(Λv)
1/r.

Notice that the sign is included in the definition of h∞Tag(φ)—the reader
should keep this in mind when reading the remaining calculations in this
paper.

Here Λv ⊂ C∞ is the lattice associated to the Drinfeld module φσ over C∞
obtained by embedding the coefficients gk into C∞ via the embedding σ :
K ↪→ C∞ associated to the infinite place v.

We see that the finite part coincides with the finite part of our graded
height:

hfTag(φ) = hfG(φ).

Our definition of hTag(φ) only coincides with Taguchi’s differential height
when φ has stable reduction at every finite place. For the general case, the
reader will find an excellent treatment of Taguchi’s height in [Wei20, §5.1].
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We add a proof that hTag(φ) as defined above satisfies the following desirable
properties.

Lemma 4.3. Let φ be a Drinfeld module with everywhere stable reduction,
defined over a global function field K.

(1) hTag(φ), hfTag(φ) and h∞Tag(φ) do not depend on the choice of the field K.
(2) hTag(φ) is invariant under K̄-isomorphism.

Proof. Suppose that L/K is a finite extension. Suppose v1, v2 ∈ ML lie
above the same place of K. Then |gi|v1 = |gi|v2 for each i and also D(Λv1) =
D(Λv2). The first item follows as usual from [L : K] =

∑
v|w[Lv : Kw].

To prove the second item, let c ∈ K̄∗ and replace K by K(c), which we
may by the first item. Now

hfTag(c−1φc) = hfTag(φ) +
1

[K : F ]

∑
v∈Mf

K

nv log |c|v

and

h∞Tag(c−1φc) = − 1

[K : F ]

∑
v∈M∞

K

nv logD(c−1Λv)
1/r

= − 1

[K : F ]

∑
v∈M∞

K

nv log[|c|−rD(Λv)]
1/r

= h∞Tag(φ) +
1

[K : F ]

∑
v∈M∞

K

nv log |c|v.

The result now follows from the product formula
∑

v∈MK
nv log |c|v = 0.

The advantage of hTag is that it behaves well under isogenies.

Lemma 4.4 (Taguchi’s Isogeny Lemma). Let f : φ→ φ′ be a K̄-isogeny
between two rank r Drinfeld modules over K with everywhere stable reduction.
Then

−1

r
log deg f̂ ≤ hTag(φ′)− hTag(φ) ≤ 1

r
log deg f.

Proof. We start with [Tag93, Lemma 5.5]; it states that

hTag(φ′)− hTag(φ) =
1

r
log deg f − 1

[K : F ]
log #(R/Df ).

Here, R is the integral closure of A in F , and the ideal Df ⊂ R is the
different of f . We do not need the exact definition of this, merely the fact
that #(R/Df ) is a positive integer, so log #(R/Df ) ≥ 0. This gives us the
upper bound, and the lower bound is obtained by applying the upper bound
to the dual isogeny f̂ : φ′ → φ.
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5. Analytic estimates. The proof of Theorem 3.1 involves breaking up
the difference in heights, using the identity hfTag(φ) = hfG(φ), as follows:

(5.1) hG(φ′)− hG(φ)

= [hTag(φ′)− hTag(φ)]︸ ︷︷ ︸
(A)

+ [h∞G (φ′)− h∞G (φ)]︸ ︷︷ ︸
(B)

+ [h∞Tag(φ)− h∞Tag(φ′)]︸ ︷︷ ︸
(C)

.

Part (A) is bounded using Taguchi’s Isogeny Lemma 4.4.
Bounding the terms (B) and (C) will require some analytic estimates,

which we outline next.

5.1. Proof of Theorem 3.1(1). We start by [DD99, Lemme 2.10]:
we may replace K by a finite extension so that φ and φ′ have everywhere
stable reduction. From now on, our Drinfeld modules are all assumed to have
everywhere stable reduction.

Lemma 5.1. Let φ be a Drinfeld module of rank r over C∞ with associated
lattice Λ. Then the quantity

log max{|g1|1/(q−1), |g2|1/(q
2−1), . . . , |gr|1/(q

r−1)}+ logD(Λ)1/r ∈ R
is invariant under isomorphisms of φ.

Proof. Let φ′ = c−1φc with c ∈ C∗∞ be another Drinfeld module isomor-
phic to φ. Then

log max{|g′1|1/(q−1), |g′2|1/(q
2−1), . . . , |g′r|1/(q

r−1)}+ logD(Λ′)1/r

= log max{|cq−1g1|1/(q−1), |cq
2−1g2|1/(q

2−1), . . . , |cqr−1gr|1/(q
r−1)}

+ logD(c−1Λ)1/r

= log max{|g1|1/(q−1), |g2|1/(q
2−1), . . . , |gr|1/(q

r−1)}+ logD(Λ)1/r.

Let φ/K be a rank r Drinfeld module with coefficients g1, . . . , gr ∈ K.
To each infinite place v ∈M∞K we associate an embedding σ : K ↪→ C∞ for
which |x|v = |xσ| for any x ∈ K. Then Λv ⊂ C∞ is the lattice associated to
the Drinfeld module φσ/C∞ defined by the coefficients gσ1 , . . . , gσr ∈ C∞.

We rewrite (B) + (C) of (5.1) as follows:

(5.2) (B) + (C)

=
1

[K : F ]

∑
σ:K↪→C∞

nσ

([
log max

1≤i≤r
|g′σi |1/(q

i−1) − log max
1≤i≤r

|gσi |1/(q
i−1)

]
+

[
1

r
logD(Λ′σ)− 1

r
logD(Λσ)

])
.

By Lemma 5.1, the term for each σ : K ↪→ C∞ in (5.2) depends only on
the isomorphism classes of φσ and φ′σ. Therefore, in the remainder of this
section, we will frequently make the following reduction:
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Reduction 5.2. Whenever the Drinfeld module φσ arises in the context
of (5.2), we replace it by an isomorphic reduced Drinfeld module, which we
may by Lemma 5.1, and which by abuse of notation we again denote by φσ.

Under Reduction 5.2, (C) is bounded by Lemma 4.2:

(5.3) h∞Tag(φ)− h∞Tag(φ′) ≤ 1

[K : F ]

∑
v∈M∞

K

nv
1

r
log deg f̂ =

1

r
log deg f̂ .

Next, we obtain an absolute bound on part (B).

Lemma 5.3. Let φ/C∞ be a reduced Drinfeld module of rank r. Then

(5.4)
qr

qr − 1
≤ log max

1≤i≤r
|gi|1/(q

i−1) ≤ q

q − 1
.

Proof. For this we must recall some concepts introduced in [Gek17]. De-
fine

F := {(ω1, . . . , ωr) ∈ Cr∞ | ωr = 1 and (ω1, . . . , ωr) forms a
successive minimum basis for the lattice ω1A+ · · ·+ ωrA}.

This set is a fundamental domain (in a suitable sense) for the action of
GLr(A) on the Drinfeld period domain

Ωr = {(ω1, . . . , ωr) ∈ Cr∞ | ωr = 1 and ω1, . . . , ωr are linearly
independent over F∞}.

Every reduced Drinfeld module φ/C∞ corresponds to a reduced lattice of
the form Λ = ω1A+ · · ·+ ωrA for some (ω1, . . . , ωr) ∈ F .

Denote by BT the Bruhat–Tits building of PGLr(F∞) and by BT (Q) the
points in the realization of BT with rational barycentric coordinates. The
image of F under the building map λ : Ωr → BT (Q) (see [Gek17, §2.3]) is
an (r − 1)-dimensional simplicial complex W whose vertices correspond to
integer r-tuples (k1, . . . , kr) ∈ Zr≥0 with k1 ≥ · · · ≥ kr = 0. The preimage of
such a vertex consists of lattice bases (ω1, . . . , ωr) satisfying |ωi| = qki for
each i.

The origin of W is denoted o = (0, . . . , 0). By [Gek17, §4.6], for ω ∈
λ−1(o) we have log |gr(ω)| = qr, and for each i = 1, . . . , r−1, log |gi(ω)| ≤ qi,
with equality achieved somewhere on the set λ−1(o) by [Gek17, Cor. 4.16].

By [Gek17, Cor. 4.11 and 4.16] it follows that each log |gi(ω)| is non-
increasing as λ(ω) moves away from o inW (Q), and so, for every i = 1, . . . , r,

(5.5) log |gi(ω)| ≤ qi for all ω ∈ F .
This implies the upper bound in (5.4).

For each i = 1, . . . , r−1 we define the ith wall ofW to be the subcomplex
Wi ⊂ W spanned by vertices satisfying ki = ki+1. Its preimage under the
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building map is denoted

Fi = λ−1(Wi(Q)) = {(ω1, . . . , ωr) ∈ F | |ωi| = |ωi+1|}.

To prove the lower bound, first note that by [Gek17, Cor. 4.16],

(5.6) log |g1(ω)| = q for all ω ∈ F r Fr−1;

we claim that, for i = 2, 3, . . . , r − 1,

(5.7) log |gi(ω)| = qi for all ω ∈ (Fr−1 ∩ Fr−2 ∩ · · · ∩ Fr−i+1) r Fr−i.

Indeed, by [Gek17, Cor. 4.16], since ω /∈ Fr−i, log |gi(ω)| is constant on the
fibres of λ, we may consider log |gi| as a function on W (Q). Since 1 = |ωr| =
|ωr−1| = · · · = |ωr−i+1|, the point λ(ω) ∈W (Q) lies in a simplex all of whose
edges can be reached from the vertex o by paths consisting entirely of edges
of the form k → k + k` for ` ≤ r − i (here k` = (1, . . . , 1, 0, . . . , 0) contains
` ones). By [Gek17, Prop. 4.10 and Cor. 4.16], log |gi| is constant on these
edges, and it interpolates linearly within each simplex, hence log |gi(ω)| =
log ‖gi(λ−1(o))‖ = qi, by [Gek17, §4.6]. This proves the claim.

Every ω ∈ F lies in one of the subsets

F rFr−1, Fr−1rFr−1, (Fr−1 ∩Fr−2)rFr−3, . . . , (Fr−1 ∩ · · · ∩F1) = {o}.

Hence, by (5.6), (5.7) and log |gr(o)| = qr, we have log |gi(ω)| = qi for some
i = 1, . . . , r, and the lower bound in (5.4) follows.

In particular, we find that in (5.1), after Reduction 5.2,

|h∞G (φ′)− h∞G (φ)| ≤ 1

[K : F ]

∑
v∈M∞

K

nv

(
q

q − 1
− qr

qr − 1

)
(5.8)

=
q

q − 1
− qr

qr − 1
.

Now Lemma 4.4 together with (5.3) and (5.8) and the fact that degN =
1
r (log deg f + log deg f̂) imply Theorem 3.1(1).

5.2. Proof of Theorem 3.1(2)

Lemma 5.4. Let φ/C∞ be a reduced rank 2 Drinfeld module with asso-
ciated reduced lattice Λ ⊂ C∞. Then

1 ≤ D(Λ) ≤ max

{
1

q
log |j(φ)|, 1

}
.

Proof. We use an estimate of |j(φ)| obtained by Gekeler [Gek97]. The
reduced rank 2 lattice Λ has a successive minimum basis (ω1, 1), where ω1 ∈
C∞ satisfies

1 ≤ |ω1| = |ω1|i := inf
x∈F∞

|ω1 − x| = D(Λ).
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Suppose first that k = logD(Λ) ∈ Z≥0. Then [Gek97, Theorem 2.17] gives

log |j(φ)| = qk+1 = qD(Λ) if k ≥ 1,
log |j(φ)| ≤ q = qD(Λ) if k = 0.

Furthermore, log |j(φ)| interpolates linearly between integral values of k
[Gek97, Rem. 2.14], in other words, if k = blogD(Λ)c and s = logD(Λ)− k
> 0, then

log |j(φ)| = sqk+1 + (1− s)qk+2.

Since x 7→ qx+1 is convex, it follows that for D(Λ) > 1,

log |j(φ)| ≥ qD(Λ).

The lemma follows.

We now use this to get another estimate of (C) in the case r = 2 and
j = j1(φ) and j′ = j1(φ

′). Since we are assuming that each Λv is reduced,
D(Λv) ≥ 1. We obtain

1

[K : F ]

∑
v∈M∞

K

nv[logD(Λ′v)
1/2 − logD(Λv)

1/2]

≤ 1

[K : F ]

∑
v∈M∞

K

nv logD(Λ′v)
1/2 ≤ 1

2[K : F ]

∑
v∈M∞

K

nv log max

{
1

q
log |j′|v, 1

}

=
1

2[K : F ]

∑
σ:K↪→C∞

log max

{
1

q
log |j′σ|nv , 1

}

=
1

2
log

[ ∏
σ:K↪→C∞

max

{
1

q
log |j′σ|nv , 1

}1/[K:F ]]
≤ 1

2
log

[
1

[K : F ]

∑
σ:K↪→C∞

max

{
1

q
log |j′σ|nv , 1

}]
(by the AM-GM inequality)

≤ 1

2
log

[
1 +

1

q

1

[K : F ]

∑
σ:K↪→C∞

nv max{log |j′σ|, 0}
]
≤ 1

2
log

[
1 +

1

q
h(j′)

]
.

Plugging this, Lemma 4.4 and (5.8) into (5.1), we obtain

hG(φ′)− hG(φ) ≤ 1

2
log deg f +

(
q

q − 1
− q2

q2 − 1

)
+

1

2
log

[
1 +

1

q
h(j′)

]
.

Finally, since h(j) = (q2 − 1)hG(φ), we obtain Theorem 3.1(2), after multi-
plying by q2 − 1.
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6. Drinfeld modular polynomials. Letm ∈ Fq[t] be monic. We define

ψ(m) = |m|
∏
P |m

(
1 +

1

|P |

)
and κ(m) =

∑
P |m

degP

|P |
,

where P ranges over all monic irreducible factors of m.
In analogy to classical modular polynomials, Bae [Bae92] constructed

polynomials Φm(X,Y ) ∈ Fq[t][X,Y ] for each monic m ∈ Fq[t], called Drin-
feld modular polynomials, with the following properties:

• Degree: Φm(X,Y ) is monic of degree ψ(m) in each variable.
• Symmetry: Φm(X,Y ) = Φm(Y,X).
• Irreducibility: Φm(X,Y ) is irreducible in C∞[X,Y ].
• Isogeny: Φm(j, j′) = 0 if and only if j = j(φ) and j′ = j(φ′) are the
j-invariants of rank 2 Drinfeld modules φ and φ′ linked by an isogeny of
kernel A/mA.

To study the coefficients of Φm(X,Y ), we introduce yet another height.
To a polynomial f in several variables with coefficients in C∞, we associate
its naïve height:

h(f) = log max
c
|c|∞,

where c ranges over all the coefficients of f .
Hsia proved the following asymptotic result [Hsi98, p. 237]:

Theorem 6.1 (Hsia). For any monic, non-constant polynomial m ∈ Fq[t]
we have

h(Φm) =
q2 − 1

2
ψ(m)

(
degm− 2κ(m) +O(1)

)
as |m| → ∞.

Our goal in this last section is to give a completely explicit upper bound
for h(Φm). We start by preparing an interpolation lemma with the following
set of interpolation points.

Lemma 6.2. Let n ≥ 0 be an integer. Consider the set

Sn =
{
αnt

n + · · ·+ α0 + · · ·+ α−nt
−n ∣∣ ∀i ∈ {−n, . . . , n}, αi ∈ Fq

}
.

It has cardinality q2n+1. Let d ≤ q2n+1−1, and consider d+1 distinct points
y0, y1, . . . , yd ∈ Sn. For any k ∈ {0, . . . , d}, denote

Tk(Y ) =

d∏
s=0
s 6=k

(Y − ys) =

d∑
j=0

ajY
j .

Then:
(1) max

{
|aj |∞

∣∣ j ∈ {0, . . . , d}} ≤ qnd,
(2)

d∏
s=0
s6=k

|yk − ys|∞ ≥ q−nd.



Heights and isogenies of Drinfeld modules 15

Proof. The maximum degree in t of elements in Sn is n, the upper bound
then comes from the explicit computation of the coefficients of Tk in terms
of elements of Sn, and the degree of Tk is d. The minimum degree in t of
a non-zero difference of elements in Sn is −n, the lower bound is direct
as well. Note that in [Hsi98, Lemma 5.1], the interpolation set of points is
chosen with the extra property |yk−ys|∞ = max{|yk|∞, |ys|∞}, which is not
assumed here.

Lemma 6.3. Let P ∈ C∞[X,Y ] be a non-zero polynomial of degree at
most d ≥ 1 in each variable. Suppose there exists a real number B > 0 such
that h(P (X, yk)) ≤ B for each yk in the set Sn defined in Lemma 6.2. Then

(6.1) h(P ) ≤ B + 2nd.

Proof. We may write P (X,Y ) =
∑

0≤r≤dQr(Y )Xr for some polynomials
Qr(Y ) ∈ C∞[Y ]. For any degree 0 ≤ r ≤ d and any of the above points yk,
let ck,r = Qr(yk) be the coefficient of Xr of the polynomial P (X, yk). By
Lagrange interpolation, one has

(6.2) Qr(Y ) =
d∑

k=0

ck,r

d∏
s=0
s 6=k

Y − ys
yk − ys

.

We write

Tk(Y ) =

d∏
s=0
s 6=k

(Y − ys);

by Lemma 6.2 we have h(Tk) ≤ qnd and
d∏
s=0
s6=k

|yk − ys|∞ ≥ q−nd for any k ∈ {0, . . . , d},

and by assumption |ck,r|∞ ≤ B. The result follows.

We add a small technical lemma.

Lemma 6.4. Let a be a positive real number. Let q ≥ 2 be a prime power.
Assume x ≥ q3. Then ln(1 + x/q) ≤ x/q2 and the inequality

(6.3) x ≤ a+
q2 − 1

2
log

(
1 +

x

q

)
implies

(6.4) x ≤ a+
q2 − 1

2
log

(
1 +

a

q

(
1− q2 − 1

2q2 ln q

)−1)
,

where ln is the natural logarithm and log is the logarithm to base q.

Proof. Direct computation.
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We are now ready to prove the following.

Proposition 6.5. For any monic, non-constant polynomial m ∈ Fq[t],
the height h(Φm) is bounded above by

ψ(m) max

{
q3,

[
q2 − 1

2
degm+ q +

1

2
(logψ(m) + 1)

+
q2 − 1

2
log

(
1 +

a

q

(
1− q2 − 1

2q2 ln q

)−1)]}
+ 2ψ(m) logψ(m),

where a = q2−1
2 degm+ q + 1

2(logψ(m) + 1).

Proof. Fix j0 ∈ Sn, where n is chosen so that q2n+1 ≥ ψ(m)+1 ≥ q2n−1,
and Sn is the set of Lemma 6.2. The relation between roots and coefficients
for the polynomial Φm(X, j0) gives in particular the inequality

h(Φm(X, j0)) ≤ ψ(m) max
j
h(j),

where the maximum is taken over all the roots j of Φm(X, j0). Each of
these roots corresponds to a Drinfeld module isogenous to the fixed one
corresponding to j0, hence by Theorem 3.1 we get

(6.5) h(j)− h(j0) ≤
q2 − 1

2
degm+

q2 − 1

2
log

(
1 +

1

q
h(j)

)
+ q.

Now for any j0 ∈ Sn, we have h(j0) ≤ n ≤ 1
2(logψ(m) + 1). This leads to

(6.6) h(j) ≤ q2 − 1

2
degm+ q+

1

2
(logψ(m) + 1) +

q2 − 1

2
log

(
1 +

1

q
h(j)

)
.

Assume h(j) ≥ q3. Then by Lemma 6.4 we get

h(j) ≤ q2 − 1

2
degm+ q +

1

2
(logψ(m) + 1)(6.7)

+
q2 − 1

2
log

(
1 +

a

q

(
1− q2 − 1

2q2 ln q

)−1)
,

where a = q2−1
2 degm + q + 1

2(logψ(m) + 1), and hence h(Φm(X, j0)) is
bounded above by a quantity B equal to

(6.8) ψ(m) max

{
q3,

[
q2 − 1

2
degm+ q +

1

2
(logψ(m) + 1)

+
q2 − 1

2
log

(
1 +

a

q

(
1− q2 − 1

2q2 ln q

)−1)]}
,

and by Lemma 6.3 we obtain the result.
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Asymptotically, this gives

(6.9) h(Φm) <

(
q2 + 4

2
+ ε

)
ψ(m) degm

for degm sufficiently large compared to ε > 0. This is only slightly weaker
than Hsia’s exact asymptotic in Theorem 6.1.

Another completely explicit upper bound on h(Φm), of order
q

2
|m|ψ(m)2,

was obtained by Bae and Lee [BL97, Theorem 3.7].
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Abstract (will appear on the journal’s web site only)
We provide explicit bounds on the difference of heights of isogenous Drin-

feld modules. We derive a finiteness result in isogeny classes. In the rank 2
case, we also obtain an explicit upper bound on the size of the coefficients
of modular polynomials attached to Drinfeld modules.
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