MathResources Inc.

J.M. Borwein and D.H. Bailey, Mathematics by Experiment: Plausible Reasoning in the 21st Century, A.K. Peters, $2^{\text {nd }}$ expanded edition, 2008 and with

R. Girgensohn, Experimentation in Mathematics: Computational Paths to Discovery, A.K. Peters, 2004. [Active CDs 2006]
D. Bailey, J. Borwein, N. Calkin, R. Girgensohn, R. Luke, and V. Moll, Experimental Mathematics in Action, A.K. Peters, 2007
J.M. Borwein, E.M. Rocha, and J.F. Rodrigues, Communicating Mathematics in the Digital Era, A.K. Peters 2008

Jon Borwein and Keith Devlin, The Computer as Crucible, A.K. Peters 2008
"The object of mathematical rigor is to sanction and legitimize the conquests of intuition, and there was never any other object for it."

- J. Hadamard quoted at length in E. Borel, Lecons sur la theorie des fonctions, 1928.

December $4^{\text {th }} 2008$ Auckland

The past 60 years in Mathematics

Jonathan Borwein, FRSC www.cs.dal.ca/~iborwein Canada Research Chair in Collaborative Technology, Dalhousie
 * Laureate Professor, University of Newcastle

It's generally the way with progress that it looks much greater than it really is. (Ludwig Wittgenstein 1889-1951)
"whereof one cannot speak, thereof one must be silent"
The world will change. It will probably change for the better. It won't seem better to me (J. B. Priestley, 1894-1984)

There was no respect for youth when I was young, and now that I am old, there is no respect for age. I missed it coming and going.

A Talk in Honour of Three of "Us"

- Paul Hafner Ordered fields, bilinear forms, computations with groups and graphs

chronophage
- Joel Schiff Complex analysis, potential theory, arithmetic Fourier transform
- David Smith Commutative ring theory

Abstract of Presentation

I shall explore my personal mathematical experiences over the past six decades as a way of investigating idiosyncratically:

- what's changed and what remains much the same
- what has been gained and what has been lost
- l'll do this in 'very roughly' decade-long tranches.
"Knowing things is very 20th century. You just need to be able to find things." (Danny Hillis)
- how Google has changed the way we think: Achenblog, July 12008 (1925 von Neumann claimed to 'know' 25% of extant mathematics)

Eight Results We Did Not Know

- Independence of Continuum Hypothesis (Cohn 1963)
- Luzin Conjecture: a.e. Fourier convergence in L^{2} (Carleson 1966)
- Four Colour Theorem (Appel-Haken, 1976-1997)

Wikipedia

- Classification of Finite Simple Groups (Feit-Thompson 1955-1995 maybe?)
- Fermat's Last Theorem (Wiles-Taylor, 1993-94)
- Poincaré Conjecture (Hamilton-Perleman 2004, ...)
- Primes in long arithmetic progressions (Green-Tao 2008)
- The Most Striking Result in Your Own Area
"The most important aspect in solving a mathematical problem is the conviction of what is the true result. Then it took 2 or 3 years using the techniques that had been developed during the past 20 years or so." (Lennart Carleson, 1966 ICM)

"The Future"

AK Peters, 2008

THE COMPUTER AS CRUCIBLE AN INTRODUCTION TO EXPERIMENTAL MATHEMATICS

For a long time, pencil and paper were considered the only tools needed by a mathematician (some might add the waste basket). As in many other areas, computers play an increasingly important role in mathematics and have vastly expanded and legitimized the role of experimentation in mathematics. How can a mathematician use a computer as a tool? What about as more than just a tool, but as a collaborator?
Keith Devlin and Jonathan Borwein, two well-known mathematicians with expertise in different mathematical specialties but with a common interest in experimentation in mathematics, have joined forces to create this introduction to experimental mathematics. They cover a variety of topics and examples to give the reader a good sense of the current state of play in the rapidly growing new field of experimental mathematics. The writing is clear and the explanations are enhanced by relevant historical facts and stories of mathematicians and their encounters with the field over time.

THE COMPUTER AS CRUCIBLE
AN INTRODUCTION TO EXPERIMENTAL MATHEMATICS

JONATHAN BORWEIN • KEITH DEVLIN

1948 to 1962

I. 1948 to 1962: From South Africa to the UK II. 1963 to 1970: Ontario
III. 1971 to 1982: Oxford, Halifax, Pittsburgh
IV. 1983 to 1993: Halifax and Waterloo
V. 1994 to 2000: Vancouver
VI. 2001 to 2008: From BC to NS to NSW

For each section I have tried to build a brief list of salient events comprising both pros and cons

1948 to 1962

1948 DB starts Univ. Col. PhD with Bosanquet (Roth, Davenport)

- read every `pertinent’ paper then start research (a crazy recipe now)
- DB 5 carbon copies and kept original (my DPhil follows)
- Dad's Underwood had six math symbols: $\lambda, \mu, \tau, \sum, \int, \lim$ 1949 CJM starts: Einstein + galaxy of stars in issue 1 194x Modern computing starts
- well sort of (most great 20C algorithms found before 1970)

1944 Radar Borwein 1950 Dad goes to StA (6 ads) so Mum does ('one body problem') 1948/54 15 days from Southampton to Capetown

- DB plays Nepune (3rd crossing of Equator)

1951 DB \& JMB meet Erdös (as DB is most junior in dept)


```
"What is }\mp@subsup{\varepsilon}{3}{}\mathrm{ ?" 1961 CROSS-CURTAIN POSTCARDS " }\mp@subsup{\varepsilon}{3}{}=\mp@subsup{q}{}{\prime
```


JMB's DPhil: a Pre IBM-Selectric Sample

Such theorems are generally callec Fritz John type conditions.
[2] Theorem. Suppose x is a weak (local) minimum with respect to S for (Q). Suppose f, g are compactly differentiable at x. Then there exist $\mathrm{p}^{+} \in \mathrm{S}^{+}, \mathrm{q}^{+} \in \mathrm{B}^{+}$, not both zero, such that

$$
p^{+} f^{\prime}(x)+q^{+} g^{\prime}(x) \in P^{+}(c, x) \quad q^{+}\left(g^{\prime}(x)\right)=0
$$

Proof: Let $M=\left\{(y, z) \mid \exists h \in T(C, x)\right.$ with $\left(f^{\prime}(x)(h) \leqslant s_{s} y\right.$,

$$
\begin{gathered}
\left(E^{\prime}(x)(h) \leqslant B^{z}\right\} \\
N=\{(y, z) \mid y \in-S, z \in-B\}
\end{gathered}
$$

M and N are closed convex sets and $N^{\circ} \neq$

- Suppose that $M \cap N^{\circ} \neq \phi$. There then exists $h \in T(c, x)$ with

$$
\left(f^{\prime}(x)\right)(h) \in-S^{0} \text { and }\left(g^{\prime}(x)\right)(h)+g(x) \in-B^{0}
$$

Let $h_{n}=\lambda_{n}\left(x_{n}-x\right) \rightharpoonup h_{\text {where }} x_{n} \in C, x_{n} \rightarrow x, \lambda_{n} \geqslant 0$. By the definition of the compact derivative
(1) $\lambda_{n}\left[f\left(x_{n}\right)-f(x)\right]=\frac{f\left(x+\lambda_{n}^{-1} h_{n}\right)-f(x)}{\lambda_{n}^{-1}} \rightarrow\left(f^{\prime}(x)\right)(h) \in-S^{0}$.

Canadian Journal of Mathematics

Volume One
1 H. Davenport, G. Pólya On the product of two power series
6 Victor Lalan Sur les surfaces à courbure moyenne isotherme
29 Alfred Schild Discrete space-time and integral Lorentz transformations
48 H. W. Turnbull Note upon the generalized Cayleyan operator
57 Hermann Weyl Elementary algebraic treatment of the quantum mechanical symmetry problem
69 C. C. MacDuffee Orthogonal matrices in four-space
73 W. Fenchel On conjugate convex functions
78 K . Mahler On the critical lattices of arbitrary point sets
88 R. H. Bruck, H. J. Ryser The nonexistence of certain finite projective planes
94 Karl Menger Generalized vector spaces. I. The structure of finite-dimensional spaces
105 Irving Kaplansky Groups with representations of bounded degree
113 H . W. Ellis Mean-continuous integrals
125 Ernst Snapper Completely indecomposable modules
153 Marsten Morse, William Transue Functionals of bounded Fréchet variation
166 G. de B. Robinson On the disjoint product of irreducible representations of the symmetric group
176 M. H. Stone Boundedness properties in function-lattices
187 Marshall Hall Jr. Subgroups of finite index in free groups
191 E. C. Titchmarsh On the uniqueness of the Green's function associated with a second-order diff equation
199 Garrett Birkhoff, Lindley Burton Note on Newtonian force-fields
209 A. Einstein, L. Infeld On the motion of particles in general relativity theory
242 S. Minakshisundaram, Å. Pleijel Some properties of the eigenfunctions of the Laplace-Operator on Riemannian manifolds
257 J. L. Synge On the motion of three vortices
271 Alexander Weinstein On surface waves
279 Herbert Busemann Angular measure and integral curvature
297 S. D. Chowla, John Todd The density of reducible integers
300 Olga Taussky On a theorem of Latimer and MacDuffee
Imagine a similar

303 J. S. Frame Congruence relations between the traces of matrix powers
305 G. G. Lorentz Direct theorems on methods of summability
320 S. Minakshisundaram A generalization of Epstein zeta functions
328 N. S. Mendelsohn Applications of combinatorial formulae to generalizations of Wilson's theorem
337 R. Rado Axiomatic treatment of rank in infinite sets
344 Gordon Pall Representation by quadratic forms
365 Robert Frucht Graphs of degree three with a given abstract group
379 G. F. D. Duff Factorization ladders and eigenfunctions
397 K. Mahler On a theorem of Liouville in fields of positive characteristic

1963 to 1970

I. 1948 to 1962: From South Africa to the UK

 II. 1963 to 1970: OntarioIII. 1971 to 1982: Oxford, Halifax, Pittsburgh
IV. 1983 to 1993: Halifax and Waterloo
V. 1994 to 2000: Vancouver
VI. 2001 to 2008: From BC to NS to NSW

The budget of Dalhousie in 1975 (Hicks was VC) was larger than NS in 1955 (when Hicks was Premier)

1963 to 1970

1963 DB hired to make Western Ontario a research dept

- UWO now one of top 5 University's in Canada

1967 Astronomy professor's wife could only be an instructor

- 'anti-nepotism’ clauses

1960-1990? Promotion routinely refused on anti-semitic grounds

- slide rules, mimeographs and airmail letters prevailed

1963-1970 Sputnik briefly met Bourbaki

- English speaking academic community more than doubled ('massification')

1997 "Thank God it's so different today!" Mr. Wiesel said. "Today, there are Jewish presidents at Princeton, Harvard, Yale and Northwestern. Something happened in America. Of course we had to pay a price: the Holocaust. But the Holocaust has changed America."

1963 to 1970

DB relaxing at home

1968 My first Functional Analysis course from LS Bosanquet - a student of GH Hardy (and 'author’ of Divergent Series)

1965 Moore's Law \& Implications

"The complexity for minimum component costs has increased at a rate of roughly a factor of two per year ...

- now taken as "every 18 months to 2 years"

Certainly over the short term this rate can be expected to continue, if not to increase. Over the longer term, the rate of increase is a bit more uncertain, although there is no reason to believe it will not remain nearly constant for at least 10 years. That means by 1975, the number of components per integrated circuit for minimum cost will be 65,000. I believe that such a large circuit can be built on a single wafer.

Gordon Moore (Intel) "Cramming more components onto Electronic Circuits", Electronics Magazine 19 April 1965

1971 to 1982

I. 1948 to 1962: From South Africa to the UK

II. 1963 to 1970: Ontario
III. 1971 to 1982: Oxford, Halifax, Pittsburgh
IV. 1983 to 1993: Halifax and Waterloo
V. 1994 to 2000: Vancouver
VI. 2001 to 2008: From BC to NS to NSW

Oxford Univ. only lost members on City Council in 1974

- and the right to hang students?

1971 to 1982

1966-74 ties \& gowns disappear in Oxford but 'fiancées' arrive

- Xerox (1958-61) arrives in public
- only allowed one copy
- So do TI calculators (CASIO blew it) and "Pong"
- slide rule is in Smithsonian within 5 years

1972 "Trunk calls" were expensive and difficult

- to call home we stayed a night at Paddington hotel

1978- Personal computing and T_{E} (frozen in 1988) arrive

- how Dave Bailey did not make his first $\$ 100$ million

1979 Carnegie-Mellon put all pre-1948 material on micro-fiche and sold originals
Logarithms took root as fast as TI as Gary Tee can attest

1983 to 1993

I. 1948 to 1962: From South Africa to the UK

 II. 1963 to 1970: OntarioIII. 1971 to 1982: Oxford, Halifax, Pittsburgh IV. 1983 to 1993: Halifax and Waterloo
V. 1994 to 2000: Vancouver
VI. 2001 to 2008: From BC to NS to NSW

In 1989 we had to shut down Dalhousie's main computer to compress a 16Mb ISC book file: now the iPhone has 8Gb

1983 to 1993

1983: I design my best code for a class

- the "idiot pivoter": to make teaching simplex tolerable

1985 - contracted to author Collins dictionary

- 1985 given "electronic and musical rights"
- blessed six week turn around as we edited UK $\leftrightarrow N S$

- $\quad 19881^{\text {st }}$ book set from disk in Europe; FAX finds me here
- 1995 we asserted digital rights to Harper who replied "much as we hate to agree." We founded Math Resources Inc.
Faculty clubs started to die as life-styles changed Honours classes began to disappear and curiosity-driven research funds shrank

The state of the art LP package (CPLEX) still does not prove anything - one reason Hales had problems publishing his solution of Kepler's problem

1983 to 1993

1991-1993 I Set up CECM (now PBB's IRMACS)

- SUN work stations were work horses
- SGI Indy's were cool and cost effective
- IT flowed out of central computing into departments

1993 WWW arrived democratizing mathematics

- for better and worse (anti-social networking)
- we were already serving data through Archie,

"A centre of excellence is, by definition, a place where second class people may perform first class work."
from J.M. Thomas, Michael Faraday - and the Royal Institution, 1991.

A 1985 Relational Silicon Database

Controlling: 3 Apple+s, a brain-dead Lisa, MacWrite, and dozens of 5" floppies

1994 to 2000

I. 1948 to 1962: From South Africa to the UK

 II. 1963 to 1970: OntarioIII. 1971 to 1982: Oxford, Halifax, Pittsburgh
IV. 1983 to 1993: Halifax and Waterloo V. 1994 to 2000: Vancouver

VI. 2001 to 2008: From BC to NS to NSW

My morale has never been higher than since I stopped asking for grants to keep my lab going, Robert Pollack, Columbia, speaking on "the crisis in scientific morale", September 19, 1996 at GWU symposium Science in Crisis at the Millennium.

1994 to 2000

1994 Java arrived \& St Andrews history MacTutor (MT) opened 1995 we built the Organic Math Project

=

 still largely unmatched collection of 30 "activated" mathematical articles (I am amazed at its resilience)Hopes for the "open frontier" were very high

- read Lawrence Lessing on IP in 1995 and 2005

Advanced Mathematical Computing became possible

- Maple, Mathematica and MATLAB reached near maturity

1996 MathSciNet went public (see following pages: in both cases I asked for and got details within the day)
"The most important intellectual event of 1997 took place in a warehouse outside Seattle"

1994 to 2004

From Edmund Robertson: "John O'Connor and I won the European Academic Software Award in 1994 with MacTutor and we demonstrated the first version of the web Archive in Heidelberg as part of our submission. So its been running now for about 14 years.

The average number of hits per day over the last seven days was 316,245 per day. This number still amazes me! About 4.5 gigabytes of data are transferred per day. These numbers have been pretty constant now for at least the last 5 years with between 300,000 and 400,000 hits per day. There are about 2000 biographies ... I'm sure that is more than enough information.

On a personal note: the first university course I attended was 'Analysis' given by your father in 1961 at St Andrews. I retired one week ago - how quickly the years go by.

A final thought - I'd love to put a version of your talk on the archive."

> MacTutor, along with the Math Genealogy project, is a labour of love of enormous value and an uncertain future

1994 to 2000

From John Ewing: "MathSciNet first went live to the public in January, 1996, after a frantic development cycle in a matter of months.

It began adding links to original articles in 1997, and now has more than 1 million links. (More than half the journal articles listed in MathSciNet have links, which means well more than half the journal literature is online.)

It began adding reference lists to a selection of journals (now about 420) in 1999, and this forms the basis for the mathematics citation database.

Math Reviews has done author identification for the past 68 years, uniquely identifying (by hand) every author of every article. (There are now more than 512,000 authors so indexed!). The results of this effort are now contained on an author profile page (see your own at http://www.ams.org/mathscinet/search/author.html?mrauthid=39830)"

For most purposes AMS now provides a much more reliable citation barometer than ISI or Google: but less so for more applied areas.

Very cool for the one person with control - and very expensive: great genomic applications

The Changing Research Landscape: a new triangle

Computational

2001 to 2008

I. 1948 to 1962: From South Africa to the UK

II. 1963 to 1970: Ontario
III. 1971 to 1982: Oxford, Halifax, Pittsburgh
IV. 1983 to 1993: Halifax and Waterloo
V. 1994 to 2000: Vancouver
VI. 2001 to 2008: From BC to NS to NSW

Concentration of ownership of Mathematics Journals by a few big publishers has accelerated over the decade

2001 to 2008

1948 A good PhD was original but might now take few seconds in MATLAB 2008 A good PhD must be a discovery* ("independent, reliable and rational")

- but may well not be original

2007 The reference book market is collapsing

- publishers still do not understand software

Time is replacing space as a distance metric
2008 Maths lags badly behind most disciplines in technology use

- the Access Grid
- web services and databases
- symbolic computation, visualization and more
- That said, mathematics is more highly respected than at any time in my lifetime (before the crash?)
* M. GiaQuinto, Visual Thinking in Mathematics, OUP 2007 (Reader at UC London)

Each Mathematics ISI Citation is worth 15 in Physics and 80 in Medical Science

"It says it's sick of doing things like inventories and payrolls, and it wants to make some breakthroughs in astrophysics."

The Current End 2001 to 2008

A cross-section of illustrations follows:

- The Access Grid
- Web services and databases
- Symbolic computation, visualization and much more

We should both be exploiting and be worrying about their use since our subject relies more on the reliability of its literature than does any other science

REFERENCES

MathResources Inc.

J.M. Borwein and D.H. Bailey, Mathematics by Experiment: Plausible Reasoning in the 21st Century, A.K. Peters, $2^{\text {nd }}$ expanded edition, 2008 and with

Enigma
R. Girgensohn, Experimentation in Mathematics: Computational Paths to Discovery, A.K. Peters, 2004. [Active CDs 2006]
D. Bailey, J. Borwein,N. Calkin, R. Girgensohn, R. Luke, and V. Moll, Experimental Mathematics in Action, A.K. Peters, 2007
J.M. Borwein, E.M. Rocha, and J.F. Rodrigues, Communicating Mathematics in the Digital Era, A.K. Peters 2008

Jon Borwein and Keith Devlin, The Computer as Crucible, A.K. Peters 2008
"The object of mathematical rigor is to sanction and legitimize the conquests of intuition, and there was never any other object for it."

- J. Hadamard quoted at length in E. Borel, Lecons sur la theorie des fonctions, 1928.

Dalhousie Distributed Research Institute and Virtual Environment

Coast to Coast ('C2C’) Seminar

Tuesdays 3:30pm (Atlantic)"I1.30am (Pacific)
\checkmark Chapter in Communicating Mathematics in the Digital Era (AK Peters, Sept 2008)

Lead partners:
Dalhousie D-Drive - Halifax Nova Scotia

IRMACS - Burnaby, British Columbia

Other Participants so far include:
University of British Columbia, University of Alberta, University of Alberta, University of Saskatchewan, Lethbridge University, Acadia University, MUN, Mt Allison, St Francis Xavier University, University of Western Michigan, MathResources Inc, University of North Carolina, ...

I could be in Newcastle AG
CARMA is coming
Computer Assisted Research Maths and its Applications

The Experience

Fully interactive multi-way audio and video
Given good bandwidth audio is
much harder (if you rehearse)

The closest thing to being in the same room

Shared Desktop for viewing presentations or sharing software

"Solving Checkers" Speaker in Edmonton Audience in Vancouver

April 2007 Checkers solved

Science: one of top 10
break-throughs of 2007
2006: Poincaré Conjecture
top breakthrough of year

2006 ICM Satellite Meeting Collection

AKPeters, October 2008

"The digital era has dramatically changed the ways that researchers search, produce, publish, and disseminate their scientific work. These processes are still rapidly evolving due to improvements in information science, new achievements in computer science technologies, and initiatives such as DML and open access journals, digitization projects, scientific reference catalogs, and digital repositories.

These changes have prompted many mathematicians to play an active part in the developments of the digital era, and have led mathematicians to promote and discuss new ideas with colleagues from other fields, such as technology developers and publishers. This book is a collection of contributions by key leaders in the field, offering the paradigms and mechanisms for producing, searching, and exploiting scientific and technical scholarship in mathematics in the digital era."

COMMUNICATING MATHEMATICS IN THE DIGITAL ERA

Edited by
J. M. BORWEIN, E. M. ROCHA, AND J. F. RODRIGUES

IBM BlueGene/L at LANL

IBM Computer Achieves Petaflop Performance

 6/9/2008A National Nuclear Security Administration (NNSA) supercomputer has achieved an operational rate of 1,000 trillion calculations per second, or 1 petaflop, making the Roadrunner -which the NNSA commissioned IBM Corp. to build in 2006 for around $\$ 130$ million -- the world's fastest computer, the agency announced today.

2.8/5.6 GF/s 4 MB

[^0]2^{17} cpu's: Oct 2007 ran Linpack benchmark at over 596 Tflop Isec
The future 2005-2010 ($5 \times$ Canada or $8 \times \mathrm{Oz}$)

Jon Borwein's Mathematics Portal

The following is a list of useful math tools. The distinction between categories is somewhat arbitrary.

Utilities (General)

1. The On-Line Encyclopedia of Integer Sequences
2. ISC2.0: The Inverse Symbolic Calculator
3. 3D Function Grapher
4. Julia and Mandelbrot Set Explorer
5. The KnotPlot Site

Utilities (Special)

6. EZ Face : Evaluation of Euler Sums and Multiple Zeta Values
7. GraPHedron: Automated and Computer Assisted Conjectures in Graph Theory
8. Embree-Trefethen-Wright Pseudospectra and Eigenproblems
9. Symbolic and Numeric Convex Analysis Tools

Reference

10. NIST Digital Library of Mathematical Functions(X)
11. Experimental Mathematics Website
12. Numbers, Constants, and Computation
13. Numbers: the Competition
14. The Prime Pages

Haptics and Light Paths

- in Museums, Aware Homes, elsewhere

Sensable's Phantom Omni

- Kinesiology, Surgery, Music, Art ...

Cost effective 3D visualization in 2007

$19^{\text {th }}$ C model plus recent photograph and $21^{\text {st }} \mathrm{C}$ rendition

Helicoid: minimal surface.

Content Must Dominate Form

Jonathan Borwein, Dalhousie University

High Quality Presentations

 Mathematical Visualization

Peter Borwein, IRMACS The Riemann Hypothesis

"No one explains chalk"

Jonathan Schaeffer, University of Alberta
 Solving Checkers

Arvind Gupta, MITACS
Uwe Glaesser, Simon Fraser University Semantic Blueprints of Discrete Dynamic Systems

The Protein Folding Problem
Przemyslaw Prusinkiewicz, University of Calgary Computational Biology of Plants

Karl Dilcher, Dalhousie University
Fermat Numbers, Wieferich and Wilson Primes

Future Libraries will include very complex objects

New Ways of Seeing Math

- The Colour Calculator
- numbers as pictures
- The Inverse Calculator
- numbers go in and symbols come out
- The Top Ten Numbers Website

- All at http://ddrive.cs.dal.ca/~isc/portal

A Colour and an Inverse Calculator (1995 \& 2007)

Inverse Symbolic Computation

Archimedes: $223 / 71<\pi<22 / 7$ Inferring mathematical structure from numerical data

- Mixes large table lookup, integer relation methods and intelligent preprocessing - needs micro-parallelism
- It faces the "curse of exponentiality"
- Implemented as identify in Maple 9.5 Inverse YYMBOLIC CALCULATOR

Mathematics and Beauty 2006

Calculator (ISC) uses a combination of lookup tables and integer relation algorithms in order to associate with a user-defined, truncated decimal expansion (represented as a floating point expression) a closed form representation for the real number

Drive
CRSNG
Maplesoft

(inverse symbolic

Standard lookup results for $\mathbf{1 2 . 5 8 7 8 8 6 2 2 9 5 4 8 4 0 3 8 5 4}$

The original ISC
The Der Team: Nathan Singer, Andrew Shouldice, Lingyun Ye,
Tomas Daske, Peter Dobcsanyi, Dante Manna, O-Yeat Chan, Jon Borwein
$\frac{\text { Webpage }}{\text { David Bailey's }}$
$\frac{\text { Webpage }}{}$
Math Resources Portal

19.99909998 Try it!
\square The original ISC

- ISC+ runs on Glooscap
- Less lookup \& more algorithms than 1995

Striking fractal patterns formed by plotting complex zeros for all polynomials in powers of x with coefficients 1 and -1 to degree 18
Coloration is by sensitivity of polynomials to slight variation around the values of the zeros. The color scale represents a normalized sensitivity to the range of values; red is insensitive to violet which is strongly sensitive.

- All zeros are pictured (at 3600 dpi)
- Figure 1b is colored by their local density
- Figure 1d shows sensitivity relative to the x^{9} term
- The white and orange striations are not understood

A wide variety of patterns and features become visible, leading researchers to totally unexpected mathematical results

[^1]

When is a Movie an Interactive Proof? The Perko Pair 10_{161} and 10_{162}

are two adjacent 10-crossing knots (1900)

- first shown to be the same by Ken Perko in 1974
- and beautifully made dynamic in KnotPlot (open source-ish)
- I'll happily play this movie and the next one if asked in the Question Period

A Movie that Teaches Beautifully

- Arnold and Rogness (2007)

Mëbius Trunctarnatians Revealad

"What it comes down to is our software is too hard and our hardware is too soft."

Amazing New Web Services

AT\&T Online Encyclopedia of Sequences What is $1,2,3,6,11,23,47,106,235, \ldots ?$

- arat finfeger Sequences RESEARCM

The On-Line Encyclopedia of Integer Sequences

Enter a © sequence, O word, or O sequence number:
$1,2,3,6,11,23,47,106,235$

Search Restore example Clear |Hints |Advanced look-w|

Supernumerary Rainbow over Newton's birthplace
NIST Digital Library of Math Functions

> MathResources Inc.

MAA Digital Library with my company's free dictionary

- also in Maple since 9.5

Soon the texts will also do lots of the maths

Greetings from the On-Line Encyclopedia of Integer Sequences!

An Exemplary Database

ID Number: 1000055 (Formerly MO791 and NO299)
URL: http://www.research.att.com/projects/OEIS?Anum= 0000055
Sequence:
$1,1,1,1,2,3,6,11,23,47,106,235,551,1301,3159,7741,19320$, $48629,123867,317955,823065,2144505,5623756,14828074$, $39299897,104636890,279793450,751065460,2023443032$, $5469566585,14830871802,40330829030,109972410221$

Hame:

Number of trees with n unlabeled nodes.

Comments: Also, number of unlabeled 2 -gonal 2 -trees with n 2 -gons.
References F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 279.
N. L. Biggs et al., Graph Theory $1736-1936$, $0 \times f$ ford, 1976, p. 49.
S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. $295-316$.
D. D. Grant, The stability index of grgphs, pp. 29-52 of Combipatorial Mathematics (Proceedings 2nd Australian Conf.), Lect. Notes Math. 403, 1974.
F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969, p. 232.
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 58 and 244.
R. C. Read and R. J. 隹ison, An Atlas of Graphs, Oxford, 1998
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 138.

- AP book had 5,000
P. J. Cameron, Sequences realized by oligomorphic permutation groups Steven Finch, Otter's Tree Enumeration Constants
E. M. Rains and N. J. A. Sloane, On Cayley's Enumeration of Alkanes (or 4-Valent Trees) N. J. A. Sloane, Illustration of initial terms
E. Wi. Weisstein, Link to a section of The World of Mathematics.

Index entries for sequences related to trees

Index entries for "core" sequences

G. Labelle, C. Lamathe and P. Leroux, Labeled and unlabeled enumeration of k-gonal $2-t r$
 http://dlmf.nist.gov First 21C database
igital
ibrary of
athematical
Functions
Chapter AI. Airy \& Related Functions
Properties

§AI.4. Maclaurin Series

For $z \in \mathbb{C}$
AIA. 1
$\mathrm{Ai}(z)=\mathrm{Ai}(0)\left(1+\frac{1}{3!} z^{3}+\frac{1 \cdot 4}{6!} z^{6}+\frac{1 \cdot 4 \cdot 7}{9!} z^{9}+\cdots\right)+\mathrm{Ai}^{\prime}(0)\left(z+\frac{2}{4!} z^{4}+\frac{2 \cdot 5}{7!} z^{7}+\frac{2 \cdot 5 \cdot 8}{10!} z^{10}+\right.$

- Formula level
\rightarrow Index \rightarrow Notation
Search
for what
0 Sho wAnnotations
-

Need Help?
-•Accessible output mbout the Froject © Copyrint/Priyzacy Policy
 Jaruary 12, 2006

Supported by

National Institute of Standards and Technology

AIA. 2
$A i^{\prime}(z)=A i^{\prime}(0)\left(1+\frac{2}{3!} z^{3}+\frac{2 \cdot 5}{6!} z^{6}+\frac{2 \cdot 5 \cdot 8}{9!} z^{9}+\cdots\right)+\mathrm{Ai}(0)\left(\frac{1}{2!} z^{2}+\frac{1 \cdot 4}{5!} z^{5}+\frac{1 \cdot 4 \cdot 7}{8!} z^{8}+\cdots\right)$, Al4. 3
$\mathrm{Bi}(z)=\mathrm{Bi}(0)\left(1+\frac{1}{3!} z^{3}+\frac{1 \cdot 4}{6!} z^{6}+\frac{1 \cdot 4 \cdot 7}{9!} z^{9}+\cdots\right)+\mathrm{Bi}^{\prime}(0)\left(z+\frac{2}{4!} z^{4}+\frac{2 \cdot 5}{7!} z^{7}+\frac{2 \cdot 5 \cdot 8}{10!} z^{10}+\right.$
Al.4. 4
$\mathrm{Bi}^{\prime}(z)=\mathrm{Bi}^{\prime}(0)\left(1+\frac{2}{3!} z^{3}+\frac{2 \cdot 5}{6!} z^{6}+\frac{2 \cdot 5 \cdot 8}{9!} z^{9}+\cdots\right)+\mathrm{Bi}(0)\left(\frac{1}{2!} z^{2}+\frac{1 \cdot 4}{5!} z^{5}+\frac{1 \cdot 4 \cdot 7}{8!} z^{8}+\cdots\right)$.

- Index
- Notations
-

Search

- Need Help?
- Customize
- Show

Annotations
About the Project
Copyright/Privacy Policy
Feedback

Feedback

National Institute of Standards and Technology National Calshat Foundation (C+1+b+atisa $50 \mathrm{Ye+t}$.

The faint line below the main colored arc is a 'supernumerary rainbow', produced by the interference of different sun-rays traversing a raindrop and emerging in the same direction. For each color, the intensity profile across the rainbow is an Airy function. Airy invented his function in 1838 precisely to describe this phenomenon more accurately than Young had done in 1800 when pointing out that supernumerary rainbows require the wave theory of light and are impossible to explain with Newton's picture of light as a stream of independent corpuscles. The house in the picture is Newton's birthplace.

[^0]: 0.5 GB DDR

[^1]: "The idea that we could make biology mathematical, I think, perhaps is not working, but what is happening, strangely enough, is that maybe mathematics will become biologica!!" Greg Chaitin, Interview, 2000.

