

Dalhousie Distributed Research Institute and Virtual Environment

Advanced Collaborative Environments

 Jonathan Borwein, fRSC www.cs.dal.ca/~jborwein\square Canada Research Chair in Collaborative Technology

Background: Optimization, Analysis, Number Theory, Computation, Math Phil

"I feel so strongly about the wrongness of reading a lecture that my language may
seem immoderate The spoken word and the written word are quite different
arts I feel that to collect an audience and then read one's material is like
inviting a friend to go for a walk and asking him not to mind if you go alongside
him in your car."
Sir Lawrence Bragg
Inspiring Minds

 computation and storage, collaborative environments and visualization make it possible to interact at a distance in many varied and flexible ways.

I'll illustrate some present and emerging opportunities to share research and data, seminars, classes, planning meetings and much else fully even at a distance URLS. http://projects.cs.dal.ca/ddrive http://users.cs.dal.ca/~jborwein
http://www.experimentalmath.info http://www.mathresources.com
Challenges of MKM (Math Knowledge Management)

- integration of tools, inter-operability
- e.g., workable mathematical OCR
- intelligent-agents, automated use
- many IP/copyright and sociological issues
- metadata, standards and on
www.mkm-ig.org

Outline of ACE Talk

A. Communication, Collaboration and Computation.

B1. Visual Data Mining in Mathematics (old and new). B2. Integer Relation Methods. B3. Inverse Symbolic Computation.

The talk ends when I do

Much is still driven by particle physics, Moore's Law and (soon) biology balanced by `commoditization':

- AccessGrid

Drive

- User controlled light paths
- Atlas (LHC hunt for the Higgs Boson)
- TRIUMF using 1000 cpu, 1Peta-byte
- Genomics and proteomics
- SARS decoded at Michael Smith Genome Centre but WalMart already stores twice the public internet

Microprocessor
Year of
Transistors

4004	1971	2,300
8008	1972	2,500
8080	1974	4.500
8086	1978	29,000
Intel286	1982	134,000
Intel386" processor	1985	275,000
Intel486 ${ }^{\text {"1 }}$ processor	1989	1,200,000
Intel ${ }^{*}$ Pentium ${ }^{\text {e }}$ processor	1993	3,100,000
Intel** Pentium ${ }^{\text {® }}$ II processor	1997	7.500,000
Intel ${ }^{\bullet}$ Pentium ${ }^{*}$ ill processor	1999	9,500,000
Intel ${ }^{\star}$ Pentium ${ }^{*} 4$ processor	2000	42,000,000
Intel ${ }^{*}$ Itanium ${ }^{\text {a }}$ processor	2001	25,000,000
Intel ${ }^{\star}$ Itanium ${ }^{\text {2 }} 2$ processor	2003	220,000,000
Intel ${ }^{\text {I }}$ Itanium" 2 processor (9MB cache)	2004	592,000,000

Pentium ${ }^{\text {® }}$ II Processor Pentium Pro Processor

Pentium Processor 1,000

Law in 1965 and 2005

This picture is worth 100,000 ENIACs

East meets West: Collaboration goes National
Welcome to D-DRIVE whose mandate is to study and develop resources specific to ('dis-located') distributed research and interaction in the sciences with first client groups being the following communities

- High Performance Computing
- Mathematical and Computational Science Research
- Science Outreach
- Research
- Education
- Media

Dalhousie Distributed Research Institute and Virtual Environment

D-DRIVE Jon Borwein P. Borwein (SFU) D. Bailey (Lawrence Berkeley)
R. Crandall (Reed and Apple) and many others

Staff

$$
\begin{array}{cl}
\text { David Langstroth (Manager) } & \text { Scott Wilson (Systems) } \\
\text { Nolan Zhang (SysOp) } & \text { Peter Dobscanyi (HPC) }
\end{array}
$$

Students Macklem (Parallel Optimization) Wiersma (Analysis/ NIST) Hamilton (Inequalities and Computer Algebra) Ye (Quadrature) Paek (Federated search), Oram (Haptics), et al

AIM ('5S' Secure, Stable, Satisfying) Presence at a Distance

Based on scalable
-Topographic
-Dynamic
-Autonomous
sustainable tools

1996 NSERC Spinoff（15FTE）

www．mathresources．com

34 Wednesday，December 15,2004

Try your hand at new math

Content Provider：putting math and science on handhelds， laptops，web，in classrooms （LORs and authoring tools）．．．

Firm develops software to help guide kids through maze of numbers By CREG MacVICAR Ron Fingerald says math is is language Ron nd most students are Hiliterate．
The president of Haliax sotware The president of Halifax software
company Mathresources ne．wants to
 and his wife quit their jobs as book
editiors in Toronot in 1995
Ten years later，he says his company

Why show MRl's 1st Product? (1996)

\checkmark often 10-year lag from R\&D to product. Unlike books even 'proof-of-concept' R\&D is too expensive for Univ's. As is maintenance.

- Built on Harper Collins college dictionary - an IP adventure!
- Maple inside the MathResource
- Database now in Maple 9.5/10
- CONVERGENCE?

FOR
 USERS OF
 Wintows Mobile" PDis
 \&

 -0 wis M A G A Z I N E

Bringing Math Concepts to Life at Robert Morris College 2005

by Dawn Henwood
t's just another Wednesday morning in a small applied math class in Chicago's Robert Morris College, but instructor EA Clark is conscious that he's at the epice 1 ter of an educational revolution. Clustered in small groups, Clark's students are engaged a hands-on analysis of two competitive cel phone plans. Because all of the students have in hand a Dell Axim with MRI Graphing Calculator software, they're able to tackle the problem at their own pace and in their own way. With this powerful combination of hardware and software, Clark has transformed his classroom into an active mathematics "laboratory."

The effect of the new technology on Clark's teaching style has been dramatic. Previously he used up to a third of his class time just explaining how to work the calculator and guiding students step by step through complicated keystrokes. Now he focuses entirely on how to work the problems: he's free to engage students in what he calls "discovery learning." In ome cases, he's able to cover a concept twice as quickly as it would have taken in the p

Clant says that MRI Graphing Cokulator and Pocket PCS Havederpented the focus of his teaching. "Just the fact that a handheld computer displays colors is huge," he notes, "especially when you are working with a

Prototyping Collaboration

- licenses, permissions, privacy, security etc

"It says it's sick of doing things like inventories and payrolls, and it wants to make some breakthroughs in astrophysics."

ExpERIMENTS
 in Mathematics

The reader who wants to get an introduction to this exciting approach to doing mathematics can do no better than these books.
-Notices of the AMS
I do not think that I have had the good fortune to read two more entertaining and informative mathematics texts.
-Australian Mathematical Society Gazette
This Experiments in Mathematics CD contains the full text of both Mathematics by Experiment: Plausible Reasoning th the 21st Century and Expertmentation in Mathematics: Computational Paths to Discovery in electronic, searchable form. The CD includes several "smart" enhancements, such as

- Hypertinks for all cross references
- Hyperlinks for all Internet URLs
- Hypertinks to bibliographic references
- Enhanced search function, which assists one with a search for a particular mathematical formula or expression.

These enhancements significantly improve the usability of these files and the reader's experience with the material.

A K Peters, Ltd.

Experimental Mathodology

1. Gaining insight and intuition
2. Discovering new relationships
3. Visualizing math principles
4. Testing and especially falsifying conjectures
5. Exploring a possible result to see if it merits formal proof
6. Suggesting approaches for formal proof
7. Computing replacing lengthy hand derivations
8. Confirming analytically derived results

Computer experiments are transforming mathematics
by erica klarreich

$1 /$
any people regard mathematies as the crown jewel of the sciences. Yet math has historically lacked one of the defining trappings of science: laboratory equipment. Physicists have their particle accelerators; biologists, their electron microscopes; and astronomers, their telescopes. Mathematics, by contrast, concerns not the physical landscape but an idealized, abstract world. For exploring that worid, mathematicians have traditionally had only their intuition.
Now,
 enabling researchers to travel for-
ther and deeper into the mathether and deeper into the mathe-
matical universe. They're calcu matical universe. They're calcu-
lating the number pi with lating the number pi with
mind-boggling precision, for
instance, or discovering patterns in the contours of beautiful, infinite chains of spheres that arise out of the geometry of knots. Experiments in thic computer lab
are leading mathematicinus to dis are leading mathematicians to dis-
coveries and insights that they might coveries and insights that they might
never have reached by traditional
means. "Prety much every [mathmeans. "Pretty much every [math-
ematical] tield has been transtormed byit," says Richard Crandall, a mathematician at Reed College in Port-
land, Ore. 'Instead of just being a land, Ore. "Instrad of just being a puter is beoming more like comden showel that turns over rocks, and you find things underncath.
At the same time, the new work is raising unscttling questions about how to regard experimental result

Thave some of the excitement that Leonardo of Pisa must have felt when he eneountered Arabic arithmetic. It suddenly made eet-
tain calculations flabbergastingly easy", Borvein says. "That's what tain calculations flabbergastingly easy, Borwein ssys." "Ihat's wh
I think is happening with computer experimentation today:
EXPERIMENTERS OF OLD In one sense, math experiments are nothing new. Despite their field's reputation as a purely deductive science, the great mathematicians over the centuries have tive science, the great mathematicians over the centuris.
never limited themselves to formal reasoning and proof. never limited themselves to formal reasoning and proof.
For instance, in 1666 , sheercuriosity and lore of numbers led Issac Newton to calculate directly the first 16 digits of the number pi,
later writing. T Tam ashamed to tell you to how many figures I callater writing, 'T am ashamed to tell you to how many figures I car-' ried these computations, having no other business at the time" Carl Friedrich Gauss, one of the towering figures of 19th-century mathematics, habitually dils covered new mathematical resuand ooking for patterns. When Gauss was a teenager, for instance, his experiments led him to one of the most important conjectures in the
history of number theory: that the number of prime numbers less than
number a number x is roughly equal to x divided by the logarithm of x. Gauss often discovered results experimentaly long before he could prove them formally: Once, be com-
plained "I have the essult, but I do not yet know how to get it."
not yet know how wo get in
In the case of the prime number
theorem, Gauss later refined his conjecture but never did figure out how to prove it. It took more than a
contury for mathemerticiens to come up with a proof.
wike today's mathematicians,
Lith a proot
math experimenters in the late 19th century used computers - but in those days, the word referred to peothose dias, the word reterred to peo-
ple with a special fuility for calcu-

Comparing $-y^{2} \ln (y)(r e d)$ to $y-y^{2}$ and $y^{2}-y^{4}$

Advanced Networking ... (with CANARIE)

Dalhousie Distributed Research Institute and Virtual Environment

Components include

- AccessGrid
- UCLP for
- haptics
- learning objects
- visualization
- Grid Computing
- Archival Storage - Data Bases
- Data Mining

C3 Membership

Dalhousie Distributed Research Institute and Virtual Environment

Coast to Coast Seminar Series (C2C)

Tuesdays 3:30-4:30 pm Atlantic Time http://projects.cs.dal.ca/ddrive/

Lead partners:
Dalhousie D-Drive - Halifax Nova Scotia

SFU IRMACS - Burnaby British Columbia

Other Participants so far:

University of British Columbia, University of Alberta, University of Alberta, University of Saskatchewan, Lethbridge University,

Acadia University, St Francis Xavier University, MUN, University of Western

Michigan, MathResources Inc, University of North Carolina

The Experience

Fully Interactive multi-way audio and video
audio is harder (given good bandwidth)
The closest thing to being in the same room

Shared Desktop for viewing presentations or sharing software

Virtual CoLab at SFU

(adding architectural metaphors)

2003: Me and my Avatar

- designer now works for William Shatner ('Wild')

The 2,500 sq-metre IRMACS research centre

Trans-Canada 'C2C' Seminar Tuesdays PST 11.30 MST 12.30 AST 3.30 and even 7.30 GMT [March 30 - from MRInc]

Jonathan Borwein, Dalhousie University

High Quality Presentations

 Mathematical VisualizationUwe Glaesser, Simon Fraser University Semantic Blueprints of Discrete Dynamic Systems

Peter Borwein, IRMACS
The Riemann Hypothesis

Arvind Gupta, MITACS

"No one explains chalk"

Jonathan Schaeffer, University of Alberta Solving Checkers

Przemyslaw Prusinkiewicz, University of Calgary Computational Biology of Plants

Karl Dilcher, Dalhousie University
Fermat Numbers, Wieferich and Wilson Primes

Haptics in the MLP

Dalhousie Distributed Research Institute and Virtual Environment

We link multiple devices s̃o two or more users may interact at a distance (BC/NS Demo April 06)

Sensable's Phantom Omni

- in Museums and elsewhere

- Kinesiology, Surgery, Music, Art ...

"What I appreciate even more than its remarkable speed and accuracy are the words of understanding and compassion I get from it."

Outline of ACE Talk

A. Communication, Collaboration and Computation.

B1. Visual Data Mining in Mathematics (old and new).
B2. Integer Relation Methods.
B3. Inverse Symbolic Computation.
The talk ends when I do

Global digitization efforts are underway within the

Drive International Mathematical Union
world digital mathematics library

5 Smart Shared-Screens

I shall show a variety of mathematical uses of high performance computing and communicating as part of

Experimental Inductive Mathematics

Our web site:

www.experimentalmath.info

contains all links and references

"Elsewhere Kronecker said "In mathematics, I recognize true scientific value only in concrete mathematical truths, or to put it more pointedly, only in mathematical formulas." ... I would rather say "computations" than "formulas", but my view is essentially the same."

Harold Edwards, Essays in Constructive Mathematics, 2004

COXETER'S (1927) Kaleidescope Visuralization

Interactive Proofs

The Perko Pair 10_{161} and 10_{162}

are two adjacent 10-crossing knots (1900)

- first shown to be the same by Ken Perko in 1974
- and beautifully made dynamic in KnotPlot (open source)

Double cusp group

I N DRA'S

PEARLS The Vision of Felix Klein

David Mumford, Caroline Series, David Wright

2002: http://klein.math.okstate.edu/IndrasPearls/

CINDERELLA

FOUR DEMOS combining

 inversion, reflection and dilation1. Indraspearls
2. Apollonius*
3. Hyperbolicity
4. Gasket

A triangle is now a dynamic object

Striking fractal patterns formed by plotting complex zeros for all polynomials in powers of x with coefficients 1 and -1 to degree 18
Coloration is by sensitivity of polynomials to slight variation around the values of the zeros. The color scale represents a normalized sensitivity to the range of values; red is insensitive to violet which is strongly sensitive.

- All zeros are pictured (at 3600 dpi)
- Figure 1b is colored by their local density
- Figure 1d shows sensitivity relative to the x^{9} term
- The white and orange striations are not understood

A wide variety of patterns and features become visible, leading researchers to totally unexpected mathematical results

> "The idea that we could make biology mathematical, I think, perhaps is not working, but what is happening, strangely enough, is that maybe mathematics will become biological!" Greg Chaitin, Interview, 2000.

Visual Numeric and Symbolic Computation

- Central to my work - with Dave Bailey meshed with visualization, randomized checks, many web interfaces/databases (NIST)
- Massive (serial) Symbolic Computation
- Automatic differentiation code
- Integer Relation Meth.ods
- Inverse Symbolic Computation

The On-Line Encyclopedia of Integer Sequences

Other languages: Albanian Arabic Bulgarian Catalan Chinese (simplified, traditional) Croatian Czech Danish Dutch Esperanto Estonian Finnish French German Greek Hebrew Hindi Hungarian Italian Japanese Korean Polish Portuguese Romanian Russian Serbian Spanish Swedish Tagalog Thai Turkish Ukrainian Vietnamese

For information about the Encyclopedia see the Welcome page.
Looku| |Welcome \mid Francais \mid Demos \mid Index \mid Browse \mid More \mid WebCam Contribute new seq. or comment \mid Format \mid Transforms \mid Puzzles \mid Hot \mid Classics More pages | Superseeker |Maintained by N. J. A. Sloane (njas@research.att.com)
[Last modified Fri Apr 22 21:18:02 EDT 2005. Contains 105526 sequences.]

Other useful tools: Parallel Maple - Sloane's online sequence database

- Salvy and Zimmerman's generating function package 'gfun'
- Automatic identity proving: WilfParallel derivative free optimization in Maple Zeilberger method for hypergeometric functions

Maple on SFU 192 cpu 'bugaboo' cluster

2002 - different node sets are in different colors

http://dlmf.nist.gov (1t 21C database)

§AI.4. Maclaurin Series

For $z \in \mathbb{C}$
Al. 4.1
$\mathrm{Ai}(z)=\mathrm{Ai}(0)\left(1+\frac{1}{3!} z^{3}+\frac{1 \cdot 4}{6!} z^{6}+\frac{1 \cdot 4 \cdot 7}{9!} z^{9}+\cdots\right)+\mathrm{Ai}^{\prime}(0)\left(z+\frac{2}{4!} z^{4}+\frac{2 \cdot 5}{7!} z^{7}+\frac{2 \cdot 5 \cdot 8}{10!} z^{10}+\right.$

F Index \rightarrow Notation
\rightarrow Search

for what

O_{3}
ShowAnnotations
*
Need Help?
,
Mbout the Project © Copyrigt/Privacy Policy DLMF_feedackeristgou Jaruary 12, 2006

Supported by

National Institute of Standards and Technology

-Formula level

Symbols used:

metadata
col-Mathematical searching
-Accessible output

A\&S Ref:
Encodings:
LaTeX
Parsed:

AirvAi, cdots and z
10.4.2 (with 10.4 .4 and 10.4 .5)

- AirYAi@ $(z)=\operatorname{AiryAiO(0)} *(1+(1 / 3!)$ * z ^ $3+((1 \operatorname{cdot} 4) / 6!) * z \wedge 6+$ ((1 cdot 4 cdot 7) / 9!) * $z^{\wedge} 9+$ cdots $)+($ diffop@ (AiryAi, 1$))(0)$ * ($z+$ $(2 / 4!) * z \times 4+((2 \operatorname{cdot} 5) / 7!) * z$
人 $7+((2 \operatorname{cdot} 5 \operatorname{cdot} 8) / 10!) * z \wedge 10$ + cdots)

Al.4. 2
$\mathrm{Ai}^{\prime}(z)=\mathrm{Ai}^{\prime}(0)\left(1+\frac{2}{3!} z^{3}+\frac{2 \cdot 5}{6!} z^{6}+\frac{2 \cdot 5 \cdot 8}{9!} z^{9}+\cdots\right)+\mathrm{Ai}(0)\left(\frac{1}{2!} z^{2}+\frac{1 \cdot 4}{5!} z^{5}+\frac{1 \cdot 4 \cdot 7}{8!} z^{8}+\cdots\right)$,
Al.4. 3
$\mathrm{Bi}(z)=\operatorname{Bi}(0)\left(1+\frac{1}{3!} z^{3}+\frac{1 \cdot 4}{6!} z^{6}+\frac{1 \cdot 4 \cdot 7}{9!} z^{9}+\cdots\right)+\mathrm{Bi}^{\prime}(0)\left(z+\frac{2}{4!} z^{4}+\frac{2 \cdot 5}{7!} z^{7}+\frac{2 \cdot 5 \cdot 8}{10!} z^{10}+\right.$
Al. 4.4
$\mathrm{Bi}^{\prime}(z)=\mathrm{Bi}(0)\left(1+\frac{2}{3!} z^{3}+\frac{2 \cdot 5}{6!} z^{6}+\frac{2 \cdot 5 \cdot 8}{9!} z^{9}+\cdots\right)+\operatorname{Bi}(0)\left(\frac{1}{2!} z^{2}+\frac{1 \cdot 4}{5!} z^{5}+\frac{1 \cdot 4 \cdot 7}{8!} z^{8}+\cdots\right)$.

"What it comes down to is our software is too hard and our hardware is too soft."

Outline of ACE Talk

A. Communication, Collaboration and Computation.

B1. Visual Data Mining in Mathematics (old and new). B2. Integer Relation Methods. B3. Inverse Symbolic Computation.

The talk ends when I do

IMU Committee on Electronic Information and Communication

- Federated Search Tools are being developed by
 the International Mathematical Union (IMU) www.cs.dal.ca/ddrive/fwdm
- IMU Best Practices are lodged at www.ceic.math.ca
- A Registry of Digital Journals will be ready soon

The PSLQ Integer Relation Algorithm

Integer Relation
Let $\left(x_{n}\right)$ be a vector of real numbers. An integer relation algorithm finds integers $\left(a_{n}\right)$ such that

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=0
$$

- At the present time, the PSI 0 algorithm of mathematician-sculptor Helaman Ferguson is the best-known integer relation algorithm.
- PSLQ was named one of ten "algorithms of the century" by Computing in Science and Engineering.
- High precision arithmetic software is required: at least $\mathrm{d} \times \mathrm{n}$ digits, where d is the size (in digits) of the largest of the integers a_{k}.

An Immediate Use

To see if a is algebraic of degree N, consider $\left(1, a, a^{2}, \ldots, a^{N}\right)$

Peter Borwein in front of Helaman Ferguson's work

CMS Meeting December 2003 SFU Harbour Centre

Ferguson uses high tech tools and micro engineering at NIST to build monumental math sculptures

PSLQ and Zeta

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}
$$

2005 Bailey, Bradley \& JMB discovered and proved - in
Maple - three equivalent binomial identities

$$
\xrightarrow{\mathcal{Z}(x)}=3 \sum_{\substack{k=1 \\ \infty}}^{\infty} \frac{1}{\binom{2 k}{k}\left(k^{2}-x^{2}\right)} \prod_{n=1}^{k-1} \prod_{\infty} \frac{4 x^{2}-n^{2}}{x^{2}-n^{2}}
$$

$$
=\sum_{k=0}^{\infty} \zeta(2 k+2) x^{2 k}=\sum_{n=1}^{\infty} \frac{1}{n^{2}-x^{2}}
$$

$$
=\frac{1-\pi x \cot (\pi x)}{2 x^{2}}
$$

2. reduced as hoped

$$
3 n^{2} \sum_{k=n+1}^{2 n} \frac{\prod_{m=n+1}^{k-1} \frac{4 n^{2}-m^{2}}{n^{2}-m^{2}}}{\binom{2 k}{k}\left(k^{2}-n^{2}\right)}=\frac{1}{\binom{2 n}{n}}-\frac{1}{\binom{3 n}{n}}
$$

$$
{ }_{3} F_{2}\left(\begin{array}{c}
3 n, n+1,-n \\
2 n+1, n+1 / 2
\end{array} ; \frac{1}{4}\right)=\frac{\binom{2 n}{n}}{\binom{3 n}{n}}
$$

3. was easily computer proven (Wilf-Zeilberger)
human proof (MAA)?

PSLQ and Hex Digits of Pi

Finalist for the $\$ 100 \mathrm{~K}$ Edge of Computation Prize won by David Deutsch

Simon Plotifte
Mathematicrat

EdgeThe Third Culture

Home	About Edge	Features	Edge Editions	Press	The Reality Club	Third Culture	Digerati	Edge Search

THE \$100,000 EDGE OF COMPUTATION SCIENCE PRIZE

For individual scientific work, extending the computational idea, performed, published, or newly applied within the past ten years.

The Edge of Computation Science Prize, established by Edge Foundation, Inc., is a $\$ 100,000$ prize initiated and funded by science philanthropist Jeffrey Epstein.

No such formula exists base-ten (provably)

Outline of HPM Talk

A. Communication, Collaboration and Computation.

B1. Visual Data Mining in Mathematics (old and new). B2. Integer Relation Methods.

B3. Inverse Symbolic Computation.

The talk ends when I do

Drive

Colour Calculator and Inverse Calculator (1995)

Inverse Symbolic Computation

 Inferring mathematical structure from numerical danaMixes large table lookup, integer relation methods and intelligent preprocessing - needs micro-parallelism

- It faces the "curse of exponentiality"
- Implemented as.Recognize in Mathematica

Inverse YMBBOLIC CALCULATOR

Knuth's Problem

A guided proof followed on asking WHY Maple could compute the answer so fast.

The answer is Gonnet's Lambert's W which solves $\mathrm{W} \exp (\mathrm{W})=\mathrm{x}$

W's Riemann surface

Donald Knuth* asked for a closed form evaluation of:

"instrumentation"

kup' facility in the Inverse Symr^{\dagger} rapidly returns

We thus have a prediction which Maple 9.5 on a laptop confirms to 100 places in under 6 seconds and to 500 in 40 seconds.

* ARGUABLY WE ARE DONE

ENTERING

evalf(Sum(k^k/k!/exp(k)-1/sqrt(2*Pi*k),k=1..infinity),16)

'Simple Lookup’ fails; 'Smart Look up' gives:

Results of the search:

Maple output:
programs and specialized tybolic Calculator, a set of dedicated to the identification of mathematical constants a way to produce identities with functiombers. It also serves as is one of the main ongoing proj functions and real numbers. It Experimental and Constructive 1 at the Centre for

BOLIC CALCULATOR

579390106 was probably generated by one s or found in one of the given tables. shortest to longest description

Mixereanstants with 5 operations
5925971579390106 zeta $(1 / 2) / \mathrm{sr}(2) / \mathrm{sr}(\mathrm{Pi})$
Browse around . 5825971579390106.

Outline of ACE Talk

A. Communication, Collaboration and Computation.

B1. Visual Data Mining in Mathematics (old and new).
B2. Integer Relation Methods.
B3. Inverse Symbolic Computation.
C. Computational Conclusion.

> The talk ends when I do

Drive

NERSC's 6000 cpu Seaborg in 2004 (10Tflops/sec)

- we need new software paradigms for 'bigga-scale' hardware

IBM BlueGene/L system at LLNL

Supercomputer doubles own record

The Blue Gene/L supercomputer has broken its own record to achieve more than double the number of calculations it can do a second.

It reached 280.6 teraflops that is 280.6 trillion calculations a second.

Blue Gene/L is the fastest computer in the world
2.8/5.6 GF/s 4 MB
5.6/11.2 GF/s 0.5 GB DDR

The future

$$
2^{17} \text { cpu's }
$$

Oct 2005 It has now run Linpack benchmark at over 280 Tflop Isec (4 x Canadian-REN)

"Just a darn minute - Yesterday you said that X equals two!"

CONCLUSION

ENGINES OF DISCOVERY: The 21st Century Revolution

The Long Range Plan for High Performance Computing in Canada

The LRP tells a Story

-
 The Story

Executive

Summary

Main Chapters 8:8. Technology

Operations

- HQP
- Budget

25 Case

Studies

many sidebars

One Day ..

High-performance computing (HPC) affects the lives of Canadians every day. We can best explain this by telling you a story. It's about an ordinary family on an ordinary day, Russ, Susan, and Kerri Sheppard. They live on a farm 15 kilometres outside Wyoming, Ontario. The land first produced oil, and now it yields milk; and that's just fine locally.

Their day, Thursday, May 29, 2003, begins at 4:30 am when the alarm goes off. A busy day, Susan ZhongSheppard will fly to Toronto to see her father, Wu Zhong, at Toronto General Hospital; he's very sick from a stroke. She takes a quick shower and packs a day bag for her 6 am flight from Sarnia's Chris Hadfield airport. Russ Sheppard will stay home at their dairy farm, but his day always starts early. Their young daughter Kerri can sleep three more hours until school.

Waiting, Russ looks outside and thinks, It's been a dryish spring. Where's the rain?

In their farmhouse kitchen on a family-sized table sits a PC with a high-speed Internet line. He logs on and finds the Farmer Daily site. He then chooses the Environment Canada link, clicks on Ontario, and then scans down for SarniaLambton.

WEATHER PREDICTION

The "quality" of a five-day forecast in the year 2003 was equivalent to that of a 36 -hour forecast in 1963 [REF 1]. The quality of daily forecasts has risen sharply by roughly one day per decade of research and HPC progress. Accurate forecasts transform into billions of dollars saved annually in agriculture and in natural disasters. Using a model developed at Dalhousie University (Prof. Keith Thompson), the Meteorological Service of Canada has recently been able to predict. coastal flooding in Atlantic Canada early enough for the residents to take preventative action.

Enabling Canadian research excellence through high performance computing

REFERENCES

 Drive

 Dalhousie Distributed Research Institute and Virtual Environment

J.M. Borwein and D.H. Bailey, Mathematics by Experiment: Plausible Reasoning in the 21st Century A.K. Peters, 2003.
J.M. Borwein, D.H. Bailey and R. Girgensohn, Experimentation in Mathematics: Computational Paths to Discovery, A.K. Peters, 2004. [Active CDs 2006]
D. Bailey, J. Borwein, V. Kapoor and E. Weisstein, ‘`Ten Problems in Experimental Mathematics," MAA Monthly, June-July 2006, 481-509. [CoLab Preprint 270].
"The object of mathematical rigor is to sanction and legitimize the conquests of intuition, and there was never any other object for it."

- J. Hadamard quoted at length in E. Borel, Lecons sur la theorie des fonctions, 1928.

