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CHAPTER 1
Aesthetics for the Working Mathematician

Jonathan M. Borwein

If my teachers had begun by telling me that mathematics was pure
play with presuppositions, and wholly in the air, I might have become
a good mathematician, because I am happy enough in the realm of
essence. But they were over-worked drudges, and I was largely inat-
tentive, and inclined lazily to attribute to incapacity in myself or to a
literary temperament that dullness which perhaps was due simply to
lack of initiation. (Santayana, 1944, p. 238)

Most research mathematicians neither think deeply about nor are terribly con-
cerned with either pedagogy or the philosophy of mathematics. Nonetheless,
as I hope to indicate, aesthetic notions have always permeated (pure and
applied) mathematics. And the top researchers have always been driven by an
aesthetic imperative. Many mathematicians over time have talked about the
‘elegance’ of certain proofs or the ‘beauty’ of certain theorems, but my analysis
goes deeper: I aim to show how the aesthetic imperative interacts with utility
and intuition, as well as indicate how it serves to shape my own mathemat-
ical experiences. These analyses, rather than being retrospective and passive, will
provide a living account of the aesthetic dimension of mathematical work.

We all believe that mathematics is an art. The author of a book, the
lecturer in a classroom tries to convey the structural beauty of
mathematics to his readers, to his listeners. In this attempt, he must
always fail. Mathematics is logical to be sure; each conclusion is
drawn from previously derived statements. Yet the whole of it, the
real piece of art, is not linear; worse than that, its perception
should be instantaneous. We all have experienced on some rare
occasions the feeling of elation in realizing that we have enabled
our listeners to see at a moment’s glance the whole architecture
and all its ramifications. (Emil Artin, in Murty, 1988, p. 60)

I shall similarly argue for aesthetics before utility. Through a suite of exam-
ples drawn from my own research and interests, I aim to illustrate how and
what this means on the front lines of research. I also will argue that the
opportunities to evoke the mathematical aesthetic in research and teaching
are almost boundless – at all levels of the curriculum. (An excellent middle-
school illustration, for instance, is described in Sinclair, 2001.)

In part, this is due to the increasing power and sophistication of visual-
isation, geometry, algebra and other mathematical software. Indeed, by
drawing on ‘hot topics’ as well as ‘hot methods’ (i.e. computer technology),
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I also provide a contemporary perspective which I hope will complement
the more classical contributions to our understanding of the mathematical
aesthetic offered by writers such as G. H. Hardy and Henri Poincaré (as dis-
cussed in Chapter α).

Webster’s dictionary (1993, p. 19) first provides six different meanings
of the word ‘aesthetic’, used as an adjective. However, I want to react to
these two definitions of ‘aesthetics’, used as a noun:

1. The branch of philosophy dealing with such notions as the beautiful,
the ugly, the sublime, the comic, etc., as applicable to the fine arts,
with a view to establishing the meaning and validity of critical judg-
ments concerning works of art, and the principles underlying or justi-
fying such judgments.

2. The study of the mind and emotions in relation to the sense of beauty.

Personally, for my own definition of the aesthetic, I would require (unex-
pected) simplicity or organisation in apparent complexity or chaos – consis-
tent with views of Dewey (1934), Santayana (1944) and others. I believe we
need to integrate this aesthetic into mathematics education at every level, so
as to capture minds for other than utilitarian reasons. I also believe detach-
ment to be an important component of the aesthetic experience: thus, it is
important to provide some curtains, stages, scaffolding and picture frames –
or at least their mathematical equivalents. Fear of mathematics certainly does
not hasten an aesthetic response.

Gauss, Hadamard and Hardy

Three of my personal mathematical heroes, very different individuals from
different times, all testify interestingly on the aesthetic and the nature of
mathematics.

Gauss

Carl Friedrich Gauss is claimed to have once confessed, “I have had my
results for a long time, but I do not yet know how I am to arrive at them” (in
Arber, 1954, p. 47). [1] One of Gauss’s greatest discoveries, in 1799, was the
relationship between the lemniscate sine function and the arithmetic–geomet-
ric mean iteration. This was based on a purely computational observation.
The young Gauss wrote in his diary that “a whole new field of  analysis will
certainly be opened up” (Werke, X, p. 542; in Gray, 1984, p. 121).

He was right, as it pried open the whole vista of nineteenth-century
elliptic and modular function theory. Gauss’s specific discovery, based on
tables of integrals provided by Scotsman James Stirling, was that the recip-
rocal of the integral
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agreed numerically with the limit of the rapidly convergent iteration given
by setting a0 := 1, b0 := √2 and then computing:

It transpires that the two sequences {an}, {bn} have a common limit of
1.1981402347355922074…

Which object, the integral or the iteration, is the more familiar and
which is the more elegant – then and now? Aesthetic criteria change with
time (and within different cultures) and these changes manifest themselves
in the concerns and discoveries of mathematicians. Gauss’s discovery of the
relationship between the lemniscate function and the arithmetic–geometric
mean iteration illustrates how the traditionally preferred ‘closed form’ (here,
the integral form) of equations have yielded centre stage, in terms both of
elegance and utility, to recursion. This parallels the way in which biological
and computational metaphors (even ‘biology envy’) have now replaced
Newtonian mental images, as described and discussed by Richard Dawkins
(1986) in his book The Blind Watchmaker.

In fact, I believe that mathematical thought patterns also change with
time and that these in turn affect aesthetic criteria – not only in terms of
what counts as an interesting problem, but also what methods the math-
ematician can use to approach these problems, as well as how a mathema-
tician judges their solutions. As mathematics becomes more ‘biological’, and
more computational, aesthetic criteria will continue to change.

Hadamard

A constructivist, experimental and aesthetically-driven rationale for math-
ematics could hardly do better than to start with Hadamard’s claim that:

The object of mathematical rigor is to sanction and legitimize the
conquests of intuition, and there was never any other object for it.
(in Pólya, 1981, p. 127)

Jacques Hadamard was perhaps the greatest mathematician other than
Poincaré to think deeply and seriously about cognition in mathematics. He is
quoted as saying, “in arithmetic, until the seventh grade, I was last or nearly
last” (in MacHale, 1993, p. 142). Hadamard was co-prover (independently
with Charles de la Vallée Poussin, in 1896) of the Prime Number theorem
(the number of primes not exceeding n is asymptotic to n/log n), one of
the culminating results of nineteenth-century mathematics and one that
relied on much preliminary computation and experimentation. He was also
the author of The Psychology of Invention in the Mathematical Field (1945),
a book that still rewards close inspection.
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Hardy’s Apology

Correspondingly, G. H. Hardy, the leading British analyst of the first half of
the twentieth century, was also a stylish author who wrote compellingly in
defence of pure mathematics. He observed that:

All physicists and a good many quite respectable mathematicians
are contemptuous about proof. (1945/1999, pp. 15-16)

His memoir, entitled A Mathematician’s Apology, provided a spirited defence
of beauty over utility:

Beauty is the first test. There is no permanent place in the world
for ugly mathematics. (1940, p. 84)

That said, although the sentiment behind it being perfectly understandable
from an anti-war mathematician in war-threatened Britain, Hardy’s claim that
real mathematics is almost wholly useless has been over-played and, to my
mind, is now very dated, given the importance of cryptography and other
pieces of algebra and number theory devolving from very pure study.

In his tribute to Srinivasa Ramanujan entitled Ramanujan: Twelve Lectures
on Subjects Suggested by His Life and Work, Hardy (1945/1999) offered the so-
called ‘Skewes number’ as a “striking example of a false conjecture” (p. 15).
The logarithmic integral function, written Li(x), is specified by:

Li(x) provides a very good approximation to the number of primes that do
not exceed x. For example, Li(108) = 5,762,209.375…, while the number of
primes not exceeding 108 is 5,761,455. It was conjectured that the inequality

Li(x) > the number of primes not exceeding x

holds for all x and, indeed, it does so for many x. In 1933, Skewes showed
the first explicit crossing occurs before 10101034

. This has been reduced to a
relatively tiny number, a mere 101167 (and, most recently, even lower), though
one still vastly beyond direct computational reach.

Such examples show forcibly the limits on numerical experimentation,
at least of a naïve variety. Many readers will be familiar with the ‘law of large
numbers’ in statistics. Here, we see an instance of what some number the-
orists (e.g. Guy, 1988) call the ‘strong law of small numbers’: all small num-
bers are special, many are primes and direct experience is a poor guide. And
sadly (or happily, depending on one’s attitude), even 101167 may be a small
number.

Research Motivations and Goals

As a computational and experimental pure mathematician, my main goal is
insight. Insight demands speed and, increasingly, parallelism (see Borwein
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and Borwein, 2001, on the challenges for mathematical computing). The
mathematician’s ‘aesthetic buzz’ comes not only from simply contemplating
a beautiful piece of mathematics, but, additionally, from achieving insight.
The computer, with its capacities for visualisation and computation, can
encourage the aesthetic buzz of insight, by offering the mathematician the
possibility of visual contact with mathematics and by allowing the mathemati-
cian to experiment with, and thus to become intimate with, mathematical
ideas, equations and objects.

What is ‘easy’ is changing and I see an exciting merging of disciplines,
levels and collaborators. Mathematicians are more and more able to:

• marry theory and practice, history and philosophy, proofs and
experiments;

• match elegance and balance with utility and economy;
• inform all mathematical modalities computationally – analytic,

algebraic, geometric and topological.

This is leading us towards what I term an experimental mathodology as a
philosophy and a practice (Borwein and Corless, 1999). This methodology
is based on the following three approaches:

• meshing computation and mathematics, so that intuition is acquired;
• visualisation – three is a lot of dimensions and, nowadays, we can

exploit pictures, sounds and haptic stimuli to get a ‘feel’ for relation-
ships and structures (see also Chapter 7);

• ‘exception barring’ and ‘monster barring’ (using the terms of Lakatos,
1976).

Two particularly useful components of this third approach include graphical
and randomised checks. For example, comparing 2√y – y and –√y ln(y) (for
0 < y < 1) pictorially is a much more rapid way to divine which is larger
than by using traditional analytic methods. Similarly, randomised checks of
equations, inequalities, factorisations or primality can provide enormously
secure knowledge or counter-examples when deterministic methods are
doomed. As with traditional mathematical methodologies, insight and cer-
tainty are still highly valued, yet achieved in different ways.

Pictures and symbols

If I can give an abstract proof of something, I’m reasonably happy.
But if I can get a concrete, computational proof and actually pro-
duce numbers I’m much happier. I’m rather an addict of doing
things on the computer, because that gives you an explicit criterion
of what’s going on. I have a visual way of thinking, and I’m happy if
I can see a picture of what I’m working with. (John Milnor, in Regis,
1986, p. 78)

I have personally had this experience, in the context of studying the distri-
bution of zeroes of the Riemann zeta function. Consider more explicitly the
following image (see Figure 1), which shows the densities of zeroes for
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polynomials in powers of x with –1 and 1 as coefficients (they are manipula-
ble at: www.cecm.sfu.ca/interfaces/). All roots of polynomials, up to a given
degree, with coefficients of either –1 or 1 have been calculated by permuting
through all possible combinations of polynomials, then solving for the roots of
each. These roots are then plotted on the complex plane (around the origin).

In this case, graphical output from a computer allows a level of insight no
amount of numbers could.

Some colleagues and I have been building educational software with
these precepts embedded, such as LetsDoMath (see: www.mathresources.
com). The intent is to challenge students honestly (e.g. through allowing
subtle explorations within John Conway’s ‘Game of Life’), while making things
tangible (e.g. ‘Platonic solids’ offers virtual manipulables that are more
robust and expressive than the standard classroom solids).

Evidently, though, symbols are often more reliable than pictures. The
picture opposite purports to give evidence that a solid can fail to be poly-
hedral at only one point. It shows the steps up to pixel level of inscribing a
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Figure 1: Density of zeroes for polynomials with coefficients of –1 and 1
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regular 2n+1-gon at height 21–n. However, ultimately, such a construction fails
and produces a right circular cone. The false evidence in this picture held
back a research project for several days – and might have derailed it.

Two Things about √2 and One Thing about π

Remarkably, one can still find new insights in the oldest areas. I discuss
three examples of this. The first involves a new proof of the irrationality of
√2 and the way in which it provides insight into a previously known result.
The second invokes the strange interplay between rational and irrational
numbers. Finally, the third instance reveals how the computer can make
opaque some properties that were previously transparent, and vice versa.

Irrationality

Below is a graphical representation of Tom Apostol’s (2000) lovely new
geometric proof of the irrationality of √2. This example may seem routine
at first, with respect to the literature on the mathematical aesthetic. Writers
such as Hardy (1940), King (1992) and Wells (1990) have also talked about
the beauty of quadratics such as √2. These writers have emphasised aes-
thetic criteria (such as economy and unexpectedness) that contribute to that
judgement of beauty. On the other hand, Apostol’s new proof, prefigured
in others, shows how aesthetics can also serve to motivate mathematical
inquiry.

Figure 2: A misleading picture
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PROOF Consider the smallest right-angled isosceles triangle with
integer sides. Circumscribe a circle of length equal to the vertical
side and construct the tangent to the circle where the hypotenuse
cuts it (see Figure 3). The smaller isosceles triangle once again has
integer sides.

The proof is lovely because it offers new insight into a result that was first
proven over two thousand years ago. It also verges on being a ‘proof with-
out words’ (Nelsen, 1993), proofs which are much admired – yet infrequently
encountered and not always trusted – by mathematicians (see Brown, 1999).
Apostol’s work demonstrates how mathematicians are not only motivated to
find ground-breaking results, but that they also strive for better ways to say
things or to show things, as Gauss was surely doing when he worked out
his fourth, fifth and sixth proof of the law of quadratic reciprocity.

Rationality

By a variety of means, including the one above, we know that the square
root of two is irrational. But mathematics is always full of surprises: √2 can
also make things rational (a case of two wrongs making a right?).

Hence, by the principle of the excluded middle:

In either case, we can deduce that there are irrational numbers a and b
with ab rational. But how do we know which ones? One may build a whole
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Figure 3: The square root of two is irrational

.
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mathematical philosophy project around this. Yet, as Maple (the computer
algebra system) confirms:

setting α := √2 and β := 2ln23 yields αβ = 3.

This illustrates nicely that verification is often easier than discovery. (Simi-
larly, the fact that multiplication is easier than factorisation is at the base of
secure encryption schemes for e-commerce.)

π and two integrals

Even Maple knows π ≠ 22/7, since:

Nevertheless, it would be prudent to ask ‘why’ Maple is able to perform the
evaluation and whether to trust it. In contrast, Maple struggles with the fol-
lowing sophomore’s dream:

Students asked to confirm this typically mistake numerical validation for
symbolic proof.

Again, we see that computing adds reality, making the abstract concrete,
and makes some hard things simple. This is strikingly the case with Pascal’s
Triangle. Figure 4 (from: www.cecm.sfu.ca/interfaces/) affords an emphatic
example where deep fractal structure is exhibited in the elementary binomial
coefficients.

Figure 4: Thirty rows of Pascal’s triangle (modulo five)
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Berlinski (1997) comments on some of the effects of such visual–experimental
possibilities in mathematics:

The computer has in turn changed the very nature of mathematical
experience, suggesting for the first time that mathematics, like physics,
may yet become an empirical discipline, a place where things are
discovered because they are seen. (p. 39)

Berlinski (1995) had earlier suggested, in his book A Tour of the Calculus,
that there will be long-term effects:

The body of mathematics to which the calculus gives rise embod-
ies a certain swashbuckling style of thinking, at once bold and dra-
matic, given over to large intellectual gestures and indifferent, in
large measure, to any very detailed description of the world. It is
a style that has shaped the physical but not the biological sciences,
and its success in Newtonian mechanics, general relativity, and
quantum mechanics is among the miracles of mankind. But the era
in thought that the calculus made possible is coming to an end.
Everyone feels this is so, and everyone is right. (p. xiii)

π and Its Friends

My research on π with my brother, Peter Borwein, also offers aesthetic and
empirical opportunities. In this example, my personal fascinations provide
compelling illustrations of an aesthetic imperative in my own work. I first
discuss the algorithms I have co-developed to compute the digits of π.
These algorithms, which consist of simple algebraic equations, have made
it possible for researchers to compute its first 236 digits. I also discuss some
of the methods and algorithms I have used to gain insight into relationships
involving π.

A quartic algorithm (Borwein and Borwein, 1984)

The next algorithm I present grew out of work of Ramanujan. Set a0 = 6 – 4√2
and y 0 = √2 – 1. Iterate:

Then the sequence {ak} converges quartically to 1/π.
There are nineteen pairs of simple algebraic equations (1, 2) as k ranges

from 0 to 18. After seventeen years, this still gives me an aesthetic buzz.
Why? With less than one page of equations, I have a tool for computing a
number that differs from π (the most celebrated transcendental number)
only after seven hundred billion digits. It is not only the economy of the tool
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that delights me, but also the stirring idea of ‘almost-ness’ – that even after
seven hundred billion digits we still cannot nail π. The difference might
seem trivial, but mathematicians know that it is not and they continue to
improve their algorithms and computational tools.

This iteration has been used since 1986, with the Salamin–Brent scheme,
by David Bailey (at the Lawrence Berkeley Labs) and by Yasumasa Kanada
(in Tokyo). In 1997, Kanada computed over 51 billion digits on a Hitachi
supercomputer (18 iterations, 25 hrs on 210 cpus). His penultimate world
record was 236 digits in April, 1999. A billion (230) digit computation has been
performed on a single Pentium II PC in less than nine days. The present
record is 1.24 trillion digits, computed by Kanada in December 2002 using
quite different methods, and is described in my new book, co-authored with
David Bailey (2003).

The fifty-billionth decimal digit of π or of 1/π is 042! And after eighteen
billion digits, the string 0123456789 has finally appeared and so Brouwer’s
famous intuitionist example now converges. [2] (Details such as this about π
can be found at: www.cecm.sfu.ca/personal/jborwein/pi_cover.html.) From
a probability perspective, such questions may seem uninteresting, but they
continue to motivate and amaze mathematicians.

A further taste of Ramanujan

G. N. Watson, in discussing his response to similar formulae of the wonderful
Indian mathematical genius Srinivasa Ramanujan, describes:

a thrill which is indistinguishable from the thrill which I feel when
I enter the Sagrestia Nuova of the Capelle Medicee and see before
me the austere beauty of [the four statues representing] ‘Day,’
‘Night,’ ‘Evening,’ and ‘Dawn’ which Michelangelo has set over
the tombs of Giuliano de’ Medici and Lorenzo de’ Medici. (in
Chandrasekhar, 1987, p. 61)

One of these is Ramanujan’s remarkable formula, based on the elliptic and
modular function theory initiated by Gauss.

Each term of this series produces an additional eight correct digits in the
result – and only the ultimate multiplication by √2 is not a rational opera-
tion. Bill Gosper used this formula to compute seventeen million terms of
the continued fraction for π in 1985. This is of interest, because we still
cannot prove that the continued fraction for π is unbounded. Again, every-
one knows that this is true.

That said, Ramanujan preferred related explicit forms for approximating
π, such as the following:
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This equation is correct until the underlined places. Inter alia, the number
eπ is the easiest transcendental to fast compute (by elliptic methods). One
‘differentiates’ e-πt to obtain algorithms such as the one above for π, via the
arithmetic–geometric mean.

Integer relation detection

I make a brief digression to describe what integer relation detection methods
do. (These may be tried at: www.cecm.sfu.ca/projects/IntegerRelations/.) I
then apply them to π (see Borwein and Lisonek, 2000).

DEFINITION A vector (x1, x2, …, xn) of real numbers possesses an
integer relation, if there exist integers ai (not all zero) with:

a1x1 + a2x2 + … + anxn = 0

PROBLEM Find ai if such integers exist. If not, obtain lower ‘exclu-
sion’ bounds on the size of possible ai.

SOLUTION For n = 2, Euclid’s algorithm gives a solution. For n ≥ 3,
Euler, Jacobi, Poincaré, Minkowski, Perron and many others sought
methods. The first general algorithm was found (in 1977) by Fer-
guson and Forcade. Since 1977, one has many variants: I will mainly
be talking about two algorithms, LLL (‘Lenstra, Lenstra and Lovász’;
also available in Maple and Mathematica) and PSLQ (‘Partial sums
using matrix LQ decomposition’, 1991; parallelised, 1999).

Integer relation detection was recently ranked among:

the 10 algorithms with the greatest influence on the development
and practice of science and engineering in the 20th century.
(Dongarra and Sullivan, 2000, p. 22)

It could be interesting for the reader to compare these algorithms with the
theorems on the list of the most ‘beautiful’ theorems picked out by Wells
(1990) in his survey, in terms of criteria such as applicability, unexpected-
ness and fruitfulness.

Determining whether or not a number is algebraic is one problem that
can be attacked using integer relation detection. Asking about algebraicity
is handled by computing α to sufficiently high precision (O(n = N2)) and
applying LLL or PSLQ to the vector (1, α, α2, ..., αN-1). Solution integers ai are
coefficients of a polynomial likely satisfied by α. If one has computed α to
n + m digits and run LLL using n of them, one has m digits to confirm the
result heuristically. I have never seen this method return an honest ‘false
positive’ for m > 20, say. If no relation is found, exclusion bounds are
obtained, saying, for example, that any polynomial of degree less than N

32

Mathematics and the Aesthetic

Pimm book  9/27/04  9:19 PM  Page 32



must have the Euclidean norm of its coefficients in excess of L (often astro-
nomical). If we know or suspect an identity exists, then integer relations
methods are very powerful. Let me illustrate this in the context of approxi-
mating π.

Machin’s formula
We use Maple to look for the linear dependence of the following quantities:

[arctan(1), arctan(1/5), arctan(1/239)]

and ‘recover’ [1, –4, 1]. In other words, we can establish the following
equation:

π/4 = 4arctan(1/5) – arctan(1/239).

Machin’s formula was used on all serious computations of π from 1706 (a
hundred digits) to 1973 (a million digits), as well as more abstruse but similar
formulae used in creating Kanada’s present record. After 1980, the methods
described above started to be used instead.

Dase’s formula
Again, we use Maple to look for the linear dependence of the following
quantities:

[π/4, arctan(1/2), arctan(1/5), arctan(1/8)].

and recover [–1, 1, 1, 1]. In other words, we can establish the following
equation:

π/4 = arctan(1/2) + arctan(1/5) + arctan(1/8).

This equation was used by Dase to compute two hundred digits of π in his
head in perhaps the greatest feat of mental arithmetic ever – 1/8 is appar-
ently better than 1/239 (as in Machin’s formula) for this purpose.

Who was Dase? Another burgeoning component of modern research
and teaching life is having access to excellent data bases, such as the MacTutor
History Archive maintained at: www-history.mcs.st-andrews.ac.uk (alas, not
all sites are anywhere near so accurate and informative as this one). One may
find details there on almost all of the mathematicians appearing in this chap-
ter. I briefly illustrate its value by showing verbatim what it says about Dase.

Zacharias Dase (1824–1861) had incredible calculating skills but
little mathematical ability. He gave exhibitions of his calculating
powers in Germany, Austria and England. While in Vienna in 1840
he was urged to use his powers for scientific purposes and he dis-
cussed projects with Gauss and others.

Dase used his calculating ability to calculate π to 200 places in
1844. This was published in Crelle’s Journal for 1844. Dase also
constructed 7 figure log tables and produced a table of factors of
all numbers between 7 000 000 and 10 000 000.
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Gauss requested that the Hamburg Academy of Sciences allow
Dase to devote himself full-time to his mathematical work but,
although they agreed to this, Dase died before he was able to do
much more work.

Pentium farming
I finish this sub-section with another result obtained through integer rela-
tions methods or, as I like to call it, ‘Pentium farming’. Bailey, Borwein and
Plouffe (1997) discovered a series for π (and corresponding ones for some
other polylogarithmic constants), which somewhat disconcertingly allows
one to compute hexadecimal digits of π without computing prior digits.
(This feels like magic, being able to tell the seventeen-millionth digit of π,
say, without having to calculate the ones before it; it is like seeing God
reach her hand deep into π.)

The algorithm needs very little memory and no multiple precision. The
running time grows only slightly faster than linearly in the order of the digit
being computed. The key, found by PSLQ as described above, is:

Knowing an algorithm would follow, Bailey, Borwein and Plouffe spent sev-
eral months hunting by computer for such a formula. Once found, it is easy
to prove in Mathematica, in Maple or by hand – and provides a very nice
calculus exercise.

This was a most successful case of reverse mathematical engineering
and is entirely practicable. In September 1997, Fabrice Bellard (at INRIA)
used a variant of this formula to compute one hundred and fifty-two binary
digits of π, starting at the trillionth (1012) place. This took twelve days on
twenty work-stations working in parallel over the internet. In August 1998,
Colin Percival (Simon Fraser University, age 17) finished a ‘massively parallel’
computation of the five-trillionth bit (using twenty-five machines at roughly
ten times the speed of Bellard). In hexadecimal notation, he obtained:

07E45 733CC790B5B5979. 

The corresponding binary digits of π starting at the forty-trillionth bit
are:

0 0000 1111 1001 1111.

By September 2000, the quadrillionth bit had been found to be the digit 0
(using 250 cpu years on a total of one thousand, seven hundred and thirty-
four machines from fifty-six countries). Starting at the 999,999,999,999,997th
bit of π, we find:

11100 0110 0010 0001 0110 1011 0000 0110.
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Solid and Discrete Geometry – and Number Theory

Although my own primary research interests are in numerical, classical and
functional analysis, I find that the fields of solid and discrete geometry, as
well as number theory, offer many examples of the kinds of concrete,
insightful ideas I value. In the first example, I argue for the computational
affordances available to study of solid geometry. I then discuss the genesis
of an elegant proof in discrete geometry. Finally, I illustrate a couple of deep
results in partition theory.

de Morgan

Augustus de Morgan, one of the most influential educators of his period and
first president of the London Mathematical Society, wrote:

Considerable obstacles generally present themselves to the begin-
ner, in studying the elements of Solid Geometry, from the practice
which has hitherto uniformly prevailed in this country, of never
submitting to the eye of the student, the figures on whose proper-
ties he is reasoning, but of drawing perspective representations of
them upon a plane. [...] I hope that I shall never be obliged to have
recourse to a perspective drawing of any figure whose parts are
not in the same plane. (in Rice, 1999, p. 540)

His comment illustrates the importance of concrete experiences with math-
ematical objects, even when the ultimate purpose is to abstract. There is a
sense in which insight lies in physical manipulation. I imagine that de
Morgan would have been happier using JavaViewLib (see: www.cecm.sfu.
ca/interfaces/). This is Konrad Polthier’s modern version of Felix Klein’s
famous set of geometric models. Correspondingly, a modern interactive ver-
sion of Euclid is provided by Cinderella (a software tool which is largely
comparable with The Geometer’s Sketchpad; the latter is discussed in detail
in Chapter 7 of this volume). Klein, like de Morgan, was equally influential
as an educator and as a researcher.

Sylvester’s theorem

Sylvester’s theorem is worth mentioning because of its elegant visual proof,
but also because of Sylvester’s complex relationship to geometry: “The early
study of Euclid made me a hater of geometry” (quoted in MacHale, 1993, p.
135). James Joseph Sylvester, who was the second president of the London
Mathematical Society, may have hated Euclidean geometry, but discrete
geometry (now much in fashion under the name ‘computational geometry’,
offering another example of very useful pure mathematics) was different.
His strong, emotional preference nicely illustrates how the aesthetic is
involved in a mathematician’s choice of fields.

Sylvester (1893) came up with the following conjecture, which he posed
in The Educational Times:
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THEOREM Given n non-collinear points in the plane, then there is
always at least one (elementary or proper) line going through
exactly two points of the set.

Sylvester’s conjecture was, so it seems, forgotten for fifty years. It was first
established – ‘badly’, in the sense that the proof is much more complicated
– by T. Grünwald (Gallai) in 1933 (see editorial comment in Steinberg, 1944)
and also by Paul Erdös. Erdös, an atheist, named ‘the Book’ the place where
God keeps aesthetically perfect proofs. L. Kelly’s proof (given below),
which Erdös accepted into ‘the Book’, was actually published by Donald
Coxeter (1948) in the American Mathematical Monthly. This is a fine exam-
ple of how the archival record may rapidly get obscured.

PROOF Consider the point closest to a line it is not on and then
suppose that line has three points on it (the horizontal line). The
middle of those three points is clearly closer to the other line.

As with Apostol’s proof of the irrationality of √2, we can see the power of
the right minimal configuration. Aesthetic appeal often comes from having
this characteristic: that is, its appeal stems from being able to reason about
an unknown number of objects by identifying a restricted view that captures
all the possibilities. This is a process that is not so very different from that
powerful method of proof known as mathematical induction.

Another example worth mentioning in this context (one that belongs in
‘the Book’) is Niven’s (1947) marvellous (simple and short), half-page proof
that π is irrational (see: www.cecm.sfu.ca/personal/jborwein/pi.pdf).

Partitions and patterns

Another subject that can be made highly accessible through experimental
methods is additive number theory, especially partition theory. The number
of additive partitions of q, P(q), is generated by the following equation:
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Thus, P(5) = 7, since:

5 = 4 + 1 = 3 + 2 = 3 + 1 + 1 = 2 + 2 + 1

= 2 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1

QUESTION How hard is P(q) to compute? Consider this question
as it might apply in 1900 (for Major MacMahon, the father of our
modern combinatorial analysis) and in 2000 (for Maple).

ANSWER Seconds for Maple, months for MacMahon. It is interest-
ing to ask if development of the beautiful asymptotic analysis of
partitions by Hardy, Ramanujan and others would have been
helped or impeded by such facile computation.

Ex-post-facto algorithmic analysis can be used to facilitate independent student
discovery of Euler’s pentagonal number theorem.

Ramanujan used MacMahon’s table of P(q) to intuit remarkable and deep
congruences, such as:

P(5n + 4) ≡ 0 (mod 5)

P(7n + 5) ≡ 0 (mod 7)

and

P(11n + 6) ≡ 0 (mod 11)

from data such as:

Nowadays, if introspection fails, we can recognise the pentagonal numbers
occurring above in Sloane and Plouffe’s on-line Encyclopaedia of Integer
Sequences (see: www.research.att.com/personal/njas/sequences/eisonline.
html). Here, we see a very fine example of Mathematics: the Science of
Patterns, which is the title of Keith Devlin’s (1994) book. And much more
may similarly be done.
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Some Concluding Discussion

In recent years, there have been revolutionary advances in cognitive science
– advances that have a profound bearing on our understanding of math-
ematics. (More serious curricular insights should come from neuro-biology
– see Dehaene et al., 1999.) Perhaps the most profound of these new
insights are the following, presented in Lakoff and Nuñez (2000).

1. The embodiment of mind The detailed nature of our bodies, our
brains and our everyday functioning in the world structures human
concepts and human reason. This includes mathematical concepts
and mathematical reason. (See also Chapter 6.)

2. The cognitive unconscious Most thought is unconscious – not
repressed in the Freudian sense, but simply inaccessible to direct
conscious introspection. We cannot look directly at our conceptual
systems and at our low-level thought processes. This includes most
mathematical thought.

3. Metaphorical thought For the most part, human beings conceptualise
abstract concepts in concrete terms, using ideas and modes of
reasoning grounded in sensori-motor systems. The mechanism by
which the abstract is comprehended in terms of the concept is called
conceptual metaphor. Mathematical thought also makes use of
conceptual metaphor: for instance, when we conceptualise numbers
as points on a line.

Lakoff and Nuñez subsequently observe:

What is particularly ironic about this is it follows from the empirical
study of numbers as a product of mind that it is natural for people
to believe that numbers are not a product of mind! (p. 81)

I find their general mathematical schema pretty persuasive but their specific
accounting of mathematics forced and unconvincing (see also Schiralli and
Sinclair, 2003). Compare this with a more traditional view, one that I most
certainly espouse:

The price of metaphor is eternal vigilance. (Arturo Rosenblueth
and Norbert Wiener, in Lewontin, 2001, p. 1264)

Form follows function

The waves of the sea, the little ripples on the shore, the sweeping
curve of the sandy bay between the headlands, the outline of the
hills, the shape of the clouds, all these are so many riddles of form,
so many problems of morphology, and all of them the physicist
can more or less easily read and adequately solve [...] (Thompson,
1917/1968, p. 10)

A century after biology started to think physically, how will mathematical
thought patterns change?
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The idea that we could make biology mathematical, I think, per-
haps is not working, but what is happening, strangely enough, is
that maybe mathematics will become biological! (Chaitin, 2002)

To appreciate Greg Chaitin’s comment, one has only to consider the meta-
phorical or actual origin of current ‘hot topics’ in mathematics research:
simulated annealing (‘protein folding’); genetic algorithms (‘scheduling
problems’); neural networks (‘training computers’); DNA computation (‘trav-
elling salesman problems’); quantum computing (‘sorting algorithms’).

Humanistic philosophy of mathematics

However extreme the current paradigm shifts are and whatever the outcome
of these discourses, mathematics is and will remain a uniquely human
undertaking. Indeed, Reuben Hersh’s (1995) full argument for a humanist
philosophy of mathematics, as paraphrased below, becomes all the more con-
vincing in this setting.

1. Mathematics is human It is part of and fits into human culture. It
does not match Frege’s concept of an abstract, timeless, tenseless and
objective reality (see Resnik, 1980, and Chapter 8).

2. Mathematical knowledge is fallible As in science, mathematics can
advance by making mistakes and then correcting or even re-correcting
them. The ‘fallibilism’ of mathematics is brilliantly argued in Imre
Lakatos’s (1976) Proofs and Refutations.

3. There are different versions of proof or rigour Standards of rigour can
vary depending on time, place and other things. Using computers in
formal proofs, exemplified by the computer-assisted proof of the four-
colour theorem in 1977, is just one example of an emerging, non-
traditional standard of rigour.

4. Aristotelian logic is not always necessarily the best way of deciding
Empirical evidence, numerical experimentation and probabilistic
proof can all help us decide what to believe in mathematics.

5. Mathematical objects are a special variety of a social–cultural–historical
object Contrary to the assertions of certain post-modern detractors,
mathematics cannot be dismissed as merely a new form of literature or
religion. Nevertheless, many mathematical objects can be seen as
shared ideas, like Moby Dick in literature or the Immaculate Conception
in religion.

The recognition that ‘quasi-intuitive’ methods may be used to gain good
mathematical insight can dramatically assist in the learning and discovery of
mathematics. Aesthetic and intuitive impulses are shot through our subject
and honest mathematicians will acknowledge their role.
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Some Final Observations

When we have before us, for instance, a fine map, in which the
line of coast, now rocky, now sandy, is clearly indicated, together
with the windings of the rivers, the elevations of the land, and the
distribution of the population, we have the simultaneous sugges-
tion of so many facts, the sense of mastery over so much reality,
that we gaze at it with delight, and need no practical motive to
keep us studying it, perhaps for hours together. A map is not nat-
urally thought of as an æsthetic object; it is too exclusively expres-
sive. (Santayana, 1896/1910, p. 209)

This Santayana quotation was my earliest, and still favourite, encounter with
aesthetic philosophy. It may be old fashioned and un-deconstructed in tone,
but to me it rings true. He went on:

And yet, let the tints of it be a little subtle, let the lines be a little del-
icate, and the masses of land and sea somewhat balanced, and we
really have a beautiful thing; a thing the charm of which consists
almost entirely in its meaning, but which nevertheless pleases us in
the same way as a picture or a graphic symbol might please. Give
the symbol a little intrinsic worth of form, line, and color, and it
attracts like a magnet all the values of the things it is known to sym-
bolize. It becomes beautiful in its expressiveness. (p. 210)

However, in conclusion, and to avoid possible accusations of mawkishness
at the close, I also quote Jerry Fodor (1985):

It is, no doubt, important to attend to the eternally beautiful and to
believe the eternally true. But it is more important not to be eaten.
(p. 4)

Notes

[1] This quotation is commonly attributed to Gauss, but it has proven remarkably
resistant to being tracked down. Arber, the citation I give here, a philosopher of
biology, acknowledges in a footnote (p. 47) that, “the present writer has been unable
to trace this dictum to its original source”. Interestingly, even the St. Andrews his-
tory of mathematics site cites Arber. See also Dunnington (1955/2004).

[2] In Brouwer’s Cambridge Lectures on Intuitionism, the editor van Dalen (1981,
p. 95) comments in a footnote:

3. The first use of undecidable properties of effectively presented
objects (such as the decimal expansion of π) occurs in Brouwer
(1908 [/1975]).
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