Monotone operators and "bigger conjugate" functions

Heinz H. Bauschke*, Jonathan M. Borwein ${ }^{\dagger}$ Xianfu Wang \ddagger and Liangjin Yao ${ }^{\S}$

August 12, 2011

Abstract

We study a question posed by Stephen Simons in his 2008 monograph involving "bigger conjugate" (BC) functions and the partial infimal convolution. As Simons demonstrated in his monograph, these function have been crucial to the understanding and advancement of the state-of-the-art of harder problems in monotone operator theory, especially the sum problem.

In this paper, we provide some tools for further analysis of BC-functions which allow us to answer Simons' problem in the negative. We are also able to refute a similar but much harder conjecture which would have generalized a classical result of Brézis, Crandall and Pazy. Our work also reinforces the importance of understanding unbounded skew linear relations to construct monotone operators with unexpected properties.

2010 Mathematics Subject Classification:

Primary 47A06, 47H05; Secondary 47B65, 47N10, 90C25
Keywords: Adjoint, BC-function, Fenchel conjugate, Fitzpatrick function, linear relation, maximally monotone operator, monotone operator, multifunction, normal cone operator, partial infimal convolution.

[^0]
1 Introduction

Throughout this paper, we assume that X is a real reflexive Banach space with norm $\|\cdot\|$, that X^{*} is the continuous dual of X, and that X and X^{*} are paired by $\langle\cdot, \cdot\rangle$.

Let $A: X \rightrightarrows X^{*}$ be a set-valued operator (also known as a multifunction) from X to X^{*}, i.e., for every $x \in X, A x \subseteq X^{*}$, and let gra $A:=\left\{\left(x, x^{*}\right) \in X \times X^{*} \mid x^{*} \in A x\right\}$ be the graph of A. The domain of A is $\operatorname{dom} A:=\{x \in X \mid A x \neq \varnothing\}$, and ran $A:=A(X)$ for the range of A. Recall that A is monotone if

$$
\begin{equation*}
\left\langle x-y, x^{*}-y^{*}\right\rangle \geq 0, \quad \forall\left(x, x^{*}\right) \in \operatorname{gra} A \forall\left(y, y^{*}\right) \in \operatorname{gra} A, \tag{1}
\end{equation*}
$$

and maximally monotone if A is monotone and A has no proper monotone extension (in the sense of graph inclusion). Let $S \subseteq X \times X^{*}$. We say S is a monotone set if there exists a monotone operator $A: X \rightrightarrows X^{*}$ such that gra $A=S$, and S is a maximally monotone set if there exists a maximally monotone operator A such that gra $A=S$. Let $A: X \rightrightarrows X^{*}$ be monotone and $\left(x, x^{*}\right) \in X \times X^{*}$. We say $\left(x, x^{*}\right)$ is monotonically related to gra A if

$$
\left\langle x-y, x^{*}-y^{*}\right\rangle \geq 0, \quad \forall\left(y, y^{*}\right) \in \operatorname{gra} A
$$

Maximally monotone operators have proven to be a potent class of objects in modern Optimization and Analysis; see, e.g., [6, 7, 8], the books [2, 9, 10, 13, 16, 17, 15, 19] and the references therein.

We adopt standard notation used in these books especially [9, Chapter 2] and [6, 16, 17]: Given a subset C of $X, \operatorname{int} C$ is the interior of C, \bar{C} is the norm closure of C. The support function of C, written as σ_{C}, is defined by $\sigma_{C}\left(x^{*}\right):=\sup _{c \in C}\left\langle c, x^{*}\right\rangle$. The indicator function of C, written as ι_{C}, is defined at $x \in X$ by

$$
\iota_{C}(x):= \begin{cases}0, & \text { if } x \in C \tag{2}\\ +\infty, & \text { otherwise }\end{cases}
$$

For every $x \in X$, the normal cone operator of C at x is defined by $N_{C}(x)=\left\{x^{*} \in X^{*} \mid\right.$ $\left.\sup _{c \in C}\left\langle c-x, x^{*}\right\rangle \leq 0\right\}$, if $x \in C$; and $N_{C}(x)=\varnothing$, if $x \notin C$. For $x, y \in X$, we set $[x, y]=$ $\{t x+(1-t) y \mid 0 \leq t \leq 1\}$. The closed unit ball is $B_{X}:=\{x \in X \mid\|x\| \leq 1\}$, and $\mathbb{N}:=\{1,2,3, \ldots\}$.

If Z is a real Banach space with dual Z^{*} and a set $S \subseteq Z$, we denote S^{\perp} by $S^{\perp}:=\left\{z^{*} \in\right.$ $\left.Z^{*} \mid\left\langle z^{*}, s\right\rangle=0, \quad \forall s \in S\right\}$. The adjoint of an operator A, written A^{*}, is defined by

$$
\operatorname{gra} A^{*}:=\left\{\left(x, x^{*}\right) \in X \times X^{*} \mid\left(x^{*},-x\right) \in(\operatorname{gra} A)^{\perp}\right\}
$$

We say A is a linear relation if gra A is a linear subspace. We say that A is skew if gra $A \subseteq$ $\operatorname{gra}\left(-A^{*}\right)$; equivalently, if $\left\langle x, x^{*}\right\rangle=0, \forall\left(x, x^{*}\right) \in \operatorname{gra} A$. Furthermore, A is symmetric if $\operatorname{gra} A \subseteq \operatorname{gra} A^{*}$; equivalently, if $\left\langle x, y^{*}\right\rangle=\left\langle y, x^{*}\right\rangle, \forall\left(x, x^{*}\right),\left(y, y^{*}\right) \in \operatorname{gra} A$.

Let $f: X \rightarrow]-\infty,+\infty]$. Then $\operatorname{dom} f:=f^{-1}(\mathbb{R})$ is the domain of f, and $f^{*}: X^{*} \rightarrow$ $[-\infty,+\infty]: x^{*} \mapsto \sup _{x \in X}\left(\left\langle x, x^{*}\right\rangle-f(x)\right)$ is the Fenchel conjugate of f. We say f is proper if $\operatorname{dom} f \neq \varnothing$. Let f be proper. The subdifferential of f is defined by

$$
\partial f: X \rightrightarrows X^{*}: x \mapsto\left\{x^{*} \in X^{*} \mid(\forall y \in X)\left\langle y-x, x^{*}\right\rangle+f(x) \leq f(y)\right\}
$$

2 BC-functions

We now turn to the objects of the present paper: representative and BC-functions. Let $F: X \times X^{*} \rightarrow$] $-\infty,+\infty$], and define pos F [17] by

$$
\operatorname{pos} F:=\left\{\left(x, x^{*}\right) \in X \times X^{*} \mid F\left(x, x^{*}\right)=\left\langle x, x^{*}\right\rangle\right\} .
$$

We say F is a $B C$-function (BC stands for "bigger conjugate") [17] if F is proper and convex with

$$
\begin{equation*}
F^{*}\left(x^{*}, x\right) \geq F\left(x, x^{*}\right) \geq\left\langle x, x^{*}\right\rangle, \quad \forall\left(x, x^{*}\right) \in X \times X^{*} . \tag{3}
\end{equation*}
$$

The prototype for a BC function is the Fitzpatrick function [11, 17, 9 .
Let now Y be another real Banach space. We set $P_{X}: X \times Y \rightarrow X:(x, y) \mapsto x$. Let $\left.\left.F_{1}, F_{2}: X \times Y \rightarrow\right]-\infty,+\infty\right]$. Then the partial inf-convolution $F_{1} \square_{2} F_{2}$ is the function defined on $X \times Y$ by

$$
F_{1} \square_{2} F_{2}:(x, y) \mapsto \inf _{v \in Y} F_{1}(x, y-v)+F_{2}(x, v)
$$

The importance of BC-functions associated with monotone operators is that along with appropriate partial convolutions, they provide the most powerful current method to establish the maximality of the sum of two maximally monotone operators [17, 9]. The two problems considered below are closely related to constructions of maximally monotone operators as sums (see also Remark 5.4).

The following question was posed by S. Simons [17, Problem 34.7]:
Problem 2.1 (Simons) Let $\left.\left.F_{1}, F_{2}: X \times X^{*} \rightarrow\right]-\infty,+\infty\right]$ be proper lower semicontinuous and convex functions with P_{X} dom $F_{1} \cap P_{X}$ dom $F_{2} \neq \varnothing$. Assume that F_{1}, F_{2} are BCfunctions and that there exists an increasing function $j:[0,+\infty[\rightarrow[0,+\infty[$ such that the
implication

$$
\begin{aligned}
& \left(x, x^{*}\right) \in \operatorname{pos} F_{1},\left(y, y^{*}\right) \in \operatorname{pos} F_{2}, x \neq y \text { and }\left\langle x-y, y^{*}\right\rangle=\|x-y\| \cdot\left\|y^{*}\right\| \\
& \quad \Rightarrow\left\|y^{*}\right\| \leq j\left(\|x\|+\left\|x^{*}+y^{*}\right\|+\|y\|+\|x-y\| \cdot\left\|y^{*}\right\|\right)
\end{aligned}
$$

holds. Then, is it true that, for all $\left(z, z^{*}\right) \in X \times X^{*}$, there exists $x^{*} \in X^{*}$ such that

$$
F_{1}^{*}\left(x^{*}, z\right)+F_{2}^{*}\left(z^{*}-x^{*}, z\right) \leq\left(F_{1} \square_{2} F_{2}\right)^{*}\left(x^{*}, z\right) ?
$$

In Example 4.4 of this paper, we construct a comprehensive negative answer to Problem 2.1. This in turn prompts another question:

Problem 2.2 Let $\left.\left.F_{1}, F_{2}: X \times X^{*} \rightarrow\right]-\infty,+\infty\right]$ be proper lower semicontinuous and convex functions with P_{X} dom $F_{1} \cap P_{X}$ dom $F_{2} \neq \varnothing$. Assume that F_{1}, F_{2} are BC-functions and that there exists an increasing function $j:[0,+\infty[\rightarrow[0,+\infty[$ such that the implication

$$
\begin{aligned}
& \left(x, x^{*}\right) \in \operatorname{pos} F_{1},\left(y, y^{*}\right) \in \operatorname{pos} F_{2}, x \neq y \text { and }\left\langle x-y, y^{*}\right\rangle=\|x-y\| \cdot\left\|y^{*}\right\| \\
& \quad \Rightarrow\left\|y^{*}\right\| \leq j\left(\|x\|+\left\|x^{*}+y^{*}\right\|+\|y\|+\|x-y\| \cdot\left\|y^{*}\right\|\right)
\end{aligned}
$$

holds. Then, is it true that, for all $\left(z, z^{*}\right) \in X \times X^{*}$, there exists $v^{*} \in X^{*}$ such that

$$
\begin{equation*}
F_{1}^{*}\left(v^{*}, z\right)+F_{2}^{*}\left(z^{*}-v^{*}, z\right) \leq\left(F_{1} \square_{2} F_{2}\right)^{*}\left(z^{*}, z\right) ? \tag{4}
\end{equation*}
$$

This is a quite reasonable question and somewhat harder to answer. An affirmative response to Problem 2.2 would rederive Simons' theorem (Fact 3.4). Precisely, when the latter conjecture holds, we can deduce that $F:=F_{1} \square_{2} F_{2}$ is a BC-function. It follows that pos F (i.e., M in Fact 3.4) is a maximally monotone set; by Simons' result [17, Theorem 21.4]. However, Example 5.2 shows that the conjecture fails in general.

We are now ready to set to work. The remainder of the paper is organized as follows. In Section 3, we collect auxiliary results for future reference and for the reader's convenience. Our main result (Theorem 4.3) is established in Section 4. In Example 4.4, we provide the promised negative answer to Problem 2.1. In Section 5, we provide a negative answer to Problem 2.2.

3 Auxiliary results

Fact 3.1 (Rockafellar) (See [14, Theorem A], [19, Theorem 3.2.8], [17, Theorem 18.7] or [12, Theorem 2.1]) Let $f: X \rightarrow]-\infty,+\infty$] be a proper lower semicontinuous convex function. Then ∂f is maximally monotone.

We now turn to prerequisite results on Fitzpatrick functions, monotone operators, and linear relations.

Fact 3.2 (Fitzpatrick) (See [11, Corollary 3.9 and Proposition 4.2] and [6, 9].) Let $A: X \rightrightarrows X^{*}$ be maximally monotone, and set

$$
\begin{equation*}
\left.\left.F_{A}: X \times X^{*} \rightarrow\right]-\infty,+\infty\right]:\left(x, x^{*}\right) \mapsto \sup _{\left(a, a^{*}\right) \in \operatorname{gra} A}\left(\left\langle x, a^{*}\right\rangle+\left\langle a, x^{*}\right\rangle-\left\langle a, a^{*}\right\rangle\right), \tag{5}
\end{equation*}
$$

which is the Fitzpatrick function associated with A. Then F_{A} is a $B C$-function and $\operatorname{pos} F_{A}=$ gra A.

Fact 3.3 (Simons and Zălinescu) (See [18, Theorem 4.2] or [17, Theorem 16.4(a)].) Let Y be a real Banach space and $\left.\left.F_{1}, F_{2}: X \times Y \rightarrow\right]-\infty,+\infty\right]$ be proper, lower semicontinuous, and convex. Assume that for every $(x, y) \in X \times Y$,

$$
\left(F_{1} \square_{2} F_{2}\right)(x, y)>-\infty
$$

and that $\bigcup_{\lambda>0} \lambda\left[P_{X} \operatorname{dom} F_{1}-P_{X} \operatorname{dom} F_{2}\right]$ is a closed subspace of X. Then for every $\left(x^{*}, y^{*}\right) \in X^{*} \times Y^{*}$,

$$
\left(F_{1} \square_{2} F_{2}\right)^{*}\left(x^{*}, y^{*}\right)=\min _{u^{*} \in X^{*}}\left[F_{1}^{*}\left(x^{*}-u^{*}, y^{*}\right)+F_{2}^{*}\left(u^{*}, y^{*}\right)\right] .
$$

The following Simons' result generalizes the result of Brézis, Crandall and Pazy [5].
Fact 3.4 (Simons) (See [17, Theorem 34.3].) Let $\left.\left.F_{1}, F_{2}: X \times X^{*} \rightarrow\right]-\infty,+\infty\right]$ be proper lower semicontinuous and convex functions with $P_{X} \operatorname{dom} F_{1} \cap P_{X}$ dom $F_{2} \neq \varnothing$. Assume that F_{1}, F_{2} are BC-functions and that there exists an increasing function $j:[0,+\infty[\rightarrow[0,+\infty[$ such that the implication

$$
\begin{aligned}
& \left(x, x^{*}\right) \in \operatorname{pos} F_{1},\left(y, y^{*}\right) \in \operatorname{pos} F_{2}, x \neq y \text { and }\left\langle x-y, y^{*}\right\rangle=\|x-y\| \cdot\left\|y^{*}\right\| \\
& \quad \Rightarrow\left\|y^{*}\right\| \leq j\left(\|x\|+\left\|x^{*}+y^{*}\right\|+\|y\|+\|x-y\| \cdot\left\|y^{*}\right\|\right)
\end{aligned}
$$

holds. Then $M:=\left\{\left(x, x^{*}+y^{*}\right) \mid\left(x, x^{*}\right) \in \operatorname{pos} F_{1},\left(x, y^{*}\right) \in \operatorname{pos} F_{2}\right\}$ is a maximally monotone set.

4 Our main result

We start with two technical tools which relate Fitzpatrick functions and skew operators. We first give a direct proof of the following result.

Fact 4.1 (See [1, Corollary 5.9].) Let C be a nonempty closed convex subset of X. Then $F_{N_{C}}=\iota_{C} \oplus \iota_{C}^{*}$.

Proof. Let $\left(x, x^{*}\right) \in X \times X^{*}$. Then we have

$$
\begin{align*}
F_{N_{C}}\left(x, x^{*}\right) & =\sup _{\left(c, c^{*}\right) \in \operatorname{gra} N_{C}}\left[\left\langle x, c^{*}\right\rangle+\left\langle c, x^{*}\right\rangle-\left\langle c, c^{*}\right\rangle\right] \\
& =\sup _{\left(c, c^{*}\right) \in \operatorname{gra} N_{C}, k \geq 0}\left[\left\langle x, k c^{*}\right\rangle+\left\langle c, x^{*}\right\rangle-\left\langle c, k c^{*}\right\rangle\right] \\
& =\sup _{\left(c, c^{*}\right) \in \operatorname{gra} N_{C}, k \geq 0}\left[k\left(\left\langle x, c^{*}\right\rangle-\left\langle c, c^{*}\right\rangle\right)+\left\langle c, x^{*}\right\rangle\right] \tag{6}
\end{align*}
$$

By (6),

$$
\begin{align*}
& \left(x, x^{*}\right) \in \operatorname{dom} F_{N_{C}} \Rightarrow \sup _{\left(c, c^{*}\right) \in \operatorname{gra} N_{C}}\left[\left\langle x, c^{*}\right\rangle-\left\langle c, c^{*}\right\rangle\right] \leq 0 \\
& \Leftrightarrow \inf _{\left(c, c^{*}\right) \in \operatorname{gra} N_{C}}\left[-\left\langle x, c^{*}\right\rangle+\left\langle c, c^{*}\right\rangle\right] \geq 0 \\
& \Leftrightarrow \inf _{\left(c, c^{*}\right) \in \operatorname{gra} N_{C}}\left[\left\langle c-x, c^{*}-0\right\rangle\right] \geq 0 \\
& \Leftrightarrow(x, 0) \in \operatorname{gra} N_{C} \quad(\text { by Fact } 3.1) \\
& \Leftrightarrow x \in C . \tag{7}
\end{align*}
$$

Now assume $x \in C$. By (6),

$$
\begin{equation*}
F_{N_{C}}\left(x, x^{*}\right)=\iota_{C}^{*}\left(x^{*}\right) . \tag{8}
\end{equation*}
$$

Combine (7) and (8), $F_{N_{C}}=\iota_{C} \oplus \iota_{C}^{*}$.
Fact 4.2 (See [3, Proposition 5.5].) Let $A: X \rightrightarrows X^{*}$ be a monotone linear relation such that $\operatorname{gra} A \neq \varnothing$ and gra A is closed. Then

$$
\begin{equation*}
F_{A}^{*}\left(x^{*}, x\right)=\iota_{\operatorname{gra} A}\left(x, x^{*}\right)+\left\langle x, x^{*}\right\rangle, \forall\left(x, x^{*}\right) \in X \times X^{*} \tag{9}
\end{equation*}
$$

We are now ready to establish our main result.
Theorem 4.3 Let $A: X \rightrightarrows X^{*}$ be a maximally monotone linear relation that is at most single-valued, and let $C \neq\{0\}$ be a bounded closed and convex subset of X such that $\bigcup_{\lambda>0} \lambda[\operatorname{dom} A-C]$ is a closed subspace of X. Let $j:[0,+\infty[\rightarrow[0,+\infty[$ be an increasing function such that $j(\gamma) \geq \gamma$ for every $\gamma \in[0,+\infty[$. Then the following hold.
(i) F_{A} and $F_{N_{C}}=\iota_{C} \oplus \sigma_{C}$ are $B C$-functions.
(ii) $F_{A}^{*}\left(x^{*}, x\right)+F_{N_{C}}^{*}\left(y^{*}-x^{*}, x\right)=\iota_{\text {gra } A \cap C \times X^{*}}\left(x, x^{*}\right)+\left\langle x, x^{*}\right\rangle+\sigma_{C}\left(y^{*}-x^{*}\right), \quad \forall\left(x, x^{*}, y^{*}\right) \in$ $X \times X^{*} \times X^{*}$.
(iii) For every $\left(x, x^{*}\right) \in X \times X^{*}$,

$$
\left(F_{A} \square_{2} F_{N_{C}}\right)^{*}\left(x^{*}, x\right)= \begin{cases}\langle x, A x\rangle+\sigma_{C}\left(x^{*}-A x\right), & \text { if } x \in C \cap \operatorname{dom} A ; \tag{10}\\ +\infty, & \text { otherwise } .\end{cases}
$$

(iv) There exists $\left(z, z^{*}\right) \in X \times X^{*}$ such that $z \in \operatorname{dom} A \cap C$ and $\sigma_{C}\left(z^{*}-A z\right)>0$.
(v) Assume that $\left(z, z^{*}\right) \in X \times X^{*}$ satisfies $z \in \operatorname{dom} A \cap C$ and $\sigma_{C}\left(z^{*}-A z\right)>0$. Then

$$
\begin{equation*}
F_{A}^{*}\left(x^{*}, z\right)+F_{N_{C}}^{*}\left(z^{*}-x^{*}, z\right)>\left(F_{A} \square_{2} F_{N_{C}}\right)^{*}\left(x^{*}, z\right), \quad \forall x^{*} \in X^{*} . \tag{11}
\end{equation*}
$$

(vi) Moreover, assume that X is a Hilbert space and $C=B_{X}$. Then the implication

$$
\begin{align*}
& \left(x, x^{*}\right) \in \operatorname{pos} F_{A},\left(y, y^{*}\right) \in \operatorname{pos} F_{N_{C}}, x \neq y \text { and }\left\langle x-y, y^{*}\right\rangle=\|x-y\| \cdot\left\|y^{*}\right\| \\
& \quad \Rightarrow\left\|y^{*}\right\| \leq\left\|x^{*}+y^{*}\right\| \leq j\left(\|x\|+\left\|x^{*}+y^{*}\right\|+\|y\|+\|x-y\| \cdot\left\|y^{*}\right\|\right) \tag{12}
\end{align*}
$$

holds.

Proof. (i): Combine Fact 4.1 and Fact 3.2 ,
(ii): Let $\left(x, x^{*}, y^{*}\right) \in X \times X^{*} \times X^{*}$. Then by Fact 4.2 and (i), we have

$$
\begin{aligned}
F_{A}^{*}\left(x^{*}, x\right)+F_{N_{C}}^{*}\left(y^{*}-x^{*}, x\right) & =\iota_{\text {gra } A}\left(x, x^{*}\right)+\left\langle x, x^{*}\right\rangle+\left(\iota_{C}^{*} \oplus \sigma_{C}^{*}\right)\left(y^{*}-x^{*}, x\right) \\
& =\iota_{\text {gra } A}\left(x, x^{*}\right)+\left\langle x, x^{*}\right\rangle+\iota_{C}(x)+\sigma_{C}\left(y^{*}-x^{*}\right) \\
& =\iota_{\text {gra } A \cap C \times X^{*}}\left(x, x^{*}\right)+\left\langle x, x^{*}\right\rangle+\sigma_{C}\left(y^{*}-x^{*}\right) .
\end{aligned}
$$

(iii): By [3, Lemma 5.8], we have

$$
\begin{equation*}
\bigcup_{\lambda>0} \lambda\left(P_{X}\left(\operatorname{dom} F_{A}\right)-P_{X}\left(\operatorname{dom} F_{N_{C}}\right)\right) \text { is a closed subspace of } X \text {. } \tag{13}
\end{equation*}
$$

Then for every $\left(x, x^{*}\right) \in X \times X^{*}$ and $u^{*} \in X^{*}$, by (i),

$$
F_{A}\left(x, u^{*}\right)+F_{N_{C}}\left(x, x^{*}-u^{*}\right) \geq\left\langle x, u^{*}\right\rangle+\left\langle x, x^{*}-u^{*}\right\rangle=\left\langle x, x^{*}\right\rangle .
$$

Hence

$$
\begin{equation*}
\left(F_{A} \square_{2} F_{N_{C}}\right)\left(x, x^{*}\right) \geq\left\langle x, x^{*}\right\rangle>-\infty . \tag{14}
\end{equation*}
$$

By (13), (14), Fact 3.3, and (ii), for every $\left(x, x^{*}\right) \in X \times X^{*}$, there exists $z^{*} \in X^{*}$ such that

$$
\begin{align*}
\left(F_{A} \square_{2} F_{N_{C}}\right)^{*}\left(x^{*}, x\right) & =\min _{y^{*} \in X^{*}} F_{A}^{*}\left(y^{*}, x\right)+F_{N_{C}}^{*}\left(x^{*}-y^{*}, x\right) \\
& =\iota_{\text {gra } A \cap C \times X^{*}}\left(x, z^{*}\right)+\left\langle x, z^{*}\right\rangle+\sigma_{C}\left(x^{*}-z^{*}\right) . \tag{15}
\end{align*}
$$

This implies (10).
(iv): By the assumption, there exists $z \in \operatorname{dom} A \cap C$. Since $C \neq\{0\}$, there exists $z^{*} \in X^{*}$ such that $\sigma_{C}\left(z^{*}-A z\right)>0$.
(v) Let $x^{*} \in X^{*}$. By the assumptions, (iii) and the boundedness of C, we have

$$
\begin{equation*}
\left(F_{A} \square_{2} F_{N_{C}}\right)^{*}\left(x^{*}, z\right)=\langle z, A z\rangle+\sigma_{C}\left(x^{*}-A z\right)<+\infty . \tag{16}
\end{equation*}
$$

We consider two cases.
Case 1: $x^{*} \neq A z$.
Then $\left(z, x^{*}\right) \notin \operatorname{gra} A$ and so $\iota_{\text {gra } A \cap C \times X^{*}}\left(z, x^{*}\right)=+\infty$. In view of (ii) and (16), (11) holds.
Case 2: $x^{*}=A z$.
By (ii) and (16), we have

$$
\begin{aligned}
F_{A}^{*}\left(x^{*}, z\right)+F_{N_{C}}^{*}\left(z^{*}-x^{*}, z\right)=\langle z, A z\rangle+\sigma_{C}\left(z^{*}-A z\right) & >\langle z, A z\rangle+0=\langle z, A z\rangle+\sigma_{C}(0) \\
& =\left(F_{A} \square_{2} F_{N_{C}}\right)^{*}\left(x^{*}, z\right) .
\end{aligned}
$$

Hence (11) holds as well.
(vi): We start with a well known formula whose short proof we include for completeness. Let $x \in X$. Then

$$
N_{B_{X}}(x)= \begin{cases}0, & \text { if }\|x\|<1 \tag{17}\\ {[0, \infty[\cdot x,} & \text { if }\|x\|=1 \\ \varnothing, & \text { otherwise }\end{cases}
$$

Clearly, $N_{B_{X}}(x)=0$ if $\|x\|<1$, and $N_{B_{X}}(x)=\varnothing$ if $x \notin B_{X}$. Assume $\|x\|=1$. Then

$$
\begin{aligned}
x^{*} \in N_{B_{X}}(x) & \Leftrightarrow\left\|x^{*}\right\|=\left\|x^{*}\right\| \cdot\|x\| \geq\left\langle x^{*}, x\right\rangle \geq \sup \left\langle x^{*}, B_{X}\right\rangle=\left\|x^{*}\right\| \\
& \Leftrightarrow\left\langle x^{*}, x\right\rangle=\left\|x^{*}\right\| \cdot\|x\| \\
& \Leftrightarrow x^{*}=\gamma x, \quad \gamma \geq 0
\end{aligned}
$$

Hence (17) holds.

Now let $\left(x, x^{*}\right) \in \operatorname{pos} F_{A},\left(y, y^{*}\right) \in \operatorname{pos} F_{N_{C}}$ and $x \neq y$ be such that $\left\langle x-y, y^{*}\right\rangle=\|x-y\|$. $\left\|y^{*}\right\|$. By Fact 3.2,

$$
\begin{equation*}
x^{*}=A x \text { and } y^{*} \in N_{B_{X}}(y) . \tag{18}
\end{equation*}
$$

Now we show that

$$
\begin{equation*}
\left\|x^{*}+y^{*}\right\| \geq\left\|y^{*}\right\| . \tag{19}
\end{equation*}
$$

Clearly, (19) holds if $y^{*}=0$. Thus, we assume that $y^{*} \neq 0$. By (18) and (17), there exists $\gamma_{0}>0$ such that

$$
\begin{equation*}
y^{*}=\gamma_{0} y \tag{20}
\end{equation*}
$$

where

$$
\begin{equation*}
\|y\|=1 \tag{21}
\end{equation*}
$$

Since $\left\langle x-y, y^{*}\right\rangle=\|x-y\| \cdot\left\|y^{*}\right\|$, we have

$$
\begin{equation*}
y^{*}=\frac{\left\|y^{*}\right\|}{\|x-y\|}(x-y) \tag{22}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
x \neq 0 \tag{23}
\end{equation*}
$$

Suppose to the contrary that $x=0$. Then by (22) and (21), we have $y^{*}=-\frac{\left\|y^{*}\right\|}{\|y\|} y=-\left\|y^{*}\right\| y$, which contradicts (20). Hence (23) holds.

By (20), (22) and (23), we have

$$
\begin{equation*}
\frac{x}{\|x\|}=\frac{y^{*}}{\left\|y^{*}\right\|} \tag{24}
\end{equation*}
$$

Then (18) and the monotonicity of A imply

$$
\left\|x^{*}+y^{*}\right\| \geq\left\langle x^{*}+y^{*}, \frac{x}{\|x\|}\right\rangle \geq\left\langle y^{*}, \frac{y^{*}}{\left\|y^{*}\right\|}\right\rangle=\left\|y^{*}\right\|
$$

Therefore, (19) holds.
Then by the assumption, we have

$$
\begin{aligned}
j\left(\|x\|+\left\|x^{*}+y^{*}\right\|+\|y\|+\|x-y\| \cdot\left\|y^{*}\right\|\right) & \geq j\left(\left\|x^{*}+y^{*}\right\|\right) \\
& \geq\left\|x^{*}+y^{*}\right\| \\
& \geq\left\|y^{*}\right\| .
\end{aligned}
$$

Hence (12) holds,
We are now ready to exploit Theorem 4.3 to resolve Problem 2.1.

Example 4.4 Suppose that X is a Hilbert space, and let $A: X \rightrightarrows X^{*}$ be a maximally monotone linear relation that is at most single-valued, and set $C=B_{X}$. Let $j:[0,+\infty[\rightarrow$ $[0,+\infty[$ be an increasing function such that $j(\gamma) \geq \gamma$ for every $\gamma \in[0,+\infty[$. Then the following hold.
(i) Let $z^{*} \neq 0$. Then

$$
F_{A}^{*}\left(x^{*}, 0\right)+F_{N_{C}}^{*}\left(z^{*}-x^{*}, 0\right)>\left(F_{A} \square_{2} F_{N_{C}}\right)^{*}\left(x^{*}, 0\right), \quad \forall x^{*} \in X
$$

(ii) The implication

$$
\begin{aligned}
& \left(x, x^{*}\right) \in \operatorname{pos} F_{A},\left(y, y^{*}\right) \in \operatorname{pos} F_{N_{C}}, x \neq y \text { and }\left\langle x-y, y^{*}\right\rangle=\|x-y\| \cdot\left\|y^{*}\right\| \\
& \quad \Rightarrow\left\|y^{*}\right\| \leq\left\|x^{*}+y^{*}\right\| \leq j\left(\|x\|+\left\|x^{*}+y^{*}\right\|+\|y\|+\|x-y\| \cdot\left\|y^{*}\right\|\right)
\end{aligned}
$$

holds.

Proof. Set $z=0$. Then $A z=0 \Rightarrow z^{*}-A z=z^{*} \neq 0 \Rightarrow \sigma_{C}\left(z^{*}-A z\right)=\sigma_{C}\left(z^{*}\right)=\left\|z^{*}\right\|>0$. Now apply Theorem 4.3)(v) \& (vi).

Remark 4.5 Example 4.4 yields a negative answer to Simons' Problem 2.1 (17 , Problem 34.7]) for many linear relations - including the rotation by 90 degrees in the plane.

5 Resolution of Problem 2.2

We now move to the second problem. Its resolution depends on the following fact concerning a maximally monotone operator on ℓ^{2}, the real Hilbert space of square-summable sequences.

Fact 5.1 (See [4, Propositions 3.5, 3.6 and 3.7 and Lemma 3.18].) Suppose that $X=\ell^{2}$, and that $A: \ell^{2} \rightrightarrows \ell^{2}$ is given by

$$
\begin{equation*}
A x:=\frac{\left(\sum_{i<n} x_{i}-\sum_{i>n} x_{i}\right)_{n \in \mathbb{N}}}{2}=\left(\sum_{i<n} x_{i}+\frac{1}{2} x_{n}\right)_{n \in \mathbb{N}}, \quad \forall x=\left(x_{n}\right)_{n \in \mathbb{N}} \in \operatorname{dom} A \tag{25}
\end{equation*}
$$

where $\operatorname{dom} A:=\left\{x:=\left(x_{n}\right)_{n \in \mathbb{N}} \in \ell^{2} \mid \sum_{i \geq 1} x_{i}=0,\left(\sum_{i \leq n} x_{i}\right)_{n \in \mathbb{N}} \in \ell^{2}\right\}$ and $\sum_{i<1} x_{i}:=0$. Then

$$
\begin{equation*}
A^{*} x=\left(\frac{1}{2} x_{n}+\sum_{i>n} x_{i}\right)_{n \in \mathbb{N}} \tag{26}
\end{equation*}
$$

where

$$
x=\left(x_{n}\right)_{n \in \mathbb{N}} \in \operatorname{dom} A^{*}=\left\{x=\left(x_{n}\right)_{n \in \mathbb{N}} \in \ell^{2} \mid\left(\sum_{i>n} x_{i}\right)_{n \in \mathbb{N}} \in \ell^{2}\right\} .
$$

Then A provides an at most single-valued linear relation such that the following hold.
(i) A is maximally monotone and skew.
(ii) A^{*} is maximally monotone but not skew.
(iii) $F_{A^{*}}^{*}\left(x^{*}, x\right)=F_{A^{*}}\left(x, x^{*}\right)=\iota_{\text {gra } A^{*}}\left(x, x^{*}\right)+\left\langle x, x^{*}\right\rangle, \quad \forall\left(x, x^{*}\right) \in X \times X$.
(iv) $\left\langle A^{*} x, x\right\rangle=\frac{1}{2} s^{2}, \quad \forall x=\left(x_{n}\right)_{n \in \mathbb{N}} \in \operatorname{dom} A^{*}$ with $\quad s:=\sum_{i \geq 1} x_{i}$.

We are now ready for the main construction of this section.
Example 5.2 Suppose that X and A are as in Fact5.1. Set $e_{1}:=(1,0, \ldots, 0, \ldots)$, i.e., there is a 1 in the first place and all others entries are 0 , and $C:=\left[0, e_{1}\right]$. Let $j:[0,+\infty[\rightarrow[0,+\infty[$ be an increasing function such that $j(\gamma) \geq \frac{\gamma}{2}$ for every $\gamma \in[0,+\infty[$. Then the following hold.
(i) $F_{A^{*}}$ and $F_{N_{C}}=\iota_{C} \oplus \sigma_{C}$ are BC-functions.
(ii) $\left(F_{A^{*}} \square_{2} F_{N_{C}}\right)\left(x, x^{*}\right)=\left\{\begin{array}{ll}\left\langle x, A^{*} x\right\rangle+\sigma_{C}\left(x^{*}-A^{*} x\right), & \text { if } x \in C ; \\ +\infty, & \text { otherwise, }\end{array} \quad \forall\left(x, x^{*}\right) \in X \times X^{*}\right.$.
(iii) Then

$$
F_{A^{*}}^{*}\left(x^{*}, 0\right)+F_{N_{C}}^{*}\left(A^{*} e_{1}-x^{*}, 0\right)>\left(F_{A^{*}} \square_{2} F_{N_{C}}\right)^{*}\left(A^{*} e_{1}, 0\right), \quad \forall x^{*} \in X
$$

(iv) The implication

$$
\begin{aligned}
& \left(x, x^{*}\right) \in \operatorname{pos} F_{N_{C}},\left(y, y^{*}\right) \in \operatorname{pos} F_{A^{*}}, x \neq y \text { and }\left\langle x-y, y^{*}\right\rangle=\|x-y\| \cdot\left\|y^{*}\right\| \\
& \quad \Rightarrow\left\|y^{*}\right\| \leq \frac{1}{2}\|y\| \leq j\left(\|x\|+\left\|x^{*}+y^{*}\right\|+\|y\|+\|x-y\| \cdot\left\|y^{*}\right\|\right)
\end{aligned}
$$

holds.
(v) $A^{*}+N_{C}$ is maximally monotone.

Proof. (i). Combine Fact 5.1 (ii), Fact 3.2 and Fact 4.1 .
(ii). Using Fact 5.1](iii), we see that for every $\left(x, x^{*}\right) \in X \times X^{*}$,

$$
\begin{aligned}
\left(F_{A^{*}} \square_{2} F_{N_{C}}\right)\left(x, x^{*}\right) & =\inf _{y^{*} \in X^{*}} \iota_{\operatorname{gra} A^{*}}\left(x, y^{*}\right)+\left\langle x, y^{*}\right\rangle+\iota_{C}(x)+\sigma_{C}\left(x^{*}-y^{*}\right) \\
& = \begin{cases}\left\langle x, A^{*} x\right\rangle+\sigma_{C}\left(x^{*}-A^{*} x\right), & \text { if } x \in \operatorname{dom} A^{*} \cap C \\
+\infty, & \text { otherwise }\end{cases}
\end{aligned}
$$

The identity now follows since $C \subseteq \operatorname{dom} A^{*}$.
(iii): Let $x^{*} \in X$. Then by Fact 5.1)(iii) we have

$$
\begin{align*}
F_{A^{*}}^{*}\left(x^{*}, 0\right)+F_{N_{C}}^{*}\left(A^{*} e_{1}-x^{*}, 0\right) & =\iota_{\{0\}}\left(x^{*}\right)+\sigma_{C}\left(A^{*} e_{1}-x^{*}\right) \\
& =\sigma_{C}\left(A^{*} e_{1}\right)+\iota_{\{0\}}\left(x^{*}\right) \\
& =\sup _{t \in[0,1]}\left\{t\left\langle e_{1}, A^{*} e_{1}\right\rangle\right\}+\iota_{\{0\}}\left(x^{*}\right) \\
& =\left\langle e_{1}, A^{*} e_{1}\right\rangle+\iota_{\{0\}}\left(x^{*}\right) \\
& =\frac{1}{2}+\iota_{\{0\}}\left(x^{*}\right) \quad(\text { by Fact 5.1|(iv) }) . \tag{27}
\end{align*}
$$

On the other hand, by (ii) and $C \subseteq \operatorname{dom} A^{*}$ by Fact 5.1, we have

$$
\begin{aligned}
\left(F_{A^{*}} \square_{2} F_{N_{C}}\right)^{*}\left(A^{*} e_{1}, 0\right) & =\sup _{x \in C, x^{*} \in X}\left\{\left\langle A^{*} e_{1}, x\right\rangle-\left\langle x, A^{*} x\right\rangle-\sigma_{C}\left(x^{*}-A^{*} x\right)\right\} \\
& \leq \sup _{x \in C, x^{*} \in X}\left\{\left\langle A^{*} e_{1}, x\right\rangle-\left\langle x, A^{*} x\right\rangle\right\} \quad(\text { by } 0 \in C) \\
& =\sup _{t \in[0,1]}\left\{t\left\langle A^{*} e_{1}, e_{1}\right\rangle-t^{2}\left\langle e_{1}, A^{*} e_{1}\right\rangle\right\} \\
& =\frac{1}{4}\left\langle A^{*} e_{1}, e_{1}\right\rangle \\
& =\frac{1}{8} \quad(\text { by Fact } 5.1 \mid(\mathrm{iv})) \\
& \left.<F_{A^{*}}^{*}\left(x^{*}, 0\right)+F_{N_{C}}^{*}\left(A^{*} e_{1}-x^{*}, 0\right) \quad \text { (by (27) }\right) .
\end{aligned}
$$

Hence (iii) holds.
(iv); Let $\left(x, x^{*}\right) \in \operatorname{pos} F_{N_{C}},\left(y, y^{*}\right) \in \operatorname{pos} F_{A^{*}}$, and $x \neq y$ be such that $\left\langle x-y, y^{*}\right\rangle=$ $\|x-y\| \cdot\left\|y^{*}\right\|$. By Fact 3.2 ,

$$
\begin{equation*}
x^{*} \in N_{C}(x) \text { and } y^{*}=A^{*} y . \tag{28}
\end{equation*}
$$

Now we show

$$
\begin{equation*}
\frac{1}{2}\|y\| \geq\left\|y^{*}\right\| \tag{29}
\end{equation*}
$$

Clearly, (29) holds if $y^{*}=0$. Now assume that $y^{*} \neq 0$. Then by $\left\langle x-y, y^{*}\right\rangle=\|x-y\| \cdot\left\|y^{*}\right\|$ and $x \in C$, there exist $t_{0} \geq 0$ and $\gamma_{0}>0$ such that

$$
\begin{equation*}
x=t_{0} e_{1} \text { and } y^{*}=\gamma_{0}\left(t_{0} e_{1}-y\right) \tag{30}
\end{equation*}
$$

Write $y=\left(y_{n}\right)_{n \in \mathbb{N}}$. By (26) and (30), we have

$$
\begin{equation*}
\sum_{i>n} y_{i}=-\gamma_{0} y_{n}-\frac{1}{2} y_{n}, \quad \forall n \geq 2 \tag{31}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\sum_{i>n+1} y_{i}=-\gamma_{0} y_{n+1}-\frac{1}{2} y_{n+1}, \quad \forall n \geq 1 \tag{32}
\end{equation*}
$$

Subtracting (32) from (31), we obtain

$$
\begin{equation*}
y_{n+1}=\left(-\gamma_{0}-\frac{1}{2}\right)\left(y_{n}-y_{n+1}\right), \quad \forall n \geq 2 \tag{33}
\end{equation*}
$$

Since $\gamma_{0}>0$, by (33), we have

$$
\begin{equation*}
y_{n+1} \frac{\gamma_{0}-\frac{1}{2}}{\gamma_{0}+\frac{1}{2}}=y_{n}, \quad \forall n \geq 2 \tag{34}
\end{equation*}
$$

Now we claim that

$$
\begin{equation*}
y_{n}=0, \quad \forall n \geq 2 \tag{35}
\end{equation*}
$$

Suppose to the contrary that there exists $i_{0} \geq 2$ such that

$$
\begin{equation*}
y_{i_{0}} \neq 0 \tag{36}
\end{equation*}
$$

Then by (34), we have $y_{i_{0}}=y_{i_{0}+1} \frac{\gamma_{0}-\frac{1}{2}}{\gamma_{0}+\frac{1}{2}}$. Thus,

$$
\begin{equation*}
\gamma_{0} \neq \frac{1}{2} \tag{37}
\end{equation*}
$$

Then by (34), we have

$$
\begin{equation*}
y_{n+1}=\frac{\gamma_{0}+\frac{1}{2}}{\gamma_{0}-\frac{1}{2}} y_{n}, \quad \forall n \geq 2 \tag{38}
\end{equation*}
$$

Set $\alpha:=\frac{\gamma_{0}+\frac{1}{2}}{\gamma_{0}-\frac{1}{2}}$. Then by $\gamma_{0}>0$ again,

$$
\begin{equation*}
|\alpha|>1 \tag{39}
\end{equation*}
$$

By (38) and Fact 5.1, we have $\sum_{i>2} y_{i}=y_{2} \sum_{i \geq 1} \alpha^{i}$ and the former series is convergent. Thus (39) implies that $y_{2}=0$ and then $y_{n}=0, \forall n>2$ by (38), which contradicts (36). Hence (35) holds. Then by Fact 5.1.

$$
\begin{equation*}
y^{*}=\left(\frac{1}{2} y_{1}, 0,0, \ldots, 0, \ldots\right) . \tag{40}
\end{equation*}
$$

Hence $\left\|y^{*}\right\| \leq \frac{1}{2}\|y\|$ and thus (29) holds. Then by the assumption, we have

$$
\begin{aligned}
\left\|y^{*}\right\| & \leq \frac{1}{2}\|y\| \leq \frac{1}{2}\left(\|x\|+\|y\|+\left\|x^{*}+y^{*}\right\|+\|x-y\| \cdot\left\|y^{*}\right\|\right) \\
& \leq j\left(\|x\|+\|y\|+\left\|x^{*}+y^{*}\right\|+\|x-y\| \cdot\left\|y^{*}\right\|\right) .
\end{aligned}
$$

Hence the implication (iv) holds.
(v); By Fact 3.2 and Fact 5.1|(ii), $\operatorname{pos} F_{A^{*}}=\operatorname{gra} A^{*}$ and $\operatorname{pos} F_{N_{C}}=\operatorname{gra} N_{C}$. Then directly apply (i) (iv) and Fact 3.4 .

Remark 5.3 Example 5.2 provides a negative answer to Problem 2.2 as asserted.
Remark 5.4 It is not as easy to find a counterexample to Problem 2.2 as it is for Problem 2.1. Indeed, Fact 3.4 and Fact 3.3 imply that, to find a counterexample, we need to start with two maximally monotone operators $A, B: X \rightrightarrows X^{*}$ such that $A+B$ is maximally monotone but it does not satisfy the well known sufficient transversality condition for the maximal monotonicity of the sum operator in a reflexive space [18, Lemma 5.1] and [4, Lemma 5.8], that is:

$$
\begin{equation*}
\bigcup_{\lambda>0} \lambda[\operatorname{dom} A-\operatorname{dom} B] \quad \text { is a closed subspace of } X . \tag{41}
\end{equation*}
$$

Otherwise, (41) ensures that (4) in Problem 2.2 holds by Fact 3.3 and [4, Lemma 5.8].
Finally, as we mentioned in Section 2 an affirmative answer to Problem 2.2 would rederive Simons' theorem (Fact 3.4). Indeed, Simons [17, Corollary 34.5] shows in detail how to deduce the classic result of Brézis, Crandall and Pazy [5] from his result.

Acknowledgments. Heinz Bauschke was partially supported by the Natural Sciences and Engineering Research Council of Canada and by the Canada Research Chair Program. Jonathan Borwein was partially supported by the Australian Research Council. Xianfu Wang was partially supported by the Natural Sciences and Engineering Research Council of Canada.

References

[1] S. Bartz, H.H. Bauschke, J.M. Borwein, S. Reich, and X. Wang, "Fitzpatrick functions, cyclic monotonicity and Rockafellar's antiderivative", Nonlinear Analysis, vol. 66, pp. 1198-1223, 2007.
[2] H.H. Bauschke and P.L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer-Verlag, 2011.
[3] H.H. Bauschke, X. Wang, and L. Yao, "Monotone linear relations: maximality and Fitzpatrick functions", Journal of Convex Analysis, vol. 16, pp. 673-686, 2009.
[4] H.H. Bauschke, X. Wang, and L. Yao, "Examples of discontinuous maximal monotone linear operators and the solution to a recent problem posed by B.F. Svaiter", Journal of Mathematical Analysis and Applications, vol. 370, pp. 224-241, 2010.
[5] H. Brézis, M. G. Crandall, and A. Pazy, "Perturbations of nonlinear maximal monotone sets in Banach spaces", Communications on Pure and Applied Mathematics, vol. 23, pp. 123-144, 1970.
[6] J.M. Borwein, "Maximal monotonicity via convex analysis", Journal of Convex Analysis, vol. 13, pp. 561-586, 2006.
[7] J.M. Borwein, "Maximality of sums of two maximal monotone operators in general Banach space", Proceedings of the American Mathematical Society, vol. 135, pp. 39173924, 2007.
[8] J.M. Borwein, "Fifty years of maximal monotonicity", Optimization Letters, vol. 4, pp. 473-490, 2010.
[9] J.M. Borwein and J.D. Vanderwerff, Convex Functions, Cambridge University Press, 2010.
[10] R.S. Burachik and A.N. Iusem, Set-Valued Mappings and Enlargements of Monotone Operators, Springer-Verlag, 2008.
[11] S. Fitzpatrick, "Representing monotone operators by convex functions", in Workshop/Miniconference on Functional Analysis and Optimization (Canberra 1988), Proceedings of the Centre for Mathematical Analysis, Australian National University, vol. 20, Canberra, Australia, pp. 59-65, 1988.
[12] M. Marques Alves and B.F. Svaiter, "A new proof for maximal monotonicity of subdifferential operators", Journal of Convex Analysis, vol. 15, pp. 345-348, 2008.
[13] R.R. Phelps, Convex Functions, Monotone Operators and Differentiability, 2nd Edition, Springer-Verlag, 1993.
[14] R.T. Rockafellar, "On the maximal monotonicity of subdifferential mappings", Pacific Journal of Mathematics, vol. 33, pp. 209-216, 1970.
[15] R.T. Rockafellar and R.J-B Wets, Variational Analysis, 3rd Printing, Springer-Verlag, 2009.
[16] S. Simons, Minimax and Monotonicity, Springer-Verlag, 1998.
[17] S. Simons, From Hahn-Banach to Monotonicity, Springer-Verlag, 2008.
[18] S. Simons and C. Zălinescu, "Fenchel duality, Fitzpatrick functions and maximal monotonicity," Journal of Nonlinear and Convex Analysis, vol. 6, pp. 1-22, 2005.
[19] C. Zălinescu, Convex Analysis in General Vector Spaces, World Scientific Publishing, 2002.

[^0]: *Mathematics, Irving K. Barber School, University of British Columbia, Kelowna, B.C. V1V 1V7, Canada. E-mail: heinz.bauschke@ubc.ca.
 ${ }^{\dagger}$ CARMA, University of Newcastle, Newcastle, New South Wales 2308, Australia. E-mail: jonathan.borwein@newcastle.edu.au. Distinguished Professor King Abdulaziz University, Jeddah.
 ${ }^{\ddagger}$ Mathematics, Irving K. Barber School, University of British Columbia, Kelowna, B.C. V1V 1V7, Canada. E-mail: shawn.wang@ubc.ca.
 ${ }^{\S}$ Mathematics, Irving K. Barber School, University of British Columbia, Kelowna, B.C. V1V 1V7, Canada. E-mail: ljinyao@interchange.ubc.ca.

