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FINDING vs PROVING THINGS

The second lecture will focus on the differ-
ences between Determining Truths or Prov-
ing Theorems.

We shall explore various of the tools avail-
able for deciding what to believe in math-
ematics, and—using accessible examples—
illustrate the rich experimental tool-box math-
ematicians can now have access to.
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The modulus of ζ(1/2 + it)—on the critical line

F Let us start with some TEX...
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An Inverse Symbolic Discovery

Donald Knuth∗ asked for a closed form evaluation

of:

∞∑

k=1

{
kk

k! ek
− 1√

2π k

}
= −0.084069508727655 . . . .

• 2000 CE. It is easy to compute 20 or 200 digits

of this sum

] The ‘smart lookup’ facility in the Inverse Sym-

bolic Calculator † rapidly returns

0.084069508727655 ≈ 2

3
+

ζ (1/2)√
2π

.

We thus have a prediction which Maple 9.5 on a

laptop confirms to 100 places in under 6 seconds

and to 500 in 40 seconds.

Arguably we are done. 2

∗Posed as MAA Problem 10832, November 2002.
†At www.cecm.sfu.ca/projects/ISC/ISCmain.html
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A Fuller Account and a Proof

10832. Donald E. Knuth, Stanford University, Stan-

ford, CA. Evaluate

∞∑

k=1

(
kk

k! ek
− 1√

2πk

)
.

1. A very rapid Maple computation yielded

−0.08406950872765600 . . .

as the first 16 digits of the sum.

2. The Inverse Symbolic Calculator has a ‘smart

lookup’ feature∗ which replied that this was probably

−2
3 − ζ

(
1
2

)
/
√

2π.

3. Ample experimental confirmation was provided

by checking this to 50 digits. Thus within minutes

we knew the answer.

4. As to why? A clue was provided by the surpris-

ing speed with which Maple computed the slowly

convergent infinite sum.
∗Alternatively, a sufficiently robust integer relation finder
could be used.
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• The package clearly knew something the user

did not. Peering under the covers revealed that

it was using the LambertW function, W, which

is the inverse of w = z exp(z).∗

5. The presence of ζ(1/2) and standard Euler-

MacLaurin techniques, using Stirling’s formula (as

might be anticipated from the question), led to

∞∑

k=1




1√
2πk

− 1√
2

(
1
2

)
k−1

(k − 1)!


 =

ζ
(
1
2

)

√
2π

, (1)

where the binomial coefficients in (1) are those of

1√
2− 2 z

.

X Now, (1) is a formula Maple can ‘prove’:

∗A search in 2000 (2005) for “Lambert W” on MathSciNet
provided 9 (25 ) references – all since 1997 when the function
appears named for the first time in Maple and Mathematica.
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6. It remains to show

∞∑

k=1




kk

k! ek
− 1√

2

(
1
2

)
k−1

(k − 1)!


 = −2

3
. (2)

7. Guided by the presence of W , and its series

W (z) =
∞∑

k=1

(−k)k−1 zk

k!
,

an appeal to Abel’s limit theorem lets one deduce

the need to evaluate

lim
z→1

(
d

dz
W

(
−z

e

)
+

1√
2− 2 z

)
=

2

3
. (3)

X Again Maple happily does know (3). 2

I Of course, this all took a fair amount of hu-

man mediation and insight.

I Less if Maple had been taught to recognize

W from its series.
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In the same vein . . .

Consider the following two Euler sum identities both

discovered heuristically.

• Both merit quite firm belief—more so than many

proofs.

Why?

• Only the first warrants significant effort being

exerted for its proof.

Why and Why Not?
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“Lisez Euler, lisez Euler

“Lisez Euler, lisez Euler, c’est notre maitre

a tous.” Goldbach precisely formulated by letter

the series which sparked Euler’s further investiga-

tions into what would become known as the Zeta-

function.

• These investigations were apparently due to a

serendipitous mistake.

Euler wrote back:

When I recently considered further the in-

dicated sums of the last two series in my

previous letter, I realized immediately that

the same series arose due to a mere writing

error, from which indeed the saying goes,

“Had one not erred, one would have achieved

less.”(Si non errasset, fecerat ille minus).∗

∗Translation thanks to Martin Matmüller, scientific collabora-
tor of Euler’s Opera Omnia, vol. IVA4, Birkhäuser Verlag.
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A FIRST MULTIPLE ZETA VALUE

Euler sums or MZVs are a wonderful generalization

of the classical ζ function.

For natural numbers

ζ(i1, i2, . . . , ik) :=
∑

n1>n2>ṅk>0

1

n
i1
1 n

i2
2 · · ·n

ik
k

¦ Thus ζ(a) =
∑

n≥1 n−a is as before and

ζ(a, b) =
∞∑

n=1

1 + 1
2b + ·+ 1

(n−1)b

na

X k is the sum’s depth and i1 + i2 + · · ·+ ik is its

weight.

• This clearly extends to alternating and character

sums.
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• MZV’s satisfy many striking identities, of which

the simplest are

ζ(2,1) = ζ(3), 4ζ(3,1) = ζ(4).

• MZV’s have found interesting interpretations in

high energy physics, knot theory, combinatorics

. . .

X Euler found and partially proved theorems on

reducibility of depth 2 to depth 1 ζ’s

– Goldbach’s letter conjectured

ζ(3,1) + ζ(4) = π4/72.

• ζ(6,2) is the lowest weight ‘irreducible’

X High precision fast ζ-convolution (see EZFace/Java)

allows use of integer relation methods and leads

to important dimensional (reducibility) conjec-

tures and amazing identities.
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A Striking CONJECTURE open for all n > 2 is:

8n ζ({−2,1}n) ?
= ζ({2,1}n)

There is abundant evidence amassed since it was

found in 1996.

c© For example, very recently Petr Lisonek checked

the first 85 cases to 1000 places in about 41 HP

hours with only the expected error. And N=163

was confirmed in ten hours.

• This is the only identification of its type of an

Euler sum with a distinct MZV.

• Can even just the case n = 2 be proven symbol-

ically as is the case for n = 1?
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II. A CHARACTER EULER SUM

Let

[2b,−3](s, t) :=
∑

n>m>0

(−1)n−1

ns

χ3(m)

mt
,

where χ3 is the character modulo 3.

Then

[2b,−3](2N + 1,1)

=
L−3 (2N + 2)

41+N
− 1 + 4−N

2
L−3 (2N + 1) log (3)

+
N∑

k=1

1− 3−2N+2 k

2
L−3 (2N − 2 k + 2)α (2 k)

−
N∑

k=1

1− 9−k

1− 4−k

1 + 4−N+k

2
L−3 (2N − 2 k + 1)α (2 k + 1)

− 2L−3 (1)α (2N + 1) .

X Here α is the alternating zeta function and L−3

is the primitive L-series modulo 3.

X One first evaluates such sums as integrals
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COINCIDENCE or FRAUD

• Coincidences do occur

The approximations

π ≈ 3√
163

log(640320)

and

π ≈
√

2
9801

4412
occur for deep number theoretic reasons—the first

good to 15 places, the second to eight

By contrast

eπ − π = 19.999099979189475768 . . .

most probably for no good reason.

X This seemed more bizarre on an eight digit cal-

culator
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Likewise, as spotted by Pierre Lanchon recently

e = 10.10110111111000010101000101100 . . .

while

π = 11.0010010000111111011010101000 . . .

have 19 bits agreeing in base two—with one read

right to left

• More extended coincidences are almost always

contrived . . .

• And strong heuristics exist for believing results

like the preceding ζ-function and π examples.

r But recall the Skewes number
∫ x

2

dt

log t
≥ π(x) failure at (10360)

and the Merten Conjecture
∣∣∣∣∣∣

n∑

k=1

µ(k)

∣∣∣∣∣∣
≤ √

n failure at (10110)

counter-examples.
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HIGH PRECISION FRAUD

∞∑

n=1

[n tanh(π)]

10n

?
=

1

81

is valid to 268 places; while

∞∑

n=1

[
n tanh

(
π
2

)]

10n

?
=

1

81

is valid to just 12 places.

• Both are actually transcendental numbers

Correspondingly the simple continued fractions for

tanh(π) and tanh
(

π
2

)
are respectively

[0,1, 267,4,14,1,2,1,2,2,1,2,3,8,3,1]

and

[0,1, 11,14,4,1,1,1,3,1,295,4,4,1,5,17,7]

• Bill Gosper describes how continued fractions let

you “see” what a number is. “[I]t’s completely

astounding ... it looks like you are cheating God

somehow.”
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DICTIONARIES are LIKE TIMEPIECES

I Samuel Johnson observed of watches that “the
best do not run true, and the worst are bet-
ter than none.” The same is true of tables and
databases. Michael Berry

“would give up Shakespeare in favor of
Prudnikov, Brychkov and Marichev.”

• That excellent 3 volume compendium contains

∞∑

k=1

∞∑

l=1

1

k2
(
k2 − kl + l2

) =
π∝√3

30
, (4)

where the “∝” is probably “4” [volume 1, entry
9, page 750].

F Integer relation methods suggest that no rea-
sonable value of ∝ works

• Forensic Mathematics (CSI-Math).

– what is intended in (4)? There are many
such examples (e.g., Lewin on Landen, Fer-
mat’s margin)
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SIMON and RUSSELL on INDUCTION

This skyhook-skyscraper construction of sci-

ence from the roof down to the yet uncon-

structed foundations was possible because

the behaviour of the system at each level de-

pended only on a very approximate, simpli-

fied, abstracted characterization at the level

beneath.13

This is lucky, else the safety of bridges and

airplanes might depend on the correctness

of the “Eightfold Way” of looking at ele-

mentary particles.

¦ Herbert A. Simon, The Sciences of the Artifi-

cial, MIT Press, 1996, page 16. (An early ex-

perimental computational scientist.)
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13... More than fifty years ago Bertrand

Russell made the same point about the ar-

chitecture of mathematics. See the “Pref-

ace” to Principia Mathematica “... the chief

reason in favour of any theory on the princi-

ples of mathematics must always be induc-

tive, i.e., it must lie in the fact that the the-

ory in question allows us to deduce ordinary

mathematics. In mathematics, the greatest

degree of self-evidence is usually not to be

found quite at the beginning, but at some

later point; hence the early deductions, un-

til they reach this point, give reason rather

for believing the premises because true con-

sequences follow from them, than for be-

lieving the consequences because they fol-

low from the premises.” Contemporary pref-

erences for deductive formalisms frequently

blind us to this important fact, which is no

less true today than it was in 1910.
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FROM ENIAC: Integrator and Calculator

SIZE/WEIGHT: ENIAC had 18,000 vacuum tubes,

6,000 switches, 10,000 capacitors, 70,000 resistors,

1,500 relays, was 10 feet tall, occupied 1,800 square

feet and weighed 30 tons

SPEED/MEMORY: A 1.5GHz Pentium does 3

million adds/sec. ENIAC did 5,000 — 1,000 times

faster than any earlier machine. The first stored-

memory computer, ENIAC could store 200 digits.
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ARCHITECTURE: Data flowed from one accu-

mulator to the next. After each accumulator fin-

ished a calculation, it communicated its results to

the next in line

The accumulators were connected to each other

manually

• The 1949 computation of π to 2,037 places sug-

gested by von Neumann, took 70 hours

• It would have taken roughly 100,000 ENIACs to

store the Smithsonian’s picture!

⊗
Now after 40 years of Moore’s law . . .

“Moore’s Law” is now taken to be the as-

sertion that semiconductor technology ap-

proximately doubles in capacity and per-

formance roughly every 18 to 24 months
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. . . To Moore’s Law

The complexity for minimum component costs

has increased at a rate of roughly a factor

of two per year. . . . Over the longer term,

the rate of increase is a bit more uncertain,

although there is no reason to believe it will

not remain nearly constant for at least 10

years.∗ (Gordon Moore, Intel co-founder,

1965)

∗‘Expect at least another decade.’ (Moore et al)
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I An astounding record of sustained exponential

progress without peer in history of technology

• Math tools are now being implemented on par-

allel platforms, providing much greater power to

the research mathematician

xNERSC’s 6656cpu Seaborgy
727-fold speed-

up of quadra-

ture on the 1K

G5’s at Virginia

Tech reduces

3hrs to 15secs

I Amassing huge amounts of processing power

will not solve many mathematical problems. There

are few math ‘Grand-challenge problems’ —more

value in very rapid ‘Aha’s.
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VISUAL DYNAMICS

• In recent continued fraction work, we needed to

study the dynamical system t0 := t1 := 1:

tn ←↩
1

n
tn−1 + ωn−1

(
1− 1

n

)
tn−2,

where ωn = a2, b2 for n even, odd respectively.

X Think of this as a black box.

¤ Numerically all one sees is tn → 0 slowly.

¤ Pictorially we learn significantly more∗:

∗. . . “Then felt I like a watcher of the skies, when a new planet
swims into his ken.” (Chapman’s Homer)
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• Scaling by
√

n, and coloring odd and even it-

erates, fine structure appears. We now predict

and validate:

The attractors for various |a| = |b| = 1
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RAMANUJAN’S FRACTION

Chapter 18 of Ramanujan’s Second Notebook stud-

ies the beautiful:

Rη(a, b) =
a

η +
b2

η +
4a2

η +
9b2

η + ...

(1.1)

for real, positive a, b, η > 0. Remarkably, R satisfies

an AGM relation

Rη

(
a + b

2
,
√

ab

)
=
Rη(a, b) +Rη(b, a)

2
(1.2)

A scatter plot experi-

ment discovered the domain

of convergence for a/b ∈ C.

This is now fully explained

with a lot of dynamics work.
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HADAMARD and GAUSS

The object of mathematical rigor is to sanc-

tion and legitimize the conquests of intu-

ition, and there was never any other object

for it.

¦ J. Hadamard quoted at length in E. Borel, Lecons

sur la theorie des fonctions, 1928.

Pauca sed Matura

Carl Friedrich Gauss, who drew (carefully) and com-

puted a great deal, once noted, I have the result,

but I do not yet know how to get it.∗

∗Likewise the quote!
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Novus in analysi campus se nobis aperuit

An excited young Gauss writes: “A new field of

analysis has revealed itself to us, evidently in the

study of functions etc.” (October 1798)
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HALES and KEPLER

• Kepler’s conjecture: the densest way to stack
spheres is in a pyramid is the oldest problem
in discrete geometry.

• The most interesting recent example of com-
puter assisted proof. Published in Annals of
Math with an “only 99% checked” disclaimer.

• This has triggered very varied reactions. (In
Math, Computers Don’t Lie. Or Do They?
NYT 6/4/04)

• Famous earlier examples: the Four Color Theo-
rem and the Non-existence of a Projective Plane
of Order 10.

• The three raise and answer quite distinct ques-
tions —both real and specious. As does the sta-
tus of the classification of Finite Simple Groups.

• Formal Proof theory has received an unexpected
boost: automated proofs may now exist of:
Four Color Theorem, Prime Number Theorem.
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Grocers the world over know the most efficient way to stack spheres — but a mathematical proof for the method has brought reviewers to their knees.

J
ust under five years ago, Thomas Hales
made a startling claim. In an e-mail he
sent to dozens of mathematicians,

Hales declared that he had used a series of
computers to prove an idea that has evaded
certain confirmation for 400 years. The sub-
ject of his message was Kepler’s conjecture,
proposed by the German astronomer
Johannes Kepler, which states that the dens-
est arrangement of spheres is one in which
they are stacked in a pyramid — much the
same way as grocers arrange oranges.

Soon after Hales made his announce-
ment, reports of the breakthrough appeared
on the front pages of newspapers around the
world. But today, Hales’s proof remains in
limbo. It has been submitted to the presti-
gious Annals of Mathematics, but is yet to
appear in print. Those charged with check-
ing it say that they believe the proof is correct,
but are so exhausted with the verification
process that they cannot definitively rule out
any errors. So when Hales’s manuscript
finally does appear in the Annals, probably
during the next year, it will carry an unusual
editorial note — a statement that parts of the
paper have proved impossible to check.

At the heart of this bizarre tale is the use 
of computers in mathematics, an issue that
has split the field. Sometimes described as a
‘brute force’ approach, computer-aided

proofs often involve calculating thousands of
possible outcomes to a problem in order to
produce the final solution.Many mathemati-
cians dislike this method, arguing that it is
inelegant. Others criticize it for not offering
any insight into the problem under consider-
ation.In 1977,for example,a computer-aided
proof was published for the four-colour 
theorem,which states that no more than four
colours are needed to fill in a map so that any
two adjacent regions have different colours1,2.
No errors have been found in the proof, but
some mathematicians continue to seek a
solution using conventional methods.

Pile-driver

Hales, who started his proof at the University
of Michigan in Ann Arbor before moving to
the University of Pittsburgh, Pennsylvania,
began by reducing the infinite number of
possible stacking arrangements to 5,000 con-
tenders. He then used computers to calculate
the density of each arrangement. Doing so
was more difficult than it sounds. The proof
involved checking a series of mathematical
inequalities using specially written computer
code. In all, more than 100,000 inequalities
were verified over a ten-year period.

Robert MacPherson, a mathematician at
the Institute for Advanced Study in Prince-
ton, New Jersey, and an editor of the Annals,

was intrigued when he heard about the
proof.He wanted to ask Hales and his gradu-
ate student Sam Ferguson, who had assisted
with the proof, to submit their finding for
publication,but he was also uneasy about the
computer-based nature of the work.

TheAnnalshad,however,already accepted
a shorter computer-aided proof — the paper,
on a problem in topology, was published this
March3. After sounding out his colleagues on
the journal’s editorial board, MacPherson
asked Hales to submit his paper. Unusually,
MacPherson assigned a dozen mathemati-
cians to referee the proof — most journals
tend to employ between one and three. The
effort was led by Gábor Fejes Tóth of the
Alfréd Rényi Institute of Mathematics in
Budapest, Hungary, whose father, the math-
ematician László Fejes Tóth, had predicted in
1965 that computers would one day make a
proofofKepler’s conjecture possible.

It was not enough for the referees to rerun
Hales’s code — they had to check whether
the programs did the job that they were 
supposed to do. Inspecting all of the code
and its inputs and outputs, which together
take up three gigabytes of memory space,
would have been impossible. So the referees
limited themselves to consistency checks, a
reconstruction of the thought processes
behind each step of the proof, and then a

news feature

Does the proof stack up?
Think peer review  takes too long? One m athem atician has w aited four

years to have his paper refereed, only to hear that the exhausted review ers

can’t be certain w hether his proof is correct. George Szpiro investigates.

12 NATURE |VOL 424 |3 JULY 2003 |www.nature.com/nature
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Pyramid power:

Thomas Hales

believes that

computers will

succeed where

humans have failed

in verifying 

his proof.

study ofall of the assumptions and logic used
to design the code. A series of seminars,
which ran for full academic years, was orga-
nized to aid the effort.

But success remained elusive. Last July,
Fejes Tóth reported that he and the other 
referees were 99% certain that the proof is
sound. They found no errors or omissions,
but felt that without checking every line of
the code,they could not be absolutely certain
that the proof is correct.

For a mathematical proof, this was not
enough. After all, most mathematicians
believe in the conjecture already — the proof
is supposed to turn that belief into certainty.
The history of Kepler’s conjecture also gives
reason for caution. In 1993, Wu-Yi Hsiang,
then at the University ofCalifornia,Berkeley,
published a 100-page proofof the conjecture
in the International Journal of Mathematics4.
But shortly after publication, errors were
found in parts of the proof.Although Hsiang
stands by his paper,most mathematicians do
not believe it is valid.

After the referees’ reports had been con-
sidered, Hales says that he received the 
following letter from MacPherson: “The
news from the referees is bad, from my per-
spective. They have not been able to certify
the correctness of the proof, and will not be
able to certify it in the future, because they
have run out of energy … One can speculate
whether their process would have converged
to a definitive answer had they had a more
clear manuscript from the beginning, but
this does not matter now.”

The last sentence lets some irritation shine
through. The proof that Hales delivered was
by no means a polished piece. The 250-page
manuscript consisted of five separate papers,
each a sort of lab report that Hales and Fer-
guson filled out whenever the computer 
finished part of the proof. This unusual 
format made for difficult reading. To make
matters worse, the notation and definitions
also varied slightly between the papers.

Rough but ready
MacPherson had asked the authors to edit
their manuscript. But Hales and Ferguson
did not want to spend another year rework-
ing their paper. “Tom could spend the rest
of his career simplifying the proof,” Fergu-
son said when they completed their paper.
“That doesn’t seem like an appropriate use
of his time.” Hales turned to other chal-
lenges, using traditional methods to solve
the 2,000-year-old honeycomb conjecture,
which states that of all conceivable tiles of
equal area that can be used to cover a floor
without leaving any gaps, hexagonal tiles
have the shortest perimeter5. Ferguson left
academia to take a job with the US Depart-
ment of Defense.

Faced with exhausted referees, the editor-
ial board of the Annalsdecided to publish the
paper — but with a cautionary note. The
paper will appear with an introduction by
the editors stating that proofs of this type,
which involve the use of computers to check
a large number of mathematical statements,
may be impossible to review in full. The 
matter might have ended there, but for
Hales, having a note attached to his proof

was not satisfactory.
This January, he launched the 

Flyspeck project, also known as the
Formal Proof of Kepler.Rather than
rely on human referees, Hales
intends to use computers to verify

news feature

every step of his proof.The effort will require
the collaboration ofa core group ofabout ten
volunteers, who will need to be qualified
mathematicians and willing to donate the
computer time on their machines. The team
will write programs to deconstruct each step
of the proof, line by line, into a set of axioms
that are known to be correct. If every part of
the code can be broken down into these
axioms, the proof will finally be verified.

Those involved see the project as doing
more than just validating Hales’s proof.Sean
McLaughlin, a graduate student at New York
University, who studied under Hales and 
has used computer methods to solve other
mathematical problems, has already volun-
teered. “It seems that checking computer-
assisted proofs is almost impossible for
humans,”he says.“With luck, we will be able
to show that problems of this size can be 
subjected to rigorous verification without
the need for a referee process.”

But not everyone shares McLaughlin’s
enthusiasm. Pierre Deligne, an algebraic
geometer at the Institute for Advanced Study,
is one of the many mathematicians who do
not approve of computer-aided proofs.
“I believe in a proof if I understand it,”he says.
For those who side with Deligne, using com-
puters to remove human reviewers from the
refereeing process is another step in the
wrong direction.

Despite his reservations about the proof,
MacPherson does not believe that math-
ematicians should cut themselves off from
computers.Others go further.Freek Wiedijk,
of the Catholic University ofNijmegen in the
Netherlands, is a pioneer of the use of com-
puters to verify proofs. He thinks that the
process could become standard practice in
mathematics. “People will look back at the
turn of the twentieth century and say ‘that is
when it happened’,”Wiedijk says.

Whether or not computer-checking takes
off, it is likely to be several years before 
Flyspeck produces a result. Hales and
McLaughlin are the only confirmed partici-
pants, although others have expressed an
interest. Hales estimates that the whole
process, from crafting the code to running 
it, is likely to take 20 person-years of work.
Only then will Kepler’s conjecture become
Kepler’s theorem, and we will know for sure
whether we have been stacking oranges 
correctly all these years. n

George Szpiro writes for the Swiss newspapers NZZ

and NZZ am Sonntag from Jerusalem, Israel. His book

Kepler’s Conjecture (Wiley, New York) was published 

in February. 
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Star player:Johannes Kepler’s conjecture has

kept mathematicians guessing for 400 years.
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In 1998, a young University of Michigan
mathematician named Thomas Hales solved
a nearly 4-century-old problem called the
Kepler conjecture. The task was to prove that
the standard grocery-store arrangement of
oranges is, in fact, the densest way to pack
spheres together. The editor of Annals of
Mathematics, one of the most prestigious
journals in mathematics, invited him to sub-
mit his proof to Annals. Neither of them was
prepared for what happened next.

Over a period of 4 years, a team of 12 ref-
erees wrestled with the lengthy paper and
eventually raised a white flag. They informed
the editor that they were only “99 percent”
certain that it was correct. In particular, they
could not vouch for the validity of the lengthy
computer calculations that were essential to
Hales’s proof. The editor took the unprece-
dented step of publishing the article with a
disclaimer that it could not be absolutely ver-
ified (Science, 7 March 2003, p. 1513).

It is a scenario that has repeated itself, with
variations, several times in recent years: A
high-prof ile problem is solved with an
extraordinarily long and difficult megaproof,
sometimes relying heavily on computer cal-
culation and often leaving a miasma of doubt
behind it. In 1976, the Four Color Theorem
started the trend, with a proof based on com-
puter calculations so lengthy that no human
could hope to follow them. The classification
of finite simple groups, a 10,000-page multi-
author project, was completed (sort of) in
1980 but had to be recompleted last year.
“We’ve arrived at a strange place in mathe-
matics,” says David Goldschmidt of the Insti-
tute for Defense Analyses in Alexandria, Vir-
ginia, one of the collaborators on the finite
simple group proof. “When is a proof really a
proof? There’s no absolute standard.” Gold-
schmidt thinks the traditional criterion—
review by a referee (or team of them)—
breaks down when a paper reaches hundreds
or thousands of pages.

The computer—which at first sight seems
to be part of the problem—may also be the
solution. In the past few months, software
packages called “proof assistants,” which go
through every step of a carefully written argu-
ment and check that it follows from the
axioms of mathematics, have served notice
that they are no longer toys. Last fall, Jeremy
Avigad, a professor of philosophy at Carnegie

Mellon University, used a computer assistant
called Isabelle to verify the Prime Number
Theorem, which (roughly speaking)
describes the probability that a randomly cho-
sen number in any interval is prime. And in
December, Georges Gonthier, a computer sci-
entist at Microsoft Research Cambridge,
announced a successful verification of the
proof of the Four Color Theorem, using a
proof assistant called Coq. “It’s finally getting
to the stage where you can do serious things
with these programs,” says Avigad.

Even Hales is getting into the action.
Over the past 2 years, he has taught himself
to use an assistant called HOL Light. In Jan-
uary, he became the first person to complete
a computer verification of the Jordan Curve

Theorem, f irst published in 1905, which
says that any closed curve drawn in the plane
without crossing itself separates the plane
into two pieces.

For Hales, the motivation is obvious: He
hopes, eventually, to vindicate his proof of the
Kepler conjecture. In fact, three graduate stu-
dents in Europe (not Hales’s own) are already

at work on separate parts of this
project, two using Isabelle and one
using Coq. Hales expects them to
finish in about 7 years.

But Hales thinks that computer
verif iers have implications far
beyond the Kepler conjecture.
“Suppose you could check a page a
day,” he says. “At that point it would
make sense to devote the resources
to put 100,000 pages of mathemat-
ics into one of these systems. Then
the mathematical landscape is
entirely changed.” At present, com-
puter assistants still take a lot of
time to puzzle through some facts
that even an advanced undergradu-
ate would know or be able to figure
out. With a large enough knowl-

edge base, that particular time sink could be
eliminated, and the programs might enable
mathematicians to work more efficiently.
“My own experience is that you spend a long
time going over and going over a proof, mak-
ing sure you haven’t missed anything,” says
Carlos Simpson, an algebraic geometer and
computer scientist at the University of Nice in
France. “With the computer, once it’s proved,
it’s proved. You only have to do it once, and
the computer makes sure you get all the
details.” 

In fact, computer proof assistants could
change the whole concept of proof. Ever
since Euclid, mathematical proofs have
served a dual purpose: certifying that a
statement is true, and explaining why it is

What in the Name of Euclid Is
Going On Here?
Computer assistants may help mathematicians dot the i’s and cross the t’s of proofs so
complex that they defy human comprehension

Mathematics

Mapping the way. Georges Gonthier’s computer verified 
billions of calculations on “hypermaps” like the one shown.

Have a Coq and a Smile
Why would hundreds of computer scientists devote more than 30 years to developing
mathematical proof assistants that most mathematicians don’t even want? The answer is
that they are chasing an even more elusive grail: self-checking computer code.

In a sense, the statement “this program (or chip, or operating system) performs task x
correctly” is a mathematical theorem, and programmers would love to have that kind of
certainty. “Currently, people who have experience with programming ‘know’ that serious
programs without bugs are impossible,” Freek Wiedijk and Henk Barendregt, computer sci-
entists at the University of Nijmegen in the Netherlands, wrote in 2003.“However, we think
that eventually the technology of computer mathematics … will change this perception.”

Already, leading chip manufacturers use computer proof assistants to make sure their
circuit designs are correct. Advanced Micro Devices uses a proof checker called ACL2, and
Intel uses HOL Light. “When the division algorithm turned out to be wrong on the Pentium
chip, that was a real wake-up call to Intel,” says John Harrison, who designed HOL Light and
was subsequently hired as a senior software engineer by Intel. –D.M.

PublishedbyAAAS
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MORE of OUR ‘METHODOLOGY’

1. (High Precision) computation of object(s)

2. Pattern Recognition of Real Numbers (The In-
verse Symbolic Calculator∗ and ‘identify’ or ‘Recog-
nize’)

identify(
√

2. +
√

3.) =
√

2 +
√

3

3. Pattern Recognition of Sequences (Salvy & Zim-
mermann’s ‘gfun’, Sloane & Plouffe’s Encyclo-
pedia).

4. Much use of ‘Integer Relation Methods’:†

X “Exclusion bounds” are especially useful

X Great test bed for “Experimental Math”

5. Some automated theorem proving (Wilf-Zeilberger
etc)

∗ISC space limits: from 10Mb in 1985 to 10Gb today.
†PSLQ, LLL, FFT. Top Ten “Algorithm’s for the Ages,” Ran-
dom Samples, Science, Feb. 4, 2000.
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Another Truth

24

7
√

7

∫ π/2

π/3
log

∣∣∣∣∣
tan t +

√
7

tan t−√7

∣∣∣∣∣ dt
?
= L−7(2) (5)

where

L−7(s) =
∞∑

n=0

[
1

(7n + 1)s
+

1

(7n + 2)s
− 1

(7n + 3)s

+
1

(7n + 4)s
− 1

(7n + 5)s
− 1

(7n + 6)s

]
.

“Identity” (5) has been verified to 10,000 places. I
have no idea of how to prove it.

I A 64-CPU run (7250 secs) and a 256-CPU run
(1855 secs) on the Virginia Tech G5 cluster
agreed precisely—a week in an hour—the largest
numerical quadrature calculation ever done?

I Equation (5) arises from the volume of an ideal
tetrahedron in hyperbolic space.

~ For algebraic topology reasons, it is known that
the ratio of the left hand to the right hand side
of (5) is rational.
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JOHN MILNOR

If I can give an abstract

proof of something, I’m

reasonably happy. But

if I can get a concrete,

computational proof and

actually produce num-

bers I’m much happier.

I’m rather an addict of

doing things on the com-

puter, because that gives

you an explicit criterion

of what’s going on. I

have a visual way of

thinking, and I’m happy

if I can see a picture of

what I’m working with.
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ZEROES of 0− 1 POLYNOMIALS

Data mining in polynomials

• The striations are unexplained!
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WHAT YOU DRAW is WHAT YOU SEE

The price of metaphor is eternal vigilance

(Arturo Rosenblueth & Norbert Wiener)
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SEEING PATTERNS in PARTITIONS

The number of additive partitions of n, p(n), is gen-

erated by

1 +
∑

n≥1

p(n)qn =
1

∏
n≥1(1− qn)

. (6)

Thus, p(5) = 7 since

5 = 4 + 1 = 3 + 2 = 3 + 1 + 1 = 2 + 2 + 1

= 2 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1.

• Developing (6) is an introduction to enumer-

ation via generating functions as discussed in

Polya’s change example.

• Additive partitions are harder to handle than

multiplicative factorizations, but they may be

introduced in the elementary school curriculum

with questions like:

How many ‘trains‘ of a given length can

be built with Cuisenaire rods?
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Ramanujan used MacMahon’s 1900 table for p(n)
to intuit remarkable deep congruences like

p(5n+4) ≡ 0 mod 5, p(7n+5) ≡ 0 mod 7

p(11n+6) ≡ 0 mod 11,

from relatively limited data like P (q) =

1 + q + 2 q2 + 3 q3 + 5 q4 + 7 q5 + 11 q6 + 15 q7

+ 22 q8 + 30 q9 + 42 q10 + 56 q11 + 77 q12

+ 101 q13 + 135 q14 + 176 q15 + 231 q16

+ 297 q17 + 385 q18 + 490 q19 + 627 q20

+ 792 q21 + 1002 q22 + 1255 q23 + 1575 q24

+ · · ·+ 3972999029388 q200 + · · · (7)

• Cases 5n + 4 and 7n + 5 are flagged in (7)

– leading to the crank (Dyson, Andrews, Gar-
van, Ono, and very recently Mahlburg)

– connections with modular forms much facili-
tated by symbolic computation

• Of course, it is easier to (heuristically) confirm
than find these fine examples of Mathematics:
the science of patterns.∗

∗Keith Devlin’s 1997 book.
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IS HARD or EASY BETTER?

A modern computationally driven question is How

hard is p(n) to compute?

• In 1900, it took the father of combinatorics,

Major Percy MacMahon (1854–1929), months

to compute p(200) using recursions developed

from (6).

• By 2000, Maple produced p(200) in seconds

simply as the 200’th term of the Taylor series

(ignoring ‘combinat[numpart]’)

• A few years earlier it required being careful to

compute the series for
∏

n≥1(1 − qn) first and

then the series for the reciprocal of that series!

• This baroque event is occasioned by Euler’s pen-

tagonal number theorem

∏

n≥1

(1− qn) =
∞∑

n=−∞
(−1)nq(3n+1)n/2.
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• The reason is that, if one takes the series for

(6), the software has to deal with 200 terms on

the bottom.

But the series for
∏

n≥1(1−qn), has only to han-

dle the 23 non-zero terms in series in the pen-

tagonal number theorem.

• If introspection fails, we can find and learn about

the pentagonal numbers occurring above in Neil

Sloanes’ exemplary on-line

‘Encyclopedia of Integer Sequences’:

www.research.att.com/personal/njas/sequences/eisonline.html

~ Such ex post facto algorithmic analysis can be

used to facilitate independent student discov-

ery of the pentagonal number theorem, and like

results.
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• The difficulty of estimating the size of p(n) ana-

lytically —so as to avoid enormous or unattain-

able computational effort—led to some marvel-

lous mathematical advances∗.

• The corresponding ease of computation may

now act as a retardant to insight.

F New mathematics is often discovered only when

prevailing tools run totally out of steam.

• This raises a caveat against mindless comput-

ing:

Will a student or researcher discover struc-

ture when it is easy to compute without

needing to think about it?

Today, she may thoughtlessly compute p(500)

which a generation ago took much, much

pain and insight.

∗By researchers including Hardy and Ramanujan, and
Rademacher
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BERLINSKI

The body of mathematics to which the cal-

culus gives rise embodies a certain swash-

buckling style of thinking, at once bold and

dramatic, given over to large intellectual ges-

tures and indifferent, in large measure, to

any very detailed description of the world.

It is a style that has shaped the physical but

not the biological sciences, and its success in

Newtonian mechanics, general relativity and

quantum mechanics is among the miracles

of mankind. But the era in thought that

the calculus made possible is coming to an

end. Everyone feels this is so and everyone

is right.

· · · and · · ·
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The computer has in turn changed the very

nature of mathematical experience, suggest-

ing for the first time that mathematics, like

physics, may yet become an empirical dis-

cipline, a place where things are discovered

because they are seen. (David Berlinski, 1997)∗

• As all sciences rely more on ‘dry experiments’,

via computer simulation, the boundary between

physics (e.g., string theory) and mathematics

(e.g., by experiment) is again delightfully blurred.

• An early exciting example is provided by gravi-

tational boosting:

∗In “Ground Zero”, a Review of The Pleasures of Counting,
by T. W. Koerner.
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MATH AWARENESS MONTH

• Interactive graphics will become an integral part

of mathematics: gravitational boosting, gravity

waves, Lagrange points, many-body problems

. . .

1905 Special relativity, Brownian motion, Photoelec-

tricity
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Gravitational Boosting

“The Voyager Neptune Planetary Guide” (JPL Pub-

lication 89–24) has an excellent description of Michael

Minovitch’s computational and unexpected discov-

ery of gravitational boosting (also known as sling-

shot magic) at the Jet Propulsion Laboratory in

1961.

The article starts by quoting Arthur C. Clarke

“Any sufficiently advanced technology is indistin-

guishable from magic.”

Sedna and Friends in 2004

45



Until he showed Hohmann transfer ellipses were not

least energy paths to the outer planets:

“most planetary mission designers considered the

gravity field of a target planet to be somewhat of

a nuisance, to be cancelled out, usually by onboard

Rocket thrust.”

• Without a boost from the orbits of Saturn, Jupiter

and Uranus, the Earth-to-Neptune Voyager mis-

sion (achieved in 1989 in around a decade) would

have taken over 30 years!

} We would still be waiting; longer to see Sedna

confirmed (8 billion miles away—3 times further

than Pluto).
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LIGO: Math and the Cosmos

Einstein’s theory of general relativity describes how

massive bodies curve space and time; it realizes

gravity as movement of masses along shortest paths

in curved space-time.

• A subtle mathematical inference is that rela-

tively accelerating bodies will produce ripples on

the curved space-time surface, propagating at

the speed of light: gravitational waves.

These extraordinarily weak cosmic signals hold the

key to a new era of astronomy if only we can build

detectors and untangle the mathematics to inter-

pret them. The signal to noise ratio is tiny!
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LIGO, the Laser Interferometer Gravitational-Wave

Observatory, is such a developing US gravitational

wave detector.

One of the first 3D simulations of

the gravitational waves arising

when two black holes collide

• Only recently has the computational power ex-

isted to realise such simulations, on computers

such as at WestGrid (www.westgrid.ca)
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SOME CONCLUSIONS

The issue of paradigm choice can never be

unequivocally settled by logic and experi-

ment alone. · · · in these matters neither

proof nor error is at issue. The transfer of

allegiance from paradigm to paradigm is a

conversion experience that cannot be forced.

(Thomas Kuhn)

• In Who Got Einstein’s Office? (Beurling)

And Max Planck, surveying his own career in

his Scientific Autobiography, sadly remarked

that “a new scientific truth does not tri-

umph by convincing its opponents and mak-

ing them see the light, but rather because

its opponents eventually die, and a new gen-

eration grows up that is familiar with it.”

(Einstein)
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HILBERT

Moreover a mathematical problem should be

difficult in order to entice us, yet not com-

pletely inaccessible, lest it mock our efforts.

It should be to us a guidepost on the mazy

path to hidden truths, and ultimately a re-

minder of our pleasure in the successful so-

lution.

· · ·

Besides it is an error to believe that rigor in

the proof is the enemy of simplicity. (David

Hilbert, 1900)

• In his ‘23’ “Mathematische Probleme” lecture

to the Paris International Congress, 1900∗

∗See Ben Yandell’s fine account in The Honors Class, AK
Peters, 2002.
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CHAITIN

I believe that elementary number theory and

the rest of mathematics should be pursued

more in the spirit of experimental science,

and that you should be willing to adopt new

principles. I believe that Euclid’s statement

that an axiom is a self-evident truth is a big

mistake∗. The Schrödinger equation cer-

tainly isn’t a self-evident truth! And the

Riemann Hypothesis isn’t self-evident either,

but it’s very useful. A physicist would say

that there is ample experimental evidence

for the Riemann Hypothesis and would go

ahead and take it as a working assumption.

∗There is no evidence that Euclid ever made such a statement.
However, the statement does have an undeniable emotional
appeal.
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In this case, we have ample experimental

evidence for the truth of our identity and we

may want to take it as something more than

just a working assumption. We may want to

introduce it formally into our mathematical

system. (Greg Chaitin, 1994)∗

A tangible Riemann surface for Lambert-W

∗A like article is in the 2004 Mathematical Intelligencer.
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FINAL COMMENTS

F The traditional deductive accounting of Mathe-

matics is a largely ahistorical caricature∗

F Mathematics is primarily about secure knowl-

edge not proof, and the aesthetic is central

• Proofs are often out of reach — understanding,

even certainty, is not

• Packages can make concepts accessible (Linear

relations, Galois theory, Groebner bases)

• While progress is made “one funeral at a time”

(Niels Bohr), “you can’t go home again” (Thomas

Wolfe).

∗Quotations are at jborwein/quotations.html
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HOW NOT TO EXPERIMENT

Pooh Math
‘Guess and Check’

while

Aiming Too High
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APPENDIX I. ANOTHER CASE STUDY

LOG-CONCAVITY

Consider the unsolved Problem 10738 in the 1999

American Mathematical Monthly:

Problem: For t > 0 let

mn(t) =
∞∑

k=0

kn exp(−t)
tk

k!

be the nth moment of a Poisson distribution with

parameter t. Let cn(t) = mn(t)/n! . Show

a) {mn(t)}∞n=0 is log-convex∗ for all t > 0.

b) {cn(t)}∞n=0 is not log-concave for t < 1.

c∗) {cn(t)}∞n=0 is log-concave for t ≥ 1.

∗A sequence {an} is log-convex if an+1an−1 ≥ a2
n, for n ≥ 1 and

log-concave when the sign is reversed.
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Solution. (a) Neglecting the factor of exp(−t) as

we may, this reduces to

∑

k,j≥0

(jk)n+1tk+j

k!j!
≤

∑

k,j≥0

(jk)ntk+j

k! j!
k2 =

∑

k,j≥0

(jk)ntk+j

k!j!

k2 + j2

2
,

and this now follows from 2jk ≤ k2 + j2.

(b) As

mn+1(t) = t
∞∑

k=0

(k + 1)n exp(−t)
tk

k!
,

on applying the binomial theorem to (k + 1)n, we

see that mn(t) satisfies the recurrence

mn+1(t) = t
n∑

k=0

(n

k

)
mk(t), m0(t) = 1.

In particular for t = 1, we obtain the sequence

1,1,2,5,15,52,203,877,4140 . . . .

58



• These are the Bell numbers as was discovered

by consulting Sloane’s Encyclopedia.

www.research.att.com/personal/njas/sequences/index.html

• Sloane can also tell us that, for t = 2, we have

the generalized Bell numbers, and gives the ex-

ponential generating functions.∗

I Inter alia, an explicit computation shows that

t
1 + t

2
= c0(t) c2(t) ≤ c1(t)

2 = t2

exactly if t ≥ 1, which completes (b).

Also, preparatory to the next part, a simple calcu-

lation shows that
∑

n≥0

cnun = exp (t(eu − 1)) . (8)

∗The Bell numbers were known earlier to Ramanujan — an
example of Stigler’s Law of Eponymy!
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(c∗)∗ We appeal to a recent theorem due to E. Rod-

ney Canfield,† which proves the lovely and quite dif-

ficult result below.

Theorem 1 If a sequence 1, b1, b2, · · · is non-negative

and log-concave then so is the sequence 1, c1, c2, · · ·
determined by the generating function equation

∑

n≥0

cnun = exp


 ∑

j≥1

bj
uj

j


 .

Using equation (8) above, we apply this to the se-

quence bj = t/(j− 1)! which is log-concave exactly

for t ≥ 1. QED

∗The ‘*’ indicates this was the unsolved component.
†A search in 2001 on MathSciNet for “Bell numbers” since
1995 turned up 18 items. This paper showed up as number
10. Later, Google found it immediately!
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• It transpired that the given solution to (c) was

the only one received by the Monthly

IThis is quite unusual

• The reason might well be that it relied on the

following sequence of steps:

(??) ⇒ Computer Algebra System ⇒ Interface

⇒ Search Engine ⇒ Digital Library

⇒ Hard New Paper ⇒ Answer

F Now if only we could automate this!
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APPENDIX II: INTEGER RELATIONS

The USES of LLL and PSLQ

I A vector (x1, x2, · · · , xn) of reals possesses an in-

teger relation if there are integers ai not all zero

with

0 = a1x1 + a2x2 + · · ·+ anxn.

PROBLEM: Find ai if such exist. If not, obtain

lower bounds on the size of possible ai.

• (n = 2) Euclid’s algorithm gives solution.

• (n ≥ 3) Euler, Jacobi, Poincare, Minkowski, Per-

ron, others sought method.

• First general algorithm in 1977 by Ferguson &

Forcade. Since ’77: LLL (in Maple), HJLS,

PSOS, PSLQ (’91, parallel ’99).
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I Integer Relation Detection was recently ranked

among “the 10 algorithms with the greatest influ-

ence on the development and practice of science

and engineering in the 20th century.” J. Dongarra,

F. Sullivan, Computing in Science & Engineering 2

(2000), 22–23.

Also: Monte Carlo, Simplex, Krylov Subspace, QR

Decomposition, Quicksort, ..., FFT, Fast Multipole

Method.

A. ALGEBRAIC NUMBERS

Compute α to sufficiently high precision (O(n2))

and apply LLL to the vector

(1, α, α2, · · · , αn−1).

• Solution integers ai are coefficients of a polyno-

mial likely satisfied by α.

• If no relation is found, exclusion bounds are ob-

tained.
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B. FINALIZING FORMULAE

I If we suspect an identity PSLQ is powerful.

• (Machin’s Formula) We try PSLQ on

[arctan(1),arctan(
1

5
),arctan(

1

239
)]

and recover [1, -4, 1]. That is,

π

4
= 4arctan(

1

5
)− arctan(

1

239
).

[Used on all serious computations of π from

1706 (100 digits) to 1973 (1 million).]

• (Dase’s ‘mental‘ Formula) We try PSLQ on

[arctan(1),arctan(
1

2
),arctan(

1

5
),arctan(

1

8
)]

and recover [-1, 1, 1, 1]. That is,

π

4
= arctan(

1

2
) + arctan(

1

5
) + arctan(

1

8
).

[Used by Dase for 200 digits in 1844.]
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C. ZETA FUNCTIONS

I The zeta function is defined, for s > 1, by

ζ(s) =
∞∑

n=1

1

ns
.

• Thanks to Apéry (1976) it is well known that

S2 := ζ(2) = 3
∞∑

k=1

1

k2
(
2k
k

)

A3 := ζ(3) =
5

2

∞∑

k=1

(−1)k−1

k3
(
2k
k

)

S4 := ζ(4) =
36

17

∞∑

k=1

1

k4
(
2k
k

)

I These results strongly suggest that

ℵ5 := ζ(5)/
∞∑

k=1

(−1)k−1

k5
(
2k
k

)

is a simple rational or algebraic number. Yet, PSLQ

shows: if ℵ5 satisfies a polynomial of degree ≤ 25

the Euclidean norm of coefficients exceeds 2×1037.
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D. ZAGIER’S CONJECTURE

For r ≥ 1 and n1, . . . , nr ≥ 1, consider:

L(n1, . . . , nr;x) :=
∑

0<mr<...<m1

xm1

m
n1
1 . . . mnr

r
.

Thus

L(n;x) =
x

1n
+

x2

2n
+

x3

3n
+ · · ·

is the classical polylogarithm, while

L(n, m;x) =
1

1m

x2

2n
+ (

1

1m
+

1

2m
)

x3

3n
+ (

1

1m
+

1

2m
+

1

3m
)

x4

4n

+ · · · ,

L(n, m, l;x) =
1

1l

1

2m

x3

3n
+ (

1

1l

1

2m
+

1

1l

1

3m
+

1

2l

1

3m
)

x4

4n
+ · · · .

• The series converge absolutely for |x| < 1 and

conditionally on |x| = 1 unless n1 = x = 1.
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These polylogarithms

L(nr, . . . , n1;x) =
∑

0<m1<...<mr

xmr

mnr
r . . . m

n1
1

,

are determined uniquely by the differential equations

d

dx
L(nr, . . . , n1;x) =

1

x
L(nr − 1, . . . , n2, n1;x)

if nr ≥ 2 and

d

dx
L(nr, . . . , n2, n1;x) =

1

1− x
L(nr−1, . . . , n1;x)

if nr = 1 with the initial conditions

L(nr, . . . , n1; 0) = 0

for r ≥ 1 and

L(∅;x) ≡ 1.
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Set s := (s1, s2, . . . , sN). Let {s}n denotes concate-

nation, and w :=
∑

si.

Then every periodic polylogarithm leads to a func-

tion

Ls(x, t) :=
∑
n

L({s}n;x)twn

which solves an algebraic ordinary differential equa-

tion in x, and leads to nice recurrences.

A. In the simplest case, with N = 1, the ODE is

DsF = tsF where

Ds :=
(
(1− x)

d

dx

)1 (
x

d

dx

)s−1

and the solution (by series) is a generalized hyper-

geometric function:

Ls(x, t) = 1 +
∑

n≥1

xn ts

ns

n−1∏

k=1

(
1 +

ts

ks

)
,

as follows from considering Ds(xn).
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B. Similarly, for N = 1 and negative integers

L−s(x, t) := 1 +
∑

n≥1

(−x)n ts

ns

n−1∏

k=1

(
1 + (−1)k ts

ks

)
,

and L−1(2x− 1, t) solves a hypergeometric ODE.

I Indeed

L−1(1, t) =
1

β(1 + t
2, 1

2 − t
2)

.

C. We may obtain ODEs for eventually periodic

Euler sums. Thus, L−2,1(x, t) is a solution of

t6 F = x2(x− 1)2(x + 1)2 D6F

+ x(x− 1)(x + 1)(15x2 − 6x− 7)D5F

+ (x− 1)(65x3 + 14x2 − 41x− 8)D4F

+ (x− 1)(90x2 − 11x− 27)D3F

+ (x− 1)(31x− 10)D2F + (x− 1)DF.
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• This leads to a four-term recursion for F =∑
cn(t)xn with initial values c0 = 1, c1 = 0, c2 =

t3/4, c3 = −t3/6, and the ODE can be simpli-

fied.

We are now ready to prove Zagier’s conjecture.

Let F (a, b; c;x) denote the hypergeometric function.

Then:

Theorem 2 (BBGL) For |x|, |t| < 1 and integer

n ≥ 1

∞∑

n=0

L(3,1,3,1, . . . ,3,1︸ ︷︷ ︸
n−fold

;x) t4n

= F

(
t(1 + i)

2
,
−t(1 + i)

2
; 1;x

)
(9)

× F

(
t(1− i)

2
,
−t(1− i)

2
; 1;x

)
.
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Proof. Both sides of the putative identity start

1 +
t4

8
x2 +

t4

18
x3 +

t8 + 44t4

1536
x4 + · · ·

and are annihilated by the differential operator

D31 :=
(
(1− x)

d

dx

)2 (
x

d

dx

)2
− t4 .

QED

• Once discovered — and it was discovered af-

ter much computational evidence — this can

be checked variously in Mathematica or Maple

(e.g., in the package gfun)!

Corollary 3 (Zagier Conjecture)

ζ(3,1,3,1, . . . ,3,1︸ ︷︷ ︸
n−fold

) =
2π4n

(4n + 2)!
(10)
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Proof. We have

F (a,−a; 1; 1) =
1

Γ(1− a)Γ(1 + a)
=

sinπa

πa

where the first equality comes from Gauss’s evalu-

ation of F (a, b; c; 1).

Hence, setting x = 1, in (9) produces

F

(
t(1 + i)

2
,
−t(1 + i)

2
; 1; 1

)
F

(
t(1− i)

2
,
−t(1− i)

2
; 1; 1

)

=
2

π2t2
sin

(
1 + i

2
πt

)
sin

(
1− i

2
πt

)

=
coshπt− cosπt

π2t2
=

∞∑

n=0

2π4nt4n

(4n + 2)!

on using the Taylor series of cos and cosh. Com-

paring coefficients in (9) ends the proof. QED
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I What other deep Clausen-like hypergeometric

factorizations lurk within?

• If one suspects that (3) holds, once one can

compute these sums well, it is easy to verify

many cases numerically and be entirely convinced.

♠ This is the unique non-commutative analogue

of Euler’s evaluation of ζ(2n).
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