Douglas–Rachford Feasibility Methods for Matrix Compl...

Laureate Prof. Jonathan Borwein with Matthew Tam http://carma.newcastle.edu.au/DRmethods/paseky.html

Spring School on Variational Analysis VI Paseky nad Jizerou, April 19–25, 2015

Last Revised: March 27, 2015

ederatio	on 🖅		:	Skip to content Staf	f Library Ask Fe
UNIVERSITY · AUST			Search this site		Sear
uture students Current st	udents International	Research I	ndustry and comm	unity About u	IS
ederation University Australia > Fa	culties and Schools > Faculty of Se	cience and Technolo	ogy > Areas of study > I	Mathematical and ge	neral sciences >
Faculty of Science and					
Technology	Faculty of Sci	ience and	Technolog	v	
About us				- -	
Areas of study					
Biomedical and food sciences	Mathematical	sciences			
Environmental and physical sciences	The Bachelor of Mathemati students with a strong found			1.085	
Mathematical and general sciences	and techniques of mathema how mathematics is applied	tics and an underst		$8^{-} \leq 3$	Carlos Carlos
Mathematical sciences	Graduates will be able to an	aluse and critically	avaluate	- (2-2.151)	
General science	new situations and develop	strong analytical sk	ills, logical 🛛 🖁	153	12 A
Engineering	thinking, report writing and are valued by employers.	communications sl	kills, which		
Information technology					
Community engagement	A degree in mathematics pro				

Fran Aragón

Jon Borwein

Matt Tam

Matrix Completion Preliminaries

Many successful non-convex applications of the Douglas–Rachford method can be considered as matrix completion problems (a well studied topic).

In the remainder of this series, we shall focus on recent successful applications of the method to a variety of (real) matrix reconstruction problems.

In particular, consider matrix completion in the context of:

- Positive semi-definite matrices.
- Output: Stochastic matrices.
- I Euclidean distance matrices, esp. those in protein reconstruction.
- In the second state of the second state of
- Sonograms a Japanese number "painting" game.
- Sudoku a Japanese number game.

The framework is flexible and there are many other actual and potential applications. Our exposition will highlight the importance of the model.

・回り ・ラト ・ラト

Matrix Completion Preliminaries

Many successful non-convex applications of the Douglas–Rachford method can be considered as matrix completion problems (a well studied topic).

In the remainder of this series, we shall focus on recent successful applications of the method to a variety of (real) matrix reconstruction problems.

In particular, consider matrix completion in the context of:

- Positive semi-definite matrices.
- Stochastic matrices.
- Second Se
- **9** Hadamard matrices together with their specialisations.
- Sonograms a Japanese number "painting" game.
- Sudoku a Japanese number game.

The framework is flexible and there are many other actual and potential applications. Our exposition will highlight the importance of the model.

Matrix Completion

From herein, we consider $\mathcal{H} = \mathbb{R}^{m \times n}$ equipped with the trace inner product and induced (Frobenius) norm:

$$\langle A,B\rangle := \operatorname{tr}(A^{\mathsf{T}}B), \quad \|A\|_{\mathsf{F}} := \sqrt{\operatorname{tr}(A^{\mathsf{T}}A)} = \sqrt{\sum_{j=1}^{n}\sum_{i=1}^{m}a_{ij}^{2}}.$$

- A partial matrix is an $m \times n$ array for which only entries in certain locations are known.
- A completion of the partial matrix $A = (a_{ij}) \in \mathbb{R}^{m \times n}$, is a matrix $B = (b_{ij}) \in \mathbb{R}^{m \times n}$ such that if a_{ij} is specified then $b_{ij} = a_{ij}$.

Abstractly matrix completion is the following:

Given a partial matrix, find a completion which belongs to some prescribed family of matrices.

Matrix Completion

From herein, we consider $\mathcal{H} = \mathbb{R}^{m \times n}$ equipped with the trace inner product and induced (Frobenius) norm:

$$\langle A,B\rangle := \operatorname{tr}(A^{\mathsf{T}}B), \quad \|A\|_{\mathsf{F}} := \sqrt{\operatorname{tr}(A^{\mathsf{T}}A)} = \sqrt{\sum_{j=1}^{n}\sum_{i=1}^{m}a_{ij}^{2}}.$$

- A partial matrix is an $m \times n$ array for which only entries in certain locations are known.
- A completion of the partial matrix $A = (a_{ij}) \in \mathbb{R}^{m \times n}$, is a matrix $B = (b_{ij}) \in \mathbb{R}^{m \times n}$ such that if a_{ij} is specified then $b_{ij} = a_{ij}$.

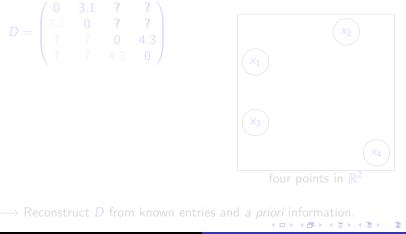
Abstractly matrix completion is the following:

Given a partial matrix, find a completion which belongs to some prescribed family of matrices.

Matrix Completion: Example

Suppose the partial matrix $D = (D_{ij}) \in \mathbb{R}^{4 \times 4}$ is known to contains the pair-wise distances between four points $x_1, \ldots, x_m \in \mathbb{R}^2$. That is,

$$D_{ij} = \|x_i - x_j\|^2.$$

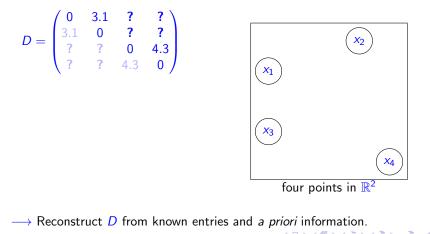


Jonathan Borwein (CARMA, University of Newcastle) Douglas-Rachford Feasibility Methods for Matrix Completion Problems

Matrix Completion: Example

Suppose the partial matrix $D = (D_{ij}) \in \mathbb{R}^{4 \times 4}$ is known to contains the pair-wise distances between four points $x_1, \ldots, x_m \in \mathbb{R}^2$. That is,

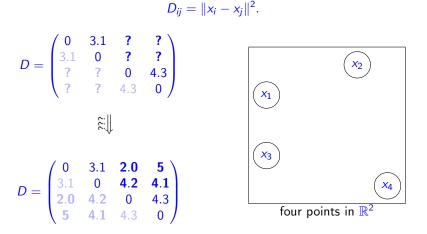
$$D_{ij} = \|x_i - x_j\|^2.$$



Jonathan Borwein (CARMA, University of Newcastle) Douglas–Rachford Feasibility Methods for Matrix Completion Problems

Matrix Completion: Example

Suppose the partial matrix $D = (D_{ij}) \in \mathbb{R}^{4 \times 4}$ is known to contains the pair-wise distances between four points $x_1, \ldots, x_m \in \mathbb{R}^2$. That is,



 \longrightarrow Reconstruct *D* from known entries and *a priori* information.

≡ nar

Matrix Completion Preliminaries

It is natural to formulate matrix completions as the feasibility problem:

find $X \in \bigcap_{i=1}^{N} C_i \subseteq \mathbb{R}^{m \times n}$.

Let A be the partial matrix to be completed. We (mostly) choose

- C_1 to be the set of all matrix completions of A.
- C_2, \ldots, C_N s.t. their intersection equals the prescribed matrix family.

Let Ω denote the set of indices for the entry in A is known. Then

$$C_1 := \{ X \in \mathbb{R}^{m \times n} : X_{ij} = A_{ij} \text{ for all } (i, j) \in \Omega \}.$$

The projection of $X \in \mathbb{R}^{m \times n}$ onto C_1 is given pointwise by

$$P_{C_1}(X)_{ij} = egin{cases} A_{ij}, & ext{if } (i,j) \in \Omega, \ X_{ij}, & ext{otherwise}. \end{cases}$$

The remainder of the talk will focus on choosing C_2, \ldots, C_N .

Positive Semi-Definite Matrices

Denote the symmetric matrices by \mathbb{S}^n , and the positive semi-definite matrices by \mathbb{S}^n_+ . Our second constraint set is

 $C_2 := \mathbb{S}^n_+ = \{ X \in \mathbb{R}^{n \times n} : X = X^T, y^T X y \ge 0 \text{ for all } y \in \mathbb{R}^n \}.$

The matrix X is a PSD completion of A if and only if $X \in C_1 \cap C_2$.

Theorem (Higham 1986)

For any $X \in \mathbb{R}^{n \times n}$, define $Y = (X + X^T)/2$ and let Y = UP be a polar decomposition of Y (*i.e.*, U unitary, $P \in \mathbb{S}^n_+$.). Then

$$P_{C_2}(X)=\frac{Y+P}{2}.$$

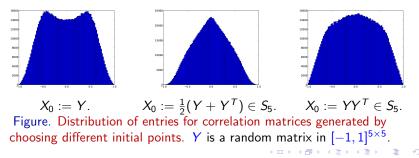
An important class of PSD matrices are the correlation matrices.

Positive Semi-Definite Matrices: Correlation Matrices

For random variables X_1, X_2, \ldots, X_n , the *ij*-th entry of the corresponding correlation matrix contains the correlation between X_i and X_j . This is incorporated into C_1 by enforcing that

$$(i,i) \in \Omega$$
 with $A_{ii} = 1$ for $i = 1, 2, \ldots, n$. (1)

Moreover, whenever (1) holds for a matrix its entries are necessarily contained in [-1, 1]. Apply this formulation for different starting points yields:



Jonathan Borwein (CARMA, University of Newcastle) Douglas–Rachford Feasibility Methods for Matrix Completion Problems

Stochastic matrices

Recall that a matrix $A = (A_{ij}) \in \mathbb{R}^{m \times n}$ is said to be doubly stochastic if

$$\sum_{i=1}^{m} A_{ij} = \sum_{j=1}^{n} A_{ij} = 1, A_{ij} \ge 0.$$
 (2)

These matrices describe the transitions of a Markov chain (in this case m = n), amongst other things. We use the following constraint sets

$$C_{2} := \left\{ X \in \mathbb{R}^{m \times n} | \sum_{i=1}^{m} X_{ij} = 1 \text{ for } j = 1, \dots, n \right\},$$

$$C_{3} := \left\{ X \in \mathbb{R}^{m \times n} | \sum_{j=1}^{n} X_{ij} = 1 \text{ for } i = 1, \dots, m \right\},$$

$$C_{4} := \{ X \in \mathbb{R}^{m \times n} | X_{ij} \ge 0 \text{ for } i = 1, \dots, m \text{ and } j = 1, \dots, n \}.$$

The matrix X is a double stochastic matrix completing A if and only if $X \in C_1 \cap C_2 \cap C_3 \cap C_4.$

Stochastic matrices

Recall that a matrix $A = (A_{ij}) \in \mathbb{R}^{m \times n}$ is said to be doubly stochastic if

$$\sum_{i=1}^{m} A_{ij} = \sum_{j=1}^{n} A_{ij} = 1, A_{ij} \ge 0.$$
 (2)

These matrices describe the transitions of a Markov chain (in this case m = n), amongst other things. We use the following constraint sets

$$C_{2} := \left\{ X \in \mathbb{R}^{m \times n} | \sum_{i=1}^{m} X_{ij} = 1 \text{ for } j = 1, \dots, n \right\},$$

$$C_{3} := \left\{ X \in \mathbb{R}^{m \times n} | \sum_{j=1}^{n} X_{ij} = 1 \text{ for } i = 1, \dots, m \right\},$$

$$C_{4} := \{ X \in \mathbb{R}^{m \times n} | X_{ij} \ge 0 \text{ for } i = 1, \dots, m \text{ and } j = 1, \dots, n \}.$$

The matrix X is a double stochastic matrix completing A if and only if $X \in C_1 \cap C_2 \cap C_3 \cap C_4.$

Stochastic matrices

$$\begin{split} & \mathcal{C}_2 := \left\{ X \in \mathbb{R}^{m \times n} | \sum_{i=1}^m X_{ij} = 1 \text{ for } j = 1, \dots, n \right\}, \\ & \mathcal{C}_4 := \{ X \in \mathbb{R}^{m \times n} | X_{ij} \geq 0 \text{ for } i = 1, \dots, m \text{ and } j = 1, \dots, n \}. \end{split}$$

Denote $\mathbf{e} = (1, 1, ..., 1) \in \mathbb{R}^m$. Since C_2 applies to each column independently, a column-wise formula for P_{C_2} is given by

$$P_E(x) = x + \frac{1}{m} \left(1 - \sum_{i=1}^m x_i \right) \mathbf{e}$$
 where $E := \{x \in \mathbb{R}^m : \mathbf{e}^T x = 1\}.$

The projection of X onto C_4 is given pointwise by

 $P_{C_4}(X)_{ij} = \max\{0, X_{ij}\}.$

- Singly stochastic matrix completion can be consider by dropping C_3 .
- Related work of Thakouda applies Dykstra's algorithm to a two set model. The corresponding projections are less straight-forward.

A matrix $H = (H_{ij}) \in \{-1, 1\}^{n \times n}$ is said to be a Hadamard matrix of order n if ¹ $H^T H = nI$

A classical result of Hadamard asserts that Hadamard matrices exist only if n = 1, 2 or a multiple of 4. For orders 1 and 2, such matrices are easy to find. For example,

$$\begin{bmatrix} 1 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}.$$

The (open) Hadamard conjecture is concerned with the converse:

There exists a Hadamard matrices of order 4n for all $n \in \mathbb{N}$.

A matrix $H = (H_{ij}) \in \{-1, 1\}^{n \times n}$ is said to be a Hadamard matrix of order n if ¹ $H^T H = nI$

A classical result of Hadamard asserts that Hadamard matrices exist only if n = 1, 2 or a multiple of 4. For orders 1 and 2, such matrices are easy to find. For example,

$$\begin{bmatrix} 1 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}.$$

The (open) Hadamard conjecture is concerned with the converse:

There exists a Hadamard matrices of order 4n for all $n \in \mathbb{N}$.

Consider now the problem of finding a Hadamard matrix of a given order – an important completion problem with structure restriction but no fixed entries. We use the following constraint sets:

$$C_1 := \{ X \in \mathbb{R}^{n \times n} | X_{ij} = \pm 1 \text{ for } i, j = 1, \dots, n \},$$

$$C_2 := \{ X \in \mathbb{R}^{n \times n} | X^T X = nI \}.$$

Then X is a Hadamard matrix if and only if $X \in C_1 \cap C_2$.

The projection of X on C_1 is given by pointwise rounding to ± 1 .

Proposition (A projection onto C₂)

Let $X = USV^T$ be a singular value decomposition. Then

 $\sqrt{n}UV^{T} \in P_{C_2}(X).$

一名 医下颌 医下

Consider now the problem of finding a Hadamard matrix of a given order – an important completion problem with structure restriction but no fixed entries. We use the following constraint sets:

$$C_1 := \{ X \in \mathbb{R}^{n \times n} | X_{ij} = \pm 1 \text{ for } i, j = 1, \dots, n \},$$

$$C_2 := \{ X \in \mathbb{R}^{n \times n} | X^T X = nI \}.$$

Then X is a Hadamard matrix if and only if $X \in C_1 \cap C_2$.

The projection of X on C_1 is given by pointwise rounding to ± 1 .

Proposition (A projection onto C_2)

Let $X = USV^T$ be a singular value decomposition. Then

 $\sqrt{n}UV^T \in P_{C_2}(X).$

Let H_1 and H_2 be Hadamard matrices. We say H_1 are H_2 are:

- Distinct if $H_1 \neq H_2$,
- Equivalent if H_2 can be obtained from H_1 by performing row/column permutations, and/or multiplying rows/columns by -1.

For order 4*n*:

• Number of Distinct Hadamard matrices is OEIS A206712:

768, 4954521600, 20251509535014912000, ...

• Number of Inequivalent Hadamard matrices is OEIS A00729:

 $1, 1, 1, 1, 5, 3, 60, 487, 13710027, \dots$

With increasing order, the number of Hadamard matrices is a faster than exponentially decreasing proportion of total number of ± 1 -matrices (there are $2^{n^2} \pm 1$ -matrices or order *n*).

Let H_1 and H_2 be Hadamard matrices. We say H_1 are H_2 are:

- Distinct if $H_1 \neq H_2$,
- Equivalent if H_2 can be obtained from H_1 by performing row/column permutations, and/or multiplying rows/columns by -1.

For order 4*n*:

• Number of Distinct Hadamard matrices is OEIS A206712:

 $768, 4954521600, 20251509535014912000, \ldots$

• Number of Inequivalent Hadamard matrices is OEIS A00729:

 $1, 1, 1, 1, 5, 3, 60, 487, 13710027, \dots$

With increasing order, the number of Hadamard matrices is a faster than exponentially decreasing proportion of total number of ± 1 -matrices (there are $2^{n^2} \pm 1$ -matrices or order *n*).

Let H_1 and H_2 be Hadamard matrices. We say H_1 are H_2 are:

- Distinct if $H_1 \neq H_2$,
- Equivalent if H_2 can be obtained from H_1 by performing row/column permutations, and/or multiplying rows/columns by -1.

For order 4*n*:

• Number of Distinct Hadamard matrices is OEIS A206712:

 $768, 4954521600, 20251509535014912000, \ldots$

• Number of Inequivalent Hadamard matrices is OEIS A00729:

 $1, 1, 1, 1, 5, 3, 60, 487, 13710027, \dots$

With increasing order, the number of Hadamard matrices is a faster than exponentially decreasing proportion of total number of ± 1 -matrices (there are $2^{n^2} \pm 1$ -matrices or order *n*).

Order	$C_1 \cap C_2$ Formulation								
Order	Ave Time (s)	Solved	Distinct	Inequivalent					
2	1.1371	534	8	1					
4	1.0791	627	422	1					
8	0.7368	996	996	1					
12	7.1298	0	0	0					
16	9.4228	0	0	0					
20	20.6674	0	0	0					

Table: Number of Hadamard matrices found from 1000 instances

Checking if two Hadamard matrices are equivalent can be cast as a problem of graph isomorphism (McKay '79).

• In Sage use is_isomorphic(graph1,graph2).

We give an alternative formulation. Define:

$$C_1 := \{ X \in \mathbb{R}^{n \times n} | X_{ij} = \pm 1 \text{ for } i, j = 1, \dots, n \}, C_3 := \{ X \in \mathbb{R}^{n \times n} | X^T X = \| X \|_F I \}.$$

Then X is a Hadamard matrix if and only if $X \in C_1 \cap C_2 = C_1 \cap C_3$.

Proposition (A projection onto C_3) Let $X = USV^T$ be a singular value decomposition. Then $\sqrt{\|X\|_F}UV^T \in P_{C_3}(X).$

Order	$C_1 \cap C_2$ Formulation								
Order	Ave Time (s)	Solved	Distinct	Inequivalent					
2	1.1371	534	8	1					
4	1.0791	627	422	1					
8	0.7368	996	996	1					
12	7.1298	0	0	0					
16	9.4228	0	0	0					
20	20.6674	0	0	0					

Table: Number of Hadamard matrices found from 1000 instances

Order	$C_1 \cap C_3$ Formulation								
Order	Ave Time (s)	Solved	Distinct	Inequivalent					
2	1.1970	505	8	1					
4	0.2647	921	541	1					
8	0.0117	1000	1000	1					
12	0.8337	1000	1000	1					
16	11.7096	16	16	4					
20	22.6034	0	0	0					

• A more obvious formulation is can be less effective.

Order	$C_1 \cap C_2$ Formulation								
Order	Ave Time (s)	Solved	Distinct	Inequivalent					
2	1.1371	534	8	1					
4	1.0791	627	422	1					
8	0.7368	996	996	1					
12	7.1298	0	0	0					
16	9.4228	0	0	0					
20	20.6674	0	0	0					

Table: Number of Hadamard matrices found from 1000 instances

Order	$C_1 \cap C_3$ Formulation								
Order	Ave Time (s)	Solved	Distinct	Inequivalent					
2	1.1970	505	8	1					
4	0.2647	921	541	1					
8	0.0117	1000	1000	1					
12	0.8337	1000	1000	1					
16	11.7096	16	16	4					
20	22.6034	0	0	0					

• A more obvious formulation is can be less effective.

A 32 b

3 N

-

Skew-Hadamard Matrices

Recall that a matrix $X \in \mathbb{R}^{n \times n}$ is skew-symmetric if $X^T = -X$. A skew-Hadamard matrix is a Hadamard matrix H such that (I - H) is skew-symmetric. That is,

 $H + H^T = 2I.$

Skew-Hadamard matrices are of interest, for example, in the construction of various combinatorial designs. The number of inequivalent skew-Hadamard matrices of order 4n is OEIS A001119 (for n = 2, 3, ...):

 $1, 1, 2, 2, 16, 54, \ldots$

It is convenient to redefine the constraint C_1 to be

 $C_1 = \{X \in \mathbb{R}^{n \times n} | X + X^T = 2I, X_{ij} = \pm 1 \text{ for } i, j = 1, \dots, n\}.$

A projection of X onto C_1 is given pointwise by

$$P_{C_1}(X) = egin{cases} -1 & ext{if } i
eq j ext{ and } X_{ij} < X_{ji}, \ 1 & ext{otherwise.} \end{cases}$$

Order	$C_1 \cap C_2$ Formulation									
Order	Ave Time (s)	Solved	Distinct	Inequivalent						
2	0.0003	1000	2	1						
4	1.1095	719	16	1						
8	0.7039	902	889	1						
12	14.1835	43	43	1						
16	19.3462	0	0	0						
20	29.0383	0	0	0						

Table: Number of skew-Hadamard matrices found from 1000 instances

Order	$C_1 \cap C_3$ Formulation								
Order	Ave Time (s)	Solved	Distinct	Inequivalent					
2	0.0004	1000	2	1					
4	1.6381	634	16	1					
8	0.0991	986	968	1					
12	0.0497	999	999	1					
16	0.2298	1000	1000	2					
20	20.0296	495	495	2					

• Adding constraints can help.

글 > - < 글 >

Order	$C_1 \cap C_2$ Formulation								
Order	Ave Time (s)	Solved	Distinct	Inequivalent					
2	0.0003	1000	2	1					
4	1.1095	719	16	1					
8	0.7039	902	889	1					
12	14.1835	43	43	1					
16	19.3462	0	0	0					
20	29.0383	0	0	0					

Table: Number of skew-Hadamard matrices found from 1000 instances

Order		$C_1 \cap C_3$ Formulation								
Order	Ave Time (s)	Solved	Distinct	Inequivalent						
2	0.0004	1000	2	1						
4	1.6381	634	16	1						
8	0.0991	986	968	1						
12	0.0497	999	999	1						
16	0.2298	1000	1000	2						
20	20.0296	495	495	2						

• Adding constraints can help.

A nonogram puzzle consists of a blank $m \times n$ grid of "pixels" together with (m + n) cluster-size sequences (*i.e.*, for each row and each column). The goal is to "paint" the canvas with a picture such that:

- Each pixel must be either black or white.
- If a row (resp. column) has a cluster-size sequences s₁,..., s_k then it must contain k cluster of black pixels, each separated by at least one white pixel. The *i*th leftmost (resp. uppermost) cluster contains s_i black pixels.

						1			
			2			4	1	2	2
2	3	1	1	5	4	1	5	2	1

1	2						
	2						
	1						
	1						
	2						
2	4						
2	6						
	8						
1	1						
2	2						

A nonogram puzzle consists of a blank $m \times n$ grid of "pixels" together with (m + n) cluster-size sequences (*i.e.*, for each row and each column). The goal is to "paint" the canvas with a picture such that:

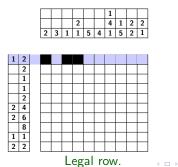
- Each pixel must be either black or white.
- If a row (resp. column) has a cluster-size sequences s₁,..., s_k then it must contain k cluster of black pixels, each separated by at least one white pixel. The *i*th leftmost (resp. uppermost) cluster contains s_i black pixels.

						1			
			2			4	1	2	2
2	3	1	1	5	4	1	5	2	1

1	2						
	2						
	1	1					
	1						
	2]					
2	4	1					
2	6						
	8	1					
1	1	1					
2	2]					

A nonogram puzzle consists of a blank $m \times n$ grid of "pixels" together with (m + n) cluster-size sequences (*i.e.*, for each row and each column). The goal is to "paint" the canvas with a picture such that:

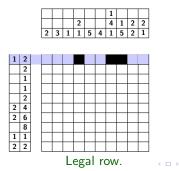
- Each pixel must be either black or white.
- If a row (resp. column) has a cluster-size sequences s₁,..., s_k then it must contain k cluster of black pixels, each separated by at least one white pixel. The *i*th leftmost (resp. uppermost) cluster contains s_i black pixels.



Douglas-Rachford Feasibility Methods for Matrix Completion Problems

A nonogram puzzle consists of a blank $m \times n$ grid of "pixels" together with (m + n) cluster-size sequences (*i.e.*, for each row and each column). The goal is to "paint" the canvas with a picture such that:

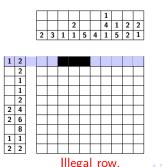
- Each pixel must be either black or white.
- If a row (resp. column) has a cluster-size sequences s₁,..., s_k then it must contain k cluster of black pixels, each separated by at least one white pixel. The *i*th leftmost (resp. uppermost) cluster contains s_i black pixels.



Douglas-Rachford Feasibility Methods for Matrix Completion Problems

A nonogram puzzle consists of a blank $m \times n$ grid of "pixels" together with (m + n) cluster-size sequences (*i.e.*, for each row and each column). The goal is to "paint" the canvas with a picture such that:

- Each pixel must be either black or white.
- If a row (resp. column) has a cluster-size sequences s₁,..., s_k then it must contain k cluster of black pixels, each separated by at least one white pixel. The *i*th leftmost (resp. uppermost) cluster contains s_i black pixels.



Douglas-Rachford Feasibility Methods for Matrix Completion Problems

We model nonograms as a binary feasibility problem. The $m \times n$ grid is represented as a matrix $A \in \mathbb{R}^{m \times n}$ with

 $A[i,j] = \begin{cases} 0 & \text{if the } (i,j)\text{-th entry of the grid is white,} \\ 1 & \text{if the } (i,j)\text{-th entry of the grid is black.} \end{cases}$

Let $\mathcal{R}_i \subset \mathbb{R}^m$ (resp. $\mathcal{C}_j \subset \mathbb{R}^n$) denote the set of vectors having cluster-size sequences matching row *i* (resp. column *j*). The constraints are:

$$C_1 = \{A : A[i, :] \in \mathcal{R}_i \text{ for } i = 1, \dots, m\},\$$

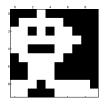
$$C_2 = \{A : A[:, j] \in \mathcal{C}_j \text{ for } j = 1, \dots, n\}.$$

Given an incomplete nonogram puzzle, A is a solution if and only if

 $A \in C_1 \cap C_2$.

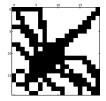
Nonograms: Computational Results

From 1000 random replications, the following nonograms were solved in every instance.

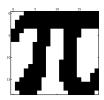


A spaceman.

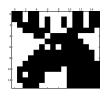
A parrot.



A dragonfly.



The number π .



A moose.

"Hello from CARMA"

Jonathan Borwein (CARMA, University of Newcastle) Douglas–Rachford Feasibility Methods for Matrix Completion Problems

Nonograms: Computational Details

- Computing the projections onto C_1 and C_2 is difficult.
- We do not know an efficient way to do so.
 - Our approach: Pre-compute all legal cluster size sequences (slow).
- Only a few Douglas-Rachford iterations are required to solve (fast).

In contrast other problems, frequently, have relatively simple projections but require many more iterations.

This suggests the following:

Trade-off between simplicity of projection operators and the number of iterations required.

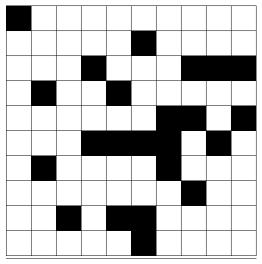
Nonograms: Computational Details

- Computing the projections onto C_1 and C_2 is difficult.
- We do not know an efficient way to do so.
 - Our approach: Pre-compute all legal cluster size sequences (slow).
- Only a few Douglas-Rachford iterations are required to solve (fast).

In contrast other problems, frequently, have relatively simple projections but require many more iterations.

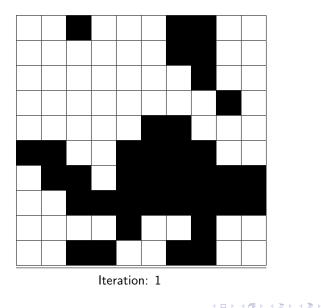
This suggests the following:

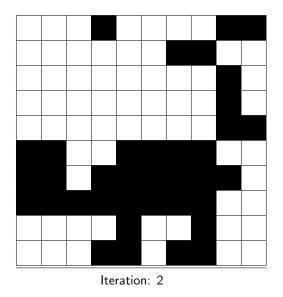
Trade-off between simplicity of projection operators and the number of iterations required.



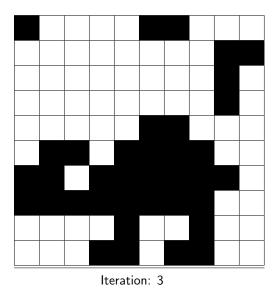
Iteration: 0 (random initialisation)

∃ ► < ∃ ►</p>

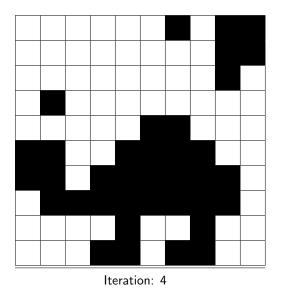




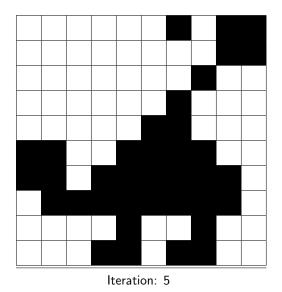
프 () () () (



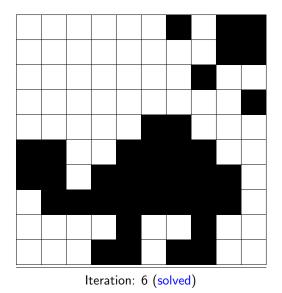
프 () () () (



프 () () () (



< 注→ < 注→



∃ ► < ∃ ►</p>

Sudoku Puzzles

In Sudoku the player fills entries of an incomplete Latin square subject to the constraints:

- Each row contains the numbers 1 through 9 exactly once.
- Each column contains the numbers 1 through 9 exactly once.
- Each 3×3 sub-block contains the numbers 1 through 9 exactly once.

		5	3					
8							2	
	7			1		5		
4					5	3		
	1			7				6
		3	2				8	
	6		5					9
		4					3	
					9	7		

1	4	5	3	2	7	6	9	8
8	3	9	6	5	4	1	2	7
6	7	2	9	1	8	5	4	3
4	9	6	1	8	5	3	7	2
2	1	8	4	7	3	9	5	6
7	5	3	2	9	6	4	8	1
3	6	7	5	4	2	1	8	9
9	8	4	7	6	1	2	3	5
5	2	1	8	3	9	7	6	4

Figure. An incomplete Sudoku (left) and its unique solution (right).

• The Douglas–Rachford algorithm applied to the natural integer feasibility problem fails (exception: $n^2 \times n^2$ Sudokus where n = 1, 2).

Let $E = \{e_j\}_{j=1}^9 \subset \mathbb{R}^9$ be the standard basis. Define $X \in \mathbb{R}^{9 \times 9 \times 9}$ by

 $X_{ijk} = \begin{cases} 1 & \text{if } ij \text{th entry of the Sudoku is } k, \\ 0 & \text{otherwise.} \end{cases}$

The idea: Reformulate integer entries as binary vectors.

7					9		5	
	1						3	
		2	3			7		
		4	5				7	
8						2		
					6	4		
	9			1				
	8			6				
		5	4					7

The constraints are: $C_{1} = \{X : X_{ij} \in E\}$ $C_{2} = \{X : X_{ik} \in E\}$ $C_{3} = \{X : X_{jk} \in E\}$ $C_{4} = \{X : \text{vec}(3 \times 3 \text{ submatrix}) \in E\}$ $C_{5} = \{X : X \text{ matches original puzzle}\}$

A solution is any $X \in \bigcap_{i=1}^{5} C_i$.

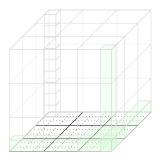
⁵Veit Elser was the first to realise the usefulness of this binary formulation for solving Sudoku via Douglas-Rachford methods

Jonathan Borwein (CARMA, University of Newcastle)

Let $E = \{e_j\}_{j=1}^9 \subset \mathbb{R}^9$ be the standard basis. Define $X \in \mathbb{R}^{9 \times 9 \times 9}$ by

 $X_{ijk} = \begin{cases} 1 & \text{if } ij \text{th entry of the Sudoku is } k, \\ 0 & \text{otherwise.} \end{cases}$

The idea: Reformulate integer entries as binary vectors.



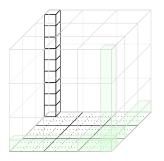
The constraints are: $C_1 = \{X : X_{ij} \in E\}$ $C_2 = \{X : X_{ik} \in E\}$ $C_3 = \{X : X_{jk} \in E\}$ $C_4 = \{X : \operatorname{vec}(3 \times 3 \text{ submatrix}) \in E\}$ $C_5 = \{X : X \text{ matches original puzzle}\}$

A solution is any $X \in \bigcap_{i=1}^5 C_i$.

Let $E = \{e_j\}_{j=1}^9 \subset \mathbb{R}^9$ be the standard basis. Define $X \in \mathbb{R}^{9 \times 9 \times 9}$ by

 $X_{ijk} = \begin{cases} 1 & \text{if } ij \text{th entry of the Sudoku is } k, \\ 0 & \text{otherwise.} \end{cases}$

The idea: Reformulate integer entries as binary vectors.



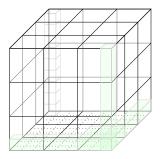
The constraints are: $C_1 = \{X : X_{ij} \in E\}$ $C_2 = \{X : X_{ik} \in E\}$ $C_3 = \{X : X_{jk} \in E\}$ $C_4 = \{X : \operatorname{vec}(3 \times 3 \text{ submatrix}) \in E\}$ $C_5 = \{X : X \text{ matches original puzzle}\}$

A solution is any $X\in igcap_{i=1}^5 C_i.$

Let $E = \{e_j\}_{j=1}^9 \subset \mathbb{R}^9$ be the standard basis. Define $X \in \mathbb{R}^{9 \times 9 \times 9}$ by

 $X_{ijk} = \begin{cases} 1 & \text{if } ij \text{th entry of the Sudoku is } k, \\ 0 & \text{otherwise.} \end{cases}$

The idea: Reformulate integer entries as binary vectors.



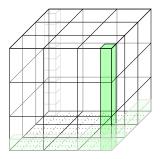
The constraints are: $C_1 = \{X : X_{ij} \in E\}$ $C_2 = \{X : X_{ik} \in E\}$ $C_3 = \{X : X_{jk} \in E\}$ $C_4 = \{X : \text{vec}(3 \times 3 \text{ submatrix}) \in E\}$ $C_5 = \{X : X \text{ matches original puzzle}\}$

A solution is any $X \in \bigcap_{i=1}^{5} C_i$.

Let $E = \{e_j\}_{j=1}^9 \subset \mathbb{R}^9$ be the standard basis. Define $X \in \mathbb{R}^{9 \times 9 \times 9}$ by

 $X_{ijk} = \begin{cases} 1 & \text{if } ij \text{th entry of the Sudoku is } k, \\ 0 & \text{otherwise.} \end{cases}$

The idea: Reformulate integer entries as binary vectors.



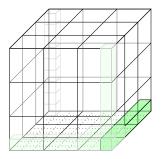
The constraints are: $C_1 = \{X : X_{ij} \in E\}$ $C_2 = \{X : X_{ik} \in E\}$ $C_3 = \{X : X_{jk} \in E\}$ $C_4 = \{X : \operatorname{vec}(3 \times 3 \text{ submatrix}) \in E\}$ $C_5 = \{X : X \text{ matches original puzzle}\}$

A solution is any $X \in \bigcap_{i=1}^{5} C_i$.

Let $E = \{e_j\}_{j=1}^9 \subset \mathbb{R}^9$ be the standard basis. Define $X \in \mathbb{R}^{9 \times 9 \times 9}$ by

 $X_{ijk} = \begin{cases} 1 & \text{if } ij \text{th entry of the Sudoku is } k, \\ 0 & \text{otherwise.} \end{cases}$

The idea: Reformulate integer entries as binary vectors.



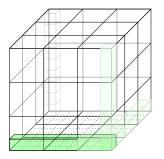
The constraints are: $C_1 = \{X : X_{ij} \in E\}$ $C_2 = \{X : X_{ik} \in E\}$ $C_3 = \{X : X_{jk} \in E\}$ $C_4 = \{X : \operatorname{vec}(3 \times 3 \text{ submatrix}) \in E\}$ $C_5 = \{X : X \text{ matches original puzzle}\}$

A solution is any $X \in \bigcap_{i=1}^{5} C_i$.

Let $E = \{e_j\}_{j=1}^9 \subset \mathbb{R}^9$ be the standard basis. Define $X \in \mathbb{R}^{9 \times 9 \times 9}$ by

 $X_{ijk} = \begin{cases} 1 & \text{if } ij \text{th entry of the Sudoku is } k, \\ 0 & \text{otherwise.} \end{cases}$

The idea: Reformulate integer entries as binary vectors.



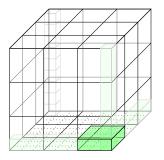
The constraints are: $C_1 = \{X : X_{ij} \in E\}$ $C_2 = \{X : X_{ik} \in E\}$ $C_3 = \{X : X_{jk} \in E\}$ $C_4 = \{X : \text{vec}(3 \times 3 \text{ submatrix}) \in E\}$ $C_5 = \{X : X \text{ matches original puzzle}\}$

A solution is any $X \in \bigcap_{i=1}^{5} C_i$.

Let $E = \{e_j\}_{j=1}^9 \subset \mathbb{R}^9$ be the standard basis. Define $X \in \mathbb{R}^{9 \times 9 \times 9}$ by

 $X_{ijk} = \begin{cases} 1 & \text{if } ij \text{th entry of the Sudoku is } k, \\ 0 & \text{otherwise.} \end{cases}$

The idea: Reformulate integer entries as binary vectors.



The constraints are: $C_1 = \{X : X_{ij} \in E\}$ $C_2 = \{X : X_{ik} \in E\}$ $C_3 = \{X : X_{jk} \in E\}$ $C_4 = \{X : \text{vec}(3 \times 3 \text{ submatrix}) \in E\}$ $C_5 = \{X : X \text{ matches original puzzle}\}$

A solution is any $X \in \bigcap_{i=1}^{5} C_i$.

Sudoku Puzzles: Computing projections

Proposition (projections onto permutation sets)

Denote by $\mathcal{C} \subset \mathbb{R}^m$ the set of all vector whose entries are permutations of $c_1, c_2, \ldots, c_m \in \mathbb{R}$. Then for any $x \in \mathbb{R}^m$,

 $P_{\mathcal{C}}x = [\mathcal{C}]_x,$

where $[\mathcal{C}]_x$ is the set of vectors $y \in \mathcal{C}$ such that *i*th largest index of y has the same index in y as the *i*th largest entry of x, for all indices *i*.

- $[\mathcal{C}]_{\times}$ be computed efficiently using sorting algorithms.
- Choosing $c_1 = 1$ and $c_2 = \cdots = c_m = 0$ gives²

$$P_E x = \{e_i : x_i = \max\{x_1, \dots, x_m\}\}.$$

Formulae for P_{C_1} , P_{C_2} , P_{C_3} and P_{C_4} easily follow.

*P*_{C5} is given by setting the entries corresponding to those in the incomplete puzzle to 1, and leaving the remaining untouched.

²A direct proof of this special case appears in Jason Schaad's Masters thesis.
Section 2 Schaad's Mast

Sudoku Puzzles: Algorithm Details

Initialize: x₀ := (y, y, y, y, y) ∈ D for some random y ∈ [0, 1]^{9×9×9}.
Iteration: By setting

$$x_{n+1} := T_{D,C} x_n = \frac{x_n + R_C R_D x_n}{2}.$$

Termination: Either if a solution is found, or 10000 iteration have been performed. More precisely, round(P_Dx_n) (P_Dx_n pointwise rounded to the nearest integer) is a solution if

 $\operatorname{round}(P_D x_n) \in C \cap D.$

Taking round(\cdot) is valid since the solution is binary.

We consider the following test libraries frequently used by programmers to test their solvers.

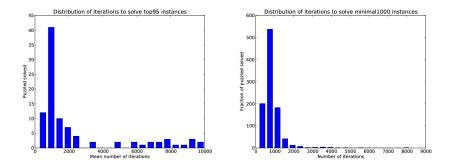
- Dukuso's top95 and top1465.
- First 1000 puzzles from Gordan Royle's minimum Sudoku puzzles with 17 entries (the best known lower bound on the entries required for a unique solution).
- reglib-1.3 1000 test puzzle suited to particular human style techniques.
- ksudoku16 and ksudoku25 a collection around 30 instances (various difficulties) generated with KSudoku. Contains larger 16 × 16 and 25 × 25 puzzles.³

³Generating "hard" instances is a difficult problem. $(\Box \rightarrow ()$

Computational Results: Success Rate

From 10 random replications of each puzzle:

Table. % Solved by the Douglas–Rachford method									
top95	top1465	reglib-1.3	minimal1000	ksudoku16	ksudoku25				
86.53	93.69	99.35	99.59	92	100				



• If a instance was solved, the solution was usually found within the first 2000 iterations.

Jonathan Borwein (CARMA, University of Newcastle) Douglas–Rachford Feasibility Methods for Matrix Completion Problems

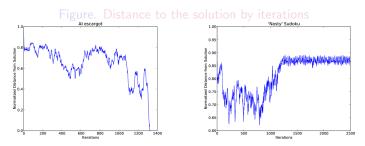
Computational Example: A 'Nasty' Sudoku

This 'nasty' Sudoku⁴ cannot be solved reliably (20.2% success rate) by the Douglas–Rachford method.

l	7					9		5	
		1						3	
I			2	3			7		
ſ			4	5				7	
ľ	8						2		
ľ						6	4		
ſ		9			1				
I		8			6				
			5	4					7

Other "difficult" Sudoku puzzles do not cause the Douglas–Rachford method any trouble.

• Al escargot = 98.5% success rate.



Jonathan Borwein (CARMA, University of Newcastle)

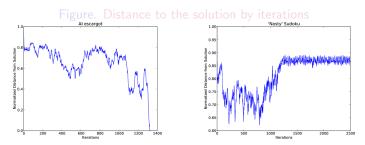
Computational Example: A 'Nasty' Sudoku

This 'nasty' Sudoku⁴ cannot be solved reliably (20.2% success rate) by the Douglas–Rachford method.

7					9		5	
	1						3	
		2	3			7		
		4	5				7	
8						2		
					6	4		
	9			1				
	8			6				
		5	4					7

Other "difficult" Sudoku puzzles do not cause the Douglas–Rachford method any trouble.

• Al escargot = 98.5% success rate.



⁴This is a modified version of an example due to Veit Elser. () () () ()

Jonathan Borwein (CARMA, University of Newcastle)

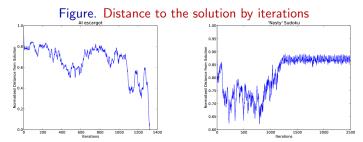
Computational Example: A 'Nasty' Sudoku

This 'nasty' Sudoku⁴ cannot be solved reliably (20.2% success rate) by the Douglas–Rachford method.

7					9		5	
	1						3	
		2	3			7		
		4	5				7	
8						2		
					6	4		
	9			1				
	8			6				
		5	4					7

Other "difficult" Sudoku puzzles do not cause the Douglas–Rachford method any trouble.

• Al escargot = 98.5% success rate.



Jonathan Borwein (CARMA, University of Newcastle)

We considered solving the puzzles obtained by removing any single entry from the 'Nasty' Sudoku.

7					9		5	
	1						3	
		2	3			7		
		4	5				7	
8						2		
					6	4		
	9			1				
	8			6				
		5	4					7

Success rate when any single entry is removed:

- Top left 7 = 24%
- Any other entry = 99%

Number of solutions when any single entry is removed:

- Top left 7 = 5
- Any other entry = 200-3800

伺い イラト イラト

Is the Douglas-Rachford method hindered by an abundance of 'near' solutions?

We considered solving the puzzles obtained by removing any single entry from the 'Nasty' Sudoku.

7					9		5	
	1						3	
		2	3			7		
		4	5				7	
8						2		
					6	4		
	9			1				
	8			6				
		5	4					7

Success rate when any single entry is removed:

- Top left 7 = 24%
- Any other entry = 99%

Number of solutions when any single entry is removed:

- Top left 7 = 5
- Any other entry = 200-3800

伺い イラト イラト

Is the Douglas-Rachford method hindered by an abundance of 'near' solutions?

We considered solving the puzzles obtained by removing any single entry from the 'Nasty' Sudoku.

7					9		5	
	1						3	
		2	3			7		
		4	5				7	
8						2		
					6	4		
	9			1				
	9 8			6				
		5	4					7

Success rate when any single entry is removed:

- Top left 7 = 24%
- Any other entry = 99%

Number of solutions when any single entry is removed:

- Top left 7 = 5
- Any other entry = 200-3800

Is the Douglas-Rachford method hindered by an abundance of 'near' solutions?

Computational Results: Performance Comparison

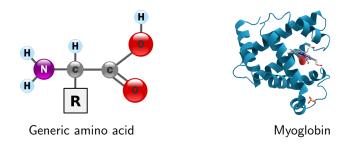
We compared the Douglas-Rachford method to the following solvers:

- Gurobi binary program Solves the same binary model using integer programming techniques.
- YASS (Yet another Sudoku solver) First applies a reasoning algorithm to determine possible candidates for each empty square. If this does not completely solve the puzzle, a deterministic recursive algorithm is used.
- OLX Solves an exact cover formulation using the Dancing Links implementation of Knuth's Algorithm X (non-deterministic, depth-first, back-tracking).

	Table. Average Runtime (seconds). ⁵										
	top95 reglib-1.3 minimal1000 ksudoku16										
DR	1.432	0.279	0.509	5.064	4.011						
Gurobi	0.063	0.059	0.063	0.168	0.401						
YASS	2.256	0.039	0.654	-	-						
DLX	1.386	0.105	3.871	-	-						

⁵Some solvers are only designed to handle 9×9 puzzles... $\rightarrow 4 = 3$

Proteins are large biomolecules comprising of multiple amino acid chains.



They participate in virtually every cellular process, and knowledge of structural conformation gives insights into the mechanisms by which they perform.

One technique that can be used to determine conformation is nuclear magnetic resonance (NMR) spectroscopy. However, NMR is only able to resolve short inter-atomic distances (*i.e.*, < 6Å). For 1PTQ (404 atoms) this corresponds to < 8% of the total inter-atomic distances.

We say $D = (D_{ij}) \in \mathbb{R}^{m \times m}$ is a Euclidean distance matrix (EDM) if there exists points $p_1, \ldots, p_m \in \mathbb{R}^q$ such that

$$D_{ij} = \|p_i - p_j\|^2.$$

When this holds for points in \mathbb{R}^q , we say that D is embeddable in \mathbb{R}^q .

We formulate protein reconstruction as a matrix completion problem:

Find a EDM, embeddable in \mathbb{R}^s where s := 3, knowing only short inter-atomic distances.

伺い イラト イラト

One technique that can be used to determine conformation is nuclear magnetic resonance (NMR) spectroscopy. However, NMR is only able to resolve short inter-atomic distances (*i.e.*, < 6Å). For 1PTQ (404 atoms) this corresponds to < 8% of the total inter-atomic distances.

We say $D = (D_{ij}) \in \mathbb{R}^{m \times m}$ is a Euclidean distance matrix (EDM) if there exists points $p_1, \ldots, p_m \in \mathbb{R}^q$ such that

$$D_{ij} = \|p_i - p_j\|^2.$$

When this holds for points in \mathbb{R}^{q} , we say that *D* is embeddable in \mathbb{R}^{q} .

We formulate protein reconstruction as a matrix completion problem:

Find a EDM, embeddable in \mathbb{R}^s where s := 3, knowing only short inter-atomic distances.

One technique that can be used to determine conformation is nuclear magnetic resonance (NMR) spectroscopy. However, NMR is only able to resolve short inter-atomic distances (*i.e.*, < 6Å). For 1PTQ (404 atoms) this corresponds to < 8% of the total inter-atomic distances.

We say $D = (D_{ij}) \in \mathbb{R}^{m \times m}$ is a Euclidean distance matrix (EDM) if there exists points $p_1, \ldots, p_m \in \mathbb{R}^q$ such that

$$D_{ij} = \|p_i - p_j\|^2.$$

When this holds for points in \mathbb{R}^{q} , we say that *D* is embeddable in \mathbb{R}^{q} .

We formulate protein reconstruction as a matrix completion problem:

Find a EDM, embeddable in \mathbb{R}^s where s := 3, knowing only short inter-atomic distances.

A Feasibility Problem Formulation

Denote by Q the Householder matrix defined by

$$Q := I - rac{2
u
u^T}{
u^T
u}$$
, where $u = \begin{bmatrix} 1, 1, \dots, 1, 1 + \sqrt{m} \end{bmatrix}^T \in \mathbb{R}^m$.

Theorem (Hayden–Wells 1988)

A nonnegative, symmetric, hollow matrix X, is a EDM iff $\hat{X} \in \mathbb{R}^{(m-1) \times (m-1)}$ in

$$Q(-X)Q = \begin{bmatrix} \hat{X} & d \\ d^T & \delta \end{bmatrix}$$
(*)

is positive semi-definite (PSD). In this case, X is embeddable in \mathbb{R}^q where $q = \operatorname{rank}(\hat{X}) \le m - 1$ but not in \mathbb{R}^{q-1} .

Let *D* denote the partial EDM (obtained from NMR), and $\Omega \subset \mathbb{N} \times \mathbb{N}$ the set of indices for known entries. The problem of low-dimensional EDM reconstruction can thus be case as a feasibility problem with constraints:

$$C_1 = \{ X \in \mathbb{R}^{m \times m} : X \ge 0, X_{ij} = D_{ij} \text{ for } (i, j) \in \Omega \},\$$

$$C_2 = \{ X \in \mathbb{R}^{m \times m} : \widehat{X} \text{ in } (*) \text{ is PSD with } \text{ rank } \widehat{X} \le s := 3 \}.$$

Recall the constraint sets:

$$C_1 = \{X \in \mathbb{R}^{m \times m} : X \ge 0, X_{ij} = D_{ij} \text{ for } (i, j) \in \Omega\},\$$

$$C_2 = \{X \in \mathbb{R}^{m \times m} : \widehat{X} \text{ in } (*) \text{ is PSD with } \text{ rank } \widehat{X} \le s := 3\}$$

Now,

- C_1 is a convex set (intersection of cone and affine subspace).
- C_2 is convex iff $m \leq 2$ (in which case $C_2 = \mathbb{R}^{m \times m}$).

For interesting problems, C_2 is **never convex**.

Recall the constraint sets:

$$\begin{split} & C_1 = \{ X \in \mathbb{R}^{m \times m} : X \ge 0, X_{ij} = D_{ij} \text{ for } (i, j) \in \Omega \}, \\ & C_2 = \{ X \in \mathbb{R}^{m \times m} : \widehat{X} \text{ in } (*) \text{ is PSD with } \operatorname{rank} \widehat{X} \le s := 3 \}. \end{split}$$

The projection onto C_1 is given (point-wise) by

$${\sf P}_{{\sf C}_1}(X)_{ij} = \left\{egin{array}{cl} D_{ij} & ext{if } (i,j) \in \Omega, \ \max\{0,X_{ij}\} & ext{otherwise}. \end{array}
ight.$$

The projection onto C_2 is the set

 $P_{C_2}(X) = \left\{ -Q \begin{bmatrix} \widehat{Y} & d \\ d^T & \delta \end{bmatrix} Q : Q(-X)Q = \begin{bmatrix} \widehat{X} & d \\ d^T & \delta \end{bmatrix}, \begin{array}{l} \widehat{X} \in \mathbb{R}^{(m-1)\times(m-1)}, \\ d \in \mathbb{R}^{m-1}, \ \delta \in \mathbb{R}, \end{array} \right\},$ where \mathcal{S}_s is the set of PSD matrices of rank s or less.

• Computing $P_{\mathcal{S}_s}(\hat{X}) =$ spectral decomposition \rightarrow threshold eigenvalues.

Recall the constraint sets:

$$C_1 = \{X \in \mathbb{R}^{m \times m} : X \ge 0, X_{ij} = D_{ij} \text{ for } (i, j) \in \Omega\},\$$

$$C_2 = \{X \in \mathbb{R}^{m \times m} : \widehat{X} \text{ in } (*) \text{ is PSD with } \text{ rank } \widehat{X} \le s := 3\}.$$

The projection onto C_1 is given (point-wise) by

$${\mathcal P}_{\mathcal{C}_1}(X)_{ij} = \left\{egin{array}{cc} D_{ij} & ext{if } (i,j) \in \Omega, \ \max\{0,X_{ij}\} & ext{otherwise}. \end{array}
ight.$$

The projection onto C_2 is the set

$$\begin{split} P_{C_2}(X) &= \left\{ -Q \begin{bmatrix} \widehat{Y} & d \\ d^T & \delta \end{bmatrix} Q : Q(-X)Q = \begin{bmatrix} \widehat{X} & d \\ d^T & \delta \end{bmatrix}, \begin{array}{l} \widehat{X} \in \mathbb{R}^{(m-1)\times(m-1)}, \\ d \in \mathbb{R}^{m-1}, \delta \in \mathbb{R}, \end{array} \right\}, \\ \text{where } \mathcal{S}_s \text{ is the set of PSD matrices of rank } s \text{ or less.} \\ \bullet \text{ Computing } P_{\mathcal{S}_s}(\widehat{X}) &= \text{spectral decomposition} \to \text{threshold eigenvalues.} \end{split}$$

Recall the constraint sets:

$$C_1 = \{X \in \mathbb{R}^{m \times m} : X \ge 0, X_{ij} = D_{ij} \text{ for } (i, j) \in \Omega\},\$$

$$C_2 = \{X \in \mathbb{R}^{m \times m} : \widehat{X} \text{ in } (*) \text{ is PSD with } \text{ rank } \widehat{X} \le s := 3\}$$

The projection onto C_1 is given (point-wise) by

$$\mathsf{P}_{\mathsf{C}_1}(X)_{ij} = \left\{egin{array}{cc} D_{ij} & ext{if } (i,j) \in \Omega, \ \max\{0,X_{ij}\} & ext{otherwise}. \end{array}
ight.$$

The projection onto C_2 is the set

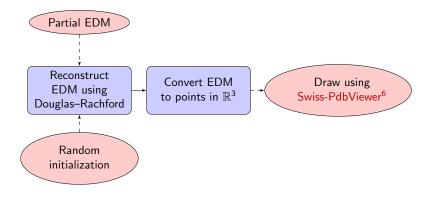
 $P_{C_2}(X) = \left\{ -Q \begin{bmatrix} \widehat{Y} & d \\ d^T & \delta \end{bmatrix} Q : Q(-X)Q = \begin{bmatrix} \widehat{X} & d \\ d^T & \delta \end{bmatrix}, \begin{array}{c} \widehat{X} \in \mathbb{R}^{(m-1)\times(m-1)}, \\ d \in \mathbb{R}^{m-1}, \delta \in \mathbb{R}, \end{array} \right\},$

where S_s is the set of PSD matrices of rank s or less.

• Computing $P_{\mathcal{S}_s}(\widehat{X}) =$ spectral decomposition \rightarrow threshold eigenvalues.

The Algorithmic Approach

The reconstruction approach can be summarised as follows:



 ¹http://spdbv.vital-it.ch/
 < □ > < ⊡ > < ⊡ > < ⊡ > < ≅ > < ≅ > < ≅ < ⊃ <</td>

 Jonathan Borwein (CARMA, University of Newcastle)
 Douglas-Rachford Feasibility Methods for Matrix Completion Problems

Experiment: We consider the simplest realistic protein conformation determination problem.

NMR experiments were simulated for proteins with known conformation by computing the partial EDM containing all inter-atomic distances < 6Å.

Protein	# Atoms	# Residues	Known Distances
1PTQ	404	50	8.83%
1HOE	581	74	6.35%
1LFB	641	99	5.57%
1PHT	988	85	4.57%
1POA	1067	118	3.61%
1AX8	1074	146	3.54%

Table:	Six	proteins	from	the	RCSB	Protein	Data	Bank. ⁷	
--------	-----	----------	------	-----	------	---------	------	--------------------	--

²http://www.rcsb.org/

Jonathan Borwein (CARMA, University of Newcastle)

Douglas-Rachford Feasibility Methods for Matrix Completion Problems

Table: Average (worst) results: 5,000 iterations, five random initializations.

Protein	Problem Size	Rel. Error (dB)	RMS Error	Max Error
1PTQ	81,406	-83.6 (-83.7)	0.02 (0.02)	0.08 (0.09)
1HOE	168,490	-72.7 (-69.3)	0.19 (0.26)	2.88 (5.49)
1LFB	205,120	-47.6 (-45.3)	3.24 (3.53)	21.68 (24.00)
1PHT	236,328	-60.5 (-58.1)	1.03 (1.18)	12.71 (13.89)
1POA	568,711	-49.3 (-48.1)	34.09 (34.32)	81.88 (87.60)
1AX8	576,201	-46.7 (-43.5)	9.69 (10.36)	58.55 (62.65)

• The reconstructed EDM is compared to the actual EDM using:

Relative error (decibels) =
$$10 \log_{10} \left(\frac{\|P_A x_n - P_B R_A x_n\|^2}{\|P_A x_n\|^2} \right).$$

• The reconstructed points in \mathbb{R}^3 are then compared using:

$$\mathsf{RMS Error} = \left(\sum_{k=1}^{m} \|z_k - z_k^{\mathsf{actual}}\|^2\right)^{1/2}, \ \mathsf{Max Error} = \max_{k=1,\dots,m} \|z_k - z_k^{\mathsf{actual}}\|,$$

which are computed up to translation, reflection and rotation.

Table: Average (worst) results: 5,000 iterations, five random initializations.

Protein	Problem Size	Rel. Error (dB)	RMS Error	Max Error
1PTQ	81,406	-83.6 (-83.7)	0.02 (0.02)	0.08 (0.09)
1HOE	168,490	-72.7 (-69.3)	0.19 (0.26)	2.88 (5.49)
1LFB	205,120	-47.6 (-45.3)	3.24 (3.53)	21.68 (24.00)
1PHT	236,328	-60.5 (-58.1)	1.03 (1.18)	12.71 (13.89)
1POA	568,711	-49.3 (-48.1)	34.09 (34.32)	81.88 (87.60)
1AX8	576,201	-46.7 (-43.5)	9.69 (10.36)	58.55 (62.65)

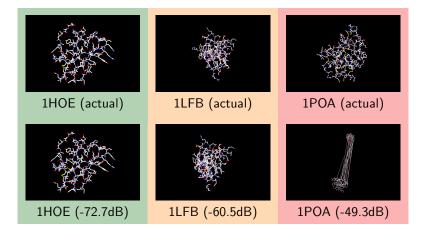
• The reconstructed EDM is compared to the actual EDM using:

Relative error (decibels) =
$$10 \log_{10} \left(\frac{\|P_A x_n - P_B R_A x_n\|^2}{\|P_A x_n\|^2} \right).$$

• The reconstructed points in \mathbb{R}^3 are then compared using:

$$\mathsf{RMS Error} = \left(\sum_{k=1}^{m} \|z_k - z_k^{\mathsf{actual}}\|^2\right)^{1/2}, \ \mathsf{Max Error} = \max_{k=1,\dots,m} \|z_k - z_k^{\mathsf{actual}}\|,$$

which are computed up to translation, reflection and rotation.

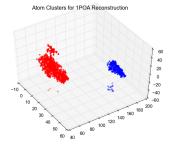


1HOE is good, 1LFB is mostly good, and 1POA has two good pieces.

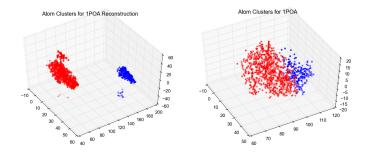
Let's take a closer look at the bad 1POA reconstructions.

医下子 化

Let's take a closer look at the bad 1POA reconstructions. We partitions the bad protein's atoms into two clusters: blue and red. We color the same atoms in the actual structure.



Let's take a closer look at the bad 1POA reconstructions. We partitions the bad protein's atoms into two clusters: blue and red. We color the same atoms in the actual structure.



• The reconstructed protein's clusters splits actual conformation nicely in two 'halves'.

Experiment: A Better Stopping Criterion?

Optimising our implementation gave a ten-fold speed-up. We performed the following experiment:

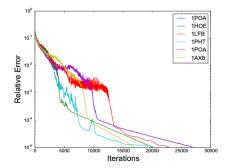
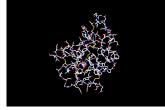


Figure: Relative error by iterations (vertical axis logarithmic).

- For < 5,000 iterations, the error exhibits non-monotone oscillatory behaviour. It then decreases sharply. Beyond this progress is slower.
- Early termination to blame? \longrightarrow Terminate when error < -100 dB.

A More Robust Stopping Criterion

The "un-tuned" implementation (worst reconstruction from previous slide):

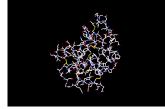


1POA (actual)

5,000 steps, -49.3dB

A More Robust Stopping Criterion

The "un-tuned" implementation (worst reconstruction from previous slide):



1POA (actual)

5,000 steps, -49.3dB

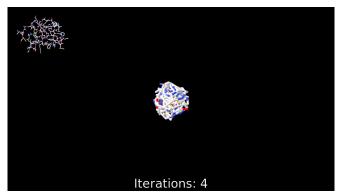
The optimised implementation:

28,500 steps, -100dB (perfect!)

• Similar results observed for the other test proteins.

Jonathan Borwein (CARMA, University of Newcastle) Douglas–Rachford Feasibility Methods for Matrix Completion Problems

Experiment: There are many projection methods, so why should we use the Douglas–Rachford method?



First 3,000 steps of the 1PTQ reconstruction

http://carma.newcastle.edu.au/DRmethods/1PTQ.html

Experiment: There are many projection methods, so why should we use the Douglas–Rachford method?

Experiment: There are many projection methods, so why should we use the Douglas–Rachford method?

A simpler projection method is the method of alternating projections. Given a point $y_0 \in \mathcal{H}$ is given by the fixed-point iteration

 $y_{n+1} \in P_{C_2}P_{C_1}y_n.$

Experiment: There are many projection methods, so why should we use the Douglas-Rachford method?

A simpler projection method is the method of alternating projections. Given a point $y_0 \in \mathcal{H}$ is given by the fixed-point iteration

 $y_{n+1} \in P_{C_2} P_{C_1} y_n$

Before reconstruction

1PTQ (actual)

Douglas-Rachford method reconstruction:

500 steps, -25 dB

1,000 steps,-30 dB

2,000 steps, -51 dB

Method of alternating projections reconstruction:

500 steps,-22 dB

1,000 steps, -24 dB 2,000 steps, -25 dB

Jonathan Borwein (CARMA, University of Newcastle)

Douglas-Rachford Feasibility Methods for Matrix Completion Problems

Theorem (Basic behaviour of the Douglas-Rachford method)

Suppose C_1, C_2 are closed convex subsets of a finite dimensional Hilbert space \mathcal{H} . For any $x_0 \in \mathcal{H}$, define $x_{n+1} = T_{C_1, C_2} x_n$. If $C_1 \cap C_2 \neq \emptyset$, then $x_n \to x$ such that $P_{C_1} x \in C_1 \cap C_2$. If $C_1 \cap C_2 = \emptyset$, then $||x_n|| \to +\infty$.

- The Douglas-Rachford method can be sensitive to perturbations in the constraint sets.
- In contrast the alternating projections sequence might still converge even if the intersection section is empty.
- **Perhaps** the Douglas–Rachford method's instability stops it from getting 'stuck' in local minima.

< 同 > < 三 > < 三 >

Theorem (Basic behaviour of the Douglas–Rachford method)

Suppose C_1, C_2 are closed convex subsets of a finite dimensional Hilbert space \mathcal{H} . For any $x_0 \in \mathcal{H}$, define $x_{n+1} = T_{C_1, C_2} x_n$. If $C_1 \cap C_2 \neq \emptyset$, then $x_n \to x$ such that $P_{C_1} x \in C_1 \cap C_2$. If $C_1 \cap C_2 = \emptyset$, then $||x_n|| \to +\infty$.

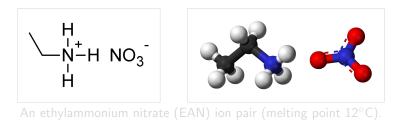
- The Douglas-Rachford method can be sensitive to perturbations in the constraint sets.
- In contrast the alternating projections sequence might still converge even if the intersection section is empty.
- **Perhaps** the Douglas-Rachford method's instability stops it from getting 'stuck' in local minima.

くぼう くまり くまり

lonic liquids (ILs) are salts (*i.e.*, they are comprised of positively and negatively charged ions) having low melting points, and typically occupy the liquid state at room temperature.

An analogous EDM reconstruction problem arising in the context of ionic liquid chemistry is to determine a given ionic liquid's coloralertbulk structure. That is, the configuration of its ions with respect to each other (the structure of the individual ions is known).

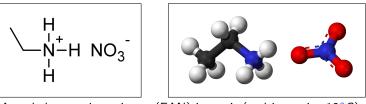
Entries of the partial EDM are assumed to be known whenever the two atoms are bonded (*i.e.*, when their Van der Waals radii overlap)



lonic liquids (ILs) are salts (*i.e.*, they are comprised of positively and negatively charged ions) having low melting points, and typically occupy the liquid state at room temperature.

An analogous EDM reconstruction problem arising in the context of ionic liquid chemistry is to determine a given ionic liquid's coloralertbulk structure. That is, the configuration of its ions with respect to each other (the structure of the individual ions is known).

Entries of the partial EDM are assumed to be known whenever the two atoms are bonded (*i.e.*, when their Van der Waals radii overlap)

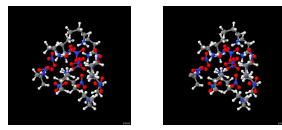


An ethylammonium nitrate (EAN) ion pair (melting point 12°C).

Dr Alister Page, a chemist at UoN, provided us with a propylammonium nitrate (PAN) data set consisting of 180 atoms. The corresponding rank-3 EDM completion problem has a total of 32,220 non-zero inter-atomic distances of which 5.95% form the partial EDM.

Table: Average (worst) results for PAN: five random replications, $\epsilon = 10^{-5}$.EDM-ErrorPosition-ErrorIterations

0.6323 (0.6918) 2.0374 (2.5039) 41553.2 (82062)



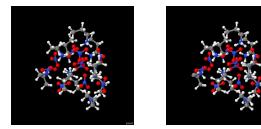
The bulk structure (left) and the reconstruction (right)

Jonathan Borwein (CARMA, University of Newcastle) Douglas–Rachford Feasibility Methods for Matrix Completion Problems

Dr Alister Page, a chemist at UoN, provided us with a propylammonium nitrate (PAN) data set consisting of 180 atoms. The corresponding rank-3 EDM completion problem has a total of 32,220 non-zero inter-atomic distances of which 5.95% form the partial EDM.

Table: Average (worst) results for PAN: five random replications, $\epsilon = 10^{-5}$.

EDM-Error	Position-Error	Iterations	
0.6323 (0.6918)	2.0374 (2.5039)	41553.2 (82062)	



The bulk structure (left) and the reconstruction (right).

Commentary and Open Questions

- The Douglas–Rachford method applied to non-convex problems performs better than theory suggests.
- Approach is novel since we directly solve a non-convex problem.
- Ongoing work is focusing on conditions for local convergence.
- The Douglas–Rachford method is a general purpose algorithm → potential for problem specific improvements. For instance, for protein reconstruction we have used:
 - Updating projection using heuristics (fixed or infrequent updates).
 Imposing additional constraints on protein distances.
- Other fruitful applications? We have also applied our EDM approach to a bulk structure determination problem arising in ionic liquid chemistry.
- The importance of modelling in areas such as integer programming has long been emphasised but less so here. Our study suggests it is equal as important!

When presented a problem, it is worth seeing if Douglas–s Rachford can deal with it – it is conceptually simple and easy to implement.

< ロ > < 同 > < 回 > < 回 >

Commentary and Open Questions

- The Douglas–Rachford method applied to non-convex problems performs better than theory suggests.
- Approach is novel since we directly solve a non-convex problem.
- Ongoing work is focusing on conditions for local convergence.
- The Douglas–Rachford method is a general purpose algorithm → potential for problem specific improvements. For instance, for protein reconstruction we have used:
 - Updating projection using heuristics (fixed or infrequent updates).
 - Imposing additional constraints on protein distances.
- Other fruitful applications? We have also applied our EDM approach to a bulk structure determination problem arising in ionic liquid chemistry.
- The importance of modelling in areas such as integer programming has long been emphasised but less so here. Our study suggests it is equal as important!

When presented a problem, it is worth seeing if Douglas-s Rachford can deal with it – it is conceptually simple and easy to implement.

(Projections onto permutation sets) Denote by C ⊂ R^m the set of all vector whose entries are permutations of c₁, c₂,..., c_m ∈ R. Show that for any x ∈ R^m,

$$\mathsf{P}_{\mathcal{C}}\mathsf{x} = [\mathcal{C}]_{\mathsf{x}},$$

where $[\mathcal{C}]_x$ is the set of vectors $y \in \mathcal{C}$ such that *i*th largest index of y has the same index in y as the *i*th largest entry of x, for all indices *i*.

(a) Prove that the two Hadamard formulation are equivalent. That is, $C_1 \cap C_2 = C_1 \cap C_3$ where

$$C_{1} := \{ X \in \mathbb{R}^{n \times n} | X_{ij} = \pm 1 \text{ for } i, j = 1, \dots, n \},\$$

$$C_{2} := \{ X \in \mathbb{R}^{n \times n} | X^{T} X = nI \},\$$

$$C_{3} := \{ X \in \mathbb{R}^{n \times n} | X^{T} X = ||X||I \}.$$

(Hard) Find an efficient method to compute the nonogram projections.

References

- Reflection methods for inverse problems with applications to protein conformation determination. J.M. Borwein and M.K. Tam, Generalized Nash Equilibrium Problems, Bilevel Prog. and MPEC. In Press, Springer (2014).
- Douglas–Rachford feasibility methods for matrix completion problems.
 F.J. Aragón Artacho, J.M. Borwein & M.K. Tam. ANZIAM J. 55(4):299–326 (2014) http://arxiv.org/abs/1308.4243.
- Recent Results on Douglas-Rachford methods for combinatorial optimization problems. F.J. Aragón Artacho, J.M. Borwein & M.K. Tam. JOTA, 16(1):1–30 (2014). http://arxiv.org/abs/1305.2657.

Many resources available at:

http://carma.newcastle.edu.au/DRmethods