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When computers were first introduced, they were much more a tool for the other sciences than
for mathematics. It was many years before more than a very small subset of mathematicians used
them for anything beyond word-processing. Today, however, more and more mathematicians are
using computers to actively assist their mathematical research in a range of ways. In this chapter,
Jonathan Borwein, one of the leaders in this trend, discusses ways that computers can be used
in the development of mathematics, both to assist in the discovery of mathematical facts and to
assist in the development of their proofs. He suggests that what mathematics requires is secure
knowledge that mathematical claims are true, and an understanding of why they are true, and that
proofs are not necessarily the only route to this security. For teachers of mathematics, computers
are a very helpful, if not essential, component of a constructivist approach to the mathematics
curriculum.

Jonathan Borwein holds a Canada Research Chair in the Faculty of Computer Science at
Dalhousie University (users.cs.dal.ca/ jborwein/). His research interests include scientific compu-
tation, numerical optimization, image reconstruction, computational number theory, experimental
mathematics, and collaborative technology. He was the founding Director of the Centre for Ex-
perimental and Constructive Mathematics, a Simon Fraser University research center within the
Departments of Mathematics and Statistics and Actuarial Science, established in 1993. He has
received numerous awards including the Chauvenet Prize of the MAA in 1993 (with P.B. Borwein
and D.H. Bailey) for “Ramanujan, Modular Equations and pi or How to Compute a Billion Digits

1 The companion web site is at www.experimentalmath.info
2 Canada Research Chair, Faculty of Computer Science, 6050 University Ave, Dalhousie University, Nova Scotia, B3H
1W5 Canada. Email: jborwein@cs.dal.ca
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34 Proof and other Dilemmas

of pi,” (Monthly 1989), Fellowship in the Royal Society of Canada (1994), and Fellowship in
the American Association for the Advancement of Science (2002). Jointly with David Bailey he
operates the Experimental Mathematics Website, www.experimentalmath.info. He is the author
of several hundred papers, and the co-author of numerous books, including, with L. Berggren
and P.B. Borwein, Pi: a Source Book (Springer-Verlag 1997); with David Bailey, Mathematics
by Experiment: Plausible Reasoning in the 21st Century (AK Peters 2003); with David Bailey
and Roland Girgensohn, Experiments in Mathematics CD (AK Peters 2006); with these same co-
authors, Experimentation in Mathematics: Computational Paths to Discovery (AK Peters 2004);
with David Bailey, Neil Calkin, Roland Girgensohn, D. Luke, and Victor Moll, Experimental
Mathematics in Action (AK Peters 2007); and he is working on a related book with Keith Devlin,
also to be published by AK Peters. Borwein and Bailey have also developed a number of software
packages for experimental mathematics (crd.lbl.gov/ dhbailey/expmath/software/).

Christopher Koch [Koch 2004] accurately captures a great scientific distaste for philoso-
phizing:

“Whether we scientists are inspired, bored, or infuriated by philosophy, all our theorizing
and experimentation depends on particular philosophical background assumptions. This
hidden influence is an acute embarrassment to many researchers, and it is therefore not
often acknowledged.” (Christopher Koch, 2004)

That acknowledged, I am of the opinion that mathematical philosophy matters more now
than it has in nearly a century. The power of modern computers matched with that of modern
mathematical software and the sophistication of current mathematics is changing the way we do
mathematics.

In my view it is now both necessary and possible to admit quasi-empirical inductive methods
fully into mathematical argument. In doing so carefully we will enrich mathematics and yet
preserve the mathematical literature’s deserved reputation for reliability—even as the methods
and criteria change. What do I mean by reliability? Well, research mathematicians still consult
Euler or Riemann to be informed, anatomists only consult Harvey3 for historical reasons. Mathe-
maticians happily quote old papers as core steps of arguments, physical scientists expect to have
to confirm results with another experiment.

1 Mathematical Knowledge as I View It
Somewhat unusually, I can exactly place the day at registration that I became a mathematician
and I recall the reason why. I was about to deposit my punch cards in the ‘honours history bin’. I
remember thinking

“If I do study history, in ten years I shall have forgotten how to use the calculus properly.
If I take mathematics, I shall still be able to read competently about the War of 1812 or
the Papal schism.” (Jonathan Borwein, 1968)

3 William Harvey published the first accurate description of circulation, “An Anatomical Study of the Motion of the Heart
and of the Blood in Animals,” in 1628.
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2. Implications of Experimental Mathematics for the Philosophy of Mathematics 35

The inescapable reality of objective mathematical knowledge is still with me. Nonetheless,
my view then of the edifice I was entering is not that close to my view of the one I inhabit forty
years later.

I also know when I became a computer-assisted fallibilist. Reading Imre Lakatos’ Proofs
and Refutations, [Lakatos 1976], a few years later while a very new faculty member, I was
suddenly absolved from the grave sin of error, as I began to understand that missteps, mistakes
and errors are the grist of all creative work.4 The book, his doctorate posthumously published
in 1976, is a student conversation about the Euler characteristic. The students are of various
philosophical stripes and the discourse benefits from his early work on Hegel with the Stalinist
Lukács in Hungary and from later study with Karl Popper at the London School of Economics.
I had been prepared for this dispensation by the opportunity to learn a variety of subjects from
Michael Dummett. Dummett was at that time completing his study rehabilitating Frege’s status,
[Dummett 1973].

A decade later the appearance of the first ‘portable’ computers happily coincided with my
desire to decode Srinivasa Ramanujan’s (1887–1920) cryptic assertions about theta functions and
elliptic integrals, [Borwein et al. 1989]. I realized that by coding his formulae and my own in the
APL programming language5, I was able to rapidly confirm and refute identities and conjectures
and to travel much more rapidly and fearlessly down potential blind alleys. I had become a
computer-assisted fallibilist, at first somewhat falteringly, but twenty years have certainly honed
my abilities.

Today, while I appreciate fine proofs and aim to produce them when possible, I no longer
view proof as the royal road to secure mathematical knowledge.

2 Introduction
I first discuss my views, and those of others, on the nature of mathematics, and then illustrate
these views in a variety of mathematical contexts. A considerably more detailed treatment of
many of these topics is to be found in my book with Dave Bailey entitled Mathematics by
Experiment: Plausible Reasoning in the 21st Century—especially in Chapters One, Two and
Seven, [Borwein/Bailey 2003]. Additionally, [Bailey et al. 2007] contains several pertinent case
studies as well as a version of this current chapter.

Kurt Gödel may well have overturned the mathematical apple cart entirely deductively, but
nonetheless he could hold quite different ideas about legitimate forms of mathematical reasoning,
[Gödel 1995]:

“If mathematics describes an objective world just like physics, there is no reason why
inductive methods should not be applied in mathematics just the same as in physics.”

(Kurt Gödel6, 1951)

4 Gila Hanna [Hanna 2006] takes a more critical view placing more emphasis on the role of proof and certainty in
mathematics; I do not disagree, so much as I place more value on the role of computer-assisted refutation. Also ‘certainty’
usually arrives late in the development of a proof.
5 Known as a ‘write only’ very high level language, APL was a fine tool, albeit with a steep learning curve whose code
is almost impossible to read later.
6 Taken from a previously unpublished work, [Gödel 1995].
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36 Proof and other Dilemmas

While we mathematicians have often separated ourselves from the sciences, they have tended
to be more ecumenical. For example, a recent review of Models. The Third Dimension of Science,
[Brown 2004], chose a mathematical plaster model of a Clebsch diagonal surface as its only
illustration. Similarly, authors seeking examples of the aesthetic in science often choose iconic
mathematics formulae such as E = MC2.

Let me begin by fixing a few concepts before starting work in earnest. Above all, I hope
to persuade you of the power of mathematical experimentation—it is also fun—and that the
traditional accounting of mathematical learning and research is largely an ahistorical caricature.
I recall three terms.

mathematics, n. a group of related subjects, including algebra, geometry, trigonometry and
calculus, concerned with the study of number, quantity, shape, and space, and their inter-
relationships, applications, generalizations and abstractions.

This definition—taken from my Collins Dictionary [Borowski/Borwein 2006]—makes no
immediate mention of proof, nor of the means of reasoning to be allowed. The Webster’s
Dictionary [Webster’s 1999] contrasts:

induction, n. any form of reasoning in which the conclusion, though supported by the premises,
does not follow from them necessarily.; and

deduction, n. a process of reasoning in which a conclusion follows necessarily from the premises
presented, so that the conclusion cannot be false if the premises are true.
b. a conclusion reached by this process.

Like Gödel, I suggest that both should be entertained in mathematics. This is certainly
compatible with the general view of mathematicians that in some sense “mathematical stuff is
out there” to be discovered. In this paper, I shall talk broadly about experimental and heuristic
mathematics, giving accessible, primarily visual and symbolic, examples.

3 Philosophy of Experimental Mathematics
“The computer has in turn changed the very nature of mathematical experience, sug-
gesting for the first time that mathematics, like physics, may yet become an empirical
discipline, a place where things are discovered because they are seen.”

(David Berlinski, [Berlinski 1997], p. 39)

The shift from typographic to digital culture is vexing for mathematicians. For example,
there is still no truly satisfactory way of displaying mathematics on the web—and certainly not of
asking mathematical questions. Also, we respect authority, [Grabiner 2004], but value authorship
deeply—however much the two values are in conflict, [Borwein/Stanway 2005]. For example,
the more I recast someone else’s ideas in my own words, the more I enhance my authorship while
undermining the original authority of the notions. Medieval scribes had the opposite concern and
so took care to attribute their ideas to such as Aristotle or Plato.

And we care more about the reliability of our literature than does any other science. Indeed
I would argue that we have over-subscribed to this notion and often pay lip-service, not real
attention, to our older literature. How often does one see original sources sprinkled like holy water
in papers that make no real use of them—the references offering a false sense of scholarship?
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The traditional central role of proof in mathematics is arguably and perhaps appropriately
under siege. Via examples, I intend to pose and answer various questions. I shall conclude with
a variety of quotations from our progenitors and even contemporaries:

My Questions. What constitutes secure mathematical knowledge? When is computation convinc-
ing? Are humans less fallible? What tools are available? What methodologies? What of the ‘law
of the small numbers’? Who cares for certainty? What is the role of proof ? How is mathematics
actually done? How should it be? I mean these questions both about the apprehension (discovery)
and the establishment (proving) of mathematics. This is presumably more controversial in the
formal proof phase.

My Answers. To misquote D’Arcy Thompson (1860–1948) ‘form follows function’, [Thompson
1992]: rigour (proof ) follows reason (discovery); indeed, excessive focus on rigour has driven us
away from our wellsprings. Many good ideas are wrong. Not all truths are provable, and not all
provable truths are worth proving. Gödel’s incompleteness results certainly showed us the first
two of these assertions while the third is the bane of editors who are frequently presented with
correct but unexceptional and unmotivated generalizations of results in the literature. Moreover,
near certainty is often as good as it gets—intellectual context (community) matters. Recent
complex human proofs are often very long, extraordinarily subtle and fraught with error—
consider Fermat’s last theorem, the Poincaré conjecture, the classification of finite simple groups,
presumably any proof of the Riemann hypothesis, [Economist 2005]. So while we mathematicians
publicly talk of certainty we really settle for security.

In all these settings, modern computational tools dramatically change the nature and scale
of available evidence. Given an interesting identity buried in a long and complicated paper on an
unfamiliar subject, which would give you more confidence in its correctness: staring at the proof,
or confirming computationally that it is correct to 10,000 decimal places?

Here is such a formula ([Bailey/Borwein 2005], p. 20):
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This identity links a volume (the integral) to an arithmetic quantity (the sum). It arose out of
some studies in quantum field theory, in analysis of the volumes of ideal tetrahedra in hyperbolic
space. The question mark is used because, while no hint of a path to a formal proof is yet known,
it has been verified numerically to 20,000 digit precision—using 45 minutes on 1024 processors
at Virginia Tech.

A more inductive approach can have significant benefits. For example, as there is still some
doubt about the proof of the classification of finite simple groups it is important to ask whether
the result is true but the proof flawed, or rather if there is still perhaps an ‘ogre’ sporadic group
even larger than the ‘monster.’ What heuristic, probabilistic or computational tools can increase
our confidence that the ogre does or does not exist? Likewise, there are experts who still believe



P1: KPB

MABK002-02 MAAB002/O’shea April 7, 2008 6:25

38 Proof and other Dilemmas

the Riemann hypothesis7 (RH) may be false and that the billions of zeroes found so far are much
too small to be representative.8 In any event, our understanding of the complexity of various
crypto-systems relies on (RH) and we should like secure knowledge that any counter-example is
enormous.

Peter Medawar (1915–87)—a Nobel prize winning oncologist and a great expositor of science—
writing in Advice to a Young Scientist, [Medawar 1979], identifies four forms of scientific
experiment:

1. The Kantian experiment: generating “the classical non-Euclidean geometries (hyperbolic,
elliptic) by replacing Euclid’s axiom of parallels (or something equivalent to it) with
alternative forms.” All mathematicians perform such experiments while the majority of
computer explorations are of the following Baconian form.

2. The Baconian experiment is a contrived as opposed to a natural happening, it “is the con-
sequence of ‘trying things out’ or even of merely messing about.” Baconian experiments
are the explorations of a happy if disorganized beachcomber and carry little predictive
power.

3. Aristotelian demonstrations: “apply electrodes to a frog’s sciatic nerve, and lo, the leg
kicks; always precede the presentation of the dog’s dinner with the ringing of a bell, and lo,
the bell alone will soon make the dog dribble.” Arguably our ‘Corollaries’ and ‘Examples’
are Aristotelian, they reinforce but do not predict. Medawar then says the most important
form of experiment is:

4. The Galilean experiment is “a critical experiment—one that discriminates between pos-
sibilities and, in doing so, either gives us confidence in the view we are taking or makes us
think it in need of correction.” The Galilean is the only form of experiment which stands
to make Experimental Mathematics a serious enterprise. Performing careful, replicable
Galilean experiments requires work and care.

Reuben Hersh’s arguments for a humanist philosophy of mathematics, especially ([Hersh 1995],
pp. 590–591), and ([Hersh 1999], p. 22), as paraphrased below, become even more convincing
in our highly computational setting.

1. Mathematics is human. It is part of and fits into human culture. It does not match Frege’s
concept of an abstract, timeless, tenseless, objective reality.9

2. Mathematical knowledge is fallible. As in science, mathematics can advance by making
mistakes and then correcting or even re-correcting them. The “fallibilism” of mathematics
is brilliantly argued in Lakatos’ Proofs and Refutations.

3. There are different versions of proof or rigor. Standards of rigor can vary depending on
time, place, and other things. The use of computers in formal proofs, exemplified by the

7 All non-trivial zeroes—not negative even integers—of the zeta function lie on the line with real part 1/2.
8 See [Odlyzko 2001] and various of Andrew Odlyzko’s unpublished but widely circulated works.
9 That Frege’s view of mathematics is wrong, for Hersh as for me, does not diminish its historical importance.
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computer-assisted proof of the four color theorem in 1977,10 is just one example of an
emerging nontraditional standard of rigor.

4. Empirical evidence, numerical experimentation and probabilistic proof all can help us
decide what to believe in mathematics. Aristotelian logic isn’t necessarily always the best
way of deciding.

5. Mathematical objects are a special variety of a social-cultural-historical object. Contrary
to the assertions of certain post-modern detractors, mathematics cannot be dismissed as
merely a new form of literature or religion. Nevertheless, many mathematical objects can
be seen as shared ideas, like Moby Dick in literature, or the Immaculate Conception in
religion.

I entirely subscribe to points 2., 3., 4., and with certain caveats about objective knowledge11

to points 1. and 5. In any event mathematics is and will remain a uniquely human undertaking.
This version of humanism sits fairly comfortably along-side current versions of social-

constructivism as described next.

“The social constructivist thesis is that mathematics is a social construction, a cultural
product, fallible like any other branch of knowledge.” (Paul Ernest, [Ernest 1990], §3)

But only if I qualify this with “Yes, but much-much less fallible than most branches of
knowledge.” Associated most notably with the writings of Paul Ernest—an English Mathematician
and Professor in the Philosophy of Mathematics Education who in [Ernest 1998] traces the
intellectual pedigree for his thesis, a pedigree that encompasses the writings of Wittgenstein,
Lakatos, Davis, and Hersh among others—social constructivism seeks to define mathematical
knowledge and epistemology through the social structure and interactions of the mathematical
community and society as a whole.

This interaction often takes place over very long periods. Many of the ideas our students—
and some colleagues—take for granted took a great deal of time to gel. The Greeks suspected
the impossibility of the three classical construction problems12 and the irrationality of the golden
mean was well known to the Pythagoreans.

While concerns about potential and completed infinities are very old, until the advent of the
calculus with Newton and Leibnitz and the need to handle fluxions or infinitesimals, the level of
need for rigour remained modest. Certainly Euclid is in its geometric domain generally a model
of rigour, while also Archimedes’ numerical analysis was not equalled until the 19th century.

The need for rigour arrived in full force in the time of Cauchy and Fourier. The treacherous
countably infinite processes of analysis and the limitations of formal manipulation came to the
fore. It is difficult with a modern sensibility to understand how Cauchy’s proof of the continuity

10 Especially since a new implementation by Seymour, Robertson and Thomas in 1997 has produced a simpler, clearer
and less troubling implementation.
11 While it is not Hersh’s intention, a superficial reading of point 5. hints at a cultural relativism to which I certainly do
not subscribe.
12 Trisection, circle squaring and cube doubling were taken by the educated to be impossible in antiquity. Already in 414
BCE, in his play The Birds, Aristophanes uses ‘circle-squarers’ as a term for those who attempt the impossible. Similarly,
the French Academy stopped accepting claimed proofs a full two centuries before the 19th century achieved proofs of
their impossibility.
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of pointwise-limits could coexist in texts for a generation with clear counter-examples originating
in Fourier’s theory of heat.13

By the end of the 19th century Frege’s (1848–1925) attempt to base mathematics in a linguis-
tically based logicism had foundered on Russell and other’s discoveries of the paradoxes of naive
set theory. Within thirty five years Gödel—and then Turing’s more algorithmic treatment14—had
similarly damaged both Russell and Whitehead’s and Hilbert’s programs.

Throughout the twentieth century, bolstered by the armor of abstraction, the great ship
Mathematics has sailed on largely unperturbed. During the last decade of the 19th and first few
decades of the 20th century the following main streams of philosophy emerged explicitly within
mathematics to replace logicism, but primarily as the domain of philosophers and logicians.

� Platonism. Everyman’s idealist philosophy—stuff exists and we must find it. Despite
being the oldest mathematical philosophy, Platonism—still predominant among working
mathematicians—was only christened in 1934 by Paul Bernays.15

� Formalism. Associated mostly with Hilbert—it asserts that mathematics is invented and
is best viewed as formal symbolic games without intrinsic meaning.

� Intuitionism. Invented by Brouwer and championed by Heyting, intuitionism asks for
inarguable monadic components that can be fully analyzed and has many variants; this
has interesting overlaps with recent work in cognitive psychology such as Lakoff and
Nunez’ work, [Lakoff/Nunez 2001], on ‘embodied cognition’.16

� Constructivism. Originating with Markoff and especially Kronecker (1823–1891), and
refined by Bishop it finds fault with significant parts of classical mathematics. Its ‘I’m
from Missouri, tell me how big it is’ sensibility is not to be confused with Paul Ernest’s
‘social constructivism’, [Ernest 1998].

The last two philosophies deny the principle of the excluded middle, “A or not A,” and
resonate with computer science—as does some of formalism. It is hard after all to run a deter-
ministic program which does not know which disjunctive logic-gate to follow. By contrast the
battle between a Platonic idealism (a ‘deductive absolutism’) and various forms of ‘fallibilism’
(a quasi-empirical ‘relativism’) plays out across all four, but fallibilism perhaps lives most easily
within a restrained version of intuitionism which looks for ‘intuitive arguments’ and is willing
to accept that ‘a proof is what convinces’. As Lakatos shows, an argument that was convincing
a hundred years ago may well now be viewed as inadequate. And one today trusted may be
challenged in the next century.

13 Cauchy’s proof appeared in his 1821 text on analysis. While counterexamples were pointed out almost immediately,
Stokes and Seidel were still refining the missing uniformity conditions in the late 1840s.
14 The modern treatment of incompleteness leans heavily on Turing’s analysis of the Halting problem for so-called Turing
machines.
15 See Karlis Podnieks, “Platonism, Intuition and the Nature on Mathematics,” available at www.ltn.lv/podnieks/
gt1.html
16 The cognate views of Henri Poincaré (1854–1912) ([Poincaré 2004], p. 23) on the role of the subliminal are reflected
in “The mathematical facts that are worthy of study are those that, by their analogy with other facts are susceptible of
leading us to knowledge of a mathematical law, in the same way that physical facts lead us to a physical law.” He also
wrote “It is by logic we prove, it is by intuition that we invent,” [Poincaré 1904].
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As we illustrate in the next section or two, it is only perhaps in the last twenty five years,
with the emergence of powerful mathematical platforms, that any approach other than a largely
undigested Platonism and a reliance on proof and abstraction has had the tools17 to give it traction
with working mathematicians.

In this light, Hales’ proof of Kepler’s conjecture that the densest way to stack spheres
is in a pyramid resolves the oldest problem in discrete geometry. It also supplies the most
interesting recent example of intensively computer-assisted proof, and after five years with the
review process was published in the Annals of Mathematics—with an “only 99% checked”
disclaimer.

This process has triggered very varied reactions [Kolata 2004] and has provoked Thomas
Hales to attempt a formal computational proof which he expects to complete by 2011,
[Economist 2005]. Famous earlier examples of fundamentally computer-assisted proof include
the Four color theorem and proof of the Non-existence of a projective plane of order 10. The
three raise and answer quite distinct questions about computer-assisted proof—both real and
specious. For example, there were real concerns about the completeness of the search in the 1976
proof of the Four color theorem but there should be none about the 1997 reworking by Seymour,
Robertson and Thomas.18 Correspondingly, Lam deservedly won the 1992 Lester R. Ford award
for his compelling explanation of why to trust his computer when it announced there was no
plane of order ten, [Lam 1991]. Finally, while it is reasonable to be concerned about the certainty
of Hales’ conclusion, was it really the Annal’s purpose to suggest all other articles have been
more than 99% certified?

To make the case as to how far mathematical computation has come we trace the changes
over the past half century. The 1949 computation of π to 2,037 places suggested by von Neumann,
took 70 hours. A billion digits may now be computed in much less time on a laptop. Strikingly,
it would have taken roughly 100,000 ENIAC’s to store the Smithsonian’s picture—as is possible
thanks to 40 years of Moore’s law in action.19

This is an astounding record of sustained exponential progress without peer in the history of
technology. Additionally, mathematical tools are now being implemented on parallel platforms,
providing much greater power to the research mathematician. Amassing huge amounts of process-
ing power will not alone solve many mathematical problems. There are very few mathematical
‘Grand-challenge problems’, [JBorwein/PBorwein 2001] where, as in the physical sciences, a
few more orders of computational power will resolve a problem.

For example, an order of magnitude improvement in computational power currently translates
into one more day of accurate weather forecasting, while it is now common for biomedical
researchers to design experiments today whose outcome is predicated on ‘peta-scale‘ computation
being available by say 2010, [Rowe et al. 2005]. There is, however, much more value in very
rapid ‘Aha’s’ as can be obtained through “micro-parallelism;” that is, where we benefit by being
able to compute many simultaneous answers on a neurologically-rapid scale and so can hold
many parts of a problem in our mind at one time.

17 That is, to broadly implement Hersh’s central points (2.-4.).
18 See www.math.gatech.edu/thomas/FC/fourcolor.html.
19 Moore’s Law is now taken to be the assertion that semiconductor technology approximately doubles in capacity and
performance roughly every 18 to 24 months.
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To sum up, in light of the discussion and terms above, I now describe myself a a social-
constructivist, and as a computer-assisted fallibilist with constructivist leanings. I believe that
more-and-more of the interesting parts of mathematics will be less-and-less susceptible to classical
deductive analysis and that Hersh’s ‘non-traditional standard of rigor’ must come to the fore.

4 Our Experimental Mathodology
Despite Picasso’s complaint that “computers are useless, they only give answers,” the main
goal of computation in pure mathematics is arguably to yield insight. This demands speed or,
equivalently, substantial micro-parallelism to provide answers on a cognitively relevant scale;
so that we may ask and answer more questions while they remain in our consciousness. This
is relevant for rapid verification; for validation; for proofs and especially for refutations which
includes what Lakatos calls “monster barring,” [Lakatos 1976]. Most of this goes on in the daily
small-scale accretive level of mathematical discovery but insight is gained even in cases like the
proof of the Four color theorem or the Non-existence of a plane of order ten. Such insight is not
found in the case-enumeration of the proof, but rather in the algorithmic reasons for believing
that one has at hand a tractable unavoidable set of configurations or another effective algorithmic
strategy. For instance, Lam [Lam 1991] ran his algorithms on known cases in various subtle
ways, and also explained why built-in redundancy made the probability of machine-generated
error negligible. More generally, the act of programming—if well performed—always leads to
more insight about the structure of the problem.

In this setting it is enough to equate parallelism with access to requisite more space and
speed of computation. Also, we should be willing to consider all computations as ‘exact’
which provide truly reliable answers.20 This now usually requires a careful hybrid of sym-
bolic and numeric methods, such as achieved by Maple’s liaison with the Numerical Algo-
rithms Group (NAG) Library21, see [Bornemann et al. 2004], [Borwein 2005b]. There are now
excellent tools for such purposes throughout analysis, algebra, geometry and topology, see
[Borwein/Bailey 2003], [Borwein et al. 2004], [Bornemann et al. 2004], [JBorwein/PBorwein
2001], [Borwein/Corless 1999].

Along the way questions required by—or just made natural by—computing start to force
out older questions and possibilities in the way beautifully described a century ago by Dewey
regarding evolution.

“Old ideas give way slowly; for they are more than abstract logical forms and categories.
They are habits, predispositions, deeply engrained attitudes of aversion and preference.
Moreover, the conviction persists—though history shows it to be a hallucination—that
all the questions that the human mind has asked are questions that can be answered in
terms of the alternatives that the questions themselves present. But in fact intellectual
progress usually occurs through sheer abandonment of questions together with both of
the alternatives they assume; an abandonment that results from their decreasing vitality
and a change of urgent interest. We do not solve them: we get over them. Old questions

20 If careful interval analysis can certify that a number known to be integer is larger than 2.5 and less than 3.5, this
constitutes an exact computational proof that it is 3.
21 See www.nag.co.uk/.
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are solved by disappearing, evaporating, while new questions corresponding to the
changed attitude of endeavor and preference take their place. Doubtless the greatest
dissolvent in contemporary thought of old questions, the greatest precipitant of new
methods, new intentions, new problems, is the one effected by the scientific revolution
that found its climax in the ‘Origin of Species.’” (John Dewey, [Dewey 1997])

Lest one think this a feature of the humanities and the human sciences, consider the artisanal
chemical processes that have been lost as they were replaced by cheaper industrial versions.
And mathematics is far from immune. Felix Klein, quoted at length in the introduction to
[JBorwein/PBorwein 1987], laments that “now the younger generation hardly knows abelian
functions.” He goes on to explain that:

“In mathematics as in the other sciences, the same processes can be observed again and
again. First, new questions arise, for internal or external reasons, and draw researchers
away from the old questions. And the old questions, just because they have been worked
on so much, need ever more comprehensive study for their mastery. This is unpleasant,
and so one is glad to turn to problems that have been less developed and therefore require
less foreknowledge—even if it is only a matter of axiomatics, or set theory, or some
such thing.” (Felix Klein, [Klein 1928], p. 294)

Freeman Dyson has likewise gracefully described how taste changes:

“I see some parallels between the shifts of fashion in mathematics and in music. In
music, the popular new styles of jazz and rock became fashionable a little earlier than
the new mathematical styles of chaos and complexity theory. Jazz and rock were long
despised by classical musicians, but have emerged as art-forms more accessible than
classical music to a wide section of the public. Jazz and rock are no longer to be despised
as passing fads. Neither are chaos and complexity theory. But still, classical music and
classical mathematics are not dead. Mozart lives, and so does Euler. When the wheel of
fashion turns once more, quantum mechanics and hard analysis will once again be in
style.” (Freeman Dyson, [Dyson 1996])

For example recursively defined objects were once anathema—Ramanujan worked very
hard to replace lovely iterations by sometimes-obscure closed-form approximations. Addition-
ally, what is “easy” changes: high performance computing and networking are blurring, merg-
ing disciplines and collaborators. This is democratizing mathematics but further challenging
authentication—consider how easy it is to find information on Wikipedia22 and how hard it is to
validate it.

Moving towards a well articulated Experimental Mathodology—both in theory and
practice—will take much effort. The need is premised on the assertions that intuition is acquired—
we can and must better mesh computation and mathematics, and that visualization is of growing
importance—in many settings even three is a lot of dimensions.

22 Wikipedia is an open source project at en.wikipedia.org/wiki/Main Page; “wiki-wiki” is Hawaiian for “quickly.”
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“Monster-barring” (Lakatos’s term, [Lakatos 1976], for refining hypotheses to rule out nasty
counter-examples23) and “caging” (Nathalie Sinclair tells me this is my own term for imposing
needed restrictions in a conjecture) are often easy to enhance computationally, as for example
with randomized checks of equations, linear algebra, and primality or graphic checks of equalities,
inequalities, areas, etc. Moreover, our mathodology fits well with the kind of pedagogy espoused
at a more elementary level (and without the computer) by John Mason in [Mason 2006].

4.1 Eight Roles for Computation
I next recapitulate eight roles for computation that Bailey and I discuss in our two recent books
[Borwein/Bailey 2003], [Borwein et al. 2004]:

#1. Gaining insight and intuition or just knowledge. Working algorithmically with math-
ematical objects almost inevitably adds insight to the processes one is studying. At some
point even just the careful aggregation of data leads to better understanding.

#2. Discovering new facts, patterns and relationships. The number of additive partitions
of a positive integer n, p(n), is generated by

P(q) := 1 +
∑
n≥1

p(n)qn = 1∏∞
n=1(1 − qn)

. (2)

Thus, p(5) = 7 since

5 = 4 + 1 = 3 + 2 = 3 + 1 + 1 = 2 + 2 + 1 = 2 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1.

Developing (2) is a fine introduction to enumeration via generating functions. Additive
partitions are harder to handle than multiplicative factorizations, but they are very inter-
esting ([Borwein et al. 2004], Chapter 4). Ramanujan used Major MacMahon’s table of
p(n) to intuit remarkable deep congruences such as

p(5n + 4) ≡ 0 mod 5, p(7n + 5) ≡ 0 mod 7, p(11n + 6) ≡ 0 mod 11,

from relatively limited data like

P(q) = 1 + q + 2 q2 + 3 q3 + 5 q4 + 7 q5 + 11 q6 + 15 q7

+ 22 q8 + 30 q9 + 42 q10 + 56 q11 + 77 q12 + 101 q13 + 135 q14

+ 176 q15 + 231 q16 + 297 q17 + 385 q18 + 490 q19

+ 627 q20b + 792 q21 + 1002 q22 + · · · + p(200)q200 + · · · (3)

Cases 5n + 4 and 7n + 5 are flagged in (3). Of course, it is markedly easier to (heuris-
tically) confirm than find these fine examples of Mathematics: the science of patterns.24

The study of such congruences—much assisted by symbolic computation—is very active
today.

23 Is, for example, a polyhedron always convex? Is a curve intended to be simple? Is a topology assumed Hausdorff, a
group commutative?
24 The title of Keith Devlin’s 1996 book, [Devlin 1996].
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#3. Graphing to expose mathematical facts, structures or principles. Consider Nick Tre-
fethen’s fourth challenge problem as described in [Bornemann et al. 2004], [Borwein
2005b]. It requires one to find ten good digits of:
4. What is the global minimum of the function

exp(sin(50x)) + sin(60ey) + sin(70 sin x) + sin(sin(80y))

− sin(10(x + y)) + (x2 + y2)/4?

As a foretaste of future graphic tools, one can solve this problem graphically and inter-
actively using current adaptive 3-D plotting routines which can catch all the bumps. This
does admittedly rely on trusting a good deal of software.

#4. Rigourously testing and especially falsifying conjectures. I hew to the Popperian scien-
tific view that we primarily falsify; but that as we perform more and more testing experi-
ments without such falsification we draw closer to firm belief in the truth of a conjecture
such as: the polynomial P(n) = n2 − n + p has prime values for all n = 0, 1, . . . , p − 2,
exactly for Euler’s lucky prime numbers, that is, p = 2, 3, 5, 11, 17, and 41.25

#5. Exploring a possible result to see if it merits formal proof. A conventional deductive
approach to a hard multi-step problem really requires establishing all the subordinate
lemmas and propositions needed along the way—especially if they are highly technical
and un-intuitive. Now some may be independently interesting or useful, but many are only
worth proving if the entire expedition pans out. Computational experimental mathematics
provides tools to survey the landscape with little risk of error: only if the view from the
summit is worthwhile, does one lay out the route carefully. I discuss this further at the
end of the next Section.

#6. Suggesting approaches for formal proof. The proof of the cubic theta function identity
discussed in ([Borwein et al. 2004], p. 210ff ), shows how a fully intelligible human proof
can be obtained entirely by careful symbolic computation.

#7. Computing replacing lengthy hand derivations. Who would wish to verify the following
prime factorization by hand?

6422607578676942838792549775208734746307

= (2140992015395526641)(1963506722254397)(1527791).

Surely, what we value is understanding the underlying algorithm, not the human work?
#8. Confirming analytically derived results. This is a wonderful and frequently accessible

way of confirming results. Even if the result itself is not computationally checkable, there
is often an accessible corollary. An assertion about bounded operators on Hilbert space
may have a useful consequence for three-by-three matrices. It is also an excellent way to
error correct, or to check calculus examples before giving a class.

5 Finding Things versus Proving Things
I now illuminate these eight roles with eight mathematical examples. At the end of each I note
some of the roles illustrated.

25 See [Weisstein WWW] for the answer.
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Figure 2.1 (Ex. 1.): Graphical comparison of −x2 ln(x) (lower local maximum in both graphs) with x − x2

(left graph) and x2 − x4 (right graph)

1. Pictorial comparison of y − y2 and y2 − y4 to −y2 ln(y), when y lies in the unit interval,
is a much more rapid way to divine which function is larger than by using traditional
analytic methods.

Figure 2.1 below shows that it is clear in the latter case that the functions cross, and so
it is futile to try to prove one majorizes the other. In the first case, evidence is provided
to motivate attempting a proof and often the picture serves to guide such a proof—by
showing monotonicity or convexity or some other salient property. �

This certainly illustrates roles #3 and #4, and perhaps role #5.

2. A proof and a disproof. Any modern computer algebra can tell one that

0 <

∫ 1

0

(1 − x)4x4

1 + x2
dx = 22

7
− π, (4)

since the integral may be interpreted as the area under a positive curve. We are however
no wiser as to why! If however we ask the same system to compute the indefinite integral,
we are likely to be told that∫ t

0
· = 1

7
t7 − 2

3
t6 + t5 − 4

3
t3 + 4 t − 4 arctan (t) .

Then (4) is now rigourously established by differentiation and an appeal to the Funda-
mental theorem of calculus. �

This illustrates roles #1 and #6. It also falsifies the bad conjecture that π = 22/7 and so
illustrates #4 again. Finally, the computer’s proof is easier (#7) and very nice, though probably it
is not the one we would have developed by ourselves. The fact that 22/7 is a continued fraction
approximation to π has led to many hunts for generalizations of (4), see [Borwein et al. 2004],
Chapter 1. None so far are entirely successful.

3. A computer discovery and a ‘proof’ of the series for arcsin2(x). We compute a few
coefficients and observe that there is a regular power of 4 in the numerator, and integers
in the denominator; or equivalently we look at arcsin(x/2)2. The generating function
package ‘gfun’ in Maple, then predicts a recursion, r , for the denominators and solves it,
as R.

>with(gfun):

>s:=[seq(1/coeff(series(arcsin(x/2)^2,x,25),x,2*n),n=1..6)]:

>R:=unapply(rsolve(op(1, listtorec(s,r(m))),r(m)),m);[seq(R(m),m=0..8)];
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yields, s := [4, 48, 360, 2240, 12600, 66528],

R := m �→ 8
4m �(3/2 + m)(m + 1)

π1/2�(1 + m)
,

where � is the Gamma function, and then returns the sequence of values

[4, 48, 360, 2240, 12600, 66528, 336336, 1647360, 7876440].

We may now use Sloane’s Online Encyclopedia of Integer Sequences26 to reveal that the
coefficients are R(n) = 2n2

(2n
n

)
. More precisely, sequence A002544 identifies

R(n + 1)/4 = (2n+1
n

)
(n + 1)2.

> [seq(2*n^2*binomial(2*n,n),n=1..8)];

confirms this with

[4, 48, 360, 2240, 12600, 66528, 336336, 1647360].

Next we write

> S:=Sum((2*x)^(2*n)/(2*n^2*binomial(2*n,n)),n=1..infinity):S=values(S);

which returns

1

2

∞∑
n=1

(2 x)2n

n2
(2n

n

) = arcsin2(x).

That is, we have discovered—and proven if we trust or verify Maple’s summation
algorithm—the desired Maclaurin series.

As prefigured by Ramanujan, it transpires that there is a beautiful closed form for
arcsin2m(x) for all m = 1, 2, . . . . In [Borwein/Chamberland 2007] there is a discussion of
the use of integer relation methods, [Borwein/Bailey 2003], Chapter 6, to find this closed
form and associated proofs are presented. �

Here we see an admixture of all of the roles save #3, but above all #2 and #5.

4. Discovery without proof. Donald Knuth27 asked for a closed form evaluation of:

∞∑
k=1

{
kk

k! ek
− 1√

2 π k

}
= −0.084069508727655 . . . . (5)

Since about 2000 CE it has been easy to compute 20—or 200—digits of this sum in
Maple or Mathematica; and then to use the ‘smart lookup’ facility in the Inverse Symbolic
Calculator(ISC). The ISC at oldweb.cecm.sfu.ca/projects/ISC uses a variety of
search algorithms and heuristics to predict what a number might actually be. Similar ideas
are now implemented as ‘identify’ in Maple and (for algebraic numbers only) as ‘Rec-
ognize’ in Mathematica, and are described in [Borwein 2005b], [Borwein/Bailey 2003],

26 At www.research.att.com/∼njas/sequences/index.html.
27 Posed as an MAA Problem [Knuth 2002].
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[Borwein/Corless 1999], [Bailey/Borwein 2000]. In this case it rapidly returns

0.084069508727655 ≈ 2

3
+ ζ (1/2)√

2 π
.

We thus have a prediction which Maple 9.5 on a 2004 laptop confirms to 100 places in
under 6 seconds and to 500 in 40 seconds. Arguably we are done. After all we were asked
to evaluate the series and we now know a closed-form answer.

Notice also that the ‘divergent’ ζ (1/2) term is formally to be expected in that while∑∞
n=1 1/n1/2 = ∞, the analytic continuation of ζ (s) := ∑∞

n=1 1/ns for s > 1 evaluated
at 1/2 does occur! �

We have discovered and tested the result and in so doing gained insight and knowledge while
illustrating roles #1, #2 and #4. Moreover, as described in [Borwein et al. 2004], p. 15, one can
also be led by the computer to a very satisfactory computer-assisted but also very human proof,
thus illustrating role #6. Indeed, the first hint is that the computer algebra system returned the value
in (5) very quickly even though the series is very slowly convergent. This suggests the program
is doing something intelligent—and it is! Such a use of computing is termed “instrumental” in
that the computer is fundamental to the process, see [Lagrange 2005].

5. A striking conjecture with no known proof strategy (as of spring 2007) given in
[Borwein et al. 2004], p. 162, is: for n = 1, 2, 3 . . .

8n ζ
({2, 1}n

) ?= ζ ({2, 1}n) . (6)

Explicitly, the first two cases are

8
∑

n>m>0

(−1)n

n2m
=

∑
n>0

1

n3
and 64

∑
n>m>o>p>0

(−1)n+o

n2m o2 p
=

∑
n>m>0

1

n3m3
.

The notation should now be clear—we use the ‘overbar’ to denote an alternation. Such
alternating sums are called multi-zeta values (MZV) and positive ones are called Euler
sums after Euler who first studied them seriously. They arise naturally in a variety of
modern fields from combinatorics to mathematical physics and knot theory.

There is abundant evidence amassed since ‘identity’ (6) was found in 1996. For
example, very recently Petr Lisonek checked the first 85 cases to 1000 places in about 41
HP hours with only the predicted round-off error. And the case n = 163 was checked in
about ten hours. These objects are very hard to compute naively and require substantial
computation as a precursor to their analysis.

Formula (6) is the only identification of its type of an Euler sum with a distinct MZV
and we have no idea why it is true. Any similar MZV proof has been both highly non-
trivial and illuminating. To illustrate how far we are from proof: can just the case n = 2
be proven symbolically as has been the case for n = 1? �

This identity was discovered by the British quantum field theorist David Broadhurst and me
during a large hunt for such objects in the mid-nineties. In this process we discovered and proved
many lovely results (see [Borwein/Bailey 2003], Chapter 2, and [Borwein et al. 2004], Chap-
ter 4), thereby illustrating #1,#2, #4, #5 and #7. In the case of ‘identity’ (6) we have failed with
#6, but we have ruled out many sterile approaches. It is one of many examples where we can
now have (near) certainty without proof. Another was shown in equation (1) above.

JB616
Inserted Text
footnote{A quite subtleproof has now been found by Zhao and is described in the second edition of [Borwein/Bailey 2003].}
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Figure 2.2 (Ex. 6.): “The price of metaphor is eternal vigilance.” (Arturo Rosenblueth & Norbert Wiener,
[Lewontin 2001])

6. What you draw is what you see. Roots of polynomials with coefficients 1 or −1 up to
degree 18.

As the quote suggests, pictures are highly metaphorical. The shading in Figure 2.2
is determined by a normalized sensitivity of the coefficients of the polynomials to slight
variations around the values of the zeros with red indicating low sensitivity and violet
indicating high sensitivity.28 It is hard to see how the structure revealed in the pictures
above29 would be seen other than through graphically data-mining. Note the different
shapes—now proven—of the holes around the various roots of unity.

The striations are unexplained but all re-computations expose them! And the fractal
structure is provably there. Nonetheless different ways of measuring the stability of the
calculations reveal somewhat different features. This is very much analogous to a chemist
discovering an unexplained but robust spectral line. �

This certainly illustrates #2 and #7, but also #1 and #3.

28 Colour versions may be seen at oldweb.cecm.sfu.ca/personal/loki/Projects/Roots/Book/.
29 We plot all complex zeroes of polynomials with only −1 and 1 as coefficients up to a given degree. As the degree
increases some of the holes fill in—at different rates.

JB616
Inserted Text
 and on the cover of this book

JB616
Inserted Text
 by P. Borwein and colleagues
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Starting
point

Figure 2.3 (Ex. 7.): “Visual convergence in the complex plane”

7. Visual Dynamics. In recent continued fraction work, Crandall and I needed to study the
dynamical system t0 := t1 := 1:

tn := 1

n
tn−1 + ωn−1

(
1 − 1

n

)
tn−2,

where ωn = a2, b2 for n even, odd respectively, are two unit vectors. Think of this as a
black box which we wish to examine scientifically. Numerically, all one sees is tn → 0
slowly. Pictorially, in Figure 2.3, we learn significantly more.30 If the iterates are plotted
with colour changing after every few hundred iterates,31 it is clear that they spiral roman-
candle like in to the origin:

Scaling by
√

n, and distinguishing even and odd iterates, fine structure appears in
Figure 2.4. We now observe, predict and validate that the outcomes depend on whether
or not one or both of a and b are roots of unity (that is, rational multiples of π ). Input a
pth root of unity and out come p spirals, input a non-root of unity and we see a circle. �

This forceably illustrates role #2 but also roles #1, #3, #4. It took my coauthors and me, over a
year and 100 pages to convert this intuition into a rigorous formal proof, [Bailey/Borwein 2005].
Indeed, the results are technical and delicate enough that I have more faith in the facts than in the
finished argument. In this sentiment, I am not entirely alone.

Carl Friedrich Gauss, who drew (carefully) and computed a great deal, is said to have noted,
I have the result, but I do not yet know how to get it.32 An excited young Gauss writes: “A new
field of analysis has appeared to us, self-evidently, in the study of functions etc.” (October 1798,

30 . . . “Then felt I like a watcher of the skies, when a new planet swims into his ken.” From John Keats (1795–1821)
poem On first looking into Chapman’s Homer.
31 A colour version may be seen on the cover of [Bailey et al. 2007].
32 Like so many attributions, the quote has so far escaped exact isolation!
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Figure 2.4 (Ex. 7.): The attractors for various |a| = |b| = 1

reproduced in [Borwein/Bailey 2003], Fig. 1.2, p.15). It had and the consequent proofs pried
open the doors of much modern elliptic function and number theory.

My penultimate and more comprehensive example is more sophisticated and I beg the
less-expert analyst’s indulgence. Please consider its structure and not the details.

8. A full run. Consider the unsolved Problem 10738 from the 1999 American Mathematical
Monthly, [Borwein et al. 2004]:

Problem: For t > 0 let

mn(t) =
∞∑

k=0

kn exp(−t)
t k

k!

be the nth moment of a Poisson distribution with parameter t . Let cn(t) = mn(t)/n!. Show

a) {mn(t)}∞n=0 is log-convex33 for all t > 0.
b) {cn(t)}∞n=0 is not log-concave for t < 1.

c∗) {cn(t)}∞n=0 is log-concave for t ≥ 1.

Solution. (a) Neglecting the factor of exp(−t) as we may, this reduces to

∑
k, j≥0

( jk)n+1t k+ j

k! j!
≤

∑
k, j≥0

( jk)nt k+ j

k! j!
k2 =

∑
k, j≥0

( jk)nt k+ j

k! j!

k2 + j2

2
,

and this now follows from 2 jk ≤ k2 + j2.
(b) As

mn+1(t) = t
∞∑

k=0

(k + 1)n exp(−t)
t k

k!
,

on applying the binomial theorem to (k + 1)n , we see that mn(t) satisfies the recurrence

mn+1(t) = t
n∑

k=0

(
n

k

)
mk(t), m0(t) = 1.

In particular for t = 1, we computationally obtain as many terms of the sequence

1, 1, 2, 5, 15, 52, 203, 877, 4140 . . .

33 A sequence {an} is log-convex if an+1an−1 ≥ a2
n , for n ≥ 1 and log-concave when the inequality is reversed.
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as we wish. These are the Bell numbers as was discovered again by consulting Sloane’s
Encyclopedia which can also tell us that, for t = 2, we have the generalized Bell numbers,
and gives the exponential generating functions.34 Inter alia, an explicit computation shows
that

t
1 + t

2
= c0(t) c2(t) ≤ c1(t)2 = t2

exactly if t ≥ 1, which completes (b).
Also, preparatory to the next part, a simple calculation shows that∑

n≥0

cnun = exp (t(eu − 1)) . (7)

(c∗)35 We appeal to a recent theorem, [Borwein et al. 2004], p. 42, due to E. Rodney
Canfield which proves the lovely and quite difficult result below. A self-contained proof
would be very fine.

Theorem 1: If a sequence 1, b1, b2, . . . is non-negative and log-concave then so is the
sequence 1, c1, c2, . . . determined by the generating function equation

∑
n≥0

cnun = exp


∑

j≥1

b j
u j

j


 .

Using equation (7) above, we apply this to the sequence bj = t/(j − 1)! which is log-
concave exactly for t ≥ 1. �

A search in 2001 on MathSciNet for “Bell numbers” since 1995 turned up 18 items. Canfield’s
paper showed up as number 10. Later, Google found it immediately!

Quite unusually, the given solution to (c) was the only one received by the Monthly. The
reason might well be that it relied on the following sequence of steps:

A (Question Posed) ⇒ Computer Algebra System ⇒ Interface ⇒
Search Engine ⇒ Digital Library ⇒ Hard New Paper ⇒ (Answer)

Without going into detail, we have visited most of the points elaborated in Section 4.1. Now if
only we could already automate this process!

Jacques Hadamard, describes the role of proof as well as anyone—and most persuasively
given that his 1896 proof of the Prime number theorem is an inarguable apex of rigorous analysis.

“The object of mathematical rigor is to sanction and legitimize the conquests of intuition,
and there was never any other object for it.” (Jacques Hadamard36)

Of the eight uses of computers instanced above, let me reiterate the central importance of
heuristic methods for determining what is true and whether it merits proof. I tentatively offer the

34 Bell numbers were known earlier to Ramanujan—an example of Stigler’s Law of Eponymy, [Borwein et al. 2004],
p. 60. Combinatorially they count the number of nonempty subsets of a finite set.
35 The ‘*’ indicates this was the unsolved component.
36 J. Hadamard, in E. Borel, Lecons sur la theorie des fonctions, 3rd ed. 1928, quoted in ([Polya 1981](2), p. 127). See
also [Poincaré 2004].
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following surprising example which is very very likely to be true, offers no suggestion of a proof
and indeed may have no reasonable proof.

9. Conjecture. Consider

xn =
{

16xn−1 + 120n2 − 89n + 16

512n4 − 1024n3 + 712n2 − 206n + 21

}
. (8)

The sequence βn = (�16xn), where (xn) is the sequence of iterates defined in equation
(8), precisely generates the hexadecimal expansion of π − 3.

(Here {·} denotes the fractional part and (�·) denotes the integer part.) In fact, we know
from [Borwein/Bailey 2003], Chapter 4, that the first million iterates are correct and in
consequence:

∞∑
n=1

‖xn − {16nπ}‖ ≤ 1.46 × 10−8 . . . . (9)

where ‖a‖ = min(a, 1 − a). By the first Borel-Cantelli lemma this shows that the hex-
adecimal expansion of π only finitely differs from (βn). Heuristically, the probability of
any error is very low. �

6 Conclusions
To summarize, I do argue that reimposing the primacy of mathematical knowledge over proof
is appropriate. So I return to the matter of what it takes to persuade an individual to adopt new
methods and drop time honoured ones. Aptly, we may start by consulting Kuhn on the matter of
paradigm shift:

“The issue of paradigm choice can never be unequivocally settled by logic and ex-
periment alone. . . . in these matters neither proof nor error is at issue. The transfer of
allegiance from paradigm to paradigm is a conversion experience that cannot be forced.”

(Thomas Kuhn37)

As we have seen, the pragmatist philosopher John Dewey eloquently agrees, while Max
Planck, [Planck 1949], has also famously remarked on the difficulty of such paradigm shifts.
This is Kuhn’s version38:

“And Max Planck, surveying his own career in his Scientific Autobiography, sadly
remarked that ‘a new scientific truth does not triumph by convincing its opponents and
making them see the light, but rather because its opponents eventually die, and a new
generation grows up that is familiar with it.”’

(Albert Einstein, [Kuhn 1996], [Planck 1949])

This transition is certainly already apparent. It is certainly rarer to find a mathematician under
thirty who is unfamiliar with at least one of Maple, Mathematica or MatLab, than it is to one

37 In [Regis 1988], Who Got Einstein’s Office? The answer is Arne Beurling.
38 Kuhn is quoting Einstein quoting Planck. There are various renderings of this second-hand German quotation.
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over sixty five who is really fluent. As such fluency becomes ubiquitous, I expect a re-balancing
of our community’s valuing of deductive proof over inductive knowledge.

In his famous lecture to the Paris International Congress in 1900, Hilbert writes39

“Moreover a mathematical problem should be difficult in order to entice us, yet not
completely inaccessible, lest it mock our efforts. It should be to us a guidepost on the
mazy path to hidden truths, and ultimately a reminder of our pleasure in the successful
solution.” (David Hilbert, [Yandell 2002])

Note the primacy given by a most exacting researcher to discovery and to truth over proof
and rigor. More controversially and most of a century later, Greg Chaitin invites us to be bolder
and act more like physicists.

“I believe that elementary number theory and the rest of mathematics should be pursued
more in the spirit of experimental science, and that you should be willing to adopt
new principles. . . . And the Riemann Hypothesis isn’t self-evident either, but it’s very
useful. A physicist would say that there is ample experimental evidence for the Riemann
Hypothesis and would go ahead and take it as a working assumption. . . . We may want
to introduce it formally into our mathematical system.”

(Greg Chaitin, [Borwein/Bailey 2003], p. 254)

Ten years later:

“[Chaitin’s] “Opinion” article proposes that the Riemann hypothesis (RH) be adopted as
a new axiom for mathematics. Normally one could only countenance such a suggestion
if one were assured that the RH was undecidable. However, a proof of undecidability
is a logical impossibility in this case, since if RH is false it is provably false. Thus, the
author contends, one may either wait for a proof, or disproof, of RH—both of which
could be impossible—or one may take the bull by the horns and accept the RH as an
axiom. He prefers this latter course as the more positive one.” (Roger Heath Brown40)

Much as I admire the challenge of Greg Chaitin’s statements, I am not yet convinced that
it is helpful to add axioms as opposed to proving conditional results that start “Assuming the
continuum hypothesis” or emphasize that “without assuming the Riemann hypothesis we are able
to show. . . . ” Most important is that we lay our cards on the table. We should explicitly and
honestly indicate when we believe our tools to be heuristic, we should carefully indicate why we
have confidence in our computations—and where our uncertainty lies—and the like.

On that note, Hardy is supposed to have commented—somewhat dismissively—that Landau,
a great German number theorist, would never be the first to prove the Riemann Hypothesis, but
that if someone else did so then Landau would have the best possible proof shortly after. I certainly
hope that a more experimental methodology will better value independent replication and honour

39 See the late Ben Yandell’s fine account of the twenty-three “Mathematische Probleme” lecture, Hilbert Problems and
their solvers, [Yandell 2002]. The written lecture (given in [Yandell 2002]) is considerably longer and further ranging
that the one delivered in person.
40 Roger Heath-Brown’s Mathematical Review of [Chaitin 2004], 2004.
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the first transparent proof 41 of Fermat’s last theorem as much as Andrew Wiles’ monumental
proof. Hardy also commented that he did his best work past forty. Inductive, accretive, tool-
assisted mathematics certainly allows brilliance to be supplemented by experience and—as in my
case—stands to further undermine the notion that one necessarily does one’s best mathematics
young.

6.1 As for Education
The main consequence for me is that a constructivist educational curriculum—supported by
both good technology and reliable content—is both possible and highly desirable. In a traditional
instructivist mathematics classroom there are few opportunities for realistic discovery. The current
sophistication of dynamic geometry software such as Geometer’s Sketchpad, Cabri or Cinderella,
of many fine web-interfaces, and of broad mathematical computation platforms like Maple and
Mathematica has changed this greatly—though in my opinion both Maple and Mathematica are
unsuitable until late in high-school, as they presume too much of both the student and the teacher.
A thoughtful and detailed discussion of many of the central issues can be found in J.P. Lagrange’s
article [Lagrange 2005] on teaching functions in such a milieu.

Another important lesson is that we need to teach procedural or algorithmic thinking. Al-
though some vague notion of a computer program as a repeated procedure is probably ubiquitous
today, this does not carry much water in practice. For example, five years or so ago, while teaching
future elementary school teachers (in their final year), I introduced only one topic not in the text:
extraction of roots by Newton’s method. I taught this in class, tested it on an assignment and
repeated it during the review period. About half of the students participated in both sessions. On
the final exam, I asked the students to compute

√
3 using Newton’s method starting at x0 = 3 to

estimate
√

3 = 1.732050808 . . . so that the first three digits after the decimal point were correct.
I hoped to see x1 = 2, x2 = 7/4 and x3 = 97/56 = 1.732142857. . . . I gave the students the exact
iteration in the form

xNEW = x + 3/xOLD

2
, (10)

and some other details. The half of the class that had been taught the method had no trouble with
the question. The rest almost without exception “guessed and checked.” They tried xOLD = 3 and
then rather randomly substituted many other values in (10). If they were lucky they found some
xOLD such that xNEW did the job.

My own recent experiences with technology-mediated curriculum are described in Jen
Chang’s 2006 MPub, [Chang 2006]. There is a concurrent commercial implementation of such a
middle-school Interactive School Mathematics currently being completed by MathResources.42

Many of the examples I have given, or similar ones more tailored to school [Borwein 2005a], are
easily introduced into the curriculum, but only if the teacher is not left alone to do so. Technology
also allows the same teacher to provide enriched material (say, on fractions, binomials, irrational-
ity, fractals or chaos) to the brightest in the class while allowing more practice for those still

41 Should such exist and as you prefer be discovered or invented.
42 See www.mathresources.com/products/ism/index.html. I am a co-founder of this ten-year old company. Such
a venture is very expensive and thus relies on commercial underpinning.
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struggling with the basics. That said, successful mathematical education relies on active partici-
pation of the learner and the teacher and my own goal has been to produce technological resources
to support not supplant this process; and I hope to make learning or teaching mathematics more
rewarding and often more fun.

6.2 Last Words
To reprise, I hope to have made convincing arguments that the traditional deductive accounting
of Mathematics is a largely ahistorical caricature—Euclid’s millennial sway not withstanding.43

Above all, mathematics is primarily about secure knowledge not proof, and that while the aesthetic
is central, we must put much more emphasis on notions of supporting evidence and attend more
closely to the reliability of witnesses.

Proofs are often out of reach—but understanding, even certainty, is not. Clearly, computer
packages can make concepts more accessible. A short list includes linear relation algorithms,
Galois theory, Groebner bases, etc. While progress is made “one funeral at a time,”44 in Thomas
Wolfe’s words “you can’t go home again” and as the co-inventor of the Fast Fourier transform
properly observed, in [Tukey 1962]45

“Far better an approximate answer to the right question, which is often vague, than the
exact answer to the wrong question, which can always be made precise.”
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