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Abstract

In this paper, we study the properties of integral functionals induced on L1
E(S, µ) by

closed convex functions on a Euclidean space E. We give sufficient conditions for such
integral functions to be strongly rotund (well-posed). We show that in this generality
functions such as the Boltzmann-Shannon entropy and the Fermi-Dirac entropy are
strongly rotund. We also study convergence in measure and give various limiting
counterexample.
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1 Introduction

We assume throughout that X is a real Banach space with norm ‖ · ‖, that X∗ is the
continuous dual of X, and that X and X∗ are paired by 〈·, ·〉. The open unit ball and the
closed unit ball in X is denoted respectively by UX := {x | ‖x‖ < 1} and BX :=

{
x ∈ X |

‖x‖ ≤ 1
}

, U(x, δ) := x + δUX and B(x, δ) := x + δBX (where δ ≥ 0 and x ∈ X) and
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N = {1, 2, 3, . . .}. We also assume that d ∈ N and reserve E for the Euclidean space Rd with
the induced norm ‖ · ‖.

Throughout the paper, we also assume that (S, µ) is a complete finite measure space (with
nonzero measure µ and S 6= ∅). The Banach space L1

E(S, µ) with ‖·‖1 stands for the space of
all (equivalence classes of) measurable functions f : S → Rn such that

∫
S
‖f(s)‖dµ(s) < +∞.

The norm ‖·‖1 on L1
E(S, µ) and 〈·, ·〉 on L1

E(S, µ)×
(
L1
E(S, µ)

)∗(
= L∞E (S, µ)

)
are respectively

defined by

‖f‖1 :=

∫
S

‖f(s)‖dµ(s) and 〈f, g〉 :=

∫
S

〈f(s), g(s)〉dµ(s), ∀f ∈ L1
E(S, µ), g ∈ L∞E (S, µ).

The norm on L∞E (S, µ) is ‖ · ‖∞.

Let A : X ⇒ X∗ be a set-valued operator (also known as a relation, point-to-set map-
ping or multifunction) from X to X∗, i.e., for every x ∈ X, Ax ⊆ X∗, and let graA :={

(x, x∗) ∈ X ×X∗ | x∗ ∈ Ax
}

be the graph of A. The domain of A is domA :=
{
x ∈ X |

Ax 6= ∅
}

and ranA := A(X) is the range of A.

Recall that A is monotone if

(1) 〈x− y, x∗ − y∗〉 ≥ 0, ∀(x, x∗) ∈ graA ∀(y, y∗) ∈ graA,

and maximally monotone if A is monotone and A has no proper monotone extension (in the
sense of graph inclusion).

We now recall some additional standard notations [8]. We denote by −→ and ⇀w respec-
tively, the norm convergence and weak convergence of sequences. Given a subset C of X,
intC is the interior of C and C is the norm closure of C. Let (Cn)n∈N be a sequence of
subsets in X. We define lim

w
Cn by lim

w
Cn :=

{
x ∈ X | ∃xnk ∈ Cnk withxnk⇀

w x
}

. Let
f : X → ]−∞,+∞] and λ ∈ R. Then dom f := f−1(R) is the domain of f . We say f is
proper if dom f 6= ∅. The lower level sets of f are the sets {x ∈ X | f(x) ≤ λ}. The
epigraph of f is epi f :=

{
(x, r) ∈ X × R | f(x) ≤ r

}
. Let C be convex, we say x ∈ C is an

extreme point of C if λu + (1 − λ)v 6= x,∀u, v ∈ C\{x},∀λ ∈ [0, 1]. If x ∈ argmin f , then
f(x) = inf{f(y) | y ∈ X}. Let f be proper. The subdifferential of f is defined by

∂f : X ⇒ X∗ : x 7→
{
x∗ ∈ X∗ | (∀y ∈ X) 〈y − x, x∗〉+ f(x) ≤ f(y)

}
.

We say f has the Kadec or Kadec–Klee property if the following implication

xn⇀
w x ∈ dom f, f(xn) −→ f(x) ⇒ xn −→ x.

holds.

As in [6] we say that f is strongly rotund if f is strictly convex on its domain, f has weakly
compact lower level sets, and f has the Kadec property. This is in effect a well-posedness
condition, see [16].
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Let φ : E → ]−∞,+∞] be proper lower semicontinuous and convex. We define Iφ :
L1
E(S, µ)→ ]−∞,+∞] [20, 21] by

x 7→
∫
S

φ(x(s))dµ(s).

Then Iφ is well defined. More precisely, Iφ is proper lower semicontinuous and convex, and
hence Iφ(x) > −∞, ∀x(·) ∈ L1

E(S, µ) (see Fact 2.13 below or [8, §6.3]).

The integral function Iφ has attracted much interest, see, e.g., [20, 21, 22, 26, 3, 4, 8,
25, 9, 10] and the references given therein. In the one-dimensional case with Lebesgue
measure, Borwein and Lewis presented some characterizations for the integral function Iφ to
be strongly rotund (see [6]). In this paper, we extend their work from the line to an arbitrary
Euclidean space.

1.1 Organization of the paper

The remainder of this paper is organized as follows. In Section 2, we collect preliminary
results for future reference and the reader’s convenience. In Section 3, we present a suffi-
cient condition for the integral function Iφ to be strongly rotund in our main result (The-
orem 3.8). Some examples and applications are provided in Section 4, in which we show
that the Boltzmann-Shannon entropy and the Fermi-Dirac entropy defined on L1

E(S, µ) both
are strongly rotund. In Section 5 we present an enlightening illustration of failure of strong
rotundity. In Section 6, we apply a lovely result due to Visintin to both strengthen Theo-
rem 3.8 and to shed light on the Kadec property. In the final Section 7 we turn to the role
of convergence in measure.

2 Preliminary results

We first introduce Vitali’s covering theorem.

Fact 2.1 (Vitali) (See [13, Theorem 1, page 27].) Let (xi)i∈I be in E and (δi)i∈I be in
]0,+∞[ such that supi∈I δi < +∞. Then there exists a countable subset Γ of I such that
B(xα, δα) ∩B(xβ, δβ) = ∅ (for every α, β ∈ Γ with α 6= β) and⋃

i∈I

B(xi, δi) ⊆
⋃
i∈Γ

B(xi, 5δi).

Corollary 2.2 Let U be an open subset of E and δ > 0. Then there exist a sequence (xn)n∈N
in U and a sequence (δn)n∈N in ]0, δ] such that B(xn,

δn
5

)∩B(xm,
δm
5

) = ∅ (for every n,m ∈ N
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with n 6= m) and ⋃
n∈N

B(xn, δn) = U.(2)

Proof. Let x ∈ U . There exists βx ∈
]
0, δ

5

]
such that

B(x, 5βx) ⊆ U.(3)

Then we have

U ⊆
⋃
x∈U

B(x, βx).

By Fact 2.1, there exist a countable set I and (xi)i∈I in U such that B(xi, βxi)∩B(xj, βxj) = ∅
(for every i, j ∈ I with i 6= j) and

U ⊆
⋃
x∈U

B(x, βx) ⊆
⋃
i∈I

B(xi, 5βxi).

This and (3) yield

U =
⋃
i∈I

B(xi, 5βxi).(4)

Note that I cannot be a finite set. Otherwise,
⋃
i∈I B(xi, 5βxi) is closed, which contradicts

(4). Set αi := 5βxi ,∀i ∈ I. Thus (4) implies that (2) holds. �

Fact 2.3 (Dunford) (See [11, Theorem 4, page 104].) Let D be a weakly compact subset
of L1

E(S, µ). Then for every ε > 0, there exists δ > 0 such that∫
C

∥∥y(s)
∥∥dµ(s) ≤ ε, ∀µ(C) ≤ δ, ∀y ∈ D.

Fact 2.4 (Rockafellar) (See [18, Theorem 1] or [17, Theorem 2.28].) Let A : X ⇒ X∗ be
monotone with int domA 6= ∅. Then A is locally bounded at x ∈ int domA, that is, there
exist δ > 0 and K > 0 such that

sup
y∗∈Ay

‖y∗‖ ≤ K, ∀y ∈ (x+ δBX) ∩ domA.

Fact 2.5 (See [27, Theorem 2.2.1].) Let f : X → ]−∞,+∞] be proper convex. Then f is
lower semicontinuous if and only if f is weak–lower semicontinuous.
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Fact 2.6 (Borwein and Lewis) (See [6, Lemma 2.8].) Let f : X → ]−∞,+∞] be proper
lower semicontinuous and convex. Suppose that f ∗ is Fréchet differentiable on dom ∂f ∗.
Assume that (xn)n∈N and x ∈ dom ∂f are such that xn⇀

w x, f(xn) −→ f(x). Then xn −→ x.

Definition 2.7 (See [2].) Let f : X → ]−∞,+∞] be proper lower semicontinuous and
convex. We say

(i) f is essentially smooth if ∂f is locally bounded and single-valued on its domain.

(ii) f is essentially strictly convex if (∂f)−1 is locally bounded on its domain and f is
strictly convex on every convex subset of dom ∂f .

(iii) f is Legendre if f is essentially smooth and essentially strictly convex.

Fact 2.8 (Rockafellar) (See [19, Theorem 26.3].) Let φ : E → ]−∞,+∞] be proper
lower semicontinuous and convex. Then φ is essentially strictly convex if and only if φ∗ is
essentially smooth. ♦

Fact 2.9 (See [2, Theorem 5.6(ii)&(iii) and Theorem 5.11(ii)].) Let f : X → ]−∞,+∞] be
proper lower semicontinuous and convex. Then the following hold.

(i) f is essentially smooth if and only if int dom f 6= ∅ and ∂f is single-valued, if and
only if int dom f = dom ∂f and ∂f is single-valued.

(ii) Suppose that X = E. Then f is essentially strictly convex if and only if f is strictly
convex on every convex subset of dom ∂f .

Fact 2.10 (See [8, Fact 5.3.3, page 239].) Let f : X → ]−∞,+∞] be proper lower semicon-
tinuous and strictly convex. Then (x, f(x)) is an extreme point of epi f for every x ∈ dom f .

Lemma 2.11 Let A : E ⇒ E be monotone with int domA 6= ∅. Let C be a bounded closed
subset of int domA. Then there exists M > 0 such that

sup
a∗∈Aa, a∈C

‖a∗‖ ≤M.

Proof. Let x ∈ C. By Fact 2.4, there exist δx > 0 and Mx > 0 such that

sup
a∗∈Aa, a∈U(x,δx)

‖a∗‖ ≤Mx.(5)

Then we have

C ⊆
⋃
x∈C

U(x, δx).(6)
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Since C is compact, there exists N ∈ N such that (xn)Nn=1 in C and

C ⊆
N⋃
n=1

U(xn, δxn).(7)

Set M := max{Mxn | n = 1, · · · , N}. Then by (5) and (7), supa∗∈Aa, a∈C ‖a∗‖ ≤M . �

Remark 2.12 If C is assumed norm compact, this proof remains valid in a general Banach
space. ♦

In the following subsection we turn to properties of the function Iφ.

2.1 Basic properties of Iφ

Fact 2.13 (Rockafellar) (See [22, Theorem 3C and Theorem 3H] and [8, Exercise 6.3.7,
page 306].) Let φ : E → ]−∞,+∞] be proper, lower semicontinuous and convex. Then Iφ
is proper lower semicontinuous and convex, and I∗φ = Iφ∗. Moreover,

x∗ ∈ ∂Iφ(x)⇐⇒
(
x∗(s) ∈ ∂φ(x(s)) for almost all s in S

)
.

Remark 2.14 Let φ : E → ]−∞,+∞] be proper lower semicontinuous and convex. By
Fact 2.5 and Fact 2.13, Iφ is proper weak–lower semicontinuous and convex. ♦

The following three results were proved by Borwein and Lewis when E = R. Their proofs
can be adapted to the general space E. For the readers’ convenience, we record full proofs
herein.

Fact 2.15 (See [6, Lemma 3.1)].) Let φ : E → ]−∞,+∞] be proper, lower semicontinuous
and convex. Then Iφ is strictly convex on its domain if and only if φ is strictly convex on
its domain.

Proof. “⇒”: Let v, w ∈ domφ with v 6= w. Set x(s) := v and y(s) := w for every s ∈ S.
Then {x, y} ⊆ L1

E(S, µ) and x 6= y. Let λ ∈ ]0, 1[. Since Iφ is strictly convex on its domain,

φ
(
λv + (1− λ)w

)
=

1

µ(S)

∫
S

φ
(
λv + (1− λ)w

)
dµ(s)

=
1

µ(S)

∫
S

φ
(
λx(s) + (1− λ)y(s)

)
dµ(s)

=
1

µ(S)
Iφ
(
λx+ (1− λ)y

)
6



<
1

µ(S)
λIφ(x) +

1

µ(S)
(1− λ)Iφ(y)

=
1

µ(S)
λ

∫
S

φ(v)dµ(s) +
1

µ(S)
(1− λ)

∫
S

φ(w)dµ(s)

= λφ(v) + (1− λ)φ(w).

Hence φ is strictly convex on its domain.

“⇐”: By Fact 2.13, Iφ is convex. Suppose to the contrary that Iφ is not strictly convex
on its domain. Then there exists λ ∈ ]0, 1[ and {x, y} ⊆ dom Iφ with x 6= y such that

Iφ
(
λx+ (1− λ)y

)
− λIφ(x)− (1− λ)Iφ(y) = 0.

Then we have∫
S

(
λφ(x(s)) + (1− λ)φ(y(s))− φ

(
λx(s) + (1− λ)y(s)

))
dµ(s) = 0.(8)

Since φ is convex,

g(s) := λφ(x(s)) + (1− λ)φ(y(s))− φ
(
λx(s) + (1− λ)y(s)

)
≥ 0.(9)

Thus, φ
(
λx(s) + (1 − λ)y(s)

)
− λφ(x(s)) − (1 − λ)φ(y(s)) = 0 for all almost s ∈ S. Since

φ is strictly convex its domain, x(s) = y(s) for all almost s ∈ S. Hence x is equivalent to y
and thus x = y, which contradicts that x 6= y. �

Following [6], given a measurable set T ⊆ S we denote by T c :=
{
s ∈ S | s /∈ T} and we

denote the restriction of µ and x ∈ L1
E(S, µ) to T respectively by µ|T and x|T . We define

ITφ : L1
E(T, µ|T )→ ]−∞,+∞] by ITφ (z) :=

∫
T
φ(z(s))dµ(s).

Fact 2.16 (See [6, Lemma 3.5)].) Let φ : E → ]−∞,+∞] be proper, lower semicontinuous
and convex, and T be a measurable subset of S. Suppose that (xn)n∈N in L1

E(S, µ) such
that xn⇀

w x. Then xn|T ⇀w x|T in L1
E(T, µ|T ). Moreover, if Iφ(xn) −→ Iφ(x) < +∞, then

ITφ (xn|T ) −→ ITφ (x|T ) < +∞.

Proof. We first show that xn|T ⇀w x|T . Let x∗ ∈ L∞E (T, µ). Then we define y∗ by y∗(s) :=
x∗(s), if s ∈ T ; y∗(s) := 0, if s ∈ T c. Then y∗ ∈ L∞E (S, µ) and 〈xn|T , x∗〉 = 〈xn, y∗〉 −→
〈x, y∗〉 = 〈x|T , x∗〉. Hence xn|T ⇀w x|T .

Now we show that ITφ (xn|T ) −→ ITφ (x|T ) < +∞. Since xn|T ⇀w x|T and xn|T c⇀w x|T c , by
Fact 2.13 and Remark 2.14,

lim inf ITφ (xn|T ) ≥ ITφ (x|T ) and lim inf IT
c

φ (xn|T c) ≥ IT
c

φ (x|T c).(10)
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Then we have

lim sup ITφ (xn|T ) = lim sup
(
Iφ(xn)− IT cφ (xn|T c)

)
= lim Iφ(xn)− lim inf IT

c

φ (xn|T c)
≤ Iφ(x)− IT cφ (x|T c)
= ITφ (x|T ) < +∞ (since Iφ(x) < +∞ and IT

c

φ (x|T c) > −∞ by Fact 2.13).

Then by (10), lim ITφ (xn|T ) = ITφ (x|T ). �

Fact 2.17 (See [6, Lemma 3.2].) Let φ : E → ]−∞,+∞] be proper, lower semicontinuous
and convex. Then Iφ∗ is Fréchet differentiable everywhere on L∞E (S, µ) if and only if φ∗ is
differentiable everywhere on E.

Proof. “⇒”: Let z ∈ E and set w(s) := z for every s ∈ S. Then w(s) ∈ L∞E (S, µ).
Then we have φ∗(z)µ(S) = Iφ∗(w) < +∞ and hence z ∈ domφ∗. Thus domφ∗ = E. Let
u, v ∈ E. Now we show φ∗ is differentiable at u. Set x(s) := u and y(s) := v,∀s ∈ S. Then
{x(s), y(s)} ⊆ L∞E (S, µ). Let t > 0. Then we have

φ∗(u+ tv) + φ∗(u− tv)− 2φ∗(u)

t

= 1
µ(S)

∫
S

φ∗(u+ tv) + φ∗(u− tv)− 2φ∗(u)

t
dµ(s)

= 1
µ(S)

∫
S

φ∗
(
x(s) + ty(s)

)
+ φ∗(x(s)− ty(s))− 2φ∗(x(s))

t
dµ(s)

= 1
µ(S)

Iφ∗
(
x+ ty

)
+ Iφ∗(x− ty)− 2Iφ∗(x)

t
−→ 0 as t −→ 0 (by [17, Exercise 1.24]).

By [17, Exercise 1.24] again, φ∗ is differentiable at u.

“⇐”: By [17, Corollary, page 20], (φ∗)′ is continuous on E. Let x∗ ∈ L∞E (S, µ). Then
there exists M > 0 such that ‖x∗(s)‖ ≤M almost everywhere. We can and do suppose that
‖x∗(s)‖ ≤ M, ∀s ∈ S. Since MBE is compact, (φ∗)′ is uniformly continuous on MBE. Let
ε > 0. There exists δ > 0 such that∥∥(φ∗)′(x∗(s) + v)− (φ∗)′x∗(s)

∥∥ ≤ ε

µ(S)
, ∀‖v‖ ≤ δ.(11)

Let y∗ ∈ L∞E (S, µ) with ‖y∗‖∞ ≤ δ. Then applying Mean Value Theorem, we have∥∥∥∫
S

φ∗
(
x∗(s) + y∗(s)

)
dµ(s)−

∫
S

φ∗(x∗(s))dµ(s)−
∫
S

〈
(φ∗)′(x∗(s)), y∗(s)

〉
dµ(s)

∥∥∥
=
∥∥∥∫

S

[
φ∗
(
x∗(s) + y∗(s)

)
− φ∗(x∗(s))−

〈
(φ∗)′(x∗(s)), y∗(s)

〉]
dµ(s)

∥∥∥
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=
∥∥∥∫

S

[〈
(φ∗)′

(
x∗(s) + tsy

∗(s)
)
, y∗(s)

〉
−
〈

(φ∗)′(x∗(s)), y∗(s)
〉]

dµ(s)
∥∥∥, ∃ts ∈ ]0, 1[

=
∥∥∥∫

S

[〈
(φ∗)′

(
x∗(s) + tsy

∗(s)
)
− (φ∗)′(x∗(s)), y∗(s)

〉]
dµ(s)

∥∥∥, ∃ts ∈ ]0, 1[

≤
∫
S

∥∥∥〈(φ∗)′
(
x∗(s) + tsy

∗(s)
)
− (φ∗)′(x∗(s)), y∗(s)

〉∥∥∥dµ(s), ∃ts ∈ ]0, 1[

≤
∫
S

ε

µ(S)
‖y∗(s)‖dµ(s) (by (11))

≤ ε

µ(S)
‖y∗‖∞µ(S) = ε‖y∗‖∞.

Hence Iφ∗ is Fréchet differentiable at x∗. �

Remark 2.18 Let φ : E → ]−∞,+∞] be proper, lower semicontinuous and convex. By
Fact 2.17 and φ∗∗ = φ, φ is differentiable everywhere on E if and only if Iφ is Fréchet
differentiable everywhere on L∞E (S, µ).

2.2 Strong rotundity and stability

We may apply our results to an important optimization:

Let (Cn)n∈N and C∞ in X be closed convex sets, and let f : X → ]−∞,+∞] be a proper
convex function with weakly compact lower level sets. We consider the following sequences
of optimization problems (See [6].).

(Pn) V (Pn) := inf
{
f(x) | x ∈ Cn

}
,

(P∞) V (P∞) := inf
{
f(x) | x ∈ C∞

}
.

Fact 2.19 (Borwein and Lewis) (See [6, Theorem 2.9(ii)].) Let (Cn)n∈N and C∞ in X be
closed convex sets, and f : X → ]−∞,+∞] be a proper convex function with weakly compact
lower level sets. Assume that

lim
w
Cn ⊆ C∞ ⊆

⋃
m≥1

⋂
n≥m

Cn.

Then V (Pn) −→ V (P∞). If V (P∞) < +∞ and f is strongly rotund, then (Pn) and (P∞)
respectively have unique optimal solutions with xn and x∞, and xn −→ x∞.

In a typical application, Cn+1 ⊆ Cn may be nested polyhedral approximations to a convex
set C∞ :=

⋂
Cn, that is constructible in the sense of [8]. We look at the failure of strong

rotundity in more detail in Section 6.
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3 Properties of Legendre functions and Iφ

Proposition 3.1 Let φ : E → ]−∞,+∞] be proper, lower semicontinuous and convex with
int domφ 6= ∅. Then φ is essentially smooth if and only if ∂Iφ is single-valued.

Proof. “⇒”: First, we show that ∂Iφ is single-valued. Let {x∗, y∗} ⊆ ∂Iφ(x). Then by
Fact 2.13, x∗(s) ∈ ∂φ(x(s)) for almost all s ∈ S and y∗(s) ∈ ∂φ(x(s)) for almost all s ∈ S.
Since ∂φ is single-valued. Then x∗(s) = y∗(s) for almost all s ∈ S. Hence x∗ is equivalent
to y∗ and then x∗ = y∗. Thus ∂Iφ(x) is single-valued.

“⇐”: By Fact 2.9(i), it suffices to show that ∂φ is single-valued. Let {v∗1, v∗2} ⊆ ∂φ(v).
Set x(s) := v, x∗1(s) := v∗1 and x∗2(s) := v∗2. Then x ∈ L1

E(S, µ), and {x∗1, x∗2} ⊆ L∞E (S, µ).
Thus by Fact 2.13, {x∗1, x∗2} ⊆ ∂Iφ(x). Since ∂Iφ is single-valued, x∗1 = x∗2 and hence v∗1 = v∗2.
Then ∂φ(x) is single-valued and thus ∂φ is single-valued. �

Corollary 3.2 Let φ : E → ]−∞,+∞] be proper, lower semicontinuous and convex with
int domφ 6= ∅. Assume that Iφ is strictly convex on its domain and that ∂Iφ is single-valued.
Then φ is Legendre.

Proof. By Fact 2.15, φ is strictly convex on its domain. Fact 2.9(ii) implies that φ is
essentially strictly convex.

Applying Proposition 3.1, φ is essentially smooth. Combining the above results, φ is
Legendre. �

Corollary 3.3 Let φ : R → ]−∞,+∞] be proper, lower semicontinuous and convex with
int domφ 6= ∅. Then φ is Legendre if and only if Iφ is strictly convex on its domain and ∂Iφ
is single-valued.

Proof. “⇒”: By Fact 2.9(ii), φ is strictly convex on int domφ, and then φ is strictly convex
on domφ. Hence Iφ is strictly convex on its domain by Fact 2.15. By Proposition 3.1, ∂Iφ
is single-valued.

“⇐”: Applying Corollary 3.2 directly. �

Lemma 2.11 allows us to generalize [6, Lemma 3.3].

Lemma 3.4 Let φ : E → ]−∞,+∞] be proper, lower semicontinuous and convex, and let
x ∈ L1

E(S, µ). Assume that there exists a bounded closed subset D of int domφ such that
x(s) ∈ D almost everywhere on S. Then ∂Iφ(x) 6= ∅.

10



Proof. By the assumption, there exists a measurable subset T of S such that µ(T ) = µ(S) and
x(s) ∈ D, ∀s ∈ T . By [17, Proposition 3.3 and Proposition 2.5], ∂φ is upper semicontinuous
on D. Thus, for every closed set C ⊆ E, we have (∂φ)C := D ∩

(
(∂φ)−1C

)
is closed. Thus{

s ∈ T | ∂φ(x(s)) ∩ C 6= ∅
}

=
{
s ∈ T | s ∈ x−1 [(∂φ)C ]

}
is measurable. Hence s 7→ ∂φ(x(s)) is measurable on T . Then by [15, Theorem 14.2.1] or [23,
Corollary 14.6, page 647], there exists a measurable selection x∗(s) ∈ ∂φ(x(s)) everywhere
on T . Then x∗(s) ∈ ∂φ(x(s)) almost everywhere on S by µ(T ) = µ(S). By Lemma 2.11,
{x∗(s) | s ∈ T} ⊆ ∂φ(D) is bounded, and then x∗(s) is bounded almost everywhere on S
since µ(T ) = µ(S). Hence we have x∗ ∈ L∞E (S, µ). �

Let m ∈ N and x ∈ L1
E(S, µ), we define Sm by

Sm :=
{
s ∈ S | x(s) ∈ mBE

}
.(12)

Then we have Sm ⊆ Sm+1 and S =
⋃
m≥1 Sm.

Remark 3.5 Assume that x ∈ L1
E(S, µ). Then µ(Scm) ↓ 0 and µ(Sm) ↑ µ(S) whenm −→∞.

The proof of Proposition 3.6 was inspired by that of [6, Lemma 3.6].

Proposition 3.6 Let φ : E → ]−∞,+∞] be proper, lower semicontinuous and convex.
Suppose that φ∗ is differentiable on E, and that xn⇀

w x in L1
E(S, µ) and Iφ(xn) −→ Iφ(x) <

+∞. Assume that x(s) ∈ int domφ almost everywhere. Then ‖xn − x‖1 −→ 0.

Proof. Since xn⇀
w x, D := (xn)n∈N ∪ {x} is weakly compact in L1

E(S, µ). Let ε > 0. By
Fact 2.3, there exists δ > 0 such that∫

C

∥∥y(s)
∥∥dµ(s) ≤ ε, ∀µ(C) ≤ δ, ∀y ∈ D.(13)

Set U := int domφ. Since E is a separable metric space (or see Corollary 2.2), there exist a
sequence (zn)n∈N in U and a sequence (δn)n∈N in [0, 1] such that

U =
⋃
n∈N

B(zn, δn).(14)

Set

Tn :=
{
s ∈ S | x(s) ∈

n⋃
k=1

B(zk, δk)
}
, ∀n ∈ N.(15)
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Since x(s) ∈ U almost everywhere on S, by(14), we have µ(Tn
c) ↓ 0 and µ(Tn) ↑ µ(S) when

n −→∞. Set S̃m := Sm ∩ Tm. Then by Remark 3.5,

µ(S̃m
c
) = µ(Scm ∪ T cm) ↓ 0 and µ(S̃m) ↑ µ(S) as m −→∞.(16)

Then by (13), there exists N ∈ N such that

µ(S̃m
c
) ≤ δ and

∫
S̃m

c

∥∥xn(s)− x(s)
∥∥dµ(s) ≤ 2ε, ∀m ≥ N, ∀n ∈ N.(17)

Then by Fact 2.16,

xn|S̃m⇀
w x|S̃m in L1

E(S̃m, µ|S̃m) and I S̃mφ (xn|S̃m) −→ I S̃mφ (x|S̃m) < +∞.(18)

By the definition of S̃m and (15), we have

{
x(s) | s ∈ S̃m

}
⊆ mBE ∩

( m⋃
k=1

B(zk, δk)
)
.(19)

By (14), mBE ∩
(⋃m

k=1B(zk, δk)
)

is a bounded closed subset of int domφ. Then by

Lemma 3.4, ∂I S̃mφ (x|S̃m) 6= ∅. Thus by Fact 2.17, Fact 2.13, Fact 2.6 and (18), we ob-
tain that ∫

S̃m

∥∥xn(s)− x(s)
∥∥dµ(s) −→ 0, as n −→ 0.(20)

Then we have

‖xn − x‖1 =

∫
S̃m

∥∥(xn(s))− (x(s))
∥∥dµ(s) +

∫
S̃m

c

∥∥(xn(s))− (x(s))
∥∥dµ(s)

≤
∫
S̃m

∥∥xn(s)− x(s)
∥∥dµ(s) + 2ε, ∀m ≥ N (by (17).(21)

Taking n −→∞ in (21), by (20), lim sup ‖xn − x‖1 ≤ 2ε and hence ‖xn − x‖1 −→ 0. �

We first prove a restrictive sufficient condition for strong rotundity.

Theorem 3.7 Let φ : E → ]−∞,+∞] be proper, lower semicontinuous and convex with
open domain. Suppose that φ∗ is differentiable on E. Then Iφ is strongly rotund on L1

E(S, µ).

Proof. By Fact 2.8, φ is essentially strictly convex. Since domφ is open, [17, Proposi-
tion 3.3 and Proposition 1.11] implies that dom ∂φ = domφ. Hence φ is strictly convex on
domφ. Then by Fact 2.15, Iφ is strictly convex on its domain. Since domφ∗ = E, by [21,
Corollary 2B], Iφ has weakly compact lower level sets.
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Now we show Iφ has the Kadec property. Let xn⇀
w x ∈ dom Iφ in L1

E(S, µ) and Iφ(xn) −→
Iφ(x). Since x ∈ dom Iφ, x(s) ∈ domφ for almost all s ∈ S. Since domφ = int domφ,
x(s) ∈ int domφ almost everywhere. Then by Proposition 3.6, ‖xn − x‖1 −→ 0.

Hence Iφ has the Kadec property and consequently Iφ is strongly rotund. �

When the domain of φ is not open we have more work to do:

Theorem 3.8 Let φi : R → ]−∞,+∞] be proper, lower semicontinuous and convex with
int domφi 6= ∅ for every i = 1, 2, · · · , d. Suppose that φ∗i is differentiable on R for every
i = 1, 2, · · · , d. Let φ : E → ]−∞,+∞] be defined by z := (zn) ∈ E 7→

∑d
i=1 φi(zi). Then Iφ

is strongly rotund on L1
E(S, µ).

Proof. We have φ is proper lower semicontinuous and convex. Let i ∈ {1, · · · , d}. By
Fact 2.8, φi is essentially strictly convex. Then φi is strictly convex on int domφi. Hence
φi is strictly convex on its domain, so is φ. Then by Fact 2.15, Iφ is strictly convex on

its domain. By the assumption, φ∗ =
∑d

i=1 φ
∗
i , hence φ∗ is differentiable everywhere on E.

Then by [21, Corollary 2B], Iφ has weakly compact lower level sets.

Now we show Iφ has the Kadec property. Let xn⇀
w x ∈ dom Iφ in L1

E(S, µ) and Iφ(xn) −→
Iφ(x). Since x ∈ dom Iφ, x(s) ∈ domφ for almost all s ∈ S. We can and do suppose that
x(s) ∈ domφ for all s ∈ S.

We let x(s) :=
(
x1(s), · · · , xd(s)

)
and xn(s) :=

(
xn,1(s), · · · , xn,d(s)

)
. Now we claim that∫

S

∣∣xn,i(s)− xi(s)∣∣dµ(s) −→ 0, ∀i ∈ {1, · · · , d}.(22)

Fix i ∈ {1, · · · , d}. Since int domφi 6= ∅, there exist α ∈ R ∪ {−∞} and β ∈ R ∪ {+∞}
such that α < β and int domφi = ]α, β[. We set

Sα :=
{
s ∈ S | xi(s) = α

}
Sβ :=

{
s ∈ S | xi(s) = β

}
Sint :=

{
s ∈ S | xi(s) ∈ int domφi

}
.

Then Sα, Sβ and Sint are measurable sets. Given y(s) = (yi(s))
d
i=1 ∈ L1

E(S, µ). Set ỹ by

ỹ(s) :=
(
y1(s), · · · , yi−1(s), yi+1(s), · · · , yd(s)

)
.

Now we show that

x̃n⇀
w x̃ inL1

Rd−1(S, µ).(23)
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Let v∗(s) ∈ L∞
Rd−1(S, µ). For convenience, we write

v∗(s) =
(
v1(s), · · · , vi−1(s), vi+1(s), · · · , vd(s)

)
.

Then we define w∗ by

w∗(s) :=
(
v1(s), · · · , vi−1(s), 0, vi+1(s), · · · , vd(s)

)
.

Then w∗ ∈ L∞E (S, µ) and 〈x̃n, v∗〉 = 〈xn, w∗〉 −→ 〈x,w∗〉 = 〈x̃, v∗〉. Hence x̃n⇀
w x̃ and thus

(23) holds.

Similarly, we have

xn,i⇀
w xi inL1

R(S, µ).(24)

Then by (23), (24) and Fact 2.16,

x̃n|Sγ ⇀w x̃|Sγ and xn,i|Sγ ⇀w xi|Sγ , γ ∈ {α, β, int}.(25)

Since Iφ(xn) −→ Iφ(x) < +∞, we have Iφ(xn) < +∞ and hence xn(s) ∈ domφ for all almost
s ∈ S when n is larger enough. Thus, we can and do assume that xn,i(s) ∈ domφi for all
n ∈ N, s ∈ S. Since S = Sα ∪ Sβ ∪ Sint, we have∫

S

∣∣xn,i(s)− xi(s)∣∣dµ(s)

=

∫
Sα

∣∣xn,i(s)− xi(s)∣∣dµ(s) +

∫
Sβ

∣∣xn,i(s)− xi(s)∣∣dµ(s) +

∫
Sint

∣∣xn,i(s)− xi(s)∣∣dµ(s)

=

∫
Sα

(
xn,i(s)− xi(s)

)
dµ(s) +

∫
Sβ

(
xi(s)− xn,i(s)

)
dµ(s) +

∫
Sint

∣∣xn,i(s)− xi(s)∣∣dµ(s).

(26)

By (25), ∫
Sα

(
xn,i(s)− xi(s)

)
dµ(s) +

∫
Sβ

(
xi(s)− xn,i(s)

)
dµ(s) −→ 0.(27)

Now we show that ∫
Sint

∣∣xn,i(s)− xi(s)∣∣dµ(s) −→ 0.(28)

If µ(Sint) = 0, clearly, (28) holds. Now we assume that µ(Sint) 6= 0. We define ψ : Rd−1 →
]−∞,+∞] by z := (z1, z2, · · · , zi−1, zi+1, · · · , zd) 7→

∑
j 6=i φj(zj). Then by Fact 2.13, ISint

ψ

and ISint
φi

are proper lower semicontinuous and convex. Then by Remark 2.14 and (25),

lim inf

∫
Sint

ψ
(
x̃n|Sint

(s)
)
dµ(s) = lim inf ISint

ψ (x̃n|Sint
) ≥ ISint

ψ (x̃|Sint
),
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lim inf ISint
φi

(xn,i|Sint
) ≥ ISint

φi
(xi|Sint

).(29)

We first show that∫
Sint

φi
(
xn,i|Sint

(s)
)
dµ(s) −→

∫
Sint

φi
(
xi|Sint

(s)
)
dµ(s) < +∞.(30)

By Fact 2.16, we have

ISint
φ (xn|Sint

) −→ ISint
φ (x|Sint

) < +∞.(31)

Then we have

lim sup ISint
φi

(xn,i|Sint
) = lim sup

∫
Sint

φi
(
xn,i|Sint

(s)
)
dµ(s) = lim sup

(
ISint
φ (xn|Sint

)− ISint
ψ (x̃n|Sint

)
)

= lim ISint
φ (xn|Sint

)− lim inf ISint
ψ (x̃n|Sint

))

≤ ISint
φ (x|Sint

)− ISint
ψ (x̃|Sint

) (by (31) and (29))

= ISint
φi

(xi|Sint
) < +∞ (since ISint

φ (x|Sint
) < +∞ and ISint

ψ (x̃|Sint
) > −∞ by (31) and Fact 2.13).

Then combining with (29), we have lim sup ISint
φi

(xn,i|Sint
) ≤ ISint

φi
(xi|Sint

) ≤ lim inf ISint
φi

(xn,i|Sint
)

and thus (30) holds.

By (25), (30) and Proposition 3.6, we have
∫
Sint

∣∣xn,i(s)−xi(s)∣∣dµ(s) −→ 0 and hence (28)
holds.

Combining (28), (27) and (26), we have
∫
S
|xn,i(s) − xi(s)|dµ(s) −→ 0 and hence (22)

holds.

Then by (22),

‖xn − x‖1 ≤
∫
S

d∑
i=1

∣∣xn,i(s)− xi(s)∣∣dµ(s) −→ 0.

Hence xn −→ x and hence Iφ has the Kadec property.

Combining the above results, Iφ is strongly rotund in L1
E(S, µ). �

Remark 3.9 It is noted in [6] that strongly rotund functions with points of continuity can
only exist on reflexive spaces. Moreover, strongly rotund integral functions on L1

E(S, µ) are
a useful surrogate for strongly rotund renorms which always exist in the reflexive setting. ♦
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4 Examples and applications

Below we use the convention that 0 log 0 = 0.

Example 4.1 By applying Theorem 3.7 and Theorem 3.8, we can obtain many functions φ
such that Iφ is strongly rotund. Seven examples follow

(i) Let f : R→ ]−∞,+∞] be defined by

f(x) =

{
x log x− x, ifx ≥ 0;

+∞, otherwise
∀x ∈ R.

Let φ : E → ]−∞,+∞] be defined by

φ(x) :=
d∑
i=1

f(xi), ∀x = (xn) ∈ E.

Then Iφ is the Boltzmann-Shannon entropy.

(ii) Let f : R→ ]−∞,+∞] be defined by

f(x) =

{
x log x+ (1− x) log(1− x), if 0 ≤ x ≤ 1;

+∞, otherwise
∀x ∈ R.

Let φ : E → ]−∞,+∞] be defined by

φ(x) :=
d∑
i=1

f(xi), ∀x = (xn) ∈ E.

Then Iφ is the Fermi-Dirac entropy

(iii) φ(x) = 1
p
‖x‖p, ∀x ∈ E, where p > 1.

(iv) φ(x) =

{∑d
i=1− log(cos xi), ifx ∈

]
−π

2
, π

2

[
× · · · ×

]
−π

2
, π

2

[
+∞, otherwise

∀x = (xn) ∈ E.

(v) φ(x) =
∑d

i=1 coshxi, ∀x = (xn) ∈ E.

(vi) φ(x) =

{∑d
i=1

(
xi tanh−1 xi + 1

2
log(1− x2

i )
)
, if |xi| < 1, ∀i;

+∞, otherwise
∀x = (xn) ∈ E.
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(vii) φ(x) =

{
− 1

1−‖x‖2 , if ‖x‖ < 1;

+∞, otherwise
∀x ∈ E.

Proof. (i): Clearly, f is proper lower semicontinuous and convex. By [8, Table 2.1, pp. 45],
f ∗(x) = exp(x),∀x ∈ R. Then directly apply Theorem 3.8.

(i): Clearly, f is proper lower semicontinuous and convex. By [8, Table 2.1, pp. 45],
f ∗(x) = log

(
1 + exp(x)

)
,∀x ∈ R. Then directly apply Theorem 3.8.

(iii): Clearly, φ is continuous and convex with full domain. We have φ∗ = 1
q
‖ · ‖q, where

1
q

+ 1
p

= 1 and (φ∗)′ = (‖ · ‖)q−2 ◦ Id. Hence φ∗ is differentiable everywhere on E. Then
directly apply Theorem 3.7.

(iv): Let f(x) :=

{
− log(cos x), ifx ∈

]
−π

2
, π

2

[
+∞, otherwise

. By [8, Table 2.1, pp. 45], we have f is

proper lower semicontinuous and convex, and f ∗(x) = x tan−1 x − 1
2

log(1 + x2)
)
,∀x ∈ R.

Hence f ∗ is differentiable everywhere on R. Then directly apply Theorem 3.8.

(v): Let f(x) := cosh(x). By [8, Table 2.1, pp. 45], we have f is continuous and convex,
and f ∗(x) = x sinh−1 x−

√
1 + x2,∀x ∈ X. Hence f ∗ is differentiable everywhere on R. Then

directly apply Theorem 3.8.

(vi): Let f(x) :=

{
x tanh−1 x+ 1

2
log(1− x2)

)
, if |x| < 1;

+∞, otherwise
. By [8, Table 2.1, pp. 45], we

have f is proper lower semicontinuous and convex, and f ∗(x) = log(coshx). Thus f ∗ is
differentiable everywhere on R. Then directly apply Theorem 3.8.

(vii): Clearly, domφ is open. By [2, Example 6.4], φ is proper lower semicontinuous and
convex, and φ∗ is differentiable everywhere on E. Then directly apply Theorem 3.7. �

Example 4.2 Let (a∗n)n∈N be a sequence in L∞E (S, µ) and let (bn)n∈N be a sequence in R.
Let φ : X → ]−∞,+∞] be one of the functions given in Example 4.1.

We consider the following optimization problems (See [4, page 196].).

(Pn)


V (Pn) := inf Iφ(x)

subject to 〈a∗i , x〉 = bi, i = 1, · · · , n
x ∈ L1

E(S, µ)

(P∞)


V (P∞) := inf Iφ(x)

subject to 〈a∗i , x〉 = bi, i = 1, · · · , n, n+ 1, · · ·
x ∈ L1

E(S, µ).
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Then we have V (Pn) −→ V (P∞). If, moreover, V (P∞) < +∞, then (Pn) and (P∞) respec-
tively have unique optimal solutions with xn and x∞, and xn −→ x∞. ♦

Proof. Set

Cn : =
{
x ∈ L1

E(S, µ) | 〈a∗i , x〉 = bi, i = 1, · · · , n
}

C∞ : =
{
x ∈ L1

E(S, µ) | 〈a∗i , x〉 = bi, i = 1, · · · , n, n+ 1, · · ·
}
.

Then we have C1 ⊇ C2 ⊇ . . . ⊇ Cn ⊇ . . .. Thus, lim
w
Cn ⊆ C∞ and C∞ =

⋂
n≥1Cn ⊆⋃

m≥1

⋂
n≥mCn. We finish with a direct application of Example 4.1 and Fact 2.19. �

We next revisit a function φ given in [3] such that Iφ is not strongly rotund but φ is
everywhere strictly convex.

Example 4.3 (Borwein and Lewis) Let φ(x) :=

{
− log x, ifx > 0;

+∞, otherwise
,∀x ∈ R. Let

S = [0, 1] and µ be Lebesgue measure.

Then Iφ is the Burg entropy, and φ∗(x) =

{
−1− log(−x), ifx < 0;

+∞, otherwise
,∀x ∈ R. However,

Iφ does not have weakly compact lower level sets (See [3, page 258].). Hence Iφ is not strongly
rotund. ♦

5 Watson integral and Burg entropy nonattainment

Let S = [0, 1] × [0, 1] × [0, 1] and µ be the Lebesgue measure, and let φ be defined as in
Example 4.3. Consider the perturbed Burg entropy minimization problem

inf Iφ(x)

subject to
∫
S
x(s)dµ(s) = 1∫

S
x(s) cos (2πsk) dµ(s) = α, k = 1, 2, 3

x ∈ L1
R(S, µ),

where s := (s1, s2, s3) and dµ(s) := ds1ds2ds3. Then the above problem is equivalent to the
following.

v (α) := sup
0≤p∈L1

R(S,µ)

{∫
S

log (p(x1, x2, x3))

∣∣∣∣ ∫
S

p(x1, x2, x3)dx1dx2dx3 = 1,
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and for k = 1, 2, 3,

∫
S

p(x1, x2, x3) cos (2πxk) dx1dx2dx3 = α

}
,

maximizing the log of a density p with given mean, and with the first three cosine moments
fixed at a parameter value 0 ≤ α < 1. It transpires that there is a parameter value α such
that below and at that value v(α) is attained, while above it is finite but unattained. This
is interesting, because:

The general method—maximizing
∫
S

log (p(s)) dµ(s) subject to a finite number of trigono-
metric moments—is frequently used. In one or two dimensions, such spectral problems are
always attained when feasible.

There is no easy way to see that this problem qualitatively changes at α, (by [5,
Eqs. (5.8)&(5.10)]) but we can get an idea by considering

p (x1, x2, x3) =
1/W1

3−
∑3

1 cos (2πxi)
,

and checking that this is feasible for

α = 1− 1/(3W1) ≈ 0.340537329550999142833

in terms of the first Watson integral, W1 :=
∫ π
−π

∫ π
−π

∫ π
−π

1
3−cos(x1)−cos(x2)−cos(x3)

dx1dx2dx3 (See

[7, Item 20, page 117] and [14] for more information about W1.). By using Fenchel duality
[8] one can show that this p is optimal.

Indeed, for all α ≥ 0 the only possible optimal solution is of the form

pα (x1, x2, x3) =
1

λ0
α −

∑3
1 λ

i
α cos (2πxi)

,

for some real numbers λiα. Note that we have four coefficients to determine; using the
four constraints we can solve for them. Let W1(w) be the generalized Watson integral, i.e.,
W1(w) :=

∫ π
−π

∫ π
−π

∫ π
−π

1

3−w
(

cos(x1)+cos(x2)+cos(x3)
)dx1dx2dx3 (See [7, Item 21(e), page 120] and

[14] for more information about W1(w).).

For 0 ≤ α ≤ α, the precise form is parameterized by the generalized Watson integral:

pα (x1, x2, x3) =
1/W1(w)

3−
∑3

1w cos (2πxi)
,

and α = 1− 1/(3W1(w)), as w ranges from zero to one.

Note also that W1(w) = π3
∫∞

0
I3

0 (w t) e−3t dt allows one to quickly obtain w from α
numerically. For α > α, no feasible reciprocal polynomial can stay positive. Full details are
given in [5, Example 4, pp. 264-265].
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6 Applications of Visintin’s Theorem

Visintin’s Theorem [26, Theorem 3(i)] on norm convergence of sequences converging weakly
to an extreme point, allows for a very efficient proof of the Kadec property for integral
functionals. Indeed, using Fact 2.10, we arrive at the following.

Fact 6.1 (Visintin) (See [26, Theorem 3(i)].) Let φ : E → ]−∞,+∞] be proper, lower
semicontinuous and strictly convex. Then Iφ has the Kadec property.

Remark 6.2 In the proofs of Theorem 3.7 and Theorem 3.8, we can also apply Visintin
Theorem (see Fact 6.1) to show that Iφ has the Kadec property.

Example 6.3 Let φ be defined as in Example 4.3. Then Iφ has the Kadec property. Indeed,
since φ is proper, lower semicontinuous and strictly convex, it follows from Fact 6.1 that Iφ
has the Kadec property. ♦

Theorem 6.4 (Strong rotundity) Let φ : E → ]−∞,+∞] be proper, lower semicontin-
uous and convex. Suppose that φ is strictly convex on its domain and φ∗ is differentiable on
E. Then Iφ is strongly rotund on L1

E(S, µ).

Proof. By Fact 2.15, Iφ is strictly convex on its domain. Since domφ∗ = E, by [21, Corol-
lary 2B], Iφ has weakly compact lower level sets. Visintin Theorem (see Fact 6.1) implies
that Iφ has the Kadec property. Hence Iφ is strongly rotund. �

Remark 6.5 We cannot remove the assumption of strict convexity of φ in Theorem 6.4.
For example, let φ : R2 → ]−∞,+∞] be defined by

(x, y) 7→

{
−(xy)

1
4 , if 0 ≤ x ≤ 1, 0 ≤ y ≤ 1;

+∞, otherwise
.

Then φ is proper lower semicontinuous and convex. By [8, Exercise 5.3.10, page 249], φ is
not strictly convex on its domain although φ∗ is differentiable everywhere on R2. Hence Iφ
is not strongly rotund.

Remark 6.6 Let φ : E → ]−∞,+∞] be proper, lower semicontinuous and convex. Suppose
that φ∗ is differentiable on E. Assume that E is one-dimensional or domφ = dom ∂φ (for
example, domφ is open), by Fact 2.8 and Fact 2.9(ii), the differentiability of φ∗ implies that
the strictly convexity of φ. Thus we can remove the assumption of the strictly convexity of
φ in Theorem 6.4 under this constraint.
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Example 6.7 Let F be the Euclidean space that consists of all symmetric d × d matrices
with the inner product 〈M,N〉 = tr(MN) (for every M,N ∈ F ), where tr(M) is the trace
of the matrix M . Let F++ be the set of symmetric d×d positive definite matrices. We define

φ on F by M 7→ φ(M) :=

{
− log det(M), ifM ∈ F++;

+∞, otherwise
, where det(M) is the determinant

of the matrix M . Then Iφ has the Kadec property in L1
F (S, µ).

Proof. By [8, Proposition 3.2.3, page 100], φ is proper lower semicontinuous and strictly
convex. Then by Fact 6.1, Iφ has the Kadec property in L1

F (S, µ). �

7 Convergence in measure

Recall that (S, µ) is a complete finite measure space (with nonzero measure µ). Let (xn)n∈N
and x be in L1

E(S, µ). We say (xn)n∈N converges to x in measure if for every η > 0, limµ
{
s ∈

S | ‖xn(s)−x(s)‖ ≥ η
}

= 0. We say (xn)n∈N converges to x µ– uniformly if for every ε > 0,
there exists a measurable subset T of S such that µ(T ) < ε and (xn)n∈N converges uniformly
to x on T c.

Let (xn)n∈N and x be in L1
E(S, µ). Then (xn)n∈N strongly converges to x if and only if

(xn)n∈N converges to x in measure and (xn)n∈N also weakly converges to x (see [26, Lemma 1
and Lemma 2]). Thus, for a strictly convex integrand, Theorem 6.4 shows that weak con-
vergence must fail whenever measure convergence holds and strong convergence does not
follow.

The following is another sufficient condition for a sequence convergent in measure to be
strongly convergent.

Fact 7.1 See ([12, Theorem 3.6, page 122]) Let (xn)n∈N be in L1
E(S, µ) and x : S → E.

Then x ∈ L1
E(S, µ) and xn −→ x if and only if the following conditions hold:

(i) (xn)n∈N converges to x in measure.

(ii) limµ(E)→0

∫
E
‖xn(s)‖dµ(s) = 0 uniformly in n.

See [1] for more information on the relationships between weak, measure and strong conver-
gence.

Fact 7.2 (See [12, Corollary 3.3, page 145].) Let (xn)n∈N and x be in L1
E(S, µ). Assume

that (xn)n∈N converges to x in measure. Then there exists a subsequence of (xn)n∈N that
converges to x µ–uniformly.
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Let f : X → ]−∞,+∞] be lower semicontinuous at x0 ∈ dom f . Then the Clarke-
Rockafellar directional derivative of f at x0 is defined

f ↑(x0; v) := sup
ε>0

lim sup
t↓0, x→fx0

inf
‖u−v‖≤ε

f(x+tu)−f(x)
t

, ∀v ∈ X,

where x→f x0 means that x −→ x0 and f(x) −→ f(x0). Then the Clarke subdifferential of
f at x0 is defined by

∂Cf(x0) :=
{
x∗ ∈ X∗ | 〈x∗, v〉 ≤ f ↑(x0; v), ∀v ∈ X

}
.

If f is also convex, then ∂f = ∂Cf (see [27, Theorem 3.2.4(ii)]).

We are now ready for two results showing when convergence in measure of a sequence
(xn)n∈N allows us to deduce convergence of (Iφ(xn))n∈N . This is useful if one thinks of Iφ as
a measurement of a reconstruction xn for a member of a sequence which may not be norm
convergent to the underlying signal x.

Theorem 7.3 (Preservation of convergence in measure) Let φ : E → ]−∞,+∞] be
proper such that φ|domφ is continuous on domφ. Assume that there exists M > 0 such that
|φ(v)| ≤ M for all v ∈ domφ. Let (xn)n∈N and x be in dom Iφ such that (xn)n∈N converges
to x in measure. Suppose that one of the following conditions holds.

(i) x ∈ L∞E (S, µ); or

(ii) φ|domφ is uniformly continuous on domφ, in particular, when φ|domφ is globally Lips-
chitz on domφ.

Then
∫
S

∣∣φ(xn(s)
)
− φ
(
x(s)

)∣∣dµ(s) −→ 0. Consequently, Iφ(xn) −→ Iφ(x).

Proof. Since (xn)n∈N and x are in dom Iφ, we can and do assume that xn(s) ∈ domφ for all
n ∈ N, s ∈ S and x(s) ∈ domφ for all s ∈ S.

We first assume that x ∈ L∞E (S, µ). Suppose to the contrary that
∫
S

∣∣φ(xn(s)
)
−

φ
(
x(s)

)∣∣dµ(s) 9 0. Then there exist ε0 > 0 and a subsequence of (xn)n∈N, for convenience,
still denoted by (xn)n∈N, such that∫

S

∣∣φ(xn(s)
)
− φ
(
x(s)

)∣∣dµ(s) ≥ ε0, ∀n ∈ N.(32)

Since x ∈ L∞E (S, µ), there exists L > 0 such that ‖x(s)‖ ≤ L for almost all s ∈ S. We can
and do suppose that

‖x(s)‖ ≤ L, ∀s ∈ S.(33)
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Let ε > 0 . Since φ|domφ is continuous on domφ, then φ|domφ is uniformly continuous on
domφ ∩ (L+ 1)BE. Then there exists δ > 0 such that

|φ(u)− φ(v)| ≤ ε, ∀‖u− v‖ ≤ δ, ∀u, v ∈ domφ ∩ (L+ 1)BE.(34)

By Fact 7.2, there exists a subsequence (xnk)k∈N of (xn)n∈N such that (xnk)k∈N converges to
x µ–uniformly. Then there exist N1 ∈ N and a measurable subset T of S such that µ(T ) < ε
and

‖xnk(s)− x(s)‖ ≤ min{δ, 1}, ∀k ≥ N1,∀s ∈ T c.(35)

Then by (33),

xnk(s) ∈ domφ ∩ (L+ 1)BE, ∀k ≥ N1,∀s ∈ T c.(36)

Then by assumption, we have∫
S

∣∣φ(xnk(s))− φ(x(s)
)∣∣dµ(s)

=

∫
T c

∣∣φ(xnk(s))− φ(x(s)
)∣∣dµ(s) +

∫
T

∣∣φ(xnk(s))− φ(x(s)
)∣∣dµ(s)

≤
∫
T c
εdµ(s) +

∫
T

∣∣φ(xnk(s))− φ(x(s)
)∣∣dµ(s) (by (36), (33),(34) and (35))

≤
∫
T c
εdµ(s) +

∫
T

2Mdµ(s) (since |φ(v)| ≤M for all v ∈ E)

≤ εµ(T c) + 2Mε, ∀k ≥ N1.

Then
∫
S

∣∣φ(xnk(s)) − φ
(
x(s)

)∣∣dµ(s) −→ 0, which contradicts (32). Hence
∫
S

∣∣φ(xn(s)
)
−

φ
(
x(s)

)∣∣dµ(s) −→ 0. Consequently, Iφ(xn) −→ Iφ(x).

The proof is similar when φ is assumed uniformly continuous but x is allowed to lie in
L1
E(S, µ). �

The following brief proof of Corollary 7.4 is due to the referee.

Corollary 7.4 Let φ : E → ]−∞,+∞] be proper lower semicontinuous. Let (xn)n∈N and x
be in L1

E(S, µ). Assume that there exists δ > 0 such that

sup
(x,x∗)∈gra ∂Cφ

‖x∗‖ ≤ δ.(37)

Suppose that (xn)n∈N converges to x in measure and there exists M > 0 such that |φ(v)| ≤M
for all v ∈ domφ. Then

∫
S

∣∣φ(xn(s)
)
−φ
(
x(s)

)∣∣dµ(s) −→ 0. Consequently, Iφ(xn) −→ Iφ(x).
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Proof. By [24, Theorem 2.1], φ is δ− Liptschtiz on E. Then we directly apply Theo-
rem 7.3(ii). �

While non-trivial convex integrands will not satisfy (37) there are many simple examples
which do.

Example 7.5 (Nonconvex integrands) Let φ(x) := min{‖x‖, 1} for every x ∈ E. Let
(xn)n∈N and x be in L1

E(S, µ). Suppose that (xn)n∈N converges to x in measure. Then∫
S

∣∣φ(xn(s)
)
− φ
(
x(s)

)∣∣dµ(s) −→ 0. Consequently, Iφ(xn) −→ Iφ(x).

Proof. Clearly, φ is continuous (actually Lipschitz) and sup(x,x∗)∈gra ∂Cφ
‖x∗‖ ≤ 1. By the

definition of φ, we have (xn)n∈N and x are in dom Iφ. Then directly apply Corollary 7.4. �

Now we give an example of a useful convex integrand.

Example 7.6 (Convex integrands) Let φ be defined as in Example 4.1(ii) ( i.e., Iφ is the
Fermi-Dirac entropy). Let (xn)n∈N and x be in dom Iφ. Suppose that (xn)n∈N converges to
x in measure. Then

∫
S

∣∣φ(xn(s)
)
− φ
(
x(s)

)∣∣dµ(s) −→ 0. Consequently, Iφ(xn) −→ Iφ(x).

Proof. Since domφ is compact, φ|domφ is uniformly continuous on domφ. We have
supv∈domφ |φ(v)| ≤ d ln(2). Then apply Theorem 7.3(ii) directly. �

To use such value convergence results, it behoves us to provide an example of integrands
such that

∫
S

∣∣φ(xn(s)
)
− φ
(
x(s)

)∣∣ dµ(s) −→ 0 implies xn → x in measure.

Example 7.7 Let φ(x) :=

{
− log x, ifx > 0;

+∞, otherwise
,∀x ∈ R. Let S = [0, 1] and let µ be

the Lebesgue measure. Let (xn)n∈N and x be in dom Iφ. Suppose that x ∈ L∞E (S, µ) and∫
S

∣∣φ(xn(s)
)
− φ
(
x(s)

)∣∣dµ(s) −→ 0. Then xn → x in measure.

Proof. By the assumption, we can and do assume that xn(s) ∈ domφ for all n ∈ N, s ∈ S
and x(s) ∈ domφ for all s ∈ S. Since x ∈ L∞E (S, µ), there exists L > 0 such that |x(s)| ≤ L
for almost all s ∈ S. We can and do suppose that

|x(s)| ≤ L, ∀s ∈ S.(38)

Suppose to the contrary that (xn)n∈N does not converge to x in measure. Then there exist
η > 0, ε0 > 0 and a subsequence (xnk)k∈N of (xn)n∈N such that

µ(Tk) ≥ ε0, ∀k ∈ N,(39)
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where Tk :=
{
s ∈ S |

∣∣xnk(s)− x(s)
∣∣ ≥ η

}
. Then we have∫

S

∣∣φ(xnk(s))− φ(x(s)
)∣∣dµ(s)

=

∫
Tk

∣∣φ(xnk(s))− φ(x(s)
)∣∣dµ(s) +

∫
(Tk)c

∣∣φ(xnk(s))− φ(x(s)
)∣∣dµ(s)

≥
∫
Tk

∣∣φ(xnk(s))− φ(x(s)
)∣∣dµ(s)

=

∫
Tk

∣∣〈φ′(yks), xnk(s)− x(s)
〉∣∣dµ(s), ∃yks ∈ [xnk(s), x(s)] (by Mean Value Theorem)

=

∫
Tk

1∣∣x(s)+tks

(
xnk (s)−x(s)

)∣∣ · ∣∣xnk(s)− x(s)
∣∣dµ(s), ∃tks ∈ [0, 1]

≥
∫
Tk

1∣∣x(s)

∣∣+∣∣xnk (s)−x(s)

∣∣ · ∣∣xnk(s)− x(s)
∣∣dµ(s)

≥
∫
Tk

η
L+η
≥ ηε0

L+η
(by (38) and (39)),∀k ∈ N,

which contradicts that
∫
S

∣∣φ(xn(s)
)
− φ
(
x(s)

)∣∣dµ(s) −→ 0. Hence xn → x in measure. �

Sadly, in Example 7.7, we cannot replace
∫
S

∣∣φ(xn(s)
)
−φ
(
x(s)

)∣∣dµ(s) −→ 0 by Iφ(xn) −→
Iφ(x). We use the following example to show that.

Example 7.8 Let φ(x) :=

{
− log x, ifx > 0;

+∞, otherwise
,∀x ∈ R, and let S, µ be defined

as in Example 7.7. We define xn : S → R (for every n ∈ N) by xn(s) :={
n, if s ∈

[
0, 1

1+logn

]
;

1, otherwise
,∀s ∈ S. Set x(s) := exp(1), ∀s ∈ S.

Then (xn)n∈N and x are in dom Iφ, x ∈ L∞R (S, µ) and Iφ(xn) −→ Iφ(x) = −1 but (xn)n∈N
does not converge to x in measure.

Proof. Clearly, x ∈ L1
R(S, µ) ∩ L∞R (S, µ). Now we show (xn)n∈N is in L1

R(S, µ). Fix n ∈ N.
Then xn is a bounded and measurable function. Thus, xn ∈ L1

R(S, µ).

Now we show that Iφ(xn) −→ Iφ(x). Clearly, Iφ(x) =
∫
S
− log

(
exp(1)

)
dµ(s) = −1.

Iφ(xn) =

∫
S

φ
(
xn(s)

)
dµ(s)

=

∫
[
0,

1
1+logn

] φ(xn(s)
)
dµ(s) +

∫
]

1
1+logn

,1
] φ(xn(s)

)
dµ(s)
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=

∫
[
0,

1
1+logn

]− log ndµ(s) +

∫
]

1
1+logn

,1
]− log 1dµ(s)

= − logn
1+logn

−→ −1 = Iφ(x).

Hence Iφ(xn) −→ Iφ(x).

On the other hand,

µ
{
s ∈ S | |xn(s)− x(s)| ≥ 1

}
= µ

{
s ∈ S | |xn(s)− exp(1)| ≥ 1

}
≥ µ

{ ]
1

1+logn
, 1
] }

= 1− 1
1+logn

≥ 1
2
, ∀n ≥ 3.

Hence (xn)n∈N does not converge to x in measure. �

The converse of Example 7.7 cannot hold either.

Example 7.9 Let φ, S, µ and (xn)n∈N be all defined as in Example 7.8. Let x(s) :=
1,∀s ∈ S. Then (xn)n∈N and x are in dom Iφ, x ∈ L∞R (S, µ) and xn → x in measure
but

∫
S

∣∣φ(xn(s)
)
− φ
(
x(s)

)∣∣dµ(s) 9 0.

Proof. Example 7.8 shows that (xn)n∈N is in dom Iφ.

Clearly, x ∈ dom Iφ and x ∈ L∞R (S, µ). Now we show that xn → x in measure. Let η > 0.
Then we have

µ
{
s ∈ S | |xn(s)− x(s)| ≥ η

}
= µ

{
s ∈ S | |xn(s)− 1| ≥ η

}
≤ µ

{ [
0, 1

1+logn

] }
= 1

1+logn
−→ 0.

Hence xn → x in measure.

We have

lim

∫
S

∣∣φ(xn(s)
)
− φ
(
x(s)

)∣∣dµ(s) = lim

∫
S

∣∣φ(xn(s)
))∣∣dµ(s)

= lim

∫
S

−φ
(
xn(s)

))
dµ(s) = lim−Iφ(xn) = 1 6= 0 ( by Example 7.8).

Hence
∫
S

∣∣φ(xn(s)
)
− φ
(
x(s)

)∣∣dµ(s) 9 0. �

Let φ : E → ]−∞,+∞] be proper lower semicontinuous and strictly convex. Let (xn)n∈N
and x be in dom Iφ. Assume that x ∈ argmin Iφ. The results so far given provoke the
following question:

If xn −→ x in measure, is it necessarily true that Iφ(xn) −→ Iφ(x)?
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The following example shows that the above statement cannot be true without imposing
extra conditions.

Example 7.10 (Incompatibility of measure and value convergence) Let

φ(x) :=

{
− log x+ x, ifx > 0;

+∞, otherwise
,∀x ∈ R. Let S = [0, 1] and let µ be the Lebesgue

measure. Set (for every n ∈ N) xn(s) :=

{
n, if s ∈

[
0, 1

n

]
;

1, otherwise
,∀s ∈ S. Then φ is proper lower

semicontinuous and strictly convex. Let x : S → R be given by x(s) := 1,∀s ∈ S.

Then (xn)n∈N and x are in L1
R(S, µ),

argmin Iφ = {x} and xn → x in measure

but Iφ(xn) 9 Iφ(x). In particular, (xn)n∈N does not converge weakly to x.

Proof. Clearly, x ∈ L1
R(S, µ). First we show (xn)n∈N is in L1

R(S, µ). Let n ∈ N. Then xn is
a measurable function. Let n ∈ N. Then xn is a bounded and measurable function. Thus,
xn ∈ L1

R(S, µ). We have∫
S

|xn(s)|dµ(s) =

∫
S

xn(s)dµ(s) =

∫
[
0,

1
n

] xn(s)dµ(s) +

∫
]

1
n
,1
] xn(s)dµ(s)

=

∫
[
0,

1
n

] ndµ(s) +

∫
]

1
n
,1
] 1dµ(s)

= 1 + (1− 1
n
).(40)

Since argminφ = {1}, Iφ(x) =
∫
S
φ(1)dµ(s) ≤

∫
S
φ
(
z(s)

)
dµ(s) = Iφ(z),∀z ∈ L1

R(S, µ).
Then x ∈ argmin Iφ. By Fact 2.15, Iφ has unique minimizer and hence argmin Iφ = {x}.

Now we show that xn → x in measure. Let η > 0. Then we have

µ
{
s ∈ S | |xn(s)− x(s)| ≥ η

}
= µ

{
s ∈ S | |xn(s)− 1| ≥ η

}
≤ µ

{ [
0, 1

n

] }
= 1

n
−→ 0.

Hence limµ
{
s ∈ S | |xn(s)− x(s)| ≥ η

}
= 0 and thus xn → x in measure.

By (40), ‖xn‖1 9 ‖x‖1 = 1. Then xn 9 x. Since xn → x in measure, [26, Lemma 2]
implies that (xn)n∈N does not converge weakly to x.

We claim that Iφ(xn) 9 Iφ(x). We have

Iφ(xn) =

∫
S

φ
(
xn(s)

)
dµ(s)
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=

∫
[
0,

1
n

] φ(xn(s)
)
dµ(s) +

∫
]

1
n
,1
] φ(xn(s)

)
dµ(s)

=

∫
[
0,

1
n

]− log n+ ndµ(s) +

∫
]

1
n
,1
]− log 1 + 1dµ(s)

= − logn
n

+ 1 + (1− 1
n
) −→ 2.

However,

Iφ(x) =

∫
S

φ
(
x(s)

)
dµ(s) =

∫
S

− log 1 + 1dµ(s) = 1.

Combining the results above, Iφ(xn) 9 Iφ(x). �

Remark 7.11 Let (Cn)n∈N and C∞ in L1
E(S, µ) be closed convex sets, and let φ : E →

]−∞,+∞] be proper lower semicontinuous and convex. When, as in [6], we consider the
following sequences of optimization problems

(Pn) V (Pn) := inf
{
Iφ(x) | x ∈ Cn

}
,

(P∞) V (P∞) := inf
{
Iφ(x) | x ∈ C∞

}
,

the above results indicate that one cannot significantly weaken the conditions of Fact 2.19
(such as, replacing weak convergence by measure convergence).

To conclude, we observe that the examples of this section indicate the limited use of
convergence in measure in the absence of weak compactness conditions.
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