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Abstract

In [8] the current authors, along with the late and much-missed Richard Crandall (1947–
2012), considered generalized Mordell–Tornheim–Witten (MTW) zeta-function values along
with their derivatives, and explored connections with multiple-zeta values (MZVs). This en-
tailed use of symbolic integration, high precision numerical integration, and some interesting
combinatorics and special-function theory. The original motivation was to represent objects
such as Eulerian log-gamma integrals; and all such integrals were expressed in terms of a
MTW basis. Herein, we extend the research envisaged in [8] by analyzing the relations be-
tween a significantly more general class of MTW sums. This has required significantly more
subtle scientific computation and concomitant special function theory.

1 Introduction

In [8] we defined an ensemble of extended Mordell–Tornheim–Witten (MTW) zeta function values
[23, 36, 29, 30, 5, 15, 37, 38]. There is by now a huge literature on these sums; in part because of
the many connections with fields such as combinatorics, number theory, and mathematical physics.
Unlike previous authors we included derivatives with respect to the order of the terms. We in-
vestigated interrelations between MTW evaluations, and explored some deeper connections with
multiple-zeta values (MZVs). To achieve these results, we used symbolic and numerical integration,
special function theory and some less-than-obvious combinatorics and generating function analysis.

Our original motivation was that of representing previously unresolved constructs such as Eu-
lerian log-gamma integrals

LGn :=

∫ 1

0

logn Γ(x) dx.

For that purpose it was necessary to consider only one differentiation of Lis(z) with respect to
s—though the requisite tools for higher order derivatives were laid out in [8]. For additional
introductory material we refer to [8]. These approaches are extended to character polylogarithms
in [6]. Some related results and computational algorithms for the incomplete gamma function, the
Hurwitz zeta function, and the Dirichlet L-series are presented in [7].
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In this article we continue the research envisaged in [8] by analyzing the relations between
higher-order MTW sums. This paper is, in consequence, in part in homage to our friend and
collaborator Richard Crandall who died after a short illness on December 20, 2012. It is also a
fitting tribute to Dick Askey, whose role in the development of modern special function theory has
been prodigious (see [1] and the discussion in [19]). In Indiscrete Thoughts [34, p. 216] Gian-Carlo
Rota writes “special functions [is] a Wisconsin subject,” but in this setting ‘Askey’ is a synonym
for ‘Wisconsin’.

1.1 Organization

The organization of the paper is as follows. In Section 2 we recall an ensemble D capturing the
values we wish to study and provide effective integral representations in terms of polylogarithms
on the unit circle. (In Section 4.5 we reprise a subensemble D1 sufficient for the study log gamma
integrals.) In Section 3 we provide the necessary polylogarithmic algorithms for computation of our
sums/integrals to high precision (400 digits up to 3100 digits). To do so we first have to provide
similar tools for the zeta function and its derivatives at integer points. These methods, and some
extensions, are of independent value and are further pursued in this paper.

In Section 4 we record various reductions and interrelations of our MTW values (see Theorems
5, 6 and 7). In Section 5 we reprise two rigorous experiments [8] designed to use integer relation
methods [16] to first explore the structure of the ensemble D1 and then to begin to study D. Section
6 we present our new experimental work on the structure of D. It also provides proofs of some
experimentally discovered results. Finally, in Section 7 we make some summatory remarks.

2 Mordell–Tornheim–Witten ensembles

The multidimensional Mordell–Tornheim–Witten (MTW) zeta function

ω(s1, . . . , sK+1) :=
∑

m1,...,mK > 0

1

ms1
1 · · ·m

sK
K (m1 + · · ·+mK)sK+1

(1)

enjoys known relations [32], but remains mysterious with respect to many combinatorial phenomena,
especially when we contemplate derivatives with respect to the si parameters. We shall refer to
K + 1 as the depth and

∑k+1
j=1 sj as the weight of ω.

A previous work [5] introduced and discussed a novel generalized MTW zeta function for positive
integers M,N and nonnegative integers si, tj—with constraints M ≥ N ≥ 1—together with a
polylogarithm-integral representation:

ω(s1, . . . , sM | t1, . . . , tN ) :=
∑

m1,...,mM ,n1,...,nN > 0∑M
j=1mj=

∑N
k=1 nk

M∏
j=1

1

mj
sj

N∏
k=1

1

nktk
(2)

=
1

2π

∫ 2π

0

M∏
j=1

Lisj
(
eiθ
) N∏
k=1

Litk
(
e−iθ

)
dθ. (3)

Here the polylogarithm of order s denotes Lis(z) :=
∑
n≥1 z

n/ns and its analytic extensions [31]
and the (complex) number s is its order.
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When some s-parameters are zero, there are convergence issues with this integral representation.
One may, however, use principal-value calculus, or alternative representations given in [8] and
expanded upon in Section 4.4.

When N = 1 the representation (3) devolves to the classic MTW form, in that

ω(s1, . . . , sM+1) = ω(s1, . . . , sM | sM+1). (4)

2.1 Generalized MTW sums

We also explore a wider MTW ensemble involving outer derivatives, introduced in [5], according to

ω

(
s1, . . . , sM | t1, . . . , tN
d1, . . . , dM | e1, . . . eN

)
:=

∑
m1,...,mM ,n1,...,nN > 0∑M

j=1mj=
∑N
k=1 nk

M∏
j=1

(− logmj)
dj

mj
sj

N∏
k=1

(− log nk)ek

nktk
(5)

=
1

2π

∫ 2π

0

M∏
j=1

Li(dj)sj

(
eiθ
) N∏
k=1

Li
(ek)
tk

(
e−iθ

)
dθ, (6)

where the s-th outer derivative of a polylogarithm is denoted Li(d)s (z) :=
(
∂
∂s

)d
Lis(z). Thus, the

effective computation of (6) requires really robust and efficient methods for computing Li(d)s (Section
3.1.3 and sequela) and for high precision quadrature (Section 3.6).

We emphasize that all ω are real since we integrate over a full period; or more directly since
the summand is real. Consistent with earlier usage, we now refer to M + N as the depth and∑M
j=1(sj + dj) +

∑N
k=1(tk + ek) as the weight of ω.

To summarize, we study the MTW ensemble comprising the set

D :=

{
ω

(
s1, . . . , sM | t1, . . . , tN
d1, . . . , dM | e1, . . . eN

)
: si, di, tj , ej ≥ 0; M ≥ N ≥ 1,M,N ∈ Z+

}
. (7)

3 Underlying special function and computational tools

To study ensemble D intensively, we must repeatedly differentiate polylogarithms with respect to
their order, and be able to compute these and related functions, and the integrals (2) and (6) to
very high precision (typically hundreds of digits or more).

The reason that such high precision is required stems from our applications of the PSLQ in-
teger relation algorithm [11] in this research. Given an input vector of computed real numbers
(x1, x2, · · · , xn), PSLQ finds a nontrivial integer vector (a1, a2, · · · , an), if it exists, such that
a1x1 + a2x2 + · · · anxn = 0. Such an algorithm is useful in this context because it often per-
mits one to identify a high-precision computed numerical value in terms of an analytic formula
involving certain well-known mathematical constants.

Suppose, for example, one conjectures an integral I is given as a sum of terms (with unknown
rational coefficients), each of which is some known constant. Then by computing x1 = I and the
terms (xi, 2 ≤ i ≤ n) to sufficiently high precision, and applying PSLQ to (x1, x2, · · · , xn), the
integer coefficients of such a relation (if it exists) can be found. Solving this relation for x1 = I
produces a rational linear for I involving the conjectured constants. Even if PSLQ fails to find
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a numerically significant integer relation, it produces exclusion bounds within which no integer
relation exists; often valuable information in this type of exploration.

For PSLQ (or any other relation-finding algorithm) to reliably recover a relation (a1, a2, · · · , an)
of length n, where the coefficients (ai) have maximum absolute value 10d, requires at least dn-digit
precision in the input vector, and at least dn-digit arithmetic in the operation of the algorithm.

3.1 Polylogarithms and their derivatives with respect to order

In regard to the needed polylogarithm values, [5] gives formulas such as below.

Proposition 1. When s = n is a positive integer,

Lin(z) =

∞ ′∑
m=0

ζ(n−m)
logm z

m!
+

logn−1 z

(n− 1)!
(Hn−1 − log(− log z)) , (8)

valid for | log z| < 2π. Here Hn := 1 + 1
2 + 1

3 + · · ·+ 1
n , and the primed sum

∑′
means to avoid the

singularity at ζ(1). For any complex order s not a positive integer,

Lis(z) =
∑
m≥0

ζ(s−m)
logm z

m!
+ Γ(1− s)(− log z)s−1. (9)

(This formula is valid for s = 0.)

In formula (8), the condition | log z| < 2π precludes its use when |z| < e−2π ≈ 0.0018674. For
such small |z|, however, it typically suffices to use the definition

Lis(z) =

∞∑
k=1

zk

ks
. (10)

Note that Li0(z) = z/(1− z) and Li1(z) = − log(1− z).
In fact, we found that formula (10) is generally faster than (8) whenever |z| < 1/4, at least for

precision levels in the range of 100 to 4000 digits.

3.1.1 Outer derivatives of general order polylogarithms

On carefully manipulating (9) for integer k ≥ 0 we have for | log z| < 2π and τ ∈ [0, 1):

Lik+1+τ (z) =
∑

0≤n 6=k

ζ(k + 1 + τ − n)
logn z

n!
+

logk z

k!

∞∑
j=0

ck,j(L) τ j , (11)

see [27, §9, eqn. (51)]. Here L := log(− log z) and the c coefficients engage the Stieltjes constants
γn, where γ0 = γ [27, §7.1], which occur in the asymptotic expansion

ζ(z) =
1

z − 1
+

∞∑
n=0

(−1)n

n
γn(z − 1)n.
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Precisely

ck,j(L) =
(−1)j

j!
γj − bk,j+1(L), (12)

where the bk,j terms—corrected from [27, §7.1]—are given by

bk,j(L) :=
∑

p+t+q=j
p,t,q≥0

L p

p!

Γ(t)(1)

t!
(−1)tfk,q, (13)

and fk,q is the coefficient of xq in
∏k
m=1

1
1+x/m . This is calculable recursively via f0,0 = 1, f0,q =

0 (q > 0), fk,0 = 1 (k > 0) and

fk,q =

q∑
h=0

(−1)h

kh
fk−1,q−h. (14)

Above we used the functional equation for the Γ function to remove singularities at negative integers.
While (11) has little directly to recommend it computationally, it is highly effective in deter-

mining derivative values with respect or order, as we shall see in (17).

Remark 1 (Harmonic numbers). The next formula from [21] is helpful in organizing differentiation
and highlights the relationship between the rising factorial or binomial coefficient and harmonic
numbers: for n ≥ 1

(−1)α

α!

(
d

dλ

)α(
λ

n

)∣∣∣∣
λ=0

=
(−1)n

n
H

[α−1]
n−1 . (15)

Herein,
(
λ
n

)
denotes the binomial function Γ(λ+1)/(Γ(n+1)Γ(λ−n+1)), and we denote a multiple

harmonic number by

H
[α]
n−1 :=

∑
n>i1>i2>...>iα

1

i1i2 · · · iα
. (16)

If α = 0 we set H
[0]
n−1 := 1. We also recall that H

(β)
n−1 :=

∑
k<n 1/kβ can be recovered for sums of

products of H
[α]
k . ♦

Then, fk,1 = −Hk and fk,2 = H
[2]
k = 1

2H
2
k + 1

2H
(2)
k , in terms of classical generalized harmonic

numbers, while ck,0 = Hk − L. With k = τ = 0 this yields (8).

To obtain the first derivative Li
(1)
k+1(z), we differentiate (11) at zero and so require the evaluation

ck,1. With k = 0 and j = 1 this supplies (25) below. More generally:

Theorem 1 (Derivatives for positive order). Fix k = 0, 1, 2 . . . and m = 1, 2 . . . . For | log z| < 2π
and L = log(− log z) one has

Li
(m)
k+1(z) =

∑
0≤n 6=k

ζ(m)(k + 1− n)
logn z

n!
+m! ck,m(L)

logk z

k!
. (17)
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Here, for k ≥ 1, ck,j(L) = (−1)j
j! γj − bk,j+1(L). (as in (13), (19) valid for k = 0) above

bk,m(L) := k
∑

p+t+q=m
p,t,q≥0

(−1)t
L p

p!

Γ(t)(1)

t!

β(q)(k, 1)

q!
=

∑
p+t+q=j
p,t,q≥0

L p

p!

Γ(t)(1)

t!
(−1)tfk,q, (18)

where β(q)(k, 1) is the q-th derivative of the beta function β(k, x) wrt x at 1, the f coefficients are
given recursively by f0,0 = 1, f0,q = 0 (q > 0), fk,0 = 1 (k > 0) while

fk,q =

q∑
h=0

(−1)h

kh
fk−1,q−h. (19)

Note that symmetric divided differences allow one to rapidly check (17) to moderate precision

(say 50 digits). For k = −1, or, in other words, for Li
(m)
0 (z), things are simpler, as we may use (9):

Theorem 2 (Derivatives for zero order). With Γ(t)(1) and L = log(− log z) as above for arbitrary
z, we have for m any positive integer

Li
(m)
0 (z) =

∑
n≥0

ζ(m)(−n)
logn z

n!
−

m∑
t=0

(−1)t
(
m

t

)
Γ(t)(1)

Lm−t

log z
. (20)

Below we give an effective algorithm for Γ(t)(1) in (39). We also provide the necessary tools for
computation of ζ(m)(−n) as required in (17) and (20).

3.1.2 Another potential method

An alternative way to calculate derivatives of polylogarithms avoids recourse to ζ or η derivatives,
the tradeoff being that one needs a side-quadrature calculation (albeit one involving only an el-
ementary integrand). P. Jodrá observes (http://rspa.royalsocietypublishing.org/content/
464/2099/3081.full) that polylogarithms can be written

Lis(z) =
z

Γ(s+ 1)

∫ 1

0

(− log u)s

(1− zu)2
du.

Multiplying through by Γ(s+ 1) =: s!, one has convenient recursion for the d-th derivative:

Li(d)s (z) = − 1

s!

d−1∑
j=0

(
d

j

)
Γ(d−j)(s+ 1)Li(j)s (z) +

1

s!
Is,d(z), (21)

where

Is,d(z) := z

∫ 1

0

logd(− log u)
(− log u)s

(1− zu)2
du. (22)

The Γ=derivatives here are again fundamental. The idea, then is to build a table of Li(d)s using this
recursion, with a log log-log integral required—but only once—for every new derivative. In this
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way, for each abscissa z in an overall MTW quadrature, a chain of derivatives can be calculated
and stored. Moreover, changing variables (x = − log u) and using the binomial theorem leads to

Is,d(z) = z Γ(d)(s+ 1) +

∞∑
n=2

(
d∑
k=0

(
d

k

)
(− log n)

k
Γ(d−k)(s+ 1)

)
zn

ns
. (23)

Hence, we opt to use the left side of (23), as the right includes calculating the series we wish to
avoid summing. That said, (23) leads to a quick verification of (21) and (22).

3.1.3 The special case s = 1 and z = eiθ

Most importantly, in light of integral (6) we may write, for 0 < θ < 2π,

Li1(eiθ) = − log

(
2 sin

(
θ

2

))
+

(π − θ)
2

i. (24)

As described , the order-derivatives Li′s(z) = d(Lis(z))/ ds for integer s, can be computed via

L′1(z) =

∞∑
n=1

ζ ′ (1− n)
logn z

n!
− γ1 −

1

12
π2 − 1

2
(γ + log (− log z))

2
, (25)

which, as before, is valid whenever | log z| < 2π. Here γ1 is the second Stieltjes constant [3, 27]. For
small |z|, it again suffices to use the elementary form

Li′s(z) = −
∞∑
n=1

zk log k

ks
. (26)

Relation (25) can be applied to yield the formula

Li′1(eiθ) =

∞∑
n=1

ζ ′ (1− n)
(iθ)n

n!
− γ1 −

1

12
π2 − 1

2
(γ + log (−iθ))2 , (27)

valid and convergent for |θ| < 2π.
Given such formulas, to evaluate MTW values one may use pure quadrature, a convergent series,

or a combination of quadrature and series. All of these are exploited in the MTW examples of [27].

3.2 Values of ζ at integer arguments

Effective use of (8,9) requires precomputed values of the zeta function and its derivatives at integer
arguments (see [3, 25]).

3.2.1 Values of ζ at positive even integer arguments

As we shall require ζ(n) for many integers, the following approach, used in [9], is efficient. First,
to compute ζ(2n), observe that

coth(πx) =
−2

πx

∞∑
k=0

ζ(2k)(−1)kx2k = cosh(πx)/ sinh(πx)

=
1

πx
· 1 + (πx)2/2! + (πx)4/4! + (πx)6/6! + · · ·

1 + (πx)2/3! + (πx)4/5! + (πx)6/7! + · · ·
. (28)
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Let P (x) and Q(x) be the numerator and denominator polynomials obtained by truncating these
series to n terms. The approximate reciprocal R(x) of Q(x) can be gotten from the Newton iteration

Rk+1(x) := Rk(x) + [1−Q(x) ·Rk(x)] ·Rk(x), (29)

where the degree of the polynomial and numeric precision of the coefficients are dynamically
increased, approximately doubling when convergence has been achieved—at a given degree and
precision—until the final desired degree and precision are achieved. When complete, the quotient
P/Q is the product P (x) ·R(x). Desired ζ(2k) values can then be obtained from coefficients of this
product polynomial as in [9]. Recall that ζ(0) = −1/2.

The Bernoulli numbers B2k are also needed. They now can be obtained from [33, Eqn. (25.6.2)]

B2k = (−1)k+1 2(2k)!ζ(2k)

(2π)2k
. (30)

3.2.2 Values of ζ at positive odd integer arguments

Positive odd zeta values can be efficiently found via two Ramanujan-style formulas: [9, 18]:

ζ(4N + 3) = −2

∞∑
k=1

1

k4N+3(exp(2kπ)− 1)
− π(2π)4N+2

2N+2∑
k=0

(−1)k
B2kB4N+4−2k

(2k)!(4N + 4− 2k)!
, (31)

ζ(4N + 1) = − 1

N

∞∑
k=1

(2πk + 2N) exp(2πk)− 2N

k4N+1(exp(2kπ)− 1)2
− π(2π)4N

2N

2N+1∑
k=1

(−1)k
B2kB4N+2−2k

(2k − 1)!(4N + 2− 2k)!
.

3.2.3 Values of ζ at negative integer arguments

Finally, zeta can be evaluated at negative integers by the following formulas [33, (25.6.3), (25.6.4)]:

ζ(−2n+ 1) = −B2n

2n
and ζ(−2n) = 0. (32)

3.3 Derivatives of ζ at integer arguments

Precomputed zeta-derivative values are prerequisite for the efficient use of formulas we have pre-
sented so far, including the crucial formulas (17), (20), (25) and (27).

3.3.1 Derivatives of ζ at positive integer arguments

Remark 2 (Using Computer Algebra Systems). For the simplest instances of the just-mentioned
formulas, built-in zeta derivative facilities of Maple or Mathematica suffice; but from our experience
this approach is not robust. For example, Maple 16 produces 2000 digits of quantities such as ζ(10(2)
quite rapidly, and 5000-digit results in roughly 100 seconds. Yet while Mathematica 9 verifies the
2000-digit results in cases we tried (more slowly), it fails at 5000-digit precision. Also, Mathematica
9 inexplicably refuses to compute ζ(4)(0) at all; similarly for higher derivatives at zero. ♦
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For positive integers, derivatives of the zeta function can be computed via a series-accelerated
algorithm for derivatives of the Dirichlet eta function (or alternating zeta function), given as

η(s) :=

∞∑
n=1

(−1)n−1

ns
= (1− 21−s)ζ(s). (33)

For practical computation of eta or its derivatives, any of several alternating series acceleration
schemes can be used. The corresponding values of zeta derivatives can then be found by solving
(33) for ζ(s) and then taking formal derivatives, for example

ζ ′(s) =
η′(s)

(1− 21−s)
− 21−sη(s) log 2

(1− 21−s)2
. (34)

Example 1 (Alternating series acceleration [27, 26]). This is illustrated in the following Mathe-
matica code (for argument ss, and precision prec digits):

zetaprime[ss_] :=

Module[{s, n, d, a, b, c}, n = Floor[1.5*prec]; d = (3 + Sqrt[8])^n;

d = 1/2*(d + 1/d);

{b, c, s} = {-1, -d, 0};

Do[c = b - c;

a = 1/(k + 1)^ss *(-Log[k + 1]);

s = s + c*a;

b = (k + n)*(k - n)*b/((k + 1)*(k + 1/2)), {k, 0, n - 1}];

(s/d - 2^(1 - ss)*Log[2]*Zeta[ss])/(1 - 2^(1 - ss))]

In this algorithm, that logarithm and zeta values can be precalculated, and so do not significantly
add to run time. A similar approach works well for higher derivatives of zeta, although the resulting
generalization of (34) becomes progressively more complicated. ♦

3.3.2 First derivative of of ζ at zero and negative integer arguments

The functional equation ζ(s) = 2(2π)s−1 sin πs
2 Γ(1 − s) ζ(1 − s) lets one extract ζ ′(0) =

−(log 2π)/2 and for even m = 2, 4, 6, . . .

ζ ′(−m) :=
d

ds
ζ(s)|s=−m =

(−1)m/2m!

2m+1πm
ζ(m+ 1) (35)

[27, p. 15], while for odd m = 1, 3, 5 . . . on the other hand,

ζ ′(−m) = ζ(−m)

(
γ + log 2π −Hm −

ζ ′(m+ 1)

ζ(m+ 1)

)
. (36)

We now delineate methods more suited to higher derivatives at negative integers.

3.4 Higher derivatives of ζ at negative integers

To approach these values we again need recourse to the gamma function.
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3.4.1 Derivatives of Γ at positive integers

(a) Let gn := Γ(n)(1). Now it is well known [33, (5.7.1) and (5.7.2)] that

Γ(z + 1) C(z) = z Γ(z) C(z) = z (37)

where C(z) :=
∑∞
k=1 ckz

k with c0 = 0, c1 = 1, c2 = γ and

(k − 1)ck = γck−1 − ζ(2) ck−2 + ζ(3) ck−3 − · · ·+ (−1)k ζ(k − 1) c1, (38)

Thus, differentiating (37) by Leibnitz’ formula, for n ≥ 1 we have

gn = −
n−1∑
k=0

n!

k!
gk cn+1−k. (39)

(b) More generally, for positive integer m we have

Γ(z +m) C(z) = (z)m (40)

where (z)m := z(z + 1) · · · (z +m− 1) is the rising factorial. Whence, letting gn(m) := Γ(n)(m) so
that gn(1) = gn, we may apply the product rule to (40) and obtain

gn(m) = −
n−1∑
k=0

n!

k!
gk(m) cn+1−k +

Dn+1
m

n+ 1
. (41)

Here Dn
m is the n-th derivative of (x)m evaluated at x = 0; zero for n > m. For n ≤ m values are

easily obtained symbolically or in terms of Stirling numbers of the first kind :

Dn
m =

m−n∑
k=0

s (m, k + n) (k + 1)n (m− 1)
k

= (n+ 1)! (−1)m+n+1s (m, 1 + n) . (42)

Thus,
Dnm

(n+1) = n!|s(m, 1 + n)| and so for n,m > 1 we obtain the recursion

gn(m)

n!
= −

n−1∑
k=0

gk(m)

k!
cn+1−k + |s(m, 1 + n)|. (43)

where for integer n, k ≥ 0

s(n, k) = s(n− 1, k − 1)− (n− 1) s(n− 1, k) , (44)

as in [33, Equation (26.8.18)].

3.4.2 Apostol’s formulas for ζ(k)(m) at negative integers

For n = 1, 2, . . ., with κ := − log(2π)− 1
2πi, we have Apostol’s formulas [33, (25.6.13) and (25.6.14)]:

(−1)kζ(k)(1− 2n) =
2(−1)n

(2π)2n

k∑
m=0

m∑
r=0

(
k

m

)(
m

r

)
Re(κk−m) Γ(r)(2n) ζ(m−r)(2n) , (45)

(−1)kζ(k)(−2n) =
2(−1)n

(2π)2n+1

k∑
m=0

m∑
r=0

(
k

m

)(
m

r

)
Im(κk−m) Γ(r)(2n+ 1) ζ(m−r)(2n+ 1) .

(46)
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Since in (41) only initial conditions rely on m, equations (45) and (46) are well fitted to work
with (41) (along with (44), and (38)). The derivatives ζ(m)(0) needed in (45) can be computed by
either the methods of [3, Thm. 3] or [25, §5(c)]. Indeed

Theorem 3 (Apostol). If z = − log(2π)− iπ/2 and n ≥ 0, we have

(−1)n
ζ(n)(0)

n!
=

1

π

Im(zn+1)

(n+ 1)!
+

1

π

n−1∑
k=1

ak
Im(zn−k)

(n− k)!
(47)

where the coefficients ak are determine by the Laurent expansion

Γ(s)ζ(s) =
1

s− 1
+

∞∑
n=0

an(s− 1)n, (48)

so that an = cn+1 +
∑n
k=0 cn−kγk where cn = Γn(1)/n! = gn/n! is computable as in (39).

3.5 More general character L-series

We make a brief detour to general real L-series, see [20], given by

L±d(s) :=
∑
n>0

χ±d(n)

ns
=

1

ds

d−1∑
k=1

(
±d
k

)
ζ

(
s,
k

d

)
. (49)

For d ≥ 3 we use the multiplicative characters χ±d(n) :=
(±d
n

)
in terms of the generalized Legendre-

Jacobi symbol and for later use we set χ1(n) := 1, χ−2(n) := (−1)n. Then L1 := ζ,L−2 := η, the
alternating zeta function.

Remark 3 (Primitive series). Each such L-series, when primitive [20, p. 158] and [2, 17], obeys a
simple functional equation:

L±d(s) = C(s)

{
sin (sπ/2)
cos (sπ/2)

}
L±d(1− s), C(s) := 2sπs−1d−s+1/2Γ(1− s) (50)

and can be summed at integer values:

L±d(1− 2m) =

{
(−1)mR(2m− 1)!/(2d)2m−1

0

L±d(−2m) =

{
0
(−1)mR′(2m)!/(2d)2m

(51)

L+d(2m) = Rd−1/2π2m, L−d(2m− 1) = R′d−1/2π2m−1,

where m is a positive integer and R, R′ are rational numbers which depend on m, d. For d = 1
these engage the Bernoulli numbers while for d = −4 the Euler numbers appear. ♦

Remark 4 (Lerch’s formula). The following parametric version of (9) holds:

∞∑
n=0

z(n+ν)

(n+ ν)s
= Γ(1− s)(− log z)s−1 +

∞∑
r=0

ζ(s− r, ν)
(log z)r

r!
. (52)
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Here ζ(s, ν) is the Hurwitz zeta function, s 6= 1, 2, 3, . . ., ν 6= 0.−1,−2, . . ., and as before | log z| < 2π,
see [28, Vol 1, p.29, eqn. (8)]. Then (9) is the case ν = 1. Using (52) it is possible to substantially
extend (17). We obtain

∞∑
n=0

z(dn+k+ε)

(dn+ k + ε)s
=

1

d
Γ(1− s)(− log z)s−1 +

∞∑
r=0

ζ

(
s− r, k + ε

d

)
dr−s(log z)r

r!
. (53)

From this we obtain for k = 1, 2, . . . , d− 1, s 6= 1, 2, 3, . . ., and 0 < ε < 1 that

∞∑
n=1

(
±d
n

)
z(n+ε)

(n+ ε)s
=

∞∑
r=0

(
1

ds−r

d−1∑
k=1

(
±d
k

)
ζ

(
s− r, k + ε

d

))
(log z)r

r!
, (54)

since
∑d
m=1

(±d
m

)
= 0 for d > 2. ♦

We now have a tractable formula for differentiation wrt the order. First, for primitive ±d define

L±d(s; z) :=

∞∑
n=1

(
±d
n

)
zn

ns
(55)

L
(m)
±d (s; z) :=

∂m

∂sm
L±d(s; z). (56)

Then for m = 0, 1, 2, . . ., we can write

L
(m)
±d (s; z) :=

∞∑
n=1

(
±d
n

)
(log n)m

ns
zn

=

∞∑
r=0

∂m

∂sm

(
1

ds−r

d−1∑
k=1

(
±d
k

)
ζ

(
s− r, k

d

))
(log z)r

r!
(57)

We can now derive the character counterpart to (17) namely:

Theorem 4 (Primitive L-series). For d = 3, 4, . . . and all s (since the poles at s = 1 cancel) we
have

L
(m)
±d (s; z) =

∞∑
r=0

L
(m)
±d (s− r) (log z)r

r!
(58)

when | log z| < 2π.

We are left with the job of generalizing (45) and (46), from ζ to more general L-series. This can
be achieved from the requisite functional equation in (50) by the methods of [3]. The details and
related extensions form the basis of [6].

3.5.1 L-series derivatives at negative integers

We begin for d = 1, 2, . . . , with (50) which we rewrite as

√
dL±d(1− s) = Ψ±d(s) L±d(s), Ψ±d(s) :=

(
d

2π

)s{
2 Re eiπs/2

2 Im eiπs/2

}
Γ(s). (59)
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Then for real s and κd := log(d/(2π))− iπ/2:

√
dL+d(1− s) = Re 2esκd Γ(s) L+d(s), (60)
√
dL−d(1− s) = Im 2esκd Γ(s) L−d(s). (61)

Two applications of Leibnitz’ formula for n-fold differentiation wrt s leads to explicit analogues of
(45) and (46). For all except the principle character, this is also applicable at s = 0.

When s is a positive integer things again simplify. As with ζ more work is needed for L-series
derivatives at zero. It helps to know ζ(0, a) = 1/2− a, ζ ′(0, a) = log Γ(a)− 1

2 log(2π).

3.5.2 Character MTW sums

On this foundation, one may then analyse extended MTW sums in which more general character
polylogarithms replace the classical one in (6). That is, we may consider

µd1,d2(q, r, s) :=
∑
n,m>0

χd1(m)

mq

χd2(n)

nr
1

(m+ n)s
(62)

=
1

Γ(s)

∫ 1

0

Ld1(q;x) Ld2(r;x)(− log x)s−1
dx

x
(63)

where as before for d > 2, χd(n) :=
(
d
n

)
, and χ−2(n) := (−1)n.

We may now also take derivatives in (63). Theorem 5 below extends to show that each
µd1,d2(q, r, s) is a superposition of pure character Euler sums. Polylogarithms and Euler sums
based primarily on mixes of χ−4 and χ1 are studied at length in [22].

3.6 Tanh-sinh quadrature

Efficient quadrature computation is needed in both (2) and (6). Since these integrands are often
badly behaved at endpoints, we recommend tanh-sinh quadrature, which is remarkably insensitive
to singularities at endpoints of the interval of integration. Tanh-sinh quadrature also has a distinct
advantage over methods such as Gaussian quadrature (only applicable for functions that are regular
at endpoints), since the cost of computing abscissas and weights increases only linearly with N (the
number of integration points) in tanh-sinh quadrature, whereas this cost increases quadratically
with N in Gaussian quadrature.

Tanh-sinh quadrature approximates the integral of f(x) on (−1, 1) as∫ 1

−1
f(x) dx =

∫ ∞
−∞

f(g(t))g′(t) dt ≈ h

N∑
j=−N

wjf(xj), (64)

for given h > 0, where abscissas xj and weights wj are given by

xj = g(hj) = tanh (π/2 · sinh(hj))

wj = g′(hj) = π/2 · cosh(hj)/ cosh (π/2 · sinh(hj))
2
. (65)

Here N is chosen so that terms of the summation beyond N are smaller in absolute value than the
“epsilon” of numeric precision used. Abscissas xj and weights wj can be precomputed, and then
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applied to all quadrature calculations. For many integrands, including those in (2) and (6), reducing
h by half in (64) and (65) roughly doubles the number of correct digits, provided calculations are
done to a precision level at least that desired for the final result. Full details are given in [13].

Remark 5. It suffices to integrate the real part of the integrand in (2) and (6) from 0 to π, and
divide by π. Also, when computing D values for many m,n, p and q, it is much faster to precompute
polylog derivative functions (sans exponents) at each tanh-sinh abscissa point xj . Thence, during
quadrature, each function evaluation in (6) consists of table look-ups and a few multiplications. In
our tests, this change alone accelerated the quadrature calculations by a factor of over 1000. ♦

4 More subtle MTW interrelations

We now return to our objects of central interest.

4.1 Reduction of classical MTW values and derivatives

Partial fraction manipulations allow one to relate partial derivatives of MTWs. Such a relation in
the classical three parameter setting is:

Theorem 5 (Reduction of classical MTW derivatives [5]). Let nonnegative integers a, b, c and r, s, t
be given. Set N := r + s+ t. Define the shorthand notation

ωa,b,c(r, s, t) := ω

(
r , s | t
a , b | c

)
.

Then for δ := ωa,b,c we have

δ(r, s, t) =

r∑
i=1

(
r + s− i− 1

s− 1

)
δ (i, 0, N − i) +

s∑
i=1

(
r + s− i− 1

r − 1

)
δ (0, i, N − i) . (66)

In the case that δ = ω this shows that each classical MTW value is a finite positive integer
combination of multi zeta values (MZVs) as discussed below. Of course, (66) holds for any δ
satisfying the recursion (without being restricted to partial derivatives).

Remark 6. (Computing and validating ω constants). For fixed partial derivatives a, b, c set
δ(r, s, t) := ωa,b,c(r, s, t). As exploited in [8], we have

δ(r, s, t− 1) = δ(r − 1, s, t) + δ(r, s− 1, t). (67)

Correspondingly δ(q, r, s, t) := ωa,b,c,d(q, r, s, t) satisfies the recurrence

δ (q, r, s, t) = δ (q − 1, r, s, t+ 1) + δ (q, r − 1, s, t+ 1) + δ (r, s− 1, t+ 1) . (68)

Then agreement with (67) or (68) gives one significant assurance that the computation of (6) is
correct. Moreover, for larger values of r, s, t the double sum δ(r, s, t) may be computed quickly to
fair accuracy directly from the definition (5). ♦

We reproduce some evaluations from our previous study (in some cases extended to more digits):
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Example 2.

ω1,1,0(1, 0, 3) = 0.0723382836093503111394805724476395335265977610264206395 . . . (69)

ω1,1,0(2, 0, 2) = 0.2948217973666423955915718711489197710183885488693784812 . . . (70)

ω1,1,0(1, 1, 2) = 0.1446765672187006222789611448952790670531955220528412790 . . . (71)

ω1,0,1(1, 0, 3) = 0.1404216313877337192505428112312356376813619700010482766 . . . (72)

ω1,0,1(2, 0, 2) = 0.4069692839014026869403556351759137163983412877066137381 . . . (73)

ω1,0,1(1, 1, 2) = 0.4309725339488831694224817651103896397107720158191215752 . . . (74)

ω0,1,1(2, 1, 1) = 3.0029712135566800507921150935153422599587982837432004598 . . . (75)

Based on these numerical values, we note that ω1,1,0(1, 1, 2) = 2ω1,1,0(1, 0, 3), and

ω1,0,1(1, 0, 3) + ω1,0,1(0, 1, 3)− ω1,0,1(1, 1, 2)

= 0.140421631387733719247 . . .+ 0.29055090256114945012 . . .− 0.43097253394888316942 . . .

= 0.00000000000000000000 . . . ,

both in accord with Theorem 5. A PSLQ run on the above data predicts that

ζ
′′
(4)

?
= 4ω1,1,0(1, 0, 3) + 2ω1,1,0(2, 0, 2)− 2ω1,0,1(2, 0, 2), (76)

which discovery, proven in [8], also validated the effectiveness of our high-precision techniques. This
identity is formally distinct from the corresponding case of (90) below. ♦

4.2 Relations when M ≥ N ≥ 2

Since
∑
tk =

∑
sj , we deduce from (2), by a partial fraction argument that

Theorem 6 (Relations for general ω).

N∑
k=1

ω

(
s1, . . . , sM | t1, . . . , tk−1, tk − 1, tk+1, . . . , tN
d1, . . . , dM | e1, . . . eN

)

=

M∑
j=1

ω

(
s1, . . . , sj−1, sj − 1, sj+1, . . . , sM | t1, . . . , tN

d1, . . . , dM | e1, . . . eN

)
. (77)

For N > 1 we thus find relations but have found no full reduction.

4.3 Complete reduction of MTW values when N = 1

For N = 1 and general M there is a result like Theorem 5, and Theorem 6 implies every MTW
value (without any derivatives) is a finite sum of MZV’s. The basic tool is the partial fraction

m1 +m2 + . . .+mk

ma1
1 m

a2
1 · · ·m

ak
k

=
1

ma1−1
1 ma2

1 · · ·m
ak
k

+
1

ma1
1 m

a2−1
1 · · ·mak

k

+
1

ma1
1 m

a2
1 · · ·m

ak−1
k

.

We arrive at:
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Theorem 7 (Complete reduction of ω(a1, a2, . . . , aM | b) [8]). For nonnegative values of a1, a2, . . . , aM , b
the following holds:

a) Each ω(a1, a2, . . . , aM | b) is a finite sum of values of MZVs of depth M and weight a1 + a2 +
· · ·+ aM + b.

b) In particular, if the weight is even and the depth odd or the weight is odd and the depth is even
then the sum reduces to a superposition of sums of products of that weight of lower weight
MZVs.

4.4 Degenerate MTW derivatives with zero numerator values

.
In Theorem 7 we included no derivative values—a zero value may still have a log term in the

corresponding variable and thus obstruct depth reduction—nor have we included M ≥ N ≥ 2. For
example, it appears unlikely that

ω

(
1 , 0 | 2
0 , 1 | 0

)
=

∞∑
n=1

1

n2

n−1∑
m=1

log(n−m)

m
(78)

is reducible to derivatives of MZVs. Likewise, for s > 2 we have

ω

(
0 , 0 | s
0 , 1 | 0

)
= −

∞∑
n=2

log Γ(n)

ns
. (79)

We observe that such ω values with terms of order zero cannot be computed directly from the
integral form of (6) without special attention to convergence at the singularities.

Example 3. Though it is unlikely that MTW derivatives are finite superpositions of MZV deriva-
tives, it is possible to establish (non-finitary) relations. Consider

ω

(
r , 0 | s
0 , 1 | 0

)
= −

∑
m,n≥1

1

mr
log n

1

(m+ n)s
(80)

= −
∑
N≥1

1

Ns

N−1∑
M=1

log(N −M)

Mr

= ζ1,0(s, r) +
∑
k≥1

1

k
ζ(s+ k, r − k).

Here, ζ1,0(s, r) is the first parametric derivative ∂ζ(s, r)/∂s. What is unsatisfactory about this
expression is that the k-sum is not a finite superposition—though it does converge. ♦

4.4.1 Computation of ω in degenerate cases

Recall again that integral form (6) is used freely only when all sj , tk numerator (non-logarithmic)
parameters are non-zero; so we must attend to such degenerate cases. for which one can use formulas
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like:

ωa,b,c(q, r, s) = ω

(
q , r | s
a , b | c

)
=

∫ ∞
0

(
xs−1

Γ(s)

)(c)

Li(a)q (e−x) Li(b)r (e−x) dx, (81)

which is valid when q ≥ 0, r ≥ 0, s > 0, with q + r + s > 2, and a ≥ 0, b ≥ 0, c ≥ 0. Here the
notation (·)(c) denotes the c-th partial derivative of the expression in parentheses with respect to
s. This may be seen by expanding the integrand and using

1

Γ (s)

∫ ∞
0

e−wxxs−1dx =
1

ws
,

for s, w > 0. To apply the tanh-sinh quadrature rule to evaluate (81), it is necessary to convert it
to a finite interval. This can be remedied by breaking the integral into two parts (0 to 1, and 1 to
∞), and then using the substitution u = e−x for the second integral:

ωa,b,c(q, r, s) =

∫ 1

0

(
xs−1

Γ(s)

)(c)

Li(a)q (e−x) Li(b)r (e−x) dx

+

∫ 1/e

0

(
(− log u)s−1

Γ(s)

)(c)

Li(a)q (u) Li(b)r (u)
du

u
. (82)

We were able to use formula (82), together with formulas (17) through (20)—and related ma-
chinery described earlier in Section 3—to produce high-precision numerical values of the omega
constants listed above in (69) through (75).

Alternatively, one may substitute u = e−x in formula (81) and obtain the following proposition.

Proposition 2 (Depth three computation). For q ≥ 0, r ≥ 0, s > 0, with q + r + s > 2, and
a ≥ 0, b ≥ 0, c ≥ 0 we have

ωa,b,c(q, r, s) =

∫ 1

0

(
(− log u)s−1

Γ(s)

)(c)

Li(a)q (u) Li(b)r (u)
du

u

=

∫ 1/e

0

(
(− log u)s−1

Γ(s)

)(c)

Li(a)q (u) Li(b)r (u)
du

u

+

∫ 1

1/e

(
(− log u)s−1

Γ(s)

)(c)

Li(a)q (u) Li(b)r (u)
du

u
(83)

=
∑
n,m>0

(
Γ (s, n+m)

Γ (s) (n+m)
s

)(c)
(−1)n loga(n)

nq
(−1)m logb(m)

mr

+

∫ 1

1/e

(
(− log u)s−1

Γ(s)

)(c)

Li(a)q (u) Li(b)r (u)
du

u
, (84)

where in (84) we express the result in terms of the incomplete Gamma function.

We have

ω

(
r | s
a | b

)
= ζ(a+b)(r + s). (85)
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Now let ζa,b denote the partial derivative of the multi-zeta function

ζa,b(r, s) :=
∑
k>j>0

(− log k)a

kr
(− log j)b

js
.

Proposition 3 (Depth three reductions). For s, t > 0, a, b ≥ 0 by definition we have:

ω

(
0, 0 | t
0, 0 | b

)
= ζ(b)(t)− ζ(b)(t− 1) (86)

ω

(
s, 0 | t
a, 0 | b

)
= ζb,a(t, s) (87)

ω

(
s, t | 0
a, b | 0

)
= ζ(a)(s) ζ(b)(t). (88)

Moreover, from Euler’s reflection formula [14]

ζ(s, t) + ζ(t, s) = ζ(s)ζ(t)− ζ(t+ s), (89)

we obtain

ω

(
s, 0 | t
a, 0 | b

)
+ ω

(
t, 0 | s
a, 0 | b

)
= ζ(a)(s) ζ(b)(t)− ζ(a+b)(t+ s). (90)

or equivalently

ω

(
s, t | 0
a, b | 0

)
− ω

(
t, 0 | s
a, 0 | b

)
− ω

(
s, 0 | t
a, 0 | b

)
= ζ(a+b)(t+ s). (91)

When s = 1 (90) has singularities and must be handled with care. We fully address this issue
in Theorem 8 and Corollary 2.

From (76) we see less trivial derivative relations lie within D than within D1. Four (of the seven)
values given in Example 2 were degenerate: ω1,1,0(1, 0, 3), ω1,1,0(2, 0, 2), and ω1,0,1(1, 0, 3), ω1,0,1(2, 0, 2).
In our earlier study, these were computed by other expedients described in [27]. In cases (72), (73)
we may use a special case of (81), namely,

ωa,0,b(s, 0, t) = ζb,a(t, s) =

∫ 1

0

(
(− log x)t−1

Γ(t)

)(b)
Li(a)s (x)

1− x
dx (92)

with a = b = 2, s + t = 4 and s = 1, 2. Here ζb,a(t, s) again denotes partial derivatives of the
multi-zeta function, and the notation (·)(b) denotes the b-th partial derivative of the expression in
parentheses with respect to t.

One may instead use

Γ(t)ζ0,a(t, s) =

∫ 1

0

(− log x)t−1
Li(a)s (x)

1− x
dx

and as before employ Leibnitz’ formula to obtain

ζb,a(t, s) = −
b−1∑
k=0

(
b

k

)
Γ(b−k)(b)

Γ(b)
ζk,a(t, s) +

∫ 1

0

Li(a)s (x)

1− x
logb(− log x)

Γ(b)
(− log x)t−1 dx (93)
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which leads to a nice ladder for computing ζk,a values using the algorithm already provided for
Γ(k). The same process leads more generally, for q + r + s > 2 and a, b, b, q, r, s ≥ 0, to

ωa,b,c(q, r, s) =−
c−1∑
k=0

(
c

k

)
Γ(c−k)(c)

Γ(c)
ωa,b,k(q, r, s)

+
1

Γ(c)

∫ 1

0

Li(a)q (x)Li(b)r (x)

x
logc(− log x)(− log x)s−1 dx. (94)

We emphasize that when computing quantities such as (69), (70), or say ω2,2,0(1, 1, 2), we require
the full version of (82) or (83).

4.5 Computation of the U constants in D1

In [8] for resolution of log-gamma integrals especially, we need MTW sums using only parameters
1 or 0. We define U(m,n, p, q) to vanish if mn = 0; otherwise if m ≥ n we define

U(m,n, p, q) :=
1

2π

∫ 2π

0

Li1
(
eiθ
)m−p

Li
(1)
1

(
eiθ
)p

Li1
(
e−iθ

)n−q
Li

(1)
1

(
e−iθ

)q
dθ

= ω

(
1m | 1n

1p0m−p | 1q0n−q

)
, (95)

while for m < n we swap both (m,n) and (p, q) in the integral and the ω-generator. We then denoted
the subensemble D1 ⊂ D as the set D1 := {U(m,n, p, q) : p ≤ m ≥ n ≥ q } . Another subensemble
D0 ⊂ D1 ⊂ D comprises the derivative-free MTWs: D0 := {U(M,N, 0, 0) : M ≥ N ≥ 1}; an
element of D0 has the form ω(1M | 1N ), which can be thought of as an ensemble member as in (6)
with all 1’s across the top and all 0’s across the bottom. Members of D1 were fully analyzed in [8].

5 Prior numerical investigations

Both to check our theory and evaluations, and to further explore the constants and functions being
analyzed, we made many numerical computations in [8]. We recall a few of these prior experiments.

5.1 Relations amongst U constants

We computed, to 3100-digit precision, all of the U constants in D1 up to degree 10 (i.e., whose indices
sum to 10 or less), according to the defining formula (95) and the rules given for D1 in Section 4.5.
In particular, we calculated U(m,n, p, q) with m,n ≥ 1, m ≥ n, m ≥ p, n ≥ q, m+ n+ p+ q ≤ 10.
Our program found that there are 149 constants in this class. These computations, as above,
were performed using the ARPREC arbitrary precision software [12] and the tanh-sinh quadrature
algorithm (64), employing formulas (8), (9), (25) and (27) to evaluate the underlying polylog and
polylog derivatives; and formulas (28), (30), (31) and (32) to evaluate the underlying zetas and
derivatives.

We then searched among this set of numerical values for linear relations, using the multipair
“PSLQ” integer relation algorithm [11], [16, pg. 230–234]. Our program first found the following
relations, confirmed to over 3000-digit precision:

0 = U(M,M, p, q)− U(M,M, q, p), (96)
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for M ∈ [1, 4] and 2M + p + q ∈ [2, 10], a total of 11 relations. That the programs uncover these
simple symmetry relations gave us confidence that our software was working properly.

The programs then produced the following more sophisticated set of relations:

0 = 6U(2, 2, 0, 0)− 11U(3, 1, 0, 0)

0 = 160U(3, 3, 0, 0)− 240U(4, 2, 0, 0) + 87U(5, 1, 0, 0)

0 = 1680U(4, 4, 0, 0)− 2688U(5, 3, 0, 0) + 1344U(6, 2, 0, 0)− 389U(7, 1, 0, 0)

0 = 32256U(5, 5, 0, 0)− 53760U(6, 4, 0, 0) + 30720U(7, 3, 0, 0)− 11520U(8, 2, 0, 0)

+ 2557U(9, 1, 0, 0). (97)

Upon completion, our PSLQ program reported an exclusion bound of 2.351 × 1019. This means
that in any integer linear relation among the set of 149 constants that is not listed above, the
Euclidean norm of the corresponding vector of coefficients must exceed 2.351 × 1019. Under the
hypothesis that linear relations only are found among constants of the same degree, we obtained
exclusion bounds of at least 3.198× 1073 for each degree in the tested range (degree 4 through 10).

5.2 Computational notes I

The entire computation, including quadrature and PSLQ calculations, required 94,727 seconds
run time on one core of a 2012-era Apple MacPro workstation. Of this run time, initialization
(including the computation of zeta and zeta derivative values, and precalculating values of Li1(eiθ)
and Li′1(eiθ) at abscissa points specified by the tanh-sinh quadrature algorithm [13]) required 82074
seconds. After initialization, the 149 quadrature calculations completed quickly (a total of 6894
seconds), as did the 16 PSLQ calculations (a total of 5760 seconds). These relations were established
by using Maple. For instance, U(3, 1, 0, 0) = 6 ζ(4), and U(2, 2, 0, 0) = 11 ζ(4), which establishes
the first relation in (??). The third relation in (??) follows similarly.

5.2.1 A conjecture proven

From the equations in (??) we conjectured that (i) there is one such relation at each even weight
(4, 6, 8, . . .) and none at odd weight, and (ii) in each case p = q = 0. Thus, there appear to be no
nontrivial relations between derivatives outside D0 but in D1. Any negative results must perforce
be empirical as one cannot at the present prove things even as “simple” as the irrationality of ζ(5).

Accordingly, we performed a second computation :using 780-digit arithmetic and only computing
elements of a given weight d, where 4 ≤ d ≤ 20, with m+ n = d and p = q = 0. The PSLQ search
then quickly returned the additional relations culminating with:

0 = − 14799536744824832U(10, 10, 0, 0) + 26908248626954240U(11, 9, 0, 0)

− 20181186470215680U(12, 8, 0, 0) + 12419191673978880U(13, 7, 0, 0)

− 6209595836989440U(14, 6, 0, 0) + 2483838334795776U(15, 5, 0, 0)

− 776199479623680U(16, 4, 0, 0) + 182635171676160U(17, 3, 0, 0)

− 30439195279360U(18, 2, 0, 0) + 3204125819155U(19, 1, 0, 0) (98)

No relations were found when the degree was odd, aside from trivial relations such as U(7, 8, 0, 0) =
U(8, 7, 0, 0). For all weights, except for the above-conjectured relations, no others were found, with
exclusion bounds of at least 2.481× 1075.
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Remark 7. The above conjecture (at least the even-weight part) has been proven in [8]. Even the
generating-function algebra was motivated by numerics—i.e. we had to seek some kind of unifying
structure for the U functions. This in turn made more general results accessible. ♦

6 Current numerical investigations

Given our success in computationally analyzing the U constants in [8], and prompted by the ex-
ample evaluation (76), we decided to extend our computer programs to evaluate and analyze more
general ω constants, namely those with higher-order polylogarithm derivatives. To that end we
have employed the machinery developed in Section 3 along with formulas (82) and (83).

Our null hypothesis is that all relations are explained by Theorem 5, Proposition 3, and simple
symmetries. That is, in light of our earlier paper and preliminary explorations, we anticipated
finding only relations consistent with the theorems and methods of Section 4. We eschewed using
(86) as it leads to—probably unhelpful—inhomogeneous relations.

6.1 Computational experiments

In light of Proposition 3 and of (76) we first computed ωa,b,c(q, r, s) constants for derivative weight
D = a + b + c, where 1 ≤ D ≤ 4 and argument weight W = q + r + s, where 3 ≤ W ≤ 5 (these
are depth three constants; we deferred higher-level constants to another study). We then searched
for relations among these constants. In a single large PSLQ run, involving all these constants, we
found many relations, but in each case, the derivative weight D and the argument weight W of
each term in the relation was constant. We found no relations where the derivative weight D of
each term didn’t match, nor where the argument weight W of terms varied.

Thus, we focused our more detailed analyses of these relations on cases with fixed W and D.
To that end, we performed the following steps:

Algorithm 1 (Relation detection). Our program performed the following steps:

1. For a given derivative weight D = a+ b+ c, and a given argument weight W = q + r + s, we
first computed, to 200-digit precision, all ωa,b,c(q, r, s) for this D and W , except in cases that
are clearly related to already-computed constants.

Example: ForD = 4, W = 5, we did not compute ω1,1,2(2, 0, 3), since ω1,1,2(0, 2, 3) was already
in the table, and the two are equal by symmetry; also, we did not compute ω1,2,1(1, 1, 3), since
it equals ω1,2,1(0, 1, 4) + ω1,2,1(1, 0, 4) by (67).

2. After outputting 200-digit numerical values for all constants, we deleted those from the list
those which, as noted in the previous item, are related to already-computed constants in the
list by elementary relations.

3. We then ran the two-level multipair PSLQ program [11] on the resulting list of terms.

4. For each PSLQ-discovered relation, we first tried to further reduce the relation by applying
simple formulas such as (67). Then after outputting the relation, we deleted the last-indexed
term of the discovered relation and re-ran PSLQ.
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5. When no more relations were found, we then augmented the list of remaining terms with one
constant of the form ζ(D)(W ), or ζ(d1)(w1)ζ(d2)(w2) with d1 + d2 = D and w1 + w2 = W . If
a relation was found using the PSLQ routine, then this term was deleted from the list, and
another zeta constant of this form was added, until the list of zeta terms was exhausted and
no relations could be found by the PSLQ routine among the remaining constants.

We present in Table 1 sample PSLQ-discovered relations for the case W = 4 and D = 5. Note
that relations (99) through (101) involve only omega constants, whereas relations (102) through
(108) each involves one zeta constant.

Remark 8. We note that even these remaining relations can, as far as we know, with some effort
be manually proved using the rigorously proven results given in this paper. Automating this process
has proven harder than we anticipated—but equality verification in a computer algebra system is
known to be very hard; see [10].

For example, relations (104) and (108) are nothing more than instances of Proposition 3. Thence,
based on these results, the “null hypothesis” mentioned above has not been disproven. ♦

We summarize in Table 2 some overall statistics of these runs, including the total number of
omega terms and zeta terms, the number of relations found (simple and PSLQ-discovered), and the
final number of linearly independent terms (i.e., the size of the underlying residual basis). There
are clearly suggestive patterns in this data, for which more study is needed..

6.2 Computational notes II

This exercise underscored the need for additional research and development of highly efficient
software to compute a wide range of special functions to arbitrarily high precision, across the full
range of complex arguments (not just for a limited range of real arguments). We relied largely on
our own computer programs and the ARPREC arbitrary precision software in this study in part
because, as noted, we were unable to obtain the needed functionality in commercial software.

For instance, neither Maple nor Mathematica was able to numerically evaluate the U1 and ω
constants to high precision in reasonable run time, in part because of the challenge of computing
polylog and polylog derivatives at real and complex arguments, and in part because of the cost
of performing high-precision quadrature. For example, the version of Mathematica that we were
using was able to numerically evaluate ∂Lis(z)/∂s to high precision, but such evaluations were
hundreds of times slower than the evaluation of Lis(z) itself, and, in some cases, did not return the
expected number of correct digits. In some cases, Mathematica returned the requested precision,
but only a handful digits were correct. Additionally, as noted, the versions of Mathematica we used
inexplicably refused to produce numerical values of ζ(n)(0) for n ≥ 4.

Finally, we found that our ARPREC-based computer codes (implemented at the high level in
Fortran-90, then automatically translated to the C++ library of low-level ARPREC routines) were
hundreds of times faster than similar codes implemented in Mathematica. We do not fully under-
stand the full reason for this difference, but given that our ARPREC-based codes were sufficiently
fast to perform this research satisfactorily, we had little reason to pursue the question.

Remark 9. One binding feature on these computations is the number of terms needed in Theorems
1 and 2 to obtain a given level of precision in the numerical values of the polylogarithm functions.
In our computations, we found this number to be somewhat greater than the number of decimal
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0 = ω0,1,3(0, 2, 3)− ω0,1,3(0, 3, 2)− ω0,3,1(0, 2, 3) + ω0,3,1(0, 3, 2)

− ω1,3,0(0, 2, 3)− ω1,3,0(0, 3, 2) + ω1,3,0(2, 0, 3) + ω1,3,0(3, 0, 2) (99)

0 = −ω0,1,3(0, 2, 3) + ω0,2,2(0, 2, 3) + ω0,2,2(0, 3, 2)− ω0,3,1(0, 3, 2)

− 6ω2,2,0(0, 1, 4)− 3ω2,2,0(0, 2, 3)− ω2,2,0(0, 3, 2) + ω1,3,0(2, 3, 0) (100)

0 = −3ω0,0,4(0, 1, 4) + ω0,0,4(0, 2, 3) + 2ω0,0,4(0, 3, 2) + ω0,4,0(0, 2, 3)

+ 3ω0,4,0(0, 3, 2)− ω0,4,0(1, 1, 3)− 3ω0,4,0(2, 1, 2)− 2ω0,4,0(3, 1, 1) (101)

0 = −ω0,0,4(0, 1, 4)− ω0,0,4(0, 2, 3) + 3ω0,1,3(0, 2, 3) + 3ω0,3,1(0, 3, 2)

− ω0,1,3(0, 3, 2)− ω0,3,1(0, 2, 3) + ω1,3,0(3, 0, 2) + ω0,4,0(1, 2, 2)

+ ω0,4,0(2, 3, 0)− ω1,3,0(2, 1, 2)− ω1,3,0(2, 2, 1)− 3ω1,3,0(2, 3, 0) + 2ζ(4)(5) (102)

0 = −ω0,0,4(0, 2, 3) + ω0,0,4(0, 3, 2)− ω0,4,0(2, 1, 2)− ω0,4,0(3, 1, 1)

+ 2ω0,4,0(1, 2, 2)− 2ζ(4)(5) (103)

0 = ζ(0)(2)ζ(4)(3)− ω0,4,0(2, 3, 0) (104)

0 = −ω0,1,3(0, 2, 3)− ω0,3,1(0, 3, 2) + 4ζ(1)(2)ζ(3)(3)

− ω0,1,3(0, 3, 2)− ω0,3,1(0, 2, 3) + ω1,3,0(3, 0, 2)− ω1,3,0(2, 1, 2)

− ω1,3,0(2, 2, 1)− 3ω1,3,0(2, 3, 0) (105)

0 = ω0,0,4(0, 2, 3)− 2ω0,2,2(0, 2, 3)− 2ω0,2,2(0, 3, 2) + 2ζ(2)(2)ζ(2)(3)

+ ω0,0,4(0, 3, 2)− ω0,4,0(1, 1, 3)− ω0,4,0(2, 2, 1)− ω0,4,0(3, 2, 0) (106)

0 = ω0,0,4(0, 2, 3)− 2ω0,1,3(0, 3, 2)− 2ω0,3,1(0, 2, 3) + 2ζ(3)(2)ζ(1)(3)

+ ω0,0,4(0, 3, 2)− ω0,4,0(1, 1, 3)− ω0,4,0(2, 2, 1)− ω0,4,0(3, 2, 0) (107)

0 = ζ(4)(2)ζ(0)(3)− ω0,4,0(3, 2, 0) (108)

Table 1: Relations found for ωa,b,c(q, r, s) with W = a+ b+ c = 4 and D = q + r + s = 5.

D W Omega terms Zeta terms Relations Residual basis
1 3 30 3 24 9
1 4 30 4 23 11
1 5 45 5 37 13
2 3 36 4 22 18
2 4 60 5 48 22
2 5 90 7 70 27
3 3 60 5 36 29
3 4 100 7 70 37
3 5 150 9 114 45
4 4 150 8 102 56
4 5 225 11 167 69

Table 2: Statistics for relation searches
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digits required in the results. This number then governed, in turn, the number of values of ζ(m)(k+
1− n), ck,j(L), bk,j(L), fk,q that must be precomputed. The precision level itself was determined
by the large number of terms in the PSLQ searches mentioned above. As noted above, for PSLQ
to reliably recover a relation (a1, a2, · · · , an) of length n, where the coefficients (ai) have maximum
absolute value 10d, requires at least dn-digit precision in the input vector, and at least dn-digit
arithmetic in the operation of the algorithm. Along this line, once PSLQ finds a relation, one
should delete an element of the resulting relation before continuing, in additional PSLQ runs, to
find other relations. In this way, the number of terms for PSLQ can be reduced to more manageable
levels for finding the hard-to-recover relations, resulting in significantly faster total run times. ♦

6.3 Some rigorous consequences

Analysis of the experimental results suggested the following theorem.

Theorem 8. For all a > 0 we have

ζ (a+ 2) = ω(a, 1, 1)− ζ(a+ 1, 1) (109)

=
1

Γ (a+ 1)

∫ 1

0

(− log (u))
a

(− log (1− u))

(1− u)
du

−
∫ 1

0

Lia (u)
(− log (1− u))

u
du (110)

Proof. We sketch the proof and will provide a fuller proof as part of a later paper. We use a classical
result due to Fritz D. Carlson (from his 1914 dissertation [24]) on discrete analytic continuation.
The first published proof was given in [35, §5.81]. An accessible proof of a special case broad enough
for our application, due to Selberg, is presented in [1, p. 112].

By Carlson’s theorem it suffices to show that (109) holds for positive integers. But in this case
we may expand ω(a, 1, 1) using Theorem 5—or directly summing ζ(m,n) = ω(m, 1, n− 1)−ω(m−
1, 1, n)—to reduce (109) to

ζ(a+ 2) =

a+1∑
m=2

ζ(m, a+ 2−m),

which, for perforce integer a, is a well known result for MZVs [14].
Equation (110) then follows from the integral representations given above.

Remark 10. Theorem 8 was discovered by observing multiple small-value cases of (113). On
computing the exponential generating function of both sides of (113), we were led directly to (109).
Likewise, for a ≥ 0

ω (a, 2, 1) = ζ (a+ 1, 2) + ζ (2, a+ 1)− ζ (a+ 2, 1) (111)

may be derived from (109) or proven as it was. ♦

From Theorem 8 we deduce many of the experimentally observed relations involving zeta deriva-
tives at integer values.
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Corollary 1 (Derivative evaluations). For n = 0, 1, 2, . . . and every a > 0 we have

ζ(n) (a+ 2) = ω(n)(a, 1, 1)− ζ(n)(a+ 1, 1), (112)

or, in full ω notation,

ζ(n) (a+ 2) = ωn,0,0(a, 1, 1)− ω0,0,n(1, 0, a+ 1). (113)

In like fashion from (111) we obtain

ω(n) (a, 2, 1) = ζn,0 (a+ 1, 2) + ζ0,n (2, a+ 1)− ζn,0 (a+ 2, 1) (114)

for a > 0 and n = 1, 2, . . ..

Also, on comparing Corollary 2 to Euler’s reflection formula (89) we deduce that:

Corollary 2 (Removable singularity). For n = 0, 1, 2, . . . and every a > 0 we have

ζ(n) (a+ 2) + ζ(n)(a+ 1, 1) = ω(n)(a, 1, 1) (115)

= lim
b↓1

ζ (b) ζ(n) (a+ 1)− ζ(n)(b, a+ 1).

Remark 11. For integer m > 0, equation (109) can be rewritten as

ω(m, 1, 1) =
m+ 3

2
ζ(m+ 2)− 1

2

m∑
k=2

ζ(k)ζ(m+ 2− k), (116)

on applying Euler’s reduction of ζ(a, 1), as given in [14]. ♦

Thus, our null hypothesis has been upheld, albeit refined as in Corollaries 1 and 2.

6.4 Future computations

In light of these experiments, we think it unlikely that there are any qualitatively different relations
for r + s + t ≥ 6. We also presume, with less confidence, that the situation remain similar for
higher depth sums ωa1,...,an(s1, . . . , sn). In light of the computational effort needed for experiments
with higher derivatives, we intend instead to (i) try to further automate our process; and then to
(ii) look at at the non-degenerate weight four case with N = 2; and to (iii) explore depth four
ωa,b,c,d(q, r, s, t).

7 Conclusion

This study underscores the need for high-precision evaluations of special functions in much research.
This need spurred the late Richard Crandall to compile a set of unified and rapidly convergent
algorithms (some new, some gleaned from existing literature) for a variety of special functions, fitted
for practical implementation and efficient for very high-precision computation [27]. Crandall’s work
has been in part described and extended by the current authors in [7].

Since, as we have illustrated, the polylogarithms and their relatives are central to a great deal
of mathematics and mathematical physics [4, 21, 31], such an effort is bound to pay off in the near
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future. Indeed it is the basis for a 2014–2016 Australian Research Council Discovery Project by
the current authors in tandem with Richard Brent. We conclude by emphasising that our research
agenda is driven as much by the desire to improve tools for computer-assisted discovery as it is by
the precise needs of the current project.

Acknowledgements. Thanks are due to Andrew Mattingly, Victor Moll, and to Armin Straub
for useful discussions. We also wish to acknowledge computer equipment provided for our use by
Apple Computers, under a Cooperative Research Agreement.
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