Extended Mordell-Tornheim-Witten sums and \log Gamma integrals

D.H. Bailey, J.M. Borwein and R.E. Crandall

CARMA, University of Newcastle
TALK http://www.carma.newcastle.edu.au/jon/MTWlG.pdf PAPER http://www.carma.newcastle.edu.au/jon/MTW1.pdf

Aust MS 2012, Ballarat, Number Theory Session

Sept 25, 2012
Revised 16-09-12

CARMA

A first obligatory irrelevant cartoon

CANADA
AN INFOGRAPHIC

PART I: Introduction Mordell-Tornheim-Witten ensembles Resolution of all $\mathcal{U}(m, n)$ and more Fundamental computational expedients PART II. More recondite MTW interrelations

A second obligatory irrelevant cartoon

Abstract

We consider some fundamental generalized Mordell-TornheimWitten (MTW) zeta-function values along with their derivatives, and explore connections with multiple-zeta values (MZVs).

- We use symbolic and high-precision numerical integration, plus some interesting combinatorics and special- function theory.
- Our original motivation was to represent unresolved constructs such as Eulerian log-gamma integrals.
- In process, we extend methods for high- precision numerical computation of polylogarithms and their derivatives wrt order.
- The associated paper is at
http://carma.newcastle.єdu.au/ jon/MTW1.pdf.

Abstract

We consider some fundamental generalized Mordell-TornheimWitten (MTW) zeta-function values along with their derivatives, and explore connections with multiple-zeta values (MZVs).

- We use symbolic and high-precision numerical integration, plus some interesting combinatorics and special- function theory.
- Our original motivation was to represent unresolved constructs such as Eulerian log-gamma integrals.
- In process, we extend methods for high- precision numerical computation of polylogarithms and their derivatives wrt order.
- The associated paper is at http://carma.newcastle.edu.au/jon/MTW1.pdf.

PART I: Introduction

Coauthors (Lawrence Berkeley Labs and Apple Computers)

David Bailey

Richard Crandall

Mordell, Tornheim and Witten

Louis Mordell (1888-1972)

Ed Witten (1951-)

- Leonhard Tornheim (1915-2009)

1938 Chicago PhD
a grand-student of L.E. Dickson
paper in JAMS 1950

Mordell, Tornheim and Witten

Louis Mordell (1888-1972)

Ed Witten (1951-)

- Leonhard Tornheim (1915-2009)
- 1938 Chicago PhD
- a grand-student of L.E. Dickson
- paper in JAMS 1950

Outline of Lecture: we will touch on some of

1
PART I: Introduction
(2)

Mordell-Tornheim-Witten ensembles
Generalized MTW ensembles
Important subensembles of \mathcal{D}
Closed forms for certain MTWs
(3) Resolution of all $\mathcal{U}(m, n)$ and more

An exponential generating function \mathcal{V} for $\mathcal{U}(m, n)$
An exponential-series representation of \mathcal{V}
Complete resolution of \mathcal{D}_{0}
Sum rule for the $\mathcal{U}(m, n)$ functions
The $\mathcal{U}_{s}(m, n)$ sums when $s=2$
The $\mathcal{U}_{s}(m, n)$ sums when $s \geq 3$
Fundamental computational expedients
Polylogarithms and their derivatives with respect to order
Derivatives of general-order polylogarithms
The special case $s=1$ and $z=e^{i \theta}$
Riemann zeta and its derivatives at integers
ζ^{\prime} and higher derivatives at integer arguments
(5) PART II. More recondite MTW interrelations

Reduction of classical MTW values and derivatives
Relations when $M \geq N \geq 2$
Complete reduction of MTW values when $N=1$
MTW resolution of the log-gamma problem
An exponential generating function for $\mathcal{L \mathcal { G } _ { n }}$
Open issues

Introduction: Mordell (58), Tornheim (1950), Witten (90)

We define an ensemble of extended Mordell-Tornheim -Witten (MTW) zeta function values.

- There is by now a huge literature on these sums; in part because of the many connections with fields such as combinatorics, number theory, and mathematical physics.
- Unlike previous authors we include derivatives with respect to the order of the terms.
- We also investigate interrelations between MTW evaluations, and deeper connections with multiple-zeta values (MZVs).
To achieve this we make use of symbolic and numerical integration, special function theory and some less-thanobvious combinatorics and generating function analysis.

Introduction: Mordell (58), Tornheim (1950), Witten (90)

We define an ensemble of extended Mordell-Tornheim -Witten (MTW) zeta function values.

- There is by now a huge literature on these sums; in part because of the many connections with fields such as combinatorics, number theory, and mathematical physics.
- Unlike previous authors we include derivatives with respect to the order of the terms.
- M/e also investigate interrelations between MTW evaluations, and deeper connections with multiple-zeta values (MZVs)
- To achieve this we make use of symbolic and numerical integration, special function theory and some less-thanobvious combinatorics and generating function analysis.

Introduction: Mordell (58), Tornheim (1950), Witten (90)

We define an ensemble of extended Mordell-Tornheim -Witten (MTW) zeta function values.

- There is by now a huge literature on these sums; in part because of the many connections with fields such as combinatorics, number theory, and mathematical physics.
- Unlike previous authors we include derivatives with respect to the order of the terms.
- We also investigate interrelations between MTW evaluations, and deeper connections with multiple-zeta values (MZVs).
- To achieve this we make use of symbolic and numerical
integration, special function theory and some less-than-
obvious combinatorics and generating function analysis.

Introduction: Mordell (58), Tornheim (1950), Witten (90)

We define an ensemble of extended Mordell-Tornheim -Witten (MTW) zeta function values.

- There is by now a huge literature on these sums; in part because of the many connections with fields such as combinatorics, number theory, and mathematical physics.
- Unlike previous authors we include derivatives with respect to the order of the terms.
- We also investigate interrelations between MTW evaluations, and deeper connections with multiple-zeta values (MZVs).
- To achieve this we make use of symbolic and numerical integration, special function theory and some less-thanobvious combinatorics and generating function analysis.

Introduction

- Our original motivation was that of representing previously unresolved constructs such as Eulerian log-gamma integrals.
- Indeed, an algebra of MTW sums with constants $\pi, 1 / \pi, \gamma, \log 2 \pi$ and rationals, resolves every integral

$$
\mathcal{L \mathcal { G } _ { n }}:=\int_{0}^{1} \log ^{n} \Gamma(x) \mathrm{d} x
$$

(a finite superposition of MTW values with such coefficients).

- That said, our focus is the relation between MTW sums and classical polylogarithms. It is the adumbration of this relationship that makes the study significant.

PART I.

- We introduce an ensemble \mathcal{D} capturing the values we wish to study and provide effective integral representations in terms of polylogarithms on the unit circle.
- We then identify subensemble \mathcal{D}_{1} sufficient for study of log-gamma integrals; we give a few accessible closed forms.
- §3 give generating functions for various derivative free MTW sums and proves results suggested by experiments.
- $\S 4$ gives polylogarithmic algorithms for computation of our sums/integrals to high precision (400-3100 digits).
- We must first give tools for zeta and its derivatives at integer points. These are of substantial independent value.

PART I.

- We introduce an ensemble \mathcal{D} capturing the values we wish to study and provide effective integral representations in terms of polylogarithms on the unit circle.
- We then identify subensemble \mathcal{D}_{1} sufficient for study of log-gamma integrals; we give a few accessible closed forms.
- §3 give generating functions for various derivative free MTW sums and proves results suggested by experiments.
- $\S 4$ gives polylogarithmic algorithms for computation of our sums/integrals to high precision (400-3100 digits).
- We must first give tools for zeta and its derivatives at integer points. These are of substantial independent value.

PART II

- $\S 5$ gives various reductions and relations of our MTW values.
- §6, shows how to evaluate all log gamma integrals $\mathcal{L \mathcal { G } _ { n }}$ for $n=1,2,3 \ldots$, in our special ensemble of MTW values.
- The associated paper describes two rigorous experiments we designed to use integer relation methods to first explore the structure of \mathcal{D}_{1} and to begin to study \mathcal{D} (mainly open).

My ugliest picture: an Australian blob fish

The Mordell-Tornheim-Witten (MTW) zeta function:

$$
\begin{equation*}
\omega\left(s_{1}, \ldots, s_{K+1}\right):=\sum_{m_{1}, \ldots, m_{K}>0} \frac{m_{1}^{s_{1}^{1} \cdots m_{K}^{s_{K}}\left(m_{1}+\cdots+m_{K}\right)^{s_{K+1}}}}{1} \tag{1}
\end{equation*}
$$

- ω remains mysterious for many combinatorial phenomena, especially for derivatives wrt the s_{i} parameters. (Here $K+1$ is the depth and $\sum_{j=1}^{k+1} s_{j}$ is the weight of ω. Originally $K=2$.)
We recently used a double sum with integers M, N and $s_{i}, t_{j} \geq 0$ $(M \geq N \geq 1)$ (here $\operatorname{Li}_{s}(z):=\sum_{n>1}$

The Mordell-Tornheim-Witten (MTW) zeta function:

$$
\begin{equation*}
\omega\left(s_{1}, \ldots, s_{K+1}\right):=\sum_{m_{1}, \ldots, m_{K}>0} \frac{m_{1}^{s_{1}} \cdots m_{K}^{s_{K}}\left(m_{1}+\cdots+m_{K}\right)^{s_{K+1}}}{} \tag{1}
\end{equation*}
$$

- ω remains mysterious for many combinatorial phenomena, especially for derivatives wrt the s_{i} parameters. (Here $K+1$ is the depth and $\sum_{j=1}^{k+1} s_{j}$ is the weight of ω. Originally $K=2$.)
We recently used a double sum with integers M, N and $s_{i}, t_{j} \geq 0$ $(M \geq N \geq 1)$ (here $\operatorname{Li}_{s}(z):=\sum_{n \geq 1} z^{n} / n^{s}$ is polylogarithm of order s):

$$
\begin{align*}
\omega\left(s_{1}, \ldots, s_{M} \mid t_{1}, \ldots, t_{N}\right) & :=\sum_{\substack{m_{1}, \ldots, m_{M}, n_{1}, \ldots, n_{N}>0 \\
\sum_{i=1}^{M} m_{i}=\sum_{j=1}^{N} n_{j}}} \prod_{i=1}^{M} \frac{1}{m_{i}^{s_{i}}} \prod_{j=1}^{N} \frac{1}{n_{j}^{t_{j}}} \tag{2}\\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \prod_{i=1}^{M} \operatorname{Li}_{s_{i}}\left(e^{i \theta}\right) \prod_{j=1}^{N} \operatorname{Li}_{t_{j}}\left(e^{-i \theta}\right) \mathrm{d} \theta \tag{3}
\end{align*}
$$

Generalized MTW ensembles

- If parameters are zero, there are convergence issues with this integral. One may use principal-value calculus, or an alternative representation such as (11) below.
when $N=1$ the representation (3) is classical, in that

We require a wider MTW ensemble involving outer derivatives:
the s-th derivative is $\operatorname{Li}_{s}^{(d)}(z):=\left(\frac{\partial}{\partial s}\right)^{d} \operatorname{Li}_{s}(z)$

PART I: Introduction

Generalized MTW ensembles

- If parameters are zero, there are convergence issues with this integral. One may use principal-value calculus, or an alternative representation such as (11) below.
- when $N=1$ the representation (3) is classical, in that

$$
\begin{equation*}
\omega\left(s_{1}, \ldots, s_{M+1}\right)=\omega\left(s_{1}, \ldots, s_{M} \mid s_{M+1}\right) . \tag{4}
\end{equation*}
$$

We require a wider MTW ensemble involving outer derivatives: - the s-th derivative is $\operatorname{Li}_{s}^{(d)}(z):=\left(\frac{\partial}{\partial s}\right)^{d} \operatorname{Li}_{s}(z)$.

Generalized MTW ensembles

- If parameters are zero, there are convergence issues with this integral. One may use principal-value calculus, or an alternative representation such as (11) below.
- when $N=1$ the representation (3) is classical, in that

$$
\begin{equation*}
\omega\left(s_{1}, \ldots, s_{M+1}\right)=\omega\left(s_{1}, \ldots, s_{M} \mid s_{M+1}\right) \tag{4}
\end{equation*}
$$

We require a wider MTW ensemble involving outer derivatives:

$$
\begin{align*}
\omega\left(\left.\begin{array}{c}
s_{1}, \ldots, s_{M} \\
d_{1}, \ldots, d_{M}
\end{array} \right\rvert\, \begin{array}{c}
t_{1}, \ldots, t_{N} \\
e_{1}, \ldots e_{N}
\end{array}\right):= & \sum_{m_{1}, \ldots, m_{M}, n_{1}, \ldots, n_{N}>0} \prod_{i=1}^{M} \frac{\left(-\log m_{i}\right)^{d_{i}}}{\sum_{i=1}^{M}} \prod_{m_{i}=\sum_{j=1}^{N} n_{j}}^{N} \frac{\left(-\log n_{j}\right)^{e_{j}}}{n_{j}}{ }^{t_{j}} \\
= & \frac{1}{2 \pi} \int_{0}^{2 \pi} \prod_{i=1}^{M} \operatorname{Li}_{s_{i}}^{\left(d_{i}\right)}\left(e^{i \theta}\right) \prod_{j=1}^{N} \operatorname{Li}_{t_{j}}^{\left(e_{j}\right)}\left(e^{-i \theta}\right) \mathrm{d} \theta, \tag{5}
\end{align*}
$$

- the s-th derivative is $\mathrm{Li}_{s}^{(d)}(z):=\left(\frac{\partial}{\partial s}\right)^{d} \operatorname{Li}_{s}(z)$.

Generalized MTW ensembles

- All ω are real since we integrate over a full period or more directly since the summand is real.
- Consistent with earlier usage, we now refer to $M+N$ as the depth and $\sum_{j=1}^{M}\left(s_{j}+d_{j}\right)+\sum_{k=1}^{N}\left(t_{k}+e_{k}\right)$ as the weight of ω.

To summarize, we consider an MTW ensemble:

Generalized MTW ensembles

- All ω are real since we integrate over a full period or more directly since the summand is real.
- Consistent with earlier usage, we now refer to $M+N$ as the depth and $\sum_{j=1}^{M}\left(s_{j}+d_{j}\right)+\sum_{k=1}^{N}\left(t_{k}+e_{k}\right)$ as the weight of ω.

To summarize, we consider an MTW ensemble:

Generalized MTW ensembles

- All ω are real since we integrate over a full period or more directly since the summand is real.
- Consistent with earlier usage, we now refer to $M+N$ as the depth and $\sum_{j=1}^{M}\left(s_{j}+d_{j}\right)+\sum_{k=1}^{N}\left(t_{k}+e_{k}\right)$ as the weight of ω.

To summarize, we consider an MTW ensemble:
$\mathcal{D}:=\left\{\begin{array}{c|c}\left.\omega\left(\begin{array}{c|c}s_{1}, \ldots, s_{M} & t_{1}, \ldots, t_{N} \\ d_{1}, \ldots, d_{M} & e_{1}, \ldots e_{N}\end{array}\right): s_{i}, d_{i}, t_{j}, e_{j} \geq 0 ; M \geq N \geq 1\right\} . ~ . ~ . ~\end{array}\right.$

- The second row records derivatives wrt to order.
- Log-gamma integrals need MTWs with 0/1 parameters only:

PART I: Introduction
Mordell-Tornheim-Witten ensembles Resolution of all $\mathcal{U}(m, n)$ and more Fundamental computational expedients PART II. More recondite MTW interrelations

Important subensembles

We define $\mathcal{U}(m, n, p, q)$ to vanish if $m n=0$; else if $m \geq n$ then

$$
\begin{align*}
\mathcal{U}(m, n, p, q) & :=\frac{1}{2 \pi} \int_{0}^{2 \pi} \operatorname{Li}_{1}\left(e^{i \theta}\right)^{m-p} \operatorname{Li}_{1}^{(1)}\left(e^{i \theta}\right)^{p} \operatorname{Li}_{1}\left(e^{-i \theta}\right)^{n-q} \operatorname{Li}_{1}^{(1)}\left(e^{-i \theta}\right)^{q} \mathrm{~d} \theta \\
& =\omega\left(\begin{array}{c|c}
\mathbf{1}_{m} & \mathbf{1}_{n} \\
\mathbf{1}_{p} \mathbf{0}_{m-p} & \mathbf{1}_{q} \mathbf{0}_{n-q}
\end{array}\right) \tag{7}
\end{align*}
$$

while for $m<n$ we swap both (m, n) and (p, q). We then denote
and $\mathcal{D}_{0} \subset \mathcal{D}_{1} \subset \mathcal{D}$ is a derivative-free set of MTWs

that is an element of \mathcal{D}_{0} has the form $\omega\left(1_{M} \mid 1_{N}\right)$. Likewise
where $\mathcal{U}_{s}(M, N, 0,0)=\omega\left(\mathbf{s}_{M} \mid s_{N}\right)$, for $s=1,2, \ldots$ Of course

Important subensembles

We define $\mathcal{U}(m, n, p, q)$ to vanish if $m n=0$; else if $m \geq n$ then

$$
\begin{align*}
\mathcal{U}(m, n, p, q) & :=\frac{1}{2 \pi} \int_{0}^{2 \pi} \operatorname{Li}_{1}\left(e^{i \theta}\right)^{m-p} \operatorname{Li}_{1}^{(1)}\left(e^{i \theta}\right)^{p} \operatorname{Li}_{1}\left(e^{-i \theta}\right)^{n-q} \operatorname{Li}_{1}^{(1)}\left(e^{-i \theta}\right)^{q} \mathrm{~d} \theta \\
& =\omega\left(\begin{array}{cc}
\mathbf{1}_{m} & \mathbf{1}_{n} \\
\mathbf{1}_{p} \mathbf{0}_{m-p} & \mathbf{1}_{q} \mathbf{0}_{n-q}
\end{array}\right), \tag{7}
\end{align*}
$$

while for $m<n$ we swap both (m, n) and (p, q). We then denote

$$
\mathcal{D}_{1}:=\{\mathcal{U}(m, n, p, q): p \leq m \geq n \geq q\}
$$

and $\mathcal{D}_{0} \subset \mathcal{D}_{1} \subset \mathcal{D}$ is a derivative-free set of MTWs

$$
\mathcal{D}_{0}:=\{\mathcal{U}(M, N, 0,0): M \geq N \geq 1\}
$$

that is an element of \mathcal{D}_{0} has the form $\omega\left(\mathbf{1}_{M} \mid \mathbf{1}_{N}\right)$. Likewise

Important subensembles

We define $\mathcal{U}(m, n, p, q)$ to vanish if $m n=0$; else if $m \geq n$ then

$$
\begin{align*}
\mathcal{U}(m, n, p, q) & :=\frac{1}{2 \pi} \int_{0}^{2 \pi} \operatorname{Li}_{1}\left(e^{i \theta}\right)^{m-p} \operatorname{Li}_{1}^{(1)}\left(e^{i \theta}\right)^{p} \operatorname{Li}_{1}\left(e^{-i \theta}\right)^{n-q} \operatorname{Li}_{1}^{(1)}\left(e^{-i \theta}\right)^{q} \mathrm{~d} \theta \\
& =\omega\left(\begin{array}{cc}
\mathbf{1}_{m} & \mathbf{1}_{n} \\
\mathbf{1}_{p} \mathbf{0}_{m-p} & \mathbf{1}_{q} \mathbf{0}_{n-q}
\end{array}\right), \tag{7}
\end{align*}
$$

while for $m<n$ we swap both (m, n) and (p, q). We then denote

$$
\mathcal{D}_{1}:=\{\mathcal{U}(m, n, p, q): p \leq m \geq n \geq q\}
$$

and $\mathcal{D}_{0} \subset \mathcal{D}_{1} \subset \mathcal{D}$ is a derivative-free set of MTWs

$$
\mathcal{D}_{0}:=\{\mathcal{U}(M, N, 0,0): M \geq N \geq 1\}
$$

that is an element of \mathcal{D}_{0} has the form $\omega\left(\mathbf{1}_{M} \mid \mathbf{1}_{N}\right)$. Likewise

$$
\mathcal{D}_{0}(s):=\left\{\mathcal{U}_{s}(M, N, 0,0): M \geq N \geq 1\right\},
$$

where $\mathcal{U}_{s}(M, N, 0,0)=\omega\left(\mathbf{s}_{M} \mid \mathbf{s}_{N}\right)$, for $s=1,2, \ldots$. Of course $\mathcal{D}_{0}(1)=\mathcal{D}_{0}$. We also write $\mathcal{U}_{s}(M, N):=\mathcal{U}_{s}\left(M, N_{,}, 0,0\right)$.

PART I: Introduction

First (elementary) closed forms

For $N=1$ in definition (5) we have the following:

$$
\begin{align*}
\omega(r \mid s) & =\zeta(r+s), \tag{8}\\
\omega\left(r_{1}, \ldots, r_{M} \mid 0\right) & =\prod_{j=1}^{M} \zeta\left(r_{j}\right) \tag{9}\\
\omega(r, 0 \mid s)=\omega(0, r \mid s) & =\zeta(s, r) . \tag{10}
\end{align*}
$$

- $\zeta(s, r)$ is a multiple-zeta value (MZV), some of which - such as $\zeta(6,2)$ - are unresolved and are believed irreducible.
For the classic MTW (1), there is a useful pure-real integral available as an alternative to integral representation (3). In fact,

First (elementary) closed forms

For $N=1$ in definition (5) we have the following:

$$
\begin{align*}
\omega(r \mid s) & =\zeta(r+s), \tag{8}\\
\omega\left(r_{1}, \ldots, r_{M} \mid 0\right) & =\prod_{j=1}^{M} \zeta\left(r_{j}\right) \tag{9}\\
\omega(r, 0 \mid s)=\omega(0, r \mid s) & =\zeta(s, r) . \tag{10}
\end{align*}
$$

- $\zeta(s, r)$ is a multiple-zeta value (MZV), some of which - such as $\zeta(6,2)$ - are unresolved and are believed irreducible.
For the classic MTW (1), there is a useful pure-real integral available as an alternative to integral representation (3). In fact,

First (elementary) closed forms

For $N=1$ in definition (5) we have the following:

$$
\begin{align*}
\omega(r \mid s) & =\zeta(r+s) \tag{8}\\
\omega\left(r_{1}, \ldots, r_{M} \mid 0\right) & =\prod_{j=1}^{M} \zeta\left(r_{j}\right) \tag{9}\\
\omega(r, 0 \mid s)=\omega(0, r \mid s) & =\zeta(s, r) . \tag{10}
\end{align*}
$$

- $\zeta(s, r)$ is a multiple-zeta value (MZV), some of which - such as $\zeta(6,2)$ - are unresolved and are believed irreducible.
For the classic MTW (1), there is a useful pure-real integral available as an alternative to integral representation (3). In fact,

$$
\begin{equation*}
\omega\left(s_{1}, s_{2}, \ldots, s_{M} \mid t\right)=\frac{1}{\Gamma(t)} \int_{0}^{\infty} x^{t-1} \prod_{j=1}^{M} \operatorname{Li}_{s_{j}}\left(e^{-x}\right) \mathrm{d} x \tag{11}
\end{equation*}
$$

First (elementary) closed forms

Eqn. (11) can be split into a series plus a numerically easier incomplete Gamma integral With a free parameter λ, one has

$$
\begin{align*}
& \omega\left(s_{1}, s_{2}, \ldots, s_{M} \mid t\right)=\frac{1}{\Gamma(t)} \int_{0}^{\lambda} x^{t-1} \prod_{j=1}^{M} \operatorname{Li}_{s_{j}}\left(e^{-x}\right) \mathrm{d} x \tag{12}\\
& +\frac{1}{\Gamma(t)} \sum_{m_{1}, \ldots, m_{M} \geq 1} \frac{\Gamma\left(t, \lambda\left(m_{1}+\cdots+m_{M}\right)\right)}{m_{1}^{s_{1}} \cdots m_{M}^{s_{M}}\left(m_{1}+m_{2}+\cdots m_{M}\right)^{t}}
\end{align*}
$$

This recovers the full integral as $\lambda \rightarrow \infty$ (11).

- There are interesting symbolic uses of (11): since $\operatorname{Li}_{0}(z)$
- MZV Analytic continuation is known to be nontrivial. The continuation for $t \rightarrow 0$ appears to be $\omega(0,0,0,0 \mid 0) \stackrel{?}{=} \frac{251}{700}$, but the

First (elementary) closed forms

Eqn. (11) can be split into a series plus a numerically easier incomplete Gamma integral With a free parameter λ, one has

$$
\begin{align*}
& \omega\left(s_{1}, s_{2}, \ldots, s_{M} \mid t\right)=\frac{1}{\Gamma(t)} \int_{0}^{\lambda} x^{t-1} \prod_{j=1}^{M} \operatorname{Li}_{s_{j}}\left(e^{-x}\right) \mathrm{d} x \tag{12}\\
& +\frac{1}{\Gamma(t)} \sum_{m_{1}, \ldots, m_{M} \geq 1} \frac{\Gamma\left(t, \lambda\left(m_{1}+\cdots+m_{M}\right)\right)}{m_{1}^{s_{1}} \cdots m_{M}^{s_{M}}\left(m_{1}+m_{2}+\cdots m_{M}\right)^{t}}
\end{align*}
$$

This recovers the full integral as $\lambda \rightarrow \infty$ (11).

- There are interesting symbolic uses of (11): since $\operatorname{Li}_{0}(z)=\frac{z}{1-z}$,

$$
\omega(0,0,0,0 \mid t)=\frac{1}{\Gamma(t)} \int_{0}^{\infty} \frac{x^{t-1}}{\left(e^{x}-1\right)^{4}} \mathrm{~d} x=-\zeta(t)+\frac{11}{6} \zeta(t-1)-\zeta(t-2)+\frac{1}{6} \zeta(t-3),
$$

- MZV Analytic continuation is known to be nontrivial. The continuation for $t \rightarrow 0$ appears to be $\omega(0,0,0,0 \mid 0) \stackrel{?}{=} \frac{251}{720}$, but the

First (elementary) closed forms

Eqn. (11) can be split into a series plus a numerically easier incomplete Gamma integral With a free parameter λ, one has

$$
\begin{align*}
& \omega\left(s_{1}, s_{2}, \ldots, s_{M} \mid t\right)=\frac{1}{\Gamma(t)} \int_{0}^{\lambda} x^{t-1} \prod_{j=1}^{M} \operatorname{Li}_{s_{j}}\left(e^{-x}\right) \mathrm{d} x \tag{12}\\
& +\frac{1}{\Gamma(t)} \sum_{m_{1}, \ldots, m_{M} \geq 1} \frac{\Gamma\left(t, \lambda\left(m_{1}+\cdots+m_{M}\right)\right)}{m_{1}^{s_{1}} \cdots m_{M}^{s_{M}}\left(m_{1}+m_{2}+\cdots m_{M}\right)^{t}}
\end{align*}
$$

This recovers the full integral as $\lambda \rightarrow \infty$ (11).

- There are interesting symbolic uses of (11): since $\operatorname{Li}_{0}(z)=\frac{z}{1-z}$,

$$
\omega(0,0,0,0 \mid t)=\frac{1}{\Gamma(t)} \int_{0}^{\infty} \frac{x^{t-1}}{\left(e^{x}-1\right)^{4}} \mathrm{~d} x=-\zeta(t)+\frac{11}{6} \zeta(t-1)-\zeta(t-2)+\frac{1}{6} \zeta(t-3),
$$

- MZV Analytic continuation is known to be nontrivial. The continuation for $t \rightarrow 0$ appears to be $\omega(0,0,0,0 \mid 0) \stackrel{?}{=} \frac{251}{720}$, but the zeta-product formula (9) gives $\omega(0,0,0,0 \mid 0)=\zeta(0)^{4} \stackrel{?}{=} \frac{1}{16} \cdot \frac{\text { ह, }}{}$

PART I: Introduction
Mordell-Tornheim-Witten ensembles Resolution of all $\mathcal{U}(m, n)$ and more Fundamental computational expedients PART II. More recondite MTW interrelations

An exponential generating function \mathcal{V} for $\mathcal{U}(m, n)$ An exponential-series representation of \mathcal{V} Complete resolution of \mathcal{D}_{0}
Sum rule for the $\mathcal{U}(m, n)$ functions
The $\mathcal{U}_{s}(m, n)$ sums when $s=2$
The $\mathcal{U}_{s}(m, n)$ sums when $s \geq 3$

Resolution of all $\mathcal{U}(m, n)$

- There is an important class of resolvable MTWs where N is allowed to roam freely.
- Consider \mathcal{D}_{0} from $\S 2$: the MTW is derivative-free with all ones across the top row.

The following experimentally motivated results provide an elegant generating function for $\mathcal{U}(m, n):=\mathcal{U}(m, n, 0,0)$.

Theorem (Generating function

We have

An exponential generating function \mathcal{V} for $\mathcal{U}(m, n)$ An exponential-series representation of \mathcal{V} Complete resolution of \mathcal{D}_{0}
Sum rule for the $\mathcal{U}(m, n)$ functions
The $\mathcal{U}_{s}(m, n)$ sums when $s=2$
The $\mathcal{U}_{s}(m, n)$ sums when $s \geq 3$

Resolution of all $\mathcal{U}(m, n)$

- There is an important class of resolvable MTWs where N is allowed to roam freely.
- Consider \mathcal{D}_{0} from $\S 2$: the MTW is derivative-free with all ones across the top row.

The following experimentally motivated results provide an elegant generating function for $\mathcal{U}(m, n):=\mathcal{U}(m, n, 0,0)$.

Theorem (Generating function \mathcal{V} for $\mathcal{U}(m, n)$ as in (7))

We have

$$
\begin{equation*}
\mathcal{V}(x, y):=\sum_{m, n \geq 0} \mathcal{U}(m, n) \frac{x^{m} y^{n}}{m!n!}=\frac{\Gamma(1-x-y)}{\Gamma(1-x) \Gamma(1-y)} \tag{13}
\end{equation*}
$$

An exponential generating function \mathcal{V} for $\mathcal{U}(m, n)$ An exponential-series representation of \mathcal{V} Complete resolution of \mathcal{D}_{0}
Sum rule for the $\mathcal{U}(m, n)$ functions
The $\mathcal{U}_{s}(m, n)$ sums when $s=2$
The $\mathcal{U}_{s}(m, n)$ sums when $s \geq 3$

Resolution of all $\mathcal{U}(m, n)$

Proof.

Starting with the integral form in (7), we exchange integral and summation and then an obvious change of variables to arrive at

$$
\begin{equation*}
\mathcal{V}(x, y)=\frac{2^{-x-y+1}}{\pi} \int_{0}^{\pi / 2}(\cos \theta)^{-x-y} \cos ((x-y) \theta) \mathrm{d} \theta . \tag{14}
\end{equation*}
$$

Using the beta function, for $\operatorname{Re} a>0$ [DLMF, (5.12.5)] is:

$$
\int_{0}^{\pi / 2}(\cos \theta)^{a-1} \cos (b \theta) \mathrm{d} \theta=\frac{\pi}{2^{a}} \frac{1}{a \mathrm{~B}\left(\frac{1}{2}(a+b+1), \frac{1}{2}(a-b+1)\right)} .
$$

On setting $a=1-x-y, b=x-y$ in (15) we obtain (13).

PART I: Introduction
Mordell-Tornheim-Witten ensembles Resolution of all $\mathcal{U}(m, n)$ and more Fundamental computational expedients PART II. More recondite MTW interrelations

An exponential generating function \mathcal{V} for $\mathcal{U}(m, n)$ An exponential-series representation of \mathcal{V}
Complete resolution of \mathcal{D}_{0}
Sum rule for the $\mathcal{U}(m, n)$ functions
The $\mathcal{U}_{s}(m, n)$ sums when $s=2$
The $\mathcal{U}_{s}(m, n)$ sums when $s \geq 3$

Resolution of all $\mathcal{U}(m, n)$

Setting $y= \pm x$ in (13) leads to two natural one-dimensional generating functions. For instance

$$
\begin{equation*}
\mathcal{V}(x,-x)=\sum_{m, n \geq 1}(-1)^{n}\binom{m+n}{n} \mathcal{U}(m, n) \frac{x^{m+n}}{(m+n)!}=\frac{\sin (\pi x)}{\pi x} \tag{16}
\end{equation*}
$$

- Theorem 1 makes it very easy to evaluate $\mathcal{U}(m, n)$ symbolically in Maple. For instance, $\mathcal{U}(5,5)$ returns:

8.8107918187787369046490206727767666673532562235899290819291620963 (18)
$95561049543747340201380539725128849 \times 10^{31}$.

An exponential generating function \mathcal{V} for $\mathcal{U}(m, n)$ An exponential-series representation of \mathcal{V} Complete resolution of \mathcal{D}_{0}
Sum rule for the $\mathcal{U}(m, n)$ functions
The $\mathcal{U}_{s}(m, n)$ sums when $s=2$
The $\mathcal{U}_{s}(m, n)$ sums when $s \geq 3$

Resolution of all $\mathcal{U}(m, n)$

Setting $y= \pm x$ in (13) leads to two natural one-dimensional generating functions. For instance

$$
\begin{equation*}
\mathcal{V}(x,-x)=\sum_{m, n \geq 1}(-1)^{n}\binom{m+n}{n} \mathcal{U}(m, n) \frac{x^{m+n}}{(m+n)!}=\frac{\sin (\pi x)}{\pi x} \tag{16}
\end{equation*}
$$

- Theorem 1 makes it very easy to evaluate $\mathcal{U}(m, n)$ symbolically in Maple. For instance, $\mathcal{U}(5,5)$ returns:

$$
\begin{equation*}
9600 \pi^{2} \zeta(5) \zeta(3)+600 \zeta^{2}(3) \pi^{4}+\frac{77587}{8316} \pi^{10}+144000 \zeta(7) \zeta(3)+72000 \zeta^{2}(5) \tag{17}
\end{equation*}
$$

on a current Lenovo in a fraction of a second. The 61 terms of
$\mathcal{U}(12,12)$ took 1.31 secs and the 159 terms for $\mathcal{U}(15,15)$ took
14.71 secs. To 100 digits it is
8.8107918187787369046490206727767666673532562235899290819291620963 (18)
$95561049543747340201380539725128849 \times 10^{31}$
in full agreement with our following numeriçal scheme. $\overline{\underline{E}}$, $\overline{\underline{\underline{a}}}$

Resolution of all $\mathcal{U}(m, n)$

Setting $y= \pm x$ in（13）leads to two natural one－dimensional generating functions．For instance

$$
\begin{equation*}
\mathcal{V}(x,-x)=\sum_{m, n \geq 1}(-1)^{n}\binom{m+n}{n} \mathcal{U}(m, n) \frac{x^{m+n}}{(m+n)!}=\frac{\sin (\pi x)}{\pi x} \tag{16}
\end{equation*}
$$

－Theorem 1 makes it very easy to evaluate $\mathcal{U}(m, n)$ symbolically in Maple．For instance， $\mathcal{U}(5,5)$ returns：

$$
\begin{equation*}
9600 \pi^{2} \zeta(5) \zeta(3)+600 \zeta^{2}(3) \pi^{4}+\frac{77587}{8316} \pi^{10}+144000 \zeta(7) \zeta(3)+72000 \zeta^{2}(5) \tag{17}
\end{equation*}
$$

－on a current Lenovo in a fraction of a second．The 61 terms of $\mathcal{U}(12,12)$ took 1.31 secs and the 159 terms for $\mathcal{U}(15,15)$ took 14.71 secs．To 100 digits it is
8.8107918187787369046490206727767666673532562235899290819291620963
$95561049543747340201380539725128849 \times 10^{31}$ ．
in full agreement with our following numerical scheme．

PART I: Introduction
Mordell-Tornheim-Witten ensembles Resolution of all $\mathcal{U}(m, n)$ and more Fundamental computational expedients PART II. More recondite MTW interrelations

An exponential generating function \mathcal{V} for $\mathcal{U}(m, n)$ An exponential-series representation of \mathcal{V} Complete resolution of \mathcal{D}_{0}
Sum rule for the $\mathcal{U}(m, n)$ functions
The $\mathcal{U}_{s}(m, n)$ sums when $s=2$
The $\mathcal{U}_{s}(m, n)$ sums when $s \geq 3$

Resolution of all $\mathcal{U}(m, n)$

The log-sine-cosine integrals are given by

$$
\begin{equation*}
\mathcal{B} L s c_{m, n}(\sigma):=\int_{0}^{\sigma} \log ^{m-1}\left|2 \sin \frac{\theta}{2}\right| \log ^{n-1}\left|2 \cos \frac{\theta}{2}\right| \mathrm{d} \theta \tag{19}
\end{equation*}
$$

They have been considered by Lewin, and recently used in QFT.

_ewin's result can be restated as

This is closely linked to (13). Indeed, we may rewrite (20) as

An exponential generating function \mathcal{V} for $\mathcal{U}(m, n)$ An exponential-series representation of \mathcal{V} Complete resolution of \mathcal{D}_{0}
Sum rule for the $\mathcal{U}(m, n)$ functions
The $\mathcal{U}_{s}(m, n)$ sums when $s=2$
The $\mathcal{U}_{s}(m, n)$ sums when $s \geq 3$

Resolution of all $\mathcal{U}(m, n)$

The log-sine-cosine integrals are given by

$$
\begin{equation*}
\mathcal{B} L s c_{m, n}(\sigma):=\int_{0}^{\sigma} \log ^{m-1}\left|2 \sin \frac{\theta}{2}\right| \log ^{n-1}\left|2 \cos \frac{\theta}{2}\right| \mathrm{d} \theta \tag{19}
\end{equation*}
$$

They have been considered by Lewin, and recently used in QFT. Lewin's result can be restated as

$$
\begin{align*}
\mathcal{L}(x, y) & :=\sum_{m, n=0}^{\infty} 2^{m+n} \mathcal{B} L s c_{m+1, n+1}(\pi) \frac{x^{m}}{m!} \frac{y^{n}}{n!} \\
& =\pi\binom{x}{x}\binom{2 y}{y} \frac{\Gamma(1+x) \Gamma(1+y)}{\Gamma(1+x+y)} . \tag{20}
\end{align*}
$$

This is closely linked to (13). Indeed, we may rewrite (20) as

Resolution of all $\mathcal{U}(m, n)$

The log-sine-cosine integrals are given by

$$
\begin{equation*}
\mathcal{B} L s c_{m, n}(\sigma):=\int_{0}^{\sigma} \log ^{m-1}\left|2 \sin \frac{\theta}{2}\right| \log ^{n-1}\left|2 \cos \frac{\theta}{2}\right| \mathrm{d} \theta \tag{19}
\end{equation*}
$$

They have been considered by Lewin, and recently used in QFT. Lewin's result can be restated as

$$
\begin{align*}
\mathcal{L}(x, y) & :=\sum_{m, n=0}^{\infty} 2^{m+n} \mathcal{B} L s c_{m+1, n+1}(\pi) \frac{x^{m}}{m!} \frac{y^{n}}{n!} \\
& =\pi\binom{2 x}{x}\binom{2 y}{y} \frac{\Gamma(1+x) \Gamma(1+y)}{\Gamma(1+x+y)} . \tag{20}
\end{align*}
$$

This is closely linked to (13). Indeed, we may rewrite (20) as

$$
\begin{equation*}
\mathcal{L}(x, y) \mathcal{V}(-x,-y)=\pi\binom{2 x}{x}\binom{2 y}{y} \tag{21}
\end{equation*}
$$

A generating function for \mathcal{V}

For a generating function $\mathcal{V}(x, y)$, we need expansions of the Gamma function. Recall the classical formulas

$$
\begin{align*}
\log \Gamma(1-z) & =\gamma z+\sum_{n>1} \zeta(n) \frac{z^{n}}{n} \tag{22}\\
e^{-\gamma z} \Gamma(1-z) & =\exp \left\{\sum_{n>1} \frac{\zeta(n) z^{n}}{n}\right\}
\end{align*}
$$

(everything being convergent for $|z|<1$).
This leads immediately to a powerful representation for V :

A generating function for \mathcal{V}

For a generating function $\mathcal{V}(x, y)$, we need expansions of the Gamma function. Recall the classical formulas

$$
\begin{align*}
\log \Gamma(1-z) & =\gamma z+\sum_{n>1} \zeta(n) \frac{z^{n}}{n} \tag{22}\\
e^{-\gamma z} \Gamma(1-z) & =\exp \left\{\sum_{n>1} \frac{\zeta(n) z^{n}}{n}\right\}
\end{align*}
$$

(everything being convergent for $|z|<1$).
This leads immediately to a powerful representation for \mathcal{V} :

$$
\begin{align*}
\mathcal{V}(x, y) & =\frac{\Gamma(1-x-y)}{\Gamma(1-x) \Gamma(1-y)}=\exp \left\{\sum_{n>1} \frac{\zeta(n)}{n}\left((x+y)^{n}-x^{n}-y^{n}\right)\right\} \\
& =\exp \left\{\sum_{n>1} \frac{\zeta(n)}{n} \sum_{k=1}^{n-1}\binom{n}{k} x^{k} y^{n-k}\right\} \tag{23}
\end{align*}
$$

PART I: Introduction
Mordell-Tornheim-Witten ensembles Resolution of all $\mathcal{U}(m, n)$ and more Fundamental computational expedients PART II. More recondite MTW interrelations

An exponential generating function \mathcal{V} for $\mathcal{U}(m, n)$
An exponential-series representation of \mathcal{V}
Complete resolution of \mathcal{D}_{0}
Sum rule for the $\mathcal{U}(m, n)$ functions
The $\mathcal{U}_{s}(m, n)$ sums when $s=2$
The $\mathcal{U}_{s}(m, n)$ sums when $s \geq 3$

Complete resolution of the ensemble \mathcal{D}_{0}

We may now read off values of $\mathcal{U}(m, n)$:

Theorem (Thm 2. Evaluation of $\mathcal{U}(M, N)$ for $M \geq N \geq 1$)

$$
\begin{gathered}
\mathcal{U}(M, N)=\omega\left(\mathbf{1}_{M} \mid \mathbf{1}_{N}\right) \in \mathcal{D}_{0} \text { lies in the ring generated as } \\
\mathcal{R}:=\langle\mathcal{Q} \cup\{\pi\} \cup\{\zeta(3), \zeta(5), \zeta(7), \ldots\}\rangle .
\end{gathered}
$$

In particular, setting $\mathcal{U}(M, 0):=1$, the general expression is:

$$
\mathcal{U}(M, N)=M!N!\sum_{n=1}^{N} \frac{1}{n!} \sum_{\substack{j_{1}+\cdots+j_{n}=M \\ k_{1}+\cdots+k_{n}=N}} \prod_{i=1}^{n} \frac{\left(j_{i}+k_{i}-1\right)!}{j_{i}!k_{i}!} \zeta\left(j_{i}+k_{i}\right)
$$

PART I: Introduction Mordell-Tornheim-Witten ensembles Resolution of all $\mathcal{U}(m, n)$ and more Fundamental computational expedients PART II. More recondite MTW interrelations

An exponential generating function \mathcal{V} for $\mathcal{U}(m, n)$ An exponential-series representation of \mathcal{V} Complete resolution of \mathcal{D}_{0}
Sum rule for the $\mathcal{U}(m, n)$ functions
The $\mathcal{U}_{s}(m, n)$ sums when $s=2$
The $\mathcal{U}_{s}(m, n)$ sums when $s \geq 3$

Resolution of the ensemble \mathcal{D}_{0}

Proof.

Denote by Q the quantity in the braces $\}$ of the exponent in (23). Then inspection of

$$
\exp \{Q\}=1+Q+Q^{2} / 2!+\ldots
$$

gives the finite form for a coefficient $\mathcal{U}(m, n)$.

PART I: Introduction
Mordell-Tornheim-Witten ensembles Resolution of all $\mathcal{U}(m, n)$ and more Fundamental computational expedients PART II. More recondite MTW interrelations

Resolution of the ensemble \mathcal{D}_{0}

Proof.

Denote by Q the quantity in the braces $\}$ of the exponent in (23). Then inspection of

$$
\exp \{Q\}=1+Q+Q^{2} / 2!+\ldots
$$

gives the finite form for a coefficient $\mathcal{U}(m, n)$.
Example (Sample \mathcal{U} values (all of weight $m+n$))

$$
\begin{aligned}
\mathcal{U}(4,2) & =\omega(1,1,1,1 \mid 1,1)=204 \zeta(6)+24 \zeta(3)^{2} \\
\mathcal{U}(4,3) & =\omega(1,1,1,1 \mid 1,1,1)=6 \pi^{4} \zeta(3)+48 \pi^{2} \zeta(5)+720 \zeta(7) \\
\mathcal{U}(6,1) & =\omega(1,1,1,1,1,1 \mid 1)=720 \zeta(7) \\
\mathcal{U}(M, 1) & =\omega\left(\mathbf{1}_{M} \mid 1\right)=M!\zeta(M+1)
\end{aligned}
$$

PART I: Introduction
Mordell-Tornheim-Witten ensembles Resolution of all $\mathcal{U}(m, n)$ and more Fundamental computational expedients PART II. More recondite MTW interrelations

Sum rule for $\mathcal{U}(m, n)$

Extreme-precision experiments discovered a unique sum rule amongst \mathcal{U} functions with a fixed even order $M+N$. Eventually, with B_{p} the p-th Bernoulli number, we were led to:

Theorem (Sum rule for \mathcal{U} of even weight $p>2$)

$$
\sum_{m=2}^{p-2}(-1)^{m}\binom{p}{m} \mathcal{U}(m, p-m)=2 p\left(1-\frac{1}{2^{p}(p+1) B_{p}}\right) \mathcal{U}(p-1,1)
$$

PART I: Introduction
Mordell-Tornheim-Witten ensembles Resolution of all $\mathcal{U}(m, n)$ and more Fundamental computational expedients PART II. More recondite MTW interrelations

Sum rule for $\mathcal{U}(m, n)$

Extreme-precision experiments discovered a unique sum rule amongst \mathcal{U} functions with a fixed even order $M+N$. Eventually, with B_{p} the p-th Bernoulli number, we were led to:

Theorem (Sum rule for \mathcal{U} of even weight $p>2$)

$$
\begin{equation*}
\sum_{m=2}^{p-2}(-1)^{m}\binom{p}{m} \mathcal{U}(m, p-m)=2 p\left(1-\frac{1}{2^{p}(p+1) B_{p}}\right) \mathcal{U}(p-1,1) \tag{24}
\end{equation*}
$$

Proof.

Equate powers of x on each side of $\mathcal{V}(x,-x)$ (relation (16)), and use $\mathcal{U}(p-1,1)=(p-1)!\zeta(p)$ together with the Bernoulli form of $\zeta(p)$ given in (62).

Sum rule for $\mathcal{U}(m, n)$

Example (Sum rule for weights $M+N=20,100$)

For $M+N=20$, the theorem gives precisely the relation first numerically discovered.

Empirically this is the unique such relation at that weight.
An idea as to the rapid growth of the sum-rule coefficients is this: for weight $M+N=100$ the integer relation coefficient of $\mathcal{U}(50,50)$ is even, and exceeds 7×10^{140}.

Further conditions for ring membership

For more general real $c>b$ the integral representation
$\omega\left(\mathbf{1}_{a} \mathbf{0}_{b} \mid c\right)=\frac{(-1)^{a+c-1}}{\Gamma(c)} \int_{0}^{1} \frac{(1-u)^{b-1}}{u^{b}} \log ^{c-1}(1-u) \log ^{a} u \mathrm{~d} u$, (25)
is finite and the a ones and b zeros can be permuted.

- Such integrals are covered by below, but their special form of (25) resolves entirely to sums of 1-dim zeta products.
- Partial derivatives of the beta function, $B_{a . c-1}$, lead to:

Further conditions for ring membership

For more general real $c>b$ the integral representation

$$
\begin{equation*}
\omega\left(\mathbf{1}_{a} \mathbf{0}_{b} \mid c\right)=\frac{(-1)^{a+c-1}}{\Gamma(c)} \int_{0}^{1} \frac{(1-u)^{b-1}}{u^{b}} \log ^{c-1}(1-u) \log ^{a} u \mathrm{~d} u \tag{25}
\end{equation*}
$$

is finite and the a ones and b zeros can be permuted.

- Such integrals are covered by below, but their special form of (25) resolves entirely to sums of 1-dim zeta products.
- Partial derivatives of the beta function, $B_{a, c-1}$, lead to:

PART I: Introduction Mordell-Tornheim-Witten ensembles Resolution of all $\mathcal{U}(m, n)$ and more Fundamental computational expedients PART II. More recondite MTW interrelations

An exponential generating function \mathcal{V} for $\mathcal{U}(m, n)$ An exponential-series representation of \mathcal{V} Complete resolution of \mathcal{D}_{0}
Sum rule for the $\mathcal{U}(m, n)$ functions
The $\mathcal{U}_{s}(m, n)$ sums when $s=2$
The $\mathcal{U}_{s}(m, n)$ sums when $s \geq 3$

Further conditions for ring membership

Theorem (For non-negative integers a, b, c with $c>b$)

The number $\omega\left(\mathbf{1}_{a} \mathbf{0}_{b} \mid c\right)$ lies in the ring \mathcal{R} from Theorem 2, and so reduces to combinations of ζ values.

- One may work as for Theorem 2, but we choose to use Gamma-derivative methods, so as to reveal the equivalence between these two approaches.

PART I: Introduction

An exponential generating function \mathcal{V} for $\mathcal{U}(m, n)$
An exponential-series representation of \mathcal{V}
Complete resolution of \mathcal{D}_{0}
Sum rule for the $\mathcal{U}(m, n)$ functions
The $\mathcal{U}_{s}(m, n)$ sums when $s=2$
The $\mathcal{U}_{s}(m, n)$ sums when $s \geq 3$

Further conditions for ring membership

Theorem (For non-negative integers a, b, c with $c>b$)

The number $\omega\left(\mathbf{1}_{a} \mathbf{0}_{b} \mid c\right)$ lies in the ring \mathcal{R} from Theorem 2, and so reduces to combinations of ζ values.

- One may work as for Theorem 2, but we choose to use Gamma-derivative methods, so as to reveal the equivalence between these two approaches.

PART I: Introduction
Mordell-Tornheim-Witten ensembles Resolution of all $\mathcal{U}(m, n)$ and more Fundamental computational expedients PART II. More recondite MTW interrelations

An exponential generating function \mathcal{V} for $\mathcal{U}(m, n)$ An exponential-series representation of \mathcal{V} Complete resolution of \mathcal{D}_{0}
Sum rule for the $\mathcal{U}(m, n)$ functions
The $\mathcal{U}_{s}(m, n)$ sums when $s=2$
The $\mathcal{U}_{s}(m, n)$ sums when $s \geq 3$

Further conditions for ring membership

Proof. From (25) we have, formally.

$$
\begin{equation*}
(-1)^{a+c-1} \Gamma(c) \omega\left(\mathbf{1}_{a} \mathbf{0}_{b} \mid c\right)=\lim _{u \rightarrow-b} \frac{\partial}{\partial v^{(c-1)}}\left\{\frac{\partial}{\partial u^{a}} \frac{\Gamma(u+1) \Gamma(v)}{\Gamma(u+v+1)}\right\}_{v=b} . \tag{26}
\end{equation*}
$$

Expanding $(1-u)^{b-1} / u^{b}$ binomially, the ω value is a superposition of terms $I(a, b, c):=$

$$
\begin{equation*}
\int_{0}^{1} \frac{\log ^{c}(1-u) \log ^{a} u}{u^{b}} \mathrm{~d} u=\lim _{u \rightarrow-b} \frac{\partial}{\partial v^{c}}\left\{\frac{\partial}{\partial u^{a}} \frac{\Gamma(u+1) \Gamma(v)}{\Gamma(u+v+1)}\right\}_{v=1} \tag{27}
\end{equation*}
$$

Thence, we obtain the asserted reduction via the
exponential-series arguments of the previous section or by
appealing to known properties of poly-gamma functions.

PART I: Introduction
Mordell-Tornheim-Witten ensembles Resolution of all $\mathcal{U}(m, n)$ and more Fundamental computational expedients PART II. More recondite MTW interrelations

An exponential generating function \mathcal{V} for $\mathcal{U}(m, n)$
An exponential-series representation of \mathcal{V} Complete resolution of \mathcal{D}_{0}
Sum rule for the $\mathcal{U}(m, n)$ functions
The $\mathcal{U}_{s}(m, n)$ sums when $s=2$
The $\mathcal{U}_{s}(m, n)$ sums when $s \geq 3$

Further conditions for ring membership

Proof. From (25) we have, formally.

$$
\begin{equation*}
(-1)^{a+c-1} \Gamma(c) \omega\left(\mathbf{1}_{a} \mathbf{0}_{b} \mid c\right)=\lim _{u \rightarrow-b} \frac{\partial}{\partial v^{(c-1)}}\left\{\frac{\partial}{\partial u^{a}} \frac{\Gamma(u+1) \Gamma(v)}{\Gamma(u+v+1)}\right\}_{v=b} \tag{26}
\end{equation*}
$$

Expanding $(1-u)^{b-1} / u^{b}$ binomially, the ω value is a superposition of terms $I(a, b, c):=$

$$
\begin{equation*}
\int_{0}^{1} \frac{\log ^{c}(1-u) \log ^{a} u}{u^{b}} \mathrm{~d} u=\lim _{u \rightarrow-b} \frac{\partial}{\partial v^{c}}\left\{\frac{\partial}{\partial u^{a}} \frac{\Gamma(u+1) \Gamma(v)}{\Gamma(u+v+1)}\right\}_{v=1} \tag{27}
\end{equation*}
$$

Thence, we obtain the asserted reduction via the exponential-series arguments of the previous section or by appealing to known properties of poly-gamma functions.

PART I: Introduction
Mordell-Tornheim-Witten ensembles Resolution of all $\mathcal{U}(m, n)$ and more Fundamental computational expedients PART II. More recondite MTW interrelations

An exponential generating function \mathcal{V} for $\mathcal{U}(m, n)$ An exponential-series representation of \mathcal{V} Complete resolution of \mathcal{D}_{0}
Sum rule for the $\mathcal{U}(m, n)$ functions
The $\mathcal{U}_{s}(m, n)$ sums when $s=2$
The $\mathcal{U}_{s}(m, n)$ sums when $s \geq 3$

Further conditions for ring membership

- In [Lewin, (7.128)] one finds $I(2,1,2)=8 \zeta(5)-\frac{2}{3} \zeta(3) \pi^{2}$ and an incorrect value for $I(3,1,2)=6 \zeta^{2}(3)-\frac{1}{105} \pi^{6}$.

Example (Representative evaluations are)

$$
\begin{aligned}
\omega(1,1,1,0,0 \mid 3)= & \left(\pi^{2}-12\right) \zeta(3)-3 \zeta(3)^{2}-18 \zeta(5)+\pi^{2}+\frac{\pi^{4}}{12} \\
\omega(1,1,0,0,0 \mid 5)= & \left(\frac{7}{4}-\frac{11 \pi^{2}}{12}-\frac{\pi^{4}}{36}\right) \zeta(3)+\frac{9 \zeta(3)^{2}}{2}+\frac{29 \zeta(5)}{2} \\
& -\frac{2 \pi^{2} \zeta(5)}{3}+10 \zeta(7)-\frac{\pi^{4}}{16}-\frac{\pi^{6}}{144} .
\end{aligned}
$$

Now, not all terms have the same weight.

PART I: Introduction
Mordell-Tornheim-Witten ensembles Resolution of all $\mathcal{U}(m, n)$ and more Fundamental computational expedients PART II. More recondite MTW interrelations

An exponential generating function \mathcal{V} for $\mathcal{U}(m, n)$ An exponential-series representation of \mathcal{V} Complete resolution of \mathcal{D}_{0}
Sum rule for the $\mathcal{U}(m, n)$ functions
The $\mathcal{U}_{s}(m, n)$ sums when $s=2$
The $\mathcal{U}_{s}(m, n)$ sums when $s \geq 3$

The subensemble $\mathcal{D}_{0}(s)$ for $s=1,2,3 \ldots$

Given the success with \mathcal{V} in $\S 3$, we turn to $\mathcal{D}_{0}(s)$ from $\S 2$. We set $\mathcal{U}_{s}(0,0)=1 ; \mathcal{U}_{s}(m, n)=0$ if $m>n=0$; else if $m \geq n$ we set
$\mathcal{U}_{s}(m, n):=\frac{1}{2 \pi} \int_{0}^{2 \pi} \operatorname{Li}_{s}\left(e^{i \theta}\right)^{m} \operatorname{Li}_{s}\left(e^{-i \theta}\right)^{n} \mathrm{~d} \theta=\omega\left(\begin{array}{c|c}\mathbf{s}_{m} & \mathbf{s}_{n} \\ \mathbf{0}_{m} & \mathbf{0}_{n}\end{array}\right)$.
That is, we consider elements $\omega\left(\mathrm{s}_{M} \mid \mathrm{s}_{N}\right)$. An obvious identity is $\mathcal{U}_{s}(1,1)=\zeta(2 s)$

Likewise
\square

The subensemble $\mathcal{D}_{0}(s)$ for $s=1,2,3 \ldots$

Given the success with \mathcal{V} in $\S 3$, we turn to $\mathcal{D}_{0}(s)$ from $\S 2$. We set $\mathcal{U}_{s}(0,0)=1 ; \mathcal{U}_{s}(m, n)=0$ if $m>n=0$; else if $m \geq n$ we set
$\mathcal{U}_{s}(m, n):=\frac{1}{2 \pi} \int_{0}^{2 \pi} \operatorname{Li}_{s}\left(e^{i \theta}\right)^{m} \operatorname{Li}_{s}\left(e^{-i \theta}\right)^{n} \mathrm{~d} \theta=\omega\left(\begin{array}{l|l}\mathbf{s}_{m} & \mathbf{s}_{n} \\ \mathbf{0}_{m} & \mathbf{0}_{n}\end{array}\right)$.

That is, we consider elements $\omega\left(\mathbf{s}_{M} \mid \mathbf{s}_{N}\right)$. An obvious identity is

$$
\begin{equation*}
\mathcal{U}_{s}(1,1)=\zeta(2 s) . \tag{31}
\end{equation*}
$$

Likewise

$$
\begin{equation*}
\mathcal{U}_{s}(2,1)=\omega(s, s, s), \tag{32}
\end{equation*}
$$

which is evaluable by Theorem 13.

PART I: Introduction
Mordell-Tornheim-Witten ensembles Resolution of all $\mathcal{U}(m, n)$ and more Fundamental computational expedients PART II. More recondite MTW interrelations

An exponential generating function \mathcal{V} for $\mathcal{U}(m, n)$ An exponential-series representation of \mathcal{V} Complete resolution of \mathcal{D}_{0}
Sum rule for the $\mathcal{U}(m, n)$ functions
The $\mathcal{U}_{s}(m, n)$ sums when $s=2$
The $\mathcal{U}_{s}(m, n)$ sums when $s \geq 3$

Evaluation of \mathcal{V}_{2}

- For $p=2$, we obtain a corresponding generating function:

$$
\begin{equation*}
\mathcal{V}_{2}(x, y):=\sum_{m, n \geq 0} \mathcal{U}_{2}(m, n) \frac{x^{m} y^{n}}{m!n!} \tag{33}
\end{equation*}
$$

Summing and exchanging integral and sum as with $p=1$, we get

Evaluation of \mathcal{V}_{2}

- For $p=2$, we obtain a corresponding generating function:

$$
\begin{equation*}
\mathcal{V}_{2}(x, y):=\sum_{m, n \geq 0} \mathcal{U}_{2}(m, n) \frac{x^{m} y^{n}}{m!n!} \tag{33}
\end{equation*}
$$

Summing and exchanging integral and sum as with $p=1$, we get

$$
\begin{align*}
\mathcal{V}_{2}(i x, i y) & :=\frac{1}{2 \pi} \int_{0}^{2 \pi} \mathrm{e}^{(y-x)) \mathrm{Cl}_{2}(\theta)} \cos \left(\frac{\left(2 \pi^{2}+3 \theta^{2}-6 \pi \theta\right)}{12}(y+x)\right) \mathrm{d} \theta \tag{34}\\
& +i \frac{1}{2 \pi} \int_{0}^{2 \pi} \mathrm{e}^{(y-x)) \mathrm{Cl}_{2}(\theta)} \sin \left(\frac{\left(2 \pi^{2}+3 \theta^{2}-6 \pi \theta\right)}{12}(y+x)\right) \mathrm{d} \theta
\end{align*}
$$

where $\mathrm{Cl}_{2}(\theta):=-\int_{0}^{\theta} \log \left(2\left|\sin \frac{t}{2}\right|\right) \mathrm{d} t$ is the Clausen function.

PART I: Introduction Mordell-Tornheim-Witten ensembles Resolution of all $\mathcal{U}(m, n)$ and more Fundamental computational expedients PART II. More recondite MTW interrelations

An exponential generating function \mathcal{V} for $\mathcal{U}(m, n)$ An exponential-series representation of \mathcal{V}
Complete resolution of \mathcal{D}_{0}
Sum rule for the $\mathcal{U}(m, n)$ functions
The $\mathcal{U}_{s}(m, n)$ sums when $s=2$
The $\mathcal{U}_{s}(m, n)$ sums when $s \geq 3$

The evaluation of \mathcal{V}_{2}

- It seems daunting to place this in closed form, but we can evaluate $\mathcal{V}_{2}(x, x)$.

The evaluation of \mathcal{V}_{2}

- It seems daunting to place this in closed form, but we can evaluate $\mathcal{V}_{2}(x, x)$.

It transpires, in terms of the Fresnel integrals S and C [DLMF, §7.2(iii)], to be

$$
\begin{align*}
2 \pi \mathcal{V}_{2}(i x, i x) & =2 \sqrt{\frac{\pi}{x}}\left(\cos \left(\frac{x \pi^{2}}{6}\right) C(\sqrt{\pi x})+\sin \left(\frac{x \pi^{2}}{6}\right) S(\sqrt{\pi x})\right) \tag{35}\\
& +i 2 \sqrt{\frac{\pi}{x}}\left(\cos \left(\frac{x \pi^{2}}{6}\right) S(\sqrt{\pi x})-\sin \left(\frac{x \pi^{2}}{6}\right) C(\sqrt{\pi x})\right)
\end{align*}
$$

The evaluation of \mathcal{V}_{2}

Series representations in [DLMF, Eq. (7.6.4) \& (7.6.6)] give:

$$
\begin{align*}
\operatorname{Re} \mathcal{V}_{2}(i x, i x) & =\cos \left(\frac{x \pi^{2}}{6}\right) \sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{4 n}}{2^{2 n+2}(2 n)!(4 n+1)} x^{2 n} \tag{36}\\
& +\sin \left(\frac{x \pi^{2}}{6}\right) \sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{4 n+2}}{2^{2 n+3}(2 n+1)!(4 n+3)} x^{2 n+1},
\end{align*}
$$

and

$$
\begin{align*}
\operatorname{Im} \mathcal{V}_{2}(i x, i x) & =-\sin \left(\frac{x \pi^{2}}{6}\right) \sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{4 n}}{2^{2 n+2}(2 n)!(4 n+1)} x^{2 n} \tag{37}\\
& +\cos \left(\frac{x \pi^{2}}{6}\right) \sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{4 n+2}}{2^{2 n+3}(2 n+1)!(4 n+3)} x^{2 n+1}
\end{align*}
$$

PART I: Introduction Mordell-Tornheim-Witten ensembles Resolution of all $\mathcal{U}(m, n)$ and more Fundamental computational expedients PART II. More recondite MTW interrelations

An exponential generating function \mathcal{V} for $\mathcal{U}(m, n)$ An exponential-series representation of \mathcal{V}
Complete resolution of \mathcal{D}_{0}
Sum rule for the $\mathcal{U}(m, n)$ functions
The $\mathcal{U}_{s}(m, n)$ sums when $s=2$
The $\mathcal{U}_{s}(m, n)$ sums when $s \geq 3$

The evaluation of \mathcal{V}_{2}

- $\operatorname{ReV}_{2}(i x, i x)$ is an even function and $\operatorname{Im} \mathcal{V}_{2}(i x, i x)$ is odd.

On comparing (33) with $i x=i y$ to (36) or (37) we arrive at:

Theorem (Sum rule for \mathcal{U}_{2})

For integer $p \geq 1$, there are explicit positive rationals q_{p} such that

PART I: Introduction Mordell-Tornheim-Witten ensembles Resolution of all $\mathcal{U}(m, n)$ and more Fundamental computational expedients PART II. More recondite MTW interrelations

An exponential generating function \mathcal{V} for $\mathcal{U}(m, n)$ An exponential-series representation of \mathcal{V} Complete resolution of \mathcal{D}_{0}
Sum rule for the $\mathcal{U}(m, n)$ functions
The $\mathcal{U}_{s}(m, n)$ sums when $s=2$
The $\mathcal{U}_{s}(m, n)$ sums when $s \geq 3$

The evaluation of \mathcal{V}_{2}

- $\operatorname{ReV}_{2}(i x, i x)$ is an even function and $\operatorname{Im} \mathcal{V}_{2}(i x, i x)$ is odd.

On comparing (33) with $i x=i y$ to (36) or (37) we arrive at:

Theorem (Sum rule for U_{2})

For integer $p \geq 1$, there are explicit positive rationals q_{p} such that

PART I: Introduction
Mordell-Tornheim-Witten ensembles Resolution of all $\mathcal{U}(m, n)$ and more Fundamental computational expedients PART II. More recondite MTW interrelations

An exponential generating function \mathcal{V} for $\mathcal{U}(m, n)$
An exponential-series representation of \mathcal{V} Complete resolution of \mathcal{D}_{0}
Sum rule for the $\mathcal{U}(m, n)$ functions
The $\mathcal{U}_{s}(m, n)$ sums when $s=2$
The $\mathcal{U}_{s}(m, n)$ sums when $s \geq 3$

The evaluation of \mathcal{V}_{2}

- $\operatorname{ReV}_{2}(i x, i x)$ is an even function and $\operatorname{Im} \mathcal{V}_{2}(i x, i x)$ is odd.

On comparing (33) with $i x=i y$ to (36) or (37) we arrive at:

Theorem (Sum rule for \mathcal{U}_{2})

For integer $p \geq 1$, there are explicit positive rationals q_{p} such that

$$
\begin{equation*}
\sum_{m=1}^{2 p-1}\binom{2 p}{m} \mathcal{U}_{2}(m, 2 p-m)=(-1)^{p} q_{2 p} \pi^{4 p} \tag{38}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{m=1}^{2 p}\binom{2 p+1}{m} \mathcal{U}_{2}(m, 2 p+1-m)=(-1)^{p} q_{2 p+1} \pi^{4 p+2} \tag{39}
\end{equation*}
$$

PART I: Introduction Mordell-Tornheim-Witten ensembles Resolution of all $\mathcal{U}(m, n)$ and more Fundamental computational expedients PART II. More recondite MTW interrelations

An exponential generating function \mathcal{V} for $\mathcal{U}(m, n)$ An exponential-series representation of \mathcal{V}
Complete resolution of \mathcal{D}_{0}
Sum rule for the $\mathcal{U}(m, n)$ functions
The $\mathcal{U}_{s}(m, n)$ sums when $s=2$
The $\mathcal{U}_{s}(m, n)$ sums when $s \geq 3$

The evaluation of \mathcal{V}_{2}

Example (Relations with $s=2$)

Unlike $s=1$ we have a relation of each weight for all even s. The q_{n} are easy to compute from (35). Thence, to order 16:

Exact formulas for the coefficients of (40) are in (47) and (48) below.

The evaluation of \mathcal{V}_{2}

Example (Relations with $s=2$)

Unlike $s=1$ we have a relation of each weight for all even s. The q_{n} are easy to compute from (35). Thence, to order 16:

$$
\begin{align*}
\mathcal{V}_{2}(i x, i x) & =-\frac{1}{90} \pi^{4} x^{2}+\frac{1}{22680} \pi^{8} x^{4}-\frac{53}{525404880} \pi^{12} x^{6} \\
& +\frac{19}{128619114624} \pi^{16} x^{8} \tag{40}\\
& -\frac{1}{2835} \pi^{6} x^{3}+\frac{1}{561330} \pi^{10} x^{5}-\frac{1}{262702440} \pi^{14} x^{7}+\cdots \tag{41}
\end{align*}
$$

Exact formulas for the coefficients of (40) are in (47) and (48) below.

The evaluation of \mathcal{V}_{2}

Remark

There is additional useful information to be gleaned from (34). Setting $y=-x$, we deduce that

$$
\begin{equation*}
\mathcal{V}_{2}(i x,-i x)=\frac{1}{\pi} \int_{0}^{\pi} \cos \left(\mathrm{Cl}_{2}(\theta) 2 x\right) \mathrm{d} \theta \tag{42}
\end{equation*}
$$

Comparing coefficients, we obtain linear combinations of \mathcal{U}_{2} sums adding up to $C_{2 n}:=\frac{1}{\pi} \int_{0}^{\pi} \mathrm{Cl}_{2}(\theta)^{2 n} \mathrm{~d} \theta$ for each n.

- While $C_{1}=\mathcal{B L} s_{3}^{(1)}(\pi)$, no closed form seems to be known for any such $C_{2 n}$

The evaluation of \mathcal{V}_{2}

Remark

There is additional useful information to be gleaned from (34). Setting $y=-x$, we deduce that

$$
\begin{equation*}
\mathcal{V}_{2}(i x,-i x)=\frac{1}{\pi} \int_{0}^{\pi} \cos \left(\mathrm{Cl}_{2}(\theta) 2 x\right) \mathrm{d} \theta \tag{42}
\end{equation*}
$$

Comparing coefficients, we obtain linear combinations of \mathcal{U}_{2} sums adding up to $C_{2 n}:=\frac{1}{\pi} \int_{0}^{\pi} \mathrm{Cl}_{2}(\theta)^{2 n} \mathrm{~d} \theta$ for each n.

- While $C_{1}=\mathcal{B} L s_{3}^{(1)}(\pi)$, no closed form seems to be known for any such $C_{2 n}$.

PART I: Introduction Mordell-Tornheim-Witten ensembles Resolution of all $\mathcal{U}(m, n)$ and more Fundamental computational expedients PART II. More recondite MTW interrelations

An exponential generating function \mathcal{V} for $\mathcal{U}(m, n)$ An exponential-series representation of \mathcal{V}
Complete resolution of \mathcal{D}_{0}
Sum rule for the $\mathcal{U}(m, n)$ functions
The $\mathcal{U}_{s}(m, n)$ sums when $s=2$
The $\mathcal{U}_{s}(m, n)$ sums when $s \geq 3$

The evaluation of \mathcal{V}_{3}

- It is possible to undertake the same analysis generally.

For instance, from the evaluation Gl_{3} we deduce that

The Taylor series commences

- Again the order-two coefficient is in agreement with (31)
- Note also that $6 \mathcal{U}_{3}(2,1)$ is the next coefficient and that all terms have the weight one would predict.

An exponential generating function \mathcal{V} for $\mathcal{U}(m, n)$ An exponential-series representation of \mathcal{V} Complete resolution of \mathcal{D}_{0} Sum rule for the $\mathcal{U}(m, n)$ functions
The $\mathcal{U}_{s}(m, n)$ sums when $s=2$
The $\mathcal{U}_{s}(m, n)$ sums when $s \geq 3$

The evaluation of \mathcal{V}_{3}

- It is possible to undertake the same analysis generally. For instance, from the evaluation Gl_{3} we deduce that

$$
\begin{equation*}
\mathcal{V}_{3}(x,-x)=\frac{1}{\pi} \int_{0}^{\pi} \cos \left(\left(\pi^{2}-\theta^{2}\right) \frac{\theta}{6} x\right) \mathrm{d} \theta \tag{43}
\end{equation*}
$$

The Taylor series commences
$\overline{3648645}^{\pi-x-31819833045}$

- Again the order-two coefficient is in agreement with (31).
- Note also that $6 \mathcal{U}_{3}(2,1)$ is the next coefficient and that all terms have the weight one would predict.

The evaluation of \mathcal{V}_{3}

- It is possible to undertake the same analysis generally.

For instance, from the evaluation Gl_{3} we deduce that

$$
\begin{equation*}
\mathcal{V}_{3}(x,-x)=\frac{1}{\pi} \int_{0}^{\pi} \cos \left(\left(\pi^{2}-\theta^{2}\right) \frac{\theta}{6} x\right) \mathrm{d} \theta \tag{43}
\end{equation*}
$$

The Taylor series commences
$\mathcal{V}_{3}(x,-x)=1-\frac{1}{945} \pi^{6} x^{2}+\frac{1}{3648645} \pi^{12} x^{4}-\frac{1}{31819833045} \pi^{18} x^{6}+O\left(x^{8}\right)$.

- Again the order-two coefficient is in agreement with (31).
- Note also that $6 \mathcal{U}_{3}(2,1)$ is the next coefficient and that all terms have the weight one would predict.

The evaluation of \mathcal{V}_{3}

- It is possible to undertake the same analysis generally.

For instance, from the evaluation Gl_{3} we deduce that

$$
\begin{equation*}
\mathcal{V}_{3}(x,-x)=\frac{1}{\pi} \int_{0}^{\pi} \cos \left(\left(\pi^{2}-\theta^{2}\right) \frac{\theta}{6} x\right) \mathrm{d} \theta \tag{43}
\end{equation*}
$$

The Taylor series commences
$\mathcal{V}_{3}(x,-x)=1-\frac{1}{945} \pi^{6} x^{2}+\frac{1}{3648645} \pi^{12} x^{4}-\frac{1}{31819833045} \pi^{18} x^{6}+O\left(x^{8}\right)$.

- Again the order-two coefficient is in agreement with (31).
- Note also that $6 \mathcal{U}_{3}(2,1)$ is the next coefficient and that all terms have the weight one would predict.

The evaluation of \mathcal{V}_{N}

In general, we exploit the Glaisher functions,

$$
\operatorname{Gl}_{2 n}(\theta):=\operatorname{Re} \operatorname{Li}_{2 n}\left(e^{i \theta}\right)
$$

and

$$
\mathrm{Gl}_{2 n+1}(\theta):=\operatorname{Im} \operatorname{Li}_{2 n+1}\left(e^{i \theta}\right) .
$$

They possess closed forms:

$$
\begin{equation*}
\mathrm{Gl}_{n}(\theta)=(-1)^{1+\lfloor n / 2\rfloor} 2^{n-1} \frac{\pi^{n}}{n!} B_{n}\left(\frac{\theta}{2 \pi}\right) \tag{44}
\end{equation*}
$$

for $n>1$ where B_{n} is the n-th Bernoulli polynomial [Lewin, Eqn.
(22), p. 300] and $0 \leq \theta \leq 2 \pi$. Thus,

$$
\mathrm{Gl}_{5}(\theta)=\frac{1}{720} t(\pi-t)(2 \pi-t)\left(4 \pi^{2}+6 \pi t-3 t^{2}\right)
$$

The evaluation of \mathcal{V}_{N}

We then observe that:

$$
\begin{align*}
& \mathcal{V}_{2 n+1}(x,-x)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \cos \left(\mathrm{Gl}_{2 n+1}\left(e^{i \theta}\right) x\right) \mathrm{d} \theta \tag{45}\\
& \mathcal{V}_{2 n}(i x, i x)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \exp \left(i\left(\mathrm{Gl}_{2 n}\left(e^{i \theta}\right) x\right)\right) \mathrm{d} \theta \tag{46}
\end{align*}
$$

- In each case substitution of (44) and term-by-term expansion of \cos or \sin leads to an expression for the coefficients
- $\mathrm{Gl}_{n}(\theta)$ is an homogeneous two-variable polynomial in π and θ with each monomial of degree n

The evaluation of \mathcal{V}_{N}

We then observe that:

$$
\begin{align*}
& \mathcal{V}_{2 n+1}(x,-x)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \cos \left(\mathrm{Gl}_{2 n+1}\left(e^{i \theta}\right) x\right) \mathrm{d} \theta \tag{45}\\
& \mathcal{V}_{2 n}(i x, i x)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \exp \left(i\left(\mathrm{Gl}_{2 n}\left(e^{i \theta}\right) x\right)\right) \mathrm{d} \theta \tag{46}
\end{align*}
$$

- In each case substitution of (44) and term-by-term expansion of \cos or \sin leads to an expression for the coefficients
- $\mathrm{Gl}_{n}(\theta)$ is an homogeneous two-variable polynomial in π and θ with each monomial of degree n

Indeed, we are thus led to the following explicit formulas:

PART I: Introduction
Mordell-Tornheim-Witten ensembles Resolution of all $\mathcal{U}(m, n)$ and more Fundamental computational expedients PART II. More recondite MTW interrelations

The evaluation of \mathcal{V}_{N}

The real and imaginary coefficients of order $2 m$ are respectively:

$$
\begin{aligned}
& r_{m}(s):=(-1)^{m} \frac{4^{m-1}}{(2 m)!\pi} \int_{0}^{2 \pi}\left(\frac{(-1)^{1+\lfloor s / 2\rfloor}}{s!}(2 \pi)^{s} B_{n}\left(\frac{\theta}{2 \pi}\right)\right)^{2 m} \mathrm{~d} \theta \\
& i_{m}(s):=(-1)^{m} \frac{24^{m-1}}{(2 m+1)!\pi} \int_{0}^{2 \pi}\left(\frac{(-1)^{1+\lfloor s / 2\rfloor}}{s!}(2 \pi)^{s} B_{n}\left(\frac{\theta}{2 \pi}\right)\right)^{2 m+1} \mathrm{~d} \theta .
\end{aligned}
$$

- While we may expand these as finite sums, they may painlessly be integrated symbolically
- The imaginary coefficient is zero for s odd.

The evaluation of \mathcal{V}_{N}

The real and imaginary coefficients of order $2 m$ are respectively:

$$
\begin{aligned}
& r_{m}(s):=(-1)^{m} \frac{4^{m-1}}{(2 m)!\pi} \int_{0}^{2 \pi}\left(\frac{(-1)^{1+\lfloor s / 2\rfloor}}{s!}(2 \pi)^{s} B_{n}\left(\frac{\theta}{2 \pi}\right)\right)^{2 m} \mathrm{~d} \theta \\
& i_{m}(s):=(-1)^{m} \frac{24^{m-1}}{(2 m+1)!\pi} \int_{0}^{2 \pi}\left(\frac{(-1)^{1+\lfloor s / 2\rfloor}}{s!}(2 \pi)^{s} B_{n}\left(\frac{\theta}{2 \pi}\right)\right)^{2 m+1} \mathrm{~d} \theta .
\end{aligned}
$$

- While we may expand these as finite sums, they may painlessly be integrated symbolically
- The imaginary coefficient is zero for s odd.

PART I: Introduction Mordell-Tornheim-Witten ensembles Resolution of all $\mathcal{U}(m, n)$ and more Fundamental computational expedients PART II. More recondite MTW interrelations

An exponential generating function \mathcal{V} for $\mathcal{U}(m, n)$ An exponential-series representation of \mathcal{V} Complete resolution of \mathcal{D}_{0}
Sum rule for the $\mathcal{U}(m, n)$ functions
The $\mathcal{U}_{s}(m, n)$ sums when $s=2$
The $\mathcal{U}_{s}(m, n)$ sums when $s \geq 3$

The evaluation of \mathcal{V}_{N}

Thence, we have established:

Theorem (Sum melations for- \boldsymbol{Z} :)

Let s be a positive integer.
There is an analogue of Theorem 4 (the sum rule via \mathcal{V}) when s is odd and of Theorem 8 (sum rule via \mathcal{V}_{2}) when s is even.

- Experimentally we have strong reasons to believe that these are the only such sum relations.

PART I: Introduction
Mordell-Tornheim-Witten ensembles Resolution of all $\mathcal{U}(m, n)$ and more Fundamental computational expedients PART II. More recondite MTW interrelations

An exponential generating function \mathcal{V} for $\mathcal{U}(m, n)$ An exponential-series representation of \mathcal{V} Complete resolution of \mathcal{D}_{0}
Sum rule for the $\mathcal{U}(m, n)$ functions
The $\mathcal{U}_{s}(m, n)$ sums when $s=2$
The $\mathcal{U}_{s}(m, n)$ sums when $s \geq 3$

The evaluation of \mathcal{V}_{N}

Thence, we have established:

Theorem (Sum relations for \mathcal{U}_{s})

Let s be a positive integer.
There is an analogue of Theorem 4 (the sum rule via \mathcal{V}) when s is odd and of Theorem 8 (sum rule via \mathcal{V}_{2}) when s is even.

- Experimentally we have strong reasons to believe that these are the only such sum relations.

PART I: Introduction
Mordell-Tornheim-Witten ensembles Resolution of all $\mathcal{U}(m, n)$ and more Fundamental computational expedients PART II. More recondite MTW interrelations

An exponential generating function \mathcal{V} for $\mathcal{U}(m, n)$
An exponential-series representation of \mathcal{V}
Complete resolution of \mathcal{D}_{0}
Sum rule for the $\mathcal{U}(m, n)$ functions
The $\mathcal{U}_{s}(m, n)$ sums when $s=2$
The $\mathcal{U}_{s}(m, n)$ sums when $s \geq 3$

The evaluation of \mathcal{V}_{N}

Thence, we have established:

Theorem (Sum relations for \mathcal{U}_{s})

Let s be a positive integer.
There is an analogue of Theorem 4 (the sum rule via \mathcal{V}) when s is odd and of Theorem 8 (sum rule via \mathcal{V}_{2}) when s is even.

- Experimentally we have strong reasons to believe that these are the only such sum relations.

Polylogarithms and their derivatives with respect to order Derivatives of general-order polylogarithms
The special case $s=1$ and $z=e^{2 \theta}$
Riemann zeta and its derivatives at integers
ζ^{\prime} and higher derivatives at integer arguments

Fundamental computational expedients

To numerically study the ensemble \mathcal{D} intensively, we must be able to differentiate polylogarithms with respect to their order.

(a derivative wrt one !)

- Below
and \sum means to avoid the singularity sitting at $\zeta(1)$

Fundamental computational expedients

To numerically study the ensemble \mathcal{D} intensively, we must be able to differentiate polylogarithms with respect to their order.

- Even our primary goal herein-the study of \mathcal{D}_{1}-needs access to the first derivative of

$$
\operatorname{Li}_{1}(x)=-\log (1-x)
$$

(a derivative wrt one!).

- Below
and \sum means to avoid the singularity sitting at $\zeta(1)$

Fundamental computational expedients

To numerically study the ensemble \mathcal{D} intensively, we must be able to differentiate polylogarithms with respect to their order.

- Even our primary goal herein-the study of \mathcal{D}_{1}-needs access to the first derivative of

$$
\operatorname{Li}_{1}(x)=-\log (1-x)
$$

(a derivative wrt one!).

- Below

$$
H_{n}:=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n},
$$

and \sum^{\prime} means to avoid the singularity sitting at $\zeta(1)$.

PART I: Introduction Mordell-Tornheim-Witten ensembles Resolution of all $\mathcal{U}(m, n)$ and more Fundamental computational expedients PART II. More recondite MTW interrelations

Polylogarithms and their derivatives with respect to order Derivatives of general-order polylogarithms
The special case $s=1$ and $z=e^{2 \theta}$
Riemann zeta and its derivatives at integers
ζ^{\prime} and higher derivatives at integer arguments

Computing polylogarithms

When $s=n$ is a positive integer,

$$
\begin{equation*}
\mathrm{Li}_{n}(z)=\sum_{m=0}^{\infty} \zeta(n-m) \frac{\log ^{m} z}{m!}+\frac{\log ^{n-1} z}{(n-1)!}\left(H_{n-1}-\log (-\log z)\right), \tag{49}
\end{equation*}
$$

valid for $|\log z|<2 \pi$. For any order s not a positive integer,

- The condition $|\log z|<2 \pi$ in in (49), precludes its use when $|z|<e^{-2 \pi} \approx 0.00187$. For such small $|z|$, it suffices to use

PART I: Introduction Mordell-Tornheim-Witten ensembles Resolution of all $\mathcal{U}(m, n)$ and more Fundamental computational expedients PART II. More recondite MTW interrelations

Polylogarithms and their derivatives with respect to order Derivatives of general-order polylogarithms
The special case $s=1$ and $z=e^{2 \theta}$
Riemann zeta and its derivatives at integers
ζ^{\prime} and higher derivatives at integer arguments

Computing polylogarithms

When $s=n$ is a positive integer,

$$
\begin{equation*}
\operatorname{Li}_{n}(z)=\sum_{m=0}^{\infty} \zeta(n-m) \frac{\log ^{m} z}{m!}+\frac{\log ^{n-1} z}{(n-1)!}\left(H_{n-1}-\log (-\log z)\right) \tag{49}
\end{equation*}
$$

valid for $|\log z|<2 \pi$. For any order s not a positive integer,

$$
\begin{equation*}
\operatorname{Li}_{s}(z)=\sum_{m \geq 0} \zeta(s-m) \frac{\log ^{m} z}{m!}+\Gamma(1-s)(-\log z)^{s-1} \tag{50}
\end{equation*}
$$

- The condition $|\log z|<2 \pi$ in in (49), precludes its use when $|z|<e^{-2 \pi} \approx 0.00187$. For such small $|z|$, it suffices to use

Polylogarithms and their derivatives with respect to order Derivatives of general-order polylogarithms

Computing polylogarithms

When $s=n$ is a positive integer,

$$
\begin{equation*}
\operatorname{Li}_{n}(z)=\sum_{m=0}^{\infty} \zeta(n-m) \frac{\log ^{m} z}{m!}+\frac{\log ^{n-1} z}{(n-1)!}\left(H_{n-1}-\log (-\log z)\right) \tag{49}
\end{equation*}
$$

valid for $|\log z|<2 \pi$. For any order s not a positive integer,

$$
\begin{equation*}
\operatorname{Li}_{s}(z)=\sum_{m \geq 0} \zeta(s-m) \frac{\log ^{m} z}{m!}+\Gamma(1-s)(-\log z)^{s-1} \tag{50}
\end{equation*}
$$

- The condition $|\log z|<2 \pi$ in in (49), precludes its use when $|z|<e^{-2 \pi} \approx 0.00187$. For such small $|z|$, it suffices to use

$$
\begin{equation*}
\operatorname{Li}_{s}(z):=\sum_{k=1}^{\infty} \frac{z^{k}}{k^{s}} . \tag{51}
\end{equation*}
$$

- we found (51) faster than (49) whenever $|z|<1 / 4$, at least for precision in the range of 100 to 4000 digits

Computing polylogarithms

For integer $k,|\log z|<2 \pi$ and all $\tau \in[0,1)$ we have:

$$
\begin{equation*}
\operatorname{Li}_{k+1+\tau}(z)=\sum_{0 \leq n \neq k} \zeta(k+1+\tau-n) \frac{\log ^{n} z}{n!}+\frac{\log ^{k}}{k!} \sum_{j=0}^{\infty} c_{k, j}(\mathcal{L}) \tau^{j} \tag{52}
\end{equation*}
$$

Here $\mathcal{L}:=\log (-\log z)$ and $c_{k, j}$ engage the Stieltjes constants γ_{j}

$$
\begin{equation*}
c_{k, j}(\mathcal{L}):=\frac{(-1)^{j}}{j!} \gamma_{j}-b_{k, j+1}(\mathcal{L}) \tag{53}
\end{equation*}
$$

where the $b_{k, j}$ terms are given by

$$
\begin{equation*}
b_{k, j}(\mathcal{L}):=\sum_{\substack{p+t+q=j \\ p, t, q \geq 0}} \frac{\mathcal{L}^{p}}{p!} \frac{\Gamma^{(t)}(1)}{t!}(-1)^{t+q} f_{k, q} \tag{54}
\end{equation*}
$$

Polylogarithms and their derivatives with respect to order Derivatives of general-order polylogarithms
The special case $s=1$ and $z=e^{2 \theta}$
Riemann zeta and its derivatives at integers
ζ^{\prime} and higher derivatives at integer arguments

Computing polylogarithms (This works really well)

Finally, $f_{k, q}$ is the coefficient of x^{q} in $\prod_{m=1}^{k} \frac{1}{1+x / m}$. The $f_{k, q}$ are easily calculable via $f_{k, 0}=1$ and the recursion

$$
\begin{equation*}
f_{k, q}=\sum_{h=0}^{q} \frac{(-1)^{h}}{k^{h}} f_{k-1, q-h} \tag{55}
\end{equation*}
$$

- Thence, $f_{k, 1}=-H_{k}$ and $f_{k, 2}=\frac{1}{2} H_{k}^{2}+\frac{1}{2} H_{k}^{(2)}$ —in terms of generalized harmonic numbers-while $c_{k, 0}=H_{k}-\mathcal{L}$. with $k=\tau=0$ this recovers (49)
- To obtain first (or higher) derivatives $\operatorname{Li}_{k+1}^{(1)}(z)$, we differentiate (52) at zero and so require the evaluation $c_{k, 1}$ with $k=0, j=1$ this supplies (58) below

Polylogarithms and their derivatives with respect to order Derivatives of general-order polylogarithms

Computing polylogarithms (This works really well)

Finally, $f_{k, q}$ is the coefficient of x^{q} in $\prod_{m=1}^{k} \frac{1}{1+x / m}$. The $f_{k, q}$ are easily calculable via $f_{k, 0}=1$ and the recursion

$$
\begin{equation*}
f_{k, q}=\sum_{h=0}^{q} \frac{(-1)^{h}}{k^{h}} f_{k-1, q-h} \tag{55}
\end{equation*}
$$

- Thence, $f_{k, 1}=-H_{k}$ and $f_{k, 2}=\frac{1}{2} H_{k}^{2}+\frac{1}{2} H_{k}^{(2)}$-in terms of generalized harmonic numbers-while $c_{k, 0}=H_{k}-\mathcal{L}$.
- To obtain first (or higher) derivatives $\operatorname{Li}_{k+1}^{(1)}(z)$, we differentiate (52) at zero and so require the evaluation $c_{k, 1}$ with $k=0, j=1$ this supplies (58) below

Computing polylogarithms (This works really well)

Finally, $f_{k, q}$ is the coefficient of x^{q} in $\prod_{m=1}^{k} \frac{1}{1+x / m}$. The $f_{k, q}$ are easily calculable via $f_{k, 0}=1$ and the recursion

$$
\begin{equation*}
f_{k, q}=\sum_{h=0}^{q} \frac{(-1)^{h}}{k^{h}} f_{k-1, q-h} \tag{55}
\end{equation*}
$$

- Thence, $f_{k, 1}=-H_{k}$ and $f_{k, 2}=\frac{1}{2} H_{k}^{2}+\frac{1}{2} H_{k}^{(2)}$-in terms of generalized harmonic numbers-while $c_{k, 0}=H_{k}-\mathcal{L}$.
- with $k=\tau=0$ this recovers (49)
- To obtain first (or higher) derivatives $\mathrm{Li}_{k+1}^{(1)}(z)$, we differentiate (52) at zero and so require the evaluation $c_{k, 1}$
- with $k=0, j=1$ this supplies (58) below

Polylogarithms and their derivatives with respect to order Derivatives of general-order polylogarithms
The special case $s=1$ and $z=e^{i \theta}$
Riemann zeta and its derivatives at integers
ζ^{\prime} and higher derivatives at integer arguments

Computing polylogarithms with $s=1$ and $z=e^{i \theta}$

1. We may write, for $0<\theta \leq 2 \pi$,

$$
\begin{equation*}
\operatorname{Li}_{1}\left(e^{i \theta}\right)=-\log \left(2 \sin \left(\frac{\theta}{2}\right)\right)+\frac{(\pi-\theta)}{2} i . \tag{56}
\end{equation*}
$$

2. We saw order derivatives $\operatorname{Li}_{s}^{\prime}(z)=\mathrm{d}\left(\operatorname{Li}_{s}(z)\right) / \mathrm{d} s$ for integer s,
can be computed with formulas such as

valid for $|\log z|<2 \pi$. Here γ_{1} is the second Stieltjes constant. For small $|z|$, it again suffices to use

Computing polylogarithms with $s=1$ and $z=e^{i \theta}$

1. We may write, for $0<\theta \leq 2 \pi$,

$$
\begin{equation*}
\operatorname{Li}_{1}\left(e^{i \theta}\right)=-\log \left(2 \sin \left(\frac{\theta}{2}\right)\right)+\frac{(\pi-\theta)}{2} i . \tag{56}
\end{equation*}
$$

2. We saw order derivatives $\operatorname{Li}_{s}^{\prime}(z)=\mathrm{d}\left(\operatorname{Li}_{s}(z)\right) / \mathrm{d} s$ for integer s, can be computed with formulas such as
$L_{1}^{\prime}(z)=\sum_{n=1}^{\infty} \zeta^{\prime}(1-n) \frac{\log ^{n} z}{n!}-\gamma_{1}-\frac{1}{12} \pi^{2}-\frac{1}{2}(\gamma+\log (-\log z))^{2}$,
valid for $|\log z|<2 \pi$. Here γ_{1} is the second Stieltjes constant. For small $|z|$, it again suffices to use

$$
\begin{equation*}
\operatorname{Li}_{s}^{\prime}(z)=-\sum_{n=1}^{\infty} \frac{z^{k} \log k}{k^{s}} \tag{57}
\end{equation*}
$$

PART I: Introduction Mordell-Tornheim-Witten ensembles Resolution of all $\mathcal{U}(m, n)$ and more Fundamental computational expedients PART II. More recondite MTW interrelations

Polylogarithms and their derivatives with respect to order Derivatives of general-order polylogarithms
The special case $s=1$ and $z=e^{i \theta}$
Riemann zeta and its derivatives at integers
ζ^{\prime} and higher derivatives at integer arguments

Computing polylogarithms with $s=1$ and $z=e^{i \theta}$

Hence

$$
\begin{equation*}
\operatorname{Li}_{1}^{\prime}\left(e^{i \theta}\right)=\sum_{n=1}^{\infty} \zeta^{\prime}(1-n) \frac{(i \theta)^{n}}{n!}-\gamma_{1}-\frac{1}{12} \pi^{2}-\frac{1}{2}(\gamma+\log (-i \theta))^{2} \tag{58}
\end{equation*}
$$

valid and convergent for $|\theta|<2 \pi$.

- Note the bonus of being on the boundary of the disc!
- With such formulas, to evaluate $\mathcal{U}(m, n, p, q)$ one may use pure quadrature, convergent series, or a combination of both
- All of these are gainfully exploited in computing MTW values.

Computing polylogarithms with $s=1$ and $z=e^{i \theta}$

Hence

$$
\begin{equation*}
\operatorname{Li}_{1}^{\prime}\left(e^{i \theta}\right)=\sum_{n=1}^{\infty} \zeta^{\prime}(1-n) \frac{(i \theta)^{n}}{n!}-\gamma_{1}-\frac{1}{12} \pi^{2}-\frac{1}{2}(\gamma+\log (-i \theta))^{2} \tag{58}
\end{equation*}
$$

valid and convergent for $|\theta|<2 \pi$.

- Note the bonus of being on the boundary of the disc!
- With such formulas, to evaluate $\mathcal{U}(m, n, p, q)$ one may use pure quadrature, convergent series, or a combination of both.
- All of these are gainfully exploited in computing MTW values.

Computing zeta values (at integers)

- (49) or (56) and (50) or (58) require precomputed values of zeta and its derivatives at (often negative) integer arguments.
- One fairly efficient algorithm for computing a single $\zeta(n)$ for integer $n>1$ is the following given by Peter Borwein:

Choose $N>1.2 \cdot D$, where D is number of digits required. Then
where $u_{-1}=-2^{N}, u_{j}=0$ for $0 \leq j<N-1 ; u_{N-1}=1$, and for
$j \geq N$ compute

Computing zeta values (at integers)

- (49) or (56) and (50) or (58) require precomputed values of zeta and its derivatives at (often negative) integer arguments.
- One fairly efficient algorithm for computing a single $\zeta(n)$ for integer $n>1$ is the following given by Peter Borwein:

Choose $N>1.2 \cdot D$, where D is number of digits required. Then

$$
\begin{equation*}
\zeta(s) \approx-2^{-N}\left(1-2^{1-s}\right)^{-1} \sum_{i=0}^{2 N-1} \frac{(-1)^{i} \sum_{j=-1}^{i-1} u_{j}}{(i+1)^{s}} \tag{59}
\end{equation*}
$$

where $u_{-1}=-2^{N}, u_{j}=0$ for $0 \leq j<N-1 ; u_{N-1}=1$, and for $j \geq N$ compute

$$
u_{j}=u_{j-1} \cdot(2 N-j) /(j+1-N)
$$

PART I: Introduction Mordell-Tornheim-Witten ensembles Resolution of all $\mathcal{U}(m, n)$ and more Fundamental computational expedients PART II. More recondite MTW interrelations

Polylogarithms and their derivatives with respect to order Derivatives of general-order polylogarithms
The special case $s=1$ and $z=e^{2 \theta}$
Riemann zeta and its derivatives at integers
ζ^{\prime} and higher derivatives at integer arguments

Computing zeta values (at many integers)

- To obtain $\zeta(n)$ for many $n>1$, the following is more efficient.

First, to compute $\zeta(2 n)$, observe that

Let $P(x), Q(x)$ be the numerator and denominator polynomials obtained by truncating these two series to n terms.

Computing zeta values (at many integers)

- To obtain $\zeta(n)$ for many $n>1$, the following is more efficient.

First, to compute $\zeta(2 n)$, observe that

$$
\begin{align*}
\operatorname{coth}(\pi x) & =-\frac{2}{\pi x} \sum_{k=0}^{\infty} \zeta(2 k)(-1)^{k} x^{2 k}=\frac{\cosh (\pi x)}{\sinh (\pi x)} \\
& =\frac{1}{\pi x} \cdot \frac{1+(\pi x)^{2} / 2!+(\pi x)^{4} / 4!+(\pi x)^{6} / 6!+\cdots}{1+(\pi x)^{2} / 3!+(\pi x)^{4} / 5!+(\pi x)^{6} / 7!+\cdots} \tag{60}
\end{align*}
$$

Let $P(x), Q(x)$ be the numerator and denominator polynomials obtained by truncating these two series to n terms.

Polylogarithms and their derivatives with respect to order Derivatives of general-order polylogarithms
The special case $s=1$ and $z=e^{2 \theta}$
Riemann zeta and its derivatives at integers
ζ^{\prime} and higher derivatives at integer arguments

Computing even zeta values (by Newton's method)

Then the approximate reciprocal $R(x)$ of $Q(x)$ can be obtained by applying the Newton iteration

$$
\begin{equation*}
R_{k+1}(x):=R_{k}(x)+\left[1-Q(x) \cdot R_{k}(x)\right] \cdot R_{k}(x) . \tag{61}
\end{equation*}
$$

- Both polynomial degree and numeric precision of the coefficients are dynamically increased, doubling with each loop, until desired degree and precision are achieved. (FFT FFT, FFT !)
- The quotient P / Q is now simply the product $P(x) \cdot R(x)$.
- The required values $\zeta(2 k)$ can now be obtained from the coefficients of this product polynomial $P \cdot R$.

Computing even zeta values (by Newton's method)

Then the approximate reciprocal $R(x)$ of $Q(x)$ can be obtained by applying the Newton iteration

$$
\begin{equation*}
R_{k+1}(x):=R_{k}(x)+\left[1-Q(x) \cdot R_{k}(x)\right] \cdot R_{k}(x) \tag{61}
\end{equation*}
$$

- Both polynomial degree and numeric precision of the coefficients are dynamically increased, doubling with each loop, until desired degree and precision are achieved. (FFT, FFT, FFT !
- The quotient P / Q is now simply the product $P(x) \cdot R(x)$.
- The required values $\zeta(2 k)$ can now be obtained from the coefficients of this product polynomial $P \cdot R$.

Computing even zeta values (by Newton's method)

Then the approximate reciprocal $R(x)$ of $Q(x)$ can be obtained by applying the Newton iteration

$$
\begin{equation*}
R_{k+1}(x):=R_{k}(x)+\left[1-Q(x) \cdot R_{k}(x)\right] \cdot R_{k}(x) \tag{61}
\end{equation*}
$$

- Both polynomial degree and numeric precision of the coefficients are dynamically increased, doubling with each loop, until desired degree and precision are achieved. (FFT, FFT, FFT !)
- The quotient P / Q is now simply the product $P(x) \cdot R(x)$.
- The required values $\zeta(2 k)$ can now be obtained from the coefficients of this product polynomial $P \cdot R$.

Polylogarithms and their derivatives with respect to order Derivatives of general-order polylogarithms
The special case $s=1$ and $z=e^{2 \theta}$
Riemann zeta and its derivatives at integers
ζ^{\prime} and higher derivatives at integer arguments

Computing Bernoulli numbers (from even zeta values)

The Bernoulli numbers $B_{2 k}$, which are also needed, can then obtained from the positive even-indexed zeta values by the formula [DLMF, Eqn. (25.6.2)]

$$
\begin{equation*}
B_{2 k}=(-1)^{k+1} \frac{2(2 k)!}{(2 \pi)^{2 k}} \zeta(2 k) \tag{62}
\end{equation*}
$$

Zeta at odd positive integers (via Bernoulli numbers)

Positive odd-indexed zeta values can be now efficiently computed using Ramanujan-style hyperbolic corrections to Bernoulli sums:

$$
\begin{align*}
\zeta(4 N+3) & =-2 \sum_{k=1}^{\infty} \frac{1}{k^{4 N+3}(\exp (2 k \pi)-1)} \\
& -\pi(2 \pi)^{4 N+2} \sum_{k=0}^{2 N+2}(-1)^{k} \frac{B_{2 k} B_{4 N+4-2 k}}{(2 k)!(4 N+4-2 k)!} \\
\zeta(4 N+1) & =-\frac{1}{N} \sum_{k=1}^{\infty} \frac{(2 \pi k+2 N) \exp (2 \pi k)-2 N}{k^{4 N+1}(\exp (2 k \pi)-1)^{2}} \tag{63}\\
& -\frac{1}{2 N} \pi(2 \pi)^{4 N} \sum_{k=1}^{2 N+1}(-1)^{k} \frac{B_{2 k} B_{4 N+2-2 k}}{(2 k-1)!(4 N+2-2 k)!}
\end{align*}
$$

Polylogarithms and their derivatives with respect to order Derivatives of general-order polylogarithms
The special case $s=1$ and $z=e^{2 \theta}$
Riemann zeta and its derivatives at integers
ζ^{\prime} and higher derivatives at integer arguments

Computing zeta at negative integers

Finally, zeta can be evaluated at negative integers by the following well-known reflection formulas [DLMF, (25.6.3), (25.6.4)]

$$
\zeta(-2 n)=0
$$

and

$$
\begin{equation*}
\zeta(-2 n+1)=-\frac{B_{2 n}}{2 n} \tag{64}
\end{equation*}
$$

Polylogarithms and their derivatives with respect to order Derivatives of general-order polylogarithms
The special case $s=1$ and $z=e^{2 \theta}$
Riemann zeta and its derivatives at integers
ζ^{\prime} and higher derivatives at integer arguments

Computing derivatives of zeta at integers

- Precomputed values of the zeta derivative function are prerequisite for the efficient use of formulas (56) and (58).
- For positive integer arguments, the derivative zeta is well computed via a series-accelerated algorithm for the derivative of the eta or alternating zeta function
- we use an adaptation of a scheme due to Crandall based on more general acceleration methods of Cohen-Villegas-Zagier:
in our algorithm, log and zeta values can be precalculated, and so do not significantly add to run time
similar techniques apply to higher derivatives of 77 -and so ζ-at positive integers.

Polylogarithms and their derivatives with respect to order Derivatives of general-order polylogarithms

Computing derivatives of zeta at integers

- Precomputed values of the zeta derivative function are prerequisite for the efficient use of formulas (56) and (58).
- For positive integer arguments, the derivative zeta is well computed via a series-accelerated algorithm for the derivative of the eta or alternating zeta function.
- we use an adaptation of a scheme due to Crandall based on more general acceleration methods of Cohen-Villegas-Zagier:
in our algorithm, log and zeta values can be precalculated and so do not significantly add to run time
similar techniques apply to higher derivatives of η-and so ζ —at positive integers.

Computing derivatives of zeta at integers

- Precomputed values of the zeta derivative function are prerequisite for the efficient use of formulas (56) and (58).
- For positive integer arguments, the derivative zeta is well computed via a series-accelerated algorithm for the derivative of the eta or alternating zeta function.
- we use an adaptation of a scheme due to Crandall based on more general acceleration methods of Cohen-Villegas-Zagier:
- in our algorithm, log and zeta values can be precalculated, and so do not significantly add to run time
- similar techniques apply to higher derivatives of η-and so ζ-at positive integers.

Computing ζ^{\prime} at non-positive integers

From the functional equation for ζ :

$$
\zeta(s)=2(2 \pi)^{s-1} \sin \frac{\pi s}{2} \Gamma(1-s) \zeta(1-s)
$$

one can extract

$$
\zeta^{\prime}(0)=-\frac{1}{2} \log 2 \pi
$$

and for even $m=2,4,6, \ldots$

$$
\begin{equation*}
\zeta^{\prime}(-m):=\left.\frac{d}{d s} \zeta(s)\right|_{s=-m}=\frac{(-1)^{m / 2} m!}{2^{m+1} \pi^{m}} \zeta(m+1) \tag{65}
\end{equation*}
$$

while for odd $m=1,3,5 \ldots$,

$$
\begin{equation*}
\zeta^{\prime}(-m)=\zeta(-m)\left(\gamma+\log 2 \pi-H_{m}-\frac{\zeta^{\prime}(m+1)}{\zeta(m+1)}\right) \tag{66}
\end{equation*}
$$

Computing ζ^{\prime} at non-positive integers

From the functional equation for ζ :

$$
\zeta(s)=2(2 \pi)^{s-1} \sin \frac{\pi s}{2} \Gamma(1-s) \zeta(1-s)
$$

one can extract

$$
\zeta^{\prime}(0)=-\frac{1}{2} \log 2 \pi
$$

and for even $m=2,4,6, \ldots$

$$
\begin{equation*}
\zeta^{\prime}(-m):=\left.\frac{d}{d s} \zeta(s)\right|_{s=-m}=\frac{(-1)^{m / 2} m!}{2^{m+1} \pi^{m}} \zeta(m+1) \tag{65}
\end{equation*}
$$

while for odd $m=1,3,5 \ldots$,

$$
\begin{equation*}
\zeta^{\prime}(-m)=\zeta(-m)\left(\gamma+\log 2 \pi-H_{m}-\frac{\zeta^{\prime}(m+1)}{\zeta(m+1)}\right) \tag{66}
\end{equation*}
$$

- We turn to methods for higher derivatives at negative integers.

Polylogarithms and their derivatives with respect to order Derivatives of general-order polylogarithms
The special case $s=1$ and $z=e^{2 \theta}$
Riemann zeta and its derivatives at integers
ζ^{\prime} and higher derivatives at integer arguments

Derivatives of Γ at positive integers

- To approach ζ we first need to attack the Gamma function (one more efficient indirection).

Thus, differentiating (67) by Leibniz' formula, for $n \geq 1$ we have

Derivatives of Γ at positive integers

- To approach ζ we first need to attack the Gamma function (one more efficient indirection).
Let $g_{n}:=\Gamma^{(n)}(1)$. It is known [DLMF, (5.7.1) \& (5.7.2)] that

$$
\begin{equation*}
\Gamma(z+1) \mathcal{C}(z)=z \Gamma(z) \mathcal{C}(z)=z \tag{67}
\end{equation*}
$$

where $\mathcal{C}(z):=\sum_{k=1}^{\infty} c_{k} z^{k}$ with $c_{0}=0, c_{1}=1, c_{2}=\gamma$ and
$(k-1) c_{k}=\gamma c_{k-1}-\zeta(2) c_{k-2}+\zeta(3) c_{k-3}-\cdots+(-1)^{k} \zeta(k-1) c_{1}$.

Thus, differentiating (67) by Leibniz' formula, for $n \geq 1$ we have

Derivatives of Γ at positive integers

- To approach ζ we first need to attack the Gamma function (one more efficient indirection).
Let $g_{n}:=\Gamma^{(n)}(1)$. It is known [DLMF, (5.7.1) \& (5.7.2)] that

$$
\begin{equation*}
\Gamma(z+1) \mathcal{C}(z)=z \Gamma(z) \mathcal{C}(z)=z \tag{67}
\end{equation*}
$$

where $\mathcal{C}(z):=\sum_{k=1}^{\infty} c_{k} z^{k}$ with $c_{0}=0, c_{1}=1, c_{2}=\gamma$ and
$(k-1) c_{k}=\gamma c_{k-1}-\zeta(2) c_{k-2}+\zeta(3) c_{k-3}-\cdots+(-1)^{k} \zeta(k-1) c_{1}$.

Thus, differentiating (67) by Leibniz' formula, for $n \geq 1$ we have

$$
\begin{equation*}
g_{n}=-\sum_{k=0}^{n-1} \frac{n!}{k!} g_{k} c_{n+1-k} \tag{69}
\end{equation*}
$$

Polylogarithms and their derivatives with respect to order Derivatives of general-order polylogarithms
The special case $s=1$ and $z=e^{2 \theta}$
Riemann zeta and its derivatives at integers
ζ^{\prime} and higher derivatives at integer arguments

Derivatives of Γ at positive integers

More generally, for positive integer m we have

$$
\begin{equation*}
\Gamma(z+m) \mathcal{C}(z)=(z)_{m} \tag{70}
\end{equation*}
$$

where $(z)_{m}:=z(z+1) \cdots(z+m-1)$ is the rising factorial polynomial.
Letting $g_{n}(m):=\Gamma^{(n)}(m)$ so that $g_{n}(1)=g_{n}$, we may again apply the product rule to (70) and obtain

- For $n>m, D_{m}^{n}$ is the n-th deriv. of $(x)_{m}$ at $x=0$ and so is zero.
- For $n<m$ these integer values are easily obtained symbolically or in terms of Stirling numbers of the first kind.

Polylogarithms and their derivatives with respect to order Derivatives of general-order polylogarithms The special case $s=1$ and $z=e^{2 \theta}$
Riemann zeta and its derivatives at integers
ζ^{\prime} and higher derivatives at integer arguments

Derivatives of Γ at positive integers

More generally, for positive integer m we have

$$
\begin{equation*}
\Gamma(z+m) \mathcal{C}(z)=(z)_{m} \tag{70}
\end{equation*}
$$

where $(z)_{m}:=z(z+1) \cdots(z+m-1)$ is the rising factorial polynomial.
Letting $g_{n}(m):=\Gamma^{(n)}(m)$ so that $g_{n}(1)=g_{n}$, we may again apply the product rule to (70) and obtain

$$
\begin{equation*}
g_{n}(m)=-\sum_{k=0}^{n-1} \frac{n!}{k!} g_{k}(m) c_{n+1-k}+\frac{D_{m}^{n+1}}{n+1} . \tag{71}
\end{equation*}
$$

- For $n>m, D_{m}^{n}$ is the n-th deriv. of $(x)_{m}$ at $x=0$ and so is zero.
- For $m \leq m$ these integer values are easily obtained symbolically or in terms of Stirling numbers of the first kind.

Derivatives of Γ at positive integers

More generally, for positive integer m we have

$$
\begin{equation*}
\Gamma(z+m) \mathcal{C}(z)=(z)_{m} \tag{70}
\end{equation*}
$$

where $(z)_{m}:=z(z+1) \cdots(z+m-1)$ is the rising factorial polynomial.
Letting $g_{n}(m):=\Gamma^{(n)}(m)$ so that $g_{n}(1)=g_{n}$, we may again apply the product rule to (70) and obtain

$$
\begin{equation*}
g_{n}(m)=-\sum_{k=0}^{n-1} \frac{n!}{k!} g_{k}(m) c_{n+1-k}+\frac{D_{m}^{n+1}}{n+1} . \tag{71}
\end{equation*}
$$

- For $n>m, D_{m}^{n}$ is the n-th deriv. of $(x)_{m}$ at $x=0$ and so is zero.
- For $n \leq m$ these integer values are easily obtained symbolically or in terms of Stirling numbers of the first kind.

Polylogarithms and their derivatives with respect to order Derivatives of general-order polylogarithms
The special case $s=1$ and $z=e^{2 \theta}$
Riemann zeta and its derivatives at integers
ζ^{\prime} and higher derivatives at integer arguments

Derivatives of Γ at positive integers

Indeed

$$
\begin{equation*}
D_{m}^{n}=\sum_{k=0}^{m-n} s(m, k+n)(k+1)_{n}(m-1)^{k}=(n+1)!(-1)^{m+n+1} s(m, 1+n) \tag{72}
\end{equation*}
$$

Thus, $\frac{D_{m}^{n}}{(n+1)}=n!|s(m, 1+n)|$ and for $n, m>1$ we obtain:

where for integer $n, k \geq 0$

see [DLMF, (26.8.18)]

Polylogarithms and their derivatives with respect to order Derivatives of general-order polylogarithms
The special case $s=1$ and $z=e^{2 \theta}$
Riemann zeta and its derivatives at integers
ζ^{\prime} and higher derivatives at integer arguments

Derivatives of Γ at positive integers

Indeed

$$
\begin{equation*}
D_{m}^{n}=\sum_{k=0}^{m-n} s(m, k+n)(k+1)_{n}(m-1)^{k}=(n+1)!(-1)^{m+n+1} s(m, 1+n) \tag{72}
\end{equation*}
$$

Thus, $\frac{D_{m}^{n}}{(n+1)}=n!|s(m, 1+n)|$ and for $n, m>1$ we obtain:

$$
\begin{equation*}
\frac{g_{n}(m)}{n!}=-\sum_{k=0}^{n-1} \frac{g_{k}(m)}{k!} c_{n+1-k}+|s(m, 1+n)| \tag{73}
\end{equation*}
$$

where for integer $n, k \geq 0$

$$
\begin{equation*}
s(n, k)=s(n-1, k-1)-(n-1) s(n-1, k), \tag{74}
\end{equation*}
$$

see [DLMF, (26.8.18)].

Polylogarithms and their derivatives with respect to order Derivatives of general-order polylogarithms
The special case $s=1$ and $z=e^{i \theta}$
Riemann zeta and its derivatives at integers
ζ^{\prime} and higher derivatives at integer arguments

Apostol's formulas for $\zeta^{(k)}(m)$ at negative integers

Theorem (Apostol, see DLMF (25.6.13) and (25.6.14))

For $n=0,1,2, \ldots$, with $\kappa:=-\log (2 \pi)-\frac{1}{2} \pi i$ we have finite sums:

$$
\begin{equation*}
(-1)^{k} \zeta^{(k)}(1-2 n)=\frac{2(-1)^{n}}{(2 \pi)^{2 n}} \sum_{m=0}^{k} \sum_{r=0}^{m}\binom{k}{m}\binom{m}{r} \operatorname{Re}\left(\kappa^{k-m}\right) \Gamma^{(r)}(2 n) \zeta^{(m-r)}(2 n) \tag{75}
\end{equation*}
$$

$(-1)^{k} \zeta^{(k)}(-2 n)=\frac{2(-1)^{n}}{(2 \pi)^{2 n+1}} \sum_{m=0}^{k} \sum_{r=0}^{m}\binom{k}{m}\binom{m}{r} \operatorname{Im}\left(\kappa^{k-m}\right) \Gamma^{(r)}(2 n+1) \zeta^{(m-r)}(2 n+1)$.

In (73), (74) for $\Gamma^{(r)}(m)$ only the initial conditions rely on m

Polylogarithms and their derivatives with respect to order Derivatives of general－order polylogarithms
The special case $s=1$ and $z=e^{2 \theta}$
Riemann zeta and its derivatives at integers
ζ^{\prime} and higher derivatives at integer arguments

Apostol＇s formulas for $\zeta^{(k)}(m)$ at negative integers

Theorem（Apostol，see DLMF（25．6．13）and（25．6．14））

For $n=0,1,2, \ldots$ ，with $\kappa:=-\log (2 \pi)-\frac{1}{2} \pi i$ we have finite sums：

$$
\begin{equation*}
(-1)^{k} \zeta^{(k)}(1-2 n)=\frac{2(-1)^{n}}{(2 \pi)^{2 n}} \sum_{m=0}^{k} \sum_{r=0}^{m}\binom{k}{m}\binom{m}{r} \operatorname{Re}\left(\kappa^{k-m}\right) \Gamma^{(r)}(2 n) \zeta^{(m-r)}(2 n) \tag{75}
\end{equation*}
$$

$$
\begin{equation*}
(-1)^{k} \zeta^{(k)}(-2 n)=\frac{2(-1)^{n}}{(2 \pi)^{2 n+1}} \sum_{m=0}^{k} \sum_{r=0}^{m}\binom{k}{m}\binom{m}{r} \operatorname{Im}\left(\kappa^{k-m}\right) \Gamma^{(r)}(2 n+1) \zeta^{(m-r)}(2 n+1) \tag{76}
\end{equation*}
$$

In（73），（74）for $\Gamma^{(r)}(m)$ only the initial conditions rely on m －so（75）and（76）are well adapted to them and（68）for c_{k} ．

Polylogarithms and their derivatives with respect to order Derivatives of general-order polylogarithms
The special case $s=1$ and $z=e^{2 \theta}$
Riemann zeta and its derivatives at integers
ζ^{\prime} and higher derivatives at integer arguments

Apostol's formulas for $\zeta^{(k)}(m)$ at negative integers

Theorem (Apostol, see DLMF (25.6.13) and (25.6.14))

For $n=0,1,2, \ldots$, with $\kappa:=-\log (2 \pi)-\frac{1}{2} \pi i$ we have finite sums:

$$
\begin{equation*}
(-1)^{k} \zeta^{(k)}(1-2 n)=\frac{2(-1)^{n}}{(2 \pi)^{2 n}} \sum_{m=0}^{k} \sum_{r=0}^{m}\binom{k}{m}\binom{m}{r} \operatorname{Re}\left(\kappa^{k-m}\right) \Gamma^{(r)}(2 n) \zeta^{(m-r)}(2 n) \tag{75}
\end{equation*}
$$

$$
\begin{equation*}
(-1)^{k} \zeta^{(k)}(-2 n)=\frac{2(-1)^{n}}{(2 \pi)^{2 n+1}} \sum_{m=0}^{k} \sum_{r=0}^{m}\binom{k}{m}\binom{m}{r} \operatorname{Im}\left(\kappa^{k-m}\right) \Gamma^{(r)}(2 n+1) \zeta^{(m-r)}(2 n+1) \tag{76}
\end{equation*}
$$

In (73), (74) for $\Gamma^{(r)}(m)$ only the initial conditions rely on m - so (75) and (76) are well adapted to them and (68) for c_{k}.

Polylogarithms and their derivatives with respect to order Derivatives of general-order polylogarithms
The special case $s=1$ and $z=e^{2 \theta}$
Riemann zeta and its derivatives at integers
ζ^{\prime} and higher derivatives at integer arguments

Tanh-sinh quadrature (is amazingly flexible)

Given $h>0$, one such scheme is

$$
\begin{equation*}
\int_{-1}^{1} f(x) \mathrm{d} x=\int_{-\infty}^{\infty} f(g(t)) g^{\prime}(t) \mathrm{d} t \approx h \sum_{j=-N}^{N} w_{j} f\left(x_{j}\right) \tag{77}
\end{equation*}
$$

where the abscissas x_{j} and weights w_{j} are given by

$$
\begin{align*}
x_{j} & =g(h j)=\tanh (\pi / 2 \cdot \sinh (h j)) \tag{78}\\
w_{j}=g^{\prime}(h j) & =\pi / 2 \cdot \cosh (h j) / \cosh (\pi / 2 \cdot \sinh (h j))^{2} \tag{79}
\end{align*}
$$

- Here N is chosen so that terms beyond N are "negligible' abscissas and weights can be precomputed.
- For many integrands, such as in (7), halving h in (77-79) doubles the correct digits, provided calculations are done to final precision

Tanh-sinh quadrature (is amazingly flexible)

Given $h>0$, one such scheme is

$$
\begin{equation*}
\int_{-1}^{1} f(x) \mathrm{d} x=\int_{-\infty}^{\infty} f(g(t)) g^{\prime}(t) \mathrm{d} t \approx h \sum_{j=-N}^{N} w_{j} f\left(x_{j}\right) \tag{77}
\end{equation*}
$$

where the abscissas x_{j} and weights w_{j} are given by

$$
\begin{align*}
x_{j} & =g(h j)=\tanh (\pi / 2 \cdot \sinh (h j)) \tag{78}\\
w_{j}=g^{\prime}(h j) & =\pi / 2 \cdot \cosh (h j) / \cosh (\pi / 2 \cdot \sinh (h j))^{2} \tag{79}
\end{align*}
$$

- Here N is chosen so that terms beyond N are "negligible'
- abscissas and weights can be precomputed.
- For many integrands, such as in (7), halving h in (77-79) doubles the correct digits, provided calculations are done to final precision.

Polylogarithms and their derivatives with respect to order Derivatives of general-order polylogarithms
The special case $s=1$ and $z=e^{2 \theta}$
Riemann zeta and its derivatives at integers
ζ^{\prime} and higher derivatives at integer arguments

Tanh-sinh quadrature of \mathcal{U} integrals

- For \mathcal{U} constant calculations, we may integrate from 0 to π, then divide by π, if we integrate the real part of the integrand.
- We typically compute numerous $\mathcal{U}(m, n, p, q)$, so it is much faster to precompute polylog and derivative functions (sans exponents) at each abscissa point x_{j}

During an actual quadrature, evaluation of the integrand in (7)
consists of table look-ups and a few multiplications for each
function evaluation
in our implementations, quadrature calculations were accelerated by a factor of over 1000 by this expedient.

Tanh-sinh quadrature of \mathcal{U} integrals

- For \mathcal{U} constant calculations, we may integrate from 0 to π, then divide by π, if we integrate the real part of the integrand.
- We typically compute numerous $\mathcal{U}(m, n, p, q)$, so it is much faster to precompute polylog and derivative functions (sans exponents) at each abscissa point x_{j}.

During an actual quadrature, evaluation of the integrand in (7)
consists of table look-ups and a few multiplications for each
function evaluation
in our implementations, quadrature calculations were accelerated by a factor of over 1000 by this expedient.

Tanh-sinh quadrature of \mathcal{U} integrals

- For \mathcal{U} constant calculations, we may integrate from 0 to π, then divide by π, if we integrate the real part of the integrand.
- We typically compute numerous $\mathcal{U}(m, n, p, q)$, so it is much faster to precompute polylog and derivative functions (sans exponents) at each abscissa point x_{j}.
- During an actual quadrature, evaluation of the integrand in (7) consists of table look-ups and a few multiplications for each function evaluation
- in our implementations, quadrature calculations were accelerated by a factor of over $\mathbf{1 0 0 0}$ by this expedient.

PART I: Introduction Mordell-Tornheim-Witten ensembles Resolution of all $\mathcal{U}(m, n)$ and more Fundamental computational expedients PART II. More recondite MTW interrelations

Reduction of classical MTW values and derivatives

We now return to our objects of central interest. Partial fraction manipulations allow one to relate partial derivatives of MTWs.

Theorem (Thm. 13. Reduction of classical MTW derivatives)

 Let nonnegative integers a, b, c and r, s, t be given. Set Then for $\delta:=\omega_{a, b, c}$ we haveWhen $\delta=\omega$ this shows each classical MTW value is a finite positive integer combination of MZVs. Herein, we use the shorthand

PART I: Introduction
Mordell-Tornheim-Witten ensembles Resolution of all $\mathcal{U}(m, n)$ and more Fundamental computational expedients PART II. More recondite MTW interrelations

Reduction of classical MTW values and derivatives Relations when $M \geq N \geq 2$
Complete reduction of MTW values when $N=1$ MTW resolution of the log-gamma problem An exponential generating function for $\mathcal{L G}{ }_{n}$ Open issues

Reduction of classical MTW values and derivatives

We now return to our objects of central interest. Partial fraction manipulations allow one to relate partial derivatives of MTWs.

Theorem (Thm. 13. Reduction of classical MTW derivatives)

Let nonnegative integers a, b, c and r, s, t be given. Set $N:=r+s+t$. Then for $\delta:=\omega_{a, b, c}$ we have

$$
\begin{equation*}
\delta(r, s, t)=\sum_{i=1}^{r}\binom{r+s-i-1}{s-1} \delta(i, 0, N-i)+\sum_{i=1}^{s}\binom{r+s-i-1}{r-1} \delta(0, i, N-i) . \tag{80}
\end{equation*}
$$

When $\delta=\omega$ this shows each classical MTW value is a finite positive integer combination of MZVs. Herein, we use the shorthand

Reduction of classical MTW values and derivatives

We now return to our objects of central interest. Partial fraction manipulations allow one to relate partial derivatives of MTWs.

Theorem (Thm. 13. Reduction of classical MTW derivatives)

Let nonnegative integers a, b, c and r, s, t be given. Set $N:=r+s+t$. Then for $\delta:=\omega_{a, b, c}$ we have

$$
\begin{equation*}
\delta(r, s, t)=\sum_{i=1}^{r}\binom{r+s-i-1}{s-1} \delta(i, 0, N-i)+\sum_{i=1}^{s}\binom{r+s-i-1}{r-1} \delta(0, i, N-i) . \tag{80}
\end{equation*}
$$

When $\delta=\omega$ this shows each classical MTW value is a finite positive integer combination of MZVs. Herein, we use the shorthand

$$
\omega_{a, b, c}(r, s, t):=\omega\left(\begin{array}{c|c}
r, s & t \\
a, b & c
\end{array}\right) .
$$

PART I: Introduction
Mordell-Tornheim-Witten ensembles Resolution of all $\mathcal{U}(m, n)$ and more Fundamental computational expedients PART II. More recondite MTW interrelations

Reduction of classical MTW values and derivatives

Proof.

For non-negative integers r, s, t, v, with $r+s+t=v$, and v fixed, we induct on s. Both sides satisfy the same recursion:

$$
\begin{equation*}
d(r, s, t-1)=d(r-1, s, t)+d(r, s-1, t) \tag{81}
\end{equation*}
$$

and the same initial conditions $(r+s=1)$.

Reduction of classical MTW values and derivatives Relations when $M \geq N \geq 2$
Complete reduction of MTW values when $N=1$ MTW resolution of the log-gamma problem An exponential generating function for $\mathcal{L} \mathcal{G}_{n}$ Open issues

Reduction of classical MTW values and derivatives

Example (The numerical techniques provide values of δ)

```
\omega
\omega
\omega
    while
\omega
\omega
\omega
    and
\omega
```

Note $\omega_{1,1,0}(1,1,2)=2 \omega_{1,1,0}(1,0,3)$ and $\omega_{1,0,1}(1,0,3)+\omega_{1,0,1}(0,1,3)$ $=\omega_{1.0 .1}(1,1,2)$ both in accord with Theorem 13

PART I: Introduction Mordell-Tornheim-Witten ensembles Resolution of all $\mathcal{U}(m, n)$ and more Fundamental computational expedients PART II. More recondite MTW interrelations

Reduction of classical MTW values and derivatives Relations when $M \geq N \geq 2$
Complete reduction of MTW values when $N=1$ MTW resolution of the log-gamma problem An exponential generating function for $\mathcal{L G} n$ Open issues

Reduction of classical MTW values and derivatives

Example (The numerical techniques provide values of δ)

```
\omega
\omega
\omega
    while
\omega
\omega1,0,1}(2,0,2)=0.40696928390140268694035563517591371639834128770661373815447%..
\omega
    and
\omega
```

Note $\omega_{1,1,0}(1,1,2)=2 \omega_{1,1,0}(1,0,3)$ and $\omega_{1,0,1}(1,0,3)+\omega_{1,0,1}(0,1,3)$ $=\omega_{1,0,1}(1,1,2)$ both in accord with Theorem 13.

A PSLQ discovery proven

The algorithm PSLQ run on the above data predicted that

$$
\begin{equation*}
\zeta^{\prime \prime}(4) \stackrel{?}{=} 4 \omega_{1,1,0}(1,0,3)+2 \omega_{1,1,0}(2,0,2)-2 \omega_{1,0,1}(2,0,2) \tag{82}
\end{equation*}
$$

which also validates our high-precision techniques.

Proof

First $\omega_{1,1,0}(2,2,0)=\zeta^{\prime}(2)^{2}$. Next the MZV reflection formula
$\zeta(s, t)+\zeta(t, s)=\zeta(s) \zeta(t)-\zeta(s+t)$. vields $\zeta_{1,1}(s, t)+\zeta_{1,1}(t, s)$ $=\zeta^{\prime}(s) \zeta^{\prime}(t)-\zeta^{(2)}(s+t)$. Hence $2 \omega_{1,0,1}(2,0,2)=2 \zeta_{1,1}(2,2)$ $=\zeta^{\prime}(2)^{2}-\zeta^{\prime \prime}(4)$. Since $\omega_{1,1,0}(2,0,2)=2 \omega_{1,0,1}(2,1,1)$ by Thm 13, our desired formula is $\zeta(4)+2 \omega_{1.0 .1}(2,0,2)=4 \omega_{1.1 .0}(1,0,3)$ $+2 \omega_{1,1,0}(2,0,2)$, which is equivalent to $\zeta^{\prime}(2)^{2}=\omega_{1,1,0}(2,2,0)$ $=4 \omega_{1,1,0}(1,0,3)+2 \omega_{1,1,0}(2,0,2)$-another easy case of Thm 13

PART I：Introduction
Mordell－Tornheim－Witten ensembles Resolution of all $\mathcal{U}(m, n)$ and more Fundamental computational expedients PART II．More recondite MTW interrelations

A PSLQ discovery proven

The algorithm PSLQ run on the above data predicted that

$$
\begin{equation*}
\zeta^{\prime \prime}(4) \stackrel{?}{=} 4 \omega_{1,1,0}(1,0,3)+2 \omega_{1,1,0}(2,0,2)-2 \omega_{1,0,1}(2,0,2), \tag{82}
\end{equation*}
$$

which also validates our high－precision techniques．

Proof．

First $\omega_{1,1,0}(2,2,0)=\zeta^{\prime}(2)^{2}$ ．Next the MZV reflection formula
$\zeta(s, t)+\zeta(t, s)=\zeta(s) \zeta(t)-\zeta(s+t)$ ，yields $\zeta_{1,1}(s, t)+\zeta_{1,1}(t, s)$
$=\zeta^{\prime}(s) \zeta^{\prime}(t)-\zeta^{(2)}(s+t)$ ．Hence $2 \omega_{1,0,1}(2,0,2)=2 \zeta_{1,1}(2,2)$
$=\zeta^{\prime}(2)^{2}-\zeta^{\prime \prime}(4)$ ．Since $\omega_{1,1,0}(2,0,2)=2 \omega_{1,0,1}(2,1,1)$ by Thm 13，our desired formula is $\zeta^{\prime \prime}(4)+2 \omega_{1,0,1}(2,0,2)=4 \omega_{1,1,0}(1,0,3)$
$+2 \omega_{1,1,0}(2,0,2)$ ，which is equivalent to $\zeta^{\prime}(2)^{2}=\omega_{1,1,0}(2,2,0)$
$=4 \omega_{1,1,0}(1,0,3)+2 \omega_{1,1,0}(2,0,2)$－another easy case of Thm 13.

A PSLQ discovery proven

The algorithm PSLQ run on the above data predicted that

$$
\begin{equation*}
\zeta^{\prime \prime}(4) \stackrel{?}{=} 4 \omega_{1,1,0}(1,0,3)+2 \omega_{1,1,0}(2,0,2)-2 \omega_{1,0,1}(2,0,2) \tag{82}
\end{equation*}
$$

which also validates our high-precision techniques.

Proof.

First $\omega_{1,1,0}(2,2,0)=\zeta^{\prime}(2)^{2}$. Next the MZV reflection formula
$\zeta(s, t)+\zeta(t, s)=\zeta(s) \zeta(t)-\zeta(s+t)$, yields $\zeta_{1,1}(s, t)+\zeta_{1,1}(t, s)$
$=\zeta^{\prime}(s) \zeta^{\prime}(t)-\zeta^{(2)}(s+t)$. Hence $2 \omega_{1,0,1}(2,0,2)=2 \zeta_{1,1}(2,2)$
$=\zeta^{\prime}(2)^{2}-\zeta^{\prime \prime}(4)$. Since $\omega_{1,1,0}(2,0,2)=2 \omega_{1,0,1}(2,1,1)$ by Thm 13, our desired formula is $\zeta^{\prime \prime}(4)+2 \omega_{1,0,1}(2,0,2)=4 \omega_{1,1,0}(1,0,3)$
$+2 \omega_{1,1,0}(2,0,2)$, which is equivalent to $\zeta^{\prime}(2)^{2}=\omega_{1,1,0}(2,2,0)$
$=4 \omega_{1,1,0}(1,0,3)+2 \omega_{1,1,0}(2,0,2)$-another easy case of Thm 13.

- (82) shows less trivial derivative relations exist within \mathcal{D} than in $\mathcal{D}_{\mathbf{i}}$.

PART I: Introduction
Mordell-Tornheim-Witten ensembles Resolution of all $\mathcal{U}(m, n)$ and more Fundamental computational expedients PART II. More recondite MTW interrelations

Relations when $M \geq N \geq 2$

In general we deduce from (2), by a now familiar partial fraction argument that since $\sum t_{k}=\sum s_{j}$ we have

Theorem (Relations for general ω)

$$
\left.\begin{array}{rl}
& \sum_{k=1}^{N} \omega\left(\begin{array}{c|c}
s_{1}, \ldots, s_{M} & t_{1}, \ldots, t_{k-1}, t_{k}-1, t_{k+1}, \ldots, t_{N} \\
d_{1}, \ldots, d_{M} & e_{1}, \ldots e_{N}
\end{array}\right) \\
= & \sum_{j=1}^{M} \omega\left(\begin{array}{c}
s_{1}, \ldots, s_{j-1}, s_{j}-1, s_{j+1}, \ldots, s_{M} \\
d_{1}, \ldots, d_{M}
\end{array}\right. \tag{83}\\
t_{1}, \ldots, t_{N} \\
, & e_{1}, \ldots e_{N}
\end{array}\right) . .
$$

When $N=1, M=2$ this is precisely (81). For general M and $N=1$ there is a result like Theorem 13.

PART I: Introduction Mordell-Tornheim-Witten ensembles Resolution of all $\mathcal{U}(m, n)$ and more
Fundamental computational expedients PART II. More recondite MTW interrelations

Reduction of classical MTW values and derivatives Relations when $M \geq N \geq 2$
Complete reduction of MTW values when $N=1$ MTW resolution of the log-gamma problem An exponential generating function for $\mathcal{L} \mathcal{G}_{n}$ Open issues

Complete reduction of MTW values when $N=1$

When $N=1$ we can use the prior theorem to show every MTW value (without derivatives) is a finite sum of MZV's.
The basic tool is the partial fraction

> Theorem (Complete reduction of $\omega\left(a_{1}, a_{2}, \ldots, a_{M} \mid b\right)$)
> For nonnegative values of $a_{1}, a_{2}, \ldots, a_{M}, b$ the following holds.
> Each $\omega\left(a_{1}, a_{2}, \ldots, a_{M} \mid b\right)$ is a finite sum of values of MZVs of depth M and weight $a_{1}+a_{2}+\cdots+a_{M}+b$

> If the weight is even and the depth odd or the weight is odd and the depth is even then the sum reduces to a superposition of sums of products of that weight of lower weight MZVs.

Complete reduction of MTW values when $N=1$

When $N=1$ we can use the prior theorem to show every MTW value (without derivatives) is a finite sum of MZV's. The basic tool is the partial fraction

$$
\frac{m_{1}+m_{2}+\cdots+m_{k}}{m_{1}^{a_{1}} m_{1}^{a_{2}} \cdots m_{k}^{a_{k}}}=\frac{1}{m_{1}^{a_{1}-1} m_{1}^{a_{2}} \cdots m_{k}^{a_{k}}}+\frac{1}{m_{1}^{a_{1}} m_{1}^{a_{2}-1} \cdots m_{k}^{a_{k}}}+\frac{1}{m_{1}^{a_{1}} m_{1}^{a_{2}} \cdots m_{k}^{a_{k}-1}} .
$$

Fheorem (Complete reduction of $\left.\omega\left(a_{1}, a_{2}, \ldots, a_{M} \mid b\right)\right)$
Each $\omega\left(a_{1}, a_{2}, \ldots, a_{M} \mid b\right)$ is a finite sum of values of MZVs of depth M and weight $a_{1}+a_{2}+\cdots+a_{M}+b$.
If the weight is even and the depth odd or the weight is odd and the depth is even then the sum reduces to a superposition of sums of products of that weight of lower weight MZVs.

Complete reduction of MTW values when $N=1$

When $N=1$ we can use the prior theorem to show every MTW value (without derivatives) is a finite sum of MZV's.
The basic tool is the partial fraction

$$
\frac{m_{1}+m_{2}+\cdots+m_{k}}{m_{1}^{a_{1}} m_{1}^{a_{2}} \cdots m_{k}^{a_{k}}}=\frac{1}{m_{1}^{a_{1}-1} m_{1}^{a_{2}} \cdots m_{k}^{a_{k}}}+\frac{1}{m_{1}^{a_{1}} m_{1}^{a_{2}-1} \cdots m_{k}^{a_{k}}}+\frac{1}{m_{1}^{a_{1}} m_{1}^{a_{2}} \cdots m_{k}^{a_{k}-1}} .
$$

Theorem (Complete reduction of $\omega\left(a_{1}, a_{2}, \ldots, a_{M} \mid b\right)$)

For nonnegative values of $a_{1}, a_{2}, \ldots, a_{M}, b$ the following holds:
a) Each $\omega\left(a_{1}, a_{2}, \ldots, a_{M} \mid b\right)$ is a finite sum of values of MZVs of depth M and weight $a_{1}+a_{2}+\cdots+a_{M}+b$.
b) If the weight is even and the depth odd or the weight is odd and the depth is even then the sum reduces to a superposition of sums of products of that weight of lower weight MZVs.

PART I: Introduction Mordell-Tornheim-Witten ensembles Resolution of all $\mathcal{U}(m, n)$ and more Fundamental computational expedients PART II. More recondite MTW interrelations

Complete reduction of MTW values when $N=1$

Proof.
(a) for integers $a_{i}>0$ and $b_{j} \geq 0$ (with b_{n} large enough to assure convergence) define $N_{j}:=n_{1}+n_{2}+\cdots n_{j}$ and set

$$
\begin{equation*}
\kappa\left(a_{1}, \ldots, a_{n} \mid b_{1}, \ldots, b_{n}\right):=\sum_{n_{i}>0} \frac{1}{\prod_{i=1}^{n} n_{i}{ }^{a_{i}} \prod_{j=1}^{n} N_{j}{ }^{b_{j}}} \tag{84}
\end{equation*}
$$

Thence $\kappa\left(a_{1}, \ldots, a_{n} \mid b_{1}\right)=\omega\left(a_{1}, \ldots, a_{n} \mid b_{1}\right)$. Noting κ is
symmetric in the a_{i}, let \vec{a} be the non-increasing rearrangement of $\bar{a}:=\left(a_{1}, a_{2}, \cdots, a_{n}\right)$. Let k be the largest index of a non-zero element in \vec{a}. Using the partial fraction, we deduce

Complete reduction of MTW values when $N=1$

Proof.

(a) for integers $a_{i}>0$ and $b_{j} \geq 0$ (with b_{n} large enough to assure convergence) define $N_{j}:=n_{1}+n_{2}+\cdots n_{j}$ and set

$$
\begin{equation*}
\kappa\left(a_{1}, \ldots, a_{n} \mid b_{1}, \ldots, b_{n}\right):=\sum_{n_{i}>0} \frac{1}{\prod_{i=1}^{n} n_{i}{ }^{a_{i}} \prod_{j=1}^{n} N_{j}{ }^{b_{j}}} \tag{84}
\end{equation*}
$$

Thence $\kappa\left(a_{1}, \ldots, a_{n} \mid b_{1}\right)=\omega\left(a_{1}, \ldots, a_{n} \mid b_{1}\right)$. Noting κ is symmetric in the a_{i}, let \vec{a} be the non-increasing rearrangement of $\bar{a}:=\left(a_{1}, a_{2}, \cdots, a_{n}\right)$. Let k be the largest index of a non-zero element in \vec{a}. Using the partial fraction, we deduce

$$
\kappa(\bar{a} \mid \bar{b})=\kappa(\vec{a} \mid \bar{b})=\sum_{j=1}^{k} \kappa\left(\vec{a}-e_{j}, \mid \bar{b}+e_{k}\right)
$$

Complete reduction of MTW values when $N=1$

Proof.

We repeat this step until there are only $k-1$ non-zero entries.
Each step is weight invariant. As repeated rearrangements leave the N_{j} terms invariant, we arrive at a superposition of sums of the form

$$
\kappa(\overrightarrow{0} \mid \bar{b})=\zeta\left(b_{n}, b_{n-1}, \ldots, b_{1}\right) .
$$

The process assures each a_{i} is reduced to zero and so each final $b_{j}>0$. In particular, we may start with κ so that $a_{i}>0, b_{j}=0$ except for $j=n$. This captures our ω sums and other intermediate structures. Part (b) follows from recent results in the MZV
literature.
Tsimura proves reduction for exactly our MTWs with

Complete reduction of MTW values when $N=1$

Proof.

We repeat this step until there are only $k-1$ non-zero entries.
Each step is weight invariant. As repeated rearrangements leave the N_{j} terms invariant, we arrive at a superposition of sums of the form

$$
\kappa(\overrightarrow{0} \mid \bar{b})=\zeta\left(b_{n}, b_{n-1}, \ldots, b_{1}\right) .
$$

The process assures each a_{i} is reduced to zero and so each final $b_{j}>0$. In particular, we may start with κ so that $a_{i}>0, b_{j}=0$ except for $j=n$. This captures our ω sums and other intermediate structures. Part (b) follows from recent results in the MZV literature.

Tsimura proves reduction for exactly our MTWs with $N=1$.

MTW resolution of the log-gamma problem

- As a serious example of our interest in MTW sums we shall show \mathcal{D}_{1} from $\S 2$ resolves the log-gamma integral problem-in that every log-gamma integral $\mathcal{L} \mathcal{G}_{n}$ lies in a specific algebra.

We start, with the Kummer series:
for $0<x<1$

MTW resolution of the log-gamma problem

- As a serious example of our interest in MTW sums we shall show \mathcal{D}_{1} from $\S 2$ resolves the log-gamma integral problem-in that every log-gamma integral $\mathcal{L \mathcal { G } _ { n }}$ lies in a specific algebra.

We start, with the Kummer series:

$$
\begin{align*}
\log \Gamma(x)-\frac{1}{2} \log (2 \pi)= & -\frac{1}{2} \log (2 \sin (\pi x))+\frac{1}{2}(1-2 x)(\gamma+\log (2 \pi)) \\
& +\frac{1}{\pi} \sum_{k=2}^{\infty} \frac{\log k}{k} \sin (2 \pi k x) \tag{85}
\end{align*}
$$

for $0<x<1$.

MTW resolution of the log-gamma problem

Wth a view toward polylogarithm representations, this can be satisfactorily rewritten as:

$$
\begin{align*}
\log \Gamma\left(\frac{z}{2 \pi}\right)-\frac{1}{2} \log 2 \pi & =A \operatorname{Li}_{1}\left(e^{i z}\right)+B \operatorname{Li}_{1}\left(e^{-i z}\right) \tag{86}\\
& +C \operatorname{Li}_{1}^{(1)}\left(e^{i z}\right)+D \operatorname{Li}_{1}^{(1)}\left(e^{-i z}\right),
\end{align*}
$$

where the absolute constants are

$$
\begin{equation*}
A:=\frac{1}{4}+\frac{1}{2 \pi i}(\gamma+\log 2 \pi), C:=-\frac{1}{2 \pi i}, B:=A^{*}, D:=C^{*} . \tag{87}
\end{equation*}
$$

Here ${ }^{\prime} *^{\prime}$ denotes the complex conjugate.

MTW resolution of the log-gamma problem

We define a vector space $\mathcal{V} \mathcal{V}_{1}$ generated by the subensemble \mathcal{D}_{1}, with coefficients generated by the rationals \mathcal{Q} and four constants:

$$
c_{i} \in\left\{\mathcal{Q} \cup\left\{\pi, \frac{1}{\pi}, \gamma, g:=\log 2 \pi\right\}\right\}
$$

Specifically,

$$
\mathcal{V} \mathcal{V}_{1}:=\left\{\sum c_{i} \omega_{i}: \omega_{i} \in \mathcal{D}_{1}\right\}
$$

where any sum therein is finite.
These observations lead to a resolution of the Eulerian log-gamma problem, which is Moll's request to evaluate integrals

MTW resolution of the log-gamma problem

We define a vector space $\mathcal{V} \mathcal{V}_{1}$ generated by the subensemble \mathcal{D}_{1}, with coefficients generated by the rationals \mathcal{Q} and four constants:

$$
c_{i} \in\left\{\mathcal{Q} \cup\left\{\pi, \frac{1}{\pi}, \gamma, g:=\log 2 \pi\right\}\right\}
$$

Specifically,

$$
\mathcal{V} \mathcal{V}_{1}:=\left\{\sum c_{i} \omega_{i}: \omega_{i} \in \mathcal{D}_{1}\right\}
$$

where any sum therein is finite.
These observations lead to a resolution of the Eulerian log-gamma problem, which is Moll's request to evaluate integrals

$$
\mathcal{L \mathcal { G } _ { n }}:=\int_{0}^{1} \log ^{n} \Gamma(x) \mathrm{d} x
$$

MTW resolution of the log-gamma problem

As foreshadowed in our earlier paper:

Theorem
 For every integer $n \geq 0$, the n-th log-gamma integral can be resolved in the sense that $\mathcal{L G}_{n} \in \mathcal{V} \mathcal{V}_{1}$.

- The proof exhibits an computationally effective and explicit form for the requisite superposition $\sum c_{i} \omega_{i}$ for any n.

MTW resolution of the log-gamma problem

Proof.

Inductively, it is enough to show that generally

$$
\begin{equation*}
\mathcal{G}_{n}:=\int_{0}^{1}\left(\log \Gamma(z)-\frac{g}{2}\right)^{n} \mathrm{dz} \tag{88}
\end{equation*}
$$

is in $\mathcal{V} \mathcal{V}_{1}$, because of Euler's classic result that $\mathcal{L \mathcal { G } _ { 1 }}=\frac{g}{2}$ (i.e., $\mathcal{G}_{1}=0$), so that for $n>1$ we may use recursion in the ring to resolve $\mathcal{L \mathcal { G } _ { n }}$. By formula (86), we write

$$
\mathcal{G}_{n}:=n!\sum_{a+b+c+d=n} \frac{A^{a} B^{b} C^{c} D^{d}}{a!b!c!d!} \mathcal{U}(a+c, b+d, c, d),
$$

where \mathcal{U} has been defined by (7). This finite sum is in $\mathcal{V} \mathcal{V}_{1}$.

MTW resolution of the log-gamma problem

For $n=2$, the generators in \mathcal{D}_{1} have $a+b+c+d=2$, and we extract an algebra superposition for $\mathcal{L G}_{2}$ via

$$
\begin{align*}
\mathcal{G}_{2} & =\int_{0}^{1}\left(\log \Gamma(z)-\frac{g}{2}\right)^{2} d z \tag{89}\\
& =\frac{\left(4(g+\gamma)^{2}+\pi^{2}\right)}{8 \pi^{2}} \mathcal{U}(1,1,0,0)-\frac{(2 g+2 \gamma)}{4 \pi^{2}}(\mathcal{U}(1,1,0,1) \\
& +\mathcal{U}(1,1,1,0))+\frac{\mathcal{U}(1,1,1,1)}{2 \pi^{2}}
\end{align*}
$$

Since $\mathcal{U}(1,1,0,0)=\zeta(2), \mathcal{U}(1,1,0,1)=\mathcal{U}(1,1,1,0)=\zeta^{\prime}(2)$, and
$\mathcal{U}(1,1,1,1)=\zeta^{\prime}(2)$, this decodes as $\mathcal{L} \mathcal{G}_{2}=$

MTW resolution of the log-gamma problem

For $n=2$, the generators in \mathcal{D}_{1} have $a+b+c+d=2$, and we extract an algebra superposition for $\mathcal{L G}_{2}$ via

$$
\begin{align*}
\mathcal{G}_{2} & =\int_{0}^{1}\left(\log \Gamma(z)-\frac{g}{2}\right)^{2} d z \tag{89}\\
& =\frac{\left(4(g+\gamma)^{2}+\pi^{2}\right)}{8 \pi^{2}} \mathcal{U}(1,1,0,0)-\frac{(2 g+2 \gamma)}{4 \pi^{2}}(\mathcal{U}(1,1,0,1) \\
& +\mathcal{U}(1,1,1,0))+\frac{\mathcal{U}(1,1,1,1)}{2 \pi^{2}}
\end{align*}
$$

Since $\mathcal{U}(1,1,0,0)=\zeta(2), \mathcal{U}(1,1,0,1)=\mathcal{U}(1,1,1,0)=\zeta^{\prime}(2)$, and $\mathcal{U}(1,1,1,1)=\zeta^{\prime \prime}(2)$, this decodes as $\mathcal{L G}_{2}=$
$\frac{1}{4} \log ^{2}(2 \pi)+\frac{1}{48} \pi^{2}+\frac{1}{12}(\gamma+\log (2 \pi))^{2}-\frac{1}{\pi^{2}}(\gamma+\log (2 \pi)) \zeta^{\prime}(2)+\frac{1}{2 \pi^{2}} \zeta^{\prime \prime}$

MTW resolution of the log-gamma problem

To clarify notation we show the final weight nine \mathcal{U}-value for \mathcal{G}_{5}

$$
\mathcal{U}(4,1,4,0)=\omega\left(\begin{array}{l|l}
1,1,1,1 & 1 \tag{90}\\
1,1,1,1 & 0
\end{array}\right)=\sum_{m, n, p, q} \frac{\log m \log n \log p \log q}{m n p q(m+n+p+q)} .
$$

and the weight eight double MTW sum:

$$
\mathcal{U}(3,2,3,0)=\omega\left(\begin{array}{ll}
1,1,1 & 1,1 \tag{91}\\
1,1,1 & \mid \\
0,0
\end{array}\right)=\sum_{m, n, p, q}^{\prime} \frac{\log m \log n \log p}{m n p q(m+n+p-q)} .
$$

- It is a triumph of the forms that these very slowly convergent sums can be rapidly calculated to extreme precision.
- I stumbled upon \mathcal{D} from Fourier analysis of Kummer's series. Notation is important!

MTW resolution of the log-gamma problem

To clarify notation we show the final weight nine \mathcal{U}-value for \mathcal{G}_{5}

$$
\mathcal{U}(4,1,4,0)=\omega\left(\begin{array}{c|c}
1,1,1,1 & 1 \tag{90}\\
1,1,1,1 & 0
\end{array}\right)=\sum_{m, n, p, q} \frac{\log m \log n \log p \log q}{m n p q(m+n+p+q)}
$$

and the weight eight double MTW sum:

$$
\mathcal{U}(3,2,3,0)=\omega\left(\begin{array}{l|l}
1,1,1 & 1,1 \tag{91}\\
1,1,1 & \mid \\
0,0
\end{array}\right)=\sum_{m, n, p, q}^{\prime} \frac{\log m \log n \log p}{m n p q(m+n+p-q)}
$$

- It is a triumph of the forms that these very slowly convergent sums can be rapidly calculated to extreme precision.
- I stumbled upon \mathcal{D} from Fourier analysis of Kummer's series. Notation is important!

An exponential generating function for $\mathcal{L} \mathcal{G}_{n}$

Let us define：

$$
\begin{equation*}
\mathcal{Y}(x):=\sum_{n \geq 0} \mathcal{L} \mathcal{G}_{n} \frac{x^{n}}{n!}=\int_{0}^{1} \Gamma^{x}(1-t) \mathrm{d} t \tag{92}
\end{equation*}
$$

From the exponential－series form for Γ given in（22），it follows that the general log－gamma integral is expressible as follows

Theorem

For $n=1,2, \ldots$ we have the infinite sum representation

$$
\begin{equation*}
\mathcal{L G}_{n}=\sum_{m_{1}, \ldots, m_{n} \geq 1} \frac{\zeta^{*}\left(m_{1}\right) \zeta^{*}\left(m_{2}\right) \cdots \zeta^{*}\left(m_{n}\right)}{m_{1} m_{2} \cdots m_{n}\left(m_{1}+\cdots+m_{n}+1\right)} \tag{93}
\end{equation*}
$$

where $\zeta^{*}(1):=\gamma$ and $\zeta^{*}(n):=\zeta(n)$ for $n \geq 2$ ．

An exponential generating function for the $\mathcal{L G}_{n}$

In particular, Euler's evaluation of $\mathcal{L} \mathcal{G}_{1}$ leads to

$$
\begin{aligned}
& \log \sqrt{2 \pi}=\sum_{m \geq 1} \frac{\zeta^{*}(m)}{m(m+1)} \\
& =\frac{1}{2}+\gamma+\sum_{m \geq 2} \frac{\zeta(m)-1}{m(m+1)} .
\end{aligned}
$$

This is a rapidly convergent rational zeta-series.

- It is fascinating-and not understood-how the higher $\mathcal{L} \mathcal{G}_{n}$ can be finite superpositions of derivative MTWs, and yet as infinite sums engage only ζ-function convolutions as above.

An exponential generating function for the $\mathcal{L \mathcal { G }}_{n}$

In particular, Euler's evaluation of $\mathcal{L} \mathcal{G}_{1}$ leads to

$$
\begin{aligned}
& \log \sqrt{2 \pi}=\sum_{m \geq 1} \frac{\zeta^{*}(m)}{m(m+1)} \\
& =\frac{1}{2}+\gamma+\sum_{m \geq 2} \frac{\zeta(m)-1}{m(m+1)} .
\end{aligned}
$$

This is a rapidly convergent rational zeta-series.

- It is fascinating-and not understood-how the higher $\mathcal{L G}_{n}$ can be finite superpositions of derivative MTWs, and yet as infinite sums engage only ζ-function convolutions as above.

Open Issues

(1) Further determine structure of \mathcal{D}_{1}
(2) Determine structure of \mathcal{D}

- This relies on implementing a fuller version of $\S 4$'s methods
(3) Find more closed forms
(4) Eventually, develop a comprehensive package of computational tools for effective high precision computation of special functions

Key References

(1) D.H. Bailey, D. Borwein and J.M. Borwein, "Eulerian Log-Gamma Integrals and Tornheim-Witten zeta functions", Ramanujan J. Accepted, July 2012. Available at http://www.carma.newcastle.edu.au/jon/log-gamma.pdf.
(2) J.M. Borwein and D.H. Bailey, Mathematics by Experiment, second edition, A. K. Peters 2008.
(3) J.M. Borwein, D.M. Bradley and R.E. Crandall, "Computational strategies for the Riemann zeta function", J. Comp. and Appl. Math.", 121 (2000), 247-296.
(4) R.E. Crandall, "Unified algorithms for polylogarithm, L-series, and zeta variants", PSIpress, 2012. Available at http://www.perfscipress.com/papers/UniversalTOC25.pdf
5 H. Cohen, F. Villegas and D. Zagier, "Convergence Acceleration of Alternating Series", Experimental Math. 9 (2000), 3-12.

