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Abstract

We consider some fundamental generalized Mordell–Tornheim–
Witten (MTW) zeta-function values along with their derivatives,
and explore connections with multiple-zeta values (MZVs).

• We use symbolic and high-precision numerical integration, plus
some interesting combinatorics and special- function theory.

• Our original motivation was to represent unresolved constructs
such as Eulerian log-gamma integrals.

• In process, we extend methods for high- precision numerical
computation of polylogarithms and their derivatives wrt order.

• The associated paper is at
http://carma.newcastle.edu.au/jon/MTW1.pdf.
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Mordell, Tornheim and Witten

Louis Mordell (1888–1972) Ed Witten (1951– )

• Leonhard Tornheim (1915–2009)
– 1938 Chicago PhD
– a grand-student of L.E. Dickson
– paper in JAMS 1950
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Outline of Lecture: we will touch on some of
1 PART I: Introduction

2 Mordell–Tornheim–Witten ensembles
Generalized MTW ensembles
Important subensembles of D
Closed forms for certain MTWs

3 Resolution of all U(m,n) and more
An exponential generating function V for U(m,n)
An exponential-series representation of V
Complete resolution of D0
Sum rule for the U(m,n) functions
The Us(m,n) sums when s = 2
The Us(m,n) sums when s ≥ 3

4 Fundamental computational expedients
Polylogarithms and their derivatives with respect to order
Derivatives of general-order polylogarithms

The special case s = 1 and z = eiθ

Riemann zeta and its derivatives at integers
ζ′ and higher derivatives at integer arguments

5 PART II. More recondite MTW interrelations
Reduction of classical MTW values and derivatives
Relations when M ≥ N ≥ 2
Complete reduction of MTW values when N = 1
MTW resolution of the log-gamma problem
An exponential generating function for LGn
Open issues
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Introduction: Mordell (58), Tornheim (1950), Witten (90)

We define an ensemble of extended Mordell–Tornheim –Witten
(MTW) zeta function values.

• There is by now a huge literature on these sums; in part
because of the many connections with fields such as
combinatorics, number theory, and mathematical physics.

• Unlike previous authors we include derivatives with respect to
the order of the terms.

• We also investigate interrelations between MTW evaluations,
and deeper connections with multiple-zeta values (MZVs).

• To achieve this we make use of symbolic and numerical
integration, special function theory and some less-than-
obvious combinatorics and generating function analysis.
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Introduction

• Our original motivation was that of representing previously
unresolved constructs such as Eulerian log-gamma integrals.

• Indeed, an algebra of MTW sums with constants
π, 1/π, γ, log 2π and rationals, resolves every integral

LGn :=

∫ 1

0
logn Γ(x) dx.

(a finite superposition of MTW values with such coefficients).

• That said, our focus is the relation between MTW sums and
classical polylogarithms. It is the adumbration of this
relationship that makes the study significant.
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PART I.

• We introduce an ensemble D capturing the values we wish to
study and provide effective integral representations in terms of
polylogarithms on the unit circle.

• We then identify subensemble D1 sufficient for study of
log-gamma integrals; we give a few accessible closed forms.

• §3 give generating functions for various derivative free MTW
sums and proves results suggested by experiments.

• §4 gives polylogarithmic algorithms for computation of our
sums/integrals to high precision (400–3100 digits).

• We must first give tools for zeta and its derivatives at integer
points. These are of substantial independent value.
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PART II

• §5 gives various reductions and relations of our MTW values.
• §6, shows how to evaluate all log gamma integrals LGn for
n = 1, 2, 3 . . ., in our special ensemble of MTW values.

• The associated paper describes two rigorous experiments we
designed to use integer relation methods to first explore the
structure of D1 and to begin to study D (mainly open).

My ugliest picture: an Australian blob fish
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Generalized MTW ensembles
Important subensembles of D
Closed forms for certain MTWs

The Mordell–Tornheim–Witten (MTW) zeta function:

ω(s1, . . . , sK+1) :=
∑

m1,...,mK > 0

1

ms1
1 · · ·m

sK
K (m1 + · · ·+mK)sK+1

(1)

— ω remains mysterious for many combinatorial phenomena,
especially for derivatives wrt the si parameters. (Here K + 1 is the
depth and

∑k+1
j=1 sj is the weight of ω. Originally K = 2.)

We recently used a double sum with integers M,N and si, tj ≥ 0
(M ≥ N ≥ 1) (here Lis(z) :=

∑
n≥1 z

n/ns is polylogarithm of order s):

ω(s1, . . . , sM | t1, . . . , tN ) :=
∑

m1,...,mM,n1,...,nN > 0∑M
i=1

mi=
∑N
j=1

nj

M∏
i=1

1

mi
si

N∏
j=1

1

njtj
(2)

=
1

2π

∫ 2π

0

M∏
i=1

Lisi
(
eiθ
) N∏
j=1

Litj
(
e−iθ

)
dθ.

(3)
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Generalized MTW ensembles
Important subensembles of D
Closed forms for certain MTWs

Generalized MTW ensembles
• If parameters are zero, there are convergence issues with this

integral. One may use principal-value calculus, or an
alternative representation such as (11) below.

– when N = 1 the representation (3) is classical, in that

ω(s1, . . . , sM+1) = ω(s1, . . . , sM | sM+1). (4)

We require a wider MTW ensemble involving outer derivatives:

ω

(
s1, . . . , sM | t1, . . . , tN
d1, . . . , dM | e1, . . . eN

)
:=

∑
m1,...,mM,n1,...,nN > 0∑M

i=1
mi=

∑N
j=1

nj

M∏
i=1

(− logmi)
di

mi
si

N∏
j=1

(− lognj)
ej

nj
tj

=
1

2π

∫ 2π

0

M∏
i=1

Li
(di)
si

(
e
iθ
) N∏
j=1

Li
(ej)

tj

(
e
−iθ

)
dθ, (5)

– the s-th derivative is Li
(d)
s (z) :=

(
∂
∂s

)d
Lis(z).

Bailey, Borwein & Crandall MTW sums



PART I: Introduction
Mordell–Tornheim–Witten ensembles
Resolution of all U(m,n) and more

Fundamental computational expedients
PART II. More recondite MTW interrelations

Generalized MTW ensembles
Important subensembles of D
Closed forms for certain MTWs

Generalized MTW ensembles
• If parameters are zero, there are convergence issues with this

integral. One may use principal-value calculus, or an
alternative representation such as (11) below.

– when N = 1 the representation (3) is classical, in that

ω(s1, . . . , sM+1) = ω(s1, . . . , sM | sM+1). (4)

We require a wider MTW ensemble involving outer derivatives:

ω

(
s1, . . . , sM | t1, . . . , tN
d1, . . . , dM | e1, . . . eN

)
:=

∑
m1,...,mM,n1,...,nN > 0∑M

i=1
mi=

∑N
j=1

nj

M∏
i=1

(− logmi)
di

mi
si

N∏
j=1

(− lognj)
ej

nj
tj

=
1

2π

∫ 2π

0

M∏
i=1

Li
(di)
si

(
e
iθ
) N∏
j=1

Li
(ej)

tj

(
e
−iθ

)
dθ, (5)

– the s-th derivative is Li
(d)
s (z) :=

(
∂
∂s

)d
Lis(z).

Bailey, Borwein & Crandall MTW sums



PART I: Introduction
Mordell–Tornheim–Witten ensembles
Resolution of all U(m,n) and more

Fundamental computational expedients
PART II. More recondite MTW interrelations

Generalized MTW ensembles
Important subensembles of D
Closed forms for certain MTWs

Generalized MTW ensembles
• If parameters are zero, there are convergence issues with this

integral. One may use principal-value calculus, or an
alternative representation such as (11) below.

– when N = 1 the representation (3) is classical, in that

ω(s1, . . . , sM+1) = ω(s1, . . . , sM | sM+1). (4)

We require a wider MTW ensemble involving outer derivatives:

ω

(
s1, . . . , sM | t1, . . . , tN
d1, . . . , dM | e1, . . . eN

)
:=

∑
m1,...,mM,n1,...,nN > 0∑M

i=1
mi=

∑N
j=1

nj

M∏
i=1

(− logmi)
di

mi
si

N∏
j=1

(− lognj)
ej

nj
tj

=
1

2π

∫ 2π

0

M∏
i=1

Li
(di)
si

(
e
iθ
) N∏
j=1

Li
(ej)

tj

(
e
−iθ

)
dθ, (5)

– the s-th derivative is Li
(d)
s (z) :=

(
∂
∂s

)d
Lis(z).

Bailey, Borwein & Crandall MTW sums



PART I: Introduction
Mordell–Tornheim–Witten ensembles
Resolution of all U(m,n) and more

Fundamental computational expedients
PART II. More recondite MTW interrelations

Generalized MTW ensembles
Important subensembles of D
Closed forms for certain MTWs

Generalized MTW ensembles

• All ω are real since we integrate over a full period or more
directly since the summand is real.

• Consistent with earlier usage, we now refer to M +N as the
depth and

∑M
j=1(sj + dj) +

∑N
k=1(tk + ek) as the weight of ω.

To summarize, we consider an MTW ensemble:

D :=

{
ω

(
s1, . . . , sM | t1, . . . , tN
d1, . . . , dM | e1, . . . eN

)
: si, di, tj , ej ≥ 0; M ≥ N ≥ 1

}
.

(6)

• The second row records derivatives wrt to order.

• Log-gamma integrals need MTWs with 0/1 parameters only:
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Important subensembles

We define U(m,n, p, q) to vanish if mn = 0; else if m ≥ n then

U(m,n, p, q) :=
1

2π

∫ 2π

0
Li1

(
e
iθ
)m−p

Li
(1)
1

(
e
iθ
)p

Li1

(
e
−iθ

)n−q
Li

(1)
1

(
e
−iθ

)q
dθ

= ω

(
1m | 1n

1p0m−p | 1q0n−q

)
, (7)

while for m < n we swap both (m,n) and (p, q). We then denote

D1 := {U(m,n, p, q) : p ≤ m ≥ n ≥ q } .

and D0 ⊂ D1 ⊂ D is a derivative-free set of MTWs

D0 := {U(M,N, 0, 0) : M ≥ N ≥ 1},
that is an element of D0 has the form ω(1M | 1N ). Likewise

D0(s) := {Us(M,N, 0, 0) : M ≥ N ≥ 1},

where Us(M,N, 0, 0) = ω(sM | sN ), for s = 1, 2, . . .. Of course

D0(1) = D0. We also write Us(M,N) := Us(M,N, 0, 0).
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Generalized MTW ensembles
Important subensembles of D
Closed forms for certain MTWs

First (elementary) closed forms

For N = 1 in definition (5) we have the following:

ω(r | s) = ζ(r + s), (8)

ω(r1, . . . , rM | 0) =
M∏
j=1

ζ(rj) (9)

ω(r, 0 | s) = ω(0, r | s) = ζ(s, r). (10)

• ζ(s, r) is a multiple-zeta value (MZV), some of which — such
as ζ(6, 2) — are unresolved and are believed irreducible.

For the classic MTW (1), there is a useful pure-real integral
available as an alternative to integral representation (3). In fact,

ω(s1, s2, . . . , sM | t) =
1

Γ(t)

∫ ∞
0

xt−1
M∏
j=1

Lisj (e
−x) dx. (11)
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Generalized MTW ensembles
Important subensembles of D
Closed forms for certain MTWs

First (elementary) closed forms
Eqn. (11) can be split into a series plus a numerically easier
incomplete Gamma integral With a free parameter λ, one has

ω(s1, s2, . . . , sM | t) =
1

Γ(t)

∫ λ

0

xt−1
M∏
j=1

Lisj (e
−x) dx (12)

+
1

Γ(t)

∑
m1,...,mM≥1

Γ(t, λ(m1 + · · ·+mM ))

ms1
1 · · ·m

sM
M (m1 +m2 + · · ·mM )t

,

This recovers the full integral as λ→∞ (11).
• There are interesting symbolic uses of (11): since Li0(z) = z

1−z ,

ω(0, 0, 0, 0 | t) =
1

Γ(t)

∫ ∞
0

xt−1

(ex − 1)4
dx = − ζ(t) +

11

6
ζ(t− 1)− ζ(t− 2) +

1

6
ζ(t− 3),

• MZV Analytic continuation is known to be nontrivial. The

continuation for t→ 0 appears to be ω(0, 0, 0, 0 | 0)
?
= 251

720 , but the

zeta-product formula (9) gives ω(0, 0, 0, 0 | 0) = ζ(0)4
?
= 1

16 .
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An exponential generating function V for U(m,n)
An exponential-series representation of V
Complete resolution of D0
Sum rule for the U(m,n) functions
The Us(m,n) sums when s = 2
The Us(m,n) sums when s ≥ 3

Resolution of all U(m,n)

• There is an important class of resolvable MTWs where N is
allowed to roam freely.

• Consider D0 from §2: the MTW is derivative-free with all
ones across the top row.

The following experimentally motivated results provide an elegant
generating function for U(m,n) := U(m,n, 0, 0).

Theorem (Generating function V for U(m,n) as in (7) )

We have

V(x, y) :=
∑
m,n≥0

U(m,n)
xm yn

m!n!
=

Γ(1− x− y)

Γ(1− x)Γ(1− y)
. (13)
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Resolution of all U(m,n)

Proof.

Starting with the integral form in (7), we exchange integral and
summation and then an obvious change of variables to arrive at

V(x, y) =
2−x−y+1

π

∫ π/2

0
(cos θ)−x−y cos ((x− y) θ) dθ. (14)

Using the beta function, for Re a > 0 [DLMF, (5.12.5)] is:∫ π/2

0
(cos θ)a−1 cos(bθ) dθ =

π

2a
1

aB
(
1
2(a+ b+ 1), 12(a− b+ 1)

) .
(15)

On setting a = 1− x− y, b = x− y in (15) we obtain (13).
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Resolution of all U(m,n)
Setting y = ±x in (13) leads to two natural one-dimensional
generating functions. For instance

V(x,−x) =
∑
m,n≥1

(−1)n
(
m+ n

n

)
U(m,n)

xm+n

(m+ n)!
=

sin(πx)

πx
.

(16)
• Theorem 1 makes it very easy to evaluate U(m,n)

symbolically in Maple. For instance, U(5, 5) returns:

9600π
2
ζ (5) ζ (3) + 600 ζ

2
(3)π

4
+

77587

8316
π
10

+ 144000 ζ (7) ζ (3) + 72000 ζ
2

(5) (17)

– on a current Lenovo in a fraction of a second. The 61 terms of
U(12, 12) took 1.31 secs and the 159 terms for U(15, 15) took
14.71 secs. To 100 digits it is

8.8107918187787369046490206727767666673532562235899290819291620963 (18)

95561049543747340201380539725128849× 10
31
.

in full agreement with our following numerical scheme.
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Resolution of all U(m,n)

The log-sine-cosine integrals are given by

BLscm,n (σ) :=

∫ σ

0
logm−1

∣∣∣∣2 sin
θ

2

∣∣∣∣ logn−1
∣∣∣∣2 cos

θ

2

∣∣∣∣ dθ (19)

They have been considered by Lewin, and recently used in QFT.
Lewin’s result can be restated as

L(x, y) :=
∞∑

m,n=0

2m+nBLscm+1,n+1 (π)
xm

m!

yn

n!

= π

(
2x

x

)(
2y

y

)
Γ (1 + x) Γ (1 + y)

Γ (1 + x+ y)
. (20)

This is closely linked to (13). Indeed, we may rewrite (20) as

L(x, y)V(−x,−y) = π

(
2x

x

)(
2y

y

)
. (21)
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A generating function for V
For a generating function V(x, y), we need expansions of the
Gamma function. Recall the classical formulas

log Γ(1− z) = γz +
∑
n>1

ζ(n)
zn

n
, (22)

e−γzΓ(1− z) = exp

{∑
n>1

ζ(n)zn

n

}
,

(everything being convergent for |z| < 1).
This leads immediately to a powerful representation for V:

V(x, y) =
Γ(1− x− y)

Γ(1− x)Γ(1− y)
= exp

{∑
n>1

ζ(n)

n
((x+ y)n − xn − yn)

}

= exp

{∑
n>1

ζ(n)

n

n−1∑
k=1

(
n

k

)
xkyn−k

}
. (23)
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Complete resolution of the ensemble D0

We may now read off values of U(m,n):

Theorem (Thm 2. Evaluation of U(M,N) for M ≥ N ≥ 1 )

U(M,N) = ω(1M | 1N ) ∈ D0 lies in the ring generated as

R := 〈Q ∪ {π} ∪ {ζ(3), ζ(5), ζ(7), . . . }〉.

In particular, setting U(M, 0) := 1, the general expression is:

U(M,N) = M !N !

N∑
n=1

1

n!

∑
j1+···+jn=M
k1+···+kn=N

n∏
i=1

(ji + ki − 1)!

ji! ki!
ζ(ji + ki).
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Resolution of the ensemble D0

Proof.

Denote by Q the quantity in the braces { } of the exponent in
(23). Then inspection of

exp{Q} = 1 +Q+Q2/2! + . . .

gives the finite form for a coefficient U(m,n).

Example (Sample U values (all of weight m+ n))

U(4, 2) = ω(1, 1, 1, 1 |1, 1) = 204 ζ(6) + 24 ζ(3)2,

U(4, 3) = ω(1, 1, 1, 1 |1, 1, 1) = 6π4ζ(3) + 48π2ζ(5) + 720 ζ(7),

U(6, 1) = ω(1, 1, 1, 1, 1, 1 |1) = 720 ζ(7),

U(M, 1) = ω(1M | 1) = M ! ζ(M + 1).
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Sum rule for U(m,n)
Extreme-precision experiments discovered a unique sum rule
amongst U functions with a fixed even order M +N . Eventually,
with Bp the p-th Bernoulli number, we were led to:

Theorem (Sum rule for U of even weight p > 2)

p−2∑
m=2

(−1)m
(
p

m

)
U(m, p−m) = 2p

(
1− 1

2p(p+ 1)Bp

)
U(p− 1, 1)

(24)

Proof.

Equate powers of x on each side of V(x,−x) (relation (16)), and
use U(p− 1, 1) = (p− 1)! ζ(p) together with the Bernoulli form of
ζ(p) given in (62).
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Sum rule for U(m,n)

Example (Sum rule for weights M +N = 20, 100)

For M +N = 20, the theorem gives precisely the relation first
numerically discovered.

Empirically this is the unique such relation at that weight.

An idea as to the rapid growth of the sum-rule coefficients is this:

for weight M +N = 100 the integer relation coefficient
of U(50, 50) is even, and exceeds 7× 10140.
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Further conditions for ring membership

For more general real c > b the integral representation

ω(1a 0b | c) =
(−1)a+c−1

Γ(c)

∫ 1

0

(1− u)b−1

ub
logc−1(1− u) loga udu,

(25)

is finite and the a ones and b zeros can be permuted.

• Such integrals are covered by below, but their special form of
(25) resolves entirely to sums of 1-dim zeta products.

• Partial derivatives of the beta function, Ba,c−1, lead to:
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Further conditions for ring membership

Theorem (For non-negative integers a, b, c with c > b)

The number ω(1a 0b | c) lies in the ring R from Theorem 2, and
so reduces to combinations of ζ values.

• One may work as for Theorem 2, but we choose to use
Gamma-derivative methods, so as to reveal the equivalence
between these two approaches.
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Further conditions for ring membership

Proof. From (25) we have, formally.

(−1)a+c−1Γ(c)ω(1a 0b | c) = lim
u→−b

∂

∂v(c−1)

{
∂

∂ua
Γ(u+ 1)Γ(v)

Γ(u+ v + 1)

}
v=b

.

(26)

Expanding (1− u)b−1/ub binomially, the ω value is a superposition of
terms I(a, b, c) :=∫ 1

0

logc(1− u) loga u

ub
du = lim

u→−b

∂

∂vc

{
∂

∂ua
Γ(u+ 1)Γ(v)

Γ(u+ v + 1)

}
v=1

. (27)

Thence, we obtain the asserted reduction via the
exponential-series arguments of the previous section or by
appealing to known properties of poly-gamma functions.
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Further conditions for ring membership

• In [Lewin, (7.128)] one finds I(2, 1, 2) = 8 ζ (5)− 2
3 ζ (3)π2

and an incorrect value for I(3, 1, 2) = 6 ζ2 (3)− 1
105 π

6.

Example (Representative evaluations are)

ω(1, 1, 1, 0, 0 | 3) = (π2 − 12) ζ(3)− 3 ζ(3)2 − 18 ζ(5) + π2 +
π4

12
+

π6

210
(28)

ω(1, 1, 0, 0, 0 | 5) =

(
7

4
− 11π2

12
− π4

36

)
ζ(3) +

9ζ(3)2

2
+

29ζ(5)

2
(29)

− 2π2ζ(5)

3
+ 10ζ(7)− π4

16
− π6

144
.

Now, not all terms have the same weight.
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The subensemble D0(s) for s = 1, 2, 3 . . .

Given the success with V in §3, we turn to D0(s) from §2. We set
Us(0, 0) = 1 ; Us(m,n) = 0 if m > n = 0; else if m ≥ n we set

Us(m,n) :=
1

2π

∫ 2π

0
Lis

(
eiθ
)m

Lis

(
e−iθ

)n
dθ = ω

(
sm | sn
0m | 0n

)
.

(30)

That is, we consider elements ω(sM | sN ). An obvious identity is

Us(1, 1) = ζ(2s). (31)

Likewise

Us(2, 1) = ω(s, s, s), (32)

which is evaluable by Theorem 13.
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Evaluation of V2

• For p = 2, we obtain a corresponding generating function:

V2(x, y) :=
∑
m,n≥0

U2(m,n)
xm yn

m!n!
. (33)

Summing and exchanging integral and sum as with p = 1, we get

V2(ix, iy) :=
1

2π

∫ 2π

0

e(y−x))Cl2(θ) cos

((
2π2 + 3 θ2 − 6π θ

)
12

(y + x)

)
dθ

(34)

+ i
1

2π

∫ 2π

0

e(y−x))Cl2(θ) sin

((
2π2 + 3 θ2 − 6π θ

)
12

(y + x)

)
dθ

where Cl2(θ) := −
∫ θ
0 log

(
2
∣∣sin t

2

∣∣) dt is the Clausen function.
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The evaluation of V2

• It seems daunting to place this in closed form, but we can
evaluate V2(x, x).

It transpires, in terms of the Fresnel integrals S and C [DLMF,
§7.2(iii)], to be

2π V2(ix, ix) = 2

√
π

x

(
cos

(
xπ2

6

)
C
(√
πx
)

+ sin

(
xπ2

6

)
S
(√
πx
))
(35)

+i 2

√
π

x

(
cos

(
xπ2

6

)
S
(√
πx
)
− sin

(
xπ2

6

)
C
(√
πx
))
.
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The evaluation of V2

Series representations in [DLMF, Eq. (7.6.4) & (7.6.6)] give:

Re V2(ix, ix) = cos

(
xπ2

6

) ∞∑
n=0

(−1)
n
π4n

22n+2 (2n)! (4n+ 1)
x2n (36)

+ sin

(
xπ2

6

) ∞∑
n=0

(−1)
n
π4n+2

22n+3 (2n+ 1)! (4n+ 3)
x2n+1,

and

Im V2(ix, ix) = − sin

(
xπ2

6

) ∞∑
n=0

(−1)
n
π4n

22n+2 (2n)! (4n+ 1)
x2n (37)

+ cos

(
xπ2

6

) ∞∑
n=0

(−1)
n
π4n+2

22n+3 (2n+ 1)! (4n+ 3)
x2n+1.
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The evaluation of V2

• ReV2(ix, ix) is an even function and ImV2(ix, ix) is odd.

On comparing (33) with ix = iy to (36) or (37) we arrive at:

Theorem (Sum rule for U2)

For integer p ≥ 1, there are explicit positive rationals qp such that

2p−1∑
m=1

(
2p

m

)
U2(m, 2p−m) = (−1)p q2p π

4p, (38)

2p∑
m=1

(
2p+ 1

m

)
U2(m, 2p+ 1−m) = (−1)p q2p+1 π

4p+2. (39)
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The evaluation of V2

Example (Relations with s = 2)

Unlike s = 1 we have a relation of each weight for all even s.
The qn are easy to compute from (35). Thence, to order 16:

V2(ix, ix) = − 1

90
π4 x2 +

1

22680
π8 x4 − 53

525404880
π12 x6

+
19

128619114624
π16 x8 (40)

− 1

2835
π6 x3 +

1

561330
π10 x5 − 1

262702440
π14 x7 + · · · .

(41)

Exact formulas for the coefficients of (40) are in (47) and (48) below.
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The evaluation of V2

Remark

There is additional useful information to be gleaned from (34).
Setting y = −x, we deduce that

V2(ix,−ix) =
1

π

∫ π

0
cos (Cl2(θ) 2x) dθ. (42)

Comparing coefficients , we obtain linear combinations of U2 sums
adding up to C2n := 1

π

∫ π
0 Cl2(θ)

2n dθ for each n.

• While C1 = BLs(1)3 (π), no closed form seems to be known for
any such C2n.
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cos (Cl2(θ) 2x) dθ. (42)

Comparing coefficients , we obtain linear combinations of U2 sums
adding up to C2n := 1

π

∫ π
0 Cl2(θ)

2n dθ for each n.

• While C1 = BLs(1)3 (π), no closed form seems to be known for
any such C2n.
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The evaluation of V3

• It is possible to undertake the same analysis generally.
For instance, from the evaluation Gl3 we deduce that

V3(x,−x) =
1

π

∫ π

0
cos

((
π2 − θ2

) θ
6
x

)
dθ. (43)

The Taylor series commences

V3(x,−x) = 1− 1

945
π6x2 +

1

3648645
π12x4 − 1

31819833045
π18x6 +O

(
x8
)
.

• Again the order-two coefficient is in agreement with (31).

• Note also that 6U3(2, 1) is the next coefficient and that all
terms have the weight one would predict.
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The evaluation of VN
In general, we exploit the Glaisher functions,

Gl2n(θ) := Re Li2n

(
eiθ
)

and
Gl2n+1(θ) := Im Li2n+1

(
eiθ
)
.

They possess closed forms:

Gln (θ) = (−1)1+bn/2c2n−1
πn

n!
Bn

(
θ

2π

)
(44)

for n > 1 where Bn is the n-th Bernoulli polynomial [Lewin, Eqn.
(22), p. 300] and 0 ≤ θ ≤ 2π. Thus,

Gl5 (θ) =
1

720
t (π − t) (2π − t)

(
4π2 + 6π t− 3 t2

)
.
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The evaluation of VN
We then observe that:

V2n+1(x,−x) =
1

2π

∫ 2π

0
cos
(

Gl2n+1

(
eiθ
)
x
)

dθ, (45)

V2n(ix, ix) =
1

2π

∫ 2π

0
exp

(
i
(

Gl2n

(
eiθ
)
x
))

dθ. (46)

• In each case substitution of (44) and term-by-term expansion
of cos or sin leads to an expression for the coefficients

– Gln (θ) is an homogeneous two-variable polynomial in π and θ
with each monomial of degree n

Indeed, we are thus led to the following explicit formulas:
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The evaluation of VN
The real and imaginary coefficients of order 2m are respectively:

rm(s):= (−1)m
4m−1

(2m)!π

∫ 2π

0

(
(−1)

1+bs/2c

s!
(2π)

s
Bn

(
θ

2π

))2m

dθ

(47)

im(s):= (−1)m
2 4m−1

(2m+ 1)!π

∫ 2π

0

(
(−1)

1+bs/2c

s!
(2π)

s
Bn

(
θ

2π

))2m+1

dθ.

(48)

• While we may expand these as finite sums, they may
painlessly be integrated symbolically

• The imaginary coefficient is zero for s odd.
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The evaluation of VN

Thence, we have established:

Theorem (Sum relations for Us)
Let s be a positive integer.

There is an analogue of Theorem 4 (the sum rule via V) when s is
odd and of Theorem 8 (sum rule via V2) when s is even.

• Experimentally we have strong reasons to believe that these
are the only such sum relations.
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Polylogarithms and their derivatives with respect to order
Derivatives of general-order polylogarithms
The special case s = 1 and z = eiθ

Riemann zeta and its derivatives at integers
ζ′ and higher derivatives at integer arguments

Fundamental computational expedients

To numerically study the ensemble D intensively, we must be able
to differentiate polylogarithms with respect to their order.

• Even our primary goal herein—the study of D1—needs access
to the first derivative of

Li1(x) = − log(1− x)

(a derivative wrt one !).

• Below

Hn := 1 +
1

2
+

1

3
+ · · ·+ 1

n
,

and
∑′

means to avoid the singularity sitting at ζ(1).
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Computing polylogarithms
When s = n is a positive integer,

Lin(z) =
∞ ′∑
m=0

ζ(n−m)
logm z

m!
+

logn−1 z

(n− 1)!
(Hn−1 − log(− log z)), (49)

valid for | log z| < 2π. For any order s not a positive integer,

Lis(z) =
∑
m≥0

ζ(s−m)
logm z

m!
+ Γ(1− s)(− log z)s−1. (50)

• The condition | log z| < 2π in in (49), precludes its use when
|z| < e−2π ≈ 0.00187. For such small |z|, it suffices to use

Lis(z) :=
∞∑
k=1

zk

ks
. (51)

– we found (51) faster than (49) whenever |z| < 1/4, at least for
precision in the range of 100 to 4000 digits

Bailey, Borwein & Crandall MTW sums



PART I: Introduction
Mordell–Tornheim–Witten ensembles
Resolution of all U(m,n) and more

Fundamental computational expedients
PART II. More recondite MTW interrelations

Polylogarithms and their derivatives with respect to order
Derivatives of general-order polylogarithms
The special case s = 1 and z = eiθ

Riemann zeta and its derivatives at integers
ζ′ and higher derivatives at integer arguments

Computing polylogarithms
When s = n is a positive integer,

Lin(z) =
∞ ′∑
m=0

ζ(n−m)
logm z

m!
+

logn−1 z

(n− 1)!
(Hn−1 − log(− log z)), (49)

valid for | log z| < 2π. For any order s not a positive integer,

Lis(z) =
∑
m≥0

ζ(s−m)
logm z

m!
+ Γ(1− s)(− log z)s−1. (50)

• The condition | log z| < 2π in in (49), precludes its use when
|z| < e−2π ≈ 0.00187. For such small |z|, it suffices to use

Lis(z) :=
∞∑
k=1

zk

ks
. (51)

– we found (51) faster than (49) whenever |z| < 1/4, at least for
precision in the range of 100 to 4000 digits

Bailey, Borwein & Crandall MTW sums



PART I: Introduction
Mordell–Tornheim–Witten ensembles
Resolution of all U(m,n) and more

Fundamental computational expedients
PART II. More recondite MTW interrelations

Polylogarithms and their derivatives with respect to order
Derivatives of general-order polylogarithms
The special case s = 1 and z = eiθ

Riemann zeta and its derivatives at integers
ζ′ and higher derivatives at integer arguments

Computing polylogarithms
When s = n is a positive integer,

Lin(z) =
∞ ′∑
m=0

ζ(n−m)
logm z

m!
+

logn−1 z

(n− 1)!
(Hn−1 − log(− log z)), (49)

valid for | log z| < 2π. For any order s not a positive integer,

Lis(z) =
∑
m≥0

ζ(s−m)
logm z

m!
+ Γ(1− s)(− log z)s−1. (50)

• The condition | log z| < 2π in in (49), precludes its use when
|z| < e−2π ≈ 0.00187. For such small |z|, it suffices to use

Lis(z) :=
∞∑
k=1

zk

ks
. (51)

– we found (51) faster than (49) whenever |z| < 1/4, at least for
precision in the range of 100 to 4000 digits

Bailey, Borwein & Crandall MTW sums



PART I: Introduction
Mordell–Tornheim–Witten ensembles
Resolution of all U(m,n) and more

Fundamental computational expedients
PART II. More recondite MTW interrelations

Polylogarithms and their derivatives with respect to order
Derivatives of general-order polylogarithms
The special case s = 1 and z = eiθ

Riemann zeta and its derivatives at integers
ζ′ and higher derivatives at integer arguments

Computing polylogarithms

For integer k, | log z| < 2π and all τ ∈ [0, 1) we have:

Lik+1+τ (z) =
∑

0≤n6=k
ζ(k + 1 + τ − n)

logn z

n!
+

logk

k!

∞∑
j=0

ck,j(L) τ j .

(52)

Here L := log(− log z) and ck,j engage the Stieltjes constants γj

ck,j(L) :=
(−1)j

j!
γj − bk,j+1(L), (53)

where the bk,j terms are given by

bk,j(L) :=
∑

p+t+q=j

p,t,q≥0

L p

p!

Γ(t)(1)

t!
(−1)t+qfk,q. (54)
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Computing polylogarithms (This works really well)

Finally, fk,q is the coefficient of xq in
∏k
m=1

1
1+x/m . The fk,q are

easily calculable via fk,0 = 1 and the recursion

fk,q =

q∑
h=0

(−1)h

kh
fk−1,q−h. (55)

• Thence, fk,1 = −Hk and fk,2 = 1
2H

2
k + 1

2H
(2)
k —in terms of

generalized harmonic numbers—while ck,0 = Hk − L.
– with k = τ = 0 this recovers (49)

• To obtain first (or higher) derivatives Li
(1)
k+1(z), we

differentiate (52) at zero and so require the evaluation ck,1
– with k = 0, j = 1 this supplies (58) below
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Computing polylogarithms with s = 1 and z = eiθ

1. We may write, for 0 < θ ≤ 2π,

Li1(e
iθ) = − log

(
2 sin

(
θ

2

))
+

(π − θ)
2

i. (56)

2. We saw order derivatives Li′s(z) = d(Lis(z))/ ds for integer s,
can be computed with formulas such as

L′1(z) =
∞∑
n=1

ζ ′ (1− n)
logn z

n!
− γ1 −

1

12
π2 − 1

2
(γ + log (− log z))2,

valid for | log z| < 2π. Here γ1 is the second Stieltjes constant. For
small |z|, it again suffices to use

Li′s(z) = −
∞∑
n=1

zk log k

ks
. (57)
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n!
− γ1 −

1

12
π2 − 1

2
(γ + log (− log z))2,

valid for | log z| < 2π. Here γ1 is the second Stieltjes constant. For
small |z|, it again suffices to use

Li′s(z) = −
∞∑
n=1

zk log k

ks
. (57)
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Computing polylogarithms with s = 1 and z = eiθ

Hence

Li′1(e
iθ) =

∞∑
n=1

ζ ′ (1− n)
(iθ)n

n!
− γ1 −

1

12
π2 − 1

2
(γ + log (−iθ))2,

(58)

valid and convergent for |θ| < 2π.

• Note the bonus of being on the boundary of the disc!

• With such formulas, to evaluate U(m,n, p, q) one may use pure
quadrature, convergent series, or a combination of both.

• All of these are gainfully exploited in computing MTW values.
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Computing zeta values (at integers)

• (49) or (56) and (50) or (58) require precomputed values of
zeta and its derivatives at (often negative) integer arguments.

• One fairly efficient algorithm for computing a single ζ(n) for
integer n > 1 is the following given by Peter Borwein:

Choose N > 1.2 ·D, where D is number of digits required. Then

ζ(s) ≈ −2−N (1− 21−s)−1
2N−1∑
i=0

(−1)i
∑i−1

j=−1 uj

(i+ 1)s
, (59)

where u−1 = −2N , uj = 0 for 0 ≤ j < N − 1;uN−1 = 1, and for
j ≥ N compute

uj = uj−1 · (2N − j)/(j + 1−N).
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Computing zeta values (at many integers)

• To obtain ζ(n) for many n > 1, the following is more efficient.

First, to compute ζ(2n), observe that

coth(πx) = − 2

πx

∞∑
k=0

ζ(2k)(−1)kx2k =
cosh(πx)

sinh(πx)

=
1

πx
· 1 + (πx)2/2! + (πx)4/4! + (πx)6/6! + · · ·

1 + (πx)2/3! + (πx)4/5! + (πx)6/7! + · · ·
. (60)

Let P (x), Q(x) be the numerator and denominator polynomials
obtained by truncating these two series to n terms.
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Computing even zeta values (by Newton’s method)

Then the approximate reciprocal R(x) of Q(x) can be obtained by
applying the Newton iteration

Rk+1(x) := Rk(x) + [1−Q(x) ·Rk(x)] ·Rk(x). (61)

• Both polynomial degree and numeric precision of the
coefficients are dynamically increased, doubling with each
loop, until desired degree and precision are achieved. (FFT,
FFT, FFT !)

• The quotient P/Q is now simply the product P (x) ·R(x).

• The required values ζ(2k) can now be obtained from the
coefficients of this product polynomial P ·R.
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Computing Bernoulli numbers (from even zeta values)

The Bernoulli numbers B2k, which are also needed, can then
obtained from the positive even-indexed zeta values by the formula
[DLMF, Eqn. (25.6.2)]

B2k = (−1)k+1 2(2k)!

(2π)2k
ζ(2k). (62)
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Zeta at odd positive integers (via Bernoulli numbers)
Positive odd-indexed zeta values can be now efficiently computed
using Ramanujan-style hyperbolic corrections to Bernoulli sums:

ζ(4N + 3) = −2

∞∑
k=1

1

k4N+3(exp(2kπ)− 1)

− π(2π)4N+2
2N+2∑
k=0

(−1)k
B2kB4N+4−2k

(2k)!(4N + 4− 2k)!
,

ζ(4N + 1) = − 1

N

∞∑
k=1

(2πk + 2N) exp(2πk)− 2N

k4N+1(exp(2kπ)− 1)2
(63)

− 1

2N
π(2π)4N

2N+1∑
k=1

(−1)k
B2kB4N+2−2k

(2k − 1)!(4N + 2− 2k)!
.
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Computing zeta at negative integers

Finally, zeta can be evaluated at negative integers by the following
well-known reflection formulas [DLMF, (25.6.3), (25.6.4)]

ζ(−2n) = 0

and

ζ(−2n+ 1) = −B2n

2n
. (64)
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Computing derivatives of zeta at integers

• Precomputed values of the zeta derivative function are
prerequisite for the efficient use of formulas (56) and (58).

• For positive integer arguments, the derivative zeta is well
computed via a series-accelerated algorithm for the derivative
of the eta or alternating zeta function.

• we use an adaptation of a scheme due to Crandall based on
more general acceleration methods of Cohen-Villegas-Zagier:

– in our algorithm, log and zeta values can be precalculated,
and so do not significantly add to run time

– similar techniques apply to higher derivatives of η—and so
ζ—at positive integers.
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Computing ζ ′ at non-positive integers

From the functional equation for ζ:

ζ(s) = 2(2π)s−1 sin
πs

2
Γ(1− s) ζ(1− s)

one can extract

ζ ′(0) = −1

2
log 2π

and for even m = 2, 4, 6, . . .

ζ ′(−m) :=
d

ds
ζ(s)|s=−m =

(−1)m/2m!

2m+1πm
ζ(m+ 1), (65)

while for odd m = 1, 3, 5 . . . ,

ζ ′(−m) = ζ(−m)

(
γ + log 2π −Hm −

ζ ′(m+ 1)

ζ(m+ 1)

)
. (66)

• We turn to methods for higher derivatives at negative integers.
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Derivatives of Γ at positive integers

• To approach ζ we first need to attack the Gamma function
(one more efficient indirection).

Let gn := Γ(n)(1). It is known [DLMF, (5.7.1) & (5.7.2)] that

Γ(z + 1) C(z) = z Γ(z) C(z) = z (67)

where C(z) :=
∑∞

k=1 ckz
k with c0 = 0, c1 = 1, c2 = γ and

(k − 1)ck = γck−1 − ζ(2) ck−2 + ζ(3) ck−3 − · · ·+ (−1)k ζ(k − 1) c1.
(68)

Thus, differentiating (67) by Leibniz’ formula, for n ≥ 1 we have

gn = −
n−1∑
k=0

n!

k!
gk cn+1−k. (69)
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Derivatives of Γ at positive integers

More generally, for positive integer m we have

Γ(z +m) C(z) = (z)m (70)

where (z)m := z(z + 1) · · · (z +m− 1) is the rising factorial
polynomial.
Letting gn(m) := Γ(n)(m) so that gn(1) = gn, we may again apply
the product rule to (70) and obtain

gn(m) = −
n−1∑
k=0

n!

k!
gk(m) cn+1−k +

Dn+1
m

n+ 1
. (71)

• For n > m, Dn
m is the n-th deriv. of (x)m at x = 0 and so is zero.

• For n ≤ m these integer values are easily obtained symbolically or in
terms of Stirling numbers of the first kind.
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Indeed

Dn
m =

m−n∑
k=0

s (m, k + n) (k + 1)n (m− 1)
k

= (n+ 1)! (−1)m+n+1s (m, 1 + n).

(72)

Thus, Dnm
(n+1) = n!|s(m, 1 + n)| and for n,m > 1 we obtain:

gn(m)

n!
= −

n−1∑
k=0

gk(m)

k!
cn+1−k + |s(m, 1 + n)| (73)

where for integer n, k ≥ 0

s(n, k) = s(n− 1, k − 1)− (n− 1) s(n− 1, k), (74)

see [DLMF, (26.8.18)].
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Apostol’s formulas for ζ(k)(m) at negative integers

Theorem (Apostol, see DLMF (25.6.13) and (25.6.14))

For n = 0, 1, 2, . . ., with κ := − log(2π)− 1
2πi we have finite sums:

(−1)
k
ζ
(k)

(1− 2n) =
2(−1)n

(2π)2n

k∑
m=0

m∑
r=0

(
k

m

)(
m

r

)
Re(κ

k−m
) Γ

(r)
(2n) ζ

(m−r)
(2n),

(75)

(−1)
k
ζ
(k)

(−2n) =
2(−1)n

(2π)2n+1

k∑
m=0

m∑
r=0

(
k

m

)(
m

r

)
Im(κ

k−m
) Γ

(r)
(2n + 1) ζ

(m−r)
(2n + 1).

(76)

In (73), (74) for Γ(r)(m) only the initial conditions rely on m

– so (75) and (76) are well adapted to them and (68) for ck.
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Tanh-sinh quadrature (is amazingly flexible)
Given h > 0, one such scheme is∫ 1

−1
f(x) dx =

∫ ∞
−∞

f(g(t))g′(t) dt ≈ h

N∑
j=−N

wjf(xj), (77)

where the abscissas xj and weights wj are given by

xj = g(hj) = tanh (π/2 · sinh(hj)) (78)

wj = g′(hj) = π/2 · cosh(hj)/ cosh (π/2 · sinh(hj))2. (79)

• Here N is chosen so that terms beyond N are “negligible’

– abscissas and weights can be precomputed.

• For many integrands, such as in (7), halving h in (77–79) doubles
the correct digits, provided calculations are done to final precision.
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Tanh-sinh quadrature of U integrals

• For U constant calculations, we may integrate from 0 to π,
then divide by π, if we integrate the real part of the integrand.

• We typically compute numerous U(m,n, p, q), so it is much
faster to precompute polylog and derivative functions (sans
exponents) at each abscissa point xj .

– During an actual quadrature, evaluation of the integrand in (7)
consists of table look-ups and a few multiplications for each
function evaluation

– in our implementations, quadrature calculations were
accelerated by a factor of over 1000 by this expedient.
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Reduction of classical MTW values and derivatives
We now return to our objects of central interest. Partial fraction
manipulations allow one to relate partial derivatives of MTWs.

Theorem (Thm. 13. Reduction of classical MTW derivatives)

Let nonnegative integers a, b, c and r, s, t be given. Set
N := r + s+ t. Then for δ := ωa,b,c we have

δ(r, s, t) =
r∑
i=1

(
r + s− i− 1

s− 1

)
δ (i, 0, N − i) +

s∑
i=1

(
r + s− i− 1

r − 1

)
δ (0, i, N − i). (80)

When δ = ω this shows each classical MTW value is a finite
positive integer combination of MZVs. Herein, we use the shorthand

ωa,b,c(r, s, t) := ω

(
r , s | t
a , b | c

)
.
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Reduction of classical MTW values and derivatives

Proof.

For non-negative integers r, s, t, v, with r + s+ t = v, and v fixed,
we induct on s. Both sides satisfy the same recursion:

d(r, s, t− 1) = d(r − 1, s, t) + d(r, s− 1, t) (81)

and the same initial conditions (r + s = 1).
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Reduction of classical MTW values and derivatives

Example (The numerical techniques provide values of δ)

ω1,1,0(1, 0, 3) = 0.07233828360935031113948057244763953352659776102642...

ω1,1,0(2, 0, 2) = 0.29482179736664239559157187114891977101838854886937848122804...

ω1,1,0(1, 1, 2) = 0.14467656721870062227896114489527906705319552205284127904072...

while

ω1,0,1(1, 0, 3) = 0.14042163138773371925054281123123563768136197000104827665935...

ω1,0,1(2, 0, 2) = 0.40696928390140268694035563517591371639834128770661373815447...

ω1,0,1(1, 1, 2) = 0.4309725339488831694224817651103896397107720158191215752309...

and

ω0,1,1(2, 1, 1) = 3.002971213556680050792115093515342259958798283743200459879...

Note ω1,1,0(1, 1, 2) = 2ω1,1,0(1, 0, 3) and ω1,0,1(1, 0, 3) + ω1,0,1(0, 1, 3)

= ω1,0,1(1, 1, 2) both in accord with Theorem 13.
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A PSLQ discovery proven
The algorithm PSLQ run on the above data predicted that

ζ
′′
(4)

?
= 4ω1,1,0(1, 0, 3) + 2ω1,1,0(2, 0, 2)− 2ω1,0,1(2, 0, 2), (82)

which also validates our high-precision techniques.

Proof.

First ω1,1,0(2, 2, 0) = ζ
′
(2)2. Next the MZV reflection formula

ζ(s, t) + ζ(t, s) = ζ(s)ζ(t)− ζ(s+ t), yields ζ1,1(s, t) + ζ1,1(t, s)

= ζ ′(s)ζ ′(t)− ζ(2)(s+ t). Hence 2ω1,0,1(2, 0, 2) = 2ζ1,1(2, 2)

= ζ ′(2)2 − ζ ′′(4). Since ω1,1,0(2, 0, 2) = 2ω1,0,1(2, 1, 1) by Thm 13, our

desired formula is ζ
′′
(4) + 2ω1,0,1(2, 0, 2) = 4ω1,1,0(1, 0, 3)

+2ω1,1,0(2, 0, 2), which is equivalent to ζ
′
(2)2 = ω1,1,0(2, 2, 0)

= 4ω1,1,0(1, 0, 3) + 2ω1,1,0(2, 0, 2)—another easy case of Thm 13.

• (82) shows less trivial derivative relations exist within D than in D1.
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Relations when M ≥ N ≥ 2

In general we deduce from (2), by a now familiar partial fraction
argument that since

∑
tk =

∑
sj we have

Theorem (Relations for general ω)

N∑
k=1

ω

(
s1, . . . , sM | t1, . . . , tk−1, tk − 1, tk+1, . . . , tN
d1, . . . , dM | e1, . . . eN

)

=
M∑
j=1

ω

(
s1, . . . , sj−1, sj − 1, sj+1, . . . , sM | t1, . . . , tN

d1, . . . , dM | e1, . . . eN

)
. (83)

When N = 1,M = 2 this is precisely (81). For general M and
N = 1 there is a result like Theorem 13.
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Complete reduction of MTW values when N = 1

When N = 1 we can use the prior theorem to show every MTW
value (without derivatives) is a finite sum of MZV’s.
The basic tool is the partial fraction
m1 +m2 + . . . +mk

m
a1
1 m

a2
1 · · ·m

ak
k

=
1

m
a1−1
1 m

a2
1 · · ·m

ak
k

+
1

m
a1
1 m

a2−1
1 · · ·mak

k

+
1

m
a1
1 m

a2
1 · · ·m

ak−1

k

.

Theorem (Complete reduction of ω(a1, a2, . . . , aM | b))

For nonnegative values of a1, a2, . . . , aM , b the following holds:

a) Each ω(a1, a2, . . . , aM | b) is a finite sum of values of MZVs
of depth M and weight a1 + a2 + · · ·+ aM + b.

b) If the weight is even and the depth odd or the weight is odd
and the depth is even then the sum reduces to a superposition
of sums of products of that weight of lower weight MZVs.
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Complete reduction of MTW values when N = 1

Proof.

(a) for integers ai > 0 and bj ≥ 0 (with bn large enough to assure
convergence) define Nj := n1 + n2 + · · ·nj and set

κ(a1, . . . , an | b1, . . . , bn) :=
∑
ni>0

1∏n
i=1 ni

ai
∏n
j=1Nj

bj
. (84)

Thence κ(a1, . . . , an | b1) = ω(a1, . . . , an | b1). Noting κ is
symmetric in the ai, let −→a be the non-increasing rearrangement of
a := (a1, a2, · · · , an). Let k be the largest index of a non-zero
element in −→a . Using the partial fraction, we deduce

κ(a | b) = κ(−→a | b) =
k∑
j=1

κ(−→a − ej , | b+ ek).
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Complete reduction of MTW values when N = 1

Proof.

We repeat this step until there are only k − 1 non-zero entries.
Each step is weight invariant. As repeated rearrangements leave
the Nj terms invariant, we arrive at a superposition of sums of the
form

κ(
−→
0 | b) = ζ(bn, bn−1, . . . , b1).

The process assures each ai is reduced to zero and so each final
bj > 0. In particular, we may start with κ so that ai > 0, bj = 0
except for j = n. This captures our ω sums and other intermediate
structures. Part (b) follows from recent results in the MZV
literature.

Tsimura proves reduction for exactly our MTWs with N = 1.
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MTW resolution of the log-gamma problem

• As a serious example of our interest in MTW sums we shall
show D1 from §2 resolves the log-gamma integral problem—in
that every log-gamma integral LGn lies in a specific algebra.

We start, with the Kummer series:

log Γ(x)− 1

2
log(2π) =− 1

2
log (2 sin(πx)) +

1

2
(1− 2x) (γ + log(2π))

+
1

π

∞∑
k=2

log k

k
sin(2πkx) (85)

for 0 < x < 1.
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MTW resolution of the log-gamma problem

Wth a view toward polylogarithm representations, this can be
satisfactorily rewritten as:

log Γ
( z

2π

)
− 1

2
log 2π = ALi1(eiz) +B Li1(e−iz) (86)

+ C Li
(1)
1 (eiz) +D Li

(1)
1 (e−iz),

where the absolute constants are

A :=
1

4
+

1

2πi
(γ + log 2π), C := − 1

2πi
, B := A∗, D := C∗.

(87)

Here ′∗′ denotes the complex conjugate.
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MTW resolution of the log-gamma problem

We define a vector space VV1 generated by the subensemble D1,
with coefficients generated by the rationals Q and four constants:

ci ∈
{
Q ∪

{
π,

1

π
, γ, g := log 2π

}}
.

Specifically,

VV1 :=
{∑

ciωi : ωi ∈ D1

}
,

where any sum therein is finite.
These observations lead to a resolution of the Eulerian log-gamma
problem, which is Moll’s request to evaluate integrals

LGn :=

∫ 1

0
logn Γ(x) dx.
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MTW resolution of the log-gamma problem

As foreshadowed in our earlier paper:

Theorem

For every integer n ≥ 0, the n-th log-gamma integral can be
resolved in the sense that LGn ∈ VV1.

• The proof exhibits an computationally effective and explicit
form for the requisite superposition

∑
ciωi for any n.
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MTW resolution of the log-gamma problem

Proof.

Inductively, it is enough to show that generally

Gn :=

∫ 1

0

(
log Γ(z) − g

2

)n
dz (88)

is in VV1, because of Euler’s classic result that LG1 = g
2 (i.e.,

G1 = 0), so that for n > 1 we may use recursion in the ring to
resolve LGn. By formula (86), we write

Gn := n!
∑

a+b+c+d=n

AaBbCcDd

a!b!c!d!
U(a+ c, b+ d, c, d),

where U has been defined by (7). This finite sum is in VV1.
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MTW resolution of the log-gamma problem

For n = 2, the generators in D1 have a+ b+ c+ d = 2, and we
extract an algebra superposition for LG2 via

G2 =

∫ 1

0

(
log Γ(z) −

g

2

)2
dz (89)

=

(
4(g + γ)2 + π2

)
8π2

U(1, 1, 0, 0)−
(2g + 2γ)

4π2
(U(1, 1, 0, 1)

+ U(1, 1, 1, 0)) +
U(1, 1, 1, 1)

2π2
.

Since U(1, 1, 0, 0) = ζ(2), U(1, 1, 0, 1) = U(1, 1, 1, 0) = ζ
′
(2), and

U(1, 1, 1, 1) = ζ
′′
(2), this decodes as LG2 =

1

4
log2(2π) +

1

48
π2 +

1

12
(γ + log(2π))

2 − 1

π2
(γ + log(2π)) ζ

′
(2) +

1

2π2
ζ
′′
(2).
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MTW resolution of the log-gamma problem

To clarify notation we show the final weight nine U-value for G5

U(4, 1, 4, 0) = ω

(
1, 1, 1, 1 | 1
1, 1, 1, 1 | 0

)
=

∑
m,n,p,q

logm log n log p log q

mnp q (m+ n+ p+ q)
.

(90)

and the weight eight double MTW sum:

U(3, 2, 3, 0) = ω

(
1, 1, 1 | 1, 1
1, 1, 1 | 0, 0

)
=

′∑
m,n,p,q

logm log n log p

mnp q (m+ n+ p− q)
.

(91)

• It is a triumph of the forms that these very slowly convergent
sums can be rapidly calculated to extreme precision.

• I stumbled upon D from Fourier analysis of Kummer’s series.
Notation is important!
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An exponential generating function for LGn
Let us define:

Y(x) :=
∑
n≥0
LGn

xn

n!
=

∫ 1

0
Γx(1− t) dt. (92)

From the exponential-series form for Γ given in (22), it follows that
the general log-gamma integral is expressible as follows

Theorem

For n = 1, 2, . . . we have the infinite sum representation

LGn =
∑

m1,...,mn≥1

ζ∗(m1) ζ
∗(m2) · · · ζ∗(mn)

m1m2 · · ·mn(m1 + · · ·+mn + 1)
, (93)

where ζ∗(1) := γ and ζ∗(n) := ζ(n) for n ≥ 2.
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An exponential generating function for the LGn

In particular, Euler’s evaluation of LG1 leads to

log
√

2π =
∑
m≥1

ζ∗(m)

m(m+ 1)

=
1

2
+ γ +

∑
m≥2

ζ(m)− 1

m(m+ 1)
.

This is a rapidly convergent rational zeta-series.

• It is fascinating—and not understood—how the higher LGn
can be finite superpositions of derivative MTWs, and yet as
infinite sums engage only ζ-function convolutions as above.
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Open Issues

1 Further determine structure of D1

2 Determine structure of D
• This relies on implementing a fuller version of §4’s methods

3 Find more closed forms

4 Eventually, develop a comprehensive package of
computational tools for effective high precision computation
of special functions
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