Seeing Things by Walking on Real Numbers

Jonathan Borwein FRSC FAAS FAA FBAS (Joint work with Francisco Aragón, David Bailey and Peter Borwein)

CARMA

School of Mathematical \& Physical Sciences
The University of Newcastle, Australia

http://carma.newcastle.edu.au/meetings/evims/

April 10, 2004: Destination Maitland: City of the Future

Contents:

Three movies

- Three movies of numbers
(2) Who we are
- The current team
(3) Randomness
- What is Pi ?
- What is 'random'?
- Normality of Pi

4. Random walks

- Some background
(5) Number walks base four
- Number walks base four

6 Seeing walks on numbers

- Pictures of walks on numbers
- The Stoneham numbers
(7) References
- References

Contents

(9) Three movies

- Three movies of numbersWho we are
- The current teamRandomness
- What is Pi?
- What is 'random'?
- Normality of Pi
(4) Random walks
- Some background
(5) Number walks base four
- Number walks base four

6 Seeing walks on numbers

- Pictures of walks on numbers
- The Stoneham numbersReferences
- References

A walk on 200 billion bits of Pi

Behind these three doors are movies of:
A 'random' number
Pi
A 'non-random' number

A walk on 200 billion bits of Pi

Behind these three doors are movies of: A 'random' number $\mathbf{P i}$ A 'non-random' number

A walk on 200 billion bits of Pi

Behind these three doors are movies of: A 'random' number $\mathrm{Pi} \quad \mathrm{A}$ 'non-random' number

Contents

Three movies

- Three movies of numbers
(2) Who we are
- The current team

Randomness

- What is Pi ?
- What is 'random'?
- Normality of Pi
(4) Random walks
- Some backgroundNumber walks base four
- Number walks base four
(5) Seeing walks on numbers
- Pictures of walks on numbers
- The Stoneham numbersReferences
- References

Computer Assisted Research Mathematics and its Applications

MAA 3.14 article on Pi

http://www.carma.newcastle.edu.au/jon/pi-monthly.pdf

My collaborators

Outreach:

images and animations led to high-level research which went viral

This remdering of the tirst 100 biliton digits of pi proves theyre randem - untess you see a pattern

Spor ashape and reinvent maths

Wired UK August 2013

Sporastape and reinvent maths

This rendering of the tirst 100 bilizon digits of pi proves they'to random *unless you see a pattern

\squarehis image is a representation of the first tox billen disits of pil. -I was imiorested to see what IVGet by turempo mumber into a pikturte * says mathomulitien Jon krorecoin frem the Universiry of Nerweastle in Austratia. what collathorated with programmer Fran Aragne, "We wisted to growh, whith ite imetge. that the digits of pe are rofly ranbom," epheniss Aragon. "If they weren't, the pleture weald have a structure or a specifisaliy ropeatins shape. Hike a circle, or same breensil.;

This imaxe is cyivalete to 100000 phavies from
 sigapane The teshneigue deten't anly coufirm estahilshestrharims-is prowhes insights:during the dramies of a suppersedly faridon seewerice.
 a rigularly occurring shape withit tho figure. We woreable to show thet the Stomehumamber is not rancom in base 6." be esplnins. Whe would newor lawe knewn this without visurlais? it. MV cortmp,newerusfle-edr. aH Monnit shtmi

- 100 billion base four digits of $\pi=3.14159 \ldots$ on Gigapan
- Really big pictures are often better than movies

Contents

Three movies- Three movies of numbersWho we are
- The current team
(3) Randomness
- What is Pi ?
- What is 'random'?
- Normality of Pi
(4) Random walks
- Some background
(5) Number walks base four
- Number walks base four
(6) Seeing walks on numbers
- Pictures of walks on numbers
- The Stoneham numbersReferences
- References

We shall explore things like:

How random is Pi?

Remember: π is area of a circle of radius one (and perimeter is 2π).

We shall explore things like:

How random is Pi ?

Remember: π is area of a circle of radius one (and perimeter is 2π). First true calculation of π was due to Archimedes of Syracuse (287-212 BCE). He used a brilliant scheme for doubling inscribed and circumscribed polygons

We shall explore things like:

How random is Pi ?

Remember: π is area of a circle of radius one (and perimeter is 2π). First true calculation of π was due to Archimedes of Syracuse (287-212 BCE). He used a brilliant scheme for doubling inscribed and circumscribed polygons

We shall explore things like:

How random is Pi ?

Remember: π is area of a circle of radius one (and perimeter is 2π). First true calculation of π was due to Archimedes of Syracuse (287-212 BCE). He used a brilliant scheme for doubling inscribed and circumscribed polygons

nate

Where Greece was:

Magna Graecia

Where Greece was:
 Magna Graecia

1. Syracuse
2. Troy
3. Byzantium Constantinople
4. Rhodes (Helios)
5. Hallicarnassus (Mausolus)
6. Ephesus (Artemis)
7. Athens (Zeus)

Where Greece was:
 Magna Graecia

1. Syracuse
2. Troy
3. Byzantium Constantinople
4. Rhodes (Helios)
5. Hallicarnassus (Mausolus)
6. Ephesus (Artemis)
7. Athens (Zeus)

The others of the Seven Wonders of the Ancient World: Lighthouse of Alexandria, Pyramids of Giza, Gardens of Babylon

Contents

Three movies- Three movies of numbers

Who we are

- The current team

(3) Randomness

- What is Pi?
- What is 'random'?
- Normality of PiRandom walks - Some backgroundNumber walks base four - Number walks base fourSeeing walks on numbers
- Pictures of walks on numbers
- The Stoneham numbersReferences
- References

Randomness

- The digits expansions of $\pi, e, \sqrt{2}$ appear to be "random":

$$
\begin{gathered}
\pi=3.141592653589793238462643383279502884197169399375 \ldots \\
e=2.718281828459045235360287471352662497757247093699 \ldots \\
\sqrt{2}=1.414213562373095048801688724209698078569671875376 \ldots
\end{gathered}
$$

Randomness

- The digits expansions of $\pi, e, \sqrt{2}$ appear to be "random":

$$
\begin{gathered}
\pi=3.141592653589793238462643383279502884197169399375 \ldots \\
e=2.718281828459045235360287471352662497757247093699 \ldots \\
\sqrt{2}=1.414213562373095048801688724209698078569671875376 \ldots
\end{gathered}
$$

Randomness

- The digits expansions of $\pi, e, \sqrt{2}$ appear to be "random":

$$
\begin{gathered}
\pi=3.141592653589793238462643383279502884197169399375 \ldots \\
e=2.718281828459045235360287471352662497757247093699 \ldots \\
\sqrt{2}=1.414213562373095048801688724209698078569671875376 \ldots
\end{gathered}
$$

Are they really?

Randomness

- The digits expansions of $\pi, e, \sqrt{2}$ appear to be "random":

$$
\begin{gathered}
\pi=3.141592653589793238462643383279502884197169399375 \ldots \\
e=2.718281828459045235360287471352662497757247093699 \ldots \\
\sqrt{2}=1.414213562373095048801688724209698078569671875376 \ldots
\end{gathered}
$$

Are they really?

- 1949 ENIAC (Electronic Numerical Integrator and Calculator) computed of π to 2,037 decimals (in 70 hours)—proposed by polymath John von Neumann (1903-1957) to shed light on distribution of π (and of e).

Are the digits of π random?

Digit	Ocurrences
0	$99,993,942$
1	$99,997,334$
2	$100,002,410$
3	$99,986,911$
4	$100,011,958$
5	$99,998,885$
6	$100,010,387$
7	$99,996,061$
8	$100,001,839$
9	$100,000,273$
Total	$\mathbf{1 , 0 0 0}, \mathbf{0 0 0}, \mathbf{0 0 0}$

Table : Counts of first billion digits of π. Second half is 'right' for law of large numbers.

Are the digits of π random?

Digit	Ocurrences
0	$99,993,942$
1	$99,997,334$
2	$100,002,410$
3	$99,986,911$
4	$100,011,958$
5	$99,998,885$
6	$100,010,387$
7	$99,996,061$
8	$100,001,839$
9	$100,000,273$
Total	$\mathbf{1 , 0 0 0}, \mathbf{0 0 0}, \mathbf{0 0 0}$

Pi is Still Mysterious. We know π is not algebraic; but do not 'know' (in sense of being able to prove) whether

Table : Counts of first billion digits of π. Second half is 'right' for law of large numbers.

Are the digits of π random?

Digit	Ocurrences
0	$99,993,942$
1	$99,997,334$
2	$100,002,410$
3	$99,986,911$
4	$100,011,958$
5	$99,998,885$
6	$100,010,387$
7	$99,996,061$
8	$100,001,839$
9	$100,000,273$
Total	$\mathbf{1 , 0 0 0}, \mathbf{0 0 0}, \mathbf{0 0 0}$

Pi is Still Mysterious. We know π is not algebraic; but do not 'know' (in sense of being able to prove) whether

- The simple continued fraction for π is unbounded
- Euler found the 292
$-e$ has a fine continued fraction

Table : Counts of first billion digits of π. Second half is 'right' for law of large numbers.

Are the digits of π random?

Digit	Ocurrences
0	$99,993,942$
1	$99,997,334$
2	$100,002,410$
3	$99,986,911$
4	$100,011,958$
5	$99,998,885$
6	$100,010,387$
7	$99,996,061$
8	$100,001,839$
9	$100,000,273$
Total	$\mathbf{1 , 0 0 0}, \mathbf{0 0 0}, \mathbf{0 0 0}$

Pi is Still Mysterious. We know π is not algebraic; but do not 'know' (in sense of being able to prove) whether

- The simple continued fraction for π is unbounded
- Euler found the 292
- e has a fine continued fraction
- There are infinitely many sevens in the decimal expansion of π

Table : Counts of first billion digits of π. Second half is 'right' for law of large numbers.

Are the digits of π random?

Digit	Ocurrences
0	$99,993,942$
1	$99,997,334$
2	$100,002,410$
3	$99,986,911$
4	$100,011,958$
5	$99,998,885$
6	$100,010,387$
7	$99,996,061$
8	$100,001,839$
9	$100,000,273$
Total	$\mathbf{1 , 0 0 0}, \mathbf{0 0 0}, \mathbf{0 0 0}$

Pi is Still Mysterious. We know π is not algebraic; but do not 'know' (in sense of being able to prove) whether

- The simple continued fraction for π is unbounded
- Euler found the 292
- e has a fine continued fraction
- There are infinitely many sevens in the decimal expansion of π
- There are infinitely many ones in the ternary expansion of π

Table : Counts of first billion digits of π. Second half is 'right' for law of large numbers.

Are the digits of π random?

Digit	Ocurrences
0	$99,993,942$
1	$99,997,334$
2	$100,002,410$
3	$99,986,911$
4	$100,011,958$
5	$99,998,885$
6	$100,010,387$
7	$99,996,061$
8	$100,001,839$
9	$100,000,273$
Total	$\mathbf{1 , 0 0 0 , 0 0 0 , 0 0 0}$

Table : Counts of first billion digits of π. Second half is 'right' for law of large numbers.

Pi is Still Mysterious. We know π is not algebraic; but do not 'know' (in sense of being able to prove) whether

- The simple continued fraction for π is unbounded
- Euler found the 292
- e has a fine continued fraction
- There are infinitely many sevens in the decimal expansion of π
- There are infinitely many ones in the ternary expansion of π
- There are equally many zeroes and ones in the binary expansion of π

Are the digits of π random?

Digit	Ocurrences
0	$99,993,942$
1	$99,997,334$
2	$100,002,410$
3	$99,986,911$
4	$100,011,958$
5	$99,998,885$
6	$100,010,387$
7	$99,996,061$
8	$100,001,839$
9	$100,000,273$
Total	$\mathbf{1 , 0 0 0 , 0 0 0 , 0 0 0}$

Table : Counts of first billion digits of π. Second half is 'right' for law of large numbers.

Pi is Still Mysterious. We know π is not algebraic; but do not 'know' (in sense of being able to prove) whether

- The simple continued fraction for π is unbounded
- Euler found the 292
- e has a fine continued fraction
- There are infinitely many sevens in the decimal expansion of π
- There are infinitely many ones in the ternary expansion of π
- There are equally many zeroes and ones in the binary expansion of π
- Or pretty much anything else...

What is "random"?

A hard question

What is "random"?

A hard question

It might be:

- Unpredictable (fair dice or coin-flips)?
- Without structure (noise)?
- Algorithmically random (π is not)?
- Quantum random (radiation)?
- Incompressible ('zip’ does not help)?

What is "random"?

A hard question

TOUR OF ACCOUNTING
OVER HERE
WE HAVE OUR
RANDOM NUMBER
GENERATOR.
Hos
an

It might be:

- Unpredictable (fair dice or coin-flips)?
- Without structure (noise)?

Conjecture (Borel) All irrational algebraic numbers are b-normal

- Algorithmically random (π is not)?
- Quantum random (radiation)?
- Incompressible ('zip’ does not help)?

What is "random"?

A hard question

TOUR OF ACCOUNTING
OVER HERE
WE HAVE OUR
RANDOM NUMBER
GENERATOR.
Hos
an

ARE SURE THAT'S RANDOM?

THAT'S THE PROBLEM WITH RAN DOMNESS YOU CAN NEVER BE SURE.

It might be:

- Unpredictable (fair dice or coin-flips)?
- Without structure (noise)?
- Algorithmically random (π is not)?
- Quantum random (radiation)?
- Incompressible ('zip’ does not help)?

Conjecture (Borel) All irrational algebraic numbers are b-normal
b-normal: All digits occur with the same probability in base b, say $b=2,4,10$, or 16 .

Randomness in Pi?

http://mkweb.bcgsc.ca/pi/art/

Contents

Three movies- Three movies of numbers

Who we are

- The current team
(3) Randomness
- What is Pi?
- What is 'random'?
- Normality of PiRandom walks
- Some backgroundNumber walks base four
- Number walks base fourSeeing walks on numbers
- Pictures of walks on numbers
- The Stoneham numbersReferences
- References

String	Occurrences	String	Occurrences	String	Occurrences
0	$99,993,942$	00	$10,004,524$	000	$1,000,897$
1	$99,997,334$	01	$9,998,250$	001	$1,00,758$
2	$100,002,410$	02	$9,999,222$	002	$1,000,447$
3	$99,986,911$	03	$10,000,290$	003	$1,001,566$
4	$100,011,958$	04	$10,000,613$	004	$1,000,741$
5	$99,998,885$	05	$10,002,048$	005	$1,002,881$
6	$100,010,387$	06	$9,995,451$	006	999,294
7	$99,996,061$	07	$9,993,703$	007	998,919
8	$100,001,839$	08	$10,000,565$	008	999,962
9	$100,000,273$	09	$9,999,276$	009	999,059
		10	$9,997,289$	010	998,884
		11	$9,997,964$	011	$1,001,188$
		\vdots	\vdots	\vdots	\vdots
		99	$10,003,709$	099	999,201
				\vdots	\vdots
				999	$1,000,905$
TOTAL	$1,000,000,000$	TOTAL	$1,000,000,000$	TOTAL	$1,000,000,000$

Table : Counts for the first billion digits of π.

Is π 16-normal

That is, in Hex?
\hookleftarrow Counts of first trillion hex digits

0	62499881108
1	62500212206
2	62499924780
3	62500188844
4	62499807368
5	62500007205
6	62499925426
7	62499878794
8	$\underline{\mathbf{6 2 5 0 0 2} 16752}$
9	62500120671
A	62500266095
B	62499955595
C	62500188610
D	62499613666
E	62499875079
F	62499937801
Total	$\mathbf{1 , 0 0 0 , 0 0 0 , 0 0 0 , 0 0 0}$

Is π 16-normal

That is, in Hex?

\hookleftarrow Counts of first trillion hex digits

0	62499881108
1	62500212206
2	62499924780
3	62500188844
4	62499807368
5	62500007205
6	62499925426
7	62499878794
8	$\underline{\mathbf{6 2 5 0 0 2} 16752}$
9	62500120671
A	62500266095
B	62499955595
C	62500188610
D	62499613666
E	62499875079
F	62499937801
Total	$\mathbf{1 , 0 0 0 , 0 0 0 , 0 0 0 , 0 0 0}$

- 2011 Ten trillion hex digits computed by Yee and Kondo - and seem very normal. (2013: 12.1 trillion)
\hookleftarrow Counts of first trillion hex digits

0	62499881108
1	62500212206
2	62499924780
3	62500188844
4	62499807368
5	62500007205
6	62499925426
7	62499878794
8	$\underline{62500216752}$
9	62500120671
A	62500266095
B	62499955595
C	62500188610
D	62499613666
E	62499875079
F	62499937801
Total	$\mathbf{1 , 0 0 0 , 0 0 0 , 0 0 0 , 0 0 0}$

- 2011 Ten trillion hex digits computed by Yee and Kondo - and seem very normal. (2013: 12.1 trillion)
- 2012 Ed Karrel found 25 hex digits of π starting after the 10^{15} position computed using BBP on GPUs (graphics cards) at NVIDIA (too hard for Blue Gene)
\hookleftarrow Counts of first trillion hex digits
- 2011 Ten trillion hex digits computed by Yee and Kondo - and seem very normal. (2013: 12.1 trillion)
- 2012 Ed Karrel found 25 hex digits of π starting after the 10^{15} position computed using BBP on GPUs (graphics cards) at NVIDIA (too hard for Blue Gene)
- They are 353CB3F7F0C9ACCFA9AA215F2

See www.karrels.org/pi/index.html
שונונונר

OCTOPI

Modern π Calculation Records:

Name	Year	Correct Digits
Miyoshi and Kanada	1981	$2,000,036$
Kanada-Yoshino-Tamura	1982	$16,777,206$
Gosper	1985	$17,526,200$
Bailey	Jan. 1986	$29,360,111$
Kanada and Tamura	Sep. 1986	$33,554,414$
Kanada and Tamura	Oct. 1986	$67,108,839$
Kanada et. al	Jan. 1987	$134,217,700$
Kanada and Tamura	Jan. 1988	$201,326,551$
Chudnovskys	May 1989	$480,000,000$
Kanada and Tamura	Jul. 1989	$536,870,898$
Kanada and Tamura	Nov. 1989	$1,073,741,799$
Chudnovskys	Aug. 1991	$2,260,000,000$
Chudnovskys	May 1994	$4,044,000,000$
Kanada and Takahashi	Oct. 1995	$6,442,450,938$
Kanada and Takahashi	Jul. 1997	$51,539,600,000$
Kanada and Takahashi	Sep. 1999	$206,158,430,000$
Kanada-Ushiro-Kuroda	Dec. 2002	$1,241,100,000,000$
Takahashi	Jan. 2009	$1,649,000,000,000$
Takahashi	April 2009	$2,576,980,377,524$
Bellard	Dec. 2009	$2,699,999,990,000$
Kondo and Yee	Aug. 2010	$\mathbf{5 , 0 0 0 , 0 0 0 , 0 0 0 , 0 0 0}$
Kondo and Yee	Oct. 2011	$\mathbf{1 0 , 0 0 0 , 0 0 0 , 0 0 0 , 0 0 0}$
Kondo and Yee	Dec. 2013	$\mathbf{1 2 , 1 0 0 , 0 0 0 , 0 0 0 , 0 0 0}$

Contents

Three movies- Three movies of numbersWho we are
- The current teamRandomness
- What is Pi ?
- What is 'random'?
- Normality of Pi

4) Random walks

- Some backgroundNumber walks base four
- Number walks base four
(3) Seeing walks on numbers
- Pictures of walks on numbers
- The Stoneham numbersReferences
- References

One 1500-step ramble: a familiar picture

One 1500-step ramble: a familiar picture

- 1D (and 3D) easy. Expectation of RMS distance is easy (\sqrt{n}).

One 1500-step ramble: a familiar picture

- 1D (and 3D) easy. Expectation of RMS distance is easy (\sqrt{n}).
- 1D or 2D lattice: probability one of returning to the origin.

1000 three-step rambles: a less familiar picture?

Art meets science

AAAS \& Bridges conference

Art meets science

AAAS \& Bridges conference

A visualization of six routes that 1000 ants took after leaving their nest in search of food. The jagged blue lines represent the breaking off of random ants in search of seeds.
(Nadia Whitehead 2014-03-25 16:15)

Art meets science

AAAS \& Bridges conference

A visualization of six routes that 1000 ants took after leaving their nest in search of food. The jagged blue lines represent the breaking off of random ants in search of seeds.
(Nadia Whitehead 2014-03-25 16:15)
(JonFest 2011 Logo) Three-step random walks.
The (purple) expected distance travelled is 1.57459 ...
The closed form W_{3} is given below.

$$
W_{3}=\frac{16 \sqrt[3]{4} \pi^{2}}{\Gamma\left(\frac{1}{3}\right)^{6}}+\frac{3 \Gamma\left(\frac{1}{3}\right)^{6}}{8 \sqrt[3]{4} \pi^{4}}
$$

A Little History:

From a vast literature

L: Pearson posed question about a 'rambler' taking unit random steps (Nature, '05).

R: Rayleigh gave large n estimates of density: $p_{n}(x) \sim \frac{2 x}{n} e^{-x^{2} / n}$ (Nature, 1905) with $n=5,8$ shown above.

A Little History:

From a vast literature

L: Pearson posed question about a 'rambler' taking unit random steps (Nature, '05).

R: Rayleigh gave large n estimates of density: $p_{n}(x) \sim \frac{2 x}{n} e^{-x^{2} / n}$ (Nature, 1905) with $n=5,8$ shown above.

John William Strutt (Lord Rayleigh) (1842-1919): discoverer of Argon, explained why sky is blue.

A Little History:

From a vast literature

L: Pearson posed question about a 'rambler' taking unit random steps (Nature, '05).

R: Rayleigh gave large n estimates of density: $p_{n}(x) \sim \frac{2 x}{n} e^{-x^{2} / n}$ (Nature, 1905) with $n=5,8$ shown above.

John William Strutt (Lord Rayleigh) (1842-1919): discoverer of Argon, explained why sky is blue.

Karl Pearson (1857-1936): founded statistics, eugenicist \& socialist, changed name ($C \mapsto K$), declined knighthood.

A Little History:

From a vast literature

L: Pearson posed question about a 'rambler' taking unit random steps (Nature, '05).

R: Rayleigh gave large n estimates of density: $p_{n}(x) \sim \frac{2 x}{n} e^{-x^{2} / n}$ (Nature, 1905) with $n=5,8$ shown above.

John William Strutt (Lord Rayleigh) (1842-1919): discoverer of Argon, explained why sky is blue.
The problem "is the same as that of the composition of n isoperiodic vibrations of unit amplitude and phases distributed at random" he studied in 1880 (diffusion equation, Brownian motion, ...)

Karl Pearson (1857-1936): founded statistics, eugenicist \& socialist, changed name $(C \mapsto K)$, declined knighthood.

A Little History:

From a vast literature

L: Pearson posed question about a 'rambler' taking unit random steps (Nature, '05).

R: Rayleigh gave large n estimates of density: $p_{n}(x) \sim \frac{2 x}{n} e^{-x^{2} / n}$ (Nature, 1905) with $n=5,8$ shown above.

John William Strutt (Lord Rayleigh) (1842-1919): discoverer of Argon, explained why sky is blue.
The problem "is the same as that of the composition of n isoperiodic vibrations of unit amplitude and phases distributed at random" he studied in 1880 (diffusion equation, Brownian motion, ...)

Karl Pearson (1857-1936): founded statistics, eugenicist \& socialist, changed name $(C \mapsto K)$, declined knighthood.

- UNSW: Donovan and Nuyens, WWII cryptography.

From a vast literature

L: Pearson posed question about a 'rambler' taking unit random steps (Nature, '05).

R: Rayleigh gave large n estimates of density: $p_{n}(x) \sim \frac{2 x}{n} e^{-x^{2} / n}$ (Nature, 1905) with $n=5,8$ shown above.

John William Strutt (Lord Rayleigh) (1842-1919): discoverer of Argon, explained why sky is blue.
The problem "is the same as that of the composition of n isoperiodic vibrations of unit amplitude and phases distributed at random" he studied in 1880 (diffusion equation, Brownian motion, ...)

Karl Pearson (1857-1936): founded statistics, eugenicist \& socialist, changed name $(C \mapsto K)$, declined knighthood.

- UNSW: Donovan and Nuyens, WWII cryptography.
- appear in graph theory, quantum chemistry, in quantum physics as hexagonal and diamond lattice integers, etc

Why is the sky blue?

Contents

Three movies- Three movies of numbersWho we are
- The current teamRandomness
- What is Pi ?
- What is 'random'?
- Normality of PiRandom walks
- Some background
(5) Number walks base four
- Number walks base fourSeeing walks on numbers
- Pictures of walks on numbers
- The Stoneham numbersReferences
- References

What is a (base four) random walk ?

Pick a random number in $\{0,1,2,3\}$ and move according to $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$

What is a (base four) random walk ?

Pick a random number in $\{0,1,2,3\}$ and move according to $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$

$$
1=\uparrow
$$

What is a (base four) random walk ?

Pick a random number in $\{0,1,2,3\}$ and move according to $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$

What is a (base four) random walk ?

Pick a random number in $\{0,1,2,3\}$ and move according to $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$

$$
1=\uparrow
$$

What is a (base four) random walk ?

Pick a random number in $\{0,1,2,3\}$ and move according to $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$

What is a (base four) random walk ?

Pick a random number in $\{0,1,2,3\}$ and move according to $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$
$2=\leftarrow$

What is a (base four) random walk ?

Pick a random number in $\{0,1,2,3\}$ and move according to $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$

What is a (base four) random walk ?

Pick a random number in $\{0,1,2,3\}$ and move according to $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$
$2=\leftarrow$

What is a (base four) random walk ?

Pick a random number in $\{0,1,2,3\}$ and move according to $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$

What is a (base four) random walk ?

Pick a random number in $\{0,1,2,3\}$ and move according to $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$

$2=\leftarrow$

What is a (base four) random walk ?

Pick a random number in $\{0,1,2,3\}$ and move according to $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$

What is a (base four) random walk ?

Pick a random number in $\{0,1,2,3\}$ and move according to $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$

$3=\downarrow$

What is a (base four) random walk ?

Pick a random number in $\{0,1,2,3\}$ and move according to $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$

What is a (base four) random walk ?

Pick a random number in $\{0,1,2,3\}$ and move according to $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$

$3=\downarrow$

What is a (base four) random walk ?

Pick a random number in $\{0,1,2,3\}$ and move according to $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$

What is a (base four) random walk ?

Pick a random number in $\{0,1,2,3\}$ and move according to $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$

$$
0=\rightarrow
$$

What is a (base four) random walk ?

Pick a random number in $\{0,1,2,3\}$ and move according to $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$

11222330

What is a random walk (base 4)?

Pick a random number in $\{0,1,2,3\}$ and move $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$

Figure : A million step base-4 pseudorandom walk. We use the spectrum to show when we visited each point (ROYGBIV and R).

Random walks look similarish

Figure : Eight different base-4 (pseudo)random ${ }^{1}$ walks of one million steps.

[^0]
Base-b random walks:

Figure : Directions for base-3 and base-7 random walks.

Contents

Three movies- Three movies of numbersWho we are
- The current teamRandomness
- What is Pi ?
- What is 'random'?
- Normality of PiRandom walks
- Some backgroundNumber walks base four
- Number walks base four

6 Seeing walks on numbers

- Pictures of walks on numbers
- The Stoneham numbersReferences
- References

Two rational numbers

The base-4 digit expansion of $Q 1$ and $Q 2$:

Q1 $=$
0.221221012232121200122101223121001222100011232123121000122210001222 10001222100012221000012221000122201103010122010012010311033333333333 33333333333333330111111111111111111111111111100100000000300300320032 00320030223000322203000322230003022220300032223000322230003222300032 22320000232223000322230032221330023321233023213232112112121222323233 33303000001000323003230032203032030110333011103301103101111011332333 3232322321221211211121122322222122...

Q2 $=$
0.221221012232121200122101223121001222100011232123121000122210001222 10001222100012221000012221000122201103010122010012010311033333333333 33333333333333330111111111111111111111111111100100000000300300320032 00320030223000322203000322230003022220300032223000322230003222300032 22320000232223000322230032221330023321233023213232112112121222323233 33303000001000323003230032203032030110333011103301103101111011000000 000000 ...

Two rational numbers

Figure : Self-referent walks on the rational numbers $Q 1$ (top) and $Q 2$ (bottom).

Two more rationals

The following relatively small rational numbers [G. Marsaglia, 2010]

$$
Q 3=\frac{3624360069}{7000000001} \text { and } Q 4=\frac{123456789012}{1000000000061},
$$

have base-10 periods with huge length of 1,750,000,000 digits and $1,000,000,000,060$ digits, respectively.

Two more rationals

The following relatively small rational numbers [G. Marsaglia, 2010]

$$
Q 3=\frac{3624360069}{7000000001} \text { and } Q 4=\frac{123456789012}{1000000000061},
$$

have base-10 periods with huge length of 1,750,000,000 digits and $\mathbf{1 , 0 0 0 , 0 0 0 , 0 0 0 , 0 6 0}$ digits, respectively.

Figure : Walks on the first million base-10 digits of the rationals $Q 3$ and $Q 4$.

Walks on the digits of numbers

Figure : A walk on the first 10 million base- 4 digits of π.

Walks on the digits of numbers

Coloured by hits (more pink is more hits)

Figure : 100 million base- 4 digits of π coloured by number of returns to points.

Contents

Three movies- Three movies of numbersWho we are
- The current teamRandomness
- What is Pi ?
- What is 'random'?
- Normality of Pi
(4) Random walks
- Some background
(5) Number walks base four
- Number walks base four

6 Seeing walks on numbers

- Pictures of walks on numbers
- The Stoneham numbersReferences
- References

The Stoneham numbers

$$
\alpha_{b, c}=\sum_{n=1}^{\infty} \frac{1}{c^{n} b^{c^{n}}}
$$

1973 Richard Stoneham proved some of the following (nearly 'natural') constants are b-normal for relatively prime integers b, c :

$$
\alpha_{b, c}:=\frac{1}{c b^{c}}+\frac{1}{c^{2} b^{c^{2}}}+\frac{1}{c^{3} b^{c^{3}}}+\ldots
$$

Such super-geometric sums are Stoneham constants. To 10 places

$$
\alpha_{2,3}=\frac{1}{24}+\frac{1}{3608}+\frac{1}{3623878656}+\ldots
$$

The Stoneham numbers

$$
\alpha_{b, c}=\sum_{n=1}^{\infty} \frac{1}{c^{n} b^{n}}
$$

1973 Richard Stoneham proved some of the following (nearly 'natural') constants are b-normal for relatively prime integers b, c :

$$
\alpha_{b, c}:=\frac{1}{c b^{c}}+\frac{1}{c^{2} b^{c^{2}}}+\frac{1}{c^{3} b^{c^{3}}}+\ldots
$$

Such super-geometric sums are Stoneham constants. To 10 places

$$
\alpha_{2,3}=\frac{1}{24}+\frac{1}{3608}+\frac{1}{3623878656}+\ldots
$$

Theorem (Normality of Stoneham constants, Bailey-Crandall '02)

For every coprime pair of integers $b \geq 2$ and $c \geq 2$, the constant $\alpha_{b, c}$ is b-normal.

The Stoneham numbers

1973 Richard Stoneham proved some of the following (nearly 'natural') constants are b-normal for relatively prime integers b, c :

$$
\alpha_{b, c}:=\frac{1}{c b^{c}}+\frac{1}{c^{2} b^{c^{2}}}+\frac{1}{c^{3} b^{c^{3}}}+\ldots
$$

Such super-geometric sums are Stoneham constants. To 10 places

$$
\alpha_{2,3}=\frac{1}{24}+\frac{1}{3608}+\frac{1}{3623878656}+\ldots
$$

Theorem (Normality of Stoneham constants, Bailey-Crandall '02)

For every coprime pair of integers $b \geq 2$ and $c \geq 2$, the constant $\alpha_{b, c}$ is b-normal.

Theorem (Nonnormality of Stoneham constants, Bailey-Borwein '12)

Given coprime $b \geq 2$ and $c \geq 2$, such that $c<b^{c-1}$, the constant $\alpha_{b, c}$ is $b c$-nonnormal.

The Stoneham numbers

1973 Richard Stoneham proved some of the following (nearly 'natural') constants are b-normal for relatively prime integers b, c :

$$
\alpha_{b, c}:=\frac{1}{c b^{c}}+\frac{1}{c^{2} b^{c^{2}}}+\frac{1}{c^{3} b^{c^{3}}}+\ldots
$$

Such super-geometric sums are Stoneham constants. To 10 places

$$
\alpha_{2,3}=\frac{1}{24}+\frac{1}{3608}+\frac{1}{3623878656}+\ldots
$$

Theorem (Normality of Stoneham constants, Bailey-Crandall '02)

For every coprime pair of integers $b \geq 2$ and $c \geq 2$, the constant $\alpha_{b, c}$ is b-normal.

Theorem (Nonnormality of Stoneham constants, Bailey-Borwein '12)

Given coprime $b \geq 2$ and $c \geq 2$, such that $c<b^{c-1}$, the constant $\alpha_{b, c}$ is $b c$-nonnormal.

- Since $3<2^{3-1}=4, \alpha_{2,3}$ is 2-normal and 6-nonnormal!

The Stoneham numbers

$$
\alpha_{b, c}=\sum_{n=1}^{\infty} \frac{1}{c^{n} b^{c^{1}}}
$$

Figure : $\alpha_{2,3}$ is 2-normal (top) but 6-nonnormal (bottom). Is seeing believing?

The Stoneham numbers

$$
\alpha_{b, c}=\sum_{n=1}^{\infty} \frac{1}{c^{n} b^{n}}
$$

Figure : Is $\alpha_{2,3} 3$-normal or not?

Contents

Three movies- Three movies of numbers

Who we are

- The current teamRandomness
- What is Pi?
- What is 'random'?
- Normality of Pi
(4) Random walks
- Some background
(5) Number walks base four
- Number walks base four

6. Seeing walks on numbers

- Pictures of walks on numbers
- The Stoneham numbers
(7) References
- References

Main References

```
http://carma.newcastle.edu.au/walks/
```

∇
M. Barnsley: Fractals Everywhere, Academic Press, Inc., Boston, MA, 1988.
宣 F.J. Aragón Artacho, D.H. Bailey, J.M. Borwein, P.B. Borwein: Walking on real numbers, The Mathematical Intelligencer 35 (2013), no. 1, 42-60.
囯 J.M. Borwein, Talk on the Life of Pi at http: //www.carma.newcastle.edu.au/jon/piday-14.pdf

[^0]: ${ }^{1}$ Python uses the Mersenne Twister as the core generator. It has a period of $2^{19937}-1 \approx 10^{6002}$.

