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Abstract

A convex set C ⊆ X∗∗ × X∗ admits the variant Banach-Dieudonné property

(VBDP) if the weak∗-strong closure C
w∗×‖·‖

is the smallest set containing C that
is closed to all limits of its bounded and weak∗×‖ · ‖ convergent nets. We show in
particular, that all convex sets in X∗∗×X∗ admit the VBDP when E∗ := X∗×X∗∗

is weakly-compactly generated (WCG) and hence if E is either a dual separable
or a reflexive Banach space.

This allows us to answer some outstanding problems regarding the embedding
of various representative functions, including what we call the Penot function (but
which seems first to have been clearly identified by Svaiter) , for nonreflexive spaces
[15, 7]. In particular, we show that the conjugate of the Fitzpatrick representative

function F̂T

∗
: X∗ × X∗∗ → R and the Penot representative function P̂T

∗
:

X∗ × X∗∗ → R are themselves representative functions when T ⊆ X × X∗ is
maximal monotone and E is as above. It follows that in such spaces all maximal
monotone operators are well-behaved and the classical sum rule holds.

Notice: We no longer trust Theorem 5 and so the results herein should be
taken as conjectured not proven.

1 Introduction

Our basic notation is consistent with [16] and [18]. Given a Banach space Z with dual
Z∗, denote the closed ball of radius r in Z by BZ (r) = {z | ‖z‖ ≤ r} and the closed dual
ball by BZ∗ (r) = {z∗ | ‖z∗‖∗ ≤ r}. When it is clear in context we will omit reference to
the space and write simply B(r).
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We may view Z× Z∗ paired with Z∗ ×Z using the coupling 〈(z, z∗), (x∗, x)〉 = 〈z, x∗〉+
〈x, z∗〉 and the norm ‖(z, z∗)‖2 = ‖z‖2 + ‖z∗‖2. At times we will assume Z × Z∗ is
endowed with the product topology s × bw∗ (Z∗, Z) formed from the norm or strong
topology on Z and the bounded-weak∗ topology on Z∗ (see [13] page 150–154)—we also
write ‖ · ‖ × bw∗ as appropriate. We will pair this space with Z∗ × Z endowed with
the product topology bw∗ (Z∗, Z) × s. This is a valid pairing since when Z is Banach
the bw∗- continuous linear functionals on Z∗ are canonically isomorphic to Z. When
Z = X∗ we obtain the pairing of s × bw∗ (X∗, X∗∗) with bw∗ × s(X∗∗, X∗), which is
of central importance in the study of maximal monotone operators using representative
functions.

When we pair the space s × bw∗ (Z, Z∗) with bw∗ × s (Z∗, Z) the associated convex
conjugation operation of a proper convex function f ∈ Γs×bw∗ (Z, Z∗) is denoted by f ∗ ∈
Γbw∗×s (Z∗, Z). When we associate X ×X∗ with X∗ ×X∗∗ using the weak topology on
X×X∗ and the weak∗ topology on X∗×X∗∗ we denote the conjugate of f ∈ Γw (X, X∗)

by f̂ ∗ :=
(
f̂
)∗

∈ Γw∗ (X∗, X∗∗). For a subset V ⊆ X∗ × X, denote by JX∗×X (V ) the

imbedding of V into X∗ × X∗∗. We also use the shorthand JX (X) = X̂ along with
JX (x) = x̂ for the embedding into X∗∗.

Definition 1 We say a convex subset C ⊆ X∗∗ × X∗ admits the variant Banach-
Dieudonné property (VBDP) when its bw∗×‖·‖ closure can be characterised as the small-
est convex set Q ⊇ C that contains all limits (x∗∗, x∗) of bounded nets

{(
x∗∗

β , x∗
β

)}
β∈Λ

⊆

Q with x∗∗
β converging weak∗ to x∗∗ and x∗

β converging strongly to x∗.

For epigraphs of functions f : X × X∗ → R we must extend these notions to a subset
C ⊆ X∗ × X × R and consider the strong topology imposed on X × R but the bw∗-
topology only on X∗. With this slight abuse of notation all properties shown for C ⊆
X∗ × X extend to this case.

We recall that a multifunction T mapping X to X∗ is monotone if 〈y∗ − x∗, y − x〉 ≥ 0
for all y∗ ∈ T (y) and x∗ ∈ T (x), and that T is maximal monotone if its graph is maximal
amongst monotone graphs ordered by set inclusion. We call a s × bw∗-closed convex
function HT on X ×X∗ a representative function of a monotone mapping T on X when
HT (y, y∗) ≥ 〈y, y∗〉 for all (y, y∗) ∈ X × X∗ while HT (y, y∗) = 〈y, y∗〉 when y∗ ∈ T (y).
If T is not specified we say a s× bw∗ closed, proper convex function f is representative
when f (y, y∗) ≥ 〈y, y∗〉 for all (y, y∗) ∈ X × X∗.

For a function f : X × X∗ → R define the natural embedding of f via epi f̂ := êpi f .
Thence epi f̂ ⊆ X∗∗ × X∗ × R and the lower level set lev αf̂ ⊆ X∗∗ × X∗.

We shall show that, for example, when E∗ := X∗×X∗∗ is weakly-compactly generated—
there is a weak-compact convex set whose span is norm-dense in the space—all convex
sets admit the VBDP. In this setting we are then able to deduce that both epi f̂ and

epi (̂f ∗) also possess the VBDP. In these cases for T̂ = JX×X∗ (T ) (the embedding of T

into X∗∗ × X∗) the function

F
T̂

(x∗∗, x∗) = sup
(ŷ,y∗)∈T̂

{〈ŷ, x∗〉 + 〈x∗∗, y∗〉 − 〈ŷ, y∗〉}
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is representative and hence we are able to deduce that T is of type (NI) [17]. Indeed T

is type (NI) exactly when
F

T̂
(x∗∗, x∗) ≥ 〈x∗∗, x∗〉

for all x∗∗ ∈ X∗∗, x∗ ∈ X∗, and we take this as our definition. In [21] F
T̂

is then called
strongly representative—see [3, 6] for further discussion this concept.

We shall call X a Banach space of type (NI) if every maximal monotone operator on X

is of type (NI). To summarize, we shall show that there are many non-reflexive Banach
spaces of type (NI).

2 The Variant Banach-Dieudonné Property

Recall that the Banach-Dieudonné (or Krein-Šmulian) theorem shows that for a Banach
space Z a convex subset D ⊆ Z∗ is bw∗-closed iff D is w∗-closed iff for all M > 0 we have
D ∩BZ∗ (M) is w∗ -closed for every closed dual ball [9]. We shall investigate conditions
on X or C guaranteeing equivalence of the following for a convex set C ⊆ X∗∗ × X∗:

A1. C is bw∗ × s-closed; A2. C is w∗ × s-closed;

A3. C∩B(X∗×X)∗ (M) is w∗×s-closed, for all closed dual balls B(X∗×X)∗ (M) in X∗∗×X∗

and all M > 0.

It is clear that A1. is equivalent to A2. in any Banach space, since when X is complete
we have two locally convex topologies for the same dual pair [13, 9]). Clearly A2. implies
A3., leaving the final and harder implication to be addressed. It seems plausible that
A1., A2. and A3. are equivalent in many Banach spaces. This is clarified by the next
result.

Proposition 2 Given a Banach space X, A1., A2., and A3, coincide if and only if
X admits the VBDP. That is, if and only if the bw∗ × s closure of a convex set C

is the smallest convex set Q ⊇ C containing all limits (x∗∗, x∗) of norm bounded nets{
(x∗∗

β , x∗
β

)
}β∈Λ ∈ Q with x∗

β converging strongly to x∗ and x∗∗
β converging weak∗ to x∗∗.

Proof. Assume X possess the VBDP and that C∩B (M) is w∗×s -closed for all closed
dual balls B(M). We need to show that C is bw∗ × s closed. By the VBDP property
this closure is characterized as the smallest convex set containing C that is closed with
respect to bounded w∗ × s convergent nets. But indeed by hypothesis C is the smallest
such set.

Conversely assume A3. is equivalent to A1. Now the set C
bw∗×s

is clearly convex,
contains C and is closed with respect to bounded weak∗× s convergent nets. Denote by

Q the smallest such set. Then we clearly have C
bw∗×s

⊇ Q ⊇ C. Now Q satisfies A3.
This follows from the definition of Q and the fact that the dual ball is bw∗ closed. As
A3 is equivalent to A1. we have Q bw∗×s - closed. As Q also contains C it follows that

Q ⊇ C
bw∗×s

as the later set is the smallest such convex set. Consequently Q = C
bw∗×s

and X possess the VBDP.
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Remark 3 Norm boundedness of xβ is actually superfluous, since xβ → x strongly.

We shall also have call to use the following deep result, well described in [20].

Theorem 4 (Spaces not containing ℓ1) For a separable Banach space X, the fol-
lowing coincide:

1. X does not contain any isomorphic copy if ℓ1.

2. Every bounded subset of X∗∗ is w∗ -sequentially dense in its w∗-closure.

In the non-separable case, 2. implies 1. but not conversely [20, Ch. 4]. Combining
Theorem 4 with the classical Banach-Dieudonné theorem [9, p.125] allows us to handle
unbounded convex sets.

Theorem 5 Let X be a separable Banach space without any copy of ℓ1 and let C ⊂ X∗∗

be convex. Then

C
w∗

= {x∗∗ | ∃ a sequence y∗∗
n ⇀∗ x∗∗, y∗∗

n ∈ C} . (1)

Proof. Recall that in Banach space w∗-convergent sequences are norm bounded and

denote the right hand side of (1) by C
w∗

σ . Throughout B(K) = BX∗∗(K).

Being bounded C ∩B (K) is w∗-sequentially dense in C ∩ B (K)
w∗

. Thus for all K > 0

C ∩ B (K) ⊆ C ∩ B (K)
w∗

= {x∗∗ | ∃ a sequence y∗∗
n ( ∈ C ∩ B (K) ) ⇀∗ x∗∗}

⊆ C
w∗

σ ∩ B (K) ⊆ C
w∗

∩ B (K) .

We now show that
C

w∗

σ =
⋃

K>0

C ∩ B (K)
w∗

. (2)

Clearly

C
w∗

σ =
⋃

K>0

[
C

w∗

σ ∩ B (K)
]
⊇

⋃

K>0

C ∩ B (K)
w∗

and if x∗∗ ∈ C
w∗

σ there is y∗∗
m (∈ C)⇀∗ x∗∗. By norm boundedness there exists K > 0

such that {y∗∗
m } ⊆ C ∩ B (K) implying x∗∗ ∈ C ∩ B (K)

w∗

giving (2).

Next note that (2) implies

C
w∗

σ ∩ B(M) =
⋃

K>0

[[
C ∩ B (K)

w∗
]
∩ B(M)

]
⊆ B(M).

To show closure, fix M > 0 and a net
{
x∗∗

β

}
β∈Λ

⊆ C
w∗

σ∩B(M) with x∗∗
β ⇀∗ x∗∗ ∈ B (K).

Then
x∗∗

β ∈ C ∩ B (Kβ)
w∗

∩ B(M) for each β ∈ Λ. (3)
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Property 2 of Theorem 4 shows
{
x∗∗

β | β ∈ Λ
}

is weak∗-sequentially dense in its weak∗

closure. Take a sequence x∗∗
βn

⇀∗ x∗∗ with x∗∗
βn

∈ C ∩ B (Kβn
)
w∗

. We now use property 2
of Theorem 4 again to deduce that C ∩B (Kβn

) is weak∗-sequentially dense in its weak∗

closure. Thus there exists a sequence x∗∗
nk

⇀∗ x∗∗
βn

as k → ∞. Use a diagonalisation

to obtain a sequence x∗∗
nkn

⇀∗ x∗∗ with x∗∗
n := x∗∗

nkn
∈ C ∩ B

(
Kβnkn

)
for all n. This

diagonalisation can be achieved because the dual space is weak-star separable. As weak∗-
sequentially convergent sequences are bounded there exists a K > 0 independent of n

such that
x∗∗

n ∈ C ∩ B (K)

for all n. Consequently x∗∗ ∈ C ∩ B (K)
w∗

and also by (3) ‖x∗∗‖ ≤ M . Thus, using (2)
again

x∗∗ ∈ C
w∗

σ ∩ B (M) .

Hence C
w∗

σ ∩ B (M) is weak∗ closed for all M > 0. Clearly C
w∗

σ is convex and so by

the Krein-Šmulian theorem that C
w∗

σ is w∗-closed. As C ∩B (K) ⊆ C
w∗

σ ∩B (K) for all

K > 0 we have C
w∗

⊆ C
w∗

σ with equality ensuing.

In particular we obtain a refined description of the w∗-closure of a convex set in X∗∗×X∗.

Corollary 6 Let E = X × X∗ be a separable Banach space containing no copy of ℓ1

(as holds if X∗∗ is separable). Let C be a convex subset of X∗∗ × X∗. Then

C
w∗×‖·‖

=
{
(x∗∗, x∗) | ∃(y∗∗

β , y∗
β) ∈ C bounded , y∗∗

β ⇀∗ x∗∗, y∗
β →‖·‖ x∗

}
.

Consequently X admits the VBDP.

Proof. Fix (x∗∗, x∗) ∈ C
w∗×‖·‖

. We apply Theorem 5 to E := X×X∗ and C ⊂ X∗∗×X∗

and deduce that there is a sequence in C converging w∗ to (x∗∗, x∗) in E∗∗ = X∗∗×X∗∗∗.

Since the second coordinate lies in X∗ we deduce that (x∗∗, x∗) is the limit of a w∗ × w
-convergent sequence (zn, z∗n) ∈ C. Since the convex hull of this bounded sequence has
the same w∗ × ‖ · ‖-closure, we are done.

The VBDP follows from an application of Proposition 2.

More generally we have only used that the second dual ball for E := X × X∗ is w∗-
angelic (every bounded set in E∗∗ is sequentially dense in its w∗-closure). This implies
E contains no copy of ℓ1 but not conversely.

Corollary 7 Let X × X∗ be a Banach space with a w∗ -angelic second dual ball. Then
every convex subset C ⊂ X∗∗ × X∗ has the VBDP and so X admits the VBDP.

This now captures the product of any reflexive space (weakly compact sets are angelic,
see [9]) and a space with separable second dual (such as the James space [9]). Indeed,
subspaces of WCG spaces are w∗-angelic. Thus, it suffices that E∗ = X∗ × X∗∗ be a
subspace of a WCG space

Corollary 8 Let E∗ = X∗×X∗∗ be a WCG Banach space. Then X admits the VBDP.
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Furthermore we may replace WCG by weakly countably determined (WCD). Every sub-
space of a WCG space is WCD, see [8, p. 120]. We have succeeded in identifying a
sizeable class of Banach spaces with the VBDP that strictly includes reflexive spaces.

3 Representative Convex Functions

Define the transpose operator †: (x∗, x) → (x, x∗) and cT (·, ·) := δT (·, ·) + 〈·, ·〉, and
denote the indicator function of the graph of T by δT (we use T for both the graph and
the multifunction when no confusion is likely), FT := (c∗T )† and PT := c∗∗T , where the
conjugates are taken between the paired spaces s × bw∗ (X, X∗) with bw∗ × s (X∗, X).
Recall that when we associate X×X∗ with X∗×X∗∗ using the weak topology on X×X∗

and the weak∗ topology on X∗ × X∗∗ we denote the conjugate of f ∈ Γw (X, X∗) to be

f̂ ∗ :=
(
f̂
)∗

∈ Γw∗ (X∗, X∗∗) given by

(
f̂
)∗

(x∗, x∗∗) := sup
(y,y∗)

{〈x∗, y〉 + 〈x∗∗, y∗〉 − f (y, y∗)} ,

where as always Γτ denotes the closed proper convex functions in the appropriate topol-
ogy. The rationale for this notation is discussed later in this section.

Fitzpatrick [10] showed that the convex functions defined by

epiPT =
[(

X∗ × X̂ ×R
)
∩

(
epi F̂T

∗
)]†

and epiFT =
[(

X∗ × X̂ ×R
)
∩ (epi ĉT

∗)
]†

induce representative functions when T is maximal monotone, and in [4] it is shown
that PT is representative when T is merely monotone, as pointed out by Penot.

The Fitzpatrick function on X∗∗ × X∗ that captures the (NI) property is just

F
T̂

(x∗∗, x∗) := (ĉT
∗)

†
(x∗∗, x∗) ≡

(
c
T̂

)∗
(x∗∗, x∗) = sup

(ŷ,y∗)∈T̂

{〈ŷ, x∗〉 + 〈x∗∗, y∗〉 − 〈ŷ, y∗〉} .

Denote by f the bw∗ × s-closed convex function whose epigraph is epi f
bw∗×s

. When
epi f possess the VBDP then this closure corresponds to a set that is closed to limits
of bounded and w∗ × s-convergent nets. If we take

(
x∗∗

β , x∗
β

)
β∈Λ

→w∗×s (x∗∗, x∗) with∥∥x∗∗
β

∥∥ ≤ M , for some M > 0 then we note the following important continuity property:

∣∣〈x∗∗
β , x∗

β〉 − 〈x∗∗, x∗〉
∣∣ ≤

∣∣〈x∗∗
β − x∗∗, x∗〉

∣∣ + M
∥∥x∗

β − x∗
∥∥ → 0. (4)

We denote by T the monotone closure of the graph in X∗∗ × X∗ as studied by Gossez
[4, 17]. That is,

T := {(x∗∗, x∗) | 〈x∗∗ − y, x∗ − y∗〉 ≥ 0, ∀ (y, y∗) ∈ T}, (5)

and the closure of the graph of with respect to τ -convergence by T
τ
. Likewise co T

denotes the convex hull of the graph of T . It is known that all maximal monotone
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operators with convex graph are affine [6]. A monotone operator is said to be of dense

type (D) if T = T
b(w∗×s)

where b(w∗ × s) requires convergence of all w∗ × s convergent
and bounded nets. Note that while this is not a topology, for any monotone operator

T ⊇ T
bw∗×s

while any monotone operator of dense type is (NI).

Various relationships that follow easily from the definitions of these objects are collected
in the next proposition.

Proposition 9 Let X be an arbitrary Banach space and let T be a monotone set in
X × X∗.

1. We have

PT̂ (x∗∗, x∗) := F∗
T̂

(x∗, x∗∗) ≥ F̂T

∗
(x∗, x∗∗) for all (x∗∗, x∗) . (6)

2. We have P
T̂

= pT
bw∗×s where pT := co (〈·, ·〉 + δT ) and we use the bounded-weak∗

closure in X∗∗ and strong closure in X∗. In particular

T
b(w∗×s)

⊆
{
(y∗∗, y∗) | PT̂ (y∗∗, y∗) = 〈y∗∗, y∗〉

}
:= MP

T̂
⊆ domPT̂ ⊆ co T

bw∗×s
.

(7)

3. We have

F̂T

∗
(x∗, x∗∗) ≥ F

T̂
(x∗∗, x∗) for all (x∗∗, x∗) (8)

and F̂T

∗
(x∗, x∗∗) ≥ P̂T

∗
(x∗, x∗∗) ≥ F∗∗

T̂
(x∗∗, x∗) =

(
F

T̂

)
(x∗∗, x∗) for all (x∗∗, x∗) .

(9)

Thus F̂T

∗
(x∗, x̂) ≥ 〈x̂, x∗〉 for all (x, x∗) ∈ X × X∗, whenever T is maximal and

F̂T

∗
(x∗, x∗∗) ≥ 〈x∗∗, x∗〉

for all (x∗∗, x∗) ∈ X∗∗ × X∗ exactly when T is (NI).

4. Let T be a monotone operator on X. Then

PT̂ (x∗∗, x∗) ≥ F̂T

∗
(x∗, x∗∗) ≥ P̂T

∗
(x∗, x∗∗) ≥ P∗

T̂
(x∗, x∗∗) = FT̂ (x∗∗, x∗) . (10)

Proof. Identity (6) The equality is well known [15, 7]. The inequality is definitional.

(8) We have

FT̂ (x∗∗, x∗) := c∗JX×X∗(T ) (x∗, x∗∗) = sup
(ŷ,y∗)∈JX×X∗(T )

{〈ŷ, x∗〉 + 〈x∗∗, y∗〉 − 〈ŷ, y∗〉}

and so
PT̂ (x∗∗, x∗) := F∗

T̂
(x∗, x∗∗) = c∗∗JX×X∗(T ) (x∗∗, x∗) .
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By definition, for all (y, y∗) ∈ T we have

F̂T

∗
(x∗, x∗∗) ≥ 〈x∗∗, y∗〉 + 〈x∗, y〉 − 〈y, y∗〉

and so

F̂T

∗
(x∗, x∗∗) + 〈y, y∗〉 ≥ 〈x∗∗, y∗〉 + 〈x∗, y〉.

On taking
∑

i λi (yi, y
∗
i , 1) = (y, y∗, 1), with (yi, y

∗
i ) ∈ T then we find

F̂T

∗
(x∗, x∗∗) + p

T̂
(ŷ, y∗) ≥ 〈x∗∗, y∗〉 + 〈x∗, ŷ〉.

Taking the bw∗ × s closure within X∗∗ ×X∗ we obtain for all (y∗∗, y∗) ∈ X∗∗ ×X∗ that

F̂T

∗
(x∗, x∗∗) + PT̂ (y∗∗, y∗) ≥ 〈x∗∗, y∗〉 + 〈x∗, y∗∗〉. (11)

Consequently

F̂T

∗
(x∗, x∗∗) ≥ P∗

T̂
(x∗, x∗∗) = FT̂ (x∗∗, x∗)

establishing the inequality in (8). So when T is maximal we have F̂T

∗
(x∗, x̂) ≥ F

T̂
(x̂, x∗) =

FT (x̂, x∗) ≥ 〈x̂, x∗〉 for all (x, x∗). Directly from the definition we also have T of type
(NI) exactly when FT̂ is a representative function on X∗∗ × X∗.

(9) We note that the first inequality follows from PT ≥ FT while

PT (x, x∗) = F̂T

∗
(x∗, x̂) =

(
F̂T

)∗

(x∗, x̂)† or equivalently PT =
(̂
F̂T

)∗
†

.

As F̂T ≥ FT̂ it follows that

P̂T

∗
≥ F∗∗

T̂
.

The function PT̂ is the smallest bw∗×s closed convex function that interpolates 〈·, ·〉 on

JX×X∗ (T ), that is, pT
bw∗×s. Consequently dom pT

bw∗×s ⊆ coT
bw∗×s

. Clearly T̂ ⊆ MP
T̂

(as P
T̂

(ŷ, y∗) is a representative function for T on X × X∗).

(7) The second inclusion is obvious and the third is left to the reader. For the first

inclusion take (x∗∗, x∗) ∈ T
b(w∗×s)

and a norm bounded net
(
x∗∗

β , x∗
β

)
β∈Λ

∈ T with(
x̂β , x∗

β

)
→β (x∗∗, x∗). Thus for all β ∈ Λ we have PT̂

(
x̂β, x∗

β

)
= PT̂

(
xβ, x∗

β

)
= 〈xβ, x∗

β〉
and by the w∗ × s lower semi–continuity of the function P

T̂
and inequalities (6) and (8)

we obtain

〈x∗∗, x∗〉 ≥ PT̂ (x∗∗, x∗) = F∗
T̂

(x∗, x∗∗) ≥ F̂T

∗
(x∗, x∗∗) ≥ FT̂ (x∗∗, x∗) .

When (x∗∗, x∗) ∈ T
b(w∗×s)

as above we have existence of
(
x̂β , x∗

β

)
∈ T with 〈x̂β−x∗∗, x∗

β−
x∗〉 →β 0 and so

F
T̂

(x∗∗, x∗) = 〈x∗∗, x∗〉 − inf
(ŷ,y∗)∈T̂

〈ŷ − x∗∗, y∗ − x∗〉

≥ 〈x∗∗, x∗〉 − lim
β
〈x̂β − x∗∗, x∗

β − x∗〉 ≥ 〈x∗∗, x∗〉,

as in (4). Thus (7) holds.

(10) This final set of inequalities is a consequence of the others.
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Remark 10 We observe that all inequalities in (10) may be strict and that when T

is (NI) all the functions therein are representative on X∗∗ × X∗. Moreover, for an
arbitrary maximal monotone operator P

T̂
is representative on X∗∗×X∗; the proof relies

on the existence of a “self-conjugate” representative function minorizing P
T̂

and is a
more delicate version of the reflexive case given in [15].

The next corollary follows from (7) and (10).

Corollary 11 Let T be a monotone operator on a Banach space X. Then

T =
{
(y∗∗, y∗) | F

T̂
(y∗∗, y∗) ≤ 〈y∗∗, y∗〉

}
, (12)

and if T is (NI) then

T =
{
(y∗∗, y∗) | F

T̂
(y∗∗, y∗) = 〈y∗∗, y∗〉

}
. (13)

By contrast, if T is affine

T
b(w∗×s)

⊆
{
(y∗∗, y∗) | P

T̂
(y∗∗, y∗) = 〈y∗∗, y∗〉

}
⊆ T

bw∗×s
(14)

Below we clarify the slight abuse of notation flagged in the introduction. We denote

lev αf̂ :=
{

(x̂, x∗) | f̂ (x̂, x∗) ≤ α
}

.

We give the next result in some detail because it is neither purely topological nor purely
sequential.

Lemma 12 If lev αf̂ has the VBDP for all α ∈ R, then epi f̂ has the VBDP.

Proof. Let C ⊇ epi f̂ be the smallest convex set that is closed with respect to norm
bounded w∗ × s-convergent nets. It is clear that

epi f̂
bw∗×s

⊇ C ⊇ epi f̂

and epi f̂
bw∗×s

is the epigraph of the proper bw∗ × s-closed convex function f̂ . Clearly
C can be viewed as an epigraph, epi g, of a convex function g ≤ f̂ with

lev αg = {(x∗∗, x∗) | (x∗∗, x∗, γ) ∈ C and γ ≤ α} .

Take a norm bounded net
(
x∗∗

β , x∗
β

)
β∈Λ

∈ lev αg with
(
x∗∗

β , x∗
β

)
→w∗×s (x∗∗, x∗) . Then

for each β ∈ Λ there exists
(
x∗∗

β , x∗
β , γβ

)
∈ C. Now γβ ≤ α and if we suppose γβ ↓ −∞

we find that f̂ (x∗∗, x∗) ≤ g (x∗∗, x∗) = −∞ and f̂ is not proper, a contradiction. Thus
{γβ}β∈Λ is bounded and hence there exists a subnet with

(
x∗∗

βδ
, x∗

βδ
, γβδ

)
∈ C and γβδ

→
γ ≤ α or (x∗∗, x∗) ∈ lev αg. Consequently lev αg is closed with respect to norm-bounded

w∗ × s-convergent nets. As lev αf̂ ⊆ lev αg it follows from the VBDP of lev αf̂ that for
all real α we have

lev αf̂ ⊆ lev αf̂
bw∗×s

⊆ lev αg.
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Now for all α and ε > 0 it easily follows that lev αf̂ ⊆ lev α+εf̂
bw∗×s

and so lev αf̂ ⊆

lev α+εg . Hence we have epi f̂ ⊆ epi g = C.

Since a representative function satisfies f ≤ 〈·, ·〉 + δT = cT we have ĉ∗T ≤ f̂ ∗. Thus,
when T is maximal

〈x, x∗〉 ≤ FT (x, x∗) ≤ f̂ ∗ (x∗, x̂) = f ∗ (x∗, x) .

The bw∗ × s -closure of f̂ is the convex function f̂ : X∗∗ × X∗ → R with epi-graph

epi f̂ = epi f̂
bw∗×s

≡ epi f̂
w∗×s

where the w∗ topologies are placed on X∗∗ only. The
following results show that when f is a representative function such that epi f̂ also has

the VBDP then f̂ is representative as well. Such functions are always proper since

f̂ ≥ 〈·, ·〉 > −∞.

Lemma 13 Let X be a Banach space. Suppose f : X × X∗ → R is a representative
function and that the convex set epi f̂ ⊆ X∗∗ × (X∗ ×R) has the VBDP. Then the

bw∗ × s -closure of f̂ is a representative function. That is

f̂ (y∗∗, y∗) ≥ 〈y∗∗, y∗〉, (15)

for all (y∗∗, y∗) ∈ X∗∗ × X∗.

Proof. Note that

epi f̂ ⊆ {(x∗∗, x∗, α) ∈ X∗∗ × X∗ | 〈x∗∗, x∗〉 ≤ α} .

Using the VBDP we take a bounded net
(
x∗∗

β , x∗
β

)
β∈Λ

→w∗×s (x∗∗, x∗) and so 〈x∗∗
β , x∗

β〉 →

〈x∗∗, x∗〉. Thus, {(x∗∗, x∗, α) ∈ X∗∗ × X∗ | 〈x∗∗, x∗〉 ≤ α} is closed with respect to limits
of w∗ × s-convergent bounded nets. Hence, the smallest such set bw∗ × s closed set C

containing epi f̂ satisfies

epi f̂ = C ⊆ {(x∗∗, x∗, α) ∈ X∗∗ × X∗ | 〈x∗∗, x∗〉 ≤ α} .

To show an operator is (NI) we shall use the fact that when T is maximal we have
FT ≥ 〈·, ·〉 and

F̂T (x̂, x∗) = FT̂ (x̂, x∗) (the restriction of FT̂ to X × X∗).

We aim to show that when the VBDP is present the bw∗ × s closure of this function
must also be representative; and so to deduce that FT̂ is representative. Hence, we must

show that F̂T = FT̂ . By (9) we have F∗∗
T̂

=
(
FT̂

)
= FT̂ —so this seem plausible. Yet,

(9) is insufficient as we require the identity
(
F̂T

)∗∗

= FT̂ . Because FT = c∗T one may

as well study the relationship between
(
(̂c∗T )

)
and F

T̂
= ĉT

∗. We will in fact show in

Proposition 15
(
(̂f ∗)

)
= f̂ ∗.

10



By (̂f ∗) denote as before the embedding of the conjugate function f ∗ : X∗ × X →
R into X∗ × X∗∗. Again, for a representative function f on X × X∗ we denote its
conjugate in the dual space (X × X∗)∗ by f̂ ∗, and its conjugate between the paired
spaces s×bw∗ (X × X∗) and bw∗×s (X∗ × X) by f ∗. This notation is consistent in that(
f̂
)∗

(x∗, x∗∗) = f̂ ∗ (x∗, x∗∗) and so f̂ ∗ (x∗, x̂) = f ∗ (x∗, x) , or (̂f ∗) (x∗, x̂) =
(
f̂
)∗

(x∗, x̂).

With this notation, we have:

Proposition 14 Suppose f : X × X∗ → R is proper, s × bw∗-closed convex function.
Then for all (ŷ, y∗) ∈ dom f̂ ⊆ X̂ × X∗ we have

f̂ (ŷ, y∗) = lim inf
(ŷβ ,y∗

β)→
w∗×s
β

(ŷ,y∗)

f̂
(
ŷβ, y

∗
β

)
= f̂ (ŷ, y∗) . (16)

Proof. Since f is s×bw∗-closed, convex and proper, it also norm-closed. Being convex
f is also weakly closed and so weak×strong-closed. Now if we take

(
ŷβ, y

∗
β

)
→w∗×s

β (ŷ, y∗)

(within X∗∗ × X∗) then
(
yβ, y∗

β

)
→w×s

β (y, y∗) . Thus

lim inf
(ŷβ ,y∗

β)→
w∗×s
β

(ŷ,y∗)

f̂
(
ŷβ, y∗

β

)
≥ f̂ (ŷ, y∗) .

The reverse inequality is immediate, using a constant net, and we obtain the second
equality in (16). The first equality in (16) is a standard representation of the lower
semi–continuous hull.

Finally, we establish the promised consistency of closure and conjugation operations.

Proposition 15 Suppose f : X ×X∗ → R is a proper, s×bw∗-closed convex function.
Then

(̂f ∗) =
(
f̂
)∗

. (17)

Proof. By definition ̂epi (f ∗) ⊆ epi f̂ ∗. Hence, (̂f ∗) ≥ f̂ ∗ and f̂ ∗ ≥ f̂ ∗ since epi f̂ ∗ is

s × bw∗ -closed. Thus, (̂f ∗) (x∗, x∗∗) ≥ f̂ ∗ (x∗, x∗∗) for all (x∗, x∗∗) in X∗ × X∗∗.

Conversely take (x∗, x∗∗) ∈ dom
(
f̂
)∗

and r such that f̂ ∗ (x∗, x∗∗) > r. The s × w∗-

lower semicontinuity of f̂ ∗ implies the set

U :=
{

(z∗, z∗∗) |
(
f̂
)∗

(z∗, z∗∗) > r
}

is a s × w∗- open neighbourhood in X∗ × X∗∗. Likewise, s × w∗-lower semi-continuity

of f̂ ∗ yields a convex s ×w∗- open neighbourhood V of (x∗, x∗∗) in X∗ × X∗∗ such that

f̂ ∗ (z∗, z∗∗) > r for all (z∗, z∗∗) ∈ V

and hence
(
f̂
)∗

(z∗, ẑ) > r for all (z∗, ẑ) ∈ V ∩
(
X∗ × X̂

)

where the last inequality holds since
(
f̂
)∗

(z∗, ẑ) = f̂ ∗ (z∗, ẑ) = f̂ ∗ (z∗, ẑ) as shown in

Proposition 14.

11



Thence we have a net
(
x∗

β , x̂β

)
→s×w∗

(x∗, x∗∗) such that f̂ ∗
(
x∗

β , x̂β

)
→ f̂ ∗ (x∗, x∗∗) .

Eventually this net lies in V ∩
(
X∗ × X̂

)
and so

∅ 6= V ∩
(
X∗ × X̂

)
⊆

{
(z∗, z∗∗) |

(
f̂
)∗

(z∗, z∗∗) > r
}

= U.

It follows—by Lemma 18 given below for completeness—that

V
s×w∗

= V ∩
(
X∗ × X̂

)s×w∗

⊆ U
s×w∗

. (18)

Thus, (x∗, x∗∗) ∈ V ⊂ int U = U and so for all r such that (̂f ∗) (x∗, x∗∗) > r we have
(
f̂
)∗

(x∗, x∗∗) > r.

It follows that (̂f ∗) (x∗, x∗∗) ≤
(
f̂
)∗

(x∗, x∗∗), giving the asserted equality.

Lemma 16 Suppose W is an open convex subset of a locally convex topological vector
space X and A is a dense convex subset of X. Then W ∩ A = W .

Proof. Without loss we assume 0 ∈ W . Let γW denote the Minkowski function of
W given by γW (x) := inft>0{t | x ∈ tW} and for λ ∈ X∗ consider the program µ :=
inf{λ(x) | γW (x) < 1, x ∈ A}. Slater’s condition holds since W meets A. Thus, there is
a positive number p such that λ(x)+ p(γW (x)−1) ≥ µ for all x ∈ A. Since the function
λ + p · γW is semicontinuous and A is dense,

inf{λ(x) | γW (x) < 1, x ∈ A} = µ = inf{λ(x) | γW (x) ≤ 1},

which is equivalent to the desired conclusion.

We now show the conjugates of the Fitzpatrick and Penot functions are representatives
when Z = X∗ is a dual space.

Theorem 17 Suppose T is maximal monotone on X. Let E := X × X∗ and suppose
E∗ has an angelic dual ball as happens if (a) E∗ is a subspace of a WCG Banach space
or (b) if E is a separable Banach space containing no copy of ℓ1.

Then P̂T

∗
and F̂T

∗
are representative functions on X∗ × X∗∗. Indeed the hypotheses

imply that f̂ ∗ is representative on X∗ × X∗∗ for any representative function for T .

Proof. Under the given assumptions epi (̂P∗
T ) and epi (̂F∗

T ) are embedded as convex

subsets of X∗ × X∗∗ ×R, with P∗
T and F∗

T representative on X∗ × X̂. Since X possess

the VBDP by Lemma 13 we deduce that (̂P∗
T ) and (̂F∗

T ) are representative on X∗×X∗∗.

Now apply Proposition 15 to deduce that (̂P∗
T ) = P̂T

∗
and (̂F∗

T ) = F̂T

∗
are representative

functions on X∗ × X∗∗.

Finally, suppose f is a representative function for T . Then PT ≥ f ≥ FT implying
(
f̂
)∗

≥ P̂T

∗
≥ 〈·, ·〉.

As
(
f̂
)∗

is clearly proper and closed, we are done.
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4 Applications to Maximal Monotone Operators

We begin this section by reprising what it is that we have now established:

Corollary 18 Let E := X ×X∗. Suppose E∗ has an angelic dual ball as happens if E∗

is a subspace of a WCG Banach space or if E is a separable Banach space containing
no copy of ℓ1. Then X is of type (NI), that is, every maximal monotone operator on X

is type (NI).

Proof. We need to show that

FT̂ (x∗∗, x∗) ≥ 〈x∗∗, x∗〉

for all elements of X∗∗×X∗. This follows from Lemma 13 and Theorem 15 which justify
the following identities

(
F̂T

)∗∗

= F̂T =
(
(̂c∗T )

)
= ĉT

∗ = FT̂ .

Thanks to the many striking recent results in [1, 21, 18] as reprised in [6, Ch. 6] we can
now assert the following theorem. All the classes mentioned in the result which follows
are carefully described by Simons who introduced many of them [17].

A schematic illustration of known and open relationships is given in Figure 1.

Theorem 19 Let X be a Banach space of type (NI). Then every maximal monotone
operator T is of type (NI) and in consequence:

1. The range and domain of T have convex norm-closure [1, 21, 18];

2. T has the Brønsted-Rockafellar property (BR) [1];

3. T is almost negatively aligned (ANA) [21];

4. T is both locally maximal monotone (LMM) or (FP) and maximally locally mono-
tone (FPV) [21].

Moreover, if S is another maximal monotone operator and

0 ∈ core {dom T − domS}

then T + S is again maximal monotone [21].

Remark 20 While Corollary 18 shows that there are many non-reflexive Banach spaces
of type (NI), the angelic class we have identified is almost certainly a small subset of
the full class of (NI) Banach spaces. Indeed, all known examples of maximal operators
which fail to be type (NI) lie in spaces containing a complemented copy of ℓ1, see [3].
This even excludes C[0, 1] which—while universal for separable spaces—contains only
non-complemented copies of ℓ1.
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For example, the continuous linear map S : ℓ1 → ℓ∞ given by

(Sx)n := −
∑

k<n

xk +
∑

k>n

xk, ∀x = (xk) ∈ ℓ1, n ∈ N,

is called the Gossez operator. We record that ∓S is a skew bounded linear operator, for
which S∗ is not monotone but −S∗ is. Hence, −S is of dense type (D) [17, 3] and has
all the consequent properties of Theorem 19, while S is maximal monotone locally but
is not of type (NI) or (FP), but it does have a unique monotone extension to the second
dual [17, 3]. Corollary 11 applied to the Gossez operator highlights the distinct roles of
F

T̂
and P

T̂
.

Thus, it would be reasonable to conjecture that a separable Banach space is type (NI)
if (and perhaps only if) it contains no copy of ℓ1 and that all Asplund spaces are type
(NI). An excellent start would be to determine the status of c0 which contains no copy
of ℓ1—being separable and Asplund—but the space does not satisfy the hypotheses of
Corollary 18.

Remark 21 It is now known that every maximal monotone operator of type (NI) that
is of dense type (D) [2] and that both classes coincide with Simon’s class (ED) [19]. .

Remark 22 There are various conditions on an individual operator in an arbitrary Ba-
nach space that easily assure it is type (NI). For example, a surjective maximal monotone
operator is type (NI) and hence locally maximal monotone. This thus recaptures a re-
sult proved directly by Fitzpatrick and Phelps [17]. By contrast dom T = X does not
imply local maximality as is shown by the various skew examples. It is similarly easy
to confirm that T is type (NI) if it has bounded domain and norm-dense range. More
difficult but true is that an operator is (NI) if the convex hull of its range has non-empty
interior.

Acknowledgements We are very grateful for the effort Robert Wenczel put into in
a detailed reading of an earlier draft, for Constantin Zalinescu’s perceptive input, and
especially to Stephen Simons for pointing out a fatal flaw in an earlier over-ambitious
version of this work.

References

[1] M. Alves and B. F. Svaiter (2008), Brønsted-Rockafellar property and maximality of

monotone operators representable by convex functions in non-reflexive Banach spaces,

J. Convex Analysis, in press.

[2] M. Alves and B. F. Svaiter (2008), On Gossex type (D) maximal monotone operators,

Preprint, 03/30/2009.

[3] H.H. Bauschke and J.M. Borwein (1999), Maximal monotonicity of dense type, local

maximal monotonicity, and monotonicity of the conjugate are all the same for continuous

linear operators, Pacific J. Math, 189, pp 1-20.

14



Relationships between Classes

ANA BR LMM FPV

NI

D Subgradient
X

reflexive

In general non-reflexive space all implications are strict except for 

those marked with ‘?’. The dotted implication is conjectured only.

?

MM

??

Figure 1: Relations between classes of operators.

[4] J.M. Borwein (2006), Maximal monotonicity via convex analysis, J. Convex Analysis, Vol.

13, no. 3/4, pp 561-586.

[5] J.M. Borwein (2007), Maximality of Sums of Two Maximal Monotone Operators in Gen-

eral Banach Space, Proc. AMS, Vol. 135, pp 3917–3924.

[6] J.M. Borwein and J. Vanderwerff (2008), Convex Functions: Constructions, Characteri-

zations and Counter-examples, Cambridge University Press, to appear, 2009.

[7] R. S. Burachik and B. F. Svaiter (2003), M Maximal Monotone Operators, Convex Func-

tions and a Special Family of Enlargements, Set-Valued Analyis, Vol. 10, no. 4, pp 297–

316.

[8] M.J. Fabian (1997), Gâteaux Differentiability of Convex Functions and Topology, CMS

Books in Mathematics , Wiley Interscience.

[9] M. Fabian et al. (2001), Functional Analysis and Infinite-Dimensional Geometry, CMS

Books in Mathematics, Springer-Verlag.

[10] S. Fitzpatrick (1988), Representing monotone operators by convex functions, Work-

shop/Miniconference on Functional Analysis and Optimization (Canberra 1988), Pro-

ceedings Center Math. Anal. Austral. Nat. Univ. 20, pp 59–65.

[11] J. Howard (1987), Weak Sequential Denseness in Banach Spaces, Proceedings of the

American Mathematical Society, Vol. 99, No. 2, pp. 351-352.

15



[12] A. James Humphreys and Stephen G. Simpsons (1996). Separable Banach space theory

needs strong set existence axioms. Trans. Amer. Math. Soc. 348, no. 10, pp 4231–4255.

[13] R. B. Holmes (1975), Geometric Functional Analysis and its Applications, Graduate Texts

in Mathematics, Vol. 24, Springer-Verlag.

[14] G.O. Jameson (1974), Topology and Normed Spaces , Chapman and Hall.

[15] J.-P. Penot (2004), The relevance of convex analysis for the study of monotonicity, Non-

linear Analysis, Vol. 58, no. 7-8, pp 855–871.

[16] R. Phelps (1993), Convex functions, monotone operators and differentiability, 2nd Ed,

Lecture Notes in Mathematics, Vol. 1364, Springer–Verlag.

[17] S. Simons (2008), From Hahn-Banach to Monotonicity, Lecture Notes in Mathematics,

Vol. 1693, Springer-Verlag.

[18] S. Simons (2008), An Improvement of the Fitzpatrick Inequality for Maximally Monotone

Multifunctions of Type (NI), Preprint, 2/25/2008.

[19] S. Simons (2009), Banach SSD spaces and classes of monotone sets (NI), Preprint,

8/04/2009.

[20] D. van Dulst (1989), Characterizations of Banach spaces not containing ℓ1, CWI Tract,

Vol. 59, Amsterdam.
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