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Abstract— Under consideration is the large body of signal
recovery problems that can be formulated as the problem of
minimizing the sum of two (not necessarily smooth) lower semi-
continuous convex functions in a real Hilbert space. This generic
problem is analyzed and a decomposition method is proposed to
solve it. The convergence of the method, which is based on the
Douglas-Rachford algorithm for monotone operator-splitting, is
obtained under general conditions. Applications to non-Gaussian
image denoising in a tight frame are also demonstrated.

Index Terms— Convex optimization, denoising, Douglas-
Rachford, frame, nondifferentiable optimization, Poisson noise,
proximal algorithm, wavelets.

I. INTRODUCTION

The objective of a signal recovery problem is to infer
the original form of a signal x from the observation of
signals which are physically related to it via some known
mathematical models. This broad class of inverse problems
encompasses problems such as signal reconstruction, signal
restoration, and signal denoising [2], [17], [46], [50]. In the
early days, it was customary to divide recovery problems
into linear and nonlinear problems, the former being naturally
easier to analyze and solve. For instance, Youla showed in
[53] that a wide range of classical signal recovery problems
could be reduced to the problem of finding a common point
of two affine subspaces of a Hilbert space and solved via
alternating affine projection methods (see [15] for further
historical background). Likewise, in the area of computed
tomography, most of the algorithms developed in the 1970s
revolved around iterative affine projection methods [37].

In mathematics, the methodological barrier between linear
and nonlinear analysis started to disappear in the 1950s and
1960s with the development of various well-structured nonlin-
ear theories (e.g., fixed point theory, game theory, monotone
operator theory, or convex analysis) [4], [58]. In signal recov-
ery, the emergence of convex analysis as a powerful nonlinear
framework crystallized around the paper [55] in which Youla
and Webb, bringing to light work from the Russian school
from the 1960s [15], replaced the affine projection operators
of the alternating projection method with convex projection
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operators to obtain the so-called POCS (Projection Onto Con-
vex Sets) algorithm. POCS has been used in scores of signal
processing problems [15], [17], [47] and has been extended to
more flexible projection algorithms [16], [18] that have found
further applications, e.g., [1], [12], [34], [35], [43], [52], [56].
Recall that, if C is a nonempty closed convex subset of a real
Hilbert space H with norm ‖ · ‖, then, for every x ∈ H, there
exists a unique point PCx in H – called the projection of x
onto C – which satisfies the best approximation property

PCx ∈ C and (∀y ∈ C) ‖x− PCx‖ ≤ ‖x− y‖. (1)

Alternatively, PCx is the unique solution to the variational
problem

min
y∈H

ιC(y) +
1
2
‖x− y‖2, (2)

where ιC is the indicator function of C, i.e.,

(∀y ∈ H) ιC(y) =

{
0, if y ∈ C;
+∞, otherwise.

(3)

Convex projection methods exploit the remarkable properties
of projection operators [6], [19] and, in order to broaden the
scope of these methods, it is natural to introduce more general
operators with similar properties. Such an extension was pro-
posed by Moreau in 1962 [39]. Under the above assumptions,
ιC belongs to the class Γ0(H) of all functions from H to
]−∞,+∞] which are lower semicontinuous, convex, and not
identically equal to +∞. Moreau observed that, for every
x ∈ H, the variational problem obtained by replacing ιC with
an arbitrary function f ∈ Γ0(H) in (2), namely,

min
y∈H

f(y) +
1
2
‖x− y‖2, (4)

admits a unique solution, which will be denoted by proxfx.
The so-called proximity operator proxf : H → H thus defined
generalizes the notion of a convex projection operator in the
sense that PC = proxιC , and it moreover possesses most of its
attractive properties [40]. As a result, many projection methods
(in particular POCS) can be extended to proximal methods by
replacing projection operators with proximity operators [7],
[21].

In signal recovery, the use of proximity operators seems to
originate in [20]. Their main advantage is to model various op-
erations on signals beyond convex projections, e.g., nonexpan-
sive self-adjoint linear transformations or soft thresholding op-
erations (see [24] and [25] for details and additional examples).
They also naturally arise in the analysis and the numerical
solution of signal recovery problems. In this regard, it is shown
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in [25] (see also [13] and [24] for further developments) that
a number of apparently unrelated recovery formulations (e.g.,
constrained least-squares problems, multiresolution sparse reg-
ularization problems, Fourier regularization problems, geom-
etry/texture image decomposition problems, hard-constrained
inconsistent feasibility problems, split feasibility problems,
as well as certain maximum a posteriori problems) fit the
following simple variational format.

Problem 1 Let f1 and f2 be two functions in Γ0(H) such
that f2 is differentiable on H with a β-Lipschitz continuous
gradient for some β ∈ ]0,+∞[. The objective is to minimize
f1 + f2 over H.

Investigating this generic formulation makes it possible to
derive existence, uniqueness, and characterization results in a
unified and standardized fashion.

Proposition 2 [25, Proposition 3.1]
i) Problem 1 possesses at least one solution if

lim‖x‖→+∞ f1(x) + f2(x) = +∞.
ii) Problem 1 possesses at most one solution if f1 + f2 is

strictly convex, as is the case when f1 or f2 is strictly
convex.

iii) Let x ∈ H and let γ ∈ ]0,+∞[. Then the following
statements are equivalent.

a) x solves Problem 1.
b) x = proxγf1(x− γ∇f2(x)).

The fixed point characterization in Proposition 2iii) suggests
a numerical method for solving Problem 1. This observation
led to the following convergence result, in which the sequences
(an)n∈N and (bn)n∈N stand for some tolerance in the inexact
evaluations of the proximity operator of f1 and of the gradient
of f2.

Theorem 3 [25, Theorem 3.4(i)] Suppose that Problem 1
possesses at least one solution. Let (γn)n∈N be a sequence
in ]0,+∞[ such that infn∈N γn > 0 and supn∈N γn < 2/β,
let (λn)n∈N be a sequence in ]0, 1] such that infn∈N λn > 0,
and let (an)n∈N and (bn)n∈N be sequences in H such that∑
n∈N ‖an‖ < +∞ and

∑
n∈N ‖bn‖ < +∞. Fix x0 ∈ H

and, for every n ∈ N, set

xn+1 = xn + λn

(
proxγnf1

(
xn − γn(∇f2(xn) + bn)

)

+ an − xn

)
. (5)

Then (xn)n∈N converges weakly to a solution to Problem 1.

As discussed in [25], Theorem 3 extends and provides a
simplified convergence analysis for a variety of existing iter-
ative methods, such as the projected Landweber method [32],
the alternating projection method [54], the parallel projection
method [16], and the iterative soft thresholding method [27]. In
[13], it also served as a basis to solve certain inverse problems
posed on frames which were modeled as special instances of
Problem 1 in the space of frame coefficients.

Despite its relatively broad range of applications, Problem 1
fails to cover the important situations in which f2 is differ-
entiable with a non-Lipschitz gradient, or not differentiable at
all, or simply not finite everywhere. Nondifferentiability arises
for instance in the problem of minimizing the total variation
of a signal over a convex set, in the problem of minimizing
the sum of two set-distance functions, in problems involving
maxima of convex functions, or in Tykhonov-like problems
with L1 norms. The objective of the present paper is to relax
the assumptions made on f2 in Problem 1. The nonsmooth
problem under consideration is formulated as follows (see
Section II-B for the notation “cone ” and “dom ”).

Problem 4 Let f1 and f2 be two functions in Γ0(H) such
that

cone (dom f1 − dom f2) is a closed vector subspace of H.
(6)

The objective is to minimize f1 + f2 over H.

As will be seen in Proposition 14, the so-called qualification
condition (6) is quite mild and it makes Problem 1 a special
case of Problem 4.

Neither the differentiability of f1 nor of f2 is required in
Problem 4. In this context, the algorithm described in (5)
cannot be used and an alternative must be found. In finite-
dimensional spaces, if both functions are finite, the standard
subgradient method of [45, Chapter 2] can be used, but it
is known to be slow due to its vanishing step-sizes. Another
possibility is the adaptive level set method of [22], but it is
tailored to problems in which one of the two functions is an
indicator function. Our main contribution will be to propose
an algorithm based on the Douglas-Rachford splitting method
for monotone operators [21], [31], [38]. The chief advantage
of a splitting method is to activate the functions f1 and f2
separately. Thus, the proposed iteration will use the operators
proxγf1 and proxγf2 , which are typically much easier to
implement than the operator proxγ(f1+f2) as in the standard
proximal point algorithm for nonsmooth problems [21]

(∀n ∈ N) xn+1 = proxγ(f1+f2)xn. (7)

The remainder of the paper is organized as follows. In
Section II, we define our notation and provide the necessary
mathematical background. Problem 4 is then analyzed in
Section III and the algorithm proposed to solve it is introduced
in Section IV, where a convergence result is established.
Applications to non-Gaussian image denoising using a tight
frame representation are addressed in Section V. Numerical
results reporting on Laplace additive noise and Poisson data
experiments are provided in Section VI. The appendices
contain the proofs of certain technical results.

II. NOTATION AND THEORETICAL TOOLS

In this section, we provide the necessary background on
monotone operators, convex analysis, and proximity operators.
Throughout this paper, H is a real Hilbert space with identity
operator Id, scalar product 〈· | ·〉, norm ‖ · ‖, and distance d.
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A. Monotone operators [5]

Let 2H denote the class of all subsets of H and let A : H →
2H be a set-valued operator. The set of zeros of A is

zerA =
{
x ∈ H ∣∣ 0 ∈ Ax}. (8)

We say that A is monotone if, for every (x, u) and (y, v) in
H×H such that u ∈ Ax and v ∈ Ay,

〈x− y | u− v〉 ≥ 0. (9)

Suppose that A is monotone. Then A is declared maximal
monotone when the following property is satisfied for every
(x, u) ∈ H ×H: if (9) holds for every (y, v) ∈ H ×H such
that v ∈ Ay, then u ∈ Ax. Now suppose that A is maximal
monotone. Then, for every x ∈ H, there exists a unique point
JAx ∈ H such that

x− JAx ∈ A(JAx). (10)

The single-valued operator JA : H → H thus defined is called
the resolvent of A.

B. Convex analysis [57]

The distance function of a nonempty subset C of H is
dC : H → R : x 7→ infy∈C ‖x − y‖, its indicator func-
tion is defined in (3), its support function is σC : H →
]−∞,+∞] : u 7→ supx∈C 〈x | u〉, and its conical hull is

coneC =
⋃

λ>0

{
λx

∣∣ x ∈ C}
. (11)

The interior of a set C ⊂ H is denoted by intC and its relative
interior by rintC [42, Section 6]. The domain of a function
f : H → ]−∞,+∞] is dom f =

{
x ∈ H

∣∣ f(x) < +∞}
.

Γ0(H) is the class of all lower semicontinuous convex func-
tions from H to ]−∞,+∞] with nonempty domains. The
subdifferential of f ∈ Γ0(H) at x ∈ H is the set

∂f(x) =
{
u ∈ H

∣∣ (∀y ∈ H) 〈y − x | u〉+f(x) ≤ f(y)
}
.

(12)
If f ∈ Γ0(H) is Gâteaux differentiable at x ∈ H with
gradient ∇f(x), then ∂f(x) = {∇f(x)}. A tutorial account
of subdifferentials can be found in [18].

Lemma 5 [57, Theorem 3.1.11] Let f ∈ Γ0(H). Then ∂f is
maximal monotone.

We shall also require the following trivial, yet fundamen-
tal, consequence of (12), which generalizes the well-known
fact that critical points of differentiable convex functions are
minimizers.

Lemma 6 Let f ∈ Γ0(H) and let x ∈ H. Then x is a
minimizer of f if and only if x ∈ zer ∂f .

C. Proximity operators

The foundational paper of the theory of proximity operators
is [40]. This paper contains also many useful properties of
proximity operators. Further properties and concrete examples
are given in [13], [24], [25].

Recall that, for every f ∈ Γ0(H) and every x ∈ H, proxfx
is the unique solution to the minimization problem (4). We
first provide a subdifferential characterization of proximity
operators.

Lemma 7 [40, Proposition 6.a] Let f ∈ Γ0(H), let x ∈ H,
and let p ∈ H. Then p = proxfx⇔ x− p ∈ ∂f(p).

The following fact results from Lemma 5, (10), and
Lemma 7. It states that proxf is the resolvent of a maximal
monotone operator, namely of the subdifferential of f .

Lemma 8 Let f ∈ Γ0(H). Then proxf = J∂f .

The next property is essential to establish the convergence
of various algorithms based on proximity operators [21].

Lemma 9 [40, Proposition 5.b] Let f ∈ Γ0(H). Then proxf
is nonexpansive: (∀x ∈ H)(∀y ∈ H) ‖proxfx − proxfy‖ ≤
‖x− y‖.

In signal recovery problems, information is often available
to penalize individually the coefficients of the original signal
in an orthonormal basis [13], [24], [25], [27]. The follow-
ing decomposition formula makes the implementation of the
resulting proximity operator particularly convenient in such
instances.

Lemma 10 [13, Remark 3.2(ii) and Proposition 2.10] Set

Φ: H → ]−∞,+∞] : x 7→
∑

k∈K
ϕk(〈x | ok〉), (13)

where:
i) ∅ 6= K ⊂ N;

ii) (ok)k∈K is an orthonormal basis of H;
iii) (ϕk)k∈K are functions in Γ0(R);
iv) Either K is finite, or there exists a subset L of K such

that:
a) Kr L is finite;
b) (∀k ∈ L) ϕk ≥ ϕk(0) = 0.

Then Φ ∈ Γ0(H) and

(∀x ∈ H) proxΦx =
∑

k∈K

(
proxϕk

〈x | ok〉
)
ok. (14)

We shall also exploit the following properties, which appear
to be new.

Proposition 11 Let G be a real Hilbert space, let f ∈ Γ0(G),
and let L : H → G be a bounded linear operator with closed
range ranL. Suppose that the composition of L and L∗

satisfies L ◦ L∗ = νId, for some ν ∈ ]0,+∞[, and that

cone (dom f − ranL) is a closed vector subspace of G.
(15)
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Then f ◦ L ∈ Γ0(H) and

proxf◦L = Id + ν−1L∗ ◦ (proxνf − Id) ◦ L. (16)

Proof: See Appendix I.

Proposition 12 Let f ∈ Γ0(H) and let C be a closed convex
subset of H such that C ∩ dom f 6= ∅. Then the following
hold.

i) (∀x ∈ H) proxfx ∈ C ⇒ proxιC+fx = proxfx.
ii) Suppose that H = R. Then proxιC+f = PC ◦ proxf .

Proof: See Appendix II.

The following example shows that the conclusion of Propo-
sition 12ii) fails when H 6= R.

Example 13 Let Λ: H → H be a positive, self-adjoint,
bounded linear operator, let u ∈ H be such that ‖u‖ =
1, and let δ ∈ R. Set f : y 7→ 〈Λy | y〉 /2, C ={
y ∈ H ∣∣ 〈y | u〉 = δ

}
, and Q = (Id + Λ)−1. Then, for every

x ∈ H,

proxf+ιCx = Qx+
δ − 〈Qx | u〉
〈Qu | u〉 Qu, (17)

whereas PC(proxfx) = Qx+ (δ − 〈Qx | u〉)u.

III. ANALYSIS OF PROBLEM 4

We start our discussion by observing that the qualification
condition (6) imposed in Problem 4 is a mild restriction that
is satisfied in many standard scenarios.

Proposition 14 Condition (6) is satisfied in each of the fol-
lowing cases.

i) dom f1 ∩ int dom f2 6= ∅ or dom f2 ∩ int dom f1 6= ∅.
ii) f1 or f2 is finite.

iii) H is finite-dimensional and the relative interiors of
dom f1 and dom f2 have a nonempty intersection.

Proof: See Appendix III.

It follows in particular from Proposition 14ii) that Problem 4
subsumes Problem 1. Thus, the examples of signal recovery
problems discussed in [25] are covered by Problem 4. How-
ever, the following scenarios are covered by Problem 4, but
not by Problem 1.

Example 15 H is either the Euclidean space RK or the
Sobolev space H1(Ω), where Ω is a bounded open domain of
Rm, f1 is the L1 norm or the indicator function of a nonempty
closed convex set, and f2 is the total variation. Then it follows
from [23, Proposition 1] that the assumptions of Problem 4 are
satisfied.

Example 16 C1 and C2 are nonempty closed convex sets,
α > 0, 1 ≤ p < +∞, f1 = αdpC1

, and f2 = dC2 . Problem 4
then extends the standard convex feasibility problem, which
corresponds to the case when C1∩C2 6= ∅, i.e., to the problem
of finding a signal that lies in both C1 and C2 [55].

Example 17 H = L2(Ω), where Ω is a bounded open domain
of Rm, and the observed data assume the form z = Lx+ w,
where L is a bounded linear operator from H to a Hilbert
space G and w ∈ G is an additive noise vector. Moreover,
f1 : x 7→ ‖Lx− z‖L1 and f2 = α‖ · ‖L1 , with α > 0.

We now address the existence, uniqueness, and characteri-
zation of the solutions to Problem 4.

Proposition 18
i) Problem 4 possesses at least one solution if

lim‖x‖→+∞ f1(x) + f2(x) = +∞.
ii) Problem 4 possesses at most one solution if f1 + f2 is

strictly convex, as is the case when f1 or f2 is strictly
convex.

iii) Let x ∈ H and γ ∈ ]0,+∞[, and set, for every
f ∈ Γ0(H), rproxf = 2proxf − Id. Then the following
statements are equivalent.

a) x solves Problem 4.
b) x ∈ zer (∂f1 + ∂f2).
c) x = proxγf2y, where y = rproxγf1(rproxγf2y).

Proof: See Appendix IV.

IV. DOUGLAS-RACHFORD SPLITTING ALGORITHM

This algorithm was originally proposed in [30] for solving
matrix equations of the form u = Ax+Bx, where A and B
are positive-definite matrices, in connection with the numerical
solution of partial differential equations [51]. The method was
extended to the nonlinear problem of finding a zero of the
sum of two maximal monotone operators in Hilbert spaces
in [38] and revisited in [31]; further properties are discussed
in [8]. To the best of our knowledge, the most general result
on the convergence of the Douglas-Rachford algorithm is the
following.

Theorem 19 [21, Corollary 5.2] Let γ ∈ ]0,+∞[, let
(λn)n∈N be a sequence in ]0, 2[, and let (an)n∈N and (bn)n∈N
be sequences in H. Suppose that the following hold.

i) zer (A+B) 6= ∅.
ii)

∑
n∈N λn(2− λn) = +∞.

iii)
∑
n∈N λn(‖an‖+ ‖bn‖) < +∞.

Take x0 ∈ H and set, for every n ∈ N,
{
xn+ 1

2
= JγBxn + bn

xn+1 = xn + λn

(
JγA

(
2xn+ 1

2
− xn

)
+ an − xn+ 1

2

)
.

(18)
Then (xn)n∈N converges weakly to some point x ∈ H and
JγBx ∈ zer (A+B).

An important feature of Algorithm (18) is that it proceeds
by splitting in the sense that the operators A and B are used
in separate steps: in the first step, only the resolvent of B
is required to obtain xn+ 1

2
and, in the second step, only

resolvent of A is required to obtain xn+1. Now set A = ∂f1
and B = ∂f2. Then Lemma 5 asserts that A and B are
maximal monotone. Moreover, in view of Proposition 18iii),
Problem 4 is equivalent to finding a point in zer (A + B).
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Hence, using Lemma 8, we derive at once from Theorem 19
the following convergence result on a proximal method for
solving Problem 4.

Theorem 20 Let γ ∈ ]0,+∞[, let (λn)n∈N be a sequence
in ]0, 2[, and let (an)n∈N and (bn)n∈N be sequences in H.
Suppose that the following hold.

i) Problem 4 admits at least one solution.
ii)

∑
n∈N λn(2− λn) = +∞.

iii)
∑
n∈N λn(‖an‖+ ‖bn‖) < +∞.

Take x0 ∈ H and set, for every n ∈ N,

{
xn+ 1

2
= proxγf2xn + bn

xn+1 = xn + λn

(
proxγf1

(
2xn+ 1

2
− xn

)
+ an − xn+ 1

2

)
.

(19)
Then (xn)n∈N converges weakly to some point x ∈ H and
proxγf2x is a solution to Problem 4.

Algorithm (19) naturally inherits the splitting property of the
Douglas-Rachford iteration (18), which makes it particularly
attractive in comparison with standard proximal methods such
as (7). Thus, each iteration n is decomposed into two main
steps: the current iterate is xn and the function f2 is first
utilized to compute xn+ 1

2
; the function f1 is then utilized to

produce the update xn+1. Note that Algorithm (19) allows
for the inexact implementation of these two proximal steps
via the incorporation of the error terms an and bn. Moreover,
a variable relaxation parameter λn provides added flexibility
(it can of course be set to a constant value in ]0, 2[). It is
important to note that the solution to Problem 4 is obtained
as the image under proxγf2 of the weak limit of (xn)n∈N and
that, in general, little is known about the asymptotic behavior
of

(
proxγf2xn

)
n∈N unless proxγf2 is weakly continuous. This

property is notably satisfied whenH is finite-dimensional since
weak and strong convergence coincide in this case and proxγf2
is continuous by Lemma 9. Thus, we derive from Theorem 20
that

(
proxγf2xn

)
n∈N converges to a solution and, since bn →

0 in (19), we obtain the following result, which is immediately
relevant to digital signal processing.

Corollary 21 Suppose that H is finite-dimensional. Then the
sequence (xn+ 1

2
)n∈N in Theorem 20 converges to a solution

to Problem 4.

V. APPLICATIONS TO NON-GAUSSIAN DENOISING IN A
TIGHT FRAME

As discussed in Section III, the proposed approach is
applicable to a wide array of signal recovery problems. In this
section, the focus is placed on image denoising in the presence
of non-Gaussian noise. Let us emphasize that variational
problems posed on frames were already considered in [13].
However, the problems investigated in [13] were covered by
Problem 1, whereas the problems presented below are more
general instances of Problem 4 that contain no smooth term.

A. Problem statement

We consider the problem of recovering an M -dimensional
signal y in the Euclidean space G = RM from a noisy
observation z ∈ G. No specific degradation model is assumed
and, in particular, the noise perturbation need not be additive.
It is assumed that a priori information is available, that
constrains y to lie in a closed convex subset C of G.

In previous work on signal denoising (see [3], [9], [24],
[44] and the references therein), the representation of y in an
appropriate orthonormal basis has been shown to be helpful
in the modeling of various properties of the original signal
y, e.g., regularity or sparsity. We place ourselves in a more
general framework by considering redundant representations
built from overcomplete sets (i.e., frames) of vectors in G.
More precisely, we assume that information is available on the
coefficients x = (ξk)1≤k≤K (K ≥ M ) of y in a tight frame
(ek)1≤k≤K of G. Recall that, if we denote by H the Euclidean
space RK , the frame operator associated with (ek)1≤k≤K is
the injective linear operator

F : G → H : y 7→ (〈y | ek〉)1≤k≤K , (20)

the adjoint of which is the surjective linear operator

F ∗ : H → G : (ξk)k∈K 7→
K∑

k=1

ξkek. (21)

For a tight frame, we have

F ∗ ◦ F = νId, where ν ∈ ]0,+∞[ . (22)

A simple example of a tight frame is the union of q or-
thonormal bases, in which case ν = q. Discretized versions of
curvelets [11], dual-tree wavelet decompositions [14], Gabor
frames [26], [49], and contourlets [29] constitute tight frames
under suitable hypotheses. For a detailed account of frame
theory, see [36].

Our strategy will be to produce an estimate x̃ of the frame
coefficient vector x in H = RK through the maximum a
posteriori approach described below, which will turn out to
be a special case of Problem 4. We shall then construct x̃
via Algorithm (19) and Corollary 21 and, in turn, obtain an
estimate of y as ỹ = F ∗x̃. Let us emphasize that the resulting
variational formulations will, in general, be outside of the
scope of Problem 1 due to the potential lack of differentiability
of both functions (see Section VI for examples).

B. Bayesian formulation

In the remainder of Section V, the following assumptions
are made on the constituents of the problem.

Assumption 22
i) The vectors x, y, and z = (ζm)1≤m≤M are realizations

of real-valued random vectors X , Y = (Υm)1≤m≤M ,
and Z = (Zm)1≤m≤M , respectively (all random vari-
ables are defined on the same probability space).

ii) Given Y = (ηm)1≤m≤M , the components (Zm)1≤m≤M
of Z are conditionally independent random variables
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which are either discrete, with conditional probabil-
ity mass functions

(
µZm|Υm=ηm

)
1≤m≤M , or abso-

lutely continuous, in which case we also denote by(
µZm|Υm=ηm

)
1≤m≤M their probability density func-

tions.
iii) For every m ∈ {1, . . . ,M}, we have µZm|Υm=·(ζm) ∝

exp(−ψm(·)), where ψm ∈ Γ0(R).
iv) The components of X are independent with densities

(exp(−φk(·))/
∫ +∞
−∞ exp(−φk(η))dη)1≤k≤K , where

(φk)1≤k≤K are finite convex functions on the real line.
v) The Lebesgue measure of (domψ1×· · ·×domψM )∩C

is nonzero.

Note that Assumption 22iii) is satisfied in particular in the
case of an additive noise Zm − Υm which is independent
of Υm and possesses a upper-semicontinuous log-concave
density, for every m ∈ {1, . . . ,M}. Various examples of such
laws are provided in [13].

Under Assumption 22, a standard Bayesian approach for
estimating x from z consists of applying a maximum a
posteriori rule [10], [33], [48], which amounts to maximizing
the posterior probability density µX|Z=z,Y ∈C of X . Using
Bayes’ formula, this is equivalent to solving the variational
problem

minimize
x∈H

− lnµX|Y ∈C(x)− lnµZ|Y=F∗x(z), (23)

where µZ|Y=F∗x is the conditional probability (mass or den-
sity) function of Z given Y = F ∗x. Note that, upon setting
x = (ξk)1≤k≤K and using Assumption 22iv), we obtain

µX|Y ∈C(x) =

{
ϑ−1

∏K
k=1 exp(−φk(ξk)), if F ∗x ∈ C;

0, otherwise,
(24)

where ϑ is the probability that Y ∈ C, which is nonzero by
Assumption 22v). In addition, according to Assumptions 22ii)
and 22iii),

µZ|Y=F∗x((ζm)1≤m≤M ) ∝
M∏
m=1

exp(−ψm(ηm)), (25)

where (ηm)1≤m≤M = F ∗x. We conclude that (23) assumes
the following form.

Problem 23 Let x = (ξk)1≤k≤K denote a generic element in
H, and set

f1 : H → R : x 7→
K∑

k=1

φk(ξk) (26)

and
f2 = Ψ ◦ F ∗ + ιC ◦ F ∗, (27)

where

Ψ: G → ]−∞,+∞] : (ηm)1≤m≤M 7→
M∑
m=1

ψm(ηm). (28)

The objective is to minimize f1 + f2 over H.

Let us observe that, in view of Assumption 22iv), f1 is
a finite function in Γ0(H), whereas it follows from As-
sumptions 22ii) and 22v), and the surjectivity of F ∗ that
f2 ∈ Γ0(H). Moreover, it follows from Proposition 14ii) that
Condition (6) holds. Altogether, we obtain the following fact.

Proposition 24 Problem 23 is a special case of Problem 4.

C. Relevant proximity operators

In order to solve Problem 23 via Algorithm (19) and
Corollary 21, it will be necessary to determine the proximity
operators of the functions f1 and f2 in (26) and (27). As
we shall see shortly, these proximity operators can often be
determined in a closed form since, via Lemma 10, they can
be written in terms of the proximity operators of the functions
(φk)1≤k≤K and (ψm)1≤m≤M .

Let us start our discussion with the proximity operator of
f1. The choice of relevant potential functions (φk)1≤k≤K for
modeling frame coefficients in Assumption 22iv) is discussed
in [13]. In particular, in order to promote a sparse represen-
tation, it has been proposed to employ proximal thresholder
corresponding to non-differentiable potential functions of the
form

φk = %k + σΩk
, (29)

where Ωk ⊂ R is a closed bounded interval and %k satisfies
0 = %k(0) ≤ %k ∈ Γ0(R) and is differentiable at 0 [24]. For
such potentials, the proximity operator of f1 is obtained via
the following proposition, where the soft thresholder relative
to a nonempty closed interval Ω ⊂ R is defined as

softΩ : R→ R : ξ 7→





ξ − ω, if ξ < ω;
0, if ξ ∈ Ω;
ξ − ω, if ξ > ω,

(30)

with ω = inf Ω and ω = sup Ω.

Proposition 25 [24] Let f1 be as in (26) and let γ ∈ ]0,+∞[.
Then, for every x = (ξk)1≤k≤K ∈ H,

proxγf1x = (πk)1≤k≤K , (31)

where

πk =

{
proxγ%k

(softγΩk
ξk), if Ωk 6= ∅;

proxγ%k
ξk, otherwise.

(32)

An example of a commonly used function %k is the potential
function of a generalized Gaussian distribution (see [3] for
more details about this statistical model).

Example 26 [13, Example 4.4] Let ωk ∈ ]0,+∞[, let pk ∈
]1,+∞[, and let %k = ωk| · |pk . Then, for every ξ ∈ R,
prox%k

ξ = πk where πk is the unique solution to

ξ = pkωk|πk|pk−1 sgn(πk) + πk.
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In particular, πk is given by




ξ +
4ωk

3 · 21/3

(
|χk − ξ|1/3 − |χk + ξ|1/3

)
,

where χk =
√
|ξ|2 + 256ω3

k/729, if pk =
4
3
;

ξ +
9ω2

k sgn(ξ)
8

(
1−

√
1+

16|ξ|
9ω2

k

)
, if pk =

3
2
;

ξ/(1 + 2ωk), if pk = 2;

sgn(ξ)

√
1 + 12ωk|ξ| − 1

6ωk
, if pk = 3;

∣∣∣∣
χk + ξ

8ωk

∣∣∣∣
1/3

−
∣∣∣∣
χk − ξ

8ωk

∣∣∣∣
1/3

where χk =
√
|ξ|2 + 1/(27ωk), if pk = 4.

Let us now turn our attention to the function f2 (recall that
ν is supplied by (22)).

Proposition 27 Suppose that C = C1 × · · · × CM , for some
family (Cm)1≤m≤M of nonempty closed intervals in R. Let
γ ∈ ]0,+∞[, let x ∈ H, let F ∗x = (ηm)1≤m≤M , and set
h = (PCm(proxνγψm

ηm)− ηm)1≤m≤M . Then

proxγf2x = x+ ν−1(〈h | ek〉)1≤k≤K . (33)

Proof: See Appendix V.

Example 28 For a Laplacian additive noise, we have, for
every m ∈ {1, . . . ,M},

(∀η ∈ R) ψm(η) = ωm|η − ζm|, (34)

where ωm ∈ [0,+∞[. It follows from [13, Example 4.2] that

proxνγψm
ηm = ζm + soft[−νγωm,νγωm](ηm − ζm). (35)

Example 29 Speckle noise is typically associated with the
model

(∀m ∈ {1, . . . ,M}) Zm = Υm(1 + Um), (36)

where Υm and Um are independent random variables taking
their values in [0,+∞[ and [−1,+∞[, respectively. Suppose
that Um has a uniform density over [−ω, ω] with ω ∈ ]0, 1[.
Then ψm = ι[ζm/(1+ω),ζm/(1−ω)]. Consequently, we deduce
that proxνγψm

= P[ζm/(1+ω),ζm/(1−ω)] and that

PCm ◦ proxνγψm
= P[ζm/(1+ω),ζm/(1−ω)]∩Cm

. (37)

Example 30 For Poisson data, we have z = (ζm)1≤m≤M ∈
NM and the components (ηm)1≤m≤M of y must lie in [0,+∞[
(when ηm = 0, the Poisson distribution degenerates and ζm =
0). For every m ∈ {1, . . . ,M} and η ∈ ]0,+∞[, the Poisson
probabilities are given by

µZm|Υm=η(ζm) =
|αη|ζm

ζm!
exp(−αη), (38)

where α ∈ ]0,+∞[ is a scaling parameter. Therefore, for each
m, there are two alternatives. If ζm > 0, then

(∀η ∈ R) ψm(η) =

{
−ζm ln(η) + αη, if η > 0;
+∞, otherwise.

(39)

On the other hand, if ζm = 0, then

(∀η ∈ R) ψm(η) =

{
αη, if η ≥ 0;
+∞, otherwise.

(40)

Equations (39) and (40) correspond to the potential functions
of a gamma distribution and of an exponential distribution,
respectively. We deduce from [13, Examples 4.8 and 4.9] that

proxνγψm
ηm =

ηm − νγα+
√
|ηm − νγα|2 + 4νγζm

2
.

(41)

VI. NUMERICAL EXAMPLES

We consider the problem of denoising images of size N×N ,
where N = 512. In our experiments, the distribution of the
noise is assumed to be known.

Using the notation of Section V, the dimension of the signal
space G is M = N2. The size of the frame is set to K = 4M
and (ek)1≤k≤K is chosen to be a two-dimensional wavelet
frame. More precisely, we use the concatenation of four shifted
separable dyadic orthonormal wavelet decompositions [41]
carried out over 4 resolution levels. The shift parameters are
(0, 0), (1, 0), (0, 1), and (1, 1) and symlet filters of length 8
are used [26]. Denoising is performed by solving Problem 23,
where f1 is the nondifferentiable function given by (26), (29),
and Example 26, with pk ∈ {4/3, 3/2, 2} and Ωk = [−τk, τk]
with τk ∈ ]0,+∞[. For each subband, an adapted value of
(τk, ωk, pk) is selected via a maximum likelihood approach.
On the other hand, the function f2 is given by (27) where
the constraint set is C = [0, 255]M and where the functions
(ψm)1≤m≤M defining Ψ in (28) are chosen according to the
noise distribution. In the two scenarios investigated below, we
have inf Ψ(H) > −∞. Hence, as a result of the coercivity
of the functions (φk)1≤k≤K and [13, Proposition 3.3(iii)(c)],
f1+f2 is coercive and Problem 23 admits at least one solution.
The denoised images are obtained via Algorithm (19). The
convergence of the sequence (xn+ 1

2
)n∈N to a solution to

Problem 23 is guaranteed by Corollary 21 and Proposition 24.
As a measure of discrepancy between two images y1 and

y2, we subsequently employ the relative error

∆(y1, y2) = 20 log10 (‖y2‖/‖y1 − y2‖) . (42)

Let us point out that, for frame-based denoising problems,
the Bayesian formulation adopted in [13] requires stronger
assumptions than those made in this paper, while allowing
for the use of arbitrary frame representations. In particular,
the noise distributions considered in the following examples
result in a nondifferentiable function f2 and they can therefore
not be dealt with via the method developed in [13], which is
based on Theorem 3.
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Fig. 1. Example 1. Top: original image; center: noisy image (for improved
readability the Laplacian noise realizations have been limited to the interval
[−200, 200], which captures 99.9% of the samples); bottom: denoised image.

0 20 40 60 80 100 120
−15

−10

−5

0

Fig. 2. Example 1. (f1(xn+1/2) + f2(xn+1/2))/(f1(x1/2) + f2(x1/2))
in dB versus the iteration index n with γ = 50 and λn ≡ 1.

A. Example 1: Laplacian noise

The original image y shown in Fig. 1 (top) has been
corrupted by addition of i.i.d. zero-mean Laplacian noise. The
degraded image z can be seen in Fig. 1 (center). The image-to-
noise ratio is ∆(z, y) = 5.95 dB. The functions (ψm)1≤m≤M
are as in Example 28. The denoised image ỹ is shown in Fig. 1
(bottom). The relative mean square error with respect to the
original image is ∆(ỹ, y) = 14.56 dB. The values taken by
the objective function along the iterations are plotted in Fig. 2,
showing the good asymptotic behavior of Algorithm (19).

B. Example 2: Poisson noise

The original image y is displayed in Fig. 3 (top). It is used
to generate the Poisson field z shown in Fig. 3 (center) via
the probabilistic model (38), where α = 0.10. The relative
error with respect to the scaled original image is ∆(z, αy) =
11.66 dB. The functions (ψm)1≤m≤M are as in Example 30.
The restored image ỹ shown in Fig. 3 (bottom) yields a relative
error of ∆(ỹ, y) = 21.02 dB. The convergence pattern of the
algorithm is illustrated in Fig. 4. Note that, in contrast with
the previous example, the objective function is now negative
valued.

VII. CLOSING REMARKS

We have proposed an algorithm for solving signal recovery
problems that can be modeled via the minimization of the sum
of two lower semicontinuous convex functions in a Hilbert
space. In this variational framework, neither of the functions
need be differentiable or finite and, thereby, a broad class
of signal recovery problems is captured. On an algorithmic
level, the proposed method (19) is derived from the Douglas-
Rachford splitting algorithm for finding zeros of monotone
operators. Its main advantage is to employ the functions
separately through individual proximity operators. This makes
the implementation much easier than in alternative nonsmooth
optimization methods such as (7), which are tailored for
generic minimization problems and in which the sum of the
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Fig. 3. Example 2. Top: original image; center: noisy image; bottom:
denoised image.
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Fig. 4. Example 2. (f1(x1/2) + f2(x1/2))/(f1(xn+1/2) + f2(xn+1/2))
in dB versus the iteration index n with γ = 140 and λn ≡ 1.

two functions has to be dealt with directly. We have shown
(Theorem 20) that the proposed Douglas-Rachford algorithm
does produce a solution to the variational problem regardless
of the starting point.

Each iteration of algorithm (19) requires the computation of
the proximity operators of both functions separately. Although
many functions encountered in signal recovery lead to closed-
form proximity operators [13], [24], [25], the implementation
of such operators may be costly in general as they amount
to solving (strongly convex) minimization subproblems. It
would therefore be worthwhile to attempt to replace these
operators with approximations that would be less demanding
numerically, while preserving the convergence properties of
the algorithm. Another limitation of our algorithm is that
it is inherently structured for the sum of two functions.
Variants that could handle efficiently the sum of more than
two nondifferentiable functions should be explored for greater
flexibility.

APPENDIX I
PROOF OF PROPOSITION 11

Set g = f ◦ L. It follows from the linearity of L and the
convexity of f that g is convex. In addition, the continuity
of L and the lower semicontinuity of f imply that g is lower
semicontinuous. Finally, since (15) implies that 0 ∈ dom f −
ranL, we have dom f ∩ ranL 6= ∅ and, in turn, dom g 6= ∅.
Therefore g ∈ Γ0(H).

To prove the second assertion, fix x ∈ H and set p =
proxgx. It follows from (15) and [57, Theorem 2.8.3] that
∂g = L∗ ◦ ∂f ◦ L. Hence, Lemma 7 yields

p = proxgx ⇔ x− p ∈ ∂g(p) = L∗(∂f(Lp)) (43)
⇒ L(x− p) ∈ L(L∗(∂f(Lp)))
⇔ Lx− Lp ∈ ν∂f(Lp) = ∂(νf)(Lp)
⇔ Lp = proxνf (Lx). (44)

Now set V = kerL. It follows from [28, Chapter 8] that
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V ⊥ = ranL∗ and that{
PV = Id− (L∗◦(L◦L∗)−1◦L) = Id− ν−1L∗◦L
PV ⊥ = Id− PV = ν−1L∗◦L. (45)

Hence, since (43) implies that p− x ∈ ranL∗, we obtain

PV p = PV x+PV (p−x) = PV x = (Id−ν−1L∗ ◦L)x. (46)

On the other hand, we derive from (45) and (44) that

PV ⊥p = ν−1L∗(Lp) = ν−1(L∗◦ proxνf ◦ L)x. (47)

Altogether,

p = PV p+PV ⊥p = x+ ν−1(L∗ ◦ (proxνf − Id) ◦L)x, (48)

and we obtain (16). ¥

APPENDIX II
PROOF OF PROPOSITION 12

Fix x ∈ H, and set g : y 7→ f(y) + ‖x − y‖2/2 and p =
proxfx.

i): By definition, p minimizes g. Therefore, if p belongs to
C, it also minimizes ιC + g, whence p = proxιC+fx.

ii): Since C is a closed interval in R, we must show that

proxf+ιCx =





inf C, if p < inf C;
p, if p ∈ C;
supC, if p > supC.

(49)

If p ∈ C, the identity follows from i). Now suppose that
p < inf C. Since g is strictly convex and admits p as
its unique minimizer, it increases strictly over the interval
[p,+∞[ ∩ dom f . Since C ∩ dom g 6= ∅, inf C ∈ C ∩ dom g
and inf C therefore minimizes ιC + g, which shows that
proxιC+fx = inf C. The case when p > supC is treated
analogously. ¥

APPENDIX III
PROOF OF PROPOSITION 14

i): The assumption implies that 0 ∈ int (dom f1−dom f2).
Therefore cone (dom f1 − dom f2) = H and hence (6) holds.

ii): If f1 is finite, then dom f1 = H and we obtain a special
case of i).

iii): The assumption implies that 0 ∈ (rint dom f1 −
rint dom f2). However, since f1 and f2 are convex func-
tions, the sets dom f1 and dom f2 are convex and we derive
from [42, Corollary 6.6.2] that rint dom f1 − rint dom f2 =
rint (dom f1 − dom f2). Hence, 0 ∈ rint (dom f1 − dom f2)
and, in turn, cone (dom f1−dom f2) is the span of dom f1−
dom f2, which is closed. ¥

APPENDIX IV
PROOF OF PROPOSITION 18

i): It results from the assumptions on f1 and f2 that f1 +f2
lies in Γ0(H) and that it is coercive. Hence, the claim follows
from [57, Theorem 2.5.1(ii)].

ii): See [57, Proposition 2.5.6].
iii): It follows from (6) and [57, Theorem 2.8.3] that ∂(f1+

f2) = ∂f1 + ∂f2. Hence, we derive from Lemma 6 that a) ⇔

x ∈ zer (∂(f1 + f2)) = zer (∂f1 + ∂f2) ⇔ b). Finally, the
equivalence b) ⇔ c) follows from Lemma 5, Lemma 8, and
[21, Lemma 2.6].

¥

APPENDIX V
PROOF OF PROPOSITION 27

We first deduce from (28) and Assumption 22v) that
dom (ιC + γΨ) = dom ιC ∩ domΨ = C ∩ (domψ1 × · · · ×
domψM ) 6= ∅. Hence, since F ∗ is surjective, ranF ∗ = G
and therefore

cone (dom (γΨ + ιC)− ranF ∗) = G. (50)

In turn, it follows from (20), (22), (27), and Proposition 11
with L = F ∗ and f = ιC + γΨ that, for every x ∈ H,

proxγf2x = x+ ν−1F (proxιC+νγΨ(F ∗x)− F ∗x)

= x+ ν−1(〈p− y | ek〉)1≤k≤K , (51)

where y = F ∗x and p = proxιC+νγΨy. We also note that

ιC(y) + νγΨ(y) =
M∑
m=1

ιCm(ηm) + νγψm(ηm). (52)

On the other hand, it follows from Proposition 12ii) and
Assumption 22 that, for every m ∈ {1, . . . ,M},

proxιCm+νγψm
= PCm ◦ proxνγψm

. (53)

Setting K = {1, . . . ,M} and letting (om)1≤m≤M be the
canonical basis of G in Lemma 10, we therefore obtain

p = (PCm(proxνγψm
ηm))1≤m≤M . (54)

Combining this identity with (51) yields (33). ¥
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Birkhäuser, 1998.

[50] H. J. Trussell, “A priori knowledge in algebraic reconstruction methods,”
in Advances in Computer Vision and Image Processing (T. S. Huang,
Ed.), vol. 1, pp. 265–316. Greenwich, CT: JAI Press, 1984.

[51] R. S. Varga, Matrix Iterative Analysis, 2nd edition. New York: Springer-
Verlag, 2000.

[52] I. Yamada, K. Slavakis, and K. Yamada, “An efficient robust adaptive
filtering algorithm based on parallel subgradient projection techniques,”
IEEE Trans. Signal Processing, vol. 50, pp. 1091–1101, 2002.

[53] D. C. Youla, “Generalized image restoration by the method of alternating
orthogonal projections,” IEEE Trans. Circuits Syst., vol. 25, pp. 694–
702, 1978.

[54] D. C. Youla and V. Velasco, “Extensions of a result on the synthesis of
signals in the presence of inconsistent constraints,” IEEE Trans. Circuits
Syst., vol. 33, pp. 465–468, 1986.

[55] D. C. Youla and H. Webb, “Image restoration by the method of convex
projections: Part 1 – theory,” IEEE Trans. Medical Imaging, vol. 1, pp.
81–94, 1982.

[56] M. Yukawa and I. Yamada, “Pairwise optimal weight realization –
Acceleration technique for set-theoretic adaptive parallel subgradient
projection algorithm,” IEEE Trans. Signal Processing, vol. 54, pp. 4557–
4571, 2006.
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