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THE ARITHMETIC-GEOMETRIC MEAN AND FAST COMPUTATION OF
ELEMENTARY FUNCTIONS*

J. M. BORWEIN" AND P. B. BORWEIN

Abstract. We produce a self contained account of the relationship between the Gaussian arithmetic-
geometric mean iteration and the fast computation of elementary functions. A particularly pleasant algorithm
for r is one of the by-products.

Introduction. It is possible to calculate 2 decimal places of r using only n iterations
of a (fairly) simple three-term recursion. This remarkable fact seems to have first been
explicitly noted by Salamin in 1976 [16]. Recently the Japanese workers Y. Tamura and
Y. Kanada have used Salamin’s algorithm to calculate 7r to 223 decimal places in 6.8
hours. Subsequently 224 places were obtained ([ 18] and private communication). Even
more remarkable is the fact that all the elementary functions can be calculated with
similar dispatch. This was proved (and implemented) by Brent in 1976 [5]. These
extraordinarily rapid algorithms rely on a body of material from the theory of elliptic
functions, all of which was known to Gauss. It is an interesting synthesis of classical
mathematics with contemporary computational concerns that has provided us with these
methods. Brent’s analysis requires a number of results on elliptic functions that are no
longer particularly familiar to most mathematicians. Newman in 1981 stripped this
analysis to its bare essentials and derived related, though somewhat less computationally
satisfactory, methods for computing r and log. This concise and attractive treatment may
be found in 15].

Our intention is to provide a mathematically intermediate perspective and some bits
of the history. We shall derive implementable (essentially) quadratic methods for
computing r and all the elementary functions. The treatment is entirely self-contained
and uses only a minimum of elliptic function theory.

1. 3.141592653589793238462643383279502884197. The calculation of r to great
accuracy has had a mathematical import that goes far beyond the dictates of utility. It
requires a mere 39 digits of r in order to compute the circumference of a circle of radius
2 x l025 meters (an upper bound on the distance travelled by a particle moving at the
speed of light for 20 billion years, and as such an upper bound on the radius of the
universe) with an error of less than 10-12 meters (a lower bound for the radius of a
hydrogen atom).

Such a calculation was in principle possible for Archimedes, who was the first person
to develop methods capable of generating arbitrarily many digits of r. He considered
circumscribed and inscribed regular n-gons in a circle of radius 1. Using n 96 he
obtained

6336 14688
3.1405 < 7r <. 3.1428.

2017.25 4673.5

If 1/An denotes the area of an inscribed regular 2n-gon and 1/Bn denotes the area of a
circumscribed regular 2n-gon about a circle of radius then

An+ + Bn(1.1) An+ ,,/AnBn, n+l-- 2

*Received by the editors February 8, 1983, and in revised form November 21, 1983. This research was
partially sponsored by the Natural Sciences and Engineering Research Council of Canada.

’Department of Mathematics, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H8.
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This two-term iteration, starting with A2 1/2 and B :--1/4, can obviously be used to
calculate r. (See Edwards [9, p. 34].) Ai-, for example, is 3.14159266 which is correct
through the first seven digits. In the early sixteen hundreds Ludolph von Ceulen actually
computed 7r to 35 places by Archimedes’ method [2].

Observe that A. 2-" cosec (0/2") and B. 2-"-1 cotan (0/2n+l) satisfy the above
recursion. So do A. 2-" cosech (0/2") and B. 2-n-1 cotanh (0/2"+1). Since in both
cases the common limit is 1/0, the iteration can be used to calculate the standard inverse
trigonometric and inverse hyperbolic functions. (This is often called Borchardt’s algo-
rithm [6], [19].)

If we observe that

A.+ B.+ (.4.
2(q./ + 1)

we see that the error is decreased by a factor of approximately four with each iteration.
This is linear convergence. To compute n decimal digits of r, or for that matter arcsin,
arcsinh or log, requires O(n) iterations.

We can, of course, compute 7r from arctan or arcsin using the Taylor expansion of
these functions. John Machin (1680-1752) observed that

r 16 arctan 4 arctan

and used this to compute r to 100 places. William Shanks in 1873 used the same formula
for his celebrated 707 digit calculation. A similar formula was employed by Leonhard
Euler (1707-1783):

This, with the expansion

r= 20 arctan ()+ 8 arctan (7-).
2 2.4

y2 )arctan(x) Y-- + y+ +

where y x2/(1 + x2), was used by Euler to compute r to 20 decimal places in an hour.
(See Beckman [2] or Wrench [21] for a comprehensive discussion of these matters.) In
1844 Johann Dase (1824-1861) computed r correctly to 200 places using the formula

4- arctan + arctan + arctan

Dase, an "idiot savant" and a calculating prodigy, performed this "stupendous task" in
"just under two months." (The quotes are from Beckman, pp. 105 and 107.)

A similar identity:

r 24 arctan + 8 arctan + 4 arctan

was employed, in 1962, to compute 100,000 decimals of r. A more reliable "idiot savant",
the IBM 7090, performed this calculation in a mere 8 hrs. 43 mins. 17].

There are, of course, many series, products and continued fractions for r. However,
all the usual ones, even cleverly evaluated, require O(4-) operations (+, x, /, 4-) to
arrive at n digits of r. Most of them, in fact, employ O(n) operations for n digits, which is
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essentially linear convergence. Here we consider only full precision operations. For a time
complexity analysis and a discussion of time efficient algorithms based on binary splitting
see [4].

The algorithm employed in [17] requires about 1,000,000 operations to compute
1,000,000 digits of r. We shall present an algorithm that reduces this to about 200
operations. The algorithm, like Salamin’s and Newman’s requires some very elementary
elliptic function theory. The circle of ideas surrounding the algorithm for r also provides
algorithms for all the elementary functions.

2. Extraordinarily rapid algorithms for algebraic functions. We need the following
two measures of speed of convergence of a sequence (a,) with limit L. If there is a constant
C so that

la,+- LI =< Cla- LI
for all n, then we say that (an) converges to L quadratically, or with second order. If there
is a constant C2 > so that, for all n,

la.- L[ _-< C-"

then we say that (a,) converges to L exponentially. These two notions are closely related;
quadratic convergence implies exponential convergence and both types of convergence
guarantee that an and L will "agree" through the first 0(2") digits (provided we adopt the
convention that .9999...9 and 1.000...0 agree through the required number of digits).

Newton’s method is perhaps the best known second order iterative method. Newton’s
method computes a zero off(x) y by

(2.1) x,,+ x.
f(x.) y

and hence, can be used to compute f- quadratically from f, at least locally. For our
purposes, finding suitable starting values poses little difficulty. Division can be performed
by inverting (1 Ix) y. The following iteration computes 1/y:

(2.2) x.+ 2x. xZ.y.

Square root extraction (4fi) is performed by

(2.3) Xn+ " X "JI-

This ancient iteration can be traced back at least as far as the Babylonians. From (2.2)
and (2.3) we can deduce that division and square root extraction are of the same order of
complexity as multiplication (see [5]). Let M(n) be the "amount of work" required to
multiply two n digit numbers together and let D(n) and S(n) be, respectively, the
"amount of work" required to invert an n digit number and compute its square root, to n
digit accuracy. Then

and

D(n) O(M(n))

S(n) O(M(n)).

We are not bothering to specify precisely what we mean by work. We could for example
count the number of single digit multiplications. The basic point is as follows. It requires
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O(log n) iterations of Newton’s method (2.2) to compute 1/y. However, at the ith
iteration, one need only work with accuracy O(2). In this sense, Newton’s method is
self-correcting. Thus,

D(n)= O(,l M(2)) O(M(n))

provided M (2) >_- 2M (2-1). The constants concealed beneath the order symbol are not
even particularly large. Finally, using a fast multiplication, see [12], it is possible to
multiply two n digits numbers in O(n log (n) log log (n)) single digit operations.

What we have indicated is that, for the purposes of asymptotics, it is reasonable to
consider multiplication, division and root extraction as equally complicated and to
consider each of these as only marginally more complicated than addition. Thus, when we
refer to operations we shall be allowing addition, multiplication, division and root
extraction.

Algebraic functions, that is roots of polynomials whose coefficients are rational
functions, can be approximated (calculated) exponentially using Newton’s method. By
this we mean that the iterations converge exponentially and that each iterate is itself
suitably calculable. (See 13].)

The difficult trick is to find a method to exponentially approximate just one
elementary transcendental function. It will then transpire that the other elementary
functions can also be exponentially calculated from it by composition, inversion and so
O11,

For this Newton’s method cannot suffice since, iffis algebraic in (2.1) then the limit
is also algebraic.

The only familiar iterative procedure that converges quadratically to a transcenden-
tal function is the arithmetic-geometric mean iteration of Gauss and Legendre for
computing complete elliptic integrals. This is where we now turn. We must emphasize
that it is difficult to exaggerate Gauss’ mastery of this material and most of the next
section is to be found in one form or another in 10].

3. The real AGM iteration. Let two positive numbers a and b with a > b be given.
Let a0 a, b0 b and define

(3.1) a.+, =- (a. + b.), bn+ nbn
for n in 1.

One observes, as a consequence of the arithmetic-geometric mean inequality, that
a. >_- a.+ >_- b.+ >_- b. for all n. It follows easily that (a.) and (b.) converge to a common
limit L which we sometimes denote by AG(a, b). Let us now set

c]
<(3.3) Cn+l - (a. bn)

4a.+ 4-’
which shows that (c.) converges quadratically to zero. We also observe that

(3.4) an an+ + Cn+ and bn an+
which allows us to define an, b. and Cn for negative n. These negative terms can also be
generated by the conjugate scale in which one starts with a[ ao and b[ eo and defines

(3.2) Cn a2. bE. for n e .
It is apparent that
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(a,) and (b,) by (3.1). A simple induction shows that for any integer n

(3.5) a’n 2-ha_n, b’n= 2-nC-n, C’n 2-nb_n.

Thus, backward iteration can be avoided simply by altering the starting values. For future
use we define the quadratic conjugate k’ x/1 k for any k between 0 and 1.

The limit of (an) can be expressed in terms of a complete elliptic integral ofthefirst
kind,

dO
(3.6) I(a, b):-- f/2

-,0 /a cos 0 + b sin 0"
In fact

r’oo dt
(3.7) I(a, b) J-oo /(a + t2)(b + 2)

as the substitution a tan 0 shows. Now the substitution of u 1/2 (t (ab/t)) and
some careful but straightforward work 15] show that

(3.8) l(a,b) =I((a+b) x/--)2

It follows that I(an, bn) is independent of n and that, on interchanging limit and integral,

I(ao, bo) lim I(an, bn) I(L, L).

Since the last integral is a simple arctan (or directly from (3.6)) we see that

(3.9) I(ao, bo) - AG(ao, bo).

Gauss, of course, had to derive rather than merely verify this remarkable formula. We
note in passing that AG(., .) is positively homogeneous.

We are now ready to establish the underlying limit formula.
PROPOSITION 1.

(3.10) lim
k---.0

Proof Let

and

A(k) f/2 k’ sin 0 dO

,0 /k + (k’) cos 0

f/2_ /1 k’ sin 0B(k) t.,o / + k’ sin 0

Since (k’ sin 0) cos 0 + (k sin 0) (k’ cos 0) + k-, we can check that

I(1, k)= A(k) + B(k).

Moreover, the substitution u k’ cos 0 allows one to evaluate

(3.11) A(k).= fo k du (1 + k’)/u + k2
log

k
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Finally, a uniformity argument justifies

COS 0 dO
(3 12) lim B(k) B(O) f/2

k-.O+ -,o + sin 0
log 2,

and (3.11) and (3.12) combine to show (3.10).
It is possible to give various asymptotics in (3.10), by estimating the convergence rate

in (3.12).
PROPOSITION 2. For k c (0,

(3.13) log (-) I(1, k)

Proof Let

5- 4k2I(1, k) 5- 4k2(8 + log

A(k) log (-) I(1, k).

+ k’ sin 0

As in Proposition 1, for k c (0, ],

(3.14)

k + sin0

We observe that, since k’= /1 k < k2,

(3.15) lg()-lg( l+k’)k log(1 +k’)2 =<l-k’<k2"=

Also, by the mean value theorem, for each 0 there is a 3’ [0, k], so that

[/- k’ sin 0 /i sin 00__<
+ k’ sin 0 + sin 0

+ (1 -k2) sinO +sinO

23" sin 0

(1 + (1 3"2) sin O)
k_-[@i+(1-3")sinO(1 3"2) sin 0

23"k 2k

/1 (1 3"2) sin 0

dO

/1 (1 -k2) sin0

This yields

r/2 /i -k’sinO_ /i -sinO

+ k’ sin 0 + sin 0
_-< 2k f/2 dO

-< 2 x] k2I(1 k)
’o x/1 k’ sin 0

which combines with (3.14) and (3.15) to show that

IzX(k) <- (1 + 2 x[)k I(1, k) <_- 4k2I(1, k).

We finish by observing that

kI(1, k) <= -
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allows us to deduce that

I(1, k)_-< 2rk + log ().
Similar considerations allow one to deduce that

(3.16) A(k) A(h) =< 2rlk hl
for0 < k, h < 1/,f.

The next proposition gives all the information necessary for computing the elemen-
tary functions from the AGM.

PROPOSITION 3. The AGM satisfies thefollowing identity (for all initial values)"

(3.17) lim 2-" a’. log (4a,,] 7r

a- -n/ 2

Proof One verifies that

lim a’.I(a’o, b’o)
2

(by (3.9))

lim a’.I(a’_., b’_.) (by (3.8))

lim a’,,I(2"a,,, 2"c,,) (by 3.5)).

Now the homogeneity properties of I(., show that

I(2na,,, 2nc,,) I 1,
an

Thus

7r
2_ an Cn

lim --I 1,
2 a

and the result follows from Proposition 1. l--1
From now on we fix ao a and consider the iteration as a function of b0 k

and Co k’. Let P, and Q, be defined by

(3.18) P(k) 4a----2 ’
c

O() --;’

and let P(k):-- lim, P(k), Q(k):- lim,_. Q,(k). Similarly let a a(k):-- lim__. a
and a’--- a’(k):- lim a’,.

THeOreM 1. For 0 < k < one has.

(a) P(k) exp (TrQ(k)),

16 (.an a)(3.19)
(b) 0 _-< P,(k) P(k) <-_

k a

(c) Q.(k) Q(k) l-_< a’la a,I +ala’-
(a’)

Proof (a) is an immediate rephrasing of Proposition 3, while (c) is straightforward.
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To see (b) we observe that

(3.20) p+, pn (a+’l’-
\anl

because 4an/l cn+l Cn, as in (3.3). Since an+l --< an we see that

(3.21)
O<Pn- Pn+l <= Pn <- Po,

k an I an I

a an+l)e- Pn+l <-- Noa

since an decreases to a. The result now follows from (3.21) on summation. I--]

Thus, the theorem shows that both P and Q can be computed exponentially since
can be so calculated. In the following sections we will use this theorem to give
implementable exponential algorithms for r and then for all the elementary functions.

We conclude this section by rephrasing (3.19a). By using (3.20) repeatedly we derive
that

(3.22) P-
-k --z

Let us note that

an 2a-2 -i-

and xn bn/an satisfies the one-term recursion used by Legendre 14]

(3.23) xn/ Xo k.
xn+

Thus, also

(3.24) Pn+l(k)
k .=o 2 Xnl

When k 2-1/2, k k’ and one can explicitly deduce that P(2-1/2) e. When k 2-1/2

(3.22) is also given in 16].

4. Some interrelationships. A centerpiece of this exposition is the formula (3.17) of
Proposition 3.

(4.1) [4an] r an
lim log I| lim

k Cn l
--S,

coupled with the observation that both sides converge exponentially. To approximate log x
exponentially, for example, we first find a starting value for which

Cn !

This we can do to any required accuracy quadratically by Newton’s method. Then we
compute the right limit, also quadratically, by the AGM iteration. We can compute exp
analogously and since, as we will show, (4.1) holds for complex initial values we can also
get the trigonometric functions.
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There are details, of course, some of which we will discuss later. An obvious detail is
that we require r to desired accuracy. The next section will provide an exponentially
converging algorithm for r also based only on (4.1). The principle for it is very simple. If
we differentiate both sides of (4.1) we lose the logarithm but keep the

Formula (3.10), of Proposition 1, is of some interest. It appears in King [11, pp. 13,
38] often without the "4" in the log term. For our purposes the "4" is crucial since without
it (4.1) will only converge linearly (like (log 4)/2"). King’s 1924 monograph contains a
wealth of material on the various iterative methods related to computing elliptic integrals.
He comments 11, p. 14]:

"The limit [(4.1) without the "4"] does not appear to be generally known, although
an equivalent formula is given by Legendre (Fonctions bliptiques, t. I, pp. 94-101)."

King adds that while Gauss did not explicitly state (4.1) he derived a closely related
series expansion and that none of this "appears to have been noticed by Jacobi or by
subsequent writers on elliptic functions." This series [10, p. 377] gives (4.1) almost
directly.

Proposition may be found in Bowman [3]. Of course, almost all the basic work is to
be found in the works of Abel, Gauss and Legendre ], 10] and 14]. (See also [7].) As
was noted by both Brent and Salamin, Proposition 2 can be used to estimate log given r.
We know from (3.13) that, for 0 < k _-< 10-3,

log (-) -/(1, k) < 10k2llog k,.

By subtraction, for 0 < x < 1, and n >= 3,

(4.2) ]log (x) [I(1, 10-") I(1, 10-"x)] < n 10-2"-1)

and we can compute log exponentially from the AGM approximations of the elliptic
integrals in the above formula. This is in the spirit of Newman’s presentation [15].
Formula (4.2) works rather well numerically but has the minor computational drawback
that it requires computing the AGM for small initial values. This leads to some linear
steps (roughly log (n)) before quadratic convergence takes over.

We can use (3.16) or (4.2) to show directly that r is exponentially computable. With
k 10-" and h 10-2" + 10-" (3.16) yields with (3.9) that, for n >_- 1,

log (10-" + 1)
AG(1, 10-") AG(1, 10-" + 10-2") =< 101-2".

Sincel log (x + 1)Ix I<= x/2 for0 < x < 1, we derive that

(4.3) 1210"_ 10"
r AG(1, 10-") AG(1, 10-" + 10-2")

Newman [15] gives (4.3) with a rougher order estimate and without proof. This
analytically beautiful formula has the serious computational drawback that obtaining n
digit accuracy for r demands that certain of the operations be done to twice that
precision.

Both Brent’s and Salamin’s approaches require Legendre’s relation: for 0 < k <

(4.4) I(1, k)J(1, k’) + I(1, k’)J(1, k) I(1, k)I(1, k’)
2

where J(a, b) is the complete elliptic integral ofthe second kind defined by

J(a, b):= f,/2 x/a2 cos2 0 + b sin 0 dO.
’0
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The elliptic integrals of the first and second kind are related by

(4.5) J(ao, bo)= (a - -o 2"c) I(ao, bo)

where, as before, c,: a, b, and a, and b, are computed from the AGM iteration.
Legendre’s proof of (4.4) can be found in [3] and [8]. His elegant elementary

argument is to differentiate (4.4) and show the derivative to be constant. He then
evaluates the constant, essentially by Proposition 1. Strangely enough, Legendre had
some difficulty in evaluating the constant since he had problems in showing that k log (k)
tends to zero with k [8, p. 150].

Relation (4.5) uses properties of the ascending Landen transformation and is derived
by King in 11 ].

From (4.4) and (4.5), noting that if k equals 2-1/2 then so does k’, it is immediate
that

(4.6) r
[2AG(1, 2-1/2)]

2n+l’._ c.
This concise and surprising exponentially converging formula for r is used by both
Salamin and Brent. As Salamin points out, by 1819 Gauss was in possession of the AGM
iteration for computing elliptic integrals of the first kind and also formula (4.5) for
computing elliptic integrals of second kind. Legendre had derived his relation (4.4) by
1811, and as Watson puts it [20, p. 14] "in the hands of Legendre, the transformation
[(3.23)] became a most powerful method for computing elliptic integrals." (See also [10],
14] and the footnotes of 11 ].) King 11, p. 39] derives (4.6) which he attributes, in an

equivalent form, to Gauss. It is perhaps surprising that (4.6) was not suggested as a
practical means of calculating r to great accuracy until recently.

It is worth emphasizing the extraordinary similarity between (1.1) which leads to
linearly convergent algorithms for all the elementary functions, and (3.1) which leads to
exponentially convergent algorithms.

Brent’s algorithms for the elementary functions require a discussion of incomplete
elliptic integrals and the Landen transform, matters we will not pursue except to mention
that some of the contributions of Landen and Fagnano are entertainingly laid out in an
article by G.N. Watson entitled "The Marquis [Fagnano] and the Land Agent [Land-
en]" [20]. We note that Proposition is also central to Brent’s development though he
derives it somewhat tangentially. He also derives Theorem (a) in different variables via
the Landen transform.

5. An algorithm for r. We now present the details of our exponentially converging
algorithm for calculating the digits of r. Twenty iterations will provide over two million
digits. Each iteration requires about ten operations. The algorithm is very stable with all
the operations being performed on numbers between 1/2 and 7. The eighth iteration, for
example, gives r correctly to 694 digits.

THEOREM 2. Consider the three-term iteration with initial values

a0 4, to 0, r0 2 +
given by

1/2),(i) .+1 (Oln/2 +-
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(ii) ,+ a,
+ a

(1 +a.+_).(iii) r.+ r./,+
+/+

Then 7r converges exponentially to r and

Proof Consider the formula

(a) ra,,
(5.1) 2--- log 4

2 a’.
which, as we will see later, converges exponentially at a uniform rate to zero in some
(complex) neighbourhood of 1/x/-. (We are considering each of a., bn, c., a’n, b’., c’. as
being functions of a complex initial value k, i.e. b0 k, b x/1 k2, ao a’o .)

Differentiating (5.1) with respect to k yields

(5.2) 2- an an
which also converges uniformly exponentially to zero in some neighbourhood of 1/v.
(This general principle for exponential convergence of differentiated sequences of
analytic func.tions is a trivial consequence of the Cauchy integral formula.) We can
compute h., b. and k. from the recursions

n+l 2

(5.3) /n+,:= h. +/. a.

.+, (h. b.),

where ho O, bo 1, ao and bo k.
We note that a. and b,, map {z IRe(z)> O} into itself and that itn and /. (for

sufficiently large n) do likewise.
It is convenient to set

an l
(5.4) an ff and

with

ao’= and /3o"=0.

We can derive the following formulae in a completely elementary fashion from the basic
relationships for a., b. and c. and (5.3)"

t(n b t(5,5) an+l n+l (n n) nn
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(5.6)

(5.7)

an+l n+l
n+l Cn+l (c.- 1)(/3. + 1)’

Ot/+l (oln/2 - O1/2),

_,/( . + 1.)(5.8) "+’ " t. + a

(5.9) a.+, 2a./= (al/z- 11z,

(5.10) a.+, .+- 2 a.(. + a.)
1/2.+-.+ (+-.) (.-.)

(5.) .+,- (5.+.) (.-)"

From (5.7) and (5.9) we deduce that a.---. uniformly with second order in compact
subsets of the open right half-plane. Likewise, we see from (5.8) and (5.10) that/3.-+
uniformly and exponentially. Finally, we set

(5.12) 3’.=
a.

We see from (5.11 that

(5.13)

and also from (5.6) that

% ( an+_kn+l)(5.14) +/3n--2n+’ 1-h-+lCn+l
Without any knowledge of the convergence of (5.1) one can, from the preceding

relationships, easily and directly deduce the exponential convergence of (5.2), in
{zllz 1/zl--< c < l/z}. We need the information from (5.1) only to see that (5.2) converges
to zero.

The algorithm for r comes from multiplying (5.2) by a./h. and starting the iteration
at k 2-/2. For this value of k a’. a., (ti’.) -h. and

which by (5.14) shows that

2.+ r
an+ Cn+

".
1+/3.

Some manipulation of (5.7), (5.8) and (5.13) now produces (iii). The starting values for
a.,/3, and 3". are computed from (5.4). Other values of k will also lead to similar, but
slightly more complicated, iterations for r.

To analyse the error one considers

3"n+ 3"n (1 + anl/2)
+ /3.+1 + /3.- 2(/3. + C.)(1 + /3.+,) (1 + /3n) %
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and notes that, from (5.9) and (5.10), for n >= 4,

I.- II <- 102.+---- and I.- ll102"+2
(One computes that the above holds for n 4.) Hence,

//3.+1 / fin 102"+1
and

__<
102".

In fact one can show that the error is of order 2he -’2"+’.
If we choose integers in [6,6-1], 0 < 6 < 1/2 and perform n operations

(+, -, x, +, 4-) then the result is always less than or equal to 2n. Thus, if q > 6, it is not
possible, using the above operations and integral starting values in [6, di -1 ], for every n to
compute 7r with an accuracy of O(-") in n steps. In particular, convergence very much
faster than that provided by Theorem 2 is not possible.

The analysis in this section allows one to derive the Gauss-Salamin formula (4.6)
without using Legendre’s formula or second integrals. This can be done by combining our
results with problems 15 and 18 in [11]. Indeed, the results of this section make
quantitative sense of problems 16 and 17 in [11]. King also observes that Legendre’s
formula is actually equivalent to the Gauss-Salamin formula and that each may be
derived from the other using only properties of the AGM which we have developed and
equation (4.5).

This algorithm, like the algorithms of 4, is not self correcting in the way that
Newton’s method is. Thus, while a certain amount of time may be saved by observing that
some of the calculations need not be performed to full precision it seems intrinsic (though
not proven) that O(log n) full precision operations must be executed to calculate r to n
digits. In fact, showing that r is intrinsically more complicated from a time complexity
point of view than multiplication would prove that r is transcendental [5].

6. The complex AGM iteration. The AGM iteration

a,+l (a, + b,), b,+l

is well defined as a complex iteration starting with a0 1, b0 z. Provided that z does not
lie on the negative real axis, the iteration will converge (to what then must be an analytic
limit). One can see this geometrically. For initial z in the right half-plane the limit is given
by (3.9). It is also easy to see geometrically that a, and b, are always nonzero.

The iteration for x, b,/a, given in the form (3.23) as Xn+ 2 4-,/x,,+1 satisfies

(1 4.)
(6.1) (X,+l- 1)=

This also converges in the cut plane C (-, 0]. In fact, the convergence is uniformly
exponential on compact subsets (see Fig. 1). With each iteration the angle 0, between x,
and is at least halved and the real parts converge uniformly to 1.

It is now apparent from (6.1) and (3.24) that

(6.2) P,(k) (4an12’-"= (11/ Xnl2-", c---! x"!
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FIG. 1.

and also,

Q,,(k)
a,,
an

converge exponentially to analytic limits on compact subsets of the complex plane that
avoid

D:= O]

Again we denote the limits by P and Q. By standard analytic reasoning it must be that
(3.19a) still holds for k in D.

Thus one can compute the complex exponentialmand so also cos and sinM
exponentially using (3.19). More precisely, one uses Newton’s method to approximately
solve Q(k) z for k and then computes P,,(k). The outcome is ez. One can still perform the
root extractions using Newton’s method. Some care must be taken to extract the correct
root and to determine an appropriate starting value for the Newton inversion. For
example k 0.02876158 yields Q(k) and P4(k) e to 8 significant places. If one now
uses k as an initial estimate for the Newton inversions one can compute el+i for101 --< r/8.
Since, as we have observed, e is also exponentially computable we have produced a
sufficient range of values to painlessly compute cos 0 + sin 0 with no recourse to any
auxiliary computations (other than r and e, which can be computed once and stored). By
contrast Brent’s trigonometric algorithm needs to compute a different logarithm each
time.

The most stable way to compute P, is to use the fact that one may update c, by

Cn(6.3) c,/
4a,+l

One then computes a, b and c to desired accuracy and returns

4an] /2"
or (2(an+bn))1/2"

This provides a feasible computation of P,, and so of exp or log.
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In an entirely analogous fashion, formula (4.2) for log is valid in the cut complex
plane. The given error estimate fails but the convergence is still exponential. Thus (4.2)
may also be used to compute all the elementary functions.

7. Concluding remarks and numerical data. We have presented a development of the
AGM and its uses for rapidly computing elementary functions which is, we hope, almost
entirely self-contained and which produces workable algorithms. The algorithm for r is
particularly robust and attractive. We hope that we have given something of the flavour of
this beautiful collection of ideas, with its surprising mixture of the classical and the
modern. An open question remains. Can one entirely divorce the central discussion from
elliptic integral concerns? That is, can one derive exponential iterations for the elemen-
tary functions without recourse to some nonelementary transcendental functions? It
would be particularly nice to produce a direct iteration for e of the sort we have for r
which does not rely either on Newton inversions or on binary splitting.

The algorithm for r has been run in an arbitrary precision integer arithmetic. (The
algorithm can be easily scaled to be integral.) The errors were as follows:

Iterate Digits correct Iterate Digits correct

8 345
19 694
41 1392
83 10 2788

Formula (4.2) was then used to compute 2 log (2) and log (4), using r estimated as
above and the same integer package. Up to 500 digits were computed this way. It is worth
noting that the error estimate in (4.2) is of the right order.

The iteration implicit in (3.22) was used to compute e" in a double precision Fortran.
Beginning with k 2-1/2 produced the following data:

Iterate P,, e a./b.

1.6 x 10-l

2.8 x 10-9

1.7 x 10-20

< 10-40

1.5 x 10-2

2.8 x 10-s

9.7 x 10-1.2 x 10-21

Identical results were obtained from (6.3). In this case y, 4a,,/c,, was computed by the
two term recursion which uses x,, given by (3.23), and

16 (1 + Xn)(7.1) Y- k2’
Y,+I 2 Y""

One observes from (7.1) that the calculation ofy, is very stable.
We conclude by observing that the high precision root extraction required in the

AGM 18], was actually calculated by inverting y 1/x2. This leads to the iteration

3x. xa.y
(7.2) X.+l 2

for computing y-/2. One now multiplies by y to recapture 4. This was preferred because
it avoided division.
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Abstract. This paper examines low-complexity approximations to familiar functions and numbers.
The intent is to suggest that it is possible to base a taxonomy of such functions and numbers on their
computational complexity. A central theme is that traditional methods of approximation are often very far
from optimal, while good or optimal methods are often very far from obvious. For most functions, provably
optimal methods are not known; however the gap between what is known and what is possible is often
small. A considerable number ofopen problems are posed and a number ofrelated examples are presented.
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1. Introduction. We examine various methods for evaluating familiar functions
and numbers to high precision. Primarily, we are interested in the asymptotic behavior
of these methods. The kinds of questions we pose are:

(1) How much work (by various types of computational or approximation
measures) is required to evaluate n digits of a given function or number?

(2) How do analytic properties of a function relate to the efficacy with which it
can be approximated?

(3) To what extent are analytically simple numbers or functions also easy to
compute?

(4) To what extent is it easy to compute analytically simple functions?
Even partial answers to these questions are likely to be very difficult. Some,

perhaps easier, specializations of the above are:
(5) Why is the function x/ easier to compute than exp? Why is it only marginally

easier?
(6) Why is the Taylor series often the wrong way to compute familiar functions?
(7) Why is the number x/ easier to compute than e or r? Why is it only

marginally easier?
(8) Why is the number .1234567891011... computationally easier than r or e?
(9) Why is computingjust the nth digit ofexp (x) really no easier than computing

all the first n digits?
(10) Why is computing just the nth digit of r really no easier than computing

all the first n digits?
Answers to (7) and (10) are almost certainly far beyond the scope of current

number-theoretic techniques. Partial answers to some of the remaining questions are
available.

The traditional way to compute elementary functions, such as exp or log, is to
use a partial sum of the Taylor series or a related polynomial or rational approxima-
tion. These are analytically tractable approximations, and over the class of such
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approximations are often optimal or near optimal. For example, the nth partial sums
to exp are asymptotically the best polynomial approximations in the uniform norm
on the unit disc in the complex plane, in the sense that if s is the nth partial sum of
the Taylor expansion and p, is any polynomial of degree n, then for large n,

..exp (z)-s(z)..l<[1 +] ..exp (z)-p(z),,,.

Here I1 denotes the supremum norm over the unit disc in the complex plane (see
[5]). If the measure of the amount of work is the degree of the approximation, as it
has been from a conventional point of view, then the story for exp might end here.

Questions )-(3) above have a very elegant answer for polynomial approximation
in the form of the Bernstein-Jackson theorems [11 ]. These, for example, tell us that
a function is entire if and only if the error in best uniform polynomial approximation
of degree n on an interval tends to zero faster than geometrically, with a similar exact
differentiability classification of a function in terms of the rate of polynomial approx-
imation.

If we wish to compute n digits of log (x) using a Taylor polynomial then we
employ a polynomial of degree n and perform O(n) rational operations, while for
exp (x) we require O(n/log n) rational operations to compute n digits. The slight
improvement for exp reflects the faster convergence rate of the Taylor series. Pad6
approximants, best rational approximants and best polynomial approximants all
behave in roughly the same fashion, except that the constants implicit in the order
symbol change [5], [8].

A startling observation is that there exist rational functions that give n digits of
log, exp, or any elementary function but require only O((log n)) rational operations
to evaluate. These approximants are ofdegree O(n) but can be evaluated in O((log n))
infinite-precision arithmetic operations. The simplest example of such a function is
x which can be evaluated in O(log n) arithmetic operations by repeated squaring.
While we cannot very explicitly construct these low-rational-complexity approxima-
tions to exp or log, it is clear that much of their simplicity results from squarings of
intermediate terms. The moral is that it is appropriate and useful to view x" as having
the complexity of a general polynomial of degree log n, not of degree n.

The existence of such approximants is a consequence of the construction of low-
bit-complexity algorithms for log and r resting on the Arithmetic-Geometric Mean
(AGM) iteration of Gauss, Lagrange, and Legendre (see 2 for definitions). These
algorithms were discovered and examined by Beeler, Gosper, and Schroeppel [3],
Brent [9], and Salamin [21] in the 1970s. A complete exposition is available in [5].
These remarkable algorithms are both theoretically and practically faster than any of
the traditional methods for extended precision evaluation of elementary functions.
The exact point at which they start to outperform the usual series expansions depends
critically on implementation; the switchover comes somewhere in the 100- to 1000-
digit range.

The main purpose of this paper is to catalogue the known results on complexity
of familiar functions. We now appear to know enough structure to at least speculate
on the existence of a reasonable taxonomy of functions based on their computational
complexity. Here we have in mind something that relates computational properties
of functions to their analytic or algebraic properties, something vaguely resembling
the Bernstein-Jackson theorems in the polynomial case.

Likewise we would like to suggest the possibility of a taxonomy ofnumbers based
on their computational nature. Here, we are looking for something that resembles
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Mahler’s classification of transcendendentals in terms of their rate of algebraic
approximation 15].

It is not our intention to provide a taxonomy; this must await further progress in
the field. We do hope, however, to present enough examples and pose enough
interesting questions to persuade the reader that it is fruitful to pursue such an end.

2. Definitions. We consider four notions of complexity.
(1) Rational complexity. We say that a function f has rational complexity

Oat (s(n)) on a set A if there exists a sequence of rational functions R. so that
(a) [Rn(x)-f(x)l < 10-nfor allxeA;
(b) asymptotically, R, can be evaluated using no more than O(s(n)) rational

operations (i.e., infinite-precision additions, subtractions, multiplications, and divi-
sions).

That exp has rational complexity Orat (log n) means that there is a sequence of
rational functions, the nth being evaluable in roughly log3n arithmetic operations,
giving an n-digit approximation to exp. The subscript on the order symbol is for
emphasis.

We will sometimes use 2 and rat as the lower bound order symbols. Whenever
we talk about "n-digit precision" or "computing n digits" we mean computing to an
accuracy of 10 -".

(2) Algebraic complexity. We say that a function f has algebraic complexity
Oag (s(n)) on a set A if there exists a sequence of algebraic functions A, so that

(a) IA,(x)-f(x)l < 10 for allxeA;
(b) asymptotically, all the A, can be evaluated using no more than O(s(n))

algebraic operations (i.e., infinite-precision solutions of a fixed number of prespecified
algebraic equations).

This algebraic complexity measure allows us, for example, to use square root
extractions in the calculation of the approximants and to count them on an equal
footing with the rational operations. This is often appropriate because, from a bit-
complexity point of view, root extraction is equivalent to multiplication (see 4). Note
that we allow only a finite number of additional algebraic operationsso while we
might allow for computing square roots, cube roots, and seventeenth roots, we would
not allow an infinite number of different orders of roots.

Neither of the above measures takes account of the fact that low-precision
operations are easier than high-precision operations.

(3) Bit complexity. We say that a function fhas bit complexity Obit (s(n)) on a
set A if there exists a sequence of approximations B, so that

(a) IB,(x)-f(x)l < 10 for allxeA;
(b) B, is the output of an algorithm (given input n and x) that evaluates the B,

to n-digit accuracy using O(s(n)) single-digit operations (+,-, x).
This is the appropriate measure of time complexity on a serial machine. (See [1]

for more formal definitions.)
We wish to capture in the next definition the notion of how complex it is to

compute only the nth digit of a function.
(4) Digit complexity. We say that a functionfhas digit complexity Og (s(n)) on

a set A if there exists a sequence of approximations D. so that
(a) D.(x) gives the nth digit off(x). By this we mean that D(x) differs from the

n through (n + k)th digits off(x) by at most 10- for any preassigned fixed k;
(b) D. is the output of an algorithm (given input n and x) that evaluates the D

to k digits using O(s(n)) single-digit operations.
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This definition of agreement of nth digits takes account of the fact that sequences
of repeated nines can occur. We really want to say that. 19999.. and .2000. agree
in the first digit. As it stands, the definition above exactly computes only the nth digit
to a probability dependent on k.

It is also assumed that accessing the kth through nth digit of input of x is an
Obit (max (n- k, log k)) operation, so that accessing the first n digits is Obi (n) while
accessing just the nth bit is Obit (log n).

Addition is Orat (1), Oalg (1), Obit (n), and Odig (log n). Here we take the set A,
where we seek a uniform algorithm, to be the unit square in . The usual addition
algorithm gives the upper bounds shown above. Addition is one of the very few cases
where we know the exact result. Trivial uniqueness considerations show that addition
is ftbi (n), and hence all the above orders are exact.

It comes as a major surprise of this side of theoretical computer science that the
usual way of multiplying is far from optimal from a bit-complexity point of view.
The usual multiplication algorithm has bit complexity ftbit (n). However, it is possible
to construct a multiplication which is Obit (n log n log log n). This is based on the Fast
Fourier Transform and is due to Schrnhage and Strassen (see [1 ], [16]). The extent
to which the log terms are necessary is not known. Given a standard model of
computation the best known lower bound is the trivial one, flbit (n). We will denote
the bit complexity ofmultiplication by M(n).

3. A table of results. The state of our current knowledge is contained in
Table 1. The orders of the various measures of complexities for computing n digits
(or in the final case the nth digit) compose the columns. In each case, except addition,
the only upper bound we know for the digit complexity is the same as the bit-
complexity bound. When we deal with functions, we assume that we are on a compact
region ofthe domain ofthe given function that is bounded away from any singularities
and that contains an interval. Numbers may be considered as functions whose domain
is a singleton.

For our purposes hypergeometricfunctions are functions of the form

f(x):=Yax" wherea/a_=R(n)

and R is a fixed rational function (with coefficients in Q).

TABLE

Type of function Orat Oalg Obit ’dig

(1) Addition n log n
(2) Multiplication n log n log log n n
(3) Algebraic (nonlinear) log n M(n) n
(4) log (complete elliptic log2n log n (log n)M(n) n

integrals)
(5) exp log n log n (log n)M(n) n
(6) Elementary (nonlinear) log n log n (log n)M(n) n
(7) Hypergeometric (over Q) n 1/2+ n /2+ (log n)M(n) n
(8) Gamma and zeta n /2+ n /2+ n/+M(n) n
(9) Gamma and zeta on Q n /2+ n /2+ (log n)M(n) log n

(10) pi, log (2), I’(1/2) log n log n (log n)M(n) log n
(11) Euler’s constant n 1/2+ n 1/2+ (log n)M(n) log n

(Catalan’s constant)
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Elementary functions are functions built from rational functions (with rational
coefficients) exp and log by any number of additions, multiplications, compositions,
and solutions of algebraic equations.

A number of techniques are employed in deriving Table 1. Our intention is to
indicate the most useful of these without going into too much detail. The next four
sections outline the derivations of most of the bounds.

4. Newton’s method. The calculation of algebraic functions, given that we have
algorithms for addition and multiplication, is entirely an exercise in applying Newton’s
method to solving equations of the form f(x)-y=0. Newton’s method for
1/x- y 0 gives the iteration

(a) x.+ := 2x. yx2.,
while for x2 y 0 the iteration is

(b) Xn+l :---(Xn "- y/x.)/2.
These two iterations converge quadratically. Thus O(log n) iterations give n digits

of 1/y and .vt, respectively, and we have given an Oat (log n) algorithm for square
root extraction.

The quadratic rate of convergence is only half the story. Because Newton’s
method is self-correcting, in the sense that a small perturbation in x. does not change
the limit, it is possible to start with a single-digit estimate and double the precision
with each iteration. Thus the bit complexity of root extraction is

O(M(1) + M(2) + M(4) +... + M(n)) O(M(n)).

This leads to Obit (M(F/)) algorithms for root extraction and division, and a similar
analysis works for any algebraic function. This explains most of (1)-(3) in Table 1.
We also have the interesting result that the computation of digits of any algebraic
number is asymptotically no more complicated than multiplication. (These results on
the complexity of algebraic functions may be found in [5] and [9].)

The approximation in (a), x, is in fact the (2"- 1)st Taylor polynomial to 1/y
at 1. In (b), x is in fact the (2 , 2 1)st Pad6 approximant to 4 at 1. (See [5] or
[11] for further material on Pad6 approximants.) This is one of the very few cases
where Newton’s method generates familiar approximants.

Newton’s method is also useful for inverting functions. The inverse of f is
computed from the iteration

x+ :=x-[f(x)-y]/f’(x).

For any reasonable f this gives the same bit complexity estimate for f- as for f
Inverting by Newton’s method multiplies the rational and algebraic complexities by
log n.

5. The AGM. The two-term iteration with starting values ao := x (0, 1] and
bo := given by

a,+ := (a, + b.)/2, b.+ := 4(a.. b.)

converges quadratically to m(1, x), where

=2f/2 dt
m(1,x) 7r.,o l-(1-x2)sin2 t"

This is the arithmetic-geometric mean iteration of Gauss, Lagrange, and
Legendre. This latter complete elliptic integral is 2K’(x)/Tr and is a nonelementary
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transcendental function with complexity

Oa,g (log (n)), Orat (log2 (n)), Obit (log (n)M(n)).

It is also essentially the only identifiable nonelementary limit of a quadratically
converging fixed iteration and as such is of central importance [5].

One way to get a low complexity algorithm for log is to use the logarithmic
asymptote of K’ at 0. This gives the estimate

](2/r) logx- l/m(1, 10-’) + 1/m(1,xlO-’)l <nl0-2(’-1), n>3, xe[.5,1].

Up to computing r, this allows for the derivation of algorithms with the
complexity of entry (4) in Table 1. Algorithms for r can be derived from the same
kinds of considerations (see [4], [5], [9], [18], [21]). Probably the fastest known
algorithm for 7r is the quartic example given below [5], [2].

and

ALGORITHM. Let ao := 6 4 and Yo := 4- 1. Let

y,+, :=[1-(1--y4n)l/4]/[1 "" (1-- y4n) ’/4]

a,,+ + y,,+ 4an 22+3yn+ 21(1 +Y+I + Y+).
Then 1/c, tends to r quartically and

0<a,--< 16 4"exp (-2 4"7r).

The exponential function may be derived from log by inverting using Newton’s
method. This continues to work for appropriate complex values. The elementary
functions are now built from log and exp and the solution of algebraic equations in
these quantities. The constant k in the rational- and bit-complexity estimates depends
on the number of these equations that require solution. This explains entries (5), (6),
and (10) in Table 1, except for I’(1/2). (This and a few other values of I’ arise as algebraic
combinations of complete elliptic integrals and pi.) (Substantial additional material
on this section is to be found in [5].)

6. FFT methods. The Fast Fourier Transform (FFT) is a way of solving the
following two problems:

(a) Given the coefficients of a polynomial of degree n- 1, evaluate the polyno-
mial at all n of the nth roots of unity.

(b) Given the values of a polynomial of degree n- at the nth roots of unity,
compute the coefficients of the polynomial.

These two problems are actually equivalent (see [1], [5], [16]). The important
observation made by Cooley and Tukey in the 1960s is that both of these problems
are solvable with rational complexity Orat (n log n), rather than the complexity of
rat (n 2) that the usual methods require (i.e., Horner’s method). This is an enormously
useful algorithm.

We can multiply two polynomials of degree n with complexity Orat (n log n) by
using the FFT three times. First we compute the values of the two polynomials at
2n + roots of unity. Then we work out the coefficients of the polynomial of degree
2n that agrees with the product at these roots.

Variations on this technique allow for the evaluation of a rational function of
degree n at n points in Oat (n log2 n) and Obit (n log2 n M(k)), where k is the precision
to which we are working [5].
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Fast multiplications are constructed by observing that multiplication of numbers
is much like multiplication of polynomials whose coefficients are the digits, the
additional complication being the "carries."

How does this give reduced-complexity algorithms? We illustrate with log (1 x).
Let

and write

.k
:= E

k=l

n-1 X
s,(x) Y xp(kn) wherep(y) :=

k=0 j=j+Y

Now evaluate p(0), p(n), ..., pn(n- 1) using FFT methods, and then evaluate s.
This gives an Or, (n/2(log n) 2) and Obit (n/Z(log n)2M(n)) algorithm for log. At any
fixed rational value r, we get an Obit ((log n)ZM(n)) for log r. For this final estimate
we must take advantage ofthe reduced precision possible for intermediate calculations.

This is not as good an estimate as the AGM estimates for log. It is, however, a
much more generally applicable method. We can orchestrate the calculation, much
as above, for any hypergeometric function. This is how the estimates in line (7) in
Table are deduced. Schroeppel [3], [22] shows how a similar circle of ideas can be
used to give Obit (log n M(n)) algorithms for the solutions of linear differential
equations whose coefficients are rational functions with coefficients in Q.

The gamma function, I’, can be computed from the estimate

6N (__ 1)*N
F(x) N

=o
y

k!(x + k)
< 2Ne-N’ Xe 1,2]

(see [5] for details). The zeta function, ’, is then computable from Riemann’s integral
[24]:

-(x)i,()---/2 -lt’-x)/e+tx/ex(x- 1) =Y e- dt.

We truncate both the integral and the sum. These two formulae explain lines (8) and
(9) of Table 1.

Catalan’s constant

G:= ;o2(.
can be computed from Ramanujan’s sum

8G=r m! m!
-log (2 + 4)+

m=0

y
(2m+ 1)2(2m)!

while Euler’s constant, 3’, can be computed from the asymptotic expansion

3’ -log x- + O(exp (-x)), x>
=lk.k!

Chudnovsky and Chudnovsky [26] provide a low-bit complexity approach to solutions of linear
differential equations in [26].
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This gives line (11) of Table 1. Some of the details may be found in [5] and [6].
A variation of the above method for computing y has been used by Brent and

McMillan [10] to compute over 29,000 partial quotients of the continued fraction of
y. From this computation it follows that if- is rational its denominator exceeds
10 ’.

7. Digit emplexity. The aim of this section is to explain the last column in
Table 1. The main observation is that the digit complexity of computing the ruth
digit (m <- n) of the product of two n-digit numbers is -dig (m)o This is essentially just
a uniqueness argument the details of which may be pursued in [7].

Now suppose that fis analytic around zero (C suffices). Then

f(x) a + bx+ cx -" O(x3)
or equivalently

cx2 =f(x)- a- bx+ O(x).

Iff is of low-digit complexity then, as above, truncating after one term gives a low-
complexity algorithm for a + bx. Recall that addition is O (log n). This in turn gives
a low-digit complexity evaluation of cx2 in a neighborhood of zero, but evaluation of
cx2 is essentially equivalent to multiplication. Once again, the details are available in
[7]. Thus, iffis any nonlinear C function it is g (n), or we would have too good
an algorithm for calculating the mth digit of multiplication.

We now have the following type of theorem.
THO. Iffis a nonlinear elementaryfunction (on an interval) thenfis

Ob (n(log n)) and 2g (n).

This is now close to an exact result. Actually we can say considerably more. For
example, we have the following theorem.

THOR. Iff is a nonlinear C function (on an interval) then the set ofx for
which the digit complexity off(x) is o(n) by any algorithm is ofthefirst Baire category.

A set of first Baire category is small in a topological sense (see [25]).
We define the class of sublinear numbers by calling a number x sublinear if the

digit complexity of x is Og (n-). Call a a sublinear multiplier if the function ax is
sublinear for all x [0, 1] (given both c and x as input).
Tno. The set of sublinear multipliers is a nonempty set of the first Baire

category.
Two more definitions are useful in relation to numbers of very low digit

complexity. We say that x is sparse if x has digit complexity Og (n) for all 6 > 0,
and we say that a is a sparse multiplier if ax is sparse for all x [0, 1]. Sparse
multipliers have sparse digits. Indeed, let S := {x #(nonzero digits of x among the
first n digits) O(n) for all 6 > 0}.
Tno. The set ofsparse multipliers is exactly the set S.
Thus there are uncountably many sparse multipliers and hence also uncountably

many sublinear multipliers.
These are base-dependent notions. The previous theorem shows that - is a sparse

multiplier base 2 but not base 3. We can prove directly that irrational sparse multipliers
must be transcendental. Various questions concerning these matters will be raised in
the next sections.

8. Questions on the complexity of functions. The hardest problems associated
with Table of {}3 concern the almost complete lack of nontrivial lower bound
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estimates. This reflects the current state of affairs in theoretical computer science. Not
only is the question of whether P NP still open, it is still not resolved that any NP
problems are nonlinear. Friedman 13], for example, shows that we can take maxima
over the class of polynomially computable functions if and only if P =NP and that
we can integrate over this class ifand only ifP #P. While these notions are somewhat
tangential to our concerns they do indicate that some of our problems are likely to
be hard.

One of the reasons for looking at the rational complexity is that it is likely to be
a little more amenable to analysis. We can show that exp and log cannot have rational
complexity o(log n). This is a consequence of the known estimates in approximating
exp and log by rational functions of degree n [5], [8]. Note that n rational operations
can generate a rational function of at most degree 2. Thus there is only a small gap
between the known and best possible rational complexity estimates for log.

Question 1. Does log have rational complexity Orat (log n)?
The extra power of log in the rational complexity of exp over that of log is almost

certainly an artifact ofthe method. So at least one power oflog ought to be removable.
Question 2. Show that exp has rational complexity Orat (log: n). Does exp have

rational complexity Orat (log n)?
The low-complexity approximants to exp and log are constructed indirectly. It

would be valuable to have a direct construction.
Question 3. Construct, as explicitly as possible, approximants to exp and log

with complexity Orat (log n).
There is a big difference in the rational complexity of exp and of r. It is tempting

to speculate that this is artificial.
Question 4. Does I’ have rational complexity Orat (log n)?
Ideally we would like to identify those functions with this complexity.
Question 5. Classify (analytic) functions with rational complexity Oa (log n).
This last question is almost certainly very hard.
We would expect there to be little difference between rational complexity and

algebraic complexity.
Question 6. Does any of exp, log, or K have rational complexity essentially

slower than its algebraic complexity?
In the case of bit complexity, there are no nontrivial lower bounds. At best we

can say that the bit complexity is always at least that of multiplication. Thus a crucial
first step is the content of the next question.

Question 7. Show that exp, log, or any of the functions we have considered is
not Obit (M(n)).

It is easy to construct entire functions with very low bit complexity; we simply
use very rapidly converging power series. Thus there exist nonalgebraic analytic
functions with bit complexity Obit (aM(n)), where a, is any sequence tending to
infinity. However, the following question appears to be open.

Question 8. Does there exist a nonalgebraic analytic function with bit complexity
Obit (M(n))?

A negative answer to this question would also resolve the question preceding it.
A very natural class to examine is the class of functions that satisfy algebraic

differential equations (not necessarily linear). Almost all familiar functions arise in
this context. Even an unlikely example like the theta function

03(q) :-- 2

satisfies a nonlinear algebraic differential equation, as Jacobi showed (see [20]).
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Question 9. How do solutions of algebraic differential equations fit into the
complexity table?

We end with a question on digit complexity.
Question 10. Does there exist an analytic function whose digit complexity is

essentially faster than its bit complexity? Does there exist an analytic function with
digit complexity Ooig (n)?

There exist functions of the form

Ya.lx-b.l
with low-digit complexity, where a, and b, are low-digit complexity numbers. Possibly
we can construct nowhere differentiable functions that are sublinear, in the sense of
digit complexity.

9. Questions on the complexity of numbers. Questions concerning the transcend-
ence of functions tend to be easier than questions on the transcendence of individual
numbers. In much the same way, questions on the complexity of functions tend to
be easier than those on the complexity of specific numbers. The intent of this section
is to pose various problems that suggest the link between complexity and transcend-
ence. Such questions, while raised before, tend to have been concerned just with the
notion of computability rather than also considering the rate of the computation (see
[14]).

The class of sublinear numbers, defined in 7, contains all rational numbers; it
also contains known transcendents such as

c:=.12345678910111213 ....
However, while the rationals are in this class in a base-independent fashion, it is not
at all clear that the above number c is sublinear in bases relatively prime to 10. The
10 th digit, base 10, is 1. What is it in base 2?

Question 11. Are there any irrational numbers that are sublinear in every base?
It is easy to generate numbers that are sublinear in particular bases. Numbers

such as

di :--1 if is a square,
a := .d dz... d;:= 0 otherwise,

O1"

dg := if is a power of 2,b’=.ddz..,
d’= 0 otherwise,

are sublinear in whatever base is specified. It is tempting to conjecture that the next
question has a positive answer.

Question 12. Must an irrational number that is sublinear (in all bases) be
transcendental?

Loxton and van der Poorten [17] show that a particular very special class of
sublinear numbers, namely those generated by finite automata, are either rational or
transcendental. These are numbers for which computation of the nth digit essentially
requires no memory of the preceding digits. The base dependence of these numbers
is discussed in [12].

Question 13. Is either of r or e sublinear (in any base)?
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Almost certainly the answer to this question is no. There is an interesting
observation relating to this. Consider the series

42n+5
r ,=o 212n+4

This series due to Ramanujan [5], [19] has numerators that grow roughly, e.g., 2 6n,
while the denominators are powers of 2. Thus, as has been observed, we can compute
the second length n block of binary digits of 1/r without computing the first block.
Likewise, in base 10, we can compute the second block of length n of decimal digits
of -) from the series

nO xn.
1 -4x

In neither case, however, is there any reduction in the order of complexity.
It seems likely that computing the nth digit of is an d (n) calculation. Thus,

we might make the strong conjecture that no one will ever compute the 10th digit
of . This number arises from an (over)estimate of the number of electrons in the
known universe and as such almost ceAainly overestimates the amount of storage
that will ever be available for such a calculation.

The set of sparse multipliers is a subset of the sublinear numbers that can be
shown directly to contain no iational algebraics. We do not know this about sparse
numbers, though we strongly suspect it to be true.

Recall that a sparse multiplier has mostly zero digits and observe that a nonin-
tegral rational cannot possess a terminating expansion in two relatively prime bases.
This suggests the following question.

uestion 14. Do there exist iationals that are sparse multipliers in two relatively
prime bases? Do there exist iationals whose digits are asymptotically mostly zeros
in two relatively prime bases?

Many ofthese questions are at least paAly related to questions on normality [23].
ViAually nothing is known about the normality of familiar numbers. The following
is a somewhat related question by Mahler.

uestin 15 (Mahler [15]). Does there exist a nonrational function

(x) := E
n=0

where the a. are a bounded sequence ofpositiv integers, that maps algebraic numbers
in the unit disc to algebraic numbers?

Suppose that such an example exists, and suppose the a are bounded by 9. Then

f( / 1000) a0.0000a
is a thoroughly nonnormal iational algebraic. Thus, in some sense, Mahler’s question
is a ve weak conjecture concerning normality. Note also that, if in such an example
the a. were sublineafly computable, we would have produced sublinearly computable
algebraic iationalities.

Perhaps we will be able to distinguish rational numbers by their digit complexity.
What can we hope to say about algebraic numbers? A natural class to look at is the
class of numbers that are linear (in multiplication), that is, numbers with bit com-
plexity Obt (M(n)). This class contains all algebraic numbers in a base-independent
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fashion. It also contains numbers such as

a’= Y - and b := 1-I (1 + 3-3"),
=0 n=0

also in a base-independent fashion.
Question 16. Can we identify the class of numbers that are linear in multiplica-

tion?
This is almost certainly hard. As is the following question.
Question 17. Are either e or r linear in multiplication?
A negative answer to the above would include a proof of the transcendence of r.

The place to start might be with the following.
Question 18. Can we construct any natural nonlinear number?
Our current state of knowledge is that , and G have bit complexity

Obit (log2 nk4(n)).
Question 19. Are , and G both Obit (log riM(n))?
We might expect that elementary functions cannot take sublinear numbers to

sublinear numbers.
Question 20. Does there exist a number a # 0 so that both a and exp (a) are

sublinear (in some base)? Can a and exp (a) both be linear in multiplication?
It seems likely that the answer is no. Question 20 should also be asked about

other elementary transcendental functions.
For simple nonelementary functions Question 20 has a positive answer. Consider

the function F := (2/r)K, where K is the complete elliptic integral of the first kind.
Then F satisfies a linear differential equation of order 2 and is a nonelementary
transcendental function. However, if

then

and when q := 1/10 2zc both F(k(q)) and k(q) are linear in multiplication, at least in
base 10. (This is because the series above have particularly low complexity for q :=
1/102.)

Note also that the function

03(q) :-- Z q"’,
n7/

which satisfies a nonlinear algebraic differential equation, takes sublinear numbers of
the form q := / 10" to sublinear numbers (base 10).

10. Conclusion. Many issues have not been touched upon at all. One such issue
is the overhead costs ofthese low-complexity algorithms. This amounts to a discussion
of the constants buried in the asymptotic estimates. Sometimes the theoretically low-
complexity algorithms are also of low complexity practically. This is the case for
AGM-related algorithms for complete elliptic integrals. These are probably the algo-
rithms of choice in any precision. The AGM-related algorithms for log and exp will
certainly not outperform more traditional methods in the usual ranges in which we
compute (less than 100 digits). Some of the FFT-related algorithms are probably of
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only theoretical interest, even for computing millions of digits, because the overhead
constants are so large. In other cases, such as multiplication or the computation of
r, an FFT-related method is vital for very high precision computations.

We have not succeeded in completely answering any of the questions in the
Introduction. In large part, this is because we have virtually no methods for handling
lower bounds for such problems. The questions raised in this paper seem to be
fundamental. The partial answers have provided a number of substantial surprises.
For these reasons we believe these questions are deserving of study.
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A Singular Genius

The Man Who Knew Infinity. A Life of the
Indian Genius Ramanujan. ROBERT KANIGEL.
Scribner, New York, 1991. x, 438 pp. + plates.
$27.95.

This is the romantic and ultimately tragic
story of the singular mathematical genius
Srinivasa Ramanujan. An easy tale to tell
badly; over the years the story has been
much contaminated by apocrypha and mis-
interpretation. The outline, however, is
straightforward enough. Born in 1887 into
a poor but high-caste (Brahmin) family
from Kumbakonam in southern India, Ra-
manujan, against seemingly impossible
odds, became a major mathematical figure.
He was inadequately and incompletely edu-
cated, and though he exhibited a precocious
gift for mathematics he was unable to com-
plete an orthodox mathematical training. He
lived in poverty and disease and bore the
scars of smallpox. Too poor at times to
afford paper, he did much of his mathemat-
ics with chalk and slate. Yet by the age of 25
he had, in relative isolation, discovered and
rediscovered a tremendous body of mathe-
matics. Ramanujan communicated these re-
sults to some of the leading English mathe-
maticians of the day, probably including H.
F. Baker and E. W. Hobson, who never
responded, presumably dismissing Ramanu-
jan as a crank. But the preeminent English
mathematician of the period, G. H. Hardy
(1877-1947), and his great collaborator, J.
E. Littlewood, recognized in Ramanujan a
touch of genius. Hardy would later write of
the results Ramanujan had mailed in early
1913 that some of them

defeated me completely; I had never seen any-
thing the least like them before. A single look at
them is enough to show that they could only be
written down by a mathematician of the highest
class. They must have been true because, if they
were not true, no one would have had the imag-
ination to invent them.

Hardy initiated serious efforts to bring Ra-
manujan to Trinity College, Cambridge.
Another Cambridge analyst, E. H. Neville,
traveled to India in 1913 to lecture and to
secure Ramanujan's agreement-an agree-
ment made difficult because of prevailing
Brahmin taboos on travel. Funding was also
lacking for a stay originally planned for two

334

years, and it is significant that most of the
money was provided by Indians and Anglo-
Indians, not by Cambridge.
Thus in 1914 Ramanujan arrived in En-

gland: 26 years old, a devout Brahmin and
vegetarian. He was unready for Cambridge
ritual and English reserve. A brief but won-
derfully fruitful collaboration with Hardy
followed. It married Hardy's superb techni-
cal skills and knowledge to Ramanujan's
intuition and uncanny capacity to divine

identities. From 1914 to 1919 they pro-

duced a number of important and beautiful
joint papers on number theory.

While the collaboration flourished Ra-
manujan's physical and mental health de-
cayed. Most of 1917 and 1918 were spent in
sanatoria. Ramanujan was diagnosed as hav-
ing tuberculosis, no doubt exacerbated by
wartime rationing and his strict vegetarian

diet. In 1917 he was turned down for a

Trinity fellowship and for membership in

A page ofRamanujan's first letter to G. H. Hardy.
[From The Man Who Knew Infinity; Syndics of
Cambridge University Library]

the Royal Society. An unsuccessful suicide
attempt followed early in 1918 (he jumped
in front of a London Underground train).
His declining health may have precipitated a

change of heart on the part of the Royal
Society. Ramanujan learned in late February
1918 that he would become an F.R.S., and
that autumn Littlewood succeeded in hav-
ing him elected to a fellowship in Trinity in
the face of opposition, some of an openly
racist nature. When the war ended he re-

turned to India, where he died prematurely
in 1920. His extraordinary final work, pro-

duced while he lay dying, is now often and
controversially identified as the "Lost Note-
book." (Neither a notebook nor lost, it
consisted of almost impenetrable notes on

loose pages in Trinity's library; it was "dis-
covered" and mathematically illuminated by
George Andrews in 1976.)

Ramanujan's legacy includes his famous
"Notebooks": two large handwritten books
densely packed with strange and exotic for-
mulas, usually without much derivation and
usually in his own nonstandard terminolo-
gy. (A sample of the notebooks would have
been a pleasant addition to this work.) The
task of fleshing out the details in these notes
has occupied some very talented mathema-
ticians over the decades and is only now

nearing completion. This work covers a

profusion of results in the theory of series,
integrals, asymptotic analysis, and elliptic
and modular functions. It is appearing as

three substantial volumes (two of which are

already out) edited by Bruce Berndt, with
complete proofs provided. Working mathe-
maticians are often reminded of Ramanu-
jan's impact on mathematics by the func-
tions, series, and conjectures that bear his
name.

This is the rough cloth of the Ramanujan
fabric; the embroidery is more elaborate. All
too often Ramanujan is reconstructed as

some kind of divinely inspired mystic who
rediscovered several millennia of mathemat-
ics while walking the dusty roads of south-
ern India. Or, worse, he is painted as an

idiot savant and a calculating prodigy. Get-
ting the fabric right is hard, and here The

Man Who Knew Infinity is most successful.
No, Ramanujan did not recreate all pre-

20th-century mathematics by himself, but
his education was far from mainstream. His
primary source, Carr's 1886 A Synopsis of
Results in Pure and Applied Mathematics, was

a compilation of some 5000 formulas and
theorems that covered large parts of 19th-
century mathematics. As in Ramanujan's
notebooks, little is proved. Still, most of the
familiar objects of Ramanujan's mathemati-
cal hope chest are introduced and examined
by Carr. Nor was Ramanujan entirely self-
educated. He did attend college for a period
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in both Kumbakonam and Madras, failing
because of inattention to the nonmathemat-
ical curriculum.

Yes, Ramanujan was enormously gifted,
particularly in the formal manipulation of
series, continued fractions, and the like. But
even here he had historical peers, albeit very
few, perhaps only Euler and Jacobi.

It is only by the delicate thread of Hardy
that Ramanujan escaped falling to obscurity.
Had Hardy not recognized Ramanujan,
who would have? Hardy called Ramanujan
"the one Romantic incident in my life," and
perhaps rightly, but the sophisticated,
exquisitely educated, and iconoclastic Hardy
is almost as interesting a study as Ramanu-
jan himself. Hardy didn't need Ramanujan.
Indeed, Ramanujan wasn't even his most
famous collaboration. The works of Hardy
and Littlewood are so pervasive that it has
been said that there were three great English
mathematicians of the period: Hardy, Lit-
tlewood, and Hardy-Littlewood. But Ra-
manujan needed Hardy, and as the two
stories cannot be separated, Kanigel also
provides us with an intriguing portrait of
the earlier parts of Hardy's somewhat eccen-
tric life.
Where does Ramanujan belong in histo-

ry? In raw ability, Hardy rated Ramanujan
at 100 and Hilbert at 80, while Littlewood
scored 30 and Hardy 25. But Hardy's and
Littlewood's individual effects on the stream
of mathematics were more profound, as of
course were Hilbert's. Nonetheless, Ra-
manujan is a great figure who had a brief
four or five years on the world stage to make
his mark. As these years overlapped perfectly
with the First World War, contact with
Europe was impossible and activity in En-
gland was much reduced.
Hardy writing in 1940 concluded of Ra-

manujan's work:
It has not the simplicity and inevitableness of the
very greatest work; it would be greater if it were
less strange. One gift it has which no one can
deny, profound and invincible originality. He
would probably have been a greater mathemati-
cian ifhe had been caught and tamed in his youth;
he would have discovered more that was new, and
no doubt, of greater importance. On the other
hand he would have been less a Ramanujan, and
more of a European professor and the loss might
have been greater than the gain.

Today the results seem equally original but
perhaps a little less strange.
As Kanigel puts it: "Cut cruelly short,

Ramanujan's life bore something ofthe frus-
tration that a checked swing does in base-
ball; it lacked follow-through, roundedness,
completion." Hardy, an avid sports fan,
might have liked this metaphor. Kanigel
asks, 'Would he have become the next
Gauss or Newton?" and wonders whether
his genius was built of "sheer intellectual
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Indian stamp issued in 1962 to honor Ramanu-
jan. [From The Man Who Knew Infinity]

power, different only in degree" from the
normal or if it was "steeped in something of
the mystical." Reasonably, he equivocates:
In each case, the evidence left ample room to see

it either way. In this sense, Ramanujan's life was
like the Bible, or Shakespeare-a rich fund of
data, that holds up a mirror to ourselves or our

age.

Kanigel both provides the data and holds
up the mirror in this superbly crafted biog-
raphy. The hardest part of mathematical
biography is including the mathematics, giv-
ing it content and life, without destroying
the story. Kanigel does succeed in giving a

taste of Ramanujan the mathematician, but
his exceptional triumph is in the telling of
this wonderful human story.
As children of a mathematician (from

Hardy's school), we grew up knowing the
rudiments of this story. As mathematicians
we have had occasion to work in Ramanu-
jan's garden-to use Freeman Dyson's love-
ly metaphor. For us this book was a pleasure
to read. We hope it is for many others. It is
a thoughtful and deeply moving account of
a signal life.

JONATHAN M. BORWEIN
PETER B. BORWEIN

Department ofMathematics,
Statistics and Computing Science,

Dalhousie University,
Halifax, Nova Scotia, Canada B3H 3J5

A Gendered Life

Jessie Bernard. The Making of a Feminist.
ROBERT C. BANNISTER. Rutgers University
Press, New Brunswick, NJ, 1991. xii, 276 pp. +

plates. $27.95.

The sociologist Jessie Bernard, now in her
late 80s, had already passed the conventional
age of retirement when the feminist move-
ment of the late '60s radically transformed
her intellectual perspectives and inspired her

to begin a new phase of her career. Between
the ages of 68 and 84 she published six
books (including The Future ofMarriage and
The Female World) and dozens of articles,
works that are generally viewed as her most
original and brilliant. It was in this late
period that she achieved eminence in her
profession, and it would not be an exagger-
ation to say that she has been canonized as a
"founding mother" of sociology.
A study of Bernard's life and work is a

worthy project for several reasons: as a
window into the history of 20th-century
sociology, as a case study of obstacles that
women encounter in academe, as an account
of one social scientist's deepening insights
about gender. Unfortunately, her present
biographer does not display a genuine ap-
preciation or understanding of his subject.
His treatment of her life is not only dismiss-
ive of her work and excessively focused on
her early marriage but mean-spirited in its
method and approach.

Bannister announces his opinion of Ber-
nard's work in the introduction, when he
explains his book is "not an intellectual
history of the analytic or internal variety"
because "Bernard has not been a deep think-
er." In fact, Bannister typically deals with
Bernard's work by providing brief summa-
ries of her books followed by extensive
quotations and arguments from her most
negative reviewers. One might mistakenly
conclude from Bannister's evidence that Ber-
nard never found an appreciative audience.
Throughout the book, Bannister character-
izes Bernard as intellectually superficial and
timid, an ambitious seeker of recognition
who was always ready to jump on the latest
bandwagon. He minimizes Bernard's later
and widely admired work as not being espe-
cially revolutionary and observes that she
was unable to keep up with the more de-
manding and current feminist theorists. The
best he has to say about Bernard is when,
trying to account for her appeal, he grants
her "openness to new ideas, an ability to
articulate issues before others have done so,
and an engaging frankness concerning her
own shortcomings."

Bannister misunderstands Bernard's im-
portance for a number of reasons. First, he
does not recognize that in her later work she
was not following fashion but was well ahead
of her time and willing to engage in contro-
versial subjects others ducked. Her insights
about the darker sides of marriage and the
different worlds occupied by women and men
even when they share households were highly
original and have had a significant and lasting
influence on younger scholars. Her thoughts
about the impact ofgender on the ways social
scientists conceptualize and conduct their
work opened up debates that are still of
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Ihis month's column
Experimental mathematics is the theme of this month's feature article,
wrinen by the Canadian mathematical brothers, Jonathan and Peter Bor-
wein. This is followed by a number of review articles and a couple of
announcements. Paul Abbott compares Maple and, Mathenutica. (See
also the benchmark test results presented by Barry Simon in the previ-
ous column in the September Notices.) J. S. Milne provides an update
on some reviews he wrote for this column back in October 1990 on
scientific word processors. tnuis Grey looks at the program Numbers,
and Tevian Dray reports on the programs 4-dimensional Hypercube and
l@).

Editor's addrcss:

Professor Keith Devlin
Department of Mathematics and Computer Science
Colby College
Waterville, Maine 04901

Correspondence by electronic mail is prcferred, to:
kjdevlin@colby.edu.

Some Observations
on Computer Aided Analysis

Jonathan Borwein* and Peter Borwein*

Preamble
Over the last quarter Century and especially during the last
decade, a dramatic "re-experimentalization" of mathematics
has begun to take place. In this process, fueled by advances
in hardware, software, and theory the computer plays a
laboratory role for pure and applied mathematicians; a role
which, in the eighteenth and nineteenth centuries, the physical
sciences played much more fully than in our century.

tJonathan Borwein is prcsently Professor of Mathematics in the Depanment
of Combinatorics and Optimization at the Univenity of Waterloo. His other main
research intercsts ale in Optimization and Functional Analysis. Petcr Borwein
is prcsently Professor of Mathcmatics at Dathousic University. His other main
rcscarch intcrcsts are in Approximation Thcory and Numbcr Thcory, As of ncxt
July they both will be at Simon Fraser University in Vancouver and invitc
intercsted people to make contact with the new Centr€ for Experimental and
Constructive Mathematics. jmborwei@orion.uwatcrloo.ca, pborwcin@cs.d"l.ca-

Operations previously viewed as nonalgorithmic, such as
indefinite integration, may now be performed within powerful
symbolic manipulation packages hke Maple, Mathematica,
Macsyma, md Scratchpdd to name a few. Similarly, calcu-
lations previously viewed as "practically" nonalgorithmic or
certainly not worth the effort, such as large symbolic Taylor
expansions, are computable with very little programming
effort.

New subjects such as computational geomety, fractal
geometry, turbulence, and chaotic dynamical systems have
sprung up. Indeed, many second-order phenomena only be-
come apparent after considerable computational experimen-
tation. Classical subjects like number theory group theory
and logic have received new infusions. The boundaries be-
tween mathematical physics, knot theory topology, and other
pure mathematical disciplines are more blurred than in many
generations. Computer assisted proofs of "big" theorems are
more and more common: witness the 1976 proof of the Four
Colour theorem and the more recent 1989 proof of the non-
existence of a projective plane of order ten (by C. Lam et al
at Concordia).

There is also a cascading profusion of sophisticated
computational and graphical tools. Many mathematicians use
them but there are still many who do not. More importantly,
expertise is highly focused: researchers in partial differential
equations may be at home with numerical finite element
packages, or with the NAG or IMSL Software Libraries,
but may have little experience with symbolic or graphic
languages. Similarly, optimizers may be at home with non-
linear programming packages or with Matlab. The learning
curve for many ofthese tools is very steep and researchers and
students tend to stay with outdated but familiar resources long
after these have been superceded by newer software. Also,
there is very little methodology for the use of the computer as
a general adjunct to research rather than as a means of solving
highly particular problems.

We are currently structuring '"The Simon Fraser Centre
for Experimental and Constructive Mathematics" to provide
a focal point for Mathematical research on such questions as

"How does one use the computer:
- to build intuition?
- to generate hypotheses?
- to validate conjectures or prove theorems?
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- to discover nontrivial examples and counterexamples?"
(Since we will be offering a number of graduate student,

postdoctoral, and visiting fellowships, we are keen to hear
from interested people.)

0. Introduction
Our intention is to display three sets of analytic results
which we have obtained over the past few years entirely or
principally through directed computer experimentation. While
each set in some way involves ?r, our main interest is in the
role of directed discovery in the analysis. The results we
display either could not or would not have been obtained
without access to high-level symbolic computation. In our
case we primarily used Maple, but the precise vehicle is not
the point. We intend to focus on the pidalls and promises of
what Lakatos called "quasi-inductive" mathematics.

1. Cubic Series for zr
The Mathematical Componenl Ramanujan [10] produced a
number of remarkable series for I f r including

Computers and Matbematics

13591409 + n545140134
(6403203\n+r/z '

This series adds roughly twenry-five digits perterm, \/e leZA)
already agrees with pi to twenty-five places [3]. The last two
series are of the form

( l . r) r 2/Z g @fit [llo3+ z63son]
r 9801 *!olt"{nt)4 #n

This series adds roughly eight digits per tenn and was used by
Gosper in 1985 to compute 17 million terms of the continueil
fraction for zr. Such series exist because various modular
invariants are rational (which is more-or-less equivalent to
identifying those imaginary quadratic fields with class number
l), see [3]. The larger the discriminant of such a field the
greater the rate of convergence. Thus with d = -163 we have
the largest of the class number I examples

t €

o.zt f=rzir-r)" I6lJ!r 
-- 

4, 
., (nDr(3n)l

n=O

I  _ , "  $  t - t ) " ton) t  (A+nB)
; -"kM7wW

a series first displayed by the Chudnovskys [10]. The
underlying approximation also produces

n' - 3 log(640320)/'/t63

and is correct to 16 places.
Quadratic venions of these series correspond to class

number two imaginary quadratic fields. The most spectacular
and largest example has d = -427 and

(  1 .3 )

where

A := 2r2l757l}9r2./dI + 165714527736s
B := t377 398089267 2\re1 + fi7 57 82298027 50
C := 15280(236674 + 30303y'6=T)13.

(*) it'trl+n(r;19--: =''ffi
u<) 

'' (3n)l(n!)s Ci$))^ 7r

where

(1.4)

where
c = 432O * 22 /3 * 3r /z _47 ttSWffit6t7873ctr,2g7}g63

+ 52735595419633 * 272tr /2)r /3 - 4320 ,, 22/3
$t /3 @t ttsuu666r6r7873062970863 + 52735595419633

*272tt / \t / 3 - I 6580537033280

A = 27 136(2581W259 167 07 1465N8428932350r202M7 163298721
+9978M32501542Mr7W0165AO * 2721t /\t /3

-27 136(-2581 00259 I 6707 I 465W8428932350r202067 1632987 2r
+9978M3250154204L707O165AO * 272tt /2)r /3

+ 37 2227 661 698 | 89 47 7 7 2

B = 1930199M*907r/3
(669688603 I s r3s156/;8?7 s 135384091973612

+2297 0050? t67 22t25 * 27 21r / 2 Sr / 3 - I 930 I 9904 * 907 | / 3
(-669688603 I 5 t35056r'.827 5 t3538409 t97 3612

+22970050316722125 * 2721t /zf /3
+ 3 5217 7 9 4936A002065 5 12

The series we computed of largest discriminant was the
class number four example with d = -1555. Then

C = -214772995A$5 nz$ - 9ffi94033386/8032 * 5t / 2
- t296 * Sr / 2 (tWgSZZqST 94635503237 133 t847 3

49 127 462536923627 54607 3959 12 * 5r / 2 | / z

A = 633650283 1297 1999585426220
+283371O2140800842046825600,+ 5 r/2

b(t) = (t(r728 - i 1q17r /2,

aa1=e (,_"#(nxa_ #)),
-.,r\ L72gE2(t)j(t)=ffi i

Here t is the appropriate discriminant, j is the "absolute
invariant", and &' Et, and Ee dre Eisenstein series.

For a further discussion of these, see [2], where many
such quadratic examples are considered. Various of the recent
record setting calculations of r have been based on these
series. In particular, the Chudnovskys computed over two
billion digits of zr using the second series above.

There is an unlimited number of such series with increas-
ingly more rapid convergence. The price one pays is that
one must deal with more complicated algebraic irrationalities.
Thus a class number p field will involve pth degree algebraic
integers as the constants A = a(t), B = ilt), and C = c{t)
in the series. The largest class number three example of (*)
corresponds to d = -907 and gives 37 or 38 digis per tenn.
It is

,re S (6n)! A+nB
7t fr;(3n)t(n!)3 C3n
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+384 * 5t /2 ( ro89t7285srr7 rr782w67 4362r2395209t6038565601 7
+487092908657 881022507733853454 I 6887 21351255M0 *5t / 2l / z

B = 7 8499 | M53496ft27 210289749000
+35 105866782 ffi932028965ffi00,* 5 r/2
+25 I 5 968 * 3 1 1 gr / z $2602083237 8900 | 63699332265 4 1 1 40208 82 I 6 I

+ 27996502730604442965772068907 I 8825 I 90235 * 5t /z'st /2

The series (1.4) with these constants gives 50 additional
digits per term.

The Computational Componenl The absolute invariant,
and so the coefficients .4, B, and C satisfy polynomial
equations ofknown degree and height. Thus the problem of
determining the coefficients of each series reduces to algebra
and can be entirely automated. This is really the dream case
for computer aided analysis. Indeed from the expressions for
j(t), a(t), b(t) we straighdorwardly computed their values to
several hundred digits. The lattice basis reduction algorithm, as
implemented in Maple,now provides the minimal polynomials
for each quantity. In addition, a higher precision calculation
actually provides a proof of the claimed identity. This last
step requires knowing a priori bounds on the degrees and
heights of the invariants. While somewhat mathematically
sophisticated, the computation required is fairly easy though
a little slow.

2. Frauds and Identities
2a. The Mathematical ComponenL Gregory's series for r,
truncated at 500,000 terms, gives to forty places

Q.1)
500'000 / rr/c-l

4 I 
t],", = 3.14159Q6535897%2ry62&3383299502884r97.

-  L K - t
K = l

To one's initial surprise only the underlined digits are
wrong. This is explained, ex post facto, by sening N equal to
one million in the result below:

Theorem t. For integer N divisible by 4 the following
asymptotic expansion holds:

N / 2 r  r \ / c - l  6  D

Q.2);-2D#*Dffi
tc=l m4

1 1 5 6 1
A p  

.  
N '  

-  
N "  

+ . ' .

where the cofficients are the even Euler numbers l, -1, 5,
- 6 1 ,  r 3 8 5 ,  - 5 0 5 2 1 . . . .

The Computationd ComponenL The observation (2.1) / , @ 
" \ 

2
anived in the mail from Roy North. After verifying its truth | + t 

"-,t 
I = Tr.

numerically, it was an easy matter to generate a large number \'* ,a /
of the "errors" to high precision. We then recognized the
sequenceofenorsin(2.2)astheEulernumben-withthehelp The Computational Componenl Analysis of these and
of Sloane's Handbook of Integer Sequences. The presumprion other seemingly rational evaluations may be found in [6]. Sum
that (2.2) is a form of Euler-Maclaurin summation is now I occurred as a problem proposed by Levine, College Math
formally verifiable for any fixed N in Maple- This allowed J.,19, #5 (1989) and Bowman and White, MAA Monthly,

us to determine that (2.2) is equivalent to a ser of identities
between Bernoulli and Euler numbers that could with effort
have been established. Secure in the knowledge that (2.2)
holds, it is easier, however, to use the Boole Summation
formula which applies directly to alternating series and Euler
numbers (see [5]).

This is a good example of a phenomenon which really
does not become apparent without working to reasonably high
precision (who recognizes 2, -2, l0?), and which highlights
the role of panem recognition and hypothesis validation
in experimental mathematics. It was an amusing additional
exercise to compute zr to 5,000 digits from (2.2). Indeed, with
N = 200,000 and correcting using the first thousand even
Euler numbers, we obtained 5,263 digits of z- (plus 12 guard
digits).

2b. The Mathematical Cornponent The following eval-
uations are correct to the precision indicated.

Sum I (correct to all digits)

$ o(2') _ I

k * -t

where o(n) counts the odd digits in n: o(901) = 2, o(8ll) = 2,
o(406) = O.

By comparison

Sum 2 (conect to 30 digits)

S r(2") _ 3166
L 2n 3069
n= l

where e(n) counts the even digits in n.

Sum 3 (conect to267 digits)

$ In tanh zrJ _ I
L w 

-u

where l_ J is the greatest integer function: L3.7 J = 3.

Sum 4 (correct to in excess of 500 million digits)

S 1""16 ' "zo|  -^^^- .^
Lt = 1280640'
n=l

Sum 5 (correct to in excess of 42 billion digits)

OCTOBEB .1992, VOLUME 39, NUMBER 8 827



Computers and Methematics

96 (1989), 745. Sum 2 relates to a problem of Diamond's
in the MM Monthly,96 (1989), 838. Sums Z, 3, 4 all have
transcendental values and are explained by a lovely continued
fraction expansion originally studied by Mahler. Computer
assisted analysis leads us to a similar more subtle expansion
for the generaring function of lna+ pl:

i,," + pJ,-.
z{

Sum 5 arises from an application of poisson summa-
tion or equivalently as a modular transformation of a theta
function. While asymptotically rapid, this series is initially
very slow and virnrally impossible for high-precision explicit
computation.

These evaluations ask the question of how one develops
appropriate intuition to be persuaded by say, Sum 1, but nbt
by Sum 2 or Sum 3? They also underline that no level of
digit agreement is really conclusive of anything. Ten digits
of coincidence is persuasive in some contexts while ten
billion is misleading in others. In our experience, symbolic
coincidence is much more impressive than undigested numeric
coincidence.

3. The Cubic Arithmetic Geometric Mean
The Mathematical Componenl For 0 < s ( l, let a6 := 1
and bo := s and define the cubic AGM by

an +zbn
@n+l l= 

3

and
M(q) := (3L(q3) - L(q))/z.

Thmrem 2. The functions L(q) and M(q) "parametrize,, the
cubic AGM in the sense that if a := L(q) and b := M(q) then

ttqtl=-#

M(d) =

while AG3Q, M (q) I L(q)) = L(q).

^ Thus a step of the iteration has the effect of sending g to
93. From this, one is led to an easy to state but hard to derive
iteration.

Cubic iteration for zr. Let as := l/3, ss := (y'3 - D/z
and set

(1+2s,)(1+2si- ,)  = 3 where s* := /F

a, := ( l  +2sn)2an-1- 3n-l( l  +2sn)2 -  l f ,

then lf an converges cubically to n.
This iteration gives l, 5, 21, 70, .. . digits corect and

more than triples accuracy at each step.
The Computational Componenl This is the most chal-

lenging and most satisfying of our three examples for computer
assisted analysis. We began with one of Ramanujan's typiially
enigmatic entries in Chapter 20 of his notebook, now decoded
in [1]. It told us that a "quadratic modular equation" relating
to F was

(3.3) 1t - u3;1t - a3) = (t - uu)3.

From this we gleaned that some function rR should exist so
that z := A(q) and u:= R(q2) would solve (3.3). We formally
solved for the coefficients of R and learned nothing. Motivated
by the analogy with the classical theory of the AGM iteration
l2lwe looked at F(l - 8(q)3) which produced

r'(1 - 8(s)3) = I +68 +6f +6qa +t2q7 +6qe +6qr2 +L2qt3

+6916 + l}qre + l2q2r + 6qu +... .

This was "pay-dirt" since the coefficients were sparse and
very regular. Some analysis suggested that they related to the
number of representations of the fonn m2 +3n2. From this we
looked at theta function representations and werc rewarded
immediately by the apparent identity F(l - R(q)3) = L(q).
Given the truth of this, it was relatively easy to determine that
fi(q) = M(q)/L(q) with M and .L as in (3.2).

Continuing, we let

(3.2) L(q):- i on2+nm+m2
n,rt=_@

(AG3)

which converge cubically to a common limit

(3.1) AG3(1, s) = I
znJt /3 ,2/3; l ;1  -  s3)

where the hypergeometric function F(s) := 2 ne p, 2 / 3: Li s)
= 

fr a$,g"'. In particular, the hypergeomeric function
possesses the simple cubic functional equation

,p , ( ! , ? ; t ; t - " r )  -  3  E ,  ( t . 2 . ' . /  t - ' \ ' \' - ' \ 3 ' 3 ' - ' -  -  
1= t+zz  

z r t \ r ; l t L ' \ t * z * )  
)

This can be validated symbolically once known! As an
example

AG3(1, l /100) =
znt /3 ,2/3: l ; l  -  100-3)

and 4 iterations of (AG3) will compute the hypergeometric
function at 0.999999 to 25 significant digits. Any direct
computation so near the radius of convergence is doomed.

(a?^+ a.b^ +4)b^
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It was now clear that the behaviour as g goes to q3 should
be at least as interesting as (3.3). Indeed, motivated by the
modular properties of Z we observed symbolically that

16l J.M. Borwein and P.B. Borwein, "Strange series evaluations and
high precision fraud", MM Monthly, in prcss.

[7] J.M. Borwein and P.B. Borwein, "Class number three Ramanu-
jan type series for I f n", Journal of Computational and Applied Math
(Special Issue), in press.

[8] J.M. Borwein, P.B. Borwein, and F. Garvan, "Some cubic modular
identities of Ramanujan",Trans. Amer. Math. Soc., in press.

[9] D.V. Chudnovsky and G.V. Chudnovsky, "Approximizations and
complex multiplication according to Ramanujan", in Ramanujan Revis-
ite4 (Academic Press Inc., San Diego, CA, 1988), 375472.

[0] S. Ramanujan, "Modular equations and approximations to r",
Quart. J. Math. 45 ( 1914), 35{*172.

Reviews of Mathematical Software

Maple V and Mathematica
Reviewed by Paul C. Abbott*

Abstract
A comparison of two popular computer algebra systems
(CAS), Maple and Mathematica, is presented from a usen
viewpoint. Solved examples highlight the different conven-
tions, environment, and tools that each system provides.
Special attention is paid to system design through ixamples
of consistency of function naming, synto(, and the ease with
which output froni one computation can be entered as input
to another.

Introduction
This review assumes a passing knowledge of computer
algebra. An intoduction to CAS is given in [-3] and I
encourage the reader to refer to the detailed descriptions of
Maple [4-7] and Mathematica t8-l0l for more information.

Both Maple and Mathematica are very large programs,
and this review does not even attempt to cover their scope.
There have been many reviews of each system individually
and some comparative reviews lll-121. The focus herc is on
the results of one user trying to solve a set of problems using
each system.

Maple and Mathematica arc under active development,
both by their respective manufacturers and by the inclusion
of contributed packages from the large and rapidly growing
.community of.CAS users. The capabilities of each pack-
age are changing dynamically. Both packages have compre-
hensive (symbolic) programming languages, and so the

*Paul Abbon rcceived his Ph.D. in theorctical atomic physics from thc
Univcnity of Westem Australia in 1987. His rcsearch rclied hcavily on computcr
algebra. In 1989, Abbott was involved with the foundation of The Mathcnat-
ica Jourrul as Tcchnical Editor. In 1991, he foundcd Analytica, a company
bascd in Pcrth, Wcstcrn Australia, that sclls and suppons a range of tcchnical
softwarc packagcs. ln 1992, Abbon was appointcd to thc staff of thc Dcpart-
nrent of Physics at the Univcrsity of Wcstcrn Ausralia. His cmail address is
paul @carwax.pd.uwa.oz.au.

(3.4)

At this stage in [4] we resorted rather unsatisfactorily to
a classical modular function proof of (3.4) and so to a proof
of Theorem 2. Later we returned with Frank Garvan [8] to a
search for an elementary proof. This proved successful. By
searching for product expansions for M we were lead to an
entirely natural computer-guided proof-albeit with human
insight along the way.

It is actually possible, as described in [8], to search
for, discover and prove a// modular identities of the type
of (3.3) and (3.a) in an entirely automated fashion. Again,
this is possible because we have ultimately reduced most of
the analytic questions to algebra through the machinery of
modular forms.

As a final symbolic challenge we observe that (3.1) may
be recast as saying that

I(anrb) = I(an+t,bn+t)

where

I(a.b.\ = [* 
tdt

Jo i/(tz + st)([t +b3)z

This invariance should be susceptible to a direct-hopefully
experimentally guided-proof.

4. Conclusions
The sort of experiences we have had doing mathematics
interactively has persuaded us of several conclusions. It is
necessary to develop good context dependent intuition. It is
useful to take advantage of the computer to do the easy-
many unimaginable hand-calculations are trivial to code. (So
trivial, in fact, that one has to resist the temptation to compute
mindlessly.) The skill is to recognize when to try speculative
variations on a theme and to know when one has actually
learned something from them. The mathematical oppornrnities
are virtually unlimited but only in a rclatively painless to use
high-level and multi-faceted environment.
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third-person singular agreement suffix -s to
agree with its subject Noam. This is head
marking, because the verb is considered the
head of the sentence. But in "muchas gra-

cias," the dependent word muchas, "many,"
is marked with a feminine plural suffix -as so

as to agree with the head word gracias,
"thanks"; this is dependent marking.
Nichols assigns scores to languages depend-
ing on which type of morphological mark-
ing they favor.

Nichols argues that this feature is of
typological importance, that it shows con-

siderable stability, and that its geographical
distribution is not random. For example,
New World languages tend to mark heads
more than dependents, whereas Old World
languages tend toward dependent marking.
The Pacific region is intermediate between
the two. Nichols interprets this distribution
as a trace of the earliest expansion of
human settlement from Africa and nearby
areas to more remote parts of Eurasia and
the New World.

Nichols identifies ten major structural
features of this kind and investigates their
patterns of distribution within a sample of
174 languages. Points of analysis include
correlations among features; stability within
both language families and geographical
areas; evenness of distribution within geo-
graphical regions of varying sizes; and areas

of maximum diversity. On the basis of such
patterns (and other assumptions), Nichols
sketches a general picture of linguistic pre-
history, consisting of three stages: an initial
development of linguistic diversity in the
tropical areas of Africa and the nearby parts
of Asia; an early expansion from the Old
World tropics to Europe, the remainder of
Asia, the Pacific, and the New World; and

1928

a third, post-glaciation stage in which more

complex social groups spread their languag-
es over large areas of the world, thereby
removing much of the original linguistic
diversity (which remains only in peripheral
areas).

In a study involving such a large corpus,

it is of course easy to find particular judg-
ments to disagree with. For example,
Nichols treats colloquial French as a verb-
initial language and assumes that Mandarin
Chinese has no prepositional phrases.
Though both languages have indeed been
analyzed this way, the analyses are certainly
debatable.
A more serious problem is that many of

the mathematical arguments in the book
(and there are quite a number of them) do
not inspire confidence. Some examples:

1) In one passage, Nichols says that in
measuring the stability of certain features
within language families, "two metrics are

used" and that "both yield the same hierar-
chical ranking" of the features' stability.
But the two metrics are entirely interdepen-
dent: one is the sum of the number of
different types in each family for the eight
families under consideration, and the other
is the mean number of types per family-
that is, just the first number divided by 8
(pp. 166-167 and table 52).

2) Data are sometimes inconsistent be-
tween tables (as in tables 50 and 53).

3) Nichols makes extensive use of what
she calls "Dryer's test"-referring to a pro-
cedure for testing hypotheses about linguis-
tic universals proposed by the linguist Mat-
thew Dryer. Though there is no room here
for details, her adaptation of Dryer's proce-
dure to measure "significance of diver-
gence" (pp. 187-188) is certainly idiosyn-
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cratic and appears to be invalid (as far as

may be judged from her laconic description
of it).

Of course, these problems do not prove

that Nichols's conclusions are wrong: she
does make a convincing case that the dis-
tribution of typological features among the
world's languages is nonrandom and that
this distribution may have much to tell us

about linguistic-and therefore human-
prehistory. Her scenario for the spread of
human language must be considered prelim-
inary, but it is not unreasonable. Her book
will be a rich source of ideas and techniques
for those who wish to pursue this line of
investigation further.

William H. Baxter
Department of Asian Languages and Cultures,

and Program in Linguistics,
University of Michigan,

Ann Arbor, MI 48109-1285
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Mathematical Malaises

Pi In the Sky. Counting, Thinking, and Being.
JOHN D. BARROW. Clarendon (Oxford Univer-
sity Press), New York, 1992. xii, 317 pp., illus.
$25.

The Rock of Gibraltar of most mathemat-
ics, indeed of almost all reasoning, is the
principle of the excluded middle. We use a

two-valued logic where statements are ei-
ther true or false. No middle ground is
possible.

A man of Seville is shaved by the Barber of
Seville if and only if the man does not shave
himself. Does the Barber shave himself?

If he does he doesn't; if he doesn't he does.
The statement can be neither true nor false.
The conclusion: the barber cannot exist.
The problem is that in a mathematical sense

the barber does exist, or at least did by the
permissible definitions of the turn of this
century. This innocent paradox, recast by
Bertrand Russell in only slightly more eru-

dite terms, deeply shook both Russell and
the foundations of mathematics. Since it is
possible to deduce irrefutably the truth of
anything from a contradiction, a single in-
consistency in the fabric causes the entire
structure to crumble. If Russell's paradox is
not resolved then unicorns exist and pigs fly.

The foundations crumbled but the build-
ing stood. Mathematicians worked on,
largely unimpeded by the most profound
crisis imaginable in the philosophy of math-
ematics. (This is the usual direct impact of
philosophy on mathematics.) But inexora-
bly, over this century, the effects of a close
examination of the underpinnings of math-

Vignettes: Obscurer Vices
It would be fascinating to have a study of the after-lunch alcohol content of the
American workforce, and of the variations in productivity, work quality, and safety
that accompany variations in drinking short of actual drunkenness. Such a study
would be expensive and technically difficult, which is one reason it has never been
attempted. Another reason is that it would weaken the identification of the alcohol
problem with "alcohol abuse and alcoholism" by paying attention to the costs of
nonproblem drinking.

-Mark A. R. Kleiman, in Against Excess: Drug Policy for Results (Basic Books)

Private discourse ... grew cruder in the decades after World War 11. One 1969
study of actual use of language, for example, showed that a group of adults in a
leisure setting used damn and a four-letter word for excrement more frequently
than they did the or and.

-John C. Burnham, in Bad Habits: Drinking, Smoking, Taking Drugs, Gambling,
Sexual Misbehavior, and Swearing in American History (New York University Press)
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ematics and reasoning have in fact changed
the way many of us view the world of
mathematics.
A hundred years before Russell's paradox

ushered in the 20th century, the great
French scientist J. L. Lagrange wrote,

It seems to me that the mine is already almost too
deep, and unless we discover new seams we shall
sooner or later have to abandon it. Today Physics
and Chemistry offer more brilliant and more easily
exploited riches; and it seems that the taste of the
century has turned entirely in that direction. It is
not impossible that the mathematical positions in
the Academies will one day become what the
University chairs in Arabic are now.

This lament echoes a fin de siecle pessimism
that has struck mathematics toward the end
of each of the last three centuries. Very
likely we will indulge in a similar malaise of
millennialism over the next few years. If we
are as lucky as were our ancestors, this will
be followed, in the manner of an economy
coming out of a long recession, by a tre-
mendous burst of productivity in which new
and unexpected directions will be taken.
Paradigms will shift, perhaps as dramatical-
ly as they did at the beginning of both this
century (in the shadow of the modem

Imm obilizes

Immobilize with MinifoloM I

Dot- and Slot-Blot Systems.
* One unit that easily converts from a

Dot-Blofter to a Slot-Blotter.
* Accommodates a wide range of S&S
membranes and filter matrices to
handle a wide range of applications.

* Yields consistent assay results.

atom) and last century (with the advent of
rigor a la Cauchy and the later disquieting
discovery of non-Euclidean geometries).

For Lagrange mathematics was prosaical-
ly Platonic, intellectual coal to be mined.
The lament was not for the passing of math-
ematics, it was for the passing of mathema-
ticians. Mathematical ore is still there even
if no one is digging. It is the cultural loss, or
perhaps the loss of a pleasant livelihood, not
the lost science, that is found troubling.

Lagrange, comfortable in his Platonic
belief in a tangible, physical mathematics
and its concomitant discovery and exploi-
tation, might have been much shaken by
the crisis induced by Russell and his con-
temporaries. Others certainly were. Many
mathematicians today take a much more
formalist, axiomatic, and bloodless ap-
proach to their subject. Some take an ex-
treme constructivist position: things that
cannot be constructed finitely do not exist.
Others take an intuitionist point of view:
proofs must eschew the principle of the
excluded middle and must be fully (psycho-
logically) analyzable.

The questioning of foundations has led
to some of the truly profound insights of the
century about the nature of knowledge,
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uncertainty, randomness and unknowabil-
ity, the gulf between truth and proof. Out
of the brains of logicians like Turing sprang
fully formed theoretical computers-with
all the power of the physical ones that were
still to be built. Thus computers were in
fact discovered before they were invented-
or perhaps it is the other way around.

This begins to touch the themes of
Barrow's richly woven book, which is really
a collection of six long, lucid, loosely
linked essays in the philosophy, history,
and culture of mathematics.
We would not indulge in "millennial-

ism" if we had six fingers on each hand, nor
would we tend to encapsulate by centuries.
But we would almost certainly still count,
and quite probably in very similar fashion,
even if in a different base. In a long chapter
on the cultural development of counting
and numeration, Barrow asserts, "The In-
dian system of counting has been the most
successful intellectual innovation ever
made on our planet"-a grand claim that is
persuasively defended. The Indian innova-
tion is primarily the number zero. A Won-
derland feature, that nothing can be
claimed more successful and inevitable than
the discovery (invention) of nothing.
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"An early form of Indian numerals in BrAhmi script. Our own number symbols are descended from
them." [From Pi in the Sky]

Most of this book revolves around mak-
ing the case for and against the various
competing philosophies of mathematics.
By and large the case against wins each
round. It is very hard to embrace any of
these philosophies wholeheartedly. We
tend to set our own personal demarca-
tions. But for most of us some parts of
mathematics exist: natural numbers, trian-
gles, perhaps pi. Some of the more exotic
and abstract bits just don't have the same

claim to a life of their own. The average
mathematician is a mosaic: perhaps two
parts Platonist to one part formalist, with
a taste for constructive proofs when possi-
ble. (We challenge the reader to find a

working mathematician of any philosoph-
ical stripe who would refuse authorship of
a classically valid but nonconstructive
proof of the celebrated Riemann hypoth-
esis no matter what axiomatics that proof
demanded.)

What keeps this book so readable is the
texture: the historical anecdotes; the care-

ful biographical sketches of Goedel, Can-
tor, Brouwer, Hilbert, and others; the
excursions into the bizarre world of unde-
cidability; the speculations on the future;
the thought-provoking ripostes. (In an-

swer to Roger Penrose, Barrow suggests
that the capacity to encode undecidable
statements is a precondition for conscious-
ness of a structure.) Throughout Barrow
demonstrates a remarkable scope, a fine
sense of how mathematics works, and
considerable insight into how it may be
evolving. Occasional minor technical in-
felicities do nothing to mar the success of
his project.

Barrow writes, "Today it is not unex-

pected to find the 'computer' or the 'pro-
gram' as central paradigms in our attempts
to interpret the Un;-erse" and observes
that "the concept of experimental mathe-
matics has begun to take on a new and
more adventurous complexion." This per-
vasive use of the computer to attempt to

interpret mathematics rather than just the

1930

universe is surprisingly new. Mathemati-
cians invented computers and then for
several decades proceeded largely to ignore
them. It is only recently, with the advent
of really successful symbolic manipulation
of computer algebra packages, that com-

puters have come of mathematical age-
or, more accurately, have entered puberty.

This book is not so much about math-
ematics as specialist subject as it is about
mathematics as universal language. Talk-
ing meaningfully about mathematics with-
out talking in mathematics is a difficult
and underpracticed art. Barrow's book is a

very welcome addition to this literature.
Jonathan Borwein

University of Waterloo,
Waterloo, Ontario N2L 3G1, Canada

Peter Borwein
Daihousie University,

Halifax, Nova Scotia B3H 3J5, Canada
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The Encyclopedia of Integer Sequences. By
N. J. A. Sloane and Simon Plouffe. Academic
Press, San Diego, CA, 1995. $44.95. xii+587
pp., hardcover. ISBN 0-12-558630-2.

The Encyclopedia oflnteger Sequencesby Sloane
and Plouffe, published by Academic Press, is not
a normal book. It contains a lexicographically
ordered collection of integer sequences together
with references to where these sequences appear
in the literature. The idea is that a researcher who
encounters a sequence in her or his work, and
wishes to quickly find out what is known about
the sequence (does it have a name, for example,
such as "the Euler numbers" or "the Stifling num-
bers of the first kind"?), can look it up here.
On the face of it this seems a difficult task to

accomplish, because surely there are very many
sequences of interest. However, by Pareto’s prin-
ciple (80% ofyour workis done with 20% ofyour
tools) we would expect that simple sequences
would occur often, and thus such a book would
be useful.

Indeed, this is the case, and even if the book
were no more than the handsomely bound physi-
cal collection it is, it would have been worthwhile
to create, publish, or buy, because it provides a
very cheap and efficient route to answers that will
work sometimes: if it doesn’t work on a partic-
ular problem, no great effort has been expended,
while if it does work you may save a lot of time.

But the physical book is not the whole
story. Sloane and Plouffe have also created two
"avatars" of the book; these are freely available
online computer programs (which we will call
sequences and super seeker) for people
to send their sequences to. Because the pro-
grams can be accessed by people who do not own
the book, we think that Academic Press deserves
considerable praise for its enlightened attitude to-
ward the changing shape of publishing.

This is not the first, but is one of the first of a

growing list of sophisticated tools which are ac-
cessible to even relatively naive users, and which

Publishers are invited to send books for review
to Book Reviews Editor, SIAM, 3600 University City
Science Center, Philadelphia, PA 19104-2688.
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dramatically illustrate a positive use of the Inter-
net. Our dream work environment would provide
us with a whole palette of such tools and a sim-
ple key to what exists and how to use it. These
tools should ideally be fully compatible with your
favourite working environment (MATLAB, Ax-
iom, Maple, Mathematica, etc.).

In our opinionthe physical bookis itselfworth-
while not only because it is pleasant to browse in
(electrons are so cold, in comparison) but also be-
cause of the discussion at the beginning on anal-
ysis of sequences. Some of the heuristics dis-
cussed in Chapters 1, 2, and 3 (before the table of
sequences proper begins) give useful hints about
what to do when the computer programs don’t
work; they also give a nice conceptual model of
the inner workings of the programs.

One can turn the tables (so to speak) and
use the sequences from the book as a test of
each of the subprograms in sequences and
super seeker. Simon Plouffe tells us that each
subprogram was considered useful enough to be
included if it could identify on the order of 10-
100 of the sequences from the book. Further,
about 25% of the sequences in the book are ob-
tained from a rational generating function or ele-
mentary manipulation thereof (reversion, the un-
doing of a logarithmic differentiation, etc.). The
addition of various other classes such as hyperge-
ometric functions and preprocessing (adding "1"
to each term or doubling the terms, etc.) signif-
icantly increased the hit rate. It is to be empha-
sized that not every plausible transformation was
included, and much expertise on the part of the
authors was needed to choose useful transforma-
tions and to avoid "the curse of exponentiality."

Finally, some "off-the-wall" sequences are
also included, such as the numbers on the New
York subway stops in Figure M5405.

Incidentally, due to a printer’s error the table
of figures was not included in the book, and as
these "silly" sequences are not actually indexed
or numbered in the book, one must either use
the programs or know that they are contained in
Figure M5405 to find them.
We now give some examples of the uses of

the book and the programs to demonstrate their
utility (and also some limitations).
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1. How to use the programs.
1. Prepare a message with a line of the form

lookup 1 1 5 61 1385 50521 2702765

in it (obviously change the sequence to the one
you want to look up).

2. Send the message to

sequences@resear ch. a t t. com

for the simple lookup service. In this case, omit
the initial terms, and omit all minus signs. Sep-
arate the entries in the sequence with spaces, not
commas. This simply looks up sequences in
the Encyclopedia. The answer frequently comes
back within minutes.

3. Send the message to

super seeker@r esear ch. a t t. com

for a more "enthusiastic" attempt to identify your
sequence. This time, include the initial terms,
and the minus signs. If possible, give from 10 to
20 terms. This program tries over 100 transfor-
mations in an attempt to matchthe givensequence
with ones in the Encyclopedia.

2. Related books and programs.
A Handbook of Integer Sequences by

N. J. A. Sloane (1973). This might be consid-
ered the "first edition" of the book under review.
It contained only 2372 sequences, compared to
5488 in the current volume. As of this writing,
there are 6222 basic entries in the dynamic on-
line version, and because of the transformations
many more sequences can be identified.

A Dictionary ofReal Numbers by Borwein
and Borwein (1990).

ISC--the Inverse Symbolic Calculator,
which can be found easily from

http’//www, cecm. sfu. ca.

When you give this program an approximation
to a real number, it will do its best to decide
what that number "really" is--in essence, this
is a greatly expanded online version of A Dic-
tionary ofReal Numbers, mentioned above. For
example, the ISC describes f dx//1 x
1.311028777... as the "lemniscate number."
Simon Plouffe is currently working on this pro-
gram here at the Centre.

gfun the Generating Function Package by
Salvy and Zimmerman [4]. This Maple package
from the sha-e library contains functions for
manipulating sequences, linear recurrences, dif-
ferential equations, and generating functions of

various types. Simon Plouffe and E Bergeron
had some input into this package as well.

numappr ox [pade] (formerly
convert/ratpoly) in Maple. This utility
uses clever algorithms to convert power series
into Pad6 approximants.

Mathematica has facilities for conversion
of series into Pad6 approximants and the like as
well.

3. Examples for superseekerand sequences.

3.1. Example 1. We begin with a classical
analytic example from Pi, Euler numbers, and
asymptotic expansions 1].

R. D. North asked for an explanation of the
following fact:

5k 1)/-1
4

(-
2k-

k=l

3.141590653589793240462643383269502884197.

The number on the right is not zr to 40 places.
As one would expect, the 6th digit after the deci-
mal point is wrong. The surprise is that only the
underlined digits are wrong. This is explained in
detail in [1]. The discovery of the explanation is
quite difficult from this result, but is somewhat
easier from the following similar one:

50,000
:rr (--1)k-1
--2
2 2k-

k=l

1.57078632679489761923132119163975205209

Here we note that if we add 1, 1, 5, and -61 to
the incorrect digits, we get equality (to 40 places)
with n’/2. With the help of Sloane and Plouffe (or
indeed with the help of Sloane’s original Hand-
book, as was actually the case, or the computer
programs) we can identify these as the first four
nonzero Euler numbers. We conjecture, then,
that the error is of the form

7r --25 (-1)k-1 E E2k

:1
2k-

+
k>_l

100’0002/+1

where E2 is the kth nonzero Euler number. We
can test this conjecture by computation, and find
by adding the first 80 terms in the error formula
above to the sum that we get zr/2 to 500 digits.
This does not tell us that our conjecture is true,
but at least it encourages us that a proof might be
possible. See 1] for the proof.
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The point ofthis example is that recognition of
the Euler numbers in this at first required ingenu-
ity (to shift from zr to zr/2, because the original
problem has twice the Euler numbers appearing
in it). However, the case has changed: the new
programs both recognize twice the Euler num-
bers.

If we do not give enough terms to
super seeker, it fails to return anything (the
heuristics of the program are not designed for
short sequences, which, after all, can represent
far too many things to be really useful). If we put
in 7 terms, however, it returns the following.

Report on 2,2,10,122,2770,

101042,5405530]:

Many tests are carried out, but
only potentially useful
information (if any)
is reported here.

TEST: APPLY VARIOUS
TRANSFORMATIONS TO
SEQUENCE AND LOOK IT UP
IN THE ENCYCLOPEDIA AGAIN

SUCCESS
(limited to i0 matches)

Transformation T003 gave a
match with sequence A0364
Transformation T004 gave a
match with sequence A0364

List of sequences mentioned:

%I A0364 M4019 N1667

%S A0364 i,i,5,61,1385,50521,

27 02765,19936 09 81,

19391512145,2404879675441,
%T A0364 37 0371188237 525,

69348874393137901,
15514534163557 086905,
%U A0364 4087072509293123892361
%N A0364 Euler numbers:
expansion of sec $x$.
%R A0364 AS1 810. MOC 21 675 67.

Computation} (formerly
{Mathematical Tables and
Other Aids to Computation}).

List of transformations used:
T003 sequence divided by the
gcd of its elements
T004 sequence divided by the
gcd of its elements,
from the 2nd term

Abbreviations used in the above
list of transformations:
u[j] j-th term
of the sequence
v[j] u[j]/(j-l)
Sn(z) ordinary
generating function
En(z) exponential
generating function

The Euler numbers appear as sequence M4019
in the book. (The code here is to the explicit tag
in the book; A0364 is an internal absolute code
while T003 tags the transformation used.)

3.2. Example 2. The following sequence
arose in the analysis of the long-term dynamics
of numerical methods. For details on the math-
ematics of this sequence, see [2], but for now
note that this could (broadmindedly) be consid-
ered as applied mathematics because RMC was
investigating the reliability ofnumerical methods
for solving nonlinear differential equations over
long time intervals (the classical theory gives re-
suits useful only on compact time intervals, and
the presence of exponentially growing terms in
the classical error bounds raises questions about
the validity ofnumerical solutions over long time
intervals).

Define the function B(v) v + 3v2/2
8v3/3 q-- 31v4/6- 157v5/15 +.... Then multi-
plying each coefficient by k! we get the following
sequence:

1,-1, 3,-16, 124,-1256, 15576

<some cryptic material omitted>

References (if any):

[ASl] M. Abramowitz and
I. A. Stegun, {Handbook of
Mathematical Functions}, National
Bureau of Standards,
Washington DC, 1964.

[MOC] {Mathematics of

This (modulo the obviously trivial minus
signs) is sequence M3024 in the book, which
gives the reference to [3].

The history of the example is perhaps more
interesting than the mathematics. The first few
terms ofa series representing the "modified equa-
tion" solved by Un+l un + hu2n, which arises
from forward Euler applied to y2, were la-
boriously computed using Maple. Bruno Salvy’s
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gfun package was then used to identify the se-
quence; it succeeded, but on checking it was
found that the wrong sequence had been gen-
erated in the first place (i.e., there was a bug
in my Maple program--RMC). Once the bug
was fixed, gfun could no longer identify the se-
quence. Bruno Salvy (who is at INRIA in France)
was asked for help, and he remarked (immedi-
ately) that he recognized the sequence. It turned
out that he had a prepublication version of the
book under review here and, as stated previously,
the sequence is listed in the book! Coinciden-
tally, Gilbert Labelle (from Montr6al, the author
of reference [3]) was visiting INRIA at this time
as well, so it is conceivable that even without the
book the sequence would have been recognized,
but the book did play a role.

It is worth remarking that the paper by Labelle
that was uncovered by this recognition was ex-

tremely apt, and would never have been discov-
ered otherwise because it is extremely unlikely
that RMC would have looked in a combinatorics
journal for a result on reliability of numerical
methods for dynamical systems.

3.3. Example 3. Consider a + ,
which is a Pisot number because the other root
of a 2a is inside the unit circle. Then
a is asymptotically an integer, and indeed a +
(--1)n/a 2, 6, 14, 34, 82, 198

The sequence as such is not in the book (we
must divide by 2) but even without division by 2,
sequences return the following:

Matches (at most 7) found
for 2 6 14 34 82 198:

%I A2203 M0360 N0136

%S A2203 2,2,6,14,34,82,198,478,
1154,27 86,67 26,16238,39202,
94642,228486,

%T A2203 551614,1331714,3215042,
7761798,18738638,45239074,
109216786,263672646

%N A2203 Companion Pell numbers:

Sa(n) 2a(n-l) + a(n-2)$.

%R A2203 AJM 1 187 1878.

FQ 4 373 66. BPNR 43.

%0 A2203 0,i

%C A2203 njas
%K A2203

References (if any)

[AJM] {American Journal

of Mathematics}.
[BPNR] P. Ribenboim,
{The Book of Prime Number
Records}, Spr inger -Vet lag,
NY, 2nd ed., 19 89.

[FQ] {The Fibonacci Quarterly}.

Instead of mentioning Pisot numbers, the se-
quence is (correctly) identified as being related
to Companion Pell numbers. This connection
also would have been unlikely without this com-
pendium.

3.4. Example 4. A problem that recently
arose on sci. math was the (well-known) prob-
lem of finding when triangular numbers are
square numbers; the first few quickly lead to the
sequence 1, 8, 49, 288, 1681 as can be de-
termined with a few minutes computation. This
is sequence M4536 in the book, and references
are provided to Dickson’s History, to Beiler, and
other recreational mathematics books. In some
sense this is what the book is for: to give people
an index into what is "well known" and perhaps
to avoid ingenious but ultimately wasted redis-
covery.

3.5. Failed examples. The book and pro-
grams are not oracles, and cannot perform mira-
cles. For example, if we submit the following se-
quence, which simply counts the number ofterms
in a particular arrangement of a perturbation so-
lution of a heat transfer problem (we would like
to know how quickly the size of the solution is
growing),

2, 12, 44, 100, 203,344, 558,

824, 1189, 1620, 2176, 2812

we get no answer.
Other failures can of course occur. The

following example shows what might happen,
and the potential for misidentification of a se-
quence. If we submit the sequence [0, 1, 2, 3, 5,
7, 9, 12, 15, 18] to superseeker, it returns
matches for both M0638 and for M0639, which
agree to the first 10 entries. The th entry for
M0638 is 22, while the th entry for M0639 is
23. One of them must be wrong, and this brings
home the fact that even if the programs or book
say that the sequence you give it is X only, that
might just be a numerical coincidence.

The user of the book and programs must re-
member that a match does notprove that the se-
quencefound is the one you are lookingfor, and it
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is up to the user to demonstrate that any matches
found by the programs or in the book are really
appropriate for the problem at hand.

4. About the reviewers. One of us is more
pure than applied, while the other is more vice
than versa. However, neither of us believes in
drawing artificial boundaries between branches
of mathematics, and to us the most exciting thing
about the book under review is that it helps to
erase suchboundaries (and indeed narrow the real
gaps that exist). RMC is currently visiting the
Centre for Experimental and Constructive Math-
ematics, where JMB is Director. It should be
noted that this review is not entirely at "arm’s
length," because (as previously mentioned) Si-
mon Plouffe has recently joined the CECM.
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Transport Simulation in Microelectronics.
By Alfred Kersch and William J. Morokoff.
Birkh/iuser, Basel, 1995. $89.00. 235 pp., cloth.
ISBN 3-7643-5168-3.

This book deals with important applications of
the Boltzmann equation to the field of micro-
electronics. Other known examples are studies
of upper atmosphere flight, which occur, e.g., in
connection with the re-entry of a space shuttle,
micromachines, environmental problems, such
as understanding and control of the formation,
motion, reactions, and evolution of particles of
varying composition and shapes, ranging from
a diameter of the order of .001/zm to 50/zm, as

well as their space-time distribution under gradi-
ents of concentration, pressure, temperature, and
the action of radiation. Modified versions of the
Boltzmann equation appear in other well-known
applications, such as neutron transport, plasma
physics, and radiative transfer 1].

In these fields of modern technology the con-
cepts and tools introduced by Boltzmann are es-
sential. This would have pleased Boltzmann,
who was very much interested in technological
advances (he also wrote a paper in which he cor-
rectly predicted the superiority of airplanes over
dirigible airships) and is the author of the follow-
ing sentences written in 1902 [2], which nowa-
days may sound a bit trivial:

However much science prides itself on the
ideal character of its goal, looking down some-
what contemptuously on technology andpractice,
it cannot be denied that it took its risefrom a striv-
ingfor satisfaction ofpurelypractical needs. Be-
sides, the victorious campaign of contemporary
natural science would never have been so incom-
parably brilliant, had not sciencefound in tech-
nologists such capable pioneers.

All the problems mentioned above have in
common the fact that the mean free path is not

negligible with respect to some other characteris-
tic length. In fact, simple considerations indicate
that for rarefied gases one cannot rely on the usual
Navier-Stokes equations for a compressible fluid
and must resort to kinetic theory.

The basic evolution equation in kinetic the-
ory is the Boltzmann equation [1, 3, 4], which
governs the time development of the distribu-
tion function f f(x, v, t), i.e., the proba-
bility density (in the phase space described by
(x, v) 6 x 9t3, f2 C 9i3) of finding a molecule
with position x and velocity v at time t. In the
absence of a body force and for the case of a
monatomic gas, this equation may be written as
follows:

(1)

Of/at + v. (Of/Ox)

ff(,,, ff,)B(O, Iv- v, I)dv,dOd.

Here B(O, v v, I) is a kernel containing the
details of the molecular interaction and f’, f,’,
f, are the same as f, except for the fact that
the argument v is replaced by v’, v’,, v,, respec-
tively, v, being an integration variable (having



Chapter 7

Making Sense of Experimental
Mathematics

7.1 Introduction

Philosophers have frequently distinguished mathematics from the physical sci-
ences. While the sciences were constrained to fit themselves via experimentation
to the “real” world, mathematicians were allowed more or less free reign within
the abstract world of the mind. This picture has served mathematicians well for
the past few millennia but the computer has begun to change this. The com-
puter has given us the ability to look at new and unimaginably vast worlds. It
has created mathematical worlds that would have remained inaccessible to the
unaided human mind, but this access has come at a price. Many of these worlds,
at present, can only be known experimentally. The computer has allowed us to
fly through the rarefied domains of hyperbolic spaces and examine more than a
billion digits of π but experiencing a world and understanding it are two very
different phenomena. Like it or not, the world of the mathematician is becoming
experimentalized.1

The computers of tomorrow promise even stranger worlds to explore. Today,
however, most of these explorations into the mathematical wilderness remain
isolated illustrations. Heuristic conventions, pictures and diagrams developing

1This entire chapter is a reprint (with permission) of “Making Sense of Experimental Math-
ematics,” by J. M. Borwein, P. B. Borwein, R. Girgensohn, and S. Parnes, Mathematical
Intelligencer, vol. 18 (1996), page 12–18.
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in one sub-field often have little content for another. In each sub-field unproven
results proliferate but remain conjectures, strongly held beliefs or perhaps mere
curiosities passed like folk tales across the Internet. The computer has provided
extremely powerful computational and conceptual resources but it is only re-
cently that mathematicians have begun to systematically exploit these abilities.
It is our hope that by focusing on experimental mathematics today, we can
develop a unifying methodology tomorrow.

7.1.1 Our Goals

The genesis of this article was a simple question: “How can one use the com-
puter in dealing with computationally approachable but otherwise intractable
problems in mathematics?” We began our current exploration of experimen-
tal mathematics by examining a number of very long–standing conjectures and
strongly held beliefs regarding decimal and continued fraction expansions of
certain elementary constants. These questions are uniformly considered to be
hopelessly intractable given present mathematical technology. Unified field the-
ory or cancer’s “magic bullet” seem accessible by comparison. But like many of
the most tantalizing problems in mathematics their statements are beguilingly
simple. Since our experimental approach was unlikely to result in any new dis-
coveries2, we focused on two aspects of experimentation: systematization and
communication.

For our attempted systematization of experimental mathematics we were
concerned with producing data that were “completely” reliable and insights that
could be quantified and effectively communicated. We initially took as our model
experimental physics. We were particularly interested in how physicists verified
their results and the efforts they took to guarantee the reliability of their data.
The question of reliability is undoubtedly central to mathematicians and here
we believe we can draw a useful distinction between experimental physics and
mathematics. While it is clearly impossible to extract perfect experimental data
from nature such is not the case with mathematics. Indeed, reliability of raw
mathematical data is far from the most vexing issue.

Let us turn to our second and primary concern: insight. All experimental
sciences turn on the intuitions and insights uncovered through modeling and the

2We will not discuss the computational difficulties here but there are many non-trivial
mathematical and computer–related issues involved in this project.
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use of probabilistic, statistical and visual analysis. There is really no other way
to proceed, but this process even when applied to mathematics inevitably leads
to some considerable loss of exactness.

The communication of insight, whether derived from mathematical experi-
ment or not, is a complex issue. Unlike most experimentalized fields, Mathemat-
ics does not have a “vocabulary” tailored to the transmission of condensed data
and insight. As in most physics experiments the amount of raw data obtained
from mathematical experiments is, in general, too large for anyone to grasp. The
collected data needs to be compressed and compartmentalized. To make up for
this lack of unifying vocabulary we have borrowed heavily from statistics and
data analysis to interpret our results. For now we have used restraint in the
presentation of our results in what we hope is an intuitive, friendly and convinc-
ing manner. Eventually what will probably be required is a multi-leveled hyper-
textual presentation of mathematics, allowing mathematicians from diverse fields
to quickly examine and interpret the results of others—without demanding the
present level of specialist knowledge. [Not only do mathematicians have trouble
communicating with lay audiences, but they have significant difficulty talking to
each other. There are hundreds of distinct mathematical languages. The myth
of a universal language of mathematics is just that. Many subdisciplines simply
can not comprehend each other.]

7.1.2 Unifying Themes

We feel that many of these problems can be addressed through the development
of a rigorous notion of experimental mathematics. In keeping with the positivist
tradition, mathematics is viewed as the most exact of sciences and mathemati-
cians have long taken pride in this. But as mathematics has expanded, many
mathematicians have begun to feel constrained by the bonds placed upon us by
our collective notion of proof. Mathematics has grown explosively during our
century with many of the seminal developments in highly abstract seemingly non-
computational areas. This was partly from taste and the power of abstraction
but, we would argue, equally much from the lack of an alternative. Many intrin-
sically more concrete areas were, by 1900, explored to the limits of pre-computer
mathematics. Highly computational, even “brute-force” methods were of neces-
sity limited but the computer has changed all that. A re-concretization is now
underway. The computer–assisted proofs of the four color theorem are a prime
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example of computer–dependent methodology and have been highly controver-
sial despite the fact that such proofs are much more likely to be error free than,
say, even the revised proof of Fermat’s Last Theorem.

Still, these computerized proofs need offer no insight. The Wilf/Zeilberger
algorithms for “hypergeometric” summation and integration, if properly imple-
mented, can rigorously prove very large classes of identities. In effect, the al-
gorithms encapsulate parts of mathematics. The question raised is: “How can
one make full use of these very powerful ideas?” Doron Zeilberger has expressed
his ideas on experimental mathematics in a paper dealing with what he called
“semi-rigorous” mathematics. While his ideas as presented are somewhat con-
troversial, many of his ideas have a great deal of merit.

The last problem is perhaps the most surprising. As mathematics has con-
tinued to grow there has been a recognition that the age of the mathematical
generalist is long over. What has not been so readily acknowledged is just how
specialized mathematics has become. As we have already observed, sub-fields
of mathematics have become more and more isolated from each other. At some
level, this isolation is inherent but it is imperative that communications between
fields should be left as wide open as possible.

As fields mature, speciation occurs. The communication of sophisticated
proofs will never transcend all boundaries since many boundaries mark true
conceptual difficulties. But experimental mathematics, centering on the use of
computers in mathematics, would seem to provide a common ground for the
transmission of many insights. And this requires a common meta–language3.
While such a language may develop largely independent of any conscious direc-
tion on the part of the mathematical community, some focused effort on the
problems of today will result in fewer growing pains tomorrow.

7.2 Experimental Mathematics

7.2.1 Journal of

A professor of psychology was exploring the creative process and as one of his
subjects chose a mathematician who was world famous for his ability to solve

3This may not be a fanciful dream as the Computer Algebra Systems (CAS) of today are
beginning to provide just that.
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problems. They gave him a problem to work on. He wrote something down and
immediately scribbled it out. He wrote something else down and scribbled it out.
The professor asked him to leave everything on the page. He explained that he
was interested in the process, the wrong answers and the right answers. The
mathematician sat down. Wrote something. The psychology professor waited
in anticipation but the mathematician announced he could not proceed without
erasing his mistakes. While the mathematician in this situation is undoubtedly
fairly idiosyncratic in how he attacks problems there is a strongly felt separa-
tion between the creative process of mathematics and the published or finished
product.

A current focal point for experimental mathematics is the journal called Ex-
perimental Mathematics. But does it really seek to change the way we do math-
ematics, or to change the way we write mathematics? We begin by attempting
to extract a definition of “experimental” from the Journal’s introductory arti-
cle ([86]) “About this Journal” by David Epstein, Silvio Levy and Rafael de la
Llave.

The word “experimental” is conceived broadly: many mathematical
experiments these days are carried out on computers, but others
are still the result of pencil-and-paper work, and there are other
experimental techniques, like building physical models. ([86] p. 1)

It seems that almost anything can be conceived of as being experimental.
Let us try again.

Experiment has always been, and increasingly is, an important method
of mathematical discovery. (Gauss declared that his way of arriving
at mathematical truths was “through systematic experimentation”.)
Yet this tends to be concealed by the tradition of presenting only
elegant, well-rounded and rigorous results. ([86] p. 1)

Now we begin to get closer to the truth. Experimentation is still ill defined
but is clearly an important part of the mathematical process. It is clearly not new
but by implication must be inelegant, lopsided and lax. We, of course, dispute
all three of these points and while we do not reply directly to these charges, we
hope the reader will be convinced that there need be no compromises made with
respect to the quality of the work.
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But what is the journal interested in publishing? Their goal seems to be
two-fold.

While we value the theorem-proof method of exposition, and while we
do not depart from the established view that a result can only become
part of mathematical knowledge once it is supported by a logical
proof, we consider it anomalous that an important component of the
process of mathematical creation is hidden from public discussion. It
is to our loss that most of the mathematical community are almost
always unaware of how new results have been discovered. ([86] p. 1)

and

The early sharing of insights increases the possibility that they will
lead to theorems: an interesting conjecture is often formulated by
a researcher who lacks the techniques to formalize a proof, while
those who have the techniques at their fingertips have been looking
elsewhere.

It appears that through the journal Experimental Mathematics the editors
advocate a not undramatic change in writing style. So what does a paper pub-
lished in that journal look like? A recent example is “Experimental Evaluation of
Euler sums” by D. H. Bailey, J. Borwein and R. Girgensohn ([20]). The authors
describe how their interest in Euler sums was roused by a surprising discovery:

In April 1993, Enrico Au-Yeung, an undergraduate at the Uni-
versity of Waterloo, brought to the attention of one of us the curious
fact that

∞∑

k=1

(
1 +

1

2
+ · · ·+ 1

k

)2

k−2 = 4.59987 · · ·

≈ 17

4
ζ(4) =

17π4

360

based on a computation to 500,000 terms. This author’s reaction was
to compute the value of this constant to a higher level of precision
in order to dispel this conjecture. Surprisingly, a computation to 30
and later to 100 decimal digits still affirmed it. ([20] p. 17)
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After Enrico Au-Yeung’s serendipitous discovery, D. Bailey, J. Borwein and R.
Girgensohn launched a full fledged assault on the problem. This is documented
in “Experimental Detection of Euler Sums” (the material below was taken from
David Bailey’s slides).

Experimental Approach

1. Employ an advanced scheme to compute high-precision (100+ digit) nu-
merical values for various constants in a class.

2. Conjecture the form of terms involved in possible closed-form evaluations.

3. Employ an integer relation finding algorithm to determine if an Euler
sum value is given by a rational linear combination of the conjectured
terms.

4. Attempt to find rigorous proofs of experimental results.

5. Attempt to generalize proofs for specific cases to general classes of Euler
sums.

Table 7.1: Serendipity and experimentation.

This type of serendipitous discovery must go on all the time, but it needs the
flash of insight that will place it in a broader context. It is like a gold nugget
waiting to be refined—without a context it would remain a curiosity. The authors
now proceeded to provide a context by mounting a full-fledged assault on the
problem. They systematically applied an integer relation detection algorithm
to large classes of sums of the above type, trying to find evaluations of these
sums in terms of zeta functions (see Table 7.1 and 7.2 for details). Some of the
experimentally discovered evaluations were then proven rigorously, others remain
conjectures. While Au-Yeung’s insight may fill us with a sense of amazement,
the experimenters’ approach appears quite natural and systematic.

The editors of Experimental Mathematics are advocating a change in the
way mathematics is written, placing more emphasis on the mathematical process.
Imre Lakatos in his influential though controversial book Proofs and Refutations



284 CHAPTER 7. MAKING SENSE OF EXPERIMENTAL MATH

[137] advocated a similar change from what he called the deductivist style of
proof to the heuristic style of proof. In the deductivist style, the definitions are
carefully tailored to the proofs. The proofs are frequently elegant and short. But
it is difficult to see what process led to the discovery of the theorem and its proof.
The heuristic style maintains the mathematical rigor but again the emphasis is
more on process. One does not merely give the definition but perhaps includes
a comment on why this definition was chosen and not another. This is clearly
an important shift if the editors wish to meet their second objective, the sharing
of insights.

7.2.2 The Deductivist Style

The major focus of this section is Imre Lakatos’s description of the deductivist
style in Proofs and Refutations. An extreme example of this style is given in the
form of a computer generated proof of (1 + 1)n = 2n in Table 7.3.

Euclidean Methodology has developed a certain obligatory style of
presentation. I shall refer to this as “deductivist style.” This style
starts with a painstakingly stated list of axioms, lemmas and/or
definitions. The axioms and definitions frequently look artificial and
mystifyingly complicated. One is never told how these complications
arose. The list of axioms and definitions is followed by the carefully
worded theorems. These are loaded with heavy-going conditions; it
seems impossible that anyone should ever have guessed them. The
theorem is followed by the proof. ([137] p. 142)

This is the essence of what we have called formal understanding. We know that
the results are true because we have gone through the crucible of the mathe-
matical process and what remains is the essence of truth. But the insight and
thought processes that led to the result are hidden.

In deductivist style, all propositions are true and all inferences valid.
Mathematics is presented as an ever-increasing set of eternal, im-
mutable truths. ([137] p. 142)

Deductivist style hides the struggle, hides the adventure. The whole
story vanishes, the successive tentative formulations of the theorem



7.2. EXPERIMENTAL MATHEMATICS 285

Definitions:

ζ(s) =
∞∑

k=1

k−s

sh(m,n) =
∞∑

k=1

(
1 +

1

2
+ · · ·+ 1

k

)m

(k + 1)−n m ≥ 1, n ≥ 2

Some experimentally derived conjectures:

sh(3, 2) =
15

2
ζ(5) + ζ(2)ζ(3)

sh(3, 3) = −33

16
ζ(6) + 2ζ2(3)

sh(3, 4) =
119

16
ζ(7)− 33

4
ζ(3)ζ(4) + 2ζ(2)ζ(5)

sh(3, 6) =
197

24
ζ(9)− 33

4
ζ(4)ζ(5)− 37

8
ζ(3)ζ(6) + ζ3(3) + 3ζ(2)ζ(7)

sh(4, 2) =
859

24
ζ(6) + 3ζ2(3)

We are given the raw data with which to work, carefully organized to give
us a glimpse into the investigators’ insights on the problem. Note in the first
formula for sh(3, 2), 3 + 2 = 5, on the right hand side of the equation we have
ζ(5) and ζ(3)ζ(2).

Some proven Euler sums:

sh(2, 2) =
3

2
ζ(4) +

1

2
ζ2(2) =

11π4

360

sh(2, 4) =
2

3
ζ(6)− 1

3
ζ(2)ζ(4) +

1

3
ζ3(2)− ζ2(3) =

37π6

22680
− ζ2(3)

The proven evaluation for sh(2, 2) above implies the truth of Au-Yeung’s dis-
covery.

Table 7.2: Some experimental results.
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When one first learns to sum infinite series one is taught to sum geometric
series

1 + ρ + ρ2 + · · ·+ ρk + · · · = 1

1− ρ

when |ρ| < 1. Next one learns to sum telescoping series. For example if
f(i) = 1

i+1
− 1

i+2
, it is not to hard to see that

n∑
i=0

f(i) = (1− 1

2
) + (

1

2
− 1

3
) · · · ( 1

n + 1
− 1

n + 2
) = 1− 1

n + 2

and in particular that
∞∑
i=0

f(i) = 1.

The Wilf-Zeilberger algorithms employ “creative telescoping” to show that a
sum or integral is zero. The algorithms really provide a meta-insight into a
broad range of problems involving identities. Unfortunately the proofs pro-
duced by the computer, while understandable by most mathematicians are at
the same time uninteresting. On the other hand, the existence of WZ proofs
for large classes of objects gives us a global insight into these areas.

Table 7.3: Shrinking or encapsulating mathematics.

in the course of the proof-procedure are doomed to oblivion while
the end result is exalted into sacred infallibility. ([137] p. 142)

Perhaps the most extreme examples of the deductivist style come out of
the computer generated proofs guaranteed by Wilf and Zeilberger’s algorithmic
proof theory. It is important to note here that Wilf and Zeilberger transform the
problem of proving identities to the more computer oriented problem of solving
a system of linear equations with symbolic coefficients.

These WZ proofs (see Table 7.4) are perhaps the ultimate in the deductivist
tradition. At present, knowing the WZ proof of an identity amounts to little
more (We will discuss the importance of certificates later.) than knowing that
the identity is true. In fact, Doron Zeilberger in [194] has advocated leaving
only a QED at the end of the statement, the author’s seal that he has had the
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computer perform the calculations needed to prove the identity. The advantage
of this approach is that the result is completely encapsulated. Just as one would
not worry about how the computer multiplied two huge integers together or
inverted a matrix, one now has results whose proofs are uninteresting.

7.3 Zeilberger and the Encapsulation of

Identity

7.3.1 Putting a Price on Reliability

In the last two sections we talked about the importance of communicating in-
sights within the mathematical community. There we focused on the process of
mathematical thought but now we want to talk about communicating insights
that have not been made rigorous.

We have already briefly talked about Wilf and Zeilberger’s algorithmic proof
theory and its denial of insight. In this section we will discuss the implications
of this theory and D. Zeilberger’s philosophy of mathematics as contained in
Theorems for a Price: Tomorrow’s Semi-Rigorous Mathematical Culture ([195]).

It is probably unfortunate but perhaps necessary that the two voices most
strongly advocating truly experimental math are also at times the most hy-
perbolic in their language. We will concentrate mostly on the ideas of Doron
Zeilberger but G. J. Chaitin should not and will not be ignored.

We will begin with D. Zeilberger’s “Abstract of the future”

We show in a certain precise sense that the Goldbach conjecture is
true with probability larger than 0.99999 and that its complete truth
could be determined with a budget of 10 billion. ([195] p. 980)

Once people get over the shock of seeing probabilities assigned to truth in math-
ematics the usual complaint is that the 10 billion is ridiculous. Computers have
been getting better and cheaper for years. What can it mean that “the complete
truth could be determined with a budget of 10 billion?” What is clear from the
article is that this is an additive measure of the difficulty of completely solving
this problem. If we know that the Riemann hypothesis will be proven if we prove
lemmas costing 10 billion, 2 billion and 2 trillion dollars respectively, we can tell
at a glance not merely what it would “cost” to prove the hypothesis but also
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Below is a sample WZ proof of (1 + 1)n = 2n (this proof is a modified version
of the output of Doron Zeilberger’s original Maple program, influenced by the
proof in [194]).

Let F (n, k) =

(
n
k

)
2−n. We have to show that l(n) =

∑
k F (n, k) = 1. To

do this we will show that l(n + 1)− l(n) = 0 for every n ≥ 0 and that l(0) = 1.
The second half is trivial since for n = 0, F (0, 0) is equal to 1 and 0 otherwise.
The first half is proved by the WZ algorithm.

We construct

G(n, k) =
−1

2(n+1)

(
n

k − 1

)(
=

−k

2(n− k + 1)
F (n, k)

)
,

with the motive that

WZ = F (n + 1, k)− F (n, k) = G(n, k + 1)−G(n, k) (check!).

Summing WZ with respect to k gives

∑

k

F (n + 1, k)−
∑

k

F (n, k) =

∑

k

(G(n, k + 1)−G(n, k)) = 0

(by telescoping). We have now established that l(n + 1)− l(n) = 0 and we are
done.

The proof gives little insight into this binomial coefficient identity. However,
the algorithms give researchers in other fields direct access to the field of special
function identities.

Table 7.4: An uninteresting(?) proof.
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where new ideas will be essential in any proof. ( This assumes that 2 trillion is
a lot of “money.”)

The introduction of “cost” leads immediately to consideration of a trend that
has over taken the business world and is now intruding rapidly on academia: a
focus on productivity and efficiency.

It is a waste of money to get absolute certainty, unless the conjectured
identity in question is known to imply the Riemann Hypothesis ([195]
p. 980)

We have taken this quote out of its context (Wilf and Zeilberger’s algorithmic
proof theory of identities) [195] but even so we think it is indicative of a small
but growing group of mathematicians who are asking us to look at not just
the benefits of reliability in mathematics but also the associated costs. See for
example A. Jaffe and F. Quinn in [118, 119] and G. Chaitin in [66]. Still, we have
not dealt with the central question. Why does D. Zeilberger need to introduce
probabilistic “truths?” and how might we from a “formalist” perspective not feel
this to be a great sacrifice?

7.3.2 It’s All About Insight

Why is Zeilberger so willing to give up on absolute truths? The most reasonable
answer is that he is pursuing deeper truths. In Identities in Search of Identities,
Zeilberger advocates an examination of identities for the sake of studying iden-
tities. Still as Herb Wilf and others have pointed out it is possible to produce
an unlimited number of identities. It is the context, the ability to use and ma-
nipulate these identities, that make them interesting. Why then might we think
that studying identities for their own sake may lead us down the golden path
rather than the garden path?

We are now looking for what might be called meta-mathematical structures.
We remove the math from its original context and isolate it, trying to detect
new structures. When doing this it is impossible to collect only the relevant
information that will lead to the new discovery. One collects objects (theorems,
statistics, conjectures, etc.) that have a reasonable degree of similarity and
familiarity and then attempts to eliminate the irrelevant or the untrue (counter
examples). We are preparing for some form of eliminative induction. There is
a built in stage, where objects are subject to censorship. In this context, it is
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not unreasonable to introduce objects where one is not sure of their truth, since
all the objects, whether proved or not, will be subject to the same degree of
scrutiny. Moreover, if these probably true objects fall into the class of reliable
(i.e., they fit the new conjecture) objects, it may be possible to find a legitimate
proof in the new context. Recall that the fast WZ algorithms transform the
problem of proving an identity to one of solving a system of linear equations
with symbolic coefficients.

It is very time consuming to solve a system of linear equations with
symbolic coefficients. By plugging in specific values for n and other
parameters if present, one gets a system with numerical coefficients,
which is much faster to handle. Since it is unlikely that a random
system of inhomogeneous linear equations with more equations than
unknowns can be solved, the solvability of the system for a number of
special values of n and the other parameters is a very good indication
that the identity is indeed true. ([195] p. 980)

Suppose we can solve the system above for ten different assignments for
n and the other parameters but cannot solve the general system. What do
we do if we really need this identity? We are in a peculiar position. We have
reduced the problem of proving identities involving sums and integrals of proper-
hypergeometric terms to the problem of solving a possibly gigantic system of
inhomogeneous linear equations with more equations than unknowns. We have
an appropriately strong belief that this system has a solution but do not have
the resources to uncover this solution.

What can we do with our result? If we agree with G. J. Chaitin, we may
want to introduce it as an “axiom.”

I believe that elementary number theory and the rest of mathematics
should be pursued more in the spirit of experimental science, and that
you should be willing to adopt new principles. I believe that Euclid’s
statement that an axiom is a self-evident truth is a big mistake4.
The Schrödinger equation certainly isn’t a self-evident truth! And
the Riemann Hypothesis isn’t self-evident either, but it’s very useful.
A physicist would say that there is ample experimental evidence for

4There is no evidence that Euclid ever made such a statement. However, the statement
does have an undeniable emotional appeal.
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the Riemann Hypothesis and would go ahead and take it as a working
assumption. ([66] p. 24)

In this case, we have ample experimental evidence for the truth of our identity
and we may want to take it as something more than just a working assumption.
We may want to introduce it formally into our mathematical system.

7.4 Experiment and “Theory”

We have now examined two views of experimental mathematics but we appear
to be no closer to a definition than when we began. However, we are now ready
to begin in full our exploration of experiment. In Advice to a Young Scientist, P.
B. Medawar defines four different kinds of experiment: the Kantian, Baconian,
Aristotelian, and the Galilean. Mathematics has always participated deeply in
the first three categories but has somehow managed to avoid employing the
Galilean model. In developing our notion of experimental mathematics we will
try to adhere to this Galilean mode as much as possible.

We will begin with the Kantian experiments. Medawar gives as his example:

generating “the classical non-Euclidean geometries (hyperbolic, ellip-
tic) by replacing Euclid’s axiom of parallels (or something equivalent
to it) with alternative forms.” ([152] pp. 73–74)

It seems clear that mathematicians will have difficulty escaping from the Kantian
fold. Even a Platonist must concede that mathematics is only accessible through
the human mind and thus at a basic level all mathematics might be considered
a Kantian experiment. We can debate whether Euclidean geometry is but an
idealization of the geometry of nature (where a point has no length or breadth
and a line has length but no breadth?) or nature an imperfect reflection of
“pure” geometrical objects, but in either case the objects of interest lie within
the minds eye.

Similarly, we cannot escape the Baconian experiment. In Medawar’s words
this

is a contrived as opposed to a natural happening, it “is the conse-
quence of ‘trying things out’ or even of merely messing about.” ([152]
p. 69)
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Most of the research described as experimental is Baconian in nature and in fact
one can argue that all of mathematics proceeds out of Baconian experiments.
One tries out a transformation here, an identity there, examines what happens
when one weakens this condition or strengthens that one. Even the application of
probabilistic arguments in number theory can be seen as a Baconian experiment.
The experiments may be well thought out and very likely to succeed but the
ultimate criteria of inclusion of the result in the literature is success or failure.
If the “messing about” works (e.g., the theorem is proved, the counterexample
found) the material is kept; otherwise, it is relegated to the scrap heap.

The Aristotelian experiments are described as demonstrations:

apply electrodes to a frog’s sciatic nerve, and lo, the leg kicks; always
precede the presentation of the dog’s dinner with the ringing of a bell,
and lo, the bell alone will soon make the dog dribble. ([152] p. 71)

The results are tailored to demonstrate the theorems, as opposed to the exper-
iments being used to devise and revise the theorems. This may seem to have
little to do with mathematics but it has everything to do with pedagogy. The
Aristotelian experiment is equivalent to the concrete examples we employ to help
explain our definitions, theorems, or the problems assigned to students so they
can see how their newly learned tools will work.

The last and most important is the Galilean experiment:

(the) Galilean Experiment is a critical experiment—one that dis-
criminates between possibilities and, in doing so, either gives us con-
fidence in the view we are taking or makes us think it in need of
correction. ([152])

Ideally one devises an experiment to distinguish between two or more competing
hypotheses. In subjects like medicine the questions are in principal more clear
cut (the Will Roger’s phenomenon or Simpson’s paradox complicates matters 5

Does this medicine work (longevity, quality of life, cost effectiveness, etc.)? Is this
treatment better than that one? Unfortunately, these questions are extremely
difficult to answer and the model Medawar presents here does not correspond

5Simpson’s paradox notes that two data sets can separately support one conclusion while
the union of the data supports the opposite conclusion. Will Roger’s phenomenon notes that
in a medical study it is possible to transfer a patient from one group to another and improve
the statistics of both groups.
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with the current view of experimentation. Since the spectacular “failure” (i.e., it
worked beautifully but ultimately was supplanted see [138]) of Newtonian physics
it has been widely held that no amount of experimental evidence can prove or
disprove a theorem about the world around us and it is widely known that
in the real world the models one tests are not true. Medawar acknowledges the
difficulty of proving a result but has more confidence than modern philosophers in
disproving hypotheses. If experiment cannot distinguish between hypotheses or
prove theorems, what can it do? What advantages does it have? Is it necessary?

7.5 “Theoretical” Experimentation

While there is an ongoing crisis in mathematics, it is not as severe as the crisis in
physics. The untestability of parts of theoretical physics (e.g., string theory) has
led to a greater reliance on mathematics for “experimental verification.” This
may be in part what led Arthur Jaffe and Frank Quinn to advocate what they
have named “Theoretical Mathematics”(note that many mathematicians think
they have been doing theoretical mathematics for years) but which we like to
think of as “theoretical experimentation.” There are certainly some differences
between our ideas and theirs but we believe they are more of emphasis than
substance.

Unlike our initial experiment where we are working with and manipulating
floating point numbers, “theoretical experimentation” would deal directly with
theorems, conjectures, the consequences of introducing new axioms. ... Note
that by placing it in the realm of experimentation, we shift the focus from the
more general realm of mathematics, which concerns itself with the transmission
of both truth and insight, to the realm of experimentation, which primarily deals
with the establishment of and transmission of insight. Although it was originally
conceived outside the experimental framework, the central problems Jaffe and
Quinn need to deal with are the same. They must attempt to preserve the
rigorous core of mathematics, while contributing to an increased understanding
of mathematics both formally and intuitively.

As described in Arthur Jaffe and Frank Quinn’s “Theoretical Mathemat-
ics”: Toward a Cultural Synthesis of Mathematics and Theoretical Physics it
appears to be mainly a call for a loosening of the bonds of rigor. They suggest
the creation of a branch of theoretical (experimental) mathematics akin to the-
oretical physics, where one produces speculative and intuitive works that will
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later be made reliable through proof. They are concerned about the slow pace
of mathematical developments when all the work must be rigorously developed
prior to publication. They argue convincingly that a haphazard introduction of
conjectorial mathematics will almost undoubtedly result in chaos.

Their solution to the problems involved in the creation of theoretical (exper-
imental) mathematics comes in two parts. They suggest that

theoretical work should be explicitly acknowledged as theoretical and
incomplete; in particular, a major share of credit for the final result
must be reserved for the rigorous work that validates it. ([118] p.10)

This is meant to ensure that there are incentives for following up and proving
the conjectured results.

To guarantee that work in this theoretical mode does not affect the reliability
of mathematics in general, they propose a linguistic shift.

Within a paper, standard nomenclature should prevail: in theoret-
ical material, a word like “conjecture” should replace “theorem”; a
word like “predict” should replace “show” or “construct”; and expres-
sions such as “motivation” or “supporting argument” should replace
“proof.” Ideally the title and abstract should contain a word like
“theoretical”, “speculative”, or “conjectural”. ([118] p.10)

Still, none of the newly suggested nomenclature would be entirely out of place
in a current research paper. Speculative comments have always had and will
always have a place in mathematics.

This is clearly an exploratory form of mathematics. But is it truly exper-
imental in any but the Baconian sense? The answer will of course lie in its
application. If we accept the description at face value, all we have is a lessening
of rigor, covered by the introduction of a new linguistic structure. More “math-
ematics” will be produced but it is not clear that this math will be worth more,
or even as much as, the math that would have been done without it.

It is not enough to say that mathematical rigor is strangling mathematical
productivity. One needs to argue that by relaxing the strictures temporarily one
can achieve more. If we view theoretical (experimental) mathematics as a form
of Galilean experimentation then in its idealized form “theoretical” (experimen-
tal) mathematics should choose between directions (hypotheses) in mathematics.
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Like any experimental result the answers will not be conclusive, but they will
need to be strong enough to be worth acting on.

Writing in this mode, a good theoretical paper should do more than just
sketch arguments and motivations. Such a paper should be an extension of the
survey paper, defining not what has been done in the field but what the author
feels can be done, should be done and might be done, as well as documenting
what is known, where the bottlenecks are, etc. In general, we sympathize with
the desire to create a “theoretical” mathematics but without a formal structure
and methodology it seems unlikely to have the focus required to succeed as a
separate field.

One final comment seems in order here. “Theoretical” mathematics, as prac-
ticed today, seems a vital and growing instititution. Mathematicians now rou-
tinely include conjectures and insights with their work (a trend that seems to be
growing). This has expanded in haphazard fashion to include algorithms, sug-
gested algorithms and even pseudo algorithms. We would distinguish our vision
of “experimental” mathematics from “theoretical” mathematics by an emphasis
on the constructive/algorithmic side of mathematics. There are well established
ways of dealing with conjectures but the rules for algorithms are less well defined.
Unlike most conjectures, algorithms if sufficiently efficacious soon find their way
into general use.

While there has been much discussion of setting up standardized data bases to
run algorithms on, this has proceeded even more haphazardly. Addressing these
issues of reliability would be part of the purview of experimental mathematics.
Not only would one get a critical evaluation of these algorithms but by reducing
the problems to their algorithmic core, one may facilitate the sharing of insights
both within and between disciplines. At its most extreme, a researcher from one
discipline may not need to understand anything more than the outline of the
algorithm to make important connections between fields.

7.6 A Mathematical Experiment

7.6.1 Experimentation

We now turn to a more concrete example of a mathematical experiment. Our
meta-goal in devising this experiment was to investigate the similarities and
differences between experiments in mathematics and in the natural sciences,
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Definition. A real number is normal to the base 10 if every block of digits of
length k occurs with frequency 1/10k.

Example: the Champernowne number

0.01234567891011121314 . . . 99100101 . . .

is known to be normal base 10.

Except for artificially created examples no numbers have been proven normal in
any particular base. If we allow artificial numbers there are no explicit numbers
known to be normal in every basea

Questions:

• Are all non-rational algebraic numbers normal base 10?

• Do all non-rational algebraic numbers have uniformly distributed digits?

aG. J. Chaitin in Randomness and Complexity in Pure Mathematics, has a number he
calls Ω =

∑
p halts 2−|p|, the halting probability, which he notes is “sort of a mathematical

pun”, but is normal to all bases. He does this by identifying integers with binary strings
representing Turing machines and summing over the programs that stopped (non-trivially,
see [66] p.12).

Table 7.5: Background on normality.

particularly in physics. We therefore resolved to examine a conjecture which
could be approached by collecting and investigating a huge amount of data:
the conjecture that every non-rational algebraic number is normal in every base
(see Table 7.5). It is important to understand that we did not aim to prove or
disprove this conjecture; our aim was to find evidence pointing in one or the
other direction. We were hoping to gain insight into the nature of the problem
from an experimental perspective.

The actual experiment consisted of computing to 10,000 decimal digits the
square roots and cube roots of the positive integers smaller than 1000 and then
subjecting these data to certain statistical tests (again, see Table 7.5). Under the
hypothesis that the digits of these numbers are uniformly distributed (a much
weaker hypothesis than normality of these numbers), we expected the probability
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values of the statistics to be distributed uniformly between 0 and 1. Our first
run showed fairly conclusively that the digits were distributed uniformly. In fact,
the Anderson-Darling test, which we used to measure how uniformly distributed
our probabilities were suggested that the probabilities might have been “too
uniform” to be random. We therefore ran the same tests again, only this time
for the first 20,000 decimal digits, hoping to detect some non-randomness in the
data. The data were not as interesting on the second run.

7.6.2 Verification

It is even more important in mathematics than in the physical sciences that the
data under investigation are completely reliable. At first glance it may seem
that the increasing reliance of mathematicians on programs such as Maple and
Mathematica, has decreased the need for verification. Computers very rarely
make arbitrary mistakes in arithmetic and algebra. But all the systems have
known and unknown bugs in their programming. It is therefore imperative that
we check our results. So what efforts did we take to verify our findings?

First of all, we had to make sure that the roots we computed were accu-
rate to at least 10,000 (resp. 20,000) digits. We computed these roots using
Maple as well as Mathematica, having them compute the roots to an accuracy
of 10,010 digits. We then did two checks on the computed approximation sn to√

n. First, we tested that
√

n ∈ [sn − 10−10005, sn + 10−10005] by checking that
(sn − 10−10005)2 < n < (sn + 10−10005)2. Second, we tested that the 10,000th
through 10,005th digits were not all zeroes or nines. This ensures that we actu-
ally computed the first 10,000 digits of the decimal expansion of

√
n. (We note

that Maple initially did not give us an accuracy of 10,000 digits for all of the
cube roots, so that we had to increase the precision.)

We then had to make sure that we computed the statistics and probability
values accurately—or at least to a reasonable precision, since we used asymptotic
formulas anyway. We did this by implementing them both in Maple and in
Mathematica and comparing the results. We detected no significant discrepancy.

We claim that these measures reasonably ensure the reliability of our exper-
imental results.
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We looked at the first 10,000 digits after the decimal point of the
√

n where
n < 1000 is not a perfect square and of 3

√
n where n < 1000 is not a perfect

cube.
Tests used:

• χ2—to check that each digit occurs 1/10 of the time (discrete uniform
distribution base 10).

• Discrete Cramér-von Mises—to check that all groups of 4 consecutive
digits occurs 1/10,000 of the time (discrete uniform distribution base
10,000).

• Anderson-Stephens —to check that the power spectrum of the sequence
matches that of white noise (periodicity).

• Anderson-Darling—continuous uniform distribution.

Important point: In order for us to claim we have generated any evidence at
all either for or against we have made two fairly strong assumptions.

• The first 10,000 digits are representative of the remaining digits.

• These digits behave as far as our statistical tests go like independent
random variables.

In fact, for the first and second 10,000 digits our final conclusions are identical.
The second assumption is problematic. Since we have beautiful algorithms to
calculate these numbers, by most reasonable definitions of independent and
random, these digits are neither.

Table 7.6: Data and statistics.
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7.6.3 Interpretation

Our experimental results support the conjecture that every non-rational alge-
braic number is normal; more precisely, we have found no evidence against this
conjecture. In this section we will describe how we looked at and interpreted the
experimental data to arrive at this conclusion. We include only a few examples
of how we looked at the data here. In fact, we have only looked at certain aspects
of normality and randomness in decimal expansions. Thus our results may be
interpreted more narrowly to support the hypothesis that algebraic numbers are
normal base 10. A full description will be found in [51].

Our main goal here is to give a quick visual summary that is at once con-
vincing and data rich. These employ some of the most basic tools of visual
data analysis and should probably form part of the basic vocabulary of an ex-
perimental mathematician. Note that traditionally one would run a test such
as the Anderson-Darling test (which we have done) for the continuous uniform
distribution and associate a particular probability with each of our sets of prob-
ability, but unless the probability values are extremely high or low it is difficult
to interpret these statistics.

Experimentally, we want to test graphically the hypothesis of normality and
randomness (or non-periodicity) for our numbers. Because the statistics them-
selves do not fall into the nicest of distributions, we have chosen to plot only
the associated probabilities. We include two different types of graphs here. A
quantile-quantile plot is used to examine the distribution of our data and scatter
plots are used to check for correlations between statistics.

The first is a quantile-quantile plot of the chi square base 10 probability
values versus a a discrete uniform distribution. For this graph we have placed
the probabilities obtained from our square roots and plotted them against a
perfectly uniform distribution. Finding nothing here is equivalent to seeing that
the graph is a straight line with slope one. This is a crude but effective way of
seeing the data. The disadvantage is that the data are really plotted along a one
dimensional curve and as such it may be impossible to see more subtle patterns.

The other graphs are examples of scatter plots. The first scatter plot shows
that nothing interesting is occurring. We are again looking at probability values
this time derived from the discrete Cramer-von Mises (CVM) test base 10,000.
For each cube root we have plotted the point (fi, si), where fi is the CVM base
10,000 probability associated with the first 2500 digits of the cube root of i and
si is the probability associated with the next 2500 digits. A look at the graph
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reveals that we have now plotted our data on a two dimensional surface and
there is a lot more “structure” to be seen. Still, it is not hard to convince oneself
that there is little or no relationship between the probabilities of the first 2500
digits and the second 2500 digits.

The last graph is similar to the second. Here we have plotted the probabilities
associated with the Anderson-Stephens statistic of the first 10,000 digits versus
the first 20,000 digits. We expect to find a correlation between these tests since
there is a 10,000 digit overlap. In fact, although the effect is slight, one can
definitely see the thinning out of points from the upper left hand corner and
lower right hand corner.

7.7 Conclusion

All the versions of experimental mathematics that we have dealt with so far have
two characteristics: their main interest is in expanding our mathematical knowl-
edge as rapidly as possible and none of them stray too far from the mainstream.
In many cases this urgency leads to a temporary relaxation of rigor, a relaxation
that is well documented and hopefully can be cleaned up afterwards. In other
cases it may be intrinsic to the mathematics they wish to explore. When a field
has been as wildly successful as mathematics has been in the past few centuries
there is a reluctance to change. We have hoped to convince some of the read-
ers that these changes are revolutionary only in the same sense that the earth
revolves around the sun.

We conclude with a definition of experimental mathematics.

Experimental Mathematics is that branch of mathematics that concerns itself
ultimately with the codification and transmission of insights within the math-
ematical community through the use of experimental (in either the Galilean,
Baconian, Aristotelian or Kantian sense) exploration of conjectures and more
informal beliefs and a careful analysis of the data acquired in this pursuit.

Results discovered experimentally will, in general, lack some of the rigor
associated with mathematics but will provide general insights into mathematical
problems to guide further exploration, either experimental or traditional. We
have restricted our definition of experimental mathematics to methodological
pursuits that in some way mimic Medawar’s views of Gallilean experimentation.
However, our emphasis on insight also calls for the judicious use of examples
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Figure 7.1: Graphical statistics of our experiments.
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(Aristotelian experimentation).
If the mathematical community as a whole was less splintered, we would

probably remove the word “codification” from the definition. That is to say
that a great deal of time will need to be spent on developing a language for the
expression of experimental results. Since there are real communications problems
between fields and since the questions to be explored will be difficult, it seems
imperative that experimental investigators make every effort to organize their
insights and present their data in a manner that will be as widely accessible as
possible6.

With respect to reliability and rigor, the main tools here are already in place.
We need to stress systematization of our exploration. As in our experimental
project on normality, it is important to clearly define what has been looked at,
how things have been examined, and what confidence the reader should have
in the data. Although mathematicians may not like to admit it, ease of use
will have to be a primary consideration if experimental results are to be of
widescale use. As such, visualization and hypertextual presentations of material
will become increasingly important in the future. We began by stealing some of
the basic tools of scientific analysis and laying claim to them. As the needs of
the community become more apparent one would expect these tools and others
to evolve into a form better suited to the particular needs of the mathematical
community. Someday, who knows, first year graduate students may be signing
up for Experimental Methods in Mathematics I.

6It is clear that mechanisms are developing for transmitting insights within fields, even if
this is only through personal communications.



The Quest 

Or 
I. H.  B A I L E Y ,  J .  M.  B O R W E I N ,  P. B.  B O R W E I N ,  A N D  S. P L O U F F [  

his article gives a brief history of the analysis and computation of the mathematical 
t constant = 3.14159. including number of formulas that have been used to com- 71" a 

m m 

~::: thr~ :~ tn;~eSr~cSO meo eXm~it :na gti reCeo~ td~ve:~?snt::~ t;: c~i;c~l S::d i~ S:;n~ 

high-order  convergent  algori thms,  and  a newly  d i scovered  
scheme that  permi ts  a rb i t ra ry  individual  hexadec imal  dig- 
its of  ~- to  be  computed.  

F o r  fur ther  detai ls  of  the  h is tory  of  qr up to about  1970, 
the  r eade r  is referred to Pe t r  Beckmann ' s  readable  and en- 
ter ta ining book  [3]. A listing of  mi les tones  in the h is tory  of  
the  computa t ion  of  ~r is given in Tables  1 and 2, which  we  
bel ieve  to be more  comple te  than  o ther  readi ly access ib le  
sources .  

The Ancients 
In one of  the  ear l ies t  accounts  (about  2000 B.C.) of ~-, the  

1 Babylonians  used the approx ima t ion  3 ~ = 3.125. At this  
s ame  t ime or  earlier, according  to an account  in an ancient  
Egypt ian  document ,  Egypt ians  were  assuming that  a circle  
with d iamete r  nine has  the same  a rea  as a square of  s ide 
eight, which  implies ~r= 256/81 = 3.1604 . . . .  Others  of  
antiquity were  content  to use  the  s imple approx imat ion  3, 
as  ev idenced  by  the fol lowing passage  f rom the Old 
Testament :  

Also, he made  a mol ten  sea  of  ten cubits  from br im to 
brim, round  in compass ,  and  five cubi ts  the  height  

thereof; and a line of  thir ty cubi ts  did  compass  it round 
about. (I Kings 7:23; see  also 2 Chron. 4:2) 

The first r igorous  mathemat ica l  ca lcula t ion  of  the value 
of 1r was due to Arch imedes  of  Syracuse  ( - 2 5 0  B.c.), who 
used  a geometr ica l  scheme based  on inscr ibed  and cir- 

10 3 k cumscr ibed  po lygons  to obta in  the bounds  3 ~ < ~r < 7' 
or  in o ther  words,  3 . 1408 . . .  < 7r < 3 . 1 4 2 8 . . .  [11]. No one 
was able to improve  on Arch imedes ' s  me thod  for many cen- 
turies, a l though a number  of  pe rsons  used  this general  
me thod  to obta in  more  accura te  approximat ions .  For  ex- 
ample, the  a s t r onome r  Ptolemy, who lived in Alexandr ia  in 

~7 = 3.141666. .  and the fifth- A.D. 150, used the value 3 ~ . ,  
century Chinese mathemat ic ian  Tsu Chung-Chih used  a 
var ia t ion of  Arch imedes ' s  me thod  to compute  ~ correc t  to 
seven digits, a level not  a t ta ined in Europe  until  the 1500s. 

The Age of Newton 
As in o ther  f ields of  sc ience  and mathemat ics ,  progress  in 
the quest  for qr in medieval  t imes  occur red  mainly in the 
Islamic world.  AI-Kashi of  Samarkand  compu ted  7r to 14 
p laces  in about  1430. 

In the 1600s, with the  discovery of  ca lculus  by Newton 
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t A B L E  1. H i s t o r y  o f  ~T C a l c u l a t i o n s  (Pre-2Oth-Century 

Babylonians 2000? B.C.E, 1 3.125 (3 { )  
Egyptians 2000? B,C,E. 0 3.16045 [4 (~)2] 
China 1200? B.C,E. 0 3 
Bible (1 Kings 7:23) 550? B,C.E. 0 3 
Archimedes 250? B.C.E, 3 3.1418 (ave.) 
Hon Han Shu A.D. 130 0 3.1622 (= ~ /10  ?) 
Ptolemy 150 3 3.14166 
Chung Hing 250? 0 3.16227 ('~1"0) 

Fau 250? 0 3.15555 (1::) Wang 
Liu Hui 263 5 3,14159 
Siddhanta 380 4 3.1416 
Tsu Ch'ung Chi 480? 7 3.1415926 
Aryabhata 499 4 3.14156 
Brahmagupta 640? 0 3,162277 (= "k/'~) 
AI-Khowarizmi 800 4 3,1416 
Fibonacci 1220 3 3.141818 
AI-Kashi 1429 14 
Otho 1573 6 3.1415929 
Viete 1593 9 3.1415926536 (ave.) 
Romanus 1593 15 
Van Ceulen 1596 20 
Van Ceulen 1615 35 
Newton 1665 16 
Sharp 1699 71 
Seki 1700? 10 
Kamata 1730? 25 
Machin 1706 100 
De Lagny 1719 127 (112 correct) 
Takebe 1723 41 
Matsunaga 1739 50 
Vega 1794 140 
Rutherford 1824 208 (152 correct) 
Strassnitzky and Dase 1844 200 
Clausen 1847 248 
Lehmann 1853 261 
Rutherford 1853 440 
Shanks 1874 707 (527 correct) 

T A B L E  2 .  H i s t o r y  o f  7;- C a l c u l a t i o n s  1 2 0 t h  C e n t u r  

Ferguson 1946 620 
Ferguson Jan. 1947 710 
Ferguson and Wrench Sep. 1947 808 
Smith and Wrench 1949 1,120 
Reitwiesner, et aL (ENIAC) 1949 2,037 
Nicholson and Jeenel 1954 3,092 
Felton 1957 7,480 
Genuys Jan. 1958 10,000 
Feiton May 1958 10,021 
Guilloud 1959 16,167 
Shanks and Wrench 1961 100,265 
Guilloud and Filliatre 1966 250,000 
Guilloud and Dichampt 1967 500,000 
Guilloud and Bouyer 1973 1,001,250 
Miyoshi and Kanada 1981 2,000,036 
Guilloud 1982 2,000,050 
Tamura 1982 2,097,144 
Tamura and Kanada 1982 4,194,288 
Tamura and Kanada 1982 8,388,576 
Kanada, Yoshino, and Tamura 1982 16,777,206 
Ushiro and Kanada Oct. 1983 10,013,395 
Gosper 1985 17,526,200 
Bailey Jan. 1986 29,360,111 
Kanada and Tamura Sep. 1986 33,564,414 
Kanada and Tamura Oct. 1986 67,108,839 
Kanada, Tamura, Kubo, et aL Jan. 1987 134,217,700 
Kanada and Tamura Jan. 1988 201,326,551 
Chudnovskys May 1989 480,000,000 
Chudnovskys June 1989 525,229,270 
Kanada and Tamura July 1989 536,870,898 
Kanada and Tamura Nov. 1989 1,073,741,799 
Chudnovskys Aug. 1989 1,011,196,691 
Chudnovskys Aug. 1991 2,260,000,000 
Chudnovskys May 1994 4,044,000,000 
Takahashi and Kanada June 1995 3,221,225,466 
Kanada Aug. 1995 4,294,967,286 
Kanada Oct. 1995 6,442,450,938 

and Leibniz, a number  of  substantially n e w  formulas for ~r 
were  discovered.  One of  them can be easily derived by re- 
calling that 

t a n - I x  = 1 ~ t 2 - (1 - t 2 + t 4 -  t 6 + -..) dt 

x 3 x 5 x 7 x 9 

= x - - ~ - +  5 7 + 9 

Substituting x = 1 gives the we l l -known Gregory-Leibniz 
formula 

~- 1 1 1 1 1 
~-= 1 - ~ + g - ~ - +  9 11 + 

Regrettably, this series converges so slowly that hundreds 
of  terms w o u l d  be required to compute  the numerical  value 
o f  ~- to even two digits accuracy. However,  by employing  
the trigonometric identity 

- -  = t a n - :  + tan -1 
4 

(which  fo l lows  from the addition formula for the tangent 
function),  one obtains 

o ( 1  , 1 1 ) 
4 3 . 2  ~ + 5 . 2  ~ 7 . 2 7  e''" 

( ; 1  , , ) 
+ 3 . 3  ~ + 5 " 3  ~ 7 " 3  ~ + ' ' "  ' 

which  converges  m u c h  more  rapidly. An even faster for- 
mula, due to Machin, can be obtained by  employing  the 
identity 

(1) (1) 
~r 4 t a n  -1 - tan -1 
4 

in a similar way. Shanks used  this s c h e m e  to compute  rr 
to 707 decimal  digits accuracy in 1873. Alas, it was  later 
found that this computat ion  was  in error after the 527th 
decimal  place. 
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Newton  d iscovered  a s imilar  ser ies  for the arcs ine  func- 
tion: 

1 . x  3 1 . 3 . x  5 1 . 3 . 5 . x  v 
s i n - I x = x + - - +  + + ""- 

2 " 3  2 " 4 - 5  2 " 4 " 6 " 7  

can be  computed  from this formula  by noting that  ~/6 = 
s in- l (1 /2) .  An even faster  fo rmula  of  this type is 

( 1 1 1 1 ) 
3 ~ + 24 -3 : 23 " 25 - " 27 " 29 " ~" = - - - ~  5 7 9 

Newton  h imsel f  used  this par t icu la r  formula  to compute  ~-. 
He publ i shed  only 15 digits, but  la te r  sheepishly  admit ted,  
"I am ashamed  to tell  you how many  figures I carr ied  these  
computa t ions ,  having no o ther  bus iness  at the time." 

In the  1700s, the mathemat ic ian  Euler, a rguably  the  
mos t  prol i f ic  mathemat ic ian  in history,  d iscovered  a num- 
ber  of  new formulas  for ~-. Among these  are 

~2 1 1 1 1 
- 1 +  + + + + 

6 7 " '  

17.4 1 1 1 1 
-i+ + + + + 

90 " "  

A related,  more  rapidly convergent  ser ies  is 

~ 3 �9 6 m2(2m) m = l  

These formulas,  despi te  their  impor tan t  theore t ica l  impli- 
cat ions,  a ren ' t  very efficient for  comput ing  ~r. 

One mot ivat ion  for computa t ions  of  ~r during this t ime 
was  to  see  if the decimal  expans ion  of  7r repeats ,  thus  dis- 
c losing tha t  ~- is the rat io of  two integers  (al though hardly  
anyone  in modern  t imes  ser iously  bel ieved this). The ques- 
t ion was  se t t led  in the  late 1700s, when Lamber t  and  
Legendre  p roved  that  ~- is irrat ional .  Some still w o n d e r e d  
whe the r  ~- might  be the root  of  some algebraic  equat ion 
with integer  coefficients (although, as  before,  few real ly  
be l ieved tha t  it was).  This quest ion was finally se t t led  in 
1882 when  Lindemann p roved  that  ~r is t ranscendenta l .  
L indemann ' s  p roof  also se t t led  once  and for all, in the  neg- 
ative, the  ancient  Greek  quest ion of  whe ther  the circle  
could  be squared with rule and compass .  This is because  
cons t ruc t ib le  numbers  are  necessar i ly  algebraic.  

In the  annals  of  ~r, the  march  of  the  n ine teenth-century  
p rogress  somet imes  faltered. Three  years  pr ior  to the  turn  
of  the  century,  one Edwin J. Goodman,  M.D. in t roduced  
into the  Indiana House of  Representa t ives  a "new 
Mathemat ica l  truth" to enr ich the  state,  which would  prof i t  
f rom the royal t ies  ensuing f rom this  discovery.  Sect ion two 
of  his bill  included the passage  

disc los ing the fourth impor tan t  fact  that  the rat io  of  the  
d iamete r  and c i rcumference  is as five-fourths to four; 

Thus, one of  Goodman ' s  new mathemat ica l  "truths" is that  
1~= 3.2. The Indiana House  passed  the bill unani- 

mous ly  on Feb.  5, 1897. It then pa s sed  a Senate commi t tee  
and would  have been  enac ted  into law had it not  been  for 
the las t -minute  intervent ion of  Prof. C. A. Waldo of  Purdue  

University, who  h a p p e n e d  to hear  some  of the  del iberat ion 
while on o ther  business .  

The Twentieth Century 
With the deve lopment  of  computer  technology in the 1950s, 
~r was computed  to thousands  and then mill ions of  digits, 
in both decimal  and  binary  bases  (see, for example,  [17]). 
These computa t ions  were  facil i tated by  the discovery of 
some advanced  algori thms for performing the required 
high-precision ar i thmet ic  operat ions  on a computer .  For  ex- 
ample, in 1965, it was  found that  the newly  discovered fast 
Four ier  t ransform (FFY) could be used to pe r fo rm high-pre- 
cision mult ipl icat ions much more  rapidly than conventional  
schemes. These me thods  dramatical ly  lowered  the com- 
puter  t ime required for  computing ~ and o ther  mathemati-  
cal constants  to high precision.  See [1], [7], and [8]. 

In spite of  these  advances,  until the 1970s all compute r  
evaluat ions for  ~- still  employed  class ical  formulas,  usual ly 
a variat ion of  Machin 's  formula. Some new infmite ser ies  
formulas  were  d i scovered  by the Indian mathemat ic ian  
Ramanujan a round  1910, but  these  were  not  well  known 
until quite recen t ly  when  his wri t ings were  widely  pub- 
lished. One of  these  is the remarkab le  formula  

1 2 ~f2 ~ (4k)!(1103 + 26,390k) 
2_. ~- 9801 (k!)43964a k = 0  

Each te rm of  this  ser ies  p roduces  an addi t ional  eight cor- 
rect  digits in the  result .  Gosper  used  this formula  to com- 
pute  17 mil l ion digits of  ~ in 1985. 

Although Ramanujan ' s  ser ies  is cons iderab ly  more  effi- 
cient than the c lass ical  formulas,  it shares  wi th  them the 
p roper ty  that  the  number  of te rms one mus t  compute  in- 
c reases  l inearly with the  number  of  digits des i red  in the re- 
sult. In o ther  words ,  if  one wishes  to compute  ~ to twice 
as many digits, then  one mus t  evaluate  twice  as  many  te rms 
of  the series.  

In 1976, Eugene Salamin [16] and Richard  Brent  [8] in- 
dependent ly  d i scovered  a new algori thm for ~-, which is 
based  on the a r i thmet i c -geomet r i c  mean  and some ideas 
originally due to Gauss  in the 1800s (although, for some 
reason,  Gauss never  saw the connec t ion  to comput ing ~). 
This a lgori thm p r o d u c e s  approx imat ions  tha t  converge 
to ~ much more  rapidly than any c lass ical  formula. 
The Salamin-Bre~s a lgor i thm may be s ta ted  as follows. Set 
a 0 =  1, b 0 = l / V 2 ,  a n d s 0 = l / 2 .  F o r k = l ,  2, 3 , . . .  com- 
pute  

a k - 1  + bk -1  
a k - -  2 ' 

bk = ~ / a k -  l b k -  1, 

Ck = a 2 - b 2, 

Sk = Sk -1  -- 2kck, 

2 a  2 
Pk  = 

Sk 

Then Pk converges  q u a d r a t i c a l l y  to ~r. This means  that  
each i terat ion of  this  a lgori thm approx imate ly  d o u b l e s  the  
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number  of  cor rec t  digits. To be specific,  success ive  i tera- 
t ions p roduce  1, 4, 9, 20, 42, 85, 173, 347, and 697 correc t  
digits of  ~r. Twenty-five i terat ions are  sufficient to compute  
7r to over  45 mil l ion decimal  digit accuracy.  However,  each 
of  these  i tera t ions  must  be pe r fo rmed  using a level of  nu- 
mer ic  prec is ion  tha t  is at  leas t  as  high as that  des i red  for  
the  final result .  

The Sa lamin-Bren t  a lgori thm requires  the ex t rac t ion  of  
square roo ts  to high precis ion,  opera t ions  not  required, for  
example ,  in Machin 's  formula. High-precision square roo ts  
can  be  efficiently compu ted  by means  of  a Newton  i tera- 
t ion scheme that  employs  only mult ipl icat ions,  p lus  some  
other  opera t ions  of  minor  cost, using a level of  numeric  
prec is ion  that  doubles  with each iteration. The total  cos t  
of  comput ing  a square roo t  in this manner  is only about  
th ree  t imes  the  cos t  of  per forming a single full-precision 
mult ipl icat ion.  Thus, a lgori thms such as the Sa lamin-Bren t  
scheme can be  implemented  very rapidly  on a computer .  

Beginning in 1985, two of  the  p resen t  authors  ( Jonathan  
and Peter  Borwein)  d iscovered  some  addi t ional  a lgori thms 
of  this  type  [5-7]. One is as follows. Set  a0 = 1/3 and So = 
(N//3 - 1)/2. I tera te  

3 
rk+l  = 1 + 2 ( 1 - s 3 )  V3 ' 

r k+ l  -- 1 
S k + l  - -  2 ' 

ak+l  = ~k+lak  -- 3k(~+1 -- 1). 

Then 1/ak converges  c u b i c a l l y  to ~r--each i tera t ion ap- 
p rox imate ly  t r iples  the number  of  cor rec t  digits. 

A quart ic  a lgori thm is as  follows: Set a0 = 6 - 4 N / 2  and 

Y0 = N/~  - 1. I tera te  
1 - (1 - y4)1/4 

Yk+l = 1 + (1 - y4)1/4 , 

ak+l = ak(1 + Yk+l) 4 -- 22k+3Yk+l(1 + Yk+l + Y~+I). 

Then 1/ak converges  q u a r t i c a l l y  to ~r. This par t icu lar  al- 
gorithm, toge ther  with the  Sa lamin-Bren t  scheme,  has  
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been employed  by Yasumasa Kanada of  the Universi ty of  
Tokyo in several  computa t ions  of  ~r over  the pas t  10 years  
or  so. In the  la tes t  of  these  computa t ions ,  Kanada  com- 
pu ted  over  6.4 bil l ion decimal  digits on a Hitachi  super-  
computer .  This is p resen t ly  the wor ld ' s  r eco rd  in this  arena. 

More recently,  it  has  been  further shown that  there  are  
a lgori thms that  genera te  mth-order  convergent  approxi-  
mat ions  to 7r for any  m. An example  of  a nonic  (ninth- 
order)  a lgori thm is the  following: Set a0 = 1/3, r0 = (~v/-3 - 
1)/2, and So = (1 - r3)  1/3. I terate  

t = 1 + 2rk, 

u = [9rk(1 + rk + ~)],/3, 

v = t 2 + t u  + U 2, 

27(1 + sk + s~) 
m = 

1} 

ak+l  = m a k  + 32k-1(1 -- m),  
(1 - rk)  3 

Sk+l  = ( t  + 2 U ) , '  

rk+l  = (1 -- S3k) 1/3. 

Then 1/ak converges  n o n i c a l l y  to 7r. It should  be  noted, 
however ,  that  these  higher-order  a lgor i thms do not  appear  
to  be faster  as  computa t iona l  schemes  than, say, the  
Sa lamin-Brent  or  the Borwein quart ic  algori thms. 
Although fewer  i te ra t ions  are required to achieve a given 
level of  prec is ion  in the  higher-order  schemes,  each  itera- 
t ion is more  expensive.  

A compar i son  of  ac tual  compute r  run t imes  for  var ious  
~- a lgori thms is shown in Figure 1. These  run t imes  are for 
comput ing  ~- in b inary  to var ious  p rec i s ion  levels on an 
IBM RS6000/590 worksta t ion.  The absc i s sa  of  this  plot  is 
in hexadec imal  d ig i t s - -mul t ip ly  these  numbers  by 4 to ob- 
tain equivalent  b inary  digits, or  by  log10(16) = 1 .20412 . . .  
to obtain equivalent  dec imal  digits. Other  implementa t ions  
on o ther  sys tems  may  give s o m e w h a t  different  r e s u l t s - -  
for example,  in Kanada ' s  recent  computa t ion  of  ~- to over  
six bill ion digits, the quart ic  a lgori thm ran  somewha t  fas ter  
than the Sa lamin-Bren t  algori thm (116 hours  versus  131 
hours).  But the  overal l  p ic ture  from such compar i sons  is 
unmis takable :  the  m o d e r n  schemes  run many  t imes  faster  
than the class ical  schemes,  especial ly  when  implemented  
using FFF-based  ari thmetic.  

David and Gregory Chudnovsky of  Columbia University 
have also done some very high-precision computat ions  of  ~- 
in recent  years, alternating with Kanada for the world 's  
record. Their most  recent  computat ion (1994) p roduced  over 
four billion digits of  ~- [9]. They did not  employ a high-order 
convergent algorithm, such as the Salamin-Brent  or  Borwein 
algorithms, but  instead utilized the following infinite series 
(which is in the spiri t  of  Ramanujan's  series above): 

1 , ~  ( - 1 )  k (6k)!(13,591,409 + 545,140,134k) 
- - =  12 ~ (3k)! (k!) 3 640,3203k+3/2 
T" k = 0  

Each  te rm of  this  ser ies  p roduces  an addi t ional  14 correc t  
digits. The Chudnovskys  implemented  this formula  with a 
verdi c lever  scheme that  enabled  them to utilize the resul ts  
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of a certain level of  precision to extend the calculation to 
even higher precision. Their program was run on a home- 
brewed supercomputer  that they have assembled using 
private funds. An interesting personal  glimpse of  the 
Chudnovsky brothers is given in [14]. 

Computing Individual Digits of 7r 
At several junctures in the history of  7r, it was widely be- 
lieved that  virtually everything of  interest with regard to 
this constant  had been discovered and, in particular, that  
no fundamentally new formulas for 7r lay undiscovered. 
This sentiment was even suggested in the closing chapters 
of  Beckmann 's  1971 book  on the history of  ~- [3], p. 172. 
Ironically, the Salamin-Brent algorithm was discovered 
only 5 years later. 

A more  recent reminder that  we have not  come to the 
end of  humanity 's  quest for knowledge about 7r came with 
the discovery of the Rabinowitz-Wagon "spigot" algorithm 
for Ir in 1990 [15]. In this scheme, successive digits of  7r (in 
any desired base) can be computed  with a relatively sim- 
ple recursive algorithm based on the previously generated 
digits. Multiple-precision computat ion software is not  re- 
quired; therefore, this scheme can be easily implemented 
on a personal  computer. 

Note, however, that  this algorithm, like all of  the other  
schemes mentioned above, still has the property that in or- 
der to compute  the dth digit of  ~r, one must  first (or si- 
multaneously) compute  each of  the preceding digits. In 
other  words, there is no "shortcut" to computing the dth 
digit with these formulas. Indeed, it has been widely as- 
sumed in the field (although never proven) that the com- 
putational complexity of  computing the dth digit is not  sig- 
nificantly less than that of  computing all of  the digits up to 
and including the dth digit. This may still be true, al though 
it is probably very hard to prove. Another common  feature 
of  the previously known ~- algorithms is that  they all ap- 
pear  to require substantial amounts  of  computer  memory,  
amounts  that typically grow linearly with the number  of  
digits generated. 

Thus, it was with no small surprise that a novel scheme 
was recently discovered for computing individual hexa- 
decimal digits of  ~- [2]. In particular, this algorithm (1) pro- 
duces  the dth hexadecimal (base 16) digit of  7r directly, 
without  the need of  computing any previous digits, (2) is 
quite simple to implement on a computer,  (3) does not  re- 
quire multiple-precision arithmetic software, (4) requires 
very little memory, and (5) has a computational  cost  that  
grows only slightly faster than the index d. For  example, 
the one millionth hexadecimal digit of  ~- can be computed  
in only a minute or two on a current RISC workstat ion or 
high-end personal  computer.  This algorithm is not  funda- 
mentally faster than other  known schemes for computing 
all digits up to some position d, but  its elegance and sim- 
plicity are, nonetheless, of  considerable interest. 

This scheme is based on the following remarkable new 
formula for qr: 

 1(4 1 1) 
~ =  ~ 8 i + 1  8 i + 4  8 i + 5  8 i + 6 -  " i = 0  

The proof  of  this formula is not  very difficult. First, note 
that for any k < 8, 

1 " l / ~ x k - i  ~I/X/2iZO 1 - x -------~ dx = -  "0 - X k-l+si dX 
1 ~  1 

2k/2 i=0 16i(8i + k) 

Thus, we can write 

~ = o ~  8 i + 1  8 i + 4  8 i + 5  8 i + 6  

[ l l X / 2  4N/2  - 8x 3 - 4 N / 2 x  4 - 8x 5 
] : J  

which on substituting y := V 2 x  becomes  

Sol ,o,,_1o S 4,, 
y 4 _ 2 y 3 + 4 y _ 4  d y  = ~ dy 

4 y  - 8 

dx, 

y 2  _ 2 y  + 2 d y  ~r, 

reflecting a partial fraction decomposi t ion of  the integral 
on the left-hand side. 

However, this derivation is dishonest, in the sense that 
the actual route of  discovery was much different. This for- 
mula was actually discovered not by formal reasoning, but 
instead by numerical  searches on a computer  using the 
"PSLQ" integer-relation-finding algorithm [10]. Only after- 
ward was a proof  found. 

A similar formula  for 7r 2 (which also was  first discov- 
ered using the PSLQ algorithm) is as follows: 

1 / 16 16 8 
~-2 = i=~0= 1-~ / (8i + 1) 2 (8i + 2) 2 (8i + 3) 2 

16 4 4 2 \ 
- (8 i  + 4) ----------~ - (8 i  + 5) - - - - - - - - ~  - ( 8 i  + 6) -------------~ + (8 i  + 7) ~ )  ' 

Formulas of  this type for a few other  mathematical  con- 
stants are given in [2]. 

Computing individual hexadecimal digits of  ~- using the 
above formula crucially relies on what  is known as the bi- 
nary algorithm for exponentiation, wherein one evaluates 
x n by successive squaring and multiplication. This reduces 
the number  of  multiplications required to less than 2 
log2(n). According to Knuth, this technique dates back at 
least to 200 B.C. [13]. In our application, we need to obtain 
the exponentiat ion result modulo a positive integer c. This 
can be efficiently done with the following variant of  the bi- 
nary exponentiat ion algorithm, wherein the result of  each 
multiplication is reduced modulo c: 

To compute  r = b n rood c, first set t to be the largest 
power  of  2 -< n, and set  r = 1. Then 

A: if n - t then r ( - -  b r  mod c; n *-- n - t; endif 
t + - - t ~ 2  
if t - 1 then r *-- r 2 mod c; go to A; endif 

Upon exit f rom this algorithm, r has the desired value. Here 
"mod" is used in the binary operator  sense, namely as the 
binary function defined b y x  mod y : =  x - [ x / y ] y .  Note that 
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the above algorithm is entirely performed with positive in- 
tegers that  do not exceed c 2 in size. As an example, when 
computing 349 mod 400 by this scheme, the variable r as- 
sumes the values 1, 9, 27, 329, 241, 81, 161, 83. Indeed 349 = 
239299329230617529590083, so that  83 is the correct  result. 

Consider now the first of  the four sums in the formula 
above for 77=. 

2 ' $1 = 16k(8k + 1) ' k = 0  

First observe that the hexadecimal digits of S~ beginning 
at position d + 1 can be obtained from the fractional part  
of  164 S~. Then we can write 

~ 0  164-k 
frac(164 $1) = = 8k +-------i- mod 1 

a 16 a - k m o d  8k + 1 
= ~'~ 8k + 1 mod 1 

k=O 
~ 16 a -e 

+ - -  mod 1. 
k=4+1 8k + 1 

For  each term of the first summation, the binary expo- 
nentiation scheme can be used to rapidly evaluate the nu- 
merator. In a computer  implementation, this can be done 
using either integer or 64-bit floating-point arithmetic. Then 
floating-point arithmetic can be used to perform the divi- 
sion and add the quotient to the sum mod 1. The second 
summation, where the exponent  of  16 is negative, may be 
evaluated as written using floating-point arithmetic. It is 
only necessary to compute  a few terms of this second sum- 
mation, just  enough to ensure that the remaining terms sum 
to less than the "epsilon" of  the floating-point arithmetic 
being used. The final result, a fraction between 0 and 1, is 
then converted to base 16, yielding the (d + 1)th hexadec- 
imal digit, plus several additional digits. Pull details of  this 
scheme, including some numerical considerations, as well 
as analogous formulas for a number  of  other basic mathe- 
matical constants, can be found in [2]. Sample implemen- 
tations of  this scheme in both Fortran and C are available 
f rom the web site http://www.cecm.sfu.ca/personal/ 
pborwein/. 

As the reader can see, there is nothing very sophisti- 
cated about  either this new formula for ~r, its proof, or the 
scheme just  described to compute  hexadecimal digits of  7r 
using it. In fact, this same scheme can be used to compute  
binary (or hexadecimal) digits of  log(2) based on the for- 
mula 

log(2) - k= 1 k2k' 

which has been known for centuries. Thus, it is astonish- 
ing that these methods have lain undiscovered all this time. 
Why shouldn' t  Euler, for example, have discovered them? 
The only advantage that today 's  researchers  have in this 
regard is advanced computer  technology. Table 3 gives 
some hexadecimal digits of  ~- computed  using the above 
scheme. 

One question that immediately arises is whether  or  not  
there is a formula of  this type and an associated computa- 

Position Hex digits beginning at this position 

106 26C65E52CB4593 

107 17AF5863EFED8D 

108 ECB840E21926EC 

10 ~ 85895585A0428B 

101 o 921 C73C6838FB2 

Fabrice Bellard tells us that he recently completed the computation of the 100 
billion'th hexadecimal digit by this method, this gives: 

9C381872D27596F81 DOE... 

tional scheme to compute  individual decimal digits of  ~-. 
Alas, no decimal scheme for ~r is known at this time, al- 
though there is for certain constants such as log(9/10)--  
see [2]. On the other hand, there is not  yet  any proof  that 
a decimal scheme for ~- cannot  exist. This question is cur- 
rently being actively pursued. Based on some numerical 
searches using the PSLQ algorithm, it appears that there 
are no simple formulas for ~- of the above form with 10 in 
the place of  16. This, of  course, does not  rule out the pos- 
sibility of  completely different formulas that nonetheless 
permit rapid computat ion of  individual decimal digits of ~-. 

Why?. 
A value of  ~r to 40 digits would be more  than enough to 
compute  the circumference of  the Milky Way galaxy to an 
error less than the size of  a proton. There are certain sci- 
entific calculations that require intermediate calculations 
to be performed to  significantly higher precision than re- 
quired for the final results, but  it is doubtful that  anyone 
will ever need more  than a few hundred digits of  ~rfor such 
purposes. Values of  ~- to a few thousand digits are some- 
times employed in explorations of  mathematical  questions 
using a computer,  but  we are not  aware of  any significant 
applications beyond this level. 

One motivation for computing digits of  ~r is that  these 
calculations are excellent tests of  the integrity of  computer  
hardware and software. This is because if even a single er- 
ror occurs  during a computation, a lmost  certainly the fmal 
result will be in error. On the other hand, if two indepen- 
dent computat ions of  digits of  7r agree, then most  likely 
both computers  performed billions or  even trillions of  op- 
erations flawlessly. For  example, in 1986, a 7r-calculating 
program detected some obscure hardware problems in one 
of  the original Cray-2 supercomputers  [1]. 

The challenge of  computing ~r has also stimulated re- 
search into advanced computational techniques. For ex- 
ample, some new techniques for efficiently computing lin- 
ear convolutions and fast Fourier transforms, which have 
applications in many areas of  science and engineering, had 
their origins in efforts to accelerate computat ions of  ~-. 

Beyond immediate practicality, decimal and binary ex- 
pansions of  qr have long been of  interest to mathematicians, 
who have still not  been able to resolve the question of  
whether the expansion of  7r is normal [18]. In particular, it 
is widely suspected that the decimal expansions of 7r, e, 
V 2 ,  N / ~ ,  and many other mathematical constants all 
have the property that the limiting frequency of  any digit is 
one-tenth, and the limiting frequency of  any n-long string 
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of decimal digits is 10 -n  (and similarly for binary expan- 
sions). Such a guaranteed  proper ty  could, for  instance, be 
the basis  of  a rel iable pseudo- random-number  genera tor  for 
scientific calculations.  Unfortunately, this  asser t ion  has not  
been proven in even one instance. Thus, there  is a contin- 
uing interest  in performing stat ist ical  analyses  on the ex- 
pansions  of these  numbers  to see if there  is any irregular- 
ity that  would  make  them look unlike r andom sequences.  
So far, such s tudies  of  high-precision values  of  7r have not  
d isc losed any irregularit ies.  Along this line, new formulas  
and schemes  for comput ing digits of qr are of  interest  be- 
cause they may  suggest  new approaches  to the normali ty 
question. 

Finally, there  is a more  fundamental  mot iva t ion  for com- 
puting ~-, the  challenge,  l ike that  of  a lofty mounta in  or  a 
major  spor t ing event: "it is there." ~ is easi ly the  most  fa- 
mous  of the  bas ic  cons tan ts  of  mathemat ics .  Every tech- 
nical  civil ization has  to  mas te r  ~-, and we w o n d e r  if it may 
be equally inevi table  that  someone  feels the  challenge to 
raise the prec is ion  of  i ts computat ion.  

The cons tan t  ~- has  repea ted ly  surpr i sed  humani ty  with 
new and unan t ic ipa ted  results.  If anything, the  discover ies  
of  this century  have been  even more  startling, with respec t  
to the previous  s ta te  of  knowledge,  than  those  of  pas t  cen- 
turies. We guess  f rom this that  even more  surpr i ses  lurk in 
the depths  of  und i scovered  knowledge  regarding this fa- 
mous  constant .  
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Some say that pure mathematicians in-
vented digital computers and then pro-
ceeded to ignore them for the better part
of half a century. In the past two decades,

this situation has changed with a vengeance.
Major symbolic mathematics and computer algebra

packages (see the sidebar), most notably Maple and
Mathematica, have reached a remarkable degree
of sophistication over the last 15 years. (We should
also allude to counterparts such as Axiom, Mac-
syma, Reduce, MuPad; Matlab; and other more
specialized packages such as GAP, Magma, or Cay-
ley [for group theoretic computation], Pari [for
number theory], KnotPlot [for knot theory], Snap-
Pea [for hyperbolic 3-manifolds], and SPlus [for
statistics].) This sophistication has relied on a con-
fluence of algorithmic breakthroughs, dramatically
increased processor power, almost limitless stor-
age capacity, and, most recently, network commu-
nication, excellent online databases, and Web-
distributed (often Java-based) computational tools.
Examples include the mathematics front end to the
Los Alamos Preprint ArXiv (http://front.math.
ucdavis.edu), mathematical reviews on the Web
(http://e-math.ams.org/mathscinet), Neil Sloane’s

encyclopedia of integer sequences (www.research.
att.com/personal/njas/sequences/eisonline.
html), our own inverse symbolic calculator
(www.cecm.sfu.ca/projects/ISC/ISCmain.html),
and integer relation finders (www.cecm.sfu.ca/ 
projects/IntegerRelations).

The relatively seamless integration of all these
components arguably represents the key challenge
for 21st-century computational mathematics. It’s
hard to think of mathematical problems where a
dramatic increase in computational speed and
scale would enable a presently intractable line of
research. It’s easy to give examples where it would
not—consider Clement W.H. Lam’s 1991 proof
(www.cecm.sfu.ca/organics/papers/lam/index.html)
of the nonexistence of a finite projective plane of
order 10 (a hunt for a configuration of n2 + n1 +1
points and lines). It involved thousands of hours
of computation. Lam’s estimate is that the next
case (n = 18) susceptible to his methods would take
millions of years on any conceivable architecture.
Although a certain class of mathematical enquiries
is susceptible to massively parallel Web-based
computation (for example, discovering Mersenne
primes of the form 2n – 1), these tend not to be
problems central to mathematics.

Computational excursions in
contemporary mathematics

Many researchers have made significant in-
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CHALLENGES IN
MATHEMATICAL COMPUTING

Almost all interesting mathematical algorithmic questions relate to NP-hard questions.
Such computation is prone to explode exponentially. The authors anticipate the greatest
benefit will come from mathematical platforms that allow for computer-assisted insight
generation, not from solutions of grand-challenge problems.
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roads into some rather difficult—previously
viewed as intractable—problems such as exact
integration of elementary functions. Some of the
most important mathematical algorithms of the
20th century include

• the fast Fourier transform, 
• lattice basis reduction methods and related

integer relation algorithms, 
• the Risch algorithm for indefinite integration, 
• the Gröbner basis computation for solving

algebraic equations, and 
• the Wilf/Zeilberger algorithms for hyper-

geometric summation and integration,
which rigorously prove very large classes of
identities. 

All these are—or soon will be—centrally incor-
porated into symbolic mathematics or computer
algebra packages. In fact, the first two were
counted among the 10 algorithms with “the
greatest influence on the development and prac-
tice of science and engineering in the 20th cen-
tury.”1 Of course, many of the others, such as the
sorting algorithms, are fundamental to the needs
of contemporary mathematics.

Such packages can now substantially deal with
large parts of the standard mathematics curricu-
lum—and can out-perform most of our under-
graduates to boot. They provide extraordinary
opportunities for research that most mathemati-
cians are only beginning to appreciate and di-
gest. They also provide access to sophisticated
mathematics to a very broad cross-section of sci-
entists and engineers.

The emergence of such packages—and their
integration into mathematical parole—repre-
sents the most significant part of a paradigm shift
in how mathematics is done. Certainly
these packages have already become a
central research tool in many subareas of
mathematics, both from an exploratory
and a formal point of view—it is accept-
able now to see a line in a proof that be-
gins “by a large calculation in Maple, we
see …” The first objective of symbolic al-
gebra packages was to do as much exact
mathematics as possible. A second, in-
creasingly important objective is to do it
very fast and to deal in an arbitrary-pre-
cision environment with the more stan-
dard algorithms of mathematical analy-
sis. Roughly, users would like to be able
to incorporate the usual methods of nu-
merical analysis into an exact environ-

ment or at least into an arbitrary-precision en-
vironment.

The problems are obvious and hard. For ex-
ample, how do we do arbitrary precision nu-
merical quadrature? When do we switch meth-
ods with precision required or with different
analytic properties of the integrand? How do we
deal with branch cuts of analytic functions? How
do we deal consistently with log? More ambi-
tiously, how do we do a similar analysis for dif-
ferential equations? Ultimately, can we certify
that a given numeric or symbolic computation
is indeed a proof or even just correct? The goal is
to marry the algorithms of analysis with sym-
bolic and exact computation and to do this with
as little loss of speed as possible. Sometimes this
means we must first go back and speed up the
core algebraic calculations. 

Within this context, a number of very inter-
esting problems concerning the visualization of
mathematics arise. How do we actually “see”
what we are doing? Some say that Cartesian
graphing was the most important invention of
the last millennium. Certainly it changed how
we think about mathematics—the subsequent
development of differential calculus rested on it.
More subtle and complicated graphics, like those
of fractals, enable a previously impossible kind
of exploration. There are many issues to work
out at the interface of mathematics, pedagogy,
and even psychology that are important to get
right. An instructive example is the growing re-
liance of numerical analysts on graphic repre-
sentation of large sparse matrices—the pictures
show structure while numerical output is little
help. (An example is JavaView [www-sfb288.
math.tu-berlin.de/vgp/javaview/index.html] for
3D geometry on the Web.)

Some Significant Mathematical Packages
Axiom: www.axiomtek.com
Derive: www.derive.com
KnotPlot: www.pims.math.ca/knotplot
Macsyma: http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi? MACSYMA
Maple: www.maplesoft.com
Mathematica: www.wolfram.com
Matlab: www.mathworks.com
MuPad: www.mupad.com
Pari: www.cs.sunysb.edu/~algorith/implement/pari/implement.shtml
Reduce: www.uni-koeln.de/REDUCE
SnapPea: www.ptf.com/ptf/products/UNIX/current/0465.0.html
SPlus: www.insightful.com
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The twin successes of the symbolic algebra
packages have been their mathematical gener-
ality and ease of use. These packages deal most
successfully with algebraic problems whereas
many (perhaps most) serious applications re-
quire analytic objects such as definite integrals,
series, and differential equations. All the ele-
mentary notions of analysis, such as continuity
and differentiability, need precise computational
meaning. The first challenge to meeting this
need involves mathematical algorithmic devel-
opments to allow the handling of a variety of
these only partially handled problems—includ-
ing the analysis of functions given by programs.
Many of these relate to the difficult mathemat-
ical problems involved in automatic simplifica-
tion of complicated analytic formulae and
recognition of when two very different such ex-
pressions represent the same object. There is
also an intrinsic need to mix numeric and sym-
bolic (exact and inexact) methods. Human
mathematicians often criticize programs for
making dumb errors, but often these errors
(such as oversimplifying expressions, leaving out
hypotheses, or dividing by zero) are precisely
how we start when we do it ourselves. As Jacques
Hadamard noted almost a century ago, “The 
object of mathematical rigor is to sanction and
legitimize the conquests of intuition.”

The Reimann hypothesis
The question that a pure mathematician is

most likely to sell his soul to solve is the so-called
Riemann hypothesis, first described in 1859. The
bounty on its solution now exceeds $1 million.
At the Clay Mathematics Institute’s Web site
(www.claymath.org/prize_problems/rules.htm),
the problem is described in the following form: 

Some numbers have the special property that
they cannot be expressed as the product of two
smaller numbers, e.g. 2, 3, 5, 7, etc. Such num-
bers are called prime numbers, and they play an
important role, both in pure mathematics and its
applications. The distribution of such prime
numbers among all natural numbers does not fol-
low any regular pattern, however the German
mathematician G.F.B. Riemann (1826-1866) ob-
served that the frequency of prime numbers is
closely related to the behavior of an elaborate
function ζ(s) called the Riemann Zeta function.
The Riemann hypothesis asserts that all inter-
esting solutions of the equation ζ(s) = 0 lie on a
straight line. This has been checked for the first
1,500,000,000 solutions. A proof that it is true

for every interesting solution would shed light
on many of the mysteries surrounding the distri-
bution of prime numbers.

A little more precisely, the Riemann hypothe-
sis is usually formulated as 

All the zeros in the right half of the complex
plane of the analytic continuation of

lie on the vertical line ℜ(s) = 1/2.

(One of the most famous results in elementary
mathematics is Euler’s evaluation of ζ(2) = π2/6.) 

Without doubt this is one of the “grand chal-
lenge” problems of mathematics and for good
reason. Large tracts of mathematics fall into
place if the Riemann hypothesis is true: while
the proof methods may be tremendously signif-
icant, the truth of the Riemann hypothesis is
central—its falseness would be disquieting.
Most mathematicians believe the Riemann hy-
pothesis to be true, although there are notable
dissenters. John Littlewood, one of the last cen-
tury’s great analytic number theorists, has hy-
pothesized its falseness.2 Of course, finding just
one nontrivial zero off the line ℜ (s) = 1/2,
should it exist, is worth $1 million, and this
might provide additional motivation to extend
this particular mountain’s climb. (Perhaps the
prize is only for a proof, not a disproof—cer-
tainly a proof is more interesting.) The fact that
more than the first billion zeros are known, by
computation, to satisfy the Riemann hypothe-
sis might be considered “strong numerical evi-
dence.” However, it is far from overwhelming—
there are subtle phenomena in this branch of
mathematics that only manifest themselves far
outside present computer range.

One reason to extend such computations—
which are neither easy nor obvious and rely on
some fairly subtle mathematics—is the hope that
someone will uncover delicate phenomena that
give insight for a proof. Greatly more ambitious
is the possibility that, in the very long run, it will
be possible to machine-generate a proof—even
for problems as difficult as this one.

P vs. NP
Of the seven $1 million “Millennium Prize”

problems on the Clay Web site, the one that is
most germane to this discussion is the so-called
P ≠ NP problem. Again, from the site:
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It is Saturday evening and you arrive at a big
party. Feeling shy, you wonder whether you al-
ready know anyone in the room. Your host pro-
poses that you must certainly know Rose, the
lady in the corner next to the dessert tray. In 
a fraction of a second you are able to cast a
glance and verify that your host is correct.
However, in the absence of such a suggestion,
you are obliged to make a tour of the whole
room, checking out each person one by one, to
see if there is anyone you recognize. This is an
example of the general phenomenon that gen-
erating a solution to a problem often takes far
longer than verifying that a given solution is
correct. Similarly, if someone tells you that the
number 13,717,421 can be written as the prod-
uct of two smaller numbers, you might not
know whether to believe him, but if he tells you
that it can be factored as 3,607 × 3,803, you can
easily check that it is true using a hand calcula-
tor. One of the outstanding problems in logic
and computer science is determining whether
questions exist whose answer can be quickly
checked (for example by computer), but which
require a much longer time to solve from
scratch (without knowing the answer). There
certainly seem to be many such questions. But
so far no one has proved that any of them really
does require a long time to solve; it may be that
we simply have not yet discovered how to solve
them quickly. Stephen Cook formulated the P
versus NP problem in 1971.

Although in many instances you could ques-
tion the practical distinction between polyno-
mial and nonpolynomial algorithms, this prob-
lem is central to our current understanding of
computing. Roughly, it conjectures that many of
the problems we currently find computationally
difficult must perforce be that way. It is a ques-
tion about methods, not about actual computa-
tions, but it underlies many of the challenge
problems we can imagine posing. A question
that requests us to “compute such and such a
sized incidence of this or that phenomena” al-
ways risks having the answer “it’s just not possi-
ble” because P ≠ NP.

Two specific challenges

With the caveat that although factoring is dif-
ficult, it is not generally assumed to be in the
class of NP-hard problems, let us offer two chal-
lenges that are far-fetched but not inconceivable
goals for the next few decades.

Design an algorithm that can reliably factor a
random thousand-digit integer

Even with a huge effort, current algorithms
get stuck at about 150 digits. (See www.rsasecurity.
com/rsalabs/challenges/factoring/index.html for
a list of current factoring challenges.) And there
is a $100,000 cash prize offered for any reliable
10-million-digit prime (www.mersenne.org/
prime.htm).

Primality checking is cur-
rently easier than factoring, and
there are some very fast and
powerful probabilistic primal-
ity tests—much faster than
those providing certificates.
Given that any computation
has potential errors due to sub-
tle (or even not-so-subtle) pro-
gramming bugs, compiler er-
rors, software errors, or un-
detected hardware integrity er-
rors, it may be pointless to dis-
tinguish between these two types of primality tests.
Many would take their chances with a (1 – 10–100)
probability statistic over a proof any day.

These questions are intimately related to the
Riemann hypothesis, although not obviously so
to the nonafficionado. They are also critical to
issues of Internet security—learn how to factor
large numbers, and most current security sys-
tems are crackable.

Find the minima in the merit factor problem
up to size 100

There are many old problems that lend
themselves to extensive numerical exploration.
For example, in signal processing there is the
merit factor problem, which is due to Marcel Go-
lay with closely related versions due to Little-
wood and Paul Erdös. Its pedigree is long, but
not as long as the Riemann hypothesis (see
http://athene.nat.uni-magdeburg.de/~mertens
for recent records and references).

We can formulate it as follows. Suppose (a0 :=
1, a1, ..., an) is a sequence of length n + 1, where
each ai is either 1 or –1. If

(1)

then the problem is, for each fixed n, to minimize:
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We can find exact minima up to about n = 50.
The search space of sequences at size 50 is 250,
which is about today’s limit for a very large-scale
calculation. In fact, the records use a branch-
and-bound algorithm that more or less grows
like 1.8n. This is marginally better than the naive

2n of a completely exhaustive
search, but it is still painfully
exponential.

The best hope for a solu-
tion is better algorithms. The
problem is widely acknowl-
edged as a very hard problem
in combinatorial optimiza-
tion, but it isn’t known to be
in one of the recognized hard
classes like NP. The next best
hope is radically different com-

puters, perhaps quantum computers. And there
is always a remote chance that analysis will lead to
a mathematical solution.

A concrete example

Let’s examine some of the mathematical chal-
lenges in a specific problem Donald Knuth re-
cently proposed. He asked solvers to evaluate the
following sum:3

. (3)

We answer Knuth’s question in the following
steps.

1. A very rapid Maple computation yielded
–0.08406950872765600... as the first 16 dig-
its of the sum. 

2. The inverse symbolic calculator has a “smart
lookup” feature—alternatively, we could 
use a sufficiently robust integer relation
finder—that replied that this was probably

. 
3. Checking this to 50 digits provided ample

experimental confirmation. Thus, within
minutes we knew the answer.

4. So why did these numerical and symbolic
numbers match? A clue was provided by
the surprising speed with which Maple
computed the slowly convergent infinite
sum. The package clearly knew something
the user did not. Peering under the covers
revealed that it used the LambertW func-
tion, W, which is the inverse of w = z

exp(z). (A search for “Lambert W function”
on MathSciNet provided nine references—
all since 1997 when the function appears
named for the first time in Maple and
Mathematica.)

5. The presence of ζ(1/2) and standard Euler-
MacLaurin techniques, using Stirling’s for-
mula (as might be anticipated from the

(4)

where the binomial coefficients are those in
the series for 

.

Now Equation 4 is a formula Maple can
prove.

6. However, we still need to show

. (5)

7. Guided by the presence of W and its series

,

an appeal to Abel’s limit theorem lets us de-
duce the need to evaluate

. (6)

Again, Maple can establish Equation 6.

Of course, this all took a fair amount of human
mediation and insight.

In 1996, discussing the philosophy and 
practice of experimental mathematics, we
wrote4

As mathematics has continued to grow there has
been a recognition that the age of the mathe-
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matical generalist is long over. What has not
been so readily acknowledged is just how spe-
cialized mathematics has become. As we have al-
ready observed, subfields of mathematics have
become more and more isolated from each other.
At some level, this isolation is inherent but it is
imperative that communications between fields
should be left as wide open as possible. As fields
mature, speciation occurs. The communication
of sophisticated proofs will never transcend all
boundaries since many boundaries mark true
conceptual difficulties. But experimental mathe-
matics, centering on the use of computers in
mathematics, would seem to provide a common
ground for the transmission of many insights.

This common ground continues to increase
and extends throughout the sciences and engi-
neering.

The corresponding need is to retain the 
robustness and unusually long-livedness of the
rigorous mathematical literature. Doron Zeil-
berger’s proposed Abstract of the Future chal-
lenges this in many ways: “We show in a certain
precise sense that the Goldbach conjecture
(where every even number is the sum of two
primes) is true with probability larger than
0.99999 and that its complete truth could be de-
termined with a budget of 10 billion.”4

He goes on to suggest that only the Riemann
hypothesis merits paying really big bucks for
certainty. Relatedly, Greg Chaitin argued that
we should introduce the Riemann hypothesis
as an axiom: “I believe that elementary num-
ber theory and the rest of mathematics should
be pursued more in the spirit of experimental
science, and that you should be willing to
adopt new principles. I believe that Euclid’s
statement that an axiom is a self-evident truth
is a big mistake. The Schrödinger equation
certainly isn’t a self-evident truth! And the Rie-
mann hypothesis isn’t self-evident either, but
it’s very useful. A physicist would say that there
is ample experimental evidence for the Rie-
mann hypothesis and would go ahead and take
it as a working assumption.”4

How do we reconcile these somewhat com-
bative challenges with the inarguable power of
the deductive method? How do we continue to
produce rigorous mathematics when more re-
search will be performed in large computational
environments where we might or might not be
able to determine what the system has done or
why? This is often described as “relying on proof
by ‘Von Neumann says’.”

At another level we see the core challenge for
mathematical computing to be the construction
of workspaces that largely or completely auto-
mate the diverse steps illustrated in Knuth’s and
similar problems.
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XmG�ÅqG�7DXbÎbSÍEF7MÏ\OPXT7DQmOMXT;FG�Å�@MUÑ7DL<I%ÆKLK;F9MG�XTÅm;kQeIÍ=pG|É
ÊC7DXmQmÌ�G|LwQbÅ5LCORY O��G|XÍÎ�OPÆKXTÅmG�Å5Y�SKG�XmGÓQmSKG�ÆCÅT7DÇPGÓODÈ8OMLKG�ODÈ�QTSKG�ÅmG�ÅqOMÈüQeYW7MXmG
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ÊC7MÎbÖR7DÇPG�Å/;>Å
7DL�;FLwQmG|ÇPXT7MEKÊC7MXqQ
OMÈ\QTSKG�Î�OPÆKXbÅqGP@DBZÆKQ
ÈËÆKXmQmSKG�XªG�ÄpÊC7MLCÅm;HOPL5OMÈ`QTSKG�ÅmG
È 7MÎ�;FEF;kQT;HG�Å5;FLwQmO�SK;FÇMSzÅmÎbSKO<OPEFÅ5SC7MÅ5Ï`G|G|L�;FLKSK;FÏK;kQTG�=ÞÏ<IÒ7#L<ÆKÌ5Ï\G�X%OMÈ�È 7PÎ±QmOPXTÅ�Ô
;HLCÎ|EHÆ\=p;HLCÇ)QmSKG�È 7M;HXTEFI#SK;FÇMSÒÎ|OPÅqQÙOMÈ�ÅqÆCÎbSVÅmODÈüQeY!7DXTGMÔ�QTSKGÍEF7PÎbÖ#OMÈ!7MÊKÊKXTOMÊKXT;F7DQmG
Î�OMÌ�ÊKÆKQmG|XÙG�<PÆC;HÊKÌ�G�LPQ�Ô�=p; �3Î|ÆKEkQT;HG�ÅÙ;HL×ÅqQT7DL\=K7DXb=p;Fò|;FLKÇ.ÅmÆCÎbS#Î|OMÆKXbÅqG�YZOPXmÖ�7RQ¦7
XmG�ÇM;FOMLC7ME�OMXÍLC7DQm;FOMLC7ME�EHG�9MG|E¬Ôª7×ÊC7MÆCÎ�;HQeIØOMÈ�ÇPO<O<=ØQmG|Ä<QTÅ3;FLCÎ|OMXTÊ\OPXT7DQm;FLKÇ�ÅmÆCÎbS
QmO<OME>Å�;FLPQTOA7ÙXTG�7DEF;>ÅeQT;FÎ�Î|ÆKXmXT;>Î�ÆKEFÆKÌ�ÔDE>7MÎbÖAOMÈ�QmXb7D;FLKG�=5QmG�7MÎbSKG�XTÅ�7MLC=�ÌÍ7DL<IAOMQmSKG�X
=pG|ÌÍ7DL\=KÅ!OML�QmSCG|;FX!Qm;FÌ%GP@

BZÆKQ�Î|OMÌ�ÊKÆpQTG|X%SC7DXb=pY!7DXTGÓÎ�OPLPQT;HL<ÆKG�ÅA;HQTÅ�=pORY�L<Y!7DXb=×ÅqÊK;FXb7DEW;HL�Î�OPÅqQÍ7DLC=
;kQbÅZÆCÊwY!7DXb=ÍÅmÊK;HXb7DE\;HL.Ê\ORYWG|X�@Má§QZQmS<ÆCÅ!7DÊCÊ\G�7DXbÅ�QmS\7RQ!Y�;kQTSK;HL�7¦9MG�XmI%ÈËG�YÃIMG�7MXTÅ�Ô
Ì%Op=pG�XT7DQmG�EHIÙÊ`ORYZG�XqÈËÆKEwÅqI<Ì5Ï\OPEH;>ÎªÎ|OMÌ�ÊKÆpQb7RQm;FOML�È 7MÎ�;FEF;kQT;HG�ÅóÎ�7DL�Ï`GZ;FLCÎ|OMXTÊ\OPXT7DQmG�=
;HLwQmO×XTG|E>7RQT;H9PG|EFIV;HLKG|ÄpÊ\G�LCÅq;F9MG�SC7MLC=�Î|7DE>Î�ÆCEF7DQmOMXbÅ�Ô/7DQÍY�SK;FÎbS�Ê`OM;FLPQ3;HQ3Y�;FEHE�Ï`G
ÌAÆCÎbS�G�7PÅq;FG|X5QmOVÅmÆCÎ|Î|G�ÅTÅeÈËÆKEFEFIV;HLwQmG�ÇMXb7RQTGÓQTSKG�ÅmG�QmO<OME>Å%;HLwQmO×SK;FÇMS�ÅmÎbSCOwOPE�Î�ÆKXmÉ
Xm;>Î�ÆKE>7K@!ß!S<ÆCÅ.;kQ)ÅqG�G|ÌÍÅ.QmSC7DQ.YWG�7MXmG#Ê\OP;FÅmG�=�QmOÞÅmG|G×7ÒLCG|Y$ÇMG�LKG|Xb7RQT;HOPL�ODÈ
ÅeQTÆC=pG|LwQbÅWÎ|OMÌ�;FLKÇ5;FLwQmO%ÆKLK;F9MG�XTÅm;kQeI�ÌÍ7RQTSKG|ÌÍ7DQm;>Î|Å!7DLC=.ÅmÎ|;HG�LCÎ�G�ÊKXTOMÇPXT7MÌ�ÅªY�SKO
7DXTG�Î�OPÌ%ÊCEHG|QmG|EFIÍÎ�OPÌ5ÈËOPXqQb7DÏKEFG�ÆCÅm;FLKÇAÅmÆCÎbSÍQmO<OPEFÅ�@Pß!SK;>ÅW=pG|9PG|EFOMÊKÌ�G|LwQª;>ÅZÏ\OPÆKLC=
QmOAS\7:9MG87AÊKXTODÈËOMÆCLC=Í;FÌ%Ê\7MÎ±Q!OML3QmSKG8ÈËÆpQmÆCXmG8QmG�7MÎbSK;FLKÇCÔwEFG�7DXTLK;FLKÇA7MLC=Ó=pOP;HLCÇAODÈ
Ì�7DQmSKG�ÌÍ7RQm;>Î|Å�@

ã EF;HÖPG|EFI�7MLC=�ÈËOPXqQTÆKLC7RQTGAÅmÊK;HLKÉ¬O��OMÈ�QmSK;>ÅÙ=pG|9PG|EFOMÊKÌ�G|LwQ�;>Å�QmSC7DQ8QTSKG5Î|OMÌ%É
Ì%G�XTÎ|;F7MEZÅmODÈüQeY!7DXTG�9MG|L\=pOMXbÅ¦Y�SKOÑÊCXmOp=pÆCÎ|GÍQmSCG�ÅmGÓÊKXTOp=pÆCÎ±QbÅ�Y�;FEHEZEH;FÖMG�EHI�G|L&eORI
7ÃÏKXTOP7M=KG|X�ÐCLC7MLCÎ�;>7DE5ÏC7MÅmGMÔ�ÈËXmOPÌ Y�SK;>ÎbSñQmSCG|I�Î|7MLñ7�`OPXT= QTOÃÈËÆKXmQmSKG�X#G�LpÉ
SC7DLCÎ|GWQmSKG�;HX
ÊCXmOp=pÆCÎ�QTÅ�ÇPG�7MXmG�=A7RQªÅmG|XT;FOMÆCÅ�XTG�ÅmG�7DXbÎbSKG�XTÅ�@ 'CÆpQmÆCXmG�G�LKSC7DL\Î�G|Ì�G�LPQbÅ
7DXTGAEF;HÖPG|EFI.QTO.;FLCÎ|EHÆC=KG5Ì�OMXTG%G%�3Î�;FG|LwQ¦7DEFÇMOMXT;HQmSKÌÍÅ�ÔCÌ�OMXTGAG|ÄwQTG|LCÅm;F9MG5Î�7DÊC7MÏK;FEH;HÉ
Qm;FG�Å�Ì�;HÄp;HLKÇÍL<ÆKÌ�G�Xm;>Î|Å�7MLC=)ÅmIwÌ5Ï\OPEH;>Î|Å�ÔpÌ�OMXTG�7M=p9R7MLCÎ�G�=.9<;>ÅqÆ\7DEF;Hò�7RQm;FOML�È 7PÎ�;FEH;HÉ
Qm;FG�Å�Ôw7MLC=3ÅmODÈüQeY!7DXTG�OMÊpQT;HÌ�;Fò|G�=ÍÈËOMXªG�Ì�G|XTÇM;FLKÇ�ÅqI<Ì�Ì�G�QTXm;>Î�Ì5ÆKEkQT;HÊCXmOpÎ�G�ÅmÅmOMXZ7DLC=
SK;HÇPSKEFI3ÊC7DXb7DEFEFG|E¬Ô<=K;FÅqQmXT;HÏCÆpQmG�=ÓÌ�G|Ì�OPXmIÓÎ|OMÌ�ÊKÆpQTG|X�ÅmIpÅeQTG|ÌÍÅ|@<ÂÃSKG�L)Î�OMÌ5ÏK;FLKG�=
Y�;kQTSÓG�ÄpÊ`G�Î�QmG�=3;HLCÎ|XmG�7MÅmG�Åª;HL3Xb7:YÃÎ�OPÌ%ÊCÆpQm;FLKÇAÊ`ORYWG|XZ=KÆKG�QTO5U)O<OMXTGMÜ ÅªÝó7:Y 4
;HÌ�ÊKXTOR9MG�Ì%G�LwQTÅ�Y�SK;>ÎbS37DEFÌ�OPÅqQZÎ�G�XqQb7D;FLKEFIAY�;FEHE`Î�OMLwQT;HL<ÆKG�ÆCLC7DÏC7DQmG�=%ÈËOMXZ7DQªEFG�7MÅqQ
QmG|L�IMG�7DXbÅ�7DLC=ÞÊKXTOMÏC7MÏKEHIVÌ5ÆCÎbSØEFOMLCÇMG|X54 YWG)Î�OML\Î�EFÆC=pG�QmSC7DQÍG|LKOPXmÌ�OMÆ\ÅqEFI
Ì%OPXmGÓÊ\ORYWG|XmÈËÆKEZÎ|OMÌ�ÊKÆpQTG|X5Ì�7DQmSKG�ÌÍ7RQm;>Î|Å%ÅmI<ÅqQmG�ÌÍÅ�Y�;FEHEWÏ\G�7:9R7D;FEF7MÏKEHGÍ;FLVQTSKG
ÈËÆpQmÆKXTGM@

ÂÛG3OPLKEFI#LKORYí7DXTGÍÏ\G�ÇM;FLKLK;FLKÇ�QmO#G�ÄpÊ\G�Xm;FG|L\Î�G37DL\=VÎ�OMÌ�ÊKXTG|SCG|LC=ÛQmSCG3Ê\OMÉ
QmG|LwQT;F7MEp;HÌ�ÊC7PÎ±Q�ODÈ\Î|OMÌ�ÊKÆpQTG|X�ÌÍ7RQTSKG|ÌÍ7DQm;>Î|ÅóQmO<OME>Å/OML5ÌÍ7RQmSCG|ÌÍ7RQT;FÎ�7DEpXTG�ÅmG�7DXbÎbS¤@
ásLÞQTG|LzÌ�OMXTG�IMG�7MXTÅ�Ô
7�LKG|Y2ÇMG�LKG|Xb7RQT;HOPLØOMÈÙÎ|OMÌ�ÊKÆpQTG|XmÉ¬EF;kQTG|Xb7RQTG�ÌÍ7DQmSKG�Ì�7DQm;HÉ
Î�;>7DLCÅ�Ô\7MXmÌ�G�=�Y�;HQmS#Åm;FÇMLK;HÐ\Î|7MLwQmEFIÓ;FÌ%ÊCXmOR9PG�=�ÅqOMÈüQeYW7MXmG¦OPL�ÊKXmOp=p;FÇM;FOMÆ\ÅqEFIÓÊ`ORY!É
G|XmÈËÆKE�Î�OMÌ�ÊKÆKQmG|XÙÅmI<ÅqQmG�ÌÍÅ|Ô�7DXTG�Ï`OMÆKLC=ÑQmO.Ì�7MÖMG%=p;FÅTÎ�OR9PG|XT;HG�Å�;FL#ÌÍ7RQTSKG|ÌÍ7RQT;FÎ�Å
QmSC7DQ�YWGWÎ�7DL�OPLKEFI�=pXmG�7DÌñODÈ`7RQ�QmSKGWÊKXTG�ÅmG|LwQ QT;HÌ�GM@RÂÃ;FEFE<Î|OMÌ�ÊKÆpQTG|X/ÌÍ7RQTSKG|ÌÍ7RQmÉ
;FÎ�Å G�9MG|LwQTÆC7DEFEHI�XTG|ÊKE>7MÎ|GMÔ|;FLALCG�7DXóG|LwQm;FXTG�QeIMÔ�QmSCGZÅmOMEFG|EFI�S<ÆKÌÍ7ML¦ÈËOMXTÌ OMÈCXTG�ÅmG�7DXbÎbS¤Ô
QeIwÊC;kÐCG�=ÓÏ<I ã LC=pXTG|Y�ÂÃ;FEHG�Å|ÜpXTG�Î|G|LwQZÊCXmO<ODÈóODÈ 'CG|XTÌ�7DQ�Ü Å!Ý 7MÅqQ�ß!SKG|OPXmG�Ì�F�ÂÃ;FEFE
Î�OMÌ�ÊKÆKQmG|XZÌÍ7RQmSCG|ÌÍ7RQT;FÎ�ÅªÅmI<ÅqQmG�ÌÍÅ�G|9PG|LwQmÆC7MEHEFI�7MÎbSK;FG|9PG�ÅqÆCÎbS�;FLwQmG|EFEF;HÇPG|LCÎ|G�QmSC7DQ
QmSKG�I×=K;FÅTÎ�OR9PG|X�=pG�G|ÊÒLKG�YíÌ�7DQmSKG�ÌÍ7RQm;>Î|7MEªXTG�ÅmÆKEHQTÅ�Ô E>7DXTÇMG|EFI#OPXAG�LPQT;HXTG|EFI#Y�;HQmSKÉ
OMÆpQ�SwÆCÌ�7MLA7MÅTÅm;FÅqQT7MLCÎ�G F�ÂÃ;FEHE<LKG�YÒÎ�OMÌ�ÊKÆKQmG|XmÉ§ÏC7MÅmG�=�ÌÍ7RQTSKG|ÌÍ7RQT;FÎ�7DE<=p;>ÅmÎ|OR9MG|XTI
QmG�ÎbSCLK; <wÆKG�Å�G|L\7DÏKEFG¦ÌÍ7RQmSCG|ÌÍ7RQT;FÎ|;F7MLCÅ!QmOÍG|ÄpÊKEHOPXmG�QTSKG�XTG�7DEFÌ�ÔKÊKXTOR9MG�=ÍQmOÓG�Äp;FÅqQ
ÏwI26 �Ow=pG|E¬Ô �ZSC7M;kQT;HL×7DLC=#ODQTSKG|XbÅ|Ô`QTSC7RQ¦;>Å�ÈËÆKLC=K7MÌ%G�LwQT7DEFEFIÑÏ\G�IMOPLC=)QTSKG�EH;FÌ�;kQbÅ
ODÈ�ÈËOMXTÌ�7ME�XmG�7MÅmOMLK;FLKÇ#F
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ÂÛG.SC7:9MGÓÅmSKORY�LÒ7ÑÅmÌÍ7DEFEªÏKÆKQ%YWG3SKOPÊ\G�Î�OML<9<;FLCÎ�;FLKÇÑÅmG|EFG�Î±QT;HOPLÒODÈ�Y�SC7DQAQTSKG
ÊKXmG�ÅqG�LwQ!7MEHEFORY�ÅZ7MLC=3Y�S\7RQ!QmSKG�ÈËÆpQTÆKXTG�SCOME>=KÅW;HL�ÅeQTOMXTGM@<Â�G8SC7:9PG8S\7DXb=pEHIÍÌ�G�LpÉ
Qm;FOMLKG�=)QmSCG5ÇPXmORY�;FLKÇÍÆKÏK;V<wÆK;HQeI)ODÈªYWG|ÏÑÏ\7MÅmG�=ÑÎ|OMÌ�ÊKÆpQb7RQm;FOML Ô\OPX8OMÈªÊ\G�Xm9R7PÅq;F9MG
7MÎ|Î|G�ÅTÅWQmOÍÌÍ7MÅTÅm;H9PG�=K7DQT7�ÏC7PÅqG�Å|ÔpÏ`ODQTS�ÊKÆKÏKEF;FÎ¦=KOMÌÍ7D;FL)7DLC=�Î�OPÌ�Ì%G�XTÎ|;F7ME�@KÕ�G|;HÉ
QmSKG�X�SC7:9PG�YWG¦Xb7D;>ÅqG�=ÓQTSKG�S<ÆKÌÍ7DL �RÎ�OPÌ�ÊKÆpQmG�X�;HLwQTG|XmÈ 7MÎ�G¦OPX�;FLPQTG|EFEHG�Î±QTÆC7DEóÊKXmOPÊpÉ
G|XmQeI3;FÅTÅmÆKG�Å�7MLC=3QTSKG¦ÌAI<XT;F7P=ÓOMQmSKG�X�LKODQmÉ¬ÊCÆKXmG�EHIwÉ¬QmG�ÎbSKLK;>Î|7DE�;>ÅmÅmÆKG�ÅWQmSKG�ÅqG¦Xb7D;>ÅqGP@

ÂÃSC7RQTG|9MG�X
QTSKGÙOMÆpQbÎ�OMÌ�G8ODÈ�QmSCG�ÅmG�=pG�9MG�EHOPÊKÌ�G|LwQTÅ�ÔPYWG87MXmG�ÅeQT;HEFE�Ê\G�XTÅmÆC7P=pG�=
QmSC7DQ�ÌÍ7RQTSKG|ÌÍ7DQm;>Î|Å�;FÅ/7MLC=�Y�;FEHEpXTG|ÌÍ7M;HLA78ÆKLK;V<wÆKG|EFI¦S<ÆKÌÍ7DL5ÆKLC=pG�XqQb7DÖ<;HLCÇC@�08LKG
Î�OMÆCEF=5G|9PG|L57MXmÇPÆKG
QTSC7RQ/QTSKG�ÅmG�=pG|9PG|EFOMÊKÌ�G|LwQbÅ�Î|OMLpÐ\XmÌñQTSKGWÈËÆKLC=K7MÌ%G�LwQT7DEFEFI�S<ÆpÉ
Ì�7ML.L\7RQmÆCXmG�ODÈ�Ì�7DQmSKG�ÌÍ7RQm;>Î|Å�@pásLC=pG�G�=�Ô ��G|ÆKÏ`G|L�?�G�XTÅmS¤Ü ÅW7MXmÇPÆKÌ�G|LwQTÅÙä 9DæDç`ÈËOPX
7�SwÆCÌ�7MLK;>ÅeQ¦ÊKSK;FEFOPÅmOMÊKS<IÑOMÈWÌÍ7RQTSKG|ÌÍ7DQm;>Î|Å�Ô 7MÅÙÊC7MXT7MÊKSKXb7MÅmG�=#Ï\G�EHORY¦Ô¤Ï`G�Î|OMÌ�G
Ì%OPXmG¦Î|OML<9<;HLCÎ|;HLCÇ5;FL�OMÆKX�ÅmG�QmQm;FLKÇ�@
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C ) p i n i o r  

Knowledge and 
Community in 
Mathematics 
Jonathan Borwein and 
Terry Stanway 

The Opinion column offers 

mathematicians the opportunity to 

write about any issue of interest to 

the international mathematical 

community. Disagreement and 

controversy are welcome. The views 

and opinions expressed here, however, 

are exclusively those of the author, 

and neither the publisher nor the 

editor-in-chief endorses or accepts 

responsibility for them. An Opinion 

should be submitted to the editor-in- 

chief, Chandler Davis. 

Mathematical Knowledge--As We 
Knew It 

Each society has its regime of truth, 
its "general politics" of  truth: that is, 
the types of discourse which it accepts 
and makes funct ion as true; the mech- 
anisms  and instances which enable 
one to dist inguish true and false state- 
ments, the means by which each is 
sanctioned; the techniques and proce- 
dures accorded value in the acquisi- 
tion of  truth; the status of  those who 
are charged wi th  saying what counts 
as truth. 1 (Michel Foucault) 

Henri Lebesgue once remarked that 
"a mathematician, in so far as he is a 
mathematician, need not preoccupy 
himself with philosophy." He went on to 
add that this was "an opinion, moreover, 
which has been expressed by many 
philosophers. "2 The idea that mathe- 
maticians can do mathematics without 
a precise philosophical understanding 
of what they are doing is, by observa- 
tion, mercifully true. However, while a 
neglect of philosophical issues does not 
impede mathematical discussion, dis- 
cussion about mathematics quickly be- 
comes embroiled in philosophy, and 
perforce encompasses the question of 
the nature of mathematical knowledge. 
Within this discussion, some attention 
has been paid to the resonance between 
the failure of twentieth-century efforts 
to enunciate a comprehensive, absolute 
foundation for mathematics and the 
postmodern deconstruction of meaning 
and its corresponding banishment of en- 
compassing philosophical perspectives 
from the centre fixe. 

Of note in this commentary is the 
contribution of Vladimir Tasid. In his 
book, Mathematics and the Roots of 
Postmodern Thought, he comments on 
the broad range of ideas about the 

interrelationship between language, 
meaning, and society that are com- 
monly considered to fall under the um- 
brella of postmodernism. Stating that 
"attempts to make sense of this elu- 
sive concept threaten to outnumber at- 
tempts to square the circle," he focuses 
his attention on two relatively well- 
developed aspects of postmodern the- 
ory: "poststructuralism" and "decon- 
struction."3 He argues that the develop- 
ment of these theories, in the works of 
Derrida and others, resonates with 
the debates surrounding foundation- 
ism which preoccupied the philosophy 
of mathematics in the early stages of 
the last century and may even have 
been partly informed by those debates. 
Our present purpose is not to revisit the 
connections between the foundationist 
debates and the advent of postmodern 
thought, but rather to describe and dis- 
cuss some of the ways in which episte- 
mological relativism and other post- 
modern perspectives are manifest in the 
changing ways in which mathematicians 
do mathematics and express mathemat- 
ical knowledge. The analysis is not in- 
tended to be a lament; but it does con- 
tain an element of warning. It is central 
to our purpose that the erosion of uni- 
versally fLxed perspectives of acceptable 
practice in both mathematical activity 
and its publication be acknowledged as 
presenting significant challenges to the 
mathematical commtmity. 

Absolutism and Typographic 
Mathematics 

I believe that mathematical  reality 
lies outside us, that our funct ion  is to 
discover or observe it, and that the 
theorems which we prove, and which 
we describe grandiloquently as our 
"creations," are s imply  the notes of  
our observations. 4 (G. H. Hardy) 

1Michet Foucault, "Truth and Power," Power/Knowledge: Selected Interviews and Other Writings 1972-1977, 
edited by Colin Gordon. 

2Freeman Dyson, "Mathematics in the Physical Sciences," Scientific American 211, no. 9 (1964):130. 

3Vladimir TasiO, Mathematics and the Roots of Postmodem Thought (Oxford: Oxford University Press, 2001), 5. 
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We follow the example of Paul Ernest and others and 
cast under the banner of absolutism descriptions of math- 
ematical knowledge that exclude any element of uncer- 
tainty or subjectivity. 5 The quote from Hardy is frequently 
cited as capturing the essence of Mathematical Platonism, 
a philosophical perspective that accepts any reasonable 
methodology and places a minimum amount of responsi- 
bility on the shoulders of the mathematician. An undigested 
Platonism is commonly viewed to be the default perspec- 
tive of the research mathematician, and, in locating math- 
ematical reality outside human thought, ultimately holds 
the mathematician responsible only for discovery, obser- 
vations, and explanations, not creations. 

Absolutism also encompasses the logico-formalist schools 
as well as intuitionism and constructivism--in short, any 
perspective which strictly defines what constitutes mathe- 
matical knowledge or how mathematical knowledge is cre- 
ated or uncovered. Few would oppose the assertion that 
an absolutist perspective, predominately in the de facto Pla- 
tonist sense, has been the dominant epistemology amongst 
working mathematicians since antiquity. Perhaps not as ev- 
ident are the strong connections between epistemological 
perspective, community structure, and the technologies 
which support both mathematical activity and mathemati- 
cal discourse. The media culture of typographic mathe- 
matics is defined by centres of publication and a system of 
community elites which determines what, and by extension 
who, is published. The abiding ethic calls upon mathemati- 
cians to respect academic credentialism and the systems of 
publication which further refine community hierarchies. 
Community protocols exalt the published, peer-reviewed ar- 
ticle as the highest form of mathematical discourse. 

The centralized nature of publication and distribution 
both sustains and is sustained by the community's hierar- 
chies of knowledge management. Publishing houses, the 
peer review process, editorial boards, and the subscription- 
based distribution system require a measure of central con- 
trol. The centralized protocols of typographic discourse 
resonate strongly with absolutist notions of mathematical 
knowledge. The emphasis on an encompassing mathemat- 
ical truth supports and is supported by a hierarchical com- 
munity structure possessed of well-defined methods of 
knowledge validation and publication. These norms sup- 
port a system of community elites to which ascension is 
granted through a successful history with community pub- 
lication media, most importantly the refereed article. 

The interrelationships between community practice, 
structure, and epistemology are deep-rooted. Rigid episte- 
mologies require centralized protocols of knowledge vali- 
dation, and these protocols are only sustainable in media 
environments which embrace centralized modes of publi- 
cation and distribution. As an aside, we emphasize that this 
is not meant as an indictment of publishers as bestowers 
of possibly unmerited authority--though the present dis- 

junct between digitally "published" eprints which are read 
and typographically published reprints which are cited is 
quite striking. Rather, it is a description of a time-honoured 
and robust definition of merit in a typographical publish- 
ing environment. In the latter part of the twentieth century, 
a critique of absolutist notions of mathematical knowledge 
emerged in the form of the experimental mathematics 
methodology and the social constructivist perspective. 

In the next section, we consider how evolving notions of 
mathematical knowledge and new media are combining to 
change not only the way mathematicians do and publish math- 
ematics, but also the nature of the mathematical community. 

Towards Mathematical  Fallibilism 

This new approach to mathematics--the utilization of ad- 
vanced computing technology in mathematical research-- 
is often called experimental mathematics. The computer 
provides the mathematician with a laboratory in which 
he or she can perform experiments: analyzing examples, 
testing out new ideas, or searching for patterns. 6 (David 
Bailey and Jonathan Borwein) 

The experimental methodology embraces digital com- 
putation as a means of discovery and verification. De- 
scribed in detail in two recently published volumes, Math- 
ematics by Experiment: Plausible Reasoning in the 21st 
Century and E:~Terimentation in Mathematics: Compu- 
tational Paths to Discovery, the methodology as outlined 
by the authors (joined by Roland Girgensohn in the later 
work) accepts, as part of the experimental process, stan- 
dards of certainty in mathematical knowledge which are 
more akin to the empirical sciences than they are to math- 
ematics. As an experimental tool, the computer can pro- 
vide strong, but typically not conclusive, evidence regard- 
ing the validity of an assertion. While with appropriate 
validity checking, confidence levels can in many cases be 
made arbitrarily high, it is notable that the concept of a 
"confidence level" has traditionally been a property of sta- 
tistically oriented fields. It is important to note that the au- 
thors are not calling for a new standard of certainty in 
mathematical knowledge but rather the appropriate use of 
a methodology which may produce, as a product of its 
methods, definably uncertain transitional knowledge. 

What the authors do advocate is closer attention to and 
acceptance of degrees of certainty in mathematical knowl- 
edge. This recommendation is made on the basis of argued 
assertions such as: 

1. Almost certain mathematical knowledge is valid if treated 
appropriately; 

2. In some cases "almost certain" is as good as it gets; 
3. In some cases an almost certain computationally derived 

assertion is at least as strong as a complex formal as- 
sertion. 

4G. H. Hardy, A Mathematician's Apology (London: Cambridge University Press, 1967), 21. 
5paul Ernest, Social Constructivism As a Philosophy of Mathematics (Albany: State University of New York Press, 1998), 13. 
6j. M. Borwein and D. H. Bailey, Mathematics by Experiment: Plausible Reasoning in the 21st Century, A. K. Peters Ltd, 2003. ISBN: 1-56881-211-6, 2-3. 
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The first assertion is addressed by the methodology it- 
self, and in Mathematics by Experiment,  the authors dis- 
cuss in detail and by way of example the appropriate treat- 
ment of "almost certain" knowledge. The second assertion 
is a recognition of the limitations imposed by G6del's In- 
completeness Theorem, not to mention human frailty. The 
third is more challenging, for it addresses the idea that cer- 
tainty is in part  a function of the community's knowledge 
validation protocols. By way of example, the authors write, 

�9  perhaps only 200 people alive can, given enough time, 
digest all of  Andrew Wiles' extraordinarily sophisticated 
proof  of  Fermat's Last Theorem. I f  there is even a one per- 
cent chance that each has overlooked the same subtle er- 
ror (and they may  be psychologically predisposed so to 
do, given the numerous earlier results that Wiles' result 
relies on), then we mus t  conclude that computational re- 
sults are in m a n y  cases actually more secure than the 
proof  of  Fermat's Last Theorem. 7 

Three mathematical examples 
Our first and pithiest example answers a question set by 
Donald Knuth, 8 who asked for a closed form evaluation of 
the expression below�9 

E x a m p l e  1: Evaluate 

k=t k!ek 
= -0�9 . . . .  

It is currently easy to compute 20 or 200 digits of this 
sum. Using the "smart lookup" facility in the Inverse Sym- 
bolic Calculato~ rapidly returns 

2 ~(1/2) 
0�9 ~ ~ + ~ .  

We thus have a prediction which Maple 9.5 on a laptop con- 
firms to 100 places in under 6 seconds and to 500 in 40 sec- 
onds. Arguably we are done�9 [] 

The second example originates with a multiple integral 
which arises in Gaussian and spherical models of ferromag- 
netism and in the theory of random walks. This leads to an 
impressive closed form evaluation due to G. N. Watson: 

E x a m p l e  2: 

W3 = S [ ~ ' / = - ~  - , ,  - =  3 - cos(x) - cos(y)l _ cos(z) dx dy dz 

The most self-contained derivation of this very subtle 
Green's function result is recent and is due to Joyce and 

Zucker. t~ Computational confirmation to very high preci- 
sion is, however, easy. 

Further experimental analysis involved writing f~3 as a 
product of only F-values. This form of the answer is then 
susceptible to integer relation techniques�9 To high preci- 
sion, an Integer Relation algorithm returns: 

0= - 1.* log[w3] + - 1.* l o g [ g a m m a [ 1 / 2 4 ] ]  
+ 4 . * l o g [ g a m m a [ 3 / 2 4 ] ]  

+ - 8 . * l o g [ g a m m a [ 5 / 2 4 ] ]  
+ 1.* l o g [ g a m m a [ 7 / 2 4 ] ]  + 1 4 . * l o g [ g a m m a [ 9 / 2 4 ] ]  

+ - 6 .* log[gamma[ 11/24]]  + - 9.*log[gazazaa[ 13/24]]  

+ 18 .* log[gamma[  15/24]]  
+ - 2 . * l o g [ g s m m a [  1 7 / 2 4 ] ] -  7 .* log[gamma[  19/24]]  

Proving this discovery is achieved by comparing the out- 
come with Watson's result and establishing the implicit F- 
representation of (V~ - 1)2/96�9 

Similar searches suggest there is no similar four-dimen- 
sional closed form for W4. Fortunately, a one-variable inte- 
gral representation is at hand in W4 := f~  exp(-4t)I4(t)dt, 
where I0 is the Bessel integral of the first kind. The high 
cost of four-dimensional numeric integration is thus 
avoided. A numerical search for identities then involves the 
careful computation of e x p ( - t )  Io(t), using 

t2n 
e x p ( - t )  Io(t) = e x p ( - t ) ~  

22n(n!)2 

for t up to roughly 1.2 �9 d, where d is the number of signif- 
icant digits needed, and 

1 ~. H ~ = t ( 2 k -  1) 2 
e x p ( - t )  Io(t) - ~ n=O (8t)nn! 

for larger t, where the limit N of the second summation 
is chosen to be the first index n such that the summand 
is less than 10 -d. (This is an asymptotic expansion, so 
taking more terms than N may increase, not decrease the 
error�9 

Bailey and Borwein found that f~4 is not expressible as 
a product of powers of F(k/120) (for 0 < k < 120) with co- 
efficients of less than 12 digits. This result does not, of 
course, rule out the possibility of a larger relation, but it 
does cast experimental doubt that such a relation exis ts - -  
more than enough to stop one from looking. [] 

The third example emphasizes the growing role of visual 
discovery. 

E x a m p l e  3: Recent continued fract ion work by Borwein 
and Crandall illustrates the methodology's embracing of 
computer-aided visualization as a means of discovery. They 

7Borwein and Bailey, p. 10. 

8posed as MAA Problem 10832, November 2002. Solution details are given on pages 15-17 of Borwein, Bailey, and Girgensohn. 

9At www.cecm.sfu.ca/projects/ISC/ISOmain.html 

1~ pages 117-121 of J. M. Borwein, D. H. Bailey, and R. Girgensohn, Experimentation in Mathematics: Computational Paths to Discovery, A.K. Peters Ltd, 2003. 

ISBN: 1-56881-136-5. 
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Fig. 1. The starting point depends on the choice of un i t  vec to rs ,  a 

and  b, 

investigated the dynamical system defined by: to := tl := 1 
and 

1 ( 1 )  
t n  ~ - t n - 1  4- o) n _  l 1 - t .  2, 

n 

where wn = a2,b 2 are distinct unit vectors, for n even, odd, 

respectively--that occur in the original continued fraction. 
Treated as a black box, all that can be verified numerically 
is that tn ---> 0 slowly. Pictorially one learns more, as illus- 
trated by Figure 1. 

Figure 2 illustrates the fine structure that appears when 
the system is scaled by ~nn and odd and even iterates are 
coloured distinctly. 

With a lot of work, everything in these pictures is now 
explained. Indeed from these four cases one is compelled 
to conjecture that the attractor is finite of cardinality N ex- 
actly when the input, a or b, is an Nth root of unity; other- 
wise it is a circle. Which conjecture one then repeatedly 
may test. [] 

The idea that what is accepted as mathematical knowl- 
edge is, to some degree, dependent upon a community's 
methods of knowledge acceptance is an idea that is cen- 
tral to the social constructivist school of mathematical phi- 
losophy. 

The social constructivist  thesis is that mathematics is a 
social construction, a cultural product, fallible like any 
other branch of  knowledge, u (Paul Ernest) 

Associated most notably with the writing of Paul Ernest, 
an English mathematician and Professor in the Philosophy 
of Mathematics Education, social constructivism seeks to 
define mathematical knowledge and epistemology through 
the social structure and interactions of the mathematical 
community and society as a whole. In Social Construc- 
t iv ism As a Philosophy of  Mathematics, Ernest carefully 
traces the intellectual pedigree for his thesis, a pedigree 
that encompasses the writings of Wittgenstein, Lakatos, 
Davis, and Hersh among others. 12 

For our purpose, it is useful to note that the philosoph- 
ical aspects of the experimental methodology combined 
with the social constructivist perspective provide a prag- 
matic alternative to Platonism--an alternative which fur- 
thermore avoids the Platonist pitfalls. The apparent para- 
dox in suggesting that the dominant community view of 
mathematics--Platonism--is at odds with a social con- 
structivist accounting is at least partially countered by the 
observation that we and our critics have inhabited quite 
distinct communities. The impact of one on the other was 
well described by Dewey a century ago: 

Old ideas give way  slowly; for  they are more than ab- 
stract logical f o rms  and categories. They are habits, pre- 
dispositions, deeply engrained attitudes of  aversion and 
preference . . . .  Old questions are solved by disappearing, 
evaporating, while new questions corresponding to the 
changed attitude of  endeavor and preference take their 
place. Doubtless the greatest dissolvent in contemporary 
thought of old questions, the greatest precipitant of  new 
methods, new intentions, new problems, is the one effected 
by the scientific revolution that found  its c l imax in the 
"Origin of Species. ,13 (John Dewey) 

New mathematics, new media, and 
new community protocols 

With a proclivity towards centralized modes of knowledge 
validation, absolutist epistemologies are supported by well- 
defined community structures and publication protocols. 
In contrast, both the experimental methodology and social 
constructivist perspective resonate with a more fluid com- 
munity structure in which communities, along with their 
implicit and explicit hierarchies, form and dissolve in re- 
sponse to the establishment of common purposes. The ex- 
perimental methodology, with its embracing of computa- 
tional methods, de-emphasizes individual accomplishment 
by encouraging collaboration not only between mathe- 
maticians but between mathematicians and researchers 
from various branches of computer science. 

Conceiving of mathematical knowledge as a function of 
the social structure and interactions of mathematical com- 
munities, the social constructivist perspective is inherently 
accepting of a realignment of community authority away 
from easily identified elites and in the direction of those 
who can most effectively harness the potential for collab- 
oration and publication afforded by new media. The ca- 
pacity for mass publication no longer resides exclusively 
in the hands of publishing houses; any workstation 
equipped with a LATE X compiler and the appropriate in- 
terpreters is all that is needed. The changes that are oc- 
curring in the ways we do mathematics, the ways we 
publish mathematical research, and the nature of the math- 
ematical community leave little opportunity for resistance 

11 Ernest, p. 39ff. 
12Ernest, p. 39ff. 

13Quoted from The Influence of Darwin on Philosophy, 1910. 
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Fig. 2. The attractors for various lal = Ibl- 1. 

or nostalgia. From a purely pragmatic perspective, the com- 
munity has little choice but to accept a broader definition 
of valid mathematical knowledge and valid mathematical 
publication. In fact, in the transition between publishing 
protocols based upon mechanical typesetting to protocols 
supported by digital media, we are already witnessing the 
beginnings of a realignment of elites and hierarchies and a 
corresponding re-evaluation of the mathematical skill-set. 
Before considering more carefully the changes that are oc- 
curring in mathematics, we turn our attention to some per- 
haps immutable aspects of mathematical knowledge. 

Some Societal Aspects of Mathematical  
Knowledge 

The question of the ultimate foundations and the ultimate 
meaning of mathematics remains open: we do not know 
in what direction it will f ind  its f inal  solution or even 
whether a f inal  objective answer can be expected at all. 
"Mathematizing" may  well be a creative activity of  man, 
like language or music, of pr imary  originality, whose 
historical decisions defy complete objective rationalisa- 
tion. 14 (Hermann Weyl) 

Membership in a community implies mutual identification 
with other members which is manifest in an assumption of 
some level of shared language, knowledge, attitudes, and 
practices. Deeply woven into the sensibilities of mathemati- 
cal research communities, and to varying degrees the sensi- 
bilities of society as a whole, are some assumptions about the 
role of mathematical knowledge in a society and what con- 
stitutes essential mathematical knowledge. These assump- 
tions are part of the mythology of mathematical conununities 
and the larger society, and it is reasonable to assume that they 
will not be readily surrendered in the face of evolving ideas 
about the epistemology of mathematics or changes in the 
methods of practicing and publishing mathematics. 

Mathematics as fundamental  knowledge 

Mathematics is the tool specially suited for  dealing with 
abstract concepts of any kind and there is no limit to its 
power in this field. 15 (Paul Dirac) 

In the epistemological universe, mathematics is con- 
ceived as a large mass about which orbit many other bod- 
ies of knowledge and whose gravity exerts influence 
throughout. The medieval recognition of the centrality of 
matheraatics was reflected in the quadrivium, which as- 
cribed to the sciences of number--arithmetic, geometry, 
astronomy, and music--four out of the seven designated 
liberal arts. Today, mathematics is viewed by many as an 
impenetrable, but essential, subject that is at the founda- 
tion of much of the knowledge that informs our under- 
standing of the scientific universe and human affairs. We 
are somehow reassured by the idea of a Federal Reserve 
Chairman who purportedly solves differential equations in 
his spare time. 

The high value that society places on an understanding 
of basic mathematics is reflected in UNESCO's specifica- 
tion of numeracy, along with literacy and essential life 
skills, as a fundamental educational objective. This place 
of privilege bestows upon the mathematical research com- 
munity some unique responsibilities. Among them, the ar- 
ticulation of mathematical ideas to research, business, and 
public policy communities whose prime objective is not the 
furthering of mathematical knowledge. As well, as con- 
cerns are raised in many jurisdictions about poor perfor- 
mance in mathematics at the grade-school level, research 
communities are asked to participate in the general dis- 
cussion about mathematical education. 

The mathematical canon 

I will be glad i f  I have succeeded in impressing the idea 
that it is not only pleasant to read at times the works of 
the old mathematical authors, but this may  occasionally 
be of use for  the actual advancement of science. 16 (Con- 
stantin Carath6odory) 

The mathematical community is the custodian of an ex- 
tensive collection of core knowledge to a larger degree than 
any other basic discipline with the arguable exception of 
the combined fields of rhetoric and literature. Preserved 
largely by the high degree of harmonization of grade-school 
and undergraduate university curricula, this mathematical 
canon is at once a touchstone of shared experience of corn- 

14Cited in: Obituary: David Hilbert 1862-1943, RSBIOS, 4, 1944, pp. 547-553. 
15Dirac writing in the preface to The Principles of Quantum Mechanics (Oxford, 1930). 

~6Speaking to an MAA meeting in 1936. 
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munity members and an imposing barrier to anyone who 
might seek to participate in the discourse of the commu- 
nity without having some understanding of the various re- 
lationships between the topics of core knowledge. While 
the exact definition of the canon is far from precise, to vary- 
ing degrees of mastery it certainly includes Euclidean 
geometry, differential equations, elementary algebra, num- 
ber theory, combinatorics, and probability. It is worth not- 
ing parenthetically that while mathematical notation can 
act as a barrier to mathematical discourse, its universality 
helps promote the universality of the canon. 

At the level of individual works and specific problems, 
mathematicians display a high degree of respect for histor- 
ical antecedent. Mathematics has advanced largely through 
the careful aggregation of a mathematical literature whose 
reliability has been established by a slow but thorough 
process of formal and informal scrutiny. Unlike the other 
sciences, mathematical works and problems need not be re- 
cent to be pertinent. Tom Hales's recent computer-assisted 
solution of Kepler's problem makes this point and many oth- 
ers. Kepler's conjecture--that  the densest way to stack 
spheres is in a pyramid-- is  perhaps the oldest problem in 
discrete geometry. It is also the most interesting recent ex- 
ample of computer-assisted proof. The publication of 
Hales's result in the Annals of Mathematics, with an "only 
99~ checked" disclaimer, has triggered varied reactions. 17 

The mathematical  aesthetic 

The mathematician's patterns, like the painter's or the 
poet's, must be beautiful; the ideas, like the colors or the 
words, must f i t  together in a harmonious way. Beauty is 
the first test: there is no permanent place in this world 
for ugly mathematics. 18 (G. H. Hardy) 

Another distinguishing preoccupation of the mathemat- 
ical community is the notion of a mathematical aesthetic. 
It is commonly held that good mathematics reflects this 
aesthetic and that a developed sense of the mathematical 
aesthetic is an attribute of a good mathematician. The fol- 
lowing exemplifies the "infinity in the palm of your hand" 
encapsulation of complexity which is one aspect of the aes- 
thetic sense in mathematics. 

_ _  _ _  _ _ 1  1 1 r~__l d~ C 
1 + 2 2 + 3 3 + 4 4 +  . . .  = J0 x x 

Discovered in 1697 by Johannes Bernoulli, this formula has 
been dubbed the Sophomore's Dream in recognition of the 
surprising similarities it reveals between a series and its in- 
tegral equivalent. Its proof  is not too simple and not too 
hard, and the formula offers the mix of surprise and sim- 
plicity that seems central to the mathematical aesthetic. By 
contrast several of the recent very long proofs are neither 
simple nor beautiful. 

To see a World in a Grain of Sand; and a Heaven in a 
Wild Flower; Hold Infinity in the palm of your hand; 
And Eternity in an hour. (William Blake) 

Freedom and Discipl ine  
In this section, we make some observations about the ten- 
sion between conformity and diversity which is present in 
the protocols of both typographically and digitally oriented 
communities. 

The only avenue towards wisdom is by freedom in the 
presence of knowledge. But the only avenue towards 
knowledge is by discipline in the acquirement of ordered 
fact. 19 (Alfred North Whitehead) 

Included in the introduction to his essay The Rhythmic 
Claims of Freedom and Discipline, Whitehead's comments  
about the importance of the give and take between free- 
dom and discipline in education can be extended to more 
general domains. In the discourse of mathematical re- 
search, tendencies towards freedom and discipline, decen- 
tralization and centralization, the organic and the ordered, 
coexist in both typographic and digital environments. While 
it may be true that typographic norms are characterized by 
centralized nodes of publication and authority and the com- 
munity order that they impose, an examination of the math- 
ematical landscape in the mid-twentieth century reveals 
strong tendencies towards decentralization occurring in- 
dependently of the influence of digital media. Mutually re- 
inforcing trends, including an increase in the number of 
PhD's, an increase in the number of journals and published 
articles, and the application of advanced mathematical 
methods to fields outside the domain of the traditional 
mathematical sciences combined to challenge the tendency 
to maintain centralized community structures. The result 
was, and continues to be, a replication of a centralized com- 
munity structure in increasingly specialized domains of in- 
terest. In mathematics more than in any other field of re- 
search, the knowledge explosion has led to increased 
specialization, with new fields giving birth to new journals 
and the organizational structures which support them. 

While the structures and protocols which describe the 
digital mathematical community are still taking shape, it 
would be inaccurate to suggest that the tendency of digital 
media to promote freedom and decentralized norms of 
knowledge-sharing is unmatched by tendencies to impose 
control and order. If the natively centralized norms of 
typographic mathematics manifest decentralization as 
knowledge fragmentation, we are presently observing ten- 
dencies emerging from digital mathematics communities to 
find order and control in the knowledge atomization that 
results from the codification of mathematical knowledge at 
the level of micro-ontologies. The World Wide Web Con- 

17See "In Math, Computers Don't Lie. Or Do They?", The New York Times, April 6, 2004. 
18G. H. Hardy, A Mathematician's Apology (London: Cambridge University Press, 1967), 21. 
~9AIfred North Whitehead, The Aims of Education (New York: The Free Press, 1957), 30. 
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sortium (W3C) MathML initiative and the European 
Union's OpenMath project are complementary efforts to 
construct a comprehensive, fine-grained codification of 
mathematical knowledge that binds semantics to notation 
and the context in which the notation is used. 2~ The tongue- 
in-cheek indictment of typographic subject specialization 
as producing experts who learn more and more about less 
and less until achieving complete knowledge of nothing-at- 
all becomes, under the digital norms, the increasingly de- 
tailed description of increasingly restricted concepts until 
one arrives at a complete description of nothing-at-all. On- 
tologies become micro-ontologies and risk becoming "non- 
tologies. "If  typographic modes of knowledge validation and 
publication are collapsing under the weight of subject spe- 
cia]ization, the digital ideal of a comprehensive meta-math- 
ematical descriptive and semantic framework which em- 
braces all mathematics may also prove to be overreaching. 

Some Implications 

Communication of mathematical research and scholar- 
ship is undergoing profound change as new technology 
creates new ways to disseminate and access the litera- 
ture. More than technology is changing, however, the cul- 
ture and practices of those who create, disseminate, and 
archive the mathematical literature are changing as well. 
For the sake of present and future mathematicians, we 
should shape those changes to make them suit the needs 
of the discipline. 21 (International Math Union Committee 
on Electronic Information and Communication) 

�9 . . to suggest that the normal processes of scholarship 
work well on the whole and in the long run is in no way 
contradictory to the view that the processes of selection 
and sifting which are essential to the scholarly process 
are filled with error and sometimes prejudice.22 (Kenneth 
Arrow) 

Our present idea of a mathematical research community 
is built on the foundation of the protocols and hierarchies 
which define the practices of typographic mathematics. At 
this point, how the combined effects of digital media will 
affect the nature of the community remains an open ques- 
tion; however, some trends are emerging: 

1. Changing modes  o f  co l labora t ion :  With the facilita- 
tion of collaboration afforded by digital networks, indi- 
vidual authorship is increasingly ceding place to joint 
authorship. It is possible that forms of community au- 

thorship, such as are common in the Open Source pro- 
gramming community, may find a place in mathemati- 
cal research. Michael Kohlhase and Romeo Anghelache 
have proposed a version-based content management 
system for mathematical communities which would per- 
mit multiple users to make joint contributions to a com- 
mon research effort. 23 The system facilitates collabora- 
tion by attaching version control to electronic document 
management. Such systems, should they be adopted, 
challenge not only the notion of authorship but also the 
idea of what constitutes a valid form of publication�9 

2. The  a s c e n d a n c y  o f  g r ay  l i t e r a t u r e :  Under typo- 
graphic norms, mathematical  research has traditionally 
been conducted with reference to journals and through 
informal consultation with colleagues�9 Digital media, 
with its non-discriminating capacity for facilitating in- 
stantaneous publication, has placed a wide range of 
sources at the disposal of the research mathematician. 
Ranging from Computer Algebra System routines to 
Home Pages and conference programmes,  these 
sources all provide information that may support  math- 
ematical research. In particular, it is possible that a 
published paper  may not be the most  appropriate form 
of publication to emerge from a multi-user content 
management  such as proposed by Kohlhase and 
Anghelache. It may be that the contributors deem it 
more appropriate to let the result of their efforts stand 
with its organic development exposed through a his- 
tory of its versions. 

3. Chang ing  m o d e s  o f  knowledge  a u t h e n t i c a t i o n :  The 
refereeing process, already under overload-induced 
stress, depends upon a highly controlled publication 
process. In the distributed publication environment af- 
forded by digital media, new methods of knowledge au- 
thentication will necessarily emerge. By necessity, the 
idea of authentication based on the ethics of  referees 
will be replaced by authentication based on various 
types of  valuation parameters.  Services that t rack ci- 
tations are currently being used for this purpose by the 
Web document  servers CiteSeer and eitebase, among 
others. 24 Certainly the ability to compute informedly 
with formulae in a preprint can dramatically reduce the 
reader 's  or referee's  concern about whether  the result 
is reliable�9 More than we typically admit or teach our 
students, mathematicians work without proof  if they 
feel secure in the correctness of  their thought 
processes�9 

4. Shif ts  in ep is temology:  The increasing acceptance of 
the experimental methodology and social constructivist 

2~ background on these projects, see: www.w3.org/Math/and www.openmath.org, respectively. 
21The IMU's Committee on Electronic Information and Communication (CEIC) reports to the IMU on matters concerning the digital publication of mathematics. See 
www.ceic.math.ca/Publications/Recommendations/3_best_practices.sht ml 
22F. Roy Weintraub and Ted Gayer, "Equilibrium Proofmaking," Journal of the History of Economic Thought, 23 (Dec. 2001), 421-442. This provides a remarkably de- 
tailed analysis of the genesis and publication of the Arrow-Debreu theorem. 
23Michael Kohihase and Romeo Anghetache, "Towards Collaborative Content Management and Version Control for Structured Mathematical Knowledge," Lecture Notes 
in Computer Science no. 2594: Mathematical Knowledge Management: Proceedings of The Second International Conference, Andrea Asperti, Bruno Buchberger, and 
James C. Davenport editors, (Berlin: Springer-Verlag, 2003) 45. 
24citeseer.ist.psu.edu and citebase.eprints.org, respectively. 
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Fig. 3. What  you d raw is what  you see. Roots of polynomials with coefficients 1 or -1  up to degree 18. The coloration is determined by a 

normalized sensitivity of  the coefficients of the polynomials to slight variations around the values of  the zeros, with red indicating low sen- 

sitivity and violet indicating high sensitivity. The bands visible in the last picture are unexplained, but believed to be real--not an artifacL 

perspective is leading to a broader definition of valid 
knowledge and valid forms of knowledge representa- 
tion. The rapidly expanding capacity of computers to fa- 
cilitate visualization and perform symbolic computa- 
tions is placing increased emphasis on visual arguments 
and interactive interfaces, thereby making practicable 
the call by Philip Davis and others a quarter-century ago 
to admit visual proofs more fully into our canon. 

The price of metaphor is eternal vigilance (Arturo 
Rosenblueth & Norbert Wiener) 

For example, experimentation with various ways of rep- 
resenting stability of computation led to the four images 
in Figure 3. They rely on perturbing some quantity and 
recomputing the image, then coloring to reflect the 
change. Some features are ubiquitous while some, like 
the bands, only show up in certain settings. Nonethe- 
less, they are thought not to be an artifact of roundoff 
or other error but to be a real yet unexplained phe- 
nomenon. 

5. Re-evaluat ion o f  valued skills and knowledge:  Com- 
plementing a reassessment of assumptions about math- 
ematical knowledge, there will be a corresponding 
reassessment of core mathematical knowledge and 
methods. Mathematical creativity may evolve to depend 
less upon the type of virtuosity which characterized 
twentieth-century mathematicians and more upon an 
ability to use a variety of approaches and draw together 
and synthesize materials from a range of sources. This 
is as much a transfer of attitudes as a transfer of skill 
sets; the experimental method presupposes an experi- 
mental mind-set. 

6. Increased  communi ty  dynamism: Relative to com- 
puter- and network-mediated research, the static social 
entities which intermesh with the typographic research 
environment extend the timeline for research and pub- 
lication and support stability in inter-personal relation- 

ships. Collaborations, when they arise, are often career- 
long, if not life-long, in their duration. The highly pro- 
ductive friendship between G. H. Hardy and J. E. Little- 
wood provides a perhaps extreme example. While 
long-term collaborations are not excluded, the form of 
collaboration supported by digital media tends to admit 
a much more fluid community dynamic. Collaborations 
and coalitions will form as needed and dissolve just as 
quickly. The four authors of The SIAM lO0-digit Chal- 
lenge: A Study In High-accuracy Numerical Comput- 
ing 25 never met while solving Nick Trefethen's 2002 ten 
challenge problems which form the basis for their lovely 
book. 

At the extreme end of the scale, distributed com- 
puting can facilitate virtually anonymous collaboration. 
In 2000, Colin Percival used the Bailey-Borwein-Plouffe 
algorithm and connected 1,734 machines from 56 coun- 
tries to determine the quadrillionth bits of ~r. Accessing 
an equivalent of more than 250 cpu years, this calcula- 
tion (along with Toy Story Two and other recent 
movies) ranks as one of the largest computations ever. 
The computation was based on the computer-discov- 
ered identity 

k=0 8k+  1 8 k + 4  8 k + 5  8 k + 6  ' 

which allows binary digits to be computed indepen- 
dently. 26 

A Temporary Epilogue 

The plural of "anecdote" is not "evidence. "27 (Alan L. Lesh- 
ner) 

These trends are presently combining to shape a new 
community ethic. Under the dictates of typographic norms, 
ethical behaviour in mathematical research involves ad- 
hering to well-established protocols of research and publi- 

25Folkmar Bornemann, Dirk Laurie, Stan Wagon, J6rg Waldvogel, SIAM 2004. 
26See Borweit~ and Bailey, Chapter 3. 
2ZThe publisher of Science speaking at the Canadian Federal Science and Technology Forum, Oct 2, 2002. 
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cation. While the balance of personal freedom against com- 
munity order which defines the ethic of digitally oriented 
mathematical research communities may never be as firm 
or as enforceable by community protocols, some principles 
are emerging. The CEIC's statement of best current prac- 
tices for  mathematicians provides a snapshot of the de- 
veloping consensus on this question. Stating that "those 
who write, disseminate, and store mathematical  litera- 
ture should act in ways  that serve the interests of math- 
ematics, f i r s t  and foremost," the recommendations advo- 
cate that mathematicians take full advantage of digital 
media by publishing structured documents which are ap- 
propriately linked and marked-up with meta-data, us Re- 
searchers are also advised to maintain personal homepages 
with links to their articles and to submit their work to pre- 
print and archive servers. 

Acknowledging the complexity of the issue, the final 
CEIC recommendation concerns the question of copyright: 
it makes no attempt to recommend a set course of action, 
but rather simply advises mathematicians to be aware of 
copyright law and custom and consider carefully the op- 
tions. Extending back to Britain's first copyright law, The 
Statute of  Anne, enacted in 1710, the idea of copyright is 
historically bound to typographic publication and the pro- 
tocols of typographic society. Digital copyright law is an 
emerging field; it is presently unclear how copyright, and 
the economic models of knowledge distribution that de- 
pend upon it, will adapt to the emerging digital publishing 
environment. The relatively liberal epistemology offered 
by the experimental method and the social constructivist 
perspective and the potential for distributed research and 
publication afforded by digital media will reshape the pro- 
tocols and hierarchies of mathematical research commu- 
nities. Along with long-held beliefs about what constitutes 
mathematical knowledge and how it is validated and pub- 
lished, at stake are our personal assumptions about the 
nature of mathematical communities and mathematical 
knowledge. 29 

While the norn~s of typographic mathematics are not 
without faults and weaknesses, we are familiar with them 
to the point that they instill in us a form of faith; a faith 
that if we play along, on balance we will be granted fair ac- 
cess to opportunity. As the centralized protocols of typo- 
graphic mathematics give way to the weakly defined pro- 
tocols of digital mathematics, it may seem that we are 
ceding a system that provided a way to agree upon math- 
ematical truth for an environment undermined by rela- 
tivism that will mix verifiably true statements with state- 
ments that guarantee only the probability of truth and an 
environment which furthermore is bereft of reliable sys- 
tems for assessing the validity of publications. The simul- 

taneous weakening of community authority structures as 
typographic elites are rendered increasingly irrelevant by 
digital publishing protocols may make it seem as though 
the social imperatives that bind the mathematical commu- 
nity have been weakened. Any sense of loss is the mathe- 
matician's version of postmodern malaise; we hope and 
predict that, as the community incorporates these changes, 
the malaise will be short-lived. That incorporation is tak- 
ing place, there can be no doubt. In higher education, we 
now assume that our students can access and share infor- 
mation via the Web, and we require that they learn how to 
use reliably vast mathematical software packages whose 
internal algorithms are not necessarily accessible to them 
even in principle. 

One reason that, in the mathematical case, the "unbear- 
able lightness" may prove to be bearable after all is that 
while fundamental assumptions about mathematical 
knowledge may be reinterpreted, they will survive. In par- 
ticular, the idea of mathematical knowledge as being cen- 
tral to the advancement of science and human affairs, the 
idea of a mathematical canon and its components, and the 
idea of a mathematical aesthetic will each find expression 
in the context of the emerging epistemology and protocols 
of research and publication. In closing, we note that to the 
extent that there may be an opportunity to shape the epis- 
temology, protocols, and fundamental assumptions that 
guide the mathematical research comnmnities of the future, 
that opportunity is most effectively seized upon during 
these initial stages of digital mathematical research and 
publishing. 

Whether we scientists are inspired, bored, or infuriated 
by philosophy, all our theorizing and experimentation de- 
pends on particular philosophical background assump- 
tions. This hidden influence is an acute embarrassment 
to m a n y  researchers, and it is therefore not often ac- 
knowledged. Such fundamental  notions as reality, space, 
time, and causal i ty--not ions found  at the core of  the sci- 
entific enterprise--all rely on particular metaphysical as- 
sumptions about the world. 3~ (Christof Koch) 

The assumptions that we have sought to address in this 
article are those that define how mathematical reality is in- 
vestigated, created, and shared by mathematicians work- 
ing within the social context of the mathematical commu- 
nity and its many sub-communities. We have maintained 
that those assumptions are strongly guided by technology 
and epistemology, and furthermore that technological and 
epistemological change are revealing the assumptions to be 
more fragile than, until recently, we might have reasonably 
assumed. 

28CEIC Recommendations. See: http://www.ceic.math.ca 

29As one of our referees has noted, "The law is clearly 25 years behind info-technology." He continues, "What is at stake here is not only intellectual property but the 

whole system of priorities, fees, royalties, accolades, recognition of accomplishments, jobs." 
3~ "Thinking About the Conscious Mind," a review of John R. Searle's Mind. A Brief Introduction, Oxford University Press, 2004. 
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these cases. We must  weigh the apparent  security pur- 
chased by requiring predicative definitions against the 
burden of  having to abandon in many cases what  we, as 
mathematicians, consider  natural definitions. 

2. It is unclear exactly what  objects we are committed to 
when we are commit ted to Peano Arithmetic. There are 
plenty of  problems in number  theory whose proofs use 
analytic means, for instance. Does commitment  to Peano 
Arithmetic entail commitment  to whatever  objects are 
needed for these proofs? More generally, does commit- 
ment  to a mathematical  theory mean commitment  to any 
objects needed for solving problems of  that theory? If 
so, then GSdel's incompleteness  theorems suggest that 
it is open what objects commitment  to Peano Arithmetic 
entails. 

3. As Feferman admits, it is unclear  how to account  pre- 
dicatively for some mathematics  used in currently ac- 
cepted scientific practice, for instance, in quantum me- 
chanics. In addition, I think that Feferman would not 
want  to make the s tronger claim that all future scien- 
tifically applicable mathematics  will be accountable for 
by predicative means. However, the claim that currently 
scientifically applicable mathematics  can be accounted 
for predicatively seems too t ime-bound to play an im- 
portant  role in a foundat ion of  mathematics.  Though it 
is impossible to predict  all future scientific advances, it 
is reasonable to aim at a foundation of  mathematics  that 
has the potential to support  these advances. Whether or 
not predicativity is such a foundation should be studied 
critically. 

4. Whether the use of  impredicative sets, and the un- 
countable more generally, is needed for ordinary finite 
mathematics,  depends on whether  by "ordinary" we 
mean "current." If so, then this is subject to the same 
worry  I raised for (3). It also depends on where we draw 
the line on what  counts  as finite mathematics.  If, for in- 
stance, Goldbach's  conjecture counts  as finite mathe- 
matics, then we have a s tatement  of  finite mathematics  
for which it is completely open whether  it can be proved 
predicatively or  not. 

In emphasizing the degree to which concerns  about  
predicativism shape this book, I should not  overempha- 
size it. There is much besides predicativism in this book, 
as I have tried to indicate. In fact, Feferman advises that 
we not read his predicativism too strongly. In the pref- 
ace, he describes his interest in predicativity as con- 
cerned with seeing how far in mathematics  we can get 
without  resorting to the higher infinite, whose justifica- 
tion he thinks can only be platonic. It may turn out that  
uncountable  sets are needed for doing valuable mathe- 
matics, such as solving currently unsolved problems. In 
that case, Feferman writes, we "should look to see where 
it is necessary to use them and what  we can say about  
what  it is we know when we do use them" (p. ix). 

Nevertheless, Feferman's  commit ted anti-platonism 
is a crucial influence on the book. For  mathematics  right 
now, Feferman thinks, "a little bit goes a long way," as 
one of  the essay titles puts it. The full universe of  sets 

admitted by the platonist is unnecessary, he thinks, for 
doing the mathematics  for which we must  currently ac- 
count. Time will tell if future developments will support  
that  view, or whether, like Brouwer 's  view, it will re- 
quire the alteration or outright rejection of  too much 
mathematics  to be viable. Fefernlan's book  shows that, 
far f rom being over, work  on the foundations of  mathe- 
matics is vibrant and continuing, perched deliciously but 
precariously between mathematics  and philosophy. 
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REVIEWED BY JONATHAN M. BORWEIN 

L ists, challenges, and competi t ions have a long and pri- 
marily lustrous history in mathematics.  This is the story 

of  a recent  highly successful challenge. The book  under  re- 
view makes it clear that  with the continued advance of  com- 
puting power  and accessibility, the view that "real mathe- 
maticians don' t  compute" has little traction, especially for 
a newer  generation of  mathematicians who may readily 
take advantage of  the maturat ion of  computat ional  pack- 
ages such as Maple, Mathematica, and MATLAB. 

Numerical Analysis Then and Now 
George Phillips has accurately called Archimedes the first nu- 
merical analyst [2, pp. 165-169]. In the process of  obtaining 
his famous estimate 3 + 10/71 < ~r < 3 + 1/7, he had to mas- 
ter notions of  recursion without  computers,  interval analy- 
sis without zero or  positional arithmetic, and tr igonometry 
without  any of  our modern analytic scaffolding . . . .  Two 
millennia later, the same estimate can be obtained by a 
computer  algebra system [3]. 
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Example  1. A modern computer algebra system can tell 
one that 

f ~ ( 1  - x)4x 4 22 
(1.1) 0 <  1 - + ~  d x -  7 ~' 

since the integral may be interpreted as the area under a 
positive curve. 

This leaves us no wiser as to why! If, however, we ask 
the same system to compute the indefinite integral, we are 
likely to be told that 

1 2t0t   �9 = t 7 - ~- + - t a + 4t - 4 arctan (t). 

Then (1.1) is now rigorously established by differentiation 
and an appeal to Newton's Fundamental theorem of cal- 
culus. [~ 

While there were many fine arithmeticians over the next 
1500 years, this anecdote from Georges Ifrah reminds us 
that mathematical culture in Europe had not sustained 
Archimedes's level up to the Renaissance. 

A wealthy (15th-century) German merchant, seeking to 
provide his son with a good business education, con- 
sulted a learned man as to which European institution 
offered the best training. "If you only want him to be 
able to cope with addition and subtraction," the expert 
replied, "then any French or German university will 
do. But i f  you are intent on your son going on to mul- 
tiplication and divis ion--assuming that he has suffi- 
cient gifts--then you will have to send him to Italy. 1 

By the 19th century, Archimedes had finally been out- 
stripped both as a theorist and as an (applied) numerical 
analyst, see [7]. 

In 1831, Fourier's posthumous work on equations 
showed 33 figures of solution, got with enormous 
labour. Thinking this a good opportunity to illustrate 
the superiority of the method of W. G. Homer, not yet 
known in France, and not much known in England, I 
proposed to one of my  classes, in  1841, to beat Fourier 
on this point, as a Christmas exercise. I received sev- 
eral answers, agreeing with each other, to 50 places 
of decimals. In 1848, I repeated the proposal, request- 
ing that 50 places might be exceeded: I obtained an- 
swers of 75, 65, 63, 58, 57, and 52 places. (Augustus 
De Morgan 2) 

De Morgan seems to have been one of the first to mis- 
trust William Shanks's epic computations of Pi-- to 527, 
607, and 727 places [2, pp. 147-161], noting there were too 
few sevens. But the error was only confirmed three quar- 
ters of a century later in 1944 by Ferguson with the help of 

a calculator in the last pre-computer calculations of ~--- 
though until around 1950 a "computer" was still a person 
and ENIAC was an "Electronic Numerical Integrator and 
Calculator" [2, pp. 277-281] on which Metropolis and Reit- 
wiesner computed Pi to 2037 places in 1948 and confirmed 
that there were the expected number of sevens. 

Reitwiesner, then working at the Ballistics Research 
Laboratory, Aberdeen Proving Ground in Maryland, starts 
his article [2, pp. 277-281] with 

Early in June, 1949, Professor JOHN VON NEUMANN ex- 
pressed an interest in the possibility that the ENIAC 
might sometime be employed to determine the value of 
r and e to m a n y  decimal places with a view toward 
obtaining a statistical measure of the randomness of 
distribution of the digits. 

The paper notes that e appears to be too random this 
is now proven--and ends by respecting an oft-neglected 
"best-practice": 

Values of the auxiliary numbers arccot 5 and arccot 
239 to 2 0 3 5 D . . .  have been deposited in the library of 
Brown University and the UMT fi le of MTAC. 

The 20th century's "Top T e n "  

The digital computer, of course, greatly stimulated both the 
appreciation of and the need for algorithms and for algo- 
rithmic analysis. At the beginning of this century, Sullivan 
and Dongarra could write, "Great algorithms are the poetry 
of computation," when they compiled a list of the l0 algo- 
rithms having "the greatest influence on the development 
and practice of science and engineering in the 20th cen- 
tury". 3 Chronologically ordered, they are: 

#1. 1946: The Metropolis Algorithm for Monte Carlo. 
Through the use of random processes, this algorithm 
offers an efficient way to stumble toward answers to 
problems that are too complicated to solve exactly. 

#2. 1947: Simplex Method for Linear Programming. 
An elegant solution to a common problem in planning 
and decision making. 

#3. 1950: Krylov Subspace Iteration Method. A tech- 
nique for rapidly solving the linear equations that 
abound in scientific computation. 

#4. 1951: The Decompositional Approach to Matrix 
Computations. A suite of techniques for numerical lin- 
ear algebra. 

#5. 1957: The Fortran Optimizing Compiler. Turns 
high-level code into efficient computer-readable code. 

#6. 1959: QR Algorithm for Computing Eigenvalues.  
Another crucial matrix operation made swift and prac- 
tical. 

1 From page 577 of The Universal History of Numbers: From Prehistory to the Invention of the Computer, translated from French, John Wiley, 2000. 
2Quoted by Adrian Rice in "What Makes a Great Mathematics Teacher?" on page 542 of The American Mathematical Monthly, June-July 1999. 

3From "Random Samples," Science page 799, February 4, 2000. The full article appeared in the January/February 2000 issue of Computing in Science & Engineering. 
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#7. 1962: Qu ickso r t  Algor i thms fo r  Sort ing.  For the ef- 
ficient handling of large databases. 

#8. 1965: F a s t  F o u r i e r  T rans fo rm.  Perhaps the most 
ubiquitous algorithm in use today, it breaks down 
waveforms (like sound) into periodic components. 

#9. 1977: I n t e g e r  Rela t ion  Detec t ion .  A fast method for 
spotting simple equations satisfied by collections of 
seemingly unrelated numbers. 

#10. 1987: F a s t  Mul t ipole  Method.  A breakthrough in 
dealing with the complexity of n-body calculations, 
applied in problems ranging from celestial mechanics 
to protein folding. 

I observe that eight of these ten winners appeared in the 
first two decades of serious computing, and that Newton's 
method was apparently ruled ineligible for consideration. 4 
Most of the ten are multiply embedded in every major math- 
ematical computing package. 

Just as layers of software, hardware, and middleware 
have stabilized, so have their roles in scientific, and espe- 
cially mathematical, computing. When I first taught the sim- 
plex method thirty years ago, the texts concentrated on 
"Y2K"-like tricks for limiting storage demands. Now seri- 
ous users and researchers will often happily run large-scale 
problems in MATLAB and other broad-spectrum packages, 
or rely on NAG library routines embedded in Maple. 

While such out-sourcing or commoditization of scien- 
tific computation and numerical analysis is not without its 
drawbacks, I think the analogy with automobile driving in 
1905 and 2005 is apt. We are now in possession of ma tu re - -  
not to be confused with "error-free"--technologies. We can 
be fairly comfortable that Mathematica is sensibly handling 
round-off or cancelation error, using reasonable termina- 
tion criteria and the like. Below the hood, Maple is opti- 
mizing polynomial computations using tools like Homer ' s  
rule, running multiple algorithms when there is no clear 
best choice, and switching to reduced complexity (Karat- 
suba or FVF-based) multiplication when accuracy so de- 
mands. Wouldn't it be nice, though, if all vendors allowed 
as much peering under the bonnet as Maple does! 

Example  2. The number of additive partit ions of n, p(n),  
is generated by 

(1.2) P(q) = 1 + ~ p ( n ) q  n = 1-[ (1 - qn)-l. 
n > l  n > l  

Thus p(5) = 7, because 

5 = 4 + 1 = 3 + 2 = 3 + 1 + 1 = 2 + 2 + 1  
= 2 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1 ,  

as we ignore "0" and permutations. Additive partitions are 
less tractable than multiplicative ones, for there is no ana- 
logue of unique prime factorization nor the correspond- 
ing structure. Partitions provide a wonderful example of 

why Keith Devlin calls mathematics  "the science of pat- 
terns." 

Formula (1.2) is easily seen by expanding (1 - qn)-1 and 
comparing coefficients. A modern computational tempera- 
ment leads to 

Question: How hard is p(n) to compute- - in  1900 (for 
MacMahon the "father of combinatorial analysis") or in 
2000 (for Maple or Mathematica)? 

Answer." The computation of p(200) = 3972999029388 took 
MacMahon months and intelligence. Now, however, we can 
use the most naive approach: Computing 200 terms of the se- 
ries for the inverse product in (1.2) instantly produces the 
result, using either Mathematica or Maple. Obtaining the re- 
sult p(500)= 2300165032574323995027 is not much more 
difficult, using the Maple code 

N : =500, coeff(series(i/product 

(l-q^n,n=l..N+I) ,q,N+l) ,q,N) ; 

Euler's Pentagonal number theorem 
Fifteen years ago computing P(q) in Maple, was very slow, 
while taking the series for the reciprocal Q(q) = 1Jn_>l(1 -- 
q'O was quite manageable! Why? Clearly the series for Q 
must have special properties. Indeed it is lacunary: 

Q(q) = 1 - q - q2 + q5 + q7 _ q12 _ q15 + q22 + q26 

_ q35 _ q40 + q51+ q57 _ q70 _ q77 + q92 + O(ql00) .  (1.3) 

This lacunarity is now recognized automatically by Maple, 
so the platform works much better, but we are much less 
likely to discover Euler's gem: 

I ~  (1 -- qn)  = ~ ,  ( _ l ) n q n ( 3 n + i ) / 2 .  
n - 1  n -zc 

If we do not immediately recognize these pentagonal num- 
bers, then Sloane's online Encyclopedia of Integer Sequences 5 
immediately comes to the rescue, with abundant references 
to boot. 

This sort of mathematical computation is still in its rea- 
sonably early days, but the impact is palpable--and no 
more so than in the contest and book under review. 

&bout  t h e  C o n t e s t  
For a generation Nick Trefethen has been at the van- 

guard of developments in scientific computation, both 
through his own research, on topics such as pseudo-spec- 
tra, and through much thoughtful and vigorous activity in 
the community. In a 1992 essay "The Definition of Numer- 
ical Analysis ''6 Trefethen engagingly demolishes the con- 
ventional definition of Numerical Analysis as "the science 
of rounding errors." He explores how this hyperbolic view 
emerged, and finishes by writing, 

I believe that the existence of f inite algorithms for cer- 
tain problems, together wi th other historical forces, has 

4It would be interesting to construct a list of the ten most influential earlier algorithms. 

5A fine model for of 21st-century databases, it is available at www.research.att.com/-njas/sequences 

6SIAM News, November 1992. 
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distracted us for  decades f r o m  a balanced view of  nu- 
merical analysis. Rounding errors and instabili ty are 
important, and numerical  analysts will always be the 
experts in  these subjects and at pains  to ensure that 
the unwary  are not tripped up by them. But  our cen- 
tral miss ion  is to compute quantities that are typically 
uncomputable, f r o m  an analytical point of  view, and 
to do it wi th  lightning speed. For guidance to the fu-  
ture we should study not Gaussian el imination and 
its beguiling stability properties, but the diabolically 
fas t  conjugate gradient iteration, or Greengard and 
Rokhlin's O(N) multipole algorithm for  particle s imu-  
lations, or the exponential convergence of  spectral 
methods for  solving certain PDEs, or the convergence 
in  O(N) iterations achieved by mult igrid methods for  
m a n y  kinds of  problems, or even Borwein and Bor- 
wein's  7 magical AGM iteration for  determining 
1,000,000 digits of  ~r in  the blink of  an eye. That is the 
heart  of numerical  analysis. 

In the January  2002 issue of SIAMNews,  Nick Trefethen, 
by then of  Oxford University, presented ten diverse prob- 
lems used in teaching modern graduate numerical analysis 
students at Oxford University, the answer  to each being a 
certain real number. Readers were challenged to compute  
ten digits of  each answer, with a $100 prize to be awarded 
to the best  entrant. Trefethen wrote, "If anyone gets 50 dig- 
its in total, I will be impressed." 

And he was. A total  of  94 teams, represent ing 25 dif- 
ferent  nations, submit ted  results. Twenty  of  these teams 
received a full 100 points  (10 cor rec t  digits for each prob- 
lem). They included the late John  Boersma,  working with 
Fred Simons and others;  Gaston Gonnet  (a Maple 
founder)  and Rober t  Israel; a t eam containing Carl De- 
yore; and the authors  of  the b o o k  under  review variously 
working alone and with others.  These results were  much  
bet ter  than expected,  but  an originally anonymous  donor,  
William J. Browning,  provided  funds for  a $100 award  to 
each of  the twenty  perfec t  teams. The present  author,  
David Bailey, s and Greg Fee entered,  but failed to qual- 
ify for  an award. 9 

The ten challenge problems 
The purpose of  computing is insight, not numbers. 
(Richard Hamming 1~ 

The ten problems are: 
#1. What is lim~_~0 f~ x -1 cos(x -1 log x)dx? 
#2. A photon  moving at speed 1 in the x-y plane starts at 

t = 0 at (x,y) = (1/2, 1/10) heading due east. Around 
every integer lattice point  (i, 3) in the plane, a circu- 
lar mirror of  radius 1/3 has been erected. How far f rom 
the origin is the photon  at t = 10? 

#3. The infinite matrix A with entries al l  = 1, a12 = 1/2, 

a21 = 1/3, a13 = 1/4, a22 = 1/5, a 3 1 - - 1 / 6 ,  etc., is a 
bounded operator  on e 2. What is 1~41]? 

#4. What is the global minimum of the function 
exp(sin(50x)) + sin(60e y) + sin(70 sin x) + 
sin(sin(80y)) - sin(10(x + y))  + (x 2 + y2)/4? 

#5. Le t f ( z )  = 1/F(z), where F(z) is the gamma function, 
and let p(z) be the cubic polynomial that best  ap- 
proximates f ( z )  on the unit disk in the supremum 
norm I]" I1~. What is I I f -  PH~ ? 

#6. A flea starts at (0,0) on the infinite 2-D integer lattice 
and executes a biased random walk: At each step it 
hops north or  south with probability 1/4, east  with 
probability 1/4 + e, and west  with probability 1/4 - e. 
The probability that the flea returns to (0,0) sometime 
during its wanderings is 1/2. What is e? 

#7. Let A be the 20000 x 20000 matrix whose  entries are 
zero everywhere except  for the primes 2, 3, 5, 7, �9 �9 �9 
224737 along the main diagonal and the number  1 in 
all the positions aij with li - Jl = 1, 2, 4, 8, �9 �9 �9 16384. 
What is the (1,1) entry of  A - l ?  

#8. A square plate [ -1 ,1 ]  x [ -1 ,1 ]  is at t empera tu re  
u -- 0. At time t = 0 the t empera tu re  is increased  to 
u = 5 along one of  the four  sides while being held 
at u -- 0 along the o ther  three  sides, and heat  then 
f lows into the plate  accord ing  to ut = An. When 
does  the tempera ture  reach  u = 1 at the center  of  
the plate? 

#9. The integral I(a) = f2 [2 + sin(10a)]x ~ sin(a/(2 - x)) 
dx depends on the parameter  a. What is the value a E 
[0,5] at which I(a) achieves its maximum? 

#10. A particle at the center  of  a 10 x 1 rectangle under- 
goes Brownian motion (i.e., 2-D random walk with in- 
finitesimal step lengths) till it hits the boundary. What 
is the probability that it hits at one of  the ends rather 
than at one of  the sides? 

Answers correct to 40 digits to the problems are avail- 
able at http://web.comlab.ox.ac.uk/oucl/work/nick.trefethen/ 
hundred.html 

Quite full details on the contest  and the now substantial 
related literature are beautifully recorded on Bornemann's  
Web site 

h t t p : / /www-m8 .ma . tum.de /m3 /bo rnemann /cha l l enge  
booW 
which accompanies The SIAM l O0-digit Challenge: A Study 
In High-accuracy Numerical Computing, which, for brevity, 
I shall call The Challenge. 

About the Book and Its Authors 
Success in solving these problems requires a broad knowl- 
edge of mathematics and numerical analysis, together with 

7As in many cases, this eponym is inaccurate, if flattering: it really should be Gauss-Brent-Salamin. 

8Bailey wrote the introduction to the book under review. 

9We took Nick at his word and turned in 85 digits! We thought that would be a good enough entry and returned to other activities. 
1~ Numerical Methods for Scientists and Engineers, 1962. 

THE MATHEMATICAL INTELLIGENCER 



significant computational effort, to obtain solutions and en- 
sure correctness of the results. The strengths and limita- 
tions of Maple, Mathematica, MATLAB (The 3Ms), and other 
software tools such as PARI or GAP, are strikingly revealed 
in these ventures. Almost all of the solvers relied in large 
part on one or more of these three packages, and while 
most solvers attempted to confirm their results, there was 
no explicit requirement for proofs to be provided. In De- 
cember 2002, Keller wrote: 

To the Editor. 
Recently, SIAM News published an interesting article 
by Nick Trefethen (July~August 2002, page 1) pre- 
senting the answers to a set of problems he had pro- 
posed previously (January/February 2002, page 1). 
The answers were computed digits, and the clever 
methods of computation were described. 
I found it surprising that no proof of the correctness 
of the answers was given. Omitting such proofs is the 
accepted procedure in scientific computing. However, 
in a contest for calculating precise digits, one might 
have hoped for more. 

Joseph B. Keller, Stanford University 

In my view Keller's request for proofs as opposed to 
compelling evidence of correctness is, in this context, 
somewhat unreasonable, and even in the long term counter- 
productive [3, 4]. Nonetheless, the authors of The Challenge 
have made a complete and cogent response to Keller and 
much much more. The interest generated by the contest 
has with merit extended to The Challenge, which has al- 
ready received reviews in places such as Science, where 
mathematics is not often seen. 

Different readers, depending on temperament, tools, and 
training, will find the same problem more or less interest- 
ing and more or less challenging. The book is arranged so 
the ten problems can be read independently. In all cases 
multiple solution techniques are given; background, math- 
ematics, implementation details--variously in each of the 
3Ms or otherwise--and extensions are discussed, all in a 
highly readable and engaging way. 

Each problem has its own chapter with its own lead 
author. The four authors, Folkmar Bornemann, Dirk Lau- 
rie, Stan Wagon, and J6rg Waldvogel, come from four 
countries on three continents and did not know each 
other as they worked on the book, though Dirk did visit 
J6rge and Stan visited Folkmar as they were finishing 
their manuscript. This illustrates the growing power of 
the collaboration, networking, and the grid--both human 
and computational. 

Some high spots 
As we saw, Joseph Keller raised the question of proof. On 

careful reading of the book, one may discover proofs of 
correctness for all problems except for #1, #3, and #5. For 
problem #5, one difficulty is to develop a robust interval 
implementation for both complex number computation 
and, more importantly, for the Gamma function. While er- 
ror bounds for #1 may be out of reach, an analytic solution 
to #3 seems to this reviewer tantalizingly close. 

The authors ultimately provided 10,000-digit solutions to 
nine of the problems. They say that this improved their 
knowledge on several fronts as well as being "cool." When 
using Integer Relation Methods, ultrahigh precision com- 
putations are often needed [3]. One (and only one) prob- 
lem remains totally intractable]l--at press time, getting 
more than 300 digits for #3 was impossible. 

Some surprises 
According to the authors, 12 they were surprised by the fol- 
lowing, listed by problem: 
#1. The best algorithm for 10,000 digits was the trusty 

trapezoidal rule--a not uncommon personal experi- 
ence of mine. 

#2. Using interval arithmetic with starting intervals of size 
smaller than 10 -5~176176 one can still find the position of 
the particle at time 2000 (not just time ten), which 
makes a fine exercise for very high-precision interval 
computation. 

#4. Interval analysis algorithms can handle similar prob- 
lems in higher dimensions. As a foretaste of future 
graphic tools, one can solve this problem using current 
adaptive 3-D plotting routines which can catch all the 
bumps. As an optimizer by background, this was the 
first problem my group solved using a damped Newton 
method. 

While almost all canned optimization algorithms failed, 
differential evolution, a relatively new type of evolu- 
tionary algorithm, worked quite well. 
This problem has an almost-closed form in terms of el- 
liptic integrals and leads to a study of random walks 
on hypercubic lattices, and Watson integrals [3, 4, 5]. 
The maximum parameter is expressible in terms of a 
MeijerG function. While this was not common knowl- 
edge among the contestants, Mathematica and Maple 
both will figure this out. This is another measure of the 
changing environment. It is usually a good idea--and 
not at all immoral--to data-mine 13 and find out what 
your favourite one of the 3Ms knows about your cur- 
rent object of interest. For example, Maple tells one 
that: 

#5. 

#6. 

#9. 

l~lf only by the authors' new gold standard of 10,000 digits. 
12Start Wagon, private communication. 

~SBy its own count, WaI-Mart has 460 terabytes of data stored on Teradata mainframes, made by NCR, at its Bentonville headquarters. To put that in perspective, the 

Intemet has less than half as much data . . . .  " Constance Hays, "What WaI-Mart Knows About Customers' Habits," New York Times, Nov. 14, 2004. Mathematicians 
also need databases. 
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The Meijer G function is defined by 

Laplace transform 

MeijerG([as,bs] , [cs,ds],z) 

/ 

Y . . . . . . . . .  ! . . . . . . . .  [ - . 9 ~ - - ( - L - - a - s - + - Y - L - - - ~ . ~ - ! - s  z dy 
2 P i  I 0 GAMMA(bs-y )  G A M M A ( 1 - d s + y )  F 

/ 

L 
where 

as = [al,...,am], 

bs = [bl,... ,bn], 

cs: [cl,'. ",cp], 

ds : [dl,.. "dq], 

the inverse 

GAMMA(I-as+y) = GAMMA(I-aI+y) �9 . �9 GAHHA(I-am+y) 

GAMMA (bs-y) = GAMMA (bl-y) �9 �9 �9 GAMMA (bn-y) 

GAMYLA(cs-y) : GAMICr~(cl-y) �9 �9 �9 GAMMA(cp-y) 

GAMMA (l-ds+y) = GAMMA (l-dl+y) �9 �9 �9 GAMMA (l-dq+y) 

Another excellent example of how packages are chang- 
ing mathematics is the Lambert W function [4], whose 
properties and development are very nicely described in a 
recent article by Brian Hayes [8], Why W? 

Two big surprises 
I finish this section by discussing in more detail the two 
problems whose resolution most surprised the authors. 

The essay on Problem #7, whose principal author was 
Bornemann, is titled: "Too Large to be Easy, Too Small to 
Be Hard." Not so long ago a 20,000 x 20,000 matrix was large 
enough to be hard. Using both congruential and p-adic 
methods, Dumas, Turner, and Wan obtained a fully symbolic 
answer, a rational with a 97,000-digit numerator and like de- 
nominator. Wan has reduced the time to obtain this to about 
15 minutes on one machine, from using many days on many 
machines. While p-adic analysis is susceptible to parallelism, 
it is less easily attacked than are congruential methods; the 
need for better parallel algorithms lurks below the surface 
of much modern computational mathematics. 

The surprise here, though, is not that the solution is ra- 
tional, but that it can be explicitly constructed. The chap- 
ter, like the others, offers an interesting menu of numeric 
and exact solution strategies. Of course, in any numeric ap- 
proach ill-conditioning rears its ugly head, while sparsity 
and other core topics come into play. 

My personal favourite, for reasons that may be appar- 
ent, is: 

Problem #10: "Hitting the Ends." Bornemann starts the 
chapter by exploring Monte-Carlo methods, which are 
shown to be impracticable. He then reformulates the prob- 
lem deterministically as the value at the center of a 10 • 
1 rectangle of an appropriate harmonic measure of the 
ends, arising from a 5-point discretization of Laplace's 
equation with Dirichlet boundary conditions. This is then 
solved by a well-chosen sparse Cholesky solver. At this 
point a reliable numerical value of 3.837587979 �9 1 0  - 7  is ob- 
tained. And the posed problem is solved numerically to the 
requisite 10 places. 

But this is only the warm-up. We proceed to develop two 

analytic solutions, the first using separation of variables 
on the underlying PDE on a general 2a • 2b rectangle. We 
learn that 

4 ~. ( - l ) n s e c h ( ~ r ( 2 n + l ) p )  
(3.4) p(a,b) = IT 2n +-----~ 2 

n = 0  

where p:= a/b. A second method using conformal map- 
pings yields 

IT 
(3.5) arccot p = p(a,b) -~ + arg g(eip(a'b)~r), 

where K is the complete elliptic integral of the first kind. 
It will not be apparent to a reader unfamiliar with inver- 
sion of elliptic integrals that (3.4) and (3.5) encode the same 
solution; but they must, as the solution is unique in (0,1); 
each can now be used to solve for p = 10 to arbitrary pre- 
cision. 

Bornemann fmally shows that, for far from simple rea- 
sons, the answer is 

2 
(3.6) p = - -  arcsin (kl00), 

IT 

where 

k , 0 o  : - -  ( ( 3  - 2 ~ / 2 )  ( 2  + "~/'5) ( - 3  + " ~ )  ( - ~ / ' 2  s 4 ~ / 5 ) 2 )  2 

a simple composition of one arcsin and a few square roots. 
No one anticipated a closed form like this. 

Let me show how to finish up. An apt equation is [5, 
(3.2.29)] showing that 

(3.7) ~ ( -1 )n  s e c h ( i T ( 2 n + l )  ) 1 �9 = - -  ~ a r C S l n  k ,  
2 n +  1 2 P = 

exactly when k = k~ is parametrized by thetafunctions in 
terms of the so-called nome, q = exp(-  ITp), as Jacobi dis- 
covered. We have 

02(q) Zn=-~ q(n+u2)2 
(3.8) k~ -- 02(q ) = ~ n = - ~  qn2 

Comparing (3.7) and (3.4), we see that the solution is 

k]00 = 6.02806910155971082882540712292 . . . .  10 -7, 
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as a s se r t ed  in (3.6). The explici t  form now fol lows from 

class ical  n ine teenth-century  theory  as  d i scussed  in [1, 5]. 

In fact  k210 is the  singular  value sent  by  Ramanujan  to Hardy 
in his f amous  le t ter  of  in t roduct ion [2, 5 ] - - i f  only Trefe then 

had asked  for  a ~ x 1 box, or  even be t te r  a ~ / ~  x ~ / ~  

one! 

Alternatively,  a rmed  only with the knowledge  that  the 

singular  values  are  a lways  algebraic,  we may  finish wi th  an 

au courant proof:  numer ica l ly  obta in  the  minimal  polyno-  

mial  f rom a high-precis ion computa t ion  with (3.8), and re- 

cover  the  surds  [4]. 

E x a m p l e  3. Maple al lows the following 

>Digits:=100:with(PolynomialTools): 

>k::s->evalf(EllipticModulus(exp(-Pi*sqrt(s )): 

>p:=latex(MinimalPolynomial(k(100),12)): 

> 'Error',fsolve(p) [l]-evalf(k(100)); galois(p); 

Error, 4 i0 z06 

"8T9", {"D(4) [x]2", "E(8):2"}, "+", 16, {"4 5)(6 7)", 

"(i 8)(2 3)(4 5)(6 7)", "(2 8) (i 3)(4 6)(5 7)"} 

"(4 8) (i 5) (2 6) (3 7)", 

which f inds the  minimal  polynomial  for klo0, checks  it to 
100 places,  tel ls  us the galois group, and re turns  a la tex ex- 

p ress ion  'p'  which  sets as: 

p(_X) = 1 - 1658904 _X - 3317540 X 2 + 1657944 _X 3 

+ 6637254 _X 4 + 1657944 _X 5 
- 3317540 _X 6 - 1658904 _X 7 + _X 8, 

and is self-reciprocal: it sat isfies p(x) = xSp(1/x). This sug- 

gests  taking a square root,  and we d iscover  that  y = 

satisfies 

1 - 1288y + 20y 2 - 1288y 3 - 26y 4 + 1288y 5 
+ 20y6 + 1288y7 + y8. 

Now life is good. The pr ime factors  of  100 are  2 and 5, 

p rompt ing  

subs (_X= z, 

[op( ( (factor (p, {sqrt (2), sqrt (5) }) )))]) ) 

This yields  four  quadrat ic  terms,  the  des i red  one being 

q = z 2 + 322 z - 228 z~x/2 + 144 z~ /5  - 102 z ~ / 5  

+ 323 - 228 ~/2 + 144~f5 - 102~/2~/-5. 

Fo r  securi ty,  

w: =solve (q) [2] : evalf[1000] (k(100)-w^2) ; 

gives a 1000-digit e r ror  check  of  2.20226255 �9 10 998. 
We leave it to the  reader  to find, using one of the 3Ms, 

the  more  beautiful  form of  kloo given above  in (3.6). []  

Consider ing also the many  techniques  and types  of  math- 

emat ics  used, we have a wonderfu l  adver t i sement  for multi- 

field, mult i -person,  mult i -computer ,  mul t i -package col labo-  

ration. 

Concrete Constructive Mathemat ics 

Elsewhere Kronecker said "In mathematics, I recognize 
true scientific value only in concrete mathematical 
truths, or to put  it more pointedly, only in mathemati- 
cal f o r m u l a s . " . . .  I would rather say "computations" 

than "formulas," but m y  view is essentially the same. 
(Harold M. Edwards  [6, p. 1]) 

Edwards  comment s  e l sewhere  in his recen t  Essays on 
Constructive Mathematics that  his own pre fe rence  for  con- 

s t ruct iv ism was  forged by exper ience  of  comput ing  in the  

fifties, when  comput ing p o w e r  was, as  he notes,  "trivial by  

today ' s  s tandards ."  My own similar  a t t i tudes  were  ce- 
mented  pr imar i ly  by the abil i ty in the  ear ly days  of  pe r sona l  

compute r s  to d e c o d e - - w i t h  the help of  A P L - - e x a c t l y  the  

sor t  of  work  by  Ramanujan which  f inished #10. 
The SIAM l O0-Digit Challenge: A Study In High-accu- 

racy Numerical  Computing is a wonderfu l  and well-writ-  

ten book  full of  living mathemat ics  by  lively mathemat i -  
cians. It shows  how far we have come computa t iona l ly  and 

hints tantal izingly at wha t  l ies ahead.  Anyone who has  been  

in teres ted  enough to finish this  review, and had  not  ye t  r ead  
the book,  is s t rongly urged to buy and plunge i n - - c o m p u t e r  
in h a n d - - t o  this fine adver t i sement  for  cons t ruc t ive  math-  

emat ics  21st-century style. I would  equally s t rongly suggest  
a c ross -word  solving s t y l e - - p i c k  a few p rob lems  from the 
list given, and t ry  them before  peeking  at  the  answers  and 
ex tens ions  given in The Challenge. Later, use  it to i l lustrate  
a course  or  jus t  for a refresher;  and be p leasan t ly  r eminded  
that  chal lenging p rob lems  rare ly  have only one pa th  to so- 
lution and usual ly r eward  study. 
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REVIEWED BY JEAN PETITOT 

W hat exactly is the type of reality of mathematical 
ideal entities? This problem remains largely an open 

question. Any ontology of abstract entities will encounter 
certain antinomies which have been well known for cen- 
turies if not millennia. These antinomies have led the var- 
ious schools of contemporary epistemology increasingly to 
deny any reality to mathematical ideal objects, structures, 
constructions, proofs, and to justify this denial philosoph- 
ically, thus rejecting the spontaneous naive Platonism of 
most professional mathematicians. But they throw out the 
baby with the bath water. Contrary to such figures as Poin- 
card, Husserl, Weyl, Borel, Lebesgue, Veronese, Enriques, 
Cavaillbs, Lautman, Gonseth, or the late G6del, the domi- 
nant epistemology of mathematics is no longer an episte- 
mology of mathematical content. For quite serious and pre- 
cise philosophical reasons, it refuses to take into account 
what the great majority of creative brilliant mathematicians 
consider to be the true nature of mathematical knowledge. 
And yet, to quote the subtitle of Hao Wang's (1985) book 
Beyond Analytic Philosophy, one might well ask whether 
the imperative of any valid epistemology should not be "do- 
ing justice to what we know." 

The remarkable debate Conversations on Mind, Mat- 
ter, and Mathematics between Main Connes and Jean- 
Pierre Changeux, both scientific minds of the very first rank 
and professors at the Collbge de France in Paris, takes up 
the old question of the reality of mathematical idealities in 
a rather new and refreshing perspective. To be sure, since 
it is designed to be accessible to a wide audience, the de- 
bate is not framed in technical terms; the arguments often 

employ a broad brush and are not always sufficiently de- 
veloped. Nevertheless, thanks to the exceptional standing 
of the protagonists, the debate manages to be compelling 
and relevant. 

Jean-Pierre Changeux's Neural Materialism 
Let me begin by summarizing some of Jean-Pierre 
Changeux's arguments. 

Because mathematics is a human and cognitive activity, 
it is natural first to analyze it in psychological and neuro- 
cognitive terms. Psychologism, which formalists and logi- 
cists have decried since the time of Frege and Husserl, de- 
velops the reductionist thesis that mathematical objects 
and the logical idealities that formulate them can be re- 
d u c e d - a s  far as their reality is concerned-- to  mental 
states and processes. Depending on whether or not mental 
representations are themselves conceived as reducible to 
the underlying neural activity, this psychologism is either 
a materialist reductionism or a mentalist functionalism. 

J-P. Changeux defends a variant of materialist reduc- 
tionism. His aim is twofold: first, to inquire into the nature 
of mathematics, but also, at a more strategic level, to put 
mathematics in its place, so to speak. He has never con- 
cealed his opposition to Cartesian or Leibnizian ratio- 
nalisms that have made mathematics the "queen" of the sci- 
ences. In his view, mathematics must abdicate its overly 
arrogant sovereignty, stop laying claim to universal valid- 
ity and absolute truth, and accept the humbler role assigned 
to it by Bacon and Diderot-- that  of "servant" to the natural 
sciences (p. 7). And what better way to make mathematics 
surrender its prestigious seniority than to demonstrate sci- 
entifically that its claims to absolute truth have no more ra- 
tional basis than do those of religious faith? 

Pursuing his mission with great conviction, Changeux 
revisits all the traditional touchstones of the empiricist, ma- 
terialist, and nominalist critiques of Platonist idealism in 
mathematics. He cites an impressive mass of scientific data 
along the way, including results from neurobiology and cog- 
nitive psychology in which he has played a leading role. It 
is this aspect of his approach which commands attention. 

1. The empiricist and constructivist theses hold that 
mathematical objects are "creatures of reason" whose re- 
ality is purely cerebral (p. 11). They are representations, 
that is, mental objects that exist materially in the brain, 
and "corresponding to physical [i.e., neural] states" (p. 14). 

Mental representat ions--memory objects--are  coded in 
the brain as forms in the Gestalt sense, and stored in the 
neurons and synapses, despite significant variability in 
synaptic efficacy (p. 128). 

Their object-contents are reflexively analyzable and their 
properties can be clarified axiomatically. But that is possible 
only because, as mental representations, they are endowed 
with a material reality (pp. 11-15). What's more, the axiomatic 
method of analysis is itself a "cerebral process" (10. 30). 

2. One might try to salvage an autonomy for the formal 
logical and mathematical levels by admitting, in line with 
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The object of mathematical rigor is to
sanction and legitimize the conquests
of intuition, and there was never any
other object for it.

—Jacques Hadamard1

If mathematics describes an objective
world just like physics, there is no rea-
son why inductive methods should not
be applied in mathematics just the same
as in physics.

—Kurt Gödel2

Introduction
Recent years have seen the flowering of “experi-
mental” mathematics, namely the utilization of
modern computer technology as an active tool in
mathematical research. This development is not

limited to a handful of researchers nor to a 
handful of universities, nor is it limited to one 
particular field of mathematics. Instead, it involves
hundreds of individuals, at many different insti-
tutions, who have turned to the remarkable new
computational tools now available to assist in their
research, whether it be in number theory, algebra,
analysis, geometry, or even topology. These tools
are being used to work out specific examples, 
generate plots, perform various algebraic and 
calculus manipulations, test conjectures, and ex-
plore routes to formal proof. Using computer tools
to test conjectures is by itself a major timesaver
for mathematicians, as it permits them to quickly
rule out false notions.

Clearly one of the major factors here is the 
development of robust symbolic mathematics 
software. Leading the way are the Maple and Math-
ematica products, which in the latest editions are
far more expansive, robust, and user-friendly than
when they first appeared twenty to twenty-five
years ago. But numerous other tools, some of which
emerged only in the past few years, are also play-
ing key roles. These include: (1) the Magma com-
putational algebra package, developed at the 
University of Sydney in Australia; (2) Neil Sloane’s
online integer sequence recognition tool, available
at http://www.research.att.com/njas/
sequences; (3) the inverse symbolic calculator (an
online numeric constant recognition facility), avail-
able at http://www.cecm.sfu.ca/projects/ISC;
(4) the electronic geometry site at http://www.
eg-models.de ;  and numerous others. See
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http://www.experimentalmath.info for a more
complete list, with links to their respective websites.

We must of course also give credit to the com-
puter industry. In 1965 Gordon Moore, before he
served as CEO of Intel, observed:

The complexity for minimum compo-
nent costs has increased at a rate of
roughly a factor of two per year. . . . Cer-
tainly over the short term this rate can
be expected to continue, if not to in-
crease. Over the longer term, the rate of
increase is a bit more uncertain, al-
though there is no reason to believe it
will not remain nearly constant for at
least 10 years. [29]

Nearly forty years later, we observe a record of
sustained exponential progress that has no peer in
the history of technology. Hardware progress alone
has transformed mathematical computations that
were once impossible into simple operations that
can be done on any laptop.

Many papers have now been published in the ex-
perimental mathematics arena, and a full-fledged
journal, appropriately titled Experimental Mathe-
matics, has been in operation for twelve years.
Even older is the AMS journal Mathematics of Com-
putation, which has been publishing articles in the
general area of computational mathematics since
1960 (since 1943 if you count its predecessor).
Just as significant are the hundreds of other recent
articles that mention computations but which oth-
erwise are considered entirely mainstream work.
All of this represents a major shift from when the
present authors began their research careers, when
the view that “real mathematicians don’t compute”
was widely held in the field.

In this article, we will summarize some of the
discoveries and research results of recent years, by
ourselves and by others, together with a brief de-
scription of some of the key methods employed.
We will then attempt to ascertain at a more fun-
damental level what these developments mean for
the larger world of mathematical research.

Integer Relation Detection
One of the key techniques used in experimental
mathematics is integer relation detection, which in
effect searches for linear relationships satisfied
by a set of numerical values. To be precise, given
a real or complex vector (x1, x2, · · · , xn), an inte-
ger relation algorithm is a computational scheme
that either finds the n integers (ai) , not all zero,
such that a1x1 + a2x2 + · · ·anxn = 0 (to within
available numerical accuracy) or else establishes
that there is no such integer vector within a ball 
of radius A about the origin, where the metric 
is the Euclidean norm: A = (a2

1 + a2
2 + · · · + a2

n)
1/2 .

Integer relation computations require very high

precision in the input vector x to obtain numeri-
cally meaningful results—at least dn-digit precision,
where d = log10A . This is the principal reason for
the interest in very high-precision arithmetic in
experimental mathematics. In one recent integer re-
lation detection computation, 50,000-digit arith-
metic was required to obtain the result [9].

At the present time, the best-known integer 
relation algorithm is the PSLQ algorithm [26] of
mathematician-sculptor Helaman Ferguson, who,
together with his wife, Claire, received the 2002
Communications Award of the Joint Policy Board
for Mathematics (AMS-MAA-SIAM). Simple formu-
lations of the PSLQ algorithm and several variants
are given in [10]. The PSLQ algorithm, together
with related lattice reduction schemes such as LLL,
was recently named one of ten “algorithms of the
century” by the publication Computing in Science
and Engineering [4]. PSLQ or a variant is imple-
mented in current releases of most computer al-
gebra systems.

Arbitrary Digit Calculation Formulas
The best-known application of PSLQ in experi-
mental mathematics is the 1995 discovery, by
means of a PSLQ computation, of the “BBP” formula
for π :

π =
∞∑
k=0

1
16k

(
4

8k+ 1
− 2

8k+ 4
− 1

8k+ 5
− 1

8k+ 6

)
.

(1)

This formula permits one to directly calculate bi-
nary or hexadecimal digits beginning at the n-th
digit, without needing to calculate any of the first
n− 1 digits [8], using a simple scheme that re-
quires very little memory and no multiple-precision
arithmetic software.

It is easiest to see how this individual digit-
calculating scheme works by illustrating it for a sim-
ilar formula, known at least since Euler, for log 2:

log 2 =
∞∑
n=1

1
n2n

.

Note that the binary expansion of log 2 beginning
after the first d binary digits is simply {2d log 2} ,
where by {·} we mean fractional part. We can write

(2)

{2d log 2} =



∞∑
n=1

2d−n

n


 =




d∑
n=1

2d−n

n


+




∞∑
n=d+1

2d−n

n




=



d∑
n=1

2d−n mod n
n


+




∞∑
n=d+1

2d−n

n


 ,

where we insert “mod n” in the numerator of 
the first term of (2), since we are interested only
in the fractional part after division by n. Now the
expression 2d−n mod n may be evaluated very
rapidly by means of the binary algorithm for ex-
ponentiation, where each multiplication is reduced 
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modulo n. The entire scheme 
indicated by formula (2) can be
implemented on a computer using
ordinary 64-bit or 128-bit arith-
metic; high-precision arithmetic
software is not required. The re-
sulting floating-point value, when
expressed in binary format, gives
the first few digits of the 
binary expansion of log 2 begin-
ning at position d + 1. Similar 
calculations applied to each of the
four terms in formula (1) yield a
similar result for π . The largest
computation of this type to date
is binary digits of π beginning at
the quadrillionth (1015-th) binary
digit, performed by an interna-
tional network of computers 
organized by Colin Percival.

The BBP formula for π has even found a prac-
tical application: it is now employed in the g95
Fortran compiler as part of transcendental function
evaluation software.

Since 1995 numerous other formulas of this
type have been found and proven using a similar
experimental approach. Several examples include:

“Figure Eight Knot Complement”;3 see Figure 1),
which is given by

V = 2
√

3
∞∑
n=1

1

n
(

2n
n

) 2n−1∑
k=n

1
k

= 2.029883212819307250042405108549 . . . ,

has been identified in terms of a BBP-type formula
by application of Ferguson’s own PSLQ algorithm.
In particular, British physicist David Broadhurst
found in 1998, using a PSLQ program, that

V =
√

3
9

∞∑
n=0

(−1)n

27n

×
[

18
(6n+ 1)2

− 18
(6n+ 2)2

− 24
(6n+ 3)2

− 6
(6n+ 4)2

+ 2
(6n+ 5)2

]
.

This result is proven in [15, Chap. 2, Prob. 34].

Does Pi Have a Nonbinary BBP Formula?
Since the discovery of the BBP formula for π in
1995, numerous researchers have investigated, by
means of computational searches, whether there
is a similar formula for calculating arbitrary digits
of π in other number bases (such as base 10). Alas,
these searches have not been fruitful.

Recently, one of the present authors (JMB), to-
gether with David Borwein (Jon’s father) and William
Galway, established that there is no degree-1 BBP-
type formula for π for bases other than powers of
two (although this does not rule out some other
scheme for calculating individual digits). We will
sketch this result here. Full details and some related
results can be found in [20].

In the following, �(z) and �(z) denote the real
and imaginary parts of z , respectively. The integer
b > 1 is not a proper power if it cannot be written
as cm for any integers c and m > 1. We will use the
notation ordp(z) to denote the p-adic order of the
rational z ∈ Q. In particular, ordp(p) = 1 for prime
p ,  while ordp(q) = 0 for primes q ≠ p ,  and
ordp(wz) = ordp(w)+ ordp(z) . The notation νb(p)
will mean the order of the integer b in the multi-
plicative group of the integers modulo p. We will
say that p is a primitive prime factor of bm − 1 if
m is the least integer such that p|(bm − 1). Thus p
is a primitive prime factor of bm − 1 provided
νb(p) =m. Given the Gaussian integer z ∈ Q[i] and
the rational prime p ≡ 1 (mod 4), let θp(z) denote
ordp(z)− ordp(z), where p and p are the two con-
jugate Gaussian primes dividing p and where we
require 0 < �(p) < �(p) to make the definition of
θp unambiguous. Note that

θp(wz) = θp(w )+ θp(z).(8)

Given κ ∈ R, with 2 ≤ b ∈ Z and b not a proper
power, we say that κ has a Z-linear or Q -linear

π
√

3 = 9
32

∞∑
k=0

1
64k

(
16

6k+ 1
− 8

6k+ 2
− 2

6k+ 4
− 1

6k+ 5

)
,

(3)

π2 = 1
8

∞∑
k=0

1
64k

[
144

(6k+ 1)2
− 216

(6k+ 2)2
− 72

(6k+ 3)2
− 54

(6k+ 4)2
+ 9

(6k+ 5)2

]
,

(4)

π2 = 2
27

∞∑
k=0

1
729k

[
243

(12k+ 1)2
− 405

(12k+ 2)2
− 81

(12k+ 4)2
− 27

(12k+ 5)2

− 72
(12k+ 6)2

− 9
(12k+ 7)2

− 9
(12k+ 8)2

− 5
(12k+ 10)2

+ 1
(12k+ 11)2

]
,

(5)

3Reproduced by permission of the sculptor.

√
3 arctan

(√
3

7

)
=

∞∑
k=0

1
27k

(
3

3k+ 1
+ 1

3k+ 2

)
,(6)

25
2

log


781

256

(
57− 5

√
5

57+ 5
√

5

)√5

 = ∞∑

k=0

1
55k

(
5

5k+ 2
+ 1

5k+ 3

)
.

(7)

Figure 1. Ferguson’s “Figure
Eight Knot Complement”

sculpture.

Formulas (3) and (4) permit arbitrary-position 
binary digits to be calculated for π

√
3 and π2. 

Formulas (5) and (6) permit the same for ternary
(base-3) expansions of π2 and 

√
3 arctan(

√
3/7).

Formula (7) permits the same for the base-5 ex-
pansion of the curious constant shown. A com-
pendium of known BBP-type formulas, with 
references, is available at [5].

One interesting twist here is that the hyperbolic
volume of one of Ferguson’s sculptures (the 
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Machin-type BBP arctangent formula to the base b
if and only if κ can be written as a Z-linear or Q -
linear combination (respectively) of generators of
the form

arctan
(

1
bm

)
= � log

(
1+ i

bm

)

= bm
∞∑
k=0

(−1)k

b2mk(2k+ 1)
.(9)

We shall also use the following result, first proved
by Bang in 1886:

Theorem 1. The only cases where bm − 1 has no
primitive prime factor(s) are when b = 2, m = 6,
bm − 1 = 32 · 7 or  when b = 2N − 1,N ∈ Z, m = 2,
bm − 1 = 2N+1(2N−1 − 1) .

We can now state the main result:

Theorem 2. Given b > 2 and not a proper power,
there is no Q-linear Machin-type BBP arctangent for-
mula for π .

Proof: It follows immediately from the definition
of a Q -linear Machin-type BBP arctangent formula
that any such formula has the form

π = 1
n

M∑
m=1

nm� log(bm − i),(10)

where n > 0 ∈ Z , nm ∈ Z, and M ≥ 1, nM ≠ 0. This
implies that

M∏
m=1

(bm − i)nm ∈ eniπQ× = Q×.(11)

For any b > 2 and not a proper power, it follows
from Bang’s Theorem that b4M − 1 has a primitive
prime factor, say p. Furthermore, p must be odd,
since p = 2 can only be a primitive prime factor of
bm − 1 when b is odd and m = 1. Since p is a prim-
itive prime factor, it does not divide b2M − 1, and
so p must divide b2M + 1 = (bM + i)(bM − i) . We
cannot have both p|bM + i and p|bM − i, since this
would give the contradiction that p|(bM + i)−
(bM − i) = 2i. It follows that p ≡ 1 (mod 4) and that
p factors as p = pp over Z[i], with exactly one of
p, p dividing bM − i. Referring to the definition of
θ, we see that we must have θp(bM − i) ≠ 0. Fur-
thermore, for any m < M , neither p nor p can di-
vide bm − i , since this would imply p | b4m − 1,
4m < 4M , contradicting the fact that p is a primi-
tive prime factor of b4M − 1. So for m < M, we have
θp(bm − i) = 0. Referring to equation (10) and using
equation (8) and the fact that nM ≠ 0, we get the
contradiction

(12)

0 ≠ nMθp(bM − i)

=
M∑
m=1

nmθp(bm − i) = θp(Q×) = 0.

Thus our assumption that there was a b-ary Machin-
type BBP arctangent formula for π must be false.

Normality Implications of the BBP Formulas
One interesting (and unanticipated) discovery is that
the existence of these computer-discovered BBP-
type formulas has implications for the age-old
question of normality for several basic mathe-
matical constants, including π and log 2. What’s
more, this line of research has recently led to a full-
fledged proof of normality for an uncountably in-
finite class of explicit real numbers.

Given a positive integer b, we will define a real
number α to be b-normal if every m-long string of
base-b digits appears in the base-b expansion of
α with limiting frequency b−m. In spite of the ap-
parently stringent nature of this requirement, it is
well known from measure theory that almost all real
numbers are b-normal, for all bases b. Nonetheless,
there are very few explicit examples of b-normal
numbers, other than the likes of Champernowne’s
constant 0.123456789101112131415 . . .. In par-
ticular, although computations suggest that virtu-
ally all of the well-known irrational constants of
mathematics (such as π, e, γ, log 2,

√
2, etc.) are

normal to various number bases, there is not a
single proof—not for any of these constants, not
for any number base.

Recently one of the present authors (DHB) and
Richard Crandall established the following result.

Let p(x) and q(x) be integer-coefficient polyno-
mials, with degp < degq , and q(x) having no 
zeroes for positive integer arguments. By an equidis-
tributed sequence in the unit interval we mean a
sequence (xn) such that for every subinterval (a, b),
the fraction #[xn ∈ (a, b)]/n tends to b − a in the
limit. The result is as follows:

Theorem 3. A constant α satisfying the BBP-type
formula

α =
∞∑
n=1

p(n)
bnq(n)

is b-normal if and only if the associated sequence
defined by x0 = 0 and, for n ≥ 1 ,  xn =
{bxn−1 + p(n)/q(n)} (where {·} denotes fractional
part as before), is equidistributed in the unit in-
terval.

For example, log 2 is 2-normal if and only if the
simple sequence defined by x0 = 0 and
{xn = 2xn−1 + 1/n} is equidistributed in the unit in-
terval. For π , the associated sequence is x0 = 0 and

xn =
{

16xn−1 +
120n2 − 89n+ 16

512n4 − 1024n3 + 712n2 − 206n+ 21

}
.

Full details of this result are given in [11] [15, 
Section 3.8].

It is difficult to know at the present time whether
this result will lead to a full-fledged proof of nor-
mality for, say, π or log 2. However, this approach
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has yielded a solid normality proof for another
class of reals: Given r ∈ [0,1), let rn be the n-th 
binary digit of r . Then for each r in the unit inter-
val, the constant

αr =
∞∑
n=1

1
3n23n+rn(13)

is 2-normal and transcendental [12]. What’s more,
it can be shown that whenever r ≠ s , then αr ≠ αs.
Thus (13) defines an uncountably infinite class of
distinct 2-normal, transcendental real numbers. A
similar conclusion applies when 2 and 3 in (13) are
replaced by any pair of relatively prime integers
greater than 1.

Here we will sketch a proof of normality for one
particular instance of these constants, namely
α0 =

∑
n≥1 1/(3n23n ). Its associated sequence can be

seen to be x0 = 0 and xn = {2xn−1 + cn} , where
cn = 1/n if n is a power of 3, and zero otherwise.
This associated sequence is a very good approxi-
mation to the sequence ({2nα0}) of shifted binary
fractions of α0. In fact, |{2nα0} − xn| < 1/(2n). The
first few terms of the associated sequence are

where ζ(s) =∑n≥1 n−s is the Riemann zeta func-
tion. Au-Yeung had computed the sum in (14) to
500,000 terms, giving an accuracy of five or six dec-
imal digits. Suspecting that his discovery was
merely a modest numerical coincidence, Borwein
sought to compute the sum to a higher level of pre-
cision. Using Fourier analysis and Parseval’s equa-
tion, he wrote

1
2π

∫ π
0

(π − t)2 log2(2 sin
t
2

)dt =
∞∑
n=1

(
∑n
k=1

1
k )2

(n+ 1)2
.

(15)

The series on the right of (15) permits one to eval-
uate (14), while the integral on the left can be com-
puted using the numerical quadrature facility of
Mathematica or Maple. When he did this, Borwein
was surprised to find that the conjectured identity
(14) holds to more than 30 digits. We should add
here that by good fortune, 17/360 = 0.047222 . . .
has period one and thus can plausibly be recognized
from its first six digits, so that Au-Yeung’s nu-
merical discovery was not entirely far-fetched.

Borwein was not aware at the time that (14) fol-
lows directly from a 1991 result due to De Doelder
and had even arisen in 1952 as a problem in the
American Mathematical Monthly. What’s more, it
turns out that Euler considered some related sum-
mations. Perhaps it was just as well that Borwein
was not aware of these earlier results—and indeed
of a large, quite deep and varied literature [21]—
because pursuit of this and similar questions had
led to a line of research that continues to the pre-
sent day.

First define the multi-zeta constant

ζ(s1, s2, · · · , sk) :=
∑

n1>n2>···>nk>0

k∏
j=1

n−|sj |j σ−nj
j ,

where the s1, s2, . . . , sk are nonzero integers and
the σj := signum(sj ). Such constants can be con-
sidered as generalizations of the Riemann zeta
function at integer arguments in higher dimen-
sions.

The analytic evaluation of such sums has relied
on fast methods for computing their numerical
values. One scheme, based on Hölder Convolution,
is discussed in [22] and implemented in EZFace+,
an online tool available at http://www.cecm.sfu.
ca/projects/ezface+. We will illustrate its ap-
plication to one specific case, namely the analytic
identification of the sum

S2,3 =
∞∑
k=1

(
1− 1

2
+ · · · + (−1)k+1 1

k

)2

(k+ 1)−3.

(16)

Expanding the squared term in (16), we have

0, 0, 0,
1
3
,

2
3
,

1
3
,

2
3
,

1
3
,

2
3
,

4
9
,

8
9
,

7
9
,

5
9
,

1
9
,

2
9
,

4
9
,

8
9
,

7
9
,

5
9
,

1
9
,

2
9
,

4
9
,

8
9
,

7
9
,

5
9
,

1
9
,

2
9
,

13
27
,

26
27
,

25
27
,

23
27
,

19
27
,

11
27
,

22
27
,

17
27
,

7
27
,

14
27
,

1
27
,

2
27
,

4
27
,

8
27
,

16
27
,

5
27
,

10
27
,

20
27
,

13
27
,

26
27
,

25
27
,

23
27
,

19
27
,

11
27
,

22
27
,

17
27
,

7
27
,

14
27
,

1
27
,

2
27
,

4
27
,

8
27
,

16
27
,

5
27
,

10
27
,

20
27
,

13
27
,

26
27
,

25
27
,

23
27
,

19
27
,

11
27
,

22
27
,

17
27
,

7
27
,

14
27
,

1
27
,

2
27
,

4
27
,

8
27
,

16
27
,

5
27
,

10
27
,

20
27
,

and so forth. The clear pattern is that of triply re-
peated segments, each of length 2 · 3m, where the
numerators range over all integers relatively prime
to and less than 3m+1.

Note the very even manner in which this se-
quence fills the unit interval. Given any subinter-
val (c, d) of the unit interval, it can be seen that this
sequence visits this subinterval no more than
3n(d − c)+ 3 times, among the first n elements,
provided that n > 1/(d − c) . It can then be shown
that the sequence ({2jα}) visits (c, d) no more than
8n(d − c) times, among the first n elements of this
sequence, so long as n is at least 1/(d − c)2. The 2-
normality of α0 then follows from a result given
in [28, p. 77]. Further details on these results are
given in [15, Sec. 4.3], [6], [12].

Euler’s Multi-Zeta Sums
In April 1993, Enrico Au-Yeung, an undergraduate
at the University of Waterloo, brought to the at-
tention of one of us (JMB) the curious result

(14)

∞∑
k=1

(
1+ 1

2
+ · · · + 1

k

)2

k−2

= 4.59987 . . . ≈ 17
4
ζ(4) = 17π4

360

http://www.cecm.sfu.ca/projects/ezface+
http://www.cecm.sfu.ca/projects/ezface+
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∑
0<i,j<k
k>0

(−1)i+j+1

ijk3 = −2ζ(3,−1,−1)+ ζ(3,2).(17)

Evaluating this in EZFace+, we quickly obtain

S2,3 = 0.1561669333811769158810359096879

8819368577670984030387295752935449707

5037440295791455205653709358147578. . . .

Given this numerical value, PSLQ or some other 
integer-relation-finding tool can be used 
to see if this constant satisfies a rational 
linear relation of certain constants. Our experi-
ence with these evaluations has suggested 
that likely terms would include: π5, π4log(2),
π3log2(2), π2log3(2), π log4(2), log5(2), π2ζ(3),
π log(2)ζ(3), log2(2)ζ(3), ζ(5), Li5(1/2). The 
result is quickly found to be:

S2,3 = 4 Li5

(
1
2

)
− 1

30
log5(2)− 17

32
ζ(5)

− 11
720

π4 log(2)+ 7
4
ζ(3) log2(2)

+ 1
18
π2 log3(2)− 1

8
π2ζ(3).

This result has been proven in various ways, both
analytic and algebraic. Indeed, all evaluations of
sums of the form ζ(±a1,±a2, · · · ,±am) with
weight w :=∑k am, for k < 8, as in (17) are estab-
lished.

One general result that is reasonably easily ob-
tained is the following, true for all n:

ζ({3}n) = ζ({2,1}n).(18)

On the other hand, a general proof of

ζ({2,1}n) ?= 23n ζ({−2,1}n)(19)

remains elusive. There has been abundant evidence
amassed to support the conjectured identity (19)
since it was discovered experimentally in 1996.
The first eighty-five instances of (19) were recently
affirmed in calculations by Petr Lison̆ek to 1000 dec-
imal place accuracy. Lisonek also checked the case
n = 163, a calculation that required ten hours run
time on a 2004-era computer. The only proof known
of (18) is a change of variables in a multiple inte-
gral representation that sheds no light on (19) (see
[21]).

Evaluation of Integrals
This same general strategy of obtaining a high-
precision numerical value, then attempting 
by means of PSLQ or other numeric-constant 
recognition facilities to identify the result as an 
analytic expression, has recently been applied 
with significant success to the age-old problem of
evaluating definite integrals. Obviously Maple and

Mathematica have some rather effective integration
facilities, not only for obtaining analytic results
directly, but also for obtaining high-precision 
numeric values. However, these products do have
limitations, and their numeric integration facili-
ties are typically limited to 100 digits or so, beyond
which they tend to require an unreasonable amount
of run time.

Fortunately, some new methods for numerical
integration have been developed that appear to 
be effective for a broad range of one-dimensional
integrals, typically producing up to 1000 digit 
accuracy in just a few seconds’ (or at most a few
minutes’) run time on a 2004-era personal computer,
and that are also well suited for parallel process-
ing [13], [14], [16, p. 312]. These schemes are based
on the Euler-Maclaurin summation formula [3, 
p. 180], which can be stated as follows: Let m ≥ 0
and n ≥ 1 be integers, and define h = (b − a)/n
and xj = a+ jh for 0 ≤ j ≤ n. Further assume that
the function f (x) is at least (2m+ 2)-times contin-
uously differentiable on [a, b]. Then

(20)

∫ b
a
f (x)dx = h

n∑
j=0

f (xj )−
h
2

(f (a)+ f (b))

−
m∑
i=1

h2iB2i

(2i)!

(
f (2i−1)(b)− f (2i−1)(a)

)
− E(h),

where B2i denote the Bernoulli numbers, and

E(h) = h2m+2(b − a)B2m+2f 2m+2(ξ)
(2m+ 2)!

for some ξ ∈ (a, b). In the circumstance where the
function f (x) and all of its derivatives are zero at
the endpoints a and b (as in a smooth, bell-shaped
function), the second and third terms of the Euler-
Maclaurin formula (20) are zero, and we conclude
that the error E(h) goes to zero more rapidly than
any power of h.

This principle is utilized by transforming the in-
tegral of some C∞ function f (x) on the interval
[−1,1] to an integral on (−∞,∞) using the change
of variable x = g(t). Here g(x) is some monotonic,
infinitely differentiable function with the property
that g(x) → 1 as x→∞ and g(x) → −1 as x→ −∞,
and also with the property that g′(x) and all higher
derivatives rapidly approach zero for large positive
and negative arguments. In this case we can write,
for h > 0,

∫ 1

−1
f (x)dx =

∫∞
−∞
f (g(t))g′(t)dt

= h
∞∑

j=−∞
wjf (xj )+ E(h),
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where xj = g(hj) and wj = g′(hj) are abscissas and
weights that can be precomputed. If g′(t) and its
derivatives tend to zero sufficiently rapidly for
large t , positive and negative, then even in cases
where f (x) has a vertical derivative or an integrable
singularity at one or both endpoints, the resulting
integrand f (g(t))g′(t) is, in many cases, a smooth
bell-shaped function for which the Euler-
Maclaurin formula applies. In these cases, the error
E(h) in this approximation decreases faster than
any power of h.

Three suitable g functions are g1(t) = tanh t,
g2(t) = erf t, and g3(t) = tanh(π/2 · sinh t) . Among
these three, g3(t) appears to be the most effective
for typical experimental math applications. For
many integrals, “tanh-sinh” quadrature, as the re-
sulting scheme is known, achieves quadratic con-
vergence: reducing the interval h in half roughly
doubles the number of correct digits in the quad-
rature result. This is another case where we have
more heuristic than proven knowledge.

As one example, recently the present authors,
together with Greg Fee of Simon Fraser University
in Canada, were inspired by a recent problem in the
American Mathematical Monthly [2]. They found by
using a tanh-sinh quadrature program, together
with a PSLQ integer relation detection program, that
if C(a) is defined by

C(a) =
∫ 1

0

arctan(
√
x2 + a2)dx√

x2 + a2(x2 + 1)
,

then

C(0) = π log 2/8+G/2,
C(1) = π/4−π

√
2/2+ 3 arctan(

√
2)/
√

2,

C(
√

2) = 5π2/96.

Here G =∑k≥0(−1)k/(2k+ 1)2 is Catalan’s con-
stant—the simplest number whose irrationality is
not established but for which abundant numerical
evidence exists. These experimental results then led
to the following general result, rigorously estab-
lished, among others:

∫∞
0

arctan(
√
x2 + a2)dx√

x2 + a2(x2 + 1)

= π
2
√
a2 − 1

[
2 arctan(

√
a2 − 1)− arctan(

√
a4 − 1)

]
.

As a second example, recently the present au-
thors empirically determined that

2√
3

∫ 1

0

log6(x) arctan[x
√

3/(x− 2)]
x+ 1

dx = 1
81648

[−229635L3(8)

+ 29852550L3(7) log 3− 1632960L3(6)π2 + 27760320L3(5)ζ(3)

− 275184L3(4)π4 + 36288000L3(3)ζ(5)− 30008L3(2)π6

− 57030120L3(1)ζ(7) ] ,

where L3(s) =∑∞
n=1 [1/(3n− 2)s − 1/(3n− 1)s ] .

Based on these experimental results, general results
of this type have been conjectured but not yet rig-
orously established.

A third example is the following:

24
7
√

7

∫ π/2
π/3

log

∣∣∣∣∣ tan t +√7
tan t −√7

∣∣∣∣∣dt ?= L−7(2)(21)

where

L−7(s) =
∞∑
n=0

[
1

(7n+ 1)s
+ 1

(7n+ 2)s
− 1

(7n+ 3)s

+ 1
(7n+ 4)s

− 1
(7n+ 5)s

− 1
(7n+ 6)s

]
.

The “identity” (21) has been verified to over 5000
decimal digit accuracy, but a proof is not yet known.
It arises from the volume of an ideal tetrahedron
in hyperbolic space, [15, pp. 90–1]. For algebraic
topology reasons, it is known that the ratio of the
left-hand to the right-hand side of (21) is rational.

A related experimental result, verified to 1000
digit accuracy, is

0
?= −2J2 − 2J3 − 2J4 + 2J10 + 2J11 + 3J12 + 3J13 + J14 − J15

−J16 − J17 − J18 − J19 + J20 + J21 − J22 − J23 + 2J25,

where Jn is the integral in (21), with limits nπ/60
and (n+ 1)π/60.

The above examples are ordinary one-
dimensional integrals. Two-dimensional integrals
are also of interest. Along this line we present a
more recreational example discovered experimen-
tally by James Klein—and confirmed by Monte
Carlo simulation. It is that the expected distance
between two random points on different sides of
a unit square is

2
3

∫ 1

0

∫ 1

0

√
x2 + y2 dxdy + 1

3

∫ 1

0

∫ 1

0

√
1+ (u− v)2 dudv

= 1
9

√
2+ 5

9
log(

√
2+ 1)+ 2

9
,

and the expected distance between two random
points on different sides of a unit cube is

4
5

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

√
x2 + y2 + (z −w )2 dw dxdy dz

+1
5

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

√
1+ (y − u)2 + (z −w )2 dudw dy dz

= 4
75
+ 17

75

√
2− 2

25

√
3− 7

75
π

+ 7
25

log
(
1+

√
2
)
+ 7

25
log

(
7+ 4

√
3
)
.

See [7] for details and some additional examples.
It is not known whether similar closed forms exist
for higher-dimensional cubes.
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Ramanujan’s AGM Continued Fraction
Given a, b, η > 0, define

Rη(a, b) = a

η+ b2

η+ 4a2

η+ 9b2

η+ ...

.

This continued fraction arises in Ramanujan’s Note-
books. He discovered the beautiful fact that

Rη (a, b)+ Rη (b,a)
2

= Rη
(a+ b

2
,
√
ab
)
.

The authors wished to record this in [15] and
wished to computationally check the identity. A first
attempt to numerically compute R1 (1,1) directly
failed miserably, and with some effort only three
reliable digits were obtained: 0.693 . . .. With hind-
sight, the slowest convergence of the fraction oc-
curs in the mathematically simplest case, namely
when a = b. Indeed R1 (1,1) = log 2, as the first
primitive numerics had tantalizingly suggested.

Attempting a direct computation of R1(2,2)
using a depth of 20000 gives us two digits. Thus
we must seek more sophisticated methods. From
formula (1.11.70) of [16] we see that for 0 < b < a,

(22)

R1(a, b)

= π
2

∑
n∈Z

aK(k)
K2(k)+ a2n2π2 sech

(
nπ

K(k′)
K(k)

)
,

where k = b/a = θ2
2/θ2

3 , k′ =
√

1− k2. Here θ2, θ3

are Jacobian theta functions and K is a complete
elliptic integral of the first kind.

Writing the previous equation as a Riemann
sum, we have

(23)

R(a) := R1(a,a) =
∫∞

0

sech(πx/(2a))
1+ x2

dx

= 2a
∞∑
k=1

(−1)k+1

1+ (2k− 1)a
,

where the final equality follows from the Cauchy-
Lindelof Theorem. This sum may also be written 

as R(a) = 2a
1+aF

(
1

2a +
1
2 ,1; 1

2a +
3
2 ;−1

)
. The latter

form can be used in Maple or Mathematica to 
determine

R(2) = 0.974990988798722096719900334529 . . . .

This constant, as written, is a bit difficult to
recognize, but if one first divides by 

√
2, one can

obtain, using the Inverse Symbolic Calculator, an
online tool available at the URL http://www.
cecm.sfu.ca/projects/ISC/ISCmain.html, that
the quotient is π/2− log(1+

√
2). Thus we con-

clude, experimentally, that

R(2) =
√

2[π/2− log(1+
√

2)].

Indeed, it follows (see [19]) that

R(a) = 2
∫ 1

0

t1/a

1+ t2 dt.

Note that R(1) = log 2. No nontrivial closed form
is known for R(a, b) with a ≠ b, although

R1

(
1

4π
β
(

1
4
,
1
4

)
,
√

2
8π

β
(

1
4
,
1
4

))
= 1

2

∑
n∈Z

sech(nπ )
1+ n2

is close to closed. Here β denotes the classical Beta
function. It would be pleasant to find a direct proof
of (23). Further details are to be found in [19], [17],
[16].

Study of these Ramanujan continued fractions
has been facilitated by examining the closely related
dynamical system t0 = 1, t1 = 1, and

Figure 2. Dynamics and attractors of various
iterations.

http://www.cecm.sfu.ca/projects/ISC/ISCmain.html
http://www.cecm.sfu.ca/projects/ISC/ISCmain.html
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tn := tn(a, b) = 1
n
+ωn−1

(
1− 1

n

)
tn−2,(24)

where ωn = a2 or b2 (from the Ramanujan con-
tinued fraction definition), depending on whether
n is even or odd.

If one studies this based only on numerical val-
ues, nothing is evident; one only sees that tn → 0
fairly slowly. However, if we look at this iteration
pictorially, we learn significantly more. In particu-
lar, if we plot these iterates in the complex plane
and then scale by 

√
n and color the iterations blue

or red depending on odd or even n, then some re-
markable fine structures appear; see Figure 2. With
assistance of such plots, the behavior of these it-
erates (and the Ramanujan continued fractions) is
now quite well understood. These studies have
ventured into matrix theory, real analysis, and even
the theory of martingales from probability theory
[19], [17], [18], [23].

There are some exceptional cases. Jacobsen-
Masson theory [17], [18] shows that the even/odd
fractions for R1(i, i) behave “chaotically”; neither
converge. Indeed, when a = b = i, (tn(i, i)) exhibit a
fourfold quasi-oscillation, as n runs through val-
ues mod 4. Plotted versus n, the (real) sequence tn(i)
exhibits the serpentine oscillation of four sepa-
rate “necklaces”. The detailed asymptotic is

Figure 3. The subtle fourfold serpent.

Figure 4. A period three dynamical system (odd and even
iterates).

tn(i, i) =

√
2
π

cosh
π
2

1√
n

(
1 +O

(
1
n

))

×



(−1)n/2 cos(θ − log(2n)/2) n is even

(−1)(n+1)/2 sin(θ − log(2n)/2) n odd

where θ := arg Γ ((1+ i)/2).
Analysis is easy given the following striking hy-

pergeometric parametrization of (24) when
a = b ≠ 0 (see [18]), which was both experimen-
tally discovered and is computer provable:

tn(a,a) = 1
2
Fn(a)+ 1

2
Fn(−a),(25)

where

Fn(a) := − an21−ω

ωβ(n+ω,−ω) 2F1

(
ω,ω;n+ 1+ω;

1
2

)
.

Here

β(n+ 1+ω,−ω) := Γ (n+ 1)
Γ (n+ 1+ω) Γ (−ω)

, and

ω := 1− 1/a
2

.

Indeed, once (25) was discovered by a combination
of insight and methodical computer experiment, its
proof became highly representative of the chang-
ing paradigm: both sides satisfy the same recursion
and the same initial conditions. This can be checked
in Maple, and if one looks inside the computation,
one learns which confluent hypergeometric identi-
ties are needed for an explicit human proof.

As noted, study of R devolved to hard but com-
pelling conjectures on complex dynamics, with
many interesting proven and unproven general-
izations. In [23] consideration is made of contin-
ued fractions like

S1(a) = 12a2
1

1+ 22a2
2

1+ 32a2
3

1+ . . .

for any sequence a ≡ (an)∞n=1 and convergence
properties obtained for deterministic and random
sequences (an). For the deterministic case the best
results obtained are for periodic sequences, satis-
fying aj = aj+c for all j and some finite c. The dy-
namics are considerably more varied, as illustrated
in Figure 4.
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Coincidence and Fraud
Coincidences do occur, and such examples drive
home the need for reasonable caution in this en-
terprise. For example, the approximations

π ≈ 3√
163

log(640320), π ≈
√

2
9801
4412

occur for deep number theoretic reasons: the first
good to fifteen places, the second to eight. By con-
trast

eπ −π = 19.999099979189475768 . . . ,

most probably for no good reason. This seemed
more bizarre on an eight-digit calculator. Likewise,
as spotted by Pierre Lanchon recently,

e = 10.10110111111000010101000101100 . . .

while

π = 11.0010010000111111011010101000 . . .

have 19 bits agreeing in base two—with one reading
right to left. More extended coincidences are almost
always contrived, as illustrated by the following:

∞∑
n=1

[n tanh(π/2)]
10n

≈ 1
81
,

∞∑
n=1

[n tanh(π )]
10n

≈ 1
81
.

The first holds to 12 decimal places, while the sec-
ond holds to 268 places. This phenomenon can be
understood by examining the continued fraction ex-
pansion of the constants tanh(π/2) and tanh(π ):
the integer 11 appears as the third entry of the first,
while 267 appears as the third entry of the second.

Bill Gosper, commenting on the extraordinary ef-
fectiveness of continued-fraction expansions to
“see” what is happening in such problems, de-
clared, “It looks like you are cheating God some-
how.”

A fine illustration is the unremarkable decimal
α = 1.4331274267223117583 . . . whose contin-
ued fraction begins [1,2,3,4,5,6,7,8,9 . . .] and so
most probably is a ratio of Bessel functions. Indeed,
I0(2)/I1(2) was what generated the decimal. Simi-
larly, π and e are quite different as continued frac-
tions, less so as decimals.

A more sobering example of high-precision
“fraud” is the integral

π2 :=
∫∞

0
cos(2x)

∞∏
n=1

cos
(x
n

)
dx.(26)

The computation of a high-precision numerical
value for this integral is rather challenging, due in
part to the oscillatory behavior of 

∏
n≥1 cos(x/n)

(see Figure 2), but mostly due to the difficulty of
computing high-precision evaluations of the inte-
grand function. Note that evaluating thousands of
terms of the infinite product would produce only

a few correct digits. Thus it is necessary to rewrite
the integrand function in a form more suitable for
computation. This can be done by writing

f (x) = cos(2x)


 m∏

1

cos(x/k)


 exp(fm(x)),(27)

where we choose m > x , and where

fm(x) =
∞∑

k=m+1

log cos
(x
k

)
.(28)

The log cos evaluation can be expanded in a Tay-
lor series [1, p. 75], as follows:

log cos
(x
k

)
=

∞∑
j=1

(−1) j22j−1(22j − 1)B2j

j(2j)!

(x
k

)2j
,

where B2j are Bernoulli numbers. Note that since
k > m > x in (28), this series converges. We can now
write

fm(x) =
∞∑

k=m+1

∞∑
j=1

(−1) j22j−1(22j − 1)B2j

j(2j)!

(x
k

)2j

= −
∞∑
j=1

(22j − 1)ζ(2j)
jπ2j


 ∞∑
k=m+1

1
k2j


x2j

= −
∞∑
j=1

(22j − 1)ζ(2j)
jπ2j


ζ(2j)−

m∑
k=1

1
k2j


x2j .

This can now be written in a compact form for com-
putation as

fm(x) = −
∞∑
j=1

ajbj,mx2j ,(29)

where

(30)

aj =
(22j − 1)ζ(2j)

jπ2j ,

bj,m = ζ(2j)−
m∑
k=1

1/k2j .

n=2
n=5
n=10
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Figure 5. First few terms of 
∏
n≥1 cos(x/k) .
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Computation of these b coefficients must be done
to a much higher precision than that desired for
the quadrature result, since two very nearly equal
quantities are subtracted here.

The integral can now be computed using, for ex-
ample, the tanh-sinh quadrature scheme. The first
60 digits of the result are the following:

0.3926990816987241548078304229099

37860524645434187231595926812 . . . .
At first glance, this appears to be π/8. But a care-
ful comparison with a high-precision value of π/8,
namely

0.3926990816987241548078304229099

37860524646174921888227621868 . . . ,

reveals that they are not equal: the two values dif-
fer by approximately 7.407× 10−43. Indeed, these
two values are provably distinct. The reason is 
governed by the fact that 

∑55
n=1 1/(2n+ 1) > 2 >∑54

n=1 1/(2n+ 1). See [16, Chap. 2] for additional
details.

A related example is the following. Recall the sinc
function

sinc(x) := sinx
x
.

Consider the seven highly oscillatory integrals
below.

I1 :=
∫∞

0
sinc(x)dx = π

2
,

I2 :=
∫∞

0
sinc(x)sinc

(x
3

)
dx = π

2
,

I3 :=
∫∞

0
sinc(x)sinc

(x
3

)
sinc

(x
5

)
dx = π

2
,

. . .

I6 :=
∫∞

0
sinc(x)sinc

(x
3

)
· · · sinc

( x
11

)
dx = π

2
,

I7 :=
∫∞

0
sinc(x)sinc

(x
3

)
· · · sinc

( x
13

)
dx = π

2
.

However,

I8 :=
∫∞

0
sinc(x)sinc

(x
3

)
· · · sinc

( x
15

)
dx

= 467807924713440738696537864469
935615849440640907310521750000

π

≈ 0.499999999992646π.

When this was first found by a researcher using a
well-known computer algebra package, both he
and the software vendor concluded there was a
“bug” in the software. Not so! It is easy to see that
the limit of these integrals is 2π1, where

π1 :=
∫∞

0
cos(x)

∞∏
n=1

cos
(x
n

)
dx.(31)

This can be seen via Parseval’s theorem, which
links the integral

IN :=
∫∞

0
sinc(a1x)sinc (a2x) · · · sinc (aNx) dx

with the volume of the polyhedron PN given by

PN := {x : |
N∑
k=2

akxk| ≤ a1, |xk| ≤ 1,2 ≤ k ≤ N},

where x := (x2, x3, · · · , xN ). If we let

CN := {(x2, x3, · · · , xN ) : −1 ≤ xk ≤ 1,2 ≤ k ≤ N},
then

IN = π
2a1

Vol(PN )
Vol(CN )

.

Thus, the value drops precisely when the con-
straint 

∑N
k=2 akxk ≤ a1 becomes active and bites

the hypercube CN . That occurs when 
∑N
k=2 ak > a1.

In the above, 13 +
1
5 + · · · +

1
13 < 1, but on addition

of the term 1
15, the sum exceeds 1, the volume

drops, and IN = π
2 no longer holds. A similar analy-

sis applies to π2. Moreover, it is fortunate that we
began with π1 or the falsehood of the identity anal-
ogous to that displayed above would have been
much harder to see.

Further Directions and Implications
In spite of the examples of the previous section, it
must be acknowledged that computations can in
many cases provide very compelling evidence for
mathematical assertions. As a single example, re-
cently Yasumasa Kanada of Japan calculated π to
over one trillion decimal digits (and also to over one
trillion hexadecimal digits). Given that such com-
putations—which take many hours on large, state-
of-the-art supercomputers—are prone to many
types of error, including hardware failures, system
software problems, and especially programming
bugs, how can one be confident in such results?

In Kanada’s case, he first used two different
arctangent-based formulas to evaluate π to over
one trillion hexadecimal digits. Both calculations

Figure 6. Advanced Collaborative Environment in Vancouver.
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agreed that the hex expansion beginning at 
position 1,000,000,000,001 is B4466E8D21
5388C4E014. He then applied a variant of the BBP
formula for π , mentioned in Section 3, to calculate
these hex digits directly. The result agreed exactly.
Needless to say, it is exceedingly unlikely that 
three different computations, each using a com-
pletely distinct computational approach, would 
all perfectly agree on these digits unless all three
are correct.

Another, much more common, example is the
usage of probabilistic primality testing schemes.
Damgard, Landrock, and Pomerance showed in
1993 that if an integer n has k bits, then the prob-
ability that it is prime, provided it passes the most
commonly used probabilistic test, is greater than
1− k242−

√
k , and for certain k is even higher [25].

For instance, if n has 500 bits, then this probabil-
ity is greater than 1− 1/428m . Thus a 500-bit 
integer that passes this test even once is prime 
with prohibitively safe odds: the chance of a false
declaration of primality is less than one part in Avo-
gadro’s number (6× 1023) . If it passes the test for
four pseudorandomly chosen integers a, then the
chance of false declaration of primality is less than
one part in a googol (10100) . Such probabilities are
many orders of magnitude more remote than the
chance that an undetected hardware or software
error has occurred in the computation. Such meth-
ods thus draw into question the distinction be-
tween a probabilistic test and a “provable” test.

Another interesting question is whether these
experimental methods may be capable of discov-
ering facts that are fundamentally beyond the reach
of formal proof methods, which, due to Gödel’s re-
sult, we know must exist; see also [24].

One interesting example, which has arisen in our
work, is the following. We mentioned in Section 3
the fact that the question of the 2-normality of π
reduces to the question of whether the chaotic it-
eration x0 = 0 and

xn =
{

16xn−1 +
120n2 − 89n+ 16

512n4 − 1024n3 + 712n2 − 206n+ 21

}
,

where {·} denotes fractional part, are equidistrib-
uted in the unit interval.

It turns out that if one defines the sequence
yn = �16xn� (in other words, one records which of
the 16 subintervals of (0,1), numbered 0 through
15, xn lies in), that the sequence (yn), when inter-
preted as a hexadecimal string, appears to pre-
cisely generate the hexadecimal digit expansion of
π . We have checked this to 1,000,000 hex digits and
have found no discrepancies. It is known that (yn)
is a very good approximation to the hex digits of
π , in the sense that the expected value of the num-
ber of errors is finite [15, Section 4.3] [11]. Thus
one can argue, by the second Borel-Cantelli lemma,
that in a heuristic sense the probability that there

is any error among the remaining digits after the
first million is less than 1.465× 10−8 [15, Section
4.3]. Additional computations could be used to
lower this probability even more.

Although few would bet against such odds, these
computations do not constitute a rigorous proof
that the sequence (yn) is identical to the hexadec-
imal expansion of π . Perhaps someday someone
will be able to prove this observation rigorously.
On the other hand, maybe not—maybe this 
observation is in some sense an “accident” of 
mathematics, for which no proof will ever be 
found. Perhaps numerical validation is all we can
ever achieve here.

Conclusion
We are only now beginning to digest some very old
ideas:

Leibniz’s idea is very simple and very
profound. It’s in section VI of the Dis-
cours [de métaphysique]. It’s the obser-
vation that the concept of law becomes
vacuous if arbitrarily high mathemati-
cal complexity is permitted, for then
there is always a law. Conversely, if the
law has to be extremely complicated,
then the data is irregular, lawless, ran-
dom, unstructured, patternless, and
also incompressible and irreducible. A
theory has to be simpler than the data
that it explains, otherwise it doesn’t ex-
plain anything.  —Gregory Chaitin [24]

Chaitin argues convincingly that there are many
mathematical truths which are logically and com-
putationally irreducible—they have no good reason
in the traditional rationalist sense. This in turn
adds force to the desire for evidence even when
proof may not be possible. Computer experiments

Figure 7. Polyhedra in an immersive environment.
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can provide precisely the sort of evidence that is
required.

Although computer technology had its roots in
mathematics, the field is a relative latecomer to the
application of computer technology, compared,
say, with physics and chemistry. But now this is
changing, as an army of young mathematicians,
many of whom have been trained in the usage of
sophisticated computer math tools from their high
school years, begin their research careers. Further
advances in software, including compelling new
mathematical visualization environments (see Fig-
ures 6 and 7), will have their impact. And the re-
markable trend towards greater miniaturization
(and corresponding higher power and lower cost)
in computer technology, as tracked by Moore’s
Law, is pretty well assured to continue for at least
another ten years, according to Gordon Moore him-
self and other industry analysts. As Richard Feyn-
man noted back in 1959, “There’s plenty of room
at the bottom” [27]. It will be interesting to see what
the future will bring.
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THE EXPERIMENTAL MATHEMATICIAN: THE PLEASURE

OF DISCOVERY AND THE ROLE OF PROOF

‘. . .where almost one quarter hour was spent, each beholding the other with

admiration before one word was spoken: at last Mr. Briggs began ‘‘My Lord, I

have undertaken this long journey purposely to see your person, and to know by

what wit or ingenuity you first came to think of this most excellent help unto

Astronomy, viz. the Logarithms: but my Lord, being by you found out, I wonder

nobody else found it out before, when now being known it appears so easy.’’ ’1

ABSTRACT. The emergence of powerful mathematical computing environments, the

growing availability of correspondingly powerful (multi-processor) computers and the

pervasive presence of the internet allow for mathematicians, students and teachers, to

proceed heuristically and ‘quasi-inductively’. We may increasingly use symbolic and nu-

meric computation, visualization tools, simulation and data mining. The unique features

of our discipline make this both more problematic and more challenging. For example,

there is still no truly satisfactory way of displaying mathematical notation on the web; and

we care more about the reliability of our literature than does any other science. The

traditional role of proof in mathematics is arguably under siege – for reasons both good

and bad.

AMS Classifications: 00A30, 00A35, 97C50

KEY WORDS: aesthetics, constructivism, experimental mathematics, humanist philosophy,

insight, integer relations, proof

1. EXPERIMENTAL MATH: AN INTRODUCTION

‘‘There is a story told of the mathematician Claude Chevalley (1909–1984), who,

as a true Bourbaki, was extremely opposed to the use of images in geometric

reasoning.

He is said to have been giving a very abstract and algebraic lecture when he got

stuck. After a moment of pondering, he turned to the blackboard, and, trying to

hide what he was doing, drew a little diagram, looked at it for a moment, then

quickly erased it, and turned back to the audience and proceeded with the

lecture. . .
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. . .The computer offers those less expert, and less stubborn than Chevalley, access

to the kinds of images that could only be imagined in the heads of the most gifted

mathematicians, . . .’’ (Nathalie Sinclair2)

For my coauthors and I, Experimental Mathematics (Borwein and
Bailey, 2003) connotes the use of the computer for some or all of:

1. Gaining insight and intuition.
2. Discovering new patterns and relationships.
3. Graphing to expose math principles.
4. Testing and especially falsifying conjectures.
5. Exploring a possible result to see if it merits formal proof.
6. Suggesting approaches for formal proof.
7. Computing replacing lengthy hand derivations.
8. Confirming analytically derived results.

This process is studied very nicely by Nathalie Sinclair in the context
of pre-service teacher training.3 Limned by examples, I shall also raise
questions such as:

What constitutes secure mathematical knowledge? When is com-
putation convincing? Are humans less fallible? What tools are
available? What methodologies? What about the ‘law of the small
numbers’? How is mathematics actually done? How should it be?
Who cares for certainty? What is the role of proof?

And I shall offer some personal conclusions from more than
twenty years of intensive exploitation of the computer as an adjunct
to mathematical discovery.

1.1. The Centre for Experimental Math

About 12 years ago I was offered the signal opportunity to found the
Centre for Experimental and Constructive Mathematics (CECM) at
Simon Fraser University. On its web-site (www.cecm.sfu.ca) I wrote

‘‘At CECM we are interested in developing methods for exploiting mathematical

computation as a tool in the development of mathematical intuition, in hypotheses

building, in the generation of symbolically assisted proofs, and in the construction

of a flexible computer environment in which researchers and research students can

undertake such research. That is, in doing ‘Experimental Mathematics.’’’

The decision to build CECM was based on: (i) more than a dec-
ade’s personal experience, largely since the advent of the personal
computer, of the value of computing as an adjunct to mathematical
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insight and correctness; (ii) on a growing conviction that the future of
mathematics would rely much more on collaboration and intelligent
computation; (iii) that such developments needed to be enshrined in,
and were equally valuable for, mathematical education; and (iv) that
experimental mathematics is fun.

Adecadeormore later,my colleagues and I are evenmore convinced
of the value of our venture – and the ‘mathematical universe is
unfolding’ much as we anticipated. Our efforts and philosophy are
described in some detail in the recent books (Borwein and Bailey, 2003;
Borwein et al., 2004) and in the survey articles (Borwein et al., 1996;
Borwein and Carless, 1999; Bailey and Borwein, 2000; Borwein and
Borwein, 2001). More technical accounts of some of our tools and
successes are detailed in (Borwein and Bradley (1997) and Borwein
and Lisonĕk (2000). About 10 years ago the term ‘experimental
mathematics’ was often treated as an oxymoron. Now there is a highly
visible and high quality journal of the same name. About 15 years ago,
most self-respecting research pure mathematicians would not admit to
using computers as an adjunct to research.Now theywill talk about the
topic whether or not they have any expertise. The centrality of infor-
mation technology to our era and the growing need for concrete im-
plementable answers suggests why we had attached the word
‘Constructive’ to CECM – and it motivated my recent move to Dal-
housie to establish a new Distributed Research Institute and Virtual
Environment, D-DRIVE (www.cs.dal.ca/ddrive).

While some things have happened much more slowly than we
guessed (e.g., good character recognition for mathematics, any sub-
stantial impact on classroom parole) others have happened much
more rapidly (e.g., the explosion of the world wide web4, the quality
of graphics and animations, the speed and power of computers).
Crudely, the tools with broad societal or economic value arrive
rapidly, those interesting primarily in our niche do not.

Research mathematicians for the most part neither think deeply
about nor are terribly concerned with either pedagogy or the phi-
losophy of mathematics. Nonetheless, aesthetic and philosophical
notions have always permeated (pure and applied) mathematics. And
the top researchers have always been driven by an aesthetic impera-
tive:

‘‘We all believe that mathematics is an art. The author of a book, the lecturer in a

classroom tries to convey the structural beauty of mathematics to his readers, to his

listeners. In this attempt, he must always fail. Mathematics is logical to be sure,
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each conclusion is drawn from previously derived statements. Yet the whole of it,

the real piece of art, is not linear; worse than that, its perception should be

instantaneous. We have all experienced on some rare occasions the feeling of ela-

tion in realizing that we have enabled our listeners to see at a moment’s glance the

whole architecture and all its ramifications.’’ (Emil Artin, 1898–1962)5

Elsewhere, I have similarly argued for aesthetics before utility
(Borwein, 2004, in press). The opportunities to tie research and
teaching to aesthetics are almost boundless – at all levels of the
curriculum.6 This is in part due to the increasing power and sophis-
tication of visualization, geometry, algebra and other mathematical
software. That said, in my online lectures and resources,7 and in
many of the references one will find numerous examples of the utility
of experimental mathematics.

In this article, my primary concern is to explore the relationship
between proof (deduction) and experiment (induction). I borrow
quite shamelessly from my earlier writings.

There is a disconcerting pressure at all levels of the curriculum to
derogate the role of proof. This is in part motivated by the aridity of
some traditional teaching (e.g., of Euclid), by the alternatives now
being offered by good software, by the difficulty of teaching and
learning the tools of the traditional trade, and perhaps by laziness.

My own attitude is perhaps best summed up by a cartoon in a
book on learning to program in APL (a very high level language).
The blurb above reads Remember 10 minutes of computation is worth
10 hours of thought. The blurb below reads Remember 10 minutes of
thought is worth 10 hours of computation. Just as the unlived life is not
much worth examining, proof and rigour should be in the service of
things worth proving. And equally foolish, but pervasive, is encour-
aging students to ‘discover’ fatuous generalizations of uninteresting
facts. As an antidote, In Section 2, I start by discussing and illus-
trating a few of George Polya’s views. Before doing so, I review the
structure of this article.

Section 2 discusses some of George Polya’s view on heuristic
mathematics, while Section 3 visits opinions of various eminent
mathematicians. Section 4 discusses my own view and their genesis.
Section 5 contains a set of mathematical examples amplifying the
prior discussion. Sections 6 and 7 provide two fuller examples of
computer discovery, and in Section 8 I return to more philosophical
matters – in particular, a discussion of proof versus truth and the
nature of secure mathematical knowledge.
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2. POLYA ON PICTURE-WRITING

‘‘[I]ntuition comes to us much earlier and with much less outside influence than

formal arguments which we cannot really understand unless we have reached a

relatively high level of logical experience and sophistication.’’ (Geroge Polya)8

Polya, in his engaging eponymous 1956 American Mathematical
Monthly article on picture writing, provided three provoking exam-
ples of converting pictorial representations of problems into gener-
ating function solutions:

1. In how many ways can you make change for a dollar?
This leads to the (US currency) generating function

X1

k¼1
Pkx

k ¼ 1

ð1� x1Þð1� x5Þð1� x10Þð1� x25Þð1� x50Þ ;

which one can easily expand using a Mathematica command,
Series ½1=ðð1� xÞ � ð1� x 5̂Þ � ð1� x^10Þ � ð1� x^25Þ � ð1� x^50ÞÞ;
fx; 0; 100g�
to obtain P100 ¼ 292 (243 for Canadian currency, which lacks a
50 cent piece but has a dollar coin). Polya’s diagram is shown in
Figure 1.9

To see why we use geometric series and consider the so-called
ordinary generating function

1

1� x10
¼ 1þ x10 þ x20 þ x30 þ � � �

Figure 1. Polya’s illustration of the change solution.
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for dimes and

1

1� x25
¼ 1þ x25 þ x50 þ x75 þ � � �

for quarters, etc. If we multiply these two together and compare
coefficients, we get

1

1� x10
� 1

1� x25
¼ 1þ x10 þ x20 þ x25 þ x30 þ x35

þ x40 þ x45 þ 2x50 þ x55 þ 2x60 þ � � �

and can argue that the coefficient of x60 on the right is precisely
the number of ways of making 60 cents out of identical dimes and
quarters.
This is easy to check with a handful of change or a calculator and
the more general question with more denominations is handled
similarly. I leave it to the reader to decide whether it is easier to
decode the generating function from the picture or vice versa. In
any event, symbolic and graphic experiment can provide abun-
dant and mutual reinforcement and assistance in concept forma-
tion.

2. Dissect a polygon with n sides into n ) 2 triangles by n ) 3 diagonals
and compute Dn, the number of different dissections of this kind.
This leads to the fact that the generating function for D3 ¼ 1,
D4 ¼ 2, D5 ¼ 5, D6 ¼ 14, D7 ¼ 42, . . .

DðxÞ ¼
X1

k¼1
Dkx

k

satisfies

DðxÞ ¼ x½1þDðxÞ�2;

whose solution is therefore

DðxÞ ¼ 1� 2x�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4x
p

x

andDn+2 turns out to be the n-th Catalan number
2n
n

� �
=ðnþ 1Þ.
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3. Compute Tn, the number of different (rooted) trees with n knots.
The generating function of the Tn becomes a remarkable result
due to Cayley:

TðxÞ ¼
X1

k¼1
Tkx

k ¼ x
Y1

k¼1
ð1� xkÞ�Tk ; ð1Þ

where remarkably the product and the sum share their coeffi-
cients. This produces a recursion for Tn in terms of T1, T2,. . .,
Tn)1, which starts: T1 ¼ 1, T2 ¼ 1, T3 ¼ 2, T4 ¼ 4, T5 ¼ 9,
T6 ¼ 20,. . .

In each case, Polya’s main message is that one can usefully draw
pictures of the component elements – (a) in pennies, nickels dimes
and quarters (plus loonies in Canada and half dollars in the US), (b)
in triangles and (c) in the simplest trees (e.g., those with the fewest
branches).

‘‘In the first place, the beginner must be convinced that proofs deserve to be

studied, that they have a purpose, that they are interesting.’’ (George Polya)10

While by ‘beginner’ George Polya largely intended young school
students, I suggest that this is equally true of anyone engaging for the
first time with an unfamiliar topic in mathematics.

3. GAUSS, HADAMARD AND HARDY’S VIEWS

Three of my personal mathematical heroes, very different men from
different times, all testify interestingly on these points and on the
nature of mathematics.

3.1. Carl Friedrich Gauss

Carl Friedrich Gauss (1777–1855) wrote in his diary11

‘‘I have the result, but I do not yet know how to get it.’’

Ironically I have been unable to find the precise origin of this quote.
One of Gauss’s greatest discoveries, in 1799, was the relationship

between the lemniscate sine function and the arithmetic-geometric
mean iteration. This was based on a purely computational
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observation. The young Gauss wrote in his diary that the result ‘‘will
surely open up a whole new field of analysis.’’

He was right, as it prised open the whole vista of 19th century
elliptic and modular function theory. Gauss’s specific discovery,
based on tables of integrals provided by Stirling (1692–1770), was
that the reciprocal of the integral

v
2

p

Z 1

0

dtffiffiffiffiffiffiffiffiffiffiffiffi
1� t4
p

agreed numerically with the limit of the rapidly convergent iteration
given by a0 :¼ 1, b0 :¼

ffiffiffi
2
p

and computing

anþ1 :¼ an þ bn
2

; bnþ1 :¼
ffiffiffiffiffiffiffiffiffi
anbn

p
:

The sequences an, bn have a common limit
1.1981402347355922074. . .

Which object, the integral or the iteration, is more familiar, which
is more elegant – then and now? Aesthetic criteria change: ‘closed
forms’ have yielded centre stage to ‘recursion’, much as biological
and computational metaphors (even ‘biology envy’) have replaced
Newtonian mental images with Richard Dawkin’s ‘blind watch-
maker’.

This experience of ‘having the result’ is reflective of much research
mathematics. Proof and rigour play the role described next by
Hadamard. Likewise, the back-handed complement given by Briggs
to Napier underscores that is often harder to discover than to explain
or digest the new discovery.

3.2. Jacques Hadamard

A constructivist, experimental and aesthetic driven rationale for
mathematics could hardly do better than to start with:

‘‘The object of mathematical rigor is to sanction and legitimize the conquests of

intuition, and there was never any other object for it.’’ (J. Hadamard12)

Jacques Hadamard (1865–1963) was perhaps the greatest mathe-
matician to think deeply and seriously about cognition in mathe-
matics13. He is quoted as saying ‘‘. . . in arithmetic, until the seventh
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grade, I was last or nearly last’’ which should give encouragement to
many young students.

Hadamard was both the author of ‘‘The psychology of invention
in the mathematical field’’ (1945), a book that still rewards close
inspection, and co-prover of the Prime Number Theorem (1896):

‘‘The number of primes less than n tends to ¥ as does n/log n.’’

This was one of the culminating results of 19th century mathematics
and one that relied on much preliminary computation and experi-
mentation.

One rationale for experimental mathematics and for heuristic
computations is that one generally does not know during the course
of research how it will pan out. Nonetheless, one must frequently
prove all the pieces along the way as assurance that the project re-
mains on course. The methods of experimental mathematics, alluded
to below, allow one to maintain the necessary level of assurance
without nailing down all the lemmas. At the end of the day, one can
decide if the result merits proof. It may not be the answer one sought,
or it may just not be interesting enough.

3.3. Hardy’s Apology

Correspondingly, G. H. Hardy (1877–1947), the leading British ana-
lyst of the first half of the 20th century was also a stylish author who
wrote compellingly in defense of pure mathematics. He noted that

‘‘All physicists and a good many quite respectable mathematicians are contemp-

tuous about proof.’’

in his apologia, ‘‘A Mathematician’s Apology’’. The Apology is a
spirited defense of beauty over utility:

‘‘Beauty is the first test. There is no permanent place in the world for ugly math-

ematics.’’

That said, his comment that

‘‘Real mathematics. . .is almost wholly ‘useless’.’’

has been over-played and is now to my mind very dated, given the
importance of cryptography and other pieces of algebra and number
theory devolving from very pure study. But he does acknowledge that
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‘‘If the theory of numbers could be employed for any practical and obviously

honourable purpose, . . .’’

even Gauss would be persuaded.
The Apology is one of Amazon’s best sellers. And the existence of

Amazon, or Google, means that I can be less than thorough with my
bibliographic details without derailing a reader who wishes to find the
source.

Hardy, on page 15 of his tribute to Ramanujan entitled Raman-
ujan, Twelve Lectures . . ., gives the so-called ‘Skewes number’ as a
‘‘striking example of a false conjecture’’. The integral

li x ¼
Z x

0

dt

log t

is a very good approximation to p(x), the number of primes not
exceeding x. Thus, li 108 ¼ 5, 762, 209.375. . . while p(108) ¼ 5,
761,455.

It was conjectured that

li x > pðxÞ

holds for all x and indeed it so for many x. Skewes in 1933 showed
the first explicit crossing at 1010

1034

. This has by now been now re-
duced to a relatively tiny number, a mere 101167, still vastly beyond
direct computational reach or even insight.

Such examples show forcibly the limits on numeric experimen-
tation, at least of a naive variety. Many will be familiar with the
‘Law of large numbers’ in statistics. Here we see what some
number theorists call the ‘Law of small numbers’: all small numbers
are special, many are primes and direct experience is a poor guide.
And sadly or happily depending on one’s attitude even 101166 may
be a small number. In more generality one never knows when the
initial cases of a seemingly rock solid pattern are misleading.
Consider the classic sequence counting the maximal number of
regions obtained by joining n points around a circle by straight
lines:

1; 2; 4; 8; 16; 31; 57; . . .

(see entry A000127 in Sloane’s Encyclopedia).
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4. RESEARCH GOALS AND MOTIVATIONS

As a computational and experimental pure mathematician my
main goal is: insight. Insight demands speed and increasingly
parallelism as described in Borwein and Borwein (2001). Extraor-
dinary speed and enough space are prerequisite for rapid verifi-
cation and for validation and falsification (‘proofs and
refutations’). One can not have an ‘aha’ when the ‘a’ and ‘ha’
come minutes or hours apart.

What is ‘easy’ changes as computers and mathematical software
grow more powerful. We see an exciting merging of disciplines, levels
and collaborators. We are more and more able to marry theory &
practice, history & philosophy, proofs & experiments; to match ele-
gance and balance to utility and economy; and to inform all math-
ematical modalities computationally – analytic, algebraic, geometric
& topological.

This has lead us to articulate an Experimental Mathodology,14 as a
philosophy (Borwein et al., 1996; Borwein and Bailey, 2003) and in
practice (Borwein and Corless, 1999), based on: (i) meshing compu-
tation and mathematics (intuition is often acquired not natural,
notwithstanding the truth of Polya’s observations above); (ii) visu-
alization (even three is a lot of dimensions). Nowadays we can exploit
pictures, sounds and other haptic stimuli; and on (iii) ‘caging’ and
‘monster-barring’ (Imre Lakatos’ and my terms for how one rules out
exceptions and refines hypotheses). Two particularly useful compo-
nents are:

• Graphic checks. comparing y)y2 and y2)y4 to )y2 ln(y) for
0 < y < 1 pictorially (as in Figure 2) is a much more rapid way
to divine which is larger than traditional analytic methods. It is
clear that in the later case they cross, it is futile to try to prove one
majorizes the other. In the first case, evidence is provided to
motivate a proof.

• Randomized checks. of equations, linear algebra, or primality can
provide enormously secure knowledge or counter-examples when
deterministic methods are doomed.

All of these are relevant at every level of learning and research. My
own methodology depends heavily on: (i) (High Precision) compu-
tation of object(s) for subsequent examination; (ii) Pattern Recogni-
tion of Real Numbers (e.g., using CECM’s Inverse Calculator and
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‘RevEng’.15) or Sequences (e.g., using Salvy & Zimmermann’s ‘gfun’
or Sloane and Plouffe’s Online Encyclopedia); and (iii) extensive use
of Integer Relation Methods: PSLQ & LLL and FFT.16 Exclusion
bounds are especially useful and such methods provide a great test
bed for ‘Experimental Mathematics’. All these tools are accessible
through the listed CECM websites and those at www:expmath:info:
To make more sense of this it is helpful to discuss the nature of
experiment.

4.1. Four Kinds of Experiment

Peter Medawar usefully distinguishes four forms of scientific experi-
ment.

1. The Kantian example: Generating ‘‘the classical non-Euclidean
geometries (hyperbolic, elliptic) by replacing Euclid’s axiom of
parallels (or something equivalent to it) with alternative forms.’’

2. The Baconian experiment is a contrived as opposed to a natural
happening, it ‘‘is the consequence of ‘trying things out’ or even of
merely messing about.’’

3. Aristotelian demonstrations: ‘‘apply electrodes to a frog’s sciatic
nerve, and lo, the leg kicks; always precede the presentation of the
dog’s dinner with the ringing of a bell, and lo, the bell alone will
soon make the dog dribble.’’

4. The most important is Galilean: ‘‘a critical experiment – one that
discriminates between possibilities and, in doing so, either gives us

Figure 2. Graphical comparison of y)y2 and y2)y4 to )y2 ln(y) (red).
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confidence in the view we are taking or makes us think it in need
of correction.’’

The first three forms are common in mathematics, the fourth is
not. It is also the only one of the four forms which has the promise to
make Experimental Mathematics into a serious replicable scientific
enterprise.17

5. FURTHER MATHEMATICAL EXAMPLES

The following suite of examples aims to make the case that modern
computational tools can assist both by encapsulating concepts and by
unpacking them as needs may be.

5.1. Two Things About
ffiffiffi
2
p

. . .

Remarkably one can still find new insights in the oldest areas:

5.1.1. Irrationality
We present graphically, Tom Apostol’s lovely new geometric
proof18 of the irrationality of

ffiffiffi
2
p

. Earlier variants have been pre-
sented, but I like very much that this was published in the present
millennium.

PROOF. To say
ffiffiffi
2
p

is rational is to draw a right-angled isoceles
triangle with integer sides. Consider the smallest right-angled isoceles

Figure 3. Root two is irrational (static and dynamic pictures).
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triangle with integer sides – that is with shortest hypotenuse. Cir-
cumscribe a circle of radius the vertical side and construct the tangent
on the hypotenuse, as in the picture in Figure 3. Repeating the pro-
cess once more produces an even smaller such triangle in the same
orientation as the initial one.

The smaller right-angled isoceles triangle again has integer sides. . . QED

This can be beautifully illustrated in a dynamic geometry
package such as Geometer’s SketchPad, Cabri or Cinderella, as
used here. We can continue to draw smaller and smaller integer-
sided similar triangles until the area palpably drops below 1/2. But
I give it here to emphasize the ineffably human component of the
best proofs.

A more elaborate picture can be drawn to illustrate the irratio-
nality of

ffiffiffi
n
p

for n ¼ 3,5,6,. . .

5.1.2. Rationalityffiffiffi
2
p

also makes things rational:

ffiffiffi
2
p ffiffi

2
p� � ffiffi

2
p

¼
ffiffiffi
2
p ð

ffiffi
2
p
�
ffiffi
2
p
Þ ¼

ffiffiffi
2
p 2 ¼ 2:

Hence by the principle of the excluded middle

Either
ffiffiffi
2
p ffiffi

2
p

2 Q or
ffiffiffi
2
p ffiffi

2
p

j2Q:

In either case we can deduce that there are irrational numbers a
and b with ab rational. But how do we know which ones? This is not
an adequate proof for an Intuitionist or a Constructivist. We may
build a whole mathematical philosophy project around this. Compare
the assertion that

a :¼
ffiffiffi
2
p

and b :¼ 2 ln2ð3Þ yield ab ¼ 3

as Maple confirms. This illustrates nicely that verification is often
easier than discovery (similarly the fact multiplication is easier than
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factorization is at the base of secure encryption schemes for e-com-
merce).
There are eight possible (ir)rational triples:

ab ¼ c

and finding examples of all cases is now a fine student project.

5.2. Exploring Integrals and Products

Even Maple ‘knows’ p „ 22/7 since

0 <

Z 1

0

ð1� xÞ4x4
1þ x2

dx ¼ 22

7
� p;

though it would be prudent to ask ‘why’ it can perform the evaluation
and ‘whether’ to trust it?

In this case, asking a computer algebra system to evaluate the
indefinite integral

Z t

0

ð1� x4Þx4
ð1þ x2Þ dx ¼ 1

7
t7 � 2

3
t6 þ t5 � 4

3
t3 þ 4t� 4 arctanðtÞ

and differentiation proves the formula completely – after an appeal to
the Fundamental theorem of calculus.

The picture in Figure 4 illustrates Archimedes’ inequality in
Nathalie Sinclair’s Colour calculator micro-world in which the digits
have been coloured modulo 10. This reveals simple patterns in 22/7,
more complex in 223/71 and randomness in p. Many new approaches

Figure 4. A colour calculator.
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to teaching about fractions are made possible by the use of such a
visual representation.

In contrast, Maple struggles with the following sophomore’s
dream:19

Z 1

0

1

xx
dx ¼

X1

n¼1

1

nn
;

and students asked to confirm this, typically mistake numerical val-
idation for symbolic proof.

Similarly

Y1

n¼2

n3 � 1

n3 þ 1
¼ 2

3
ð2Þ

is rational, while the seemingly simpler (n = 2) case

Y1

n¼2

n2 � 1

n2 þ 1
¼ p

sinhðpÞ ð3Þ

is irrational, indeed transcendental. Our Inverse Symbolic Calcula-
tor can identify the right-hand side of (3) from it numeric value
0.272029054. . ., and the current versions Maple can ‘do’ both
products, but the student learns little or nothing from this unless the
software can also recreate the steps of a validation – thereby
unpacking the identity. For example, (2) may be rewritten as a
lovely telescoping product, and an attempt to evaluate the finite
product

YN

n¼2

n2 � 1

n2 þ 1
ð4Þ

leads to a formula involving the Gamma function, about which
Maple’s Help files are quite helpful, and the student can be led to
an informative proof on taking the limit in (4) after learning a few
basic properties of CðxÞ. Explicitly, with ‘val:=proc(f ) f = value(f )
end proc;’
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5.3 Self-Similarity in Pascal’s Triangle

In any event, in each case so far computing adds reality, making
concrete the abstract, and making some hard things simple. This is
strikingly the case in Pascal’s Triangle: www:cecm:sfu:ca=interfaces=
which affords an emphatic example where deep fractal structure is
exhibited in the elementary binomial coefficients

1; 1; 2; 1; 1; 3; 3; 1; 1; 4; 6; 4; 1; 1; 5; 10; 10; 5; 1
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becomes the parity sequence

1; 1; 0; 1; 1; 1; 1; 1; 1; 0; 0; 0; 1; 1; 1; 0; 0; 1; 1

and leads to the picture in Figure 5, in which odd elements of the
triangle are coloured purple. Thus, as in the

ffiffiffi
2
p

example notions of
self-similarity and invariance of scale can be introduced quite early
and naturally in the curriculum.

One can also explore what happens if the coefficients are colored
modulo three or four – four is nicer. Many other recursive sequences
exhibit similar fractal behaviour.20

5.4. Berlinski on Mathematical Experiment

David Berlinski21 writes

‘‘The computer has in turn changed the very nature of mathematical experience,

suggesting for the first time that mathematics, like physics, may yet become an

empirical discipline, a place where things are discovered because they are seen.’’

As all sciences rely more on ‘dry experiments’, via computer si-
mulation, the boundary between physics (e.g., string theory) and
mathematics (e.g., by experiment) is delightfully blurred. An early
exciting example is provided by gravitational boosting.

Figure 5. Drawing Pascal’s triangle modulo two.
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Gravitational boosting. ‘‘The Voyager Neptune Planetary Guide’’
(JPL Publication 89–24) has an excellent description of Michael
Minovitch’ computational and unexpected discovery of gravitational
boosting (otherwise known as slingshot magic) at the Jet Propulsion
Laboratory in 1961.

The article starts by quoting Arthur C. Clarke ‘‘Any sufficiently
advanced technology is indistinguishable from magic.’’ Until Min-
ovitch discovered that the so-called Hohmann transfer ellipses were
not the minimum energy way of getting to the outer planets, ‘‘most
planetary mission designers considered the gravity field of a target
planet to be somewhat of a nuisance, to be cancelled out, usually by
onboard Rocket thrust.’’ For example, without a gravitational
boost from the orbits of Saturn, Jupiter and Uranus, the Earth-
to-Neptune Voyager mission (achieved in 1989 in little more than a
decade) would have taken more than 30 years! We should still be
waiting.

Figure 6. First, second, third and seventh iterates of a Sierpinski triangle.
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5.5. Making Fractal Postcards

And yet, as we have seen, not all impressive discoveries require a
computer. Elaine Simmt and Brent Davis describe lovely construc-
tions made by repeated regular paper folding and cutting – but no
removal of paper – that result in beautiful fractal, self-similar, ‘‘pop-
up’’ cards.22 Nonetheless, in Figure 6, we show various iterates of a
pop-up Sierpinski triangle built in software by turning those paper
cutting and folding rules into an algorithm. Note the similarity to the
triangle in Figure 7. Any regular rule produces a fine card. The pic-
tures should allow the reader to start folding.

Recursive Maple code is given below.
sierpinski := proc ( n: nonnegint)

And, as in Figure 7, art can be an additional source of mathe-
matical inspiration.

5.6. Seeing Patterns in Partitions

The number of additive partitions of n, p(n), is generated by

1þ
X

n�1
pðnÞqn ¼ 1Q

n�1ð1� qnÞ : ð5Þ
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Thus, p(5) = 7 since

5 ¼ 4þ 1 ¼ 3þ 2 ¼ 3þ 1þ 1 ¼ 2þ 2þ 1

¼ 2þ 1þ 1þ 1 ¼ 1þ 1þ 1þ 1þ 1:

Developing (5) is a nice introduction to enumeration via generating
functions of the type discussed in Polya’s change example.

Additive partitions are harder to handle than multiplicative fac-
torizations, but again they may be introduced in the elementary
school curriculum with questions like: How many ‘trains’ of a given
length can be built with Cuisenaire rods?

A more modern computationally driven question is How hard is
p(n) to compute?

In 1900, it took the father of combinatorics, Major Percy Mac-
Mahon (1854–1929), months to compute p(200) using recursions
developed from (5). By 2000, Maple would produce p(200) in seconds
if one simply demands the 200th term of the Taylor series. A few
years earlier it required one to be careful to compute the series forQ

n�1ð1� qnÞ first and then to compute the series for the reciprocal of
that series! This seemingly baroque event is occasioned by Euler’s
pentagonal number theorem

Y

n�1
ð1� qnÞ ¼

X1

n¼�1
ð�1Þnqð3nþ1Þn=2

Figure 7. Self similarity at Chartres.
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The reason is that, if one takes the series for (5) directly, the
software has to deal with 200 terms on the bottom. But if one takes
the series for

Q
n�1ð1� qnÞ, the software has only to handle the 23

non-zero terms in series in the pentagonal number theorem. This
expost facto algorithmic analysis can be used to facilitate indepen-
dent student discovery of the pentagonal number theorem, and like
results.

If introspection fails, we can find the pentagonal numbers occurring
above inSloaneandPlouffe’s on-line ‘Encyclopediaof IntegerSequences’
www.research.att.com/personal/njas/sequences/eisonline.html.

Ramanujan used MacMahon’s table of p(n) to intuit remarkable
and deep congruences such as

pð5nþ 4Þ � 0 mod 5

pð7nþ 5Þ � 0 mod 7

and

pð11nþ 6Þ � 0 mod 11;

from relatively limited data like

PðqÞ¼1þqþ2q2þ3q3þ5q4þ7q5þ11q6þ15q7þ22q8þ30q9

þ42q10þ56q11þ77q12þ101q13þ135q14þ176q15þ231q16

þ297q17þ385q18þ490q19þ627q20bþ792q21þ1002q22

þ���þpð200Þq200 ... ð6Þ

The exponents and coefficients for the cases 5n + 4 and 7n + 5 are
highlighted in formula (6). Of course, it is much easier to heuristically
confirm than to discover these patterns.

Here we see very fine examples of Mathematics: the science of
patterns as is the title of Keith Devlin’s 1997 book. And much more
may similarly be done.

The difficulty of estimating the size of p(n) analytically – so as to
avoid enormous or unattainable computational effort – led to some
marvellous mathematical advances by researchers including Hardy
and Ramanujan, and Rademacher. The corresponding ease of com-
putation may now act as a retardant to mathematical insight. New
mathematics is discovered only when prevailing tools run totally out
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of steam. This raises a caveat against mindless computing: will a
student or researcher discover structure when it is easy to compute
without needing to think about it? Today, she may thoughtlessly
compute p(500) which a generation ago took much, much pain and
insight.

Ramanujan typically found results not proofs and sometimes went
badly wrong for that reason. So will we all. Thus, we are brought full
face to the challenge, such software should be used, but algorithms
must be taught and an appropriate appreciation for and facility with
proof developed.

For example, even very extended evidence may be misleading.
Indeed.

5.7. Distinguishing Coincidence and Fraud

Coincidences do occur. The approximations

p � 3ffiffiffiffiffiffiffiffi
163
p logð640320Þ

and

p �
ffiffiffi
2
p 9801

4412

occur for deep number theoretic reasons – the first good to 15 places,
the second to eight. By contrast

ep � p ¼ 19:999099979189475768 . . .

most probably for no good reason. This seemed more bizarre on an
eight digit calculator. Likewise, as spotted by Pierre Lanchon re-
cently, in base-two

e ¼ 10:1011011111100001010100010110001010 . . .

p ¼ 11:001001000011111101101010100010001 . . .

have 19 bits agreeing – with one read right to left.
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More extended coincidences are almost always contrived, as in the
following due to Kurt Mahler early last century. Below ‘[x]’ denotes
the integer part of x. Consider:

X1

n¼1

½n tanhðpÞ�
10n

¼? 1

81

is valid to 268 places; while

X1

n¼1

½n tanhðp2Þ�
0n

¼? 1

81

is valid to 12 places. Both are actually transcendental numbers.
Correspondingly, the simple continued fractions for tanh(p) and

tanh(p2) are respectively,

½0; 1; 267; 4; 14; 1; 2; 1; 2; 2; 1; 2; 3; 8; 3; 1; . . .�

and

½0; 1; 11; 14; 4; 1; 1; 1; 3; 1; 295; 4; 4; 1; 5; 17; 7; . . .�:

This is, as they say, no coincidence! While the reasons (Borwein
and Bailey, 2003) are too advanced to explain here, it is easy to
conduct experiments to discover what happens when tanh(p) is re-
placed by another irrational number, say log(2).

It also affords a great example of fundamental objects that are
hard to compute by hand (high precision sums or continued frac-
tions) but easy even on a small computer or calculator. Indeed, I
would claim that continued fractions fell out of the undergraduate
curriculum precisely because they are too hard to work with by hand.
And, of course the main message, is again that computation without
insight is mind numbing and destroys learning.

6. COMPUTER DISCOVERY OF BITS OF p

Bailey, P. Borwein and Plouffe (1996) discovered a series for p (and
corresponding ones for some other polylogarithmic constants) which
somewhat disconcertingly allows one to compute hexadecimal digits
of p without computing prior digits. The algorithm needs very little
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memory and no multiple precision. The running time grows only
slightly faster than linearly in the order of the digit being computed.
Until that point it was broadly considered impossible to compute
digits of such a number without computing most of the preceding
ones.

The key, found as described above, is

p ¼
X1

k¼0

1

16

� �k
4

8kþ 1
� 2

8kþ 4
� 1

8kþ 5
� 1

8kþ 6

� �
:

Knowing an algorithm would follow they spent several months
hunting by computer using integer relation methods (Bailey and
Borwein, 2000; Borwein and Lisoněk, 2000; Dongarra and Sullivan,
2000) for such a formula. Once found, it is easy to prove in Math-
ematica, in Maple or by hand – and provides a very nice calculus
exercise. This discovery was a most successful case of REVERSE

MATHEMATICAL ENGINEERING.
The algorithm is entirely practicable, God reaches her hand deep

into p: in September 1997 Fabrice Bellard (INRIA) used a variant of
this formula to compute 152 binary digits of p, starting at the tril-
lionth position (1012). This took 12 days on 20 work-stations working
in parallel over the Internet.

In August 1998 Colin Percival (SFU, age 17) finished a similar
naturally or ‘‘embarrassingly parallel’’ computation of the five tril-
lionth bit (using 25 machines at about 10 times the speed of Bellard).
In hexadecimal notation he obtained

07E45733CC790B5B5979:

The corresponding binary digits of p starting at the 40 trillionth place
are

00000111110011111:

By September 2000, the quadrillionth bit had been found to be ‘0’
(using 250 cpu years on 1734 machines from 56 countries). Starting at
the 999, 999, 999, 999, 997th bit of p one has

111000110001000010110101100000110:
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Why should we believe this calculation? One good reason is that it
was done twice starting at different digits, in which case the algorithm
performs entirely different computations. For example, computing 40
hexadecimal digits commencing at the trillionth and trillion-less-tenth
place, respectively, should produce 30 shared hex-digits. The proba-
bility of those coinciding by chance, at least heuristically, is about

1

1630
� 1

1036:23...
;

a stunning small probability. Moreover, since many different ma-
chines were engaged no one machine error plays a significant role. I
like Hersh – as we shall see later – would be hard pressed to find
complex proofs affording such a level of certainty.

In the final mathematical section we attempt to capture all of the
opportunities in one more fleshed-out, albeit more advanced, example.

7. A SYMBOLIC-NUMERIC EXAMPLE

I illustrate more elaborately some of the continuing and engaging
mathematical challenges with a specific problem, proposed in the
American Mathematical Monthly (November, 2000), originally dis-
cussed in Borwein and Borwein (2001) and Borwein and Bailey
(2003).

10832. Donald E. Knuth, Stanford University, Stanford, CA.
Evaluate

X1

k¼1

kk

k!ek
� 1ffiffiffiffiffiffiffiffi

2pk
p

� �
:

1. A very rapid Maple computation yielded –0.08406950872765600
. . . as the first 16 digits of the sum.

2. The Inverse Symbolic Calculator has a ‘smart lookup’ feature23

that replied that this was probably �ð2=3Þ � fð12Þ=
ffiffiffiffiffiffi
2p
p

.
3. Ample experimental confirmation was provided by checking this

to 50 digits. Thus within minutes we knew the answer.
4. As to why? A clue was provided by the surprising speed with

which Maple computed the slowly convergent infinite sum. The
package clearly knew something the user did not. Peering under
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the covers revealed that it was using the LambertW function, W,
which is the inverse of w = z exp(z).24

5. The presence of f(1/2) and standard Euler–MacLaurin tech-
niques, using Stirling’s formula (as might be anticipated from the
question), led to

X1

k¼1

1ffiffiffiffiffiffiffiffi
2pk
p � 1ffiffiffi

2
p ð12Þk�1
ðk� 1Þ!

� �
¼

fð12Þffiffiffiffiffiffi
2p
p ; ð7Þ

where the binomial coefficients in (7) are those of ð1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2z
p

Þ.
Now (7) is a formula Maple can ‘prove’.

6. It remains to show

X1

k¼1

kk

k!ek
� 1ffiffiffi

2
p ð12Þk�1
ðk� 1Þ!

� �
¼ � 2

3
: ð8Þ

7. Guided by the presence of W and its series
P1

k¼1
ð�kÞk�1zk

k! , an
appeal to Abel’s limit theorem lets one deduce the need to eval-
uate

lim
z!1

d

dz
Wð� z

e
Þ þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2� 2z
p

� �
¼ 2

3
ð9Þ

Again Maple happily does know (9).
Of course this all took a fair amount of human mediation and insight.
It will be many years before such computational discovery can be
fully automated.

8. PROOF VERSUS TRUTH

By some accounts Colin Percival’s web-computation of p25 is one of
the largest computations ever done. It certainly shows the possibility
to use inductive engineering-like methods in mathematics, if one
keeps ones eye on the ball. As we saw, to assure accuracy the algo-
rithm could be run twice starting at different points – say starting at
40 trillion minus 10. The overlapping digits will differ if any error has
been made. If 20 hex-digits agree we can argue heuristically that the
probability of error is roughly 1 part in 1025.
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While this is not a proof of correctness, it is certainly much less
likely to be wrong than any really complicated piece of human
mathematics. For example, perhaps 100 people alive can, given en-
ough time, digest all of Andrew Wiles’ extraordinarily sophisticated
proof of Fermat’s Last Theorem and it relies on a century long pro-
gram. If there is even a 1% chance that each has overlooked the same
subtle error26 – probably in prior work not explicitly in Wiles’ cor-
rected version – then, clearly, many computational based ventures are
much more secure.

This would seem to be a good place to address another common
misconception. No amount of simple-minded case checking consti-
tutes a proof (Figure 8). The 1976–1967 ‘proof ’ of the Four Colour
Theorem27 was a proof because prior mathematical analysis had
reduced the problem to showing that a large but finite number of
potentially bad configurations could be ruled out. The proof was
viewed as somewhat flawed because the case analysis was inelegant,
complicated and originally incomplete. In the last few years, the
computation has been redone after a more satisfactory analysis.28 Of
course, Figure 7 is a proof for the USA.

Though many mathematicians still yearn for a simple proof in
both cases, there is no particular reason to think that all elegant true
conjectures have accessible proofs. Nor indeed given Goedel’s or
Turing’s work need they have proofs at all.

Figure 8. A four colouring of the continental USA.
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8.1. The Kepler Conjecture

Kepler’s conjecture that The Densest Way to Stack Spheres is in a
Pyramid is the oldest problem in discrete geometry. It is also the
most interesting recent example of computer-assisted proof. Pub-
lished in the elite Annals of Mathematics with an ‘‘only 99%
checked’’ disclaimer, this has triggered very varied reactions. While
the several hundred pages of computer related work is clearly very
hard to check, I do not find it credible that all other papers
published in the Annals have exceeded such a level of verifica-
tion.29

The proof of the Kepler Conjecture, that of the Four Colour The-
orem and Clement Lams’ computer-assisted proof of The Non-exis-
tence of a Projective Plane of Order 10, raise and answer quite distinct
philosophical and mathematical questions – both real and specious.
But one thing is certain such proofs will become more and more
common.

8.2. Kuhn and Planck on Paradigm Shifts

Much of what I have described in detail or in passing involves
changing set modes of thinking. Many profound thinkers view such
changes as difficult:

‘‘The issue of paradigm choice can never be unequivocally settled
by logic and experiment alone. � � � in these matters neither proof
nor error is at issue. The transfer of allegiance from paradigm to
paradigm is a conversion experience that cannot be forced.’’
(Thomas Kuhn30)

and

‘‘. . . a new scientific truth does not triumph by convincing its
opponents and making them see the light, but rather because its
opponents die and a new generation grows up that’s familiar with
it.’’ (Albert Einstein quoting Max Planck31)

8.3. Hersh’s Humanist Philosophy

However hard such paradigm shifts and whatever the outcome of
these discourses, mathematics is and will remain a uniquely human
undertaking. Indeed Reuben Hersh’s arguments for a humanist

THE EXPERIMENTAL MATHEMATICIAN 103



philosophy of mathematics, as paraphrased below, become more
convincing in our setting:

1. Mathematics is human. It is part of and fits into human culture. It
does not match Frege’s concept of an abstract, timeless, tenseless,
objective reality.

2.Mathematical knowledge is fallible. As in science, mathematics can
advance by making mistakes and then correcting or even re-cor-
recting them. The ‘‘fallibilism’’ of mathematics is brilliantly ar-
gued in Lakatos’ Proofs and Refutations.

3. There are different versions of proof or rigor. Standards of rigor
can vary depending on time, place, and other things. The use of
computers in formal proofs, exemplified by the computer-assisted
proof of the four color theorem in 1977, is just one example of an
emerging nontraditional standard of rigor.

4. Empirical evidence, numerical experimentation and probabilistic
proof all can help us decide what to believe in mathematics.
Aristotelian logic isn’t necessarily always the best way of
deciding.

5. Mathematical objects are a special variety of a social-cultural-his-
torical object. Contrary to the assertions of certain post-modern
detractors, mathematics cannot be dismissed as merely a new
form of literature or religion. Nevertheless, many mathematical
objects can be seen as shared ideas, like Moby Dick in literature,
or the Immaculate Conception in religion.32

To this I would add that for me mathematics is not ultimately
about proof but about secure mathematical knowledge. Georg
Friedrich Bernhard Riemann (1826–1866) was one of the most
influential thinkers of the past 200 years. Yet he proved very few
theorems, and many of the proofs were flawed. But his conceptual
contributions, such as through Riemannian geometry and the Rie-
mann zeta function, and to elliptic and Abelian function theory, were
epochal. The experimental method is an addition not a substitute for
proof, and its careful use is an example of Hersh’s ‘nontraditional
standard of rigor’.

The recognition that ‘quasi-intuitive’ methods may be used to gain
mathematical insight can dramatically assist in the learning and
discovery of mathematics. Aesthetic and intuitive impulses are shot
through our subject, and honest mathematicians will acknowledge
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their role. But a student who never masters proof will not be able to
profitably take advantage of these tools.

8.4. A Few Final Observations

As we have already seen, the stark contrast between the deductive
and the inductive has always been exaggerated. Herbert A. Simon, in
the final edition of The Sciences of the Artificial,33 wrote:

‘‘This skyhook-skyscraper construction of science from the roof down to the yet

unconstructed foundations was possible because the behaviour of the system at

each level depended only on a very approximate, simplified, abstracted charac-

terization at the level beneath.13 ’’34

‘‘This is lucky, else the safety of bridges and airplanes might depend on the cor-

rectness of the ‘‘Eightfold Way’’ of looking at elementary particles.’’

It is precisely this ‘post hoc ergo propter hoc’ part of theory
building that Russell so accurately typifies that makes him an artic-
ulate if surprising advocate of my own views.

And finally, I wish to emphasize that good software packages can
make very difficult concepts accessible (e.g., Mathematica, MatLab
and SketchPad) and radically assist mathematical discovery. None-
theless, introspection is here to stay.

In Kieran Egan’s words, ‘‘We are Pleistocene People.’’ Our minds
can subitize, but were not made for modern mathematics. We need all
the help we can get. While proofs are often out of reach to students or
indeed lie beyond present mathematics, understanding, even cer-
tainty, is not.

Perhaps indeed, ‘‘Progress is made ‘one funeral at a time’.’’35 In
any event, as Thomas Wolfe put it ‘‘You can’t go home again.’’
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NOTES

1 Henry Briggs is describing his first meeting in 1617 with Napier whom he had travelled

from London to Edinburgh to meet. Quoted from H.W. Turnbull’s The Great

Mathematicians, Methuen, 1929.
2 Chapter in Making the Connection: Research and Practice in Undergraduate Mathe-

matics, MAA Notes, 2004 in Press.
3 Ibid.
4 CECM now averages well over a million accesses a month, many by humans.
5 Quoted by Ram Murty in Mathematical Conversations, Selections from The Mathe-

matical Intelligencer, compiled by Robin Wilson and Jeremy Gray, Springer-Verlag,

New York, 2000.
6 My own experience is principally at the tertiary level. An excellent middle school

illustration is afforded by Nathalie Sinclair. (2001) ‘‘The aesthetics is relevant,’’ for the

learning of mathematics, 21: 25 – 32.
7 E.g., www.cecm.sfu.ca/personal/jborwein/talks.html,

www.cs.dal.ca//, /jborwein, and personal/loki/
Papers/Numbers/.

8 In Mathematical Discovery: On Understanding, Learning and Teaching Problem Solv-

ing, 1968.
9 Illustration courtesy the Mathematical Association of America.
10 Ibid.
11 See Isaac Asimov (1988) book of science and nature quotations. In Isaac Asimov and

J.A. Shulman (Eds), New York: Weidenfield and Nicolson, p. 115.
12 In E. Borel, ‘‘Lecons sur la theorie des fonctions,’’ 1928, quoted by George Polya

(1981) in Mathematical discovery: On understanding, learning, and teaching problem

solving (Combined Edition), New York: John Wiley, pp. 2–126.
13 Others on a short list would include Poincaré and Weil.
14 I originally typed this by mistake for Methodology.
15 ISC space limits have changed from 10 Mb being a constraint in 1985 to 10 Gb being

‘easily available’ today. A version of ‘Reveng’ is available in current versions ofMaple.

Typing ‘identify(
ffiffiffiffiffiffiffi
2:0
p

þ
ffiffiffiffiffiffiffi
3:0
p

)’ will return the symbolic answer
ffiffiffi
2
p
þ

ffiffiffi
3
p

from the

numerical input 3.146264370.
16 Described as one of the top ten ‘‘Algorithm’s for the Ages,’’ Random Samples, Sci-

ence, Feb. 4, 2000, and [10].
17 From Peter Medawar’s wonderful Advice to a Young Scientist, Harper (1979).
18 MAA Monthly, November 2000, 241–242.
19 In that the integrand and the summand agree.
20 Many examples are given in P. Borwein and L. Jörgenson, ‘‘Visible Structures in

Number Theory’’, www.cecm.sfu.ca/preprints/1998pp.html.
21 A quote I agree with from his ‘‘A Tour of the Calculus,’’ Pantheon Books, 1995.
22 Fractal Cards: A Space for Exploration in Geometry and Discrete Mathematics,

Mathematics Teacher 91 (198), 102–108.
23 Alternatively, a sufficiently robust integer relation finder could be used.
24 A search for ‘Lambert W function’ on MathSciNet provided 9 references – all since

1997 when the function appears named for the first time in Maple and Mathematica.
25 Along with Toy Story 2.
26 And they may be psychologically predisposed so to do!
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27 Every planar map can be coloured with four colours so adjoining countries are never

the same colour.
28 This is beautifully described at www.math.gatech.edu/personal/

thomas/FC/fourcolor.html.
29 See ‘‘In Math, Computers Don’t Lie. Or Do They?’’ New York Times, April 6, 2004.
30 In Ed Regis, Who got Einstein’s Office? Addison-Wesley, 1986.
31 From F.G. Major, The Quantum Beat, Springer, 1998.
32 From ‘‘Fresh Breezes in the Philosophy of Mathematics,’’ American Mathematical

Monthly, August–September 1995, 589–594.
33 MIT Press, 1996, page 16.
34 Simon quotes Russell at length . . .

13 ‘‘. . . More than fifty years ago Bertrand Russell made the same point about the

architecture of mathematics. See the ‘‘Preface’’ to Principia Mathematica ‘‘. . . the chief

reason in favour of any theory on the principles of mathematics must always be

inductive, i.e., it must lie in the fact that the theory in question allows us to deduce

ordinary mathematics. In mathematics, the greatest degree of self-evidence is usually

not to be found quite at the beginning, but at some later point; hence the early

deductions, until they reach this point, give reason rather for believing the premises

because true consequences follow from them, than for believing the consequences

because they follow from the premises.’’ Contemporary preferences for deductive

formalisms frequently blind us to this important fact, which is no less true today than

it was in 1910.’’
35 This harsher version of Planck’s comment is sometimes attributed to Niels Bohr.
36 All journal references are available at www.cecm.sfu.ca/preprints/.
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CHAPTER 1
Aesthetics for the Working Mathematician

Jonathan M. Borwein

If my teachers had begun by telling me that mathematics was pure
play with presuppositions, and wholly in the air, I might have become
a good mathematician, because I am happy enough in the realm of
essence. But they were over-worked drudges, and I was largely inat-
tentive, and inclined lazily to attribute to incapacity in myself or to a
literary temperament that dullness which perhaps was due simply to
lack of initiation. (Santayana, 1944, p. 238)

Most research mathematicians neither think deeply about nor are terribly con-
cerned with either pedagogy or the philosophy of mathematics. Nonetheless,
as I hope to indicate, aesthetic notions have always permeated (pure and
applied) mathematics. And the top researchers have always been driven by an
aesthetic imperative. Many mathematicians over time have talked about the
‘elegance’ of certain proofs or the ‘beauty’ of certain theorems, but my analysis
goes deeper: I aim to show how the aesthetic imperative interacts with utility
and intuition, as well as indicate how it serves to shape my own mathemat-
ical experiences. These analyses, rather than being retrospective and passive, will
provide a living account of the aesthetic dimension of mathematical work.

We all believe that mathematics is an art. The author of a book, the
lecturer in a classroom tries to convey the structural beauty of
mathematics to his readers, to his listeners. In this attempt, he must
always fail. Mathematics is logical to be sure; each conclusion is
drawn from previously derived statements. Yet the whole of it, the
real piece of art, is not linear; worse than that, its perception
should be instantaneous. We all have experienced on some rare
occasions the feeling of elation in realizing that we have enabled
our listeners to see at a moment’s glance the whole architecture
and all its ramifications. (Emil Artin, in Murty, 1988, p. 60)

I shall similarly argue for aesthetics before utility. Through a suite of exam-
ples drawn from my own research and interests, I aim to illustrate how and
what this means on the front lines of research. I also will argue that the
opportunities to evoke the mathematical aesthetic in research and teaching
are almost boundless – at all levels of the curriculum. (An excellent middle-
school illustration, for instance, is described in Sinclair, 2001.)

In part, this is due to the increasing power and sophistication of visual-
isation, geometry, algebra and other mathematical software. Indeed, by
drawing on ‘hot topics’ as well as ‘hot methods’ (i.e. computer technology),
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Mathematics and the Aesthetic

I also provide a contemporary perspective which I hope will complement
the more classical contributions to our understanding of the mathematical
aesthetic offered by writers such as G. H. Hardy and Henri Poincaré (as dis-
cussed in Chapter α).

Webster’s dictionary (1993, p. 19) first provides six different meanings
of the word ‘aesthetic’, used as an adjective. However, I want to react to
these two definitions of ‘aesthetics’, used as a noun:

1. The branch of philosophy dealing with such notions as the beautiful,
the ugly, the sublime, the comic, etc., as applicable to the fine arts,
with a view to establishing the meaning and validity of critical judg-
ments concerning works of art, and the principles underlying or justi-
fying such judgments.

2. The study of the mind and emotions in relation to the sense of beauty.

Personally, for my own definition of the aesthetic, I would require (unex-
pected) simplicity or organisation in apparent complexity or chaos – consis-
tent with views of Dewey (1934), Santayana (1944) and others. I believe we
need to integrate this aesthetic into mathematics education at every level, so
as to capture minds for other than utilitarian reasons. I also believe detach-
ment to be an important component of the aesthetic experience: thus, it is
important to provide some curtains, stages, scaffolding and picture frames –
or at least their mathematical equivalents. Fear of mathematics certainly does
not hasten an aesthetic response.

Gauss, Hadamard and Hardy

Three of my personal mathematical heroes, very different individuals from
different times, all testify interestingly on the aesthetic and the nature of
mathematics.

Gauss

Carl Friedrich Gauss is claimed to have once confessed, “I have had my
results for a long time, but I do not yet know how I am to arrive at them” (in
Arber, 1954, p. 47). [1] One of Gauss’s greatest discoveries, in 1799, was the
relationship between the lemniscate sine function and the arithmetic–geomet-
ric mean iteration. This was based on a purely computational observation.
The young Gauss wrote in his diary that “a whole new field of  analysis will
certainly be opened up” (Werke, X, p. 542; in Gray, 1984, p. 121).

He was right, as it pried open the whole vista of nineteenth-century
elliptic and modular function theory. Gauss’s specific discovery, based on
tables of integrals provided by Scotsman James Stirling, was that the recip-
rocal of the integral
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agreed numerically with the limit of the rapidly convergent iteration given
by setting a0 := 1, b0 := √2 and then computing:

It transpires that the two sequences {an}, {bn} have a common limit of
1.1981402347355922074…

Which object, the integral or the iteration, is the more familiar and
which is the more elegant – then and now? Aesthetic criteria change with
time (and within different cultures) and these changes manifest themselves
in the concerns and discoveries of mathematicians. Gauss’s discovery of the
relationship between the lemniscate function and the arithmetic–geometric
mean iteration illustrates how the traditionally preferred ‘closed form’ (here,
the integral form) of equations have yielded centre stage, in terms both of
elegance and utility, to recursion. This parallels the way in which biological
and computational metaphors (even ‘biology envy’) have now replaced
Newtonian mental images, as described and discussed by Richard Dawkins
(1986) in his book The Blind Watchmaker.

In fact, I believe that mathematical thought patterns also change with
time and that these in turn affect aesthetic criteria – not only in terms of
what counts as an interesting problem, but also what methods the math-
ematician can use to approach these problems, as well as how a mathema-
tician judges their solutions. As mathematics becomes more ‘biological’, and
more computational, aesthetic criteria will continue to change.

Hadamard

A constructivist, experimental and aesthetically-driven rationale for math-
ematics could hardly do better than to start with Hadamard’s claim that:

The object of mathematical rigor is to sanction and legitimize the
conquests of intuition, and there was never any other object for it.
(in Pólya, 1981, p. 127)

Jacques Hadamard was perhaps the greatest mathematician other than
Poincaré to think deeply and seriously about cognition in mathematics. He is
quoted as saying, “in arithmetic, until the seventh grade, I was last or nearly
last” (in MacHale, 1993, p. 142). Hadamard was co-prover (independently
with Charles de la Vallée Poussin, in 1896) of the Prime Number theorem
(the number of primes not exceeding n is asymptotic to n/log n), one of
the culminating results of nineteenth-century mathematics and one that
relied on much preliminary computation and experimentation. He was also
the author of The Psychology of Invention in the Mathematical Field (1945),
a book that still rewards close inspection.
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Hardy’s Apology

Correspondingly, G. H. Hardy, the leading British analyst of the first half of
the twentieth century, was also a stylish author who wrote compellingly in
defence of pure mathematics. He observed that:

All physicists and a good many quite respectable mathematicians
are contemptuous about proof. (1945/1999, pp. 15-16)

His memoir, entitled A Mathematician’s Apology, provided a spirited defence
of beauty over utility:

Beauty is the first test. There is no permanent place in the world
for ugly mathematics. (1940, p. 84)

That said, although the sentiment behind it being perfectly understandable
from an anti-war mathematician in war-threatened Britain, Hardy’s claim that
real mathematics is almost wholly useless has been over-played and, to my
mind, is now very dated, given the importance of cryptography and other
pieces of algebra and number theory devolving from very pure study.

In his tribute to Srinivasa Ramanujan entitled Ramanujan: Twelve Lectures
on Subjects Suggested by His Life and Work, Hardy (1945/1999) offered the so-
called ‘Skewes number’ as a “striking example of a false conjecture” (p. 15).
The logarithmic integral function, written Li(x), is specified by:

Li(x) provides a very good approximation to the number of primes that do
not exceed x. For example, Li(108) = 5,762,209.375…, while the number of
primes not exceeding 108 is 5,761,455. It was conjectured that the inequality

Li(x) > the number of primes not exceeding x

holds for all x and, indeed, it does so for many x. In 1933, Skewes showed
the first explicit crossing occurs before 10101034

. This has been reduced to a
relatively tiny number, a mere 101167 (and, most recently, even lower), though
one still vastly beyond direct computational reach.

Such examples show forcibly the limits on numerical experimentation,
at least of a naïve variety. Many readers will be familiar with the ‘law of large
numbers’ in statistics. Here, we see an instance of what some number the-
orists (e.g. Guy, 1988) call the ‘strong law of small numbers’: all small num-
bers are special, many are primes and direct experience is a poor guide. And
sadly (or happily, depending on one’s attitude), even 101167 may be a small
number.

Research Motivations and Goals

As a computational and experimental pure mathematician, my main goal is
insight. Insight demands speed and, increasingly, parallelism (see Borwein
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and Borwein, 2001, on the challenges for mathematical computing). The
mathematician’s ‘aesthetic buzz’ comes not only from simply contemplating
a beautiful piece of mathematics, but, additionally, from achieving insight.
The computer, with its capacities for visualisation and computation, can
encourage the aesthetic buzz of insight, by offering the mathematician the
possibility of visual contact with mathematics and by allowing the mathemati-
cian to experiment with, and thus to become intimate with, mathematical
ideas, equations and objects.

What is ‘easy’ is changing and I see an exciting merging of disciplines,
levels and collaborators. Mathematicians are more and more able to:

• marry theory and practice, history and philosophy, proofs and
experiments;

• match elegance and balance with utility and economy;
• inform all mathematical modalities computationally – analytic,

algebraic, geometric and topological.

This is leading us towards what I term an experimental mathodology as a
philosophy and a practice (Borwein and Corless, 1999). This methodology
is based on the following three approaches:

• meshing computation and mathematics, so that intuition is acquired;
• visualisation – three is a lot of dimensions and, nowadays, we can

exploit pictures, sounds and haptic stimuli to get a ‘feel’ for relation-
ships and structures (see also Chapter 7);

• ‘exception barring’ and ‘monster barring’ (using the terms of Lakatos,
1976).

Two particularly useful components of this third approach include graphical
and randomised checks. For example, comparing 2√y – y and –√y ln(y) (for
0 < y < 1) pictorially is a much more rapid way to divine which is larger
than by using traditional analytic methods. Similarly, randomised checks of
equations, inequalities, factorisations or primality can provide enormously
secure knowledge or counter-examples when deterministic methods are
doomed. As with traditional mathematical methodologies, insight and cer-
tainty are still highly valued, yet achieved in different ways.

Pictures and symbols

If I can give an abstract proof of something, I’m reasonably happy.
But if I can get a concrete, computational proof and actually pro-
duce numbers I’m much happier. I’m rather an addict of doing
things on the computer, because that gives you an explicit criterion
of what’s going on. I have a visual way of thinking, and I’m happy if
I can see a picture of what I’m working with. (John Milnor, in Regis,
1986, p. 78)

I have personally had this experience, in the context of studying the distri-
bution of zeroes of the Riemann zeta function. Consider more explicitly the
following image (see Figure 1), which shows the densities of zeroes for
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polynomials in powers of x with –1 and 1 as coefficients (they are manipula-
ble at: www.cecm.sfu.ca/interfaces/). All roots of polynomials, up to a given
degree, with coefficients of either –1 or 1 have been calculated by permuting
through all possible combinations of polynomials, then solving for the roots of
each. These roots are then plotted on the complex plane (around the origin).

In this case, graphical output from a computer allows a level of insight no
amount of numbers could.

Some colleagues and I have been building educational software with
these precepts embedded, such as LetsDoMath (see: www.mathresources.
com). The intent is to challenge students honestly (e.g. through allowing
subtle explorations within John Conway’s ‘Game of Life’), while making things
tangible (e.g. ‘Platonic solids’ offers virtual manipulables that are more
robust and expressive than the standard classroom solids).

Evidently, though, symbols are often more reliable than pictures. The
picture opposite purports to give evidence that a solid can fail to be poly-
hedral at only one point. It shows the steps up to pixel level of inscribing a
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Figure 1: Density of zeroes for polynomials with coefficients of –1 and 1
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regular 2n+1-gon at height 21–n. However, ultimately, such a construction fails
and produces a right circular cone. The false evidence in this picture held
back a research project for several days – and might have derailed it.

Two Things about √2 and One Thing about π

Remarkably, one can still find new insights in the oldest areas. I discuss
three examples of this. The first involves a new proof of the irrationality of
√2 and the way in which it provides insight into a previously known result.
The second invokes the strange interplay between rational and irrational
numbers. Finally, the third instance reveals how the computer can make
opaque some properties that were previously transparent, and vice versa.

Irrationality

Below is a graphical representation of Tom Apostol’s (2000) lovely new
geometric proof of the irrationality of √2. This example may seem routine
at first, with respect to the literature on the mathematical aesthetic. Writers
such as Hardy (1940), King (1992) and Wells (1990) have also talked about
the beauty of quadratics such as √2. These writers have emphasised aes-
thetic criteria (such as economy and unexpectedness) that contribute to that
judgement of beauty. On the other hand, Apostol’s new proof, prefigured
in others, shows how aesthetics can also serve to motivate mathematical
inquiry.

Figure 2: A misleading picture
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PROOF Consider the smallest right-angled isosceles triangle with
integer sides. Circumscribe a circle of length equal to the vertical
side and construct the tangent to the circle where the hypotenuse
cuts it (see Figure 3). The smaller isosceles triangle once again has
integer sides.

The proof is lovely because it offers new insight into a result that was first
proven over two thousand years ago. It also verges on being a ‘proof with-
out words’ (Nelsen, 1993), proofs which are much admired – yet infrequently
encountered and not always trusted – by mathematicians (see Brown, 1999).
Apostol’s work demonstrates how mathematicians are not only motivated to
find ground-breaking results, but that they also strive for better ways to say
things or to show things, as Gauss was surely doing when he worked out
his fourth, fifth and sixth proof of the law of quadratic reciprocity.

Rationality

By a variety of means, including the one above, we know that the square
root of two is irrational. But mathematics is always full of surprises: √2 can
also make things rational (a case of two wrongs making a right?).

Hence, by the principle of the excluded middle:

In either case, we can deduce that there are irrational numbers a and b
with ab rational. But how do we know which ones? One may build a whole
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Figure 3: The square root of two is irrational

.
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mathematical philosophy project around this. Yet, as Maple (the computer
algebra system) confirms:

setting α := √2 and β := 2ln23 yields αβ = 3.

This illustrates nicely that verification is often easier than discovery. (Simi-
larly, the fact that multiplication is easier than factorisation is at the base of
secure encryption schemes for e-commerce.)

π and two integrals

Even Maple knows π ≠ 22/7, since:

Nevertheless, it would be prudent to ask ‘why’ Maple is able to perform the
evaluation and whether to trust it. In contrast, Maple struggles with the fol-
lowing sophomore’s dream:

Students asked to confirm this typically mistake numerical validation for
symbolic proof.

Again, we see that computing adds reality, making the abstract concrete,
and makes some hard things simple. This is strikingly the case with Pascal’s
Triangle. Figure 4 (from: www.cecm.sfu.ca/interfaces/) affords an emphatic
example where deep fractal structure is exhibited in the elementary binomial
coefficients.

Figure 4: Thirty rows of Pascal’s triangle (modulo five)
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Berlinski (1997) comments on some of the effects of such visual–experimental
possibilities in mathematics:

The computer has in turn changed the very nature of mathematical
experience, suggesting for the first time that mathematics, like physics,
may yet become an empirical discipline, a place where things are
discovered because they are seen. (p. 39)

Berlinski (1995) had earlier suggested, in his book A Tour of the Calculus,
that there will be long-term effects:

The body of mathematics to which the calculus gives rise embod-
ies a certain swashbuckling style of thinking, at once bold and dra-
matic, given over to large intellectual gestures and indifferent, in
large measure, to any very detailed description of the world. It is
a style that has shaped the physical but not the biological sciences,
and its success in Newtonian mechanics, general relativity, and
quantum mechanics is among the miracles of mankind. But the era
in thought that the calculus made possible is coming to an end.
Everyone feels this is so, and everyone is right. (p. xiii)

π and Its Friends

My research on π with my brother, Peter Borwein, also offers aesthetic and
empirical opportunities. In this example, my personal fascinations provide
compelling illustrations of an aesthetic imperative in my own work. I first
discuss the algorithms I have co-developed to compute the digits of π.
These algorithms, which consist of simple algebraic equations, have made
it possible for researchers to compute its first 236 digits. I also discuss some
of the methods and algorithms I have used to gain insight into relationships
involving π.

A quartic algorithm (Borwein and Borwein, 1984)

The next algorithm I present grew out of work of Ramanujan. Set a0 = 6 – 4√2
and y 0 = √2 – 1. Iterate:

Then the sequence {ak} converges quartically to 1/π.
There are nineteen pairs of simple algebraic equations (1, 2) as k ranges

from 0 to 18. After seventeen years, this still gives me an aesthetic buzz.
Why? With less than one page of equations, I have a tool for computing a
number that differs from π (the most celebrated transcendental number)
only after seven hundred billion digits. It is not only the economy of the tool
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that delights me, but also the stirring idea of ‘almost-ness’ – that even after
seven hundred billion digits we still cannot nail π. The difference might
seem trivial, but mathematicians know that it is not and they continue to
improve their algorithms and computational tools.

This iteration has been used since 1986, with the Salamin–Brent scheme,
by David Bailey (at the Lawrence Berkeley Labs) and by Yasumasa Kanada
(in Tokyo). In 1997, Kanada computed over 51 billion digits on a Hitachi
supercomputer (18 iterations, 25 hrs on 210 cpus). His penultimate world
record was 236 digits in April, 1999. A billion (230) digit computation has been
performed on a single Pentium II PC in less than nine days. The present
record is 1.24 trillion digits, computed by Kanada in December 2002 using
quite different methods, and is described in my new book, co-authored with
David Bailey (2003).

The fifty-billionth decimal digit of π or of 1/π is 042! And after eighteen
billion digits, the string 0123456789 has finally appeared and so Brouwer’s
famous intuitionist example now converges. [2] (Details such as this about π
can be found at: www.cecm.sfu.ca/personal/jborwein/pi_cover.html.) From
a probability perspective, such questions may seem uninteresting, but they
continue to motivate and amaze mathematicians.

A further taste of Ramanujan

G. N. Watson, in discussing his response to similar formulae of the wonderful
Indian mathematical genius Srinivasa Ramanujan, describes:

a thrill which is indistinguishable from the thrill which I feel when
I enter the Sagrestia Nuova of the Capelle Medicee and see before
me the austere beauty of [the four statues representing] ‘Day,’
‘Night,’ ‘Evening,’ and ‘Dawn’ which Michelangelo has set over
the tombs of Giuliano de’ Medici and Lorenzo de’ Medici. (in
Chandrasekhar, 1987, p. 61)

One of these is Ramanujan’s remarkable formula, based on the elliptic and
modular function theory initiated by Gauss.

Each term of this series produces an additional eight correct digits in the
result – and only the ultimate multiplication by √2 is not a rational opera-
tion. Bill Gosper used this formula to compute seventeen million terms of
the continued fraction for π in 1985. This is of interest, because we still
cannot prove that the continued fraction for π is unbounded. Again, every-
one knows that this is true.

That said, Ramanujan preferred related explicit forms for approximating
π, such as the following:
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This equation is correct until the underlined places. Inter alia, the number
eπ is the easiest transcendental to fast compute (by elliptic methods). One
‘differentiates’ e-πt to obtain algorithms such as the one above for π, via the
arithmetic–geometric mean.

Integer relation detection

I make a brief digression to describe what integer relation detection methods
do. (These may be tried at: www.cecm.sfu.ca/projects/IntegerRelations/.) I
then apply them to π (see Borwein and Lisonek, 2000).

DEFINITION A vector (x1, x2, …, xn) of real numbers possesses an
integer relation, if there exist integers ai (not all zero) with:

a1x1 + a2x2 + … + anxn = 0

PROBLEM Find ai if such integers exist. If not, obtain lower ‘exclu-
sion’ bounds on the size of possible ai.

SOLUTION For n = 2, Euclid’s algorithm gives a solution. For n ≥ 3,
Euler, Jacobi, Poincaré, Minkowski, Perron and many others sought
methods. The first general algorithm was found (in 1977) by Fer-
guson and Forcade. Since 1977, one has many variants: I will mainly
be talking about two algorithms, LLL (‘Lenstra, Lenstra and Lovász’;
also available in Maple and Mathematica) and PSLQ (‘Partial sums
using matrix LQ decomposition’, 1991; parallelised, 1999).

Integer relation detection was recently ranked among:

the 10 algorithms with the greatest influence on the development
and practice of science and engineering in the 20th century.
(Dongarra and Sullivan, 2000, p. 22)

It could be interesting for the reader to compare these algorithms with the
theorems on the list of the most ‘beautiful’ theorems picked out by Wells
(1990) in his survey, in terms of criteria such as applicability, unexpected-
ness and fruitfulness.

Determining whether or not a number is algebraic is one problem that
can be attacked using integer relation detection. Asking about algebraicity
is handled by computing α to sufficiently high precision (O(n = N2)) and
applying LLL or PSLQ to the vector (1, α, α2, ..., αN-1). Solution integers ai are
coefficients of a polynomial likely satisfied by α. If one has computed α to
n + m digits and run LLL using n of them, one has m digits to confirm the
result heuristically. I have never seen this method return an honest ‘false
positive’ for m > 20, say. If no relation is found, exclusion bounds are
obtained, saying, for example, that any polynomial of degree less than N
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must have the Euclidean norm of its coefficients in excess of L (often astro-
nomical). If we know or suspect an identity exists, then integer relations
methods are very powerful. Let me illustrate this in the context of approxi-
mating π.

Machin’s formula
We use Maple to look for the linear dependence of the following quantities:

[arctan(1), arctan(1/5), arctan(1/239)]

and ‘recover’ [1, –4, 1]. In other words, we can establish the following
equation:

π/4 = 4arctan(1/5) – arctan(1/239).

Machin’s formula was used on all serious computations of π from 1706 (a
hundred digits) to 1973 (a million digits), as well as more abstruse but similar
formulae used in creating Kanada’s present record. After 1980, the methods
described above started to be used instead.

Dase’s formula
Again, we use Maple to look for the linear dependence of the following
quantities:

[π/4, arctan(1/2), arctan(1/5), arctan(1/8)].

and recover [–1, 1, 1, 1]. In other words, we can establish the following
equation:

π/4 = arctan(1/2) + arctan(1/5) + arctan(1/8).

This equation was used by Dase to compute two hundred digits of π in his
head in perhaps the greatest feat of mental arithmetic ever – 1/8 is appar-
ently better than 1/239 (as in Machin’s formula) for this purpose.

Who was Dase? Another burgeoning component of modern research
and teaching life is having access to excellent data bases, such as the MacTutor
History Archive maintained at: www-history.mcs.st-andrews.ac.uk (alas, not
all sites are anywhere near so accurate and informative as this one). One may
find details there on almost all of the mathematicians appearing in this chap-
ter. I briefly illustrate its value by showing verbatim what it says about Dase.

Zacharias Dase (1824–1861) had incredible calculating skills but
little mathematical ability. He gave exhibitions of his calculating
powers in Germany, Austria and England. While in Vienna in 1840
he was urged to use his powers for scientific purposes and he dis-
cussed projects with Gauss and others.

Dase used his calculating ability to calculate π to 200 places in
1844. This was published in Crelle’s Journal for 1844. Dase also
constructed 7 figure log tables and produced a table of factors of
all numbers between 7 000 000 and 10 000 000.
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Gauss requested that the Hamburg Academy of Sciences allow
Dase to devote himself full-time to his mathematical work but,
although they agreed to this, Dase died before he was able to do
much more work.

Pentium farming
I finish this sub-section with another result obtained through integer rela-
tions methods or, as I like to call it, ‘Pentium farming’. Bailey, Borwein and
Plouffe (1997) discovered a series for π (and corresponding ones for some
other polylogarithmic constants), which somewhat disconcertingly allows
one to compute hexadecimal digits of π without computing prior digits.
(This feels like magic, being able to tell the seventeen-millionth digit of π,
say, without having to calculate the ones before it; it is like seeing God
reach her hand deep into π.)

The algorithm needs very little memory and no multiple precision. The
running time grows only slightly faster than linearly in the order of the digit
being computed. The key, found by PSLQ as described above, is:

Knowing an algorithm would follow, Bailey, Borwein and Plouffe spent sev-
eral months hunting by computer for such a formula. Once found, it is easy
to prove in Mathematica, in Maple or by hand – and provides a very nice
calculus exercise.

This was a most successful case of reverse mathematical engineering
and is entirely practicable. In September 1997, Fabrice Bellard (at INRIA)
used a variant of this formula to compute one hundred and fifty-two binary
digits of π, starting at the trillionth (1012) place. This took twelve days on
twenty work-stations working in parallel over the internet. In August 1998,
Colin Percival (Simon Fraser University, age 17) finished a ‘massively parallel’
computation of the five-trillionth bit (using twenty-five machines at roughly
ten times the speed of Bellard). In hexadecimal notation, he obtained:

07E45 733CC790B5B5979. 

The corresponding binary digits of π starting at the forty-trillionth bit
are:

0 0000 1111 1001 1111.

By September 2000, the quadrillionth bit had been found to be the digit 0
(using 250 cpu years on a total of one thousand, seven hundred and thirty-
four machines from fifty-six countries). Starting at the 999,999,999,999,997th
bit of π, we find:

11100 0110 0010 0001 0110 1011 0000 0110.
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Solid and Discrete Geometry – and Number Theory

Although my own primary research interests are in numerical, classical and
functional analysis, I find that the fields of solid and discrete geometry, as
well as number theory, offer many examples of the kinds of concrete,
insightful ideas I value. In the first example, I argue for the computational
affordances available to study of solid geometry. I then discuss the genesis
of an elegant proof in discrete geometry. Finally, I illustrate a couple of deep
results in partition theory.

de Morgan

Augustus de Morgan, one of the most influential educators of his period and
first president of the London Mathematical Society, wrote:

Considerable obstacles generally present themselves to the begin-
ner, in studying the elements of Solid Geometry, from the practice
which has hitherto uniformly prevailed in this country, of never
submitting to the eye of the student, the figures on whose proper-
ties he is reasoning, but of drawing perspective representations of
them upon a plane. [...] I hope that I shall never be obliged to have
recourse to a perspective drawing of any figure whose parts are
not in the same plane. (in Rice, 1999, p. 540)

His comment illustrates the importance of concrete experiences with math-
ematical objects, even when the ultimate purpose is to abstract. There is a
sense in which insight lies in physical manipulation. I imagine that de
Morgan would have been happier using JavaViewLib (see: www.cecm.sfu.
ca/interfaces/). This is Konrad Polthier’s modern version of Felix Klein’s
famous set of geometric models. Correspondingly, a modern interactive ver-
sion of Euclid is provided by Cinderella (a software tool which is largely
comparable with The Geometer’s Sketchpad; the latter is discussed in detail
in Chapter 7 of this volume). Klein, like de Morgan, was equally influential
as an educator and as a researcher.

Sylvester’s theorem

Sylvester’s theorem is worth mentioning because of its elegant visual proof,
but also because of Sylvester’s complex relationship to geometry: “The early
study of Euclid made me a hater of geometry” (quoted in MacHale, 1993, p.
135). James Joseph Sylvester, who was the second president of the London
Mathematical Society, may have hated Euclidean geometry, but discrete
geometry (now much in fashion under the name ‘computational geometry’,
offering another example of very useful pure mathematics) was different.
His strong, emotional preference nicely illustrates how the aesthetic is
involved in a mathematician’s choice of fields.

Sylvester (1893) came up with the following conjecture, which he posed
in The Educational Times:
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THEOREM Given n non-collinear points in the plane, then there is
always at least one (elementary or proper) line going through
exactly two points of the set.

Sylvester’s conjecture was, so it seems, forgotten for fifty years. It was first
established – ‘badly’, in the sense that the proof is much more complicated
– by T. Grünwald (Gallai) in 1933 (see editorial comment in Steinberg, 1944)
and also by Paul Erdös. Erdös, an atheist, named ‘the Book’ the place where
God keeps aesthetically perfect proofs. L. Kelly’s proof (given below),
which Erdös accepted into ‘the Book’, was actually published by Donald
Coxeter (1948) in the American Mathematical Monthly. This is a fine exam-
ple of how the archival record may rapidly get obscured.

PROOF Consider the point closest to a line it is not on and then
suppose that line has three points on it (the horizontal line). The
middle of those three points is clearly closer to the other line.

As with Apostol’s proof of the irrationality of √2, we can see the power of
the right minimal configuration. Aesthetic appeal often comes from having
this characteristic: that is, its appeal stems from being able to reason about
an unknown number of objects by identifying a restricted view that captures
all the possibilities. This is a process that is not so very different from that
powerful method of proof known as mathematical induction.

Another example worth mentioning in this context (one that belongs in
‘the Book’) is Niven’s (1947) marvellous (simple and short), half-page proof
that π is irrational (see: www.cecm.sfu.ca/personal/jborwein/pi.pdf).

Partitions and patterns

Another subject that can be made highly accessible through experimental
methods is additive number theory, especially partition theory. The number
of additive partitions of q, P(q), is generated by the following equation:
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Thus, P(5) = 7, since:

5 = 4 + 1 = 3 + 2 = 3 + 1 + 1 = 2 + 2 + 1

= 2 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1

QUESTION How hard is P(q) to compute? Consider this question
as it might apply in 1900 (for Major MacMahon, the father of our
modern combinatorial analysis) and in 2000 (for Maple).

ANSWER Seconds for Maple, months for MacMahon. It is interest-
ing to ask if development of the beautiful asymptotic analysis of
partitions by Hardy, Ramanujan and others would have been
helped or impeded by such facile computation.

Ex-post-facto algorithmic analysis can be used to facilitate independent student
discovery of Euler’s pentagonal number theorem.

Ramanujan used MacMahon’s table of P(q) to intuit remarkable and deep
congruences, such as:

P(5n + 4) ≡ 0 (mod 5)

P(7n + 5) ≡ 0 (mod 7)

and

P(11n + 6) ≡ 0 (mod 11)

from data such as:

Nowadays, if introspection fails, we can recognise the pentagonal numbers
occurring above in Sloane and Plouffe’s on-line Encyclopaedia of Integer
Sequences (see: www.research.att.com/personal/njas/sequences/eisonline.
html). Here, we see a very fine example of Mathematics: the Science of
Patterns, which is the title of Keith Devlin’s (1994) book. And much more
may similarly be done.
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Some Concluding Discussion

In recent years, there have been revolutionary advances in cognitive science
– advances that have a profound bearing on our understanding of math-
ematics. (More serious curricular insights should come from neuro-biology
– see Dehaene et al., 1999.) Perhaps the most profound of these new
insights are the following, presented in Lakoff and Nuñez (2000).

1. The embodiment of mind The detailed nature of our bodies, our
brains and our everyday functioning in the world structures human
concepts and human reason. This includes mathematical concepts
and mathematical reason. (See also Chapter 6.)

2. The cognitive unconscious Most thought is unconscious – not
repressed in the Freudian sense, but simply inaccessible to direct
conscious introspection. We cannot look directly at our conceptual
systems and at our low-level thought processes. This includes most
mathematical thought.

3. Metaphorical thought For the most part, human beings conceptualise
abstract concepts in concrete terms, using ideas and modes of
reasoning grounded in sensori-motor systems. The mechanism by
which the abstract is comprehended in terms of the concept is called
conceptual metaphor. Mathematical thought also makes use of
conceptual metaphor: for instance, when we conceptualise numbers
as points on a line.

Lakoff and Nuñez subsequently observe:

What is particularly ironic about this is it follows from the empirical
study of numbers as a product of mind that it is natural for people
to believe that numbers are not a product of mind! (p. 81)

I find their general mathematical schema pretty persuasive but their specific
accounting of mathematics forced and unconvincing (see also Schiralli and
Sinclair, 2003). Compare this with a more traditional view, one that I most
certainly espouse:

The price of metaphor is eternal vigilance. (Arturo Rosenblueth
and Norbert Wiener, in Lewontin, 2001, p. 1264)

Form follows function

The waves of the sea, the little ripples on the shore, the sweeping
curve of the sandy bay between the headlands, the outline of the
hills, the shape of the clouds, all these are so many riddles of form,
so many problems of morphology, and all of them the physicist
can more or less easily read and adequately solve [...] (Thompson,
1917/1968, p. 10)

A century after biology started to think physically, how will mathematical
thought patterns change?
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The idea that we could make biology mathematical, I think, per-
haps is not working, but what is happening, strangely enough, is
that maybe mathematics will become biological! (Chaitin, 2002)

To appreciate Greg Chaitin’s comment, one has only to consider the meta-
phorical or actual origin of current ‘hot topics’ in mathematics research:
simulated annealing (‘protein folding’); genetic algorithms (‘scheduling
problems’); neural networks (‘training computers’); DNA computation (‘trav-
elling salesman problems’); quantum computing (‘sorting algorithms’).

Humanistic philosophy of mathematics

However extreme the current paradigm shifts are and whatever the outcome
of these discourses, mathematics is and will remain a uniquely human
undertaking. Indeed, Reuben Hersh’s (1995) full argument for a humanist
philosophy of mathematics, as paraphrased below, becomes all the more con-
vincing in this setting.

1. Mathematics is human It is part of and fits into human culture. It
does not match Frege’s concept of an abstract, timeless, tenseless and
objective reality (see Resnik, 1980, and Chapter 8).

2. Mathematical knowledge is fallible As in science, mathematics can
advance by making mistakes and then correcting or even re-correcting
them. The ‘fallibilism’ of mathematics is brilliantly argued in Imre
Lakatos’s (1976) Proofs and Refutations.

3. There are different versions of proof or rigour Standards of rigour can
vary depending on time, place and other things. Using computers in
formal proofs, exemplified by the computer-assisted proof of the four-
colour theorem in 1977, is just one example of an emerging, non-
traditional standard of rigour.

4. Aristotelian logic is not always necessarily the best way of deciding
Empirical evidence, numerical experimentation and probabilistic
proof can all help us decide what to believe in mathematics.

5. Mathematical objects are a special variety of a social–cultural–historical
object Contrary to the assertions of certain post-modern detractors,
mathematics cannot be dismissed as merely a new form of literature or
religion. Nevertheless, many mathematical objects can be seen as
shared ideas, like Moby Dick in literature or the Immaculate Conception
in religion.

The recognition that ‘quasi-intuitive’ methods may be used to gain good
mathematical insight can dramatically assist in the learning and discovery of
mathematics. Aesthetic and intuitive impulses are shot through our subject
and honest mathematicians will acknowledge their role.
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Some Final Observations

When we have before us, for instance, a fine map, in which the
line of coast, now rocky, now sandy, is clearly indicated, together
with the windings of the rivers, the elevations of the land, and the
distribution of the population, we have the simultaneous sugges-
tion of so many facts, the sense of mastery over so much reality,
that we gaze at it with delight, and need no practical motive to
keep us studying it, perhaps for hours together. A map is not nat-
urally thought of as an æsthetic object; it is too exclusively expres-
sive. (Santayana, 1896/1910, p. 209)

This Santayana quotation was my earliest, and still favourite, encounter with
aesthetic philosophy. It may be old fashioned and un-deconstructed in tone,
but to me it rings true. He went on:

And yet, let the tints of it be a little subtle, let the lines be a little del-
icate, and the masses of land and sea somewhat balanced, and we
really have a beautiful thing; a thing the charm of which consists
almost entirely in its meaning, but which nevertheless pleases us in
the same way as a picture or a graphic symbol might please. Give
the symbol a little intrinsic worth of form, line, and color, and it
attracts like a magnet all the values of the things it is known to sym-
bolize. It becomes beautiful in its expressiveness. (p. 210)

However, in conclusion, and to avoid possible accusations of mawkishness
at the close, I also quote Jerry Fodor (1985):

It is, no doubt, important to attend to the eternally beautiful and to
believe the eternally true. But it is more important not to be eaten.
(p. 4)

Notes

[1] This quotation is commonly attributed to Gauss, but it has proven remarkably
resistant to being tracked down. Arber, the citation I give here, a philosopher of
biology, acknowledges in a footnote (p. 47) that, “the present writer has been unable
to trace this dictum to its original source”. Interestingly, even the St. Andrews his-
tory of mathematics site cites Arber. See also Dunnington (1955/2004).

[2] In Brouwer’s Cambridge Lectures on Intuitionism, the editor van Dalen (1981,
p. 95) comments in a footnote:

3. The first use of undecidable properties of effectively presented
objects (such as the decimal expansion of π) occurs in Brouwer
(1908 [/1975]).
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these cases. We must  weigh the apparent  security pur- 
chased by requiring predicative definitions against the 
burden of  having to abandon in many cases what  we, as 
mathematicians, consider  natural definitions. 

2. It is unclear exactly what  objects we are committed to 
when we are commit ted to Peano Arithmetic. There are 
plenty of  problems in number  theory whose proofs use 
analytic means, for instance. Does commitment  to Peano 
Arithmetic entail commitment  to whatever  objects are 
needed for these proofs? More generally, does commit- 
ment  to a mathematical  theory mean commitment  to any 
objects needed for solving problems of  that theory? If 
so, then GSdel's incompleteness  theorems suggest that 
it is open what objects commitment  to Peano Arithmetic 
entails. 

3. As Feferman admits, it is unclear  how to account  pre- 
dicatively for some mathematics  used in currently ac- 
cepted scientific practice, for instance, in quantum me- 
chanics. In addition, I think that Feferman would not 
want  to make the s tronger claim that all future scien- 
tifically applicable mathematics  will be accountable for 
by predicative means. However, the claim that currently 
scientifically applicable mathematics  can be accounted 
for predicatively seems too t ime-bound to play an im- 
portant  role in a foundat ion of  mathematics.  Though it 
is impossible to predict  all future scientific advances, it 
is reasonable to aim at a foundation of  mathematics  that 
has the potential to support  these advances. Whether or 
not predicativity is such a foundation should be studied 
critically. 

4. Whether the use of  impredicative sets, and the un- 
countable more generally, is needed for ordinary finite 
mathematics,  depends on whether  by "ordinary" we 
mean "current." If so, then this is subject to the same 
worry  I raised for (3). It also depends on where we draw 
the line on what  counts  as finite mathematics.  If, for in- 
stance, Goldbach's  conjecture counts  as finite mathe- 
matics, then we have a s tatement  of  finite mathematics  
for which it is completely open whether  it can be proved 
predicatively or  not. 

In emphasizing the degree to which concerns  about  
predicativism shape this book, I should not  overempha- 
size it. There is much besides predicativism in this book, 
as I have tried to indicate. In fact, Feferman advises that 
we not read his predicativism too strongly. In the pref- 
ace, he describes his interest in predicativity as con- 
cerned with seeing how far in mathematics  we can get 
without  resorting to the higher infinite, whose justifica- 
tion he thinks can only be platonic. It may turn out that  
uncountable  sets are needed for doing valuable mathe- 
matics, such as solving currently unsolved problems. In 
that case, Feferman writes, we "should look to see where 
it is necessary to use them and what  we can say about  
what  it is we know when we do use them" (p. ix). 

Nevertheless, Feferman's  commit ted anti-platonism 
is a crucial influence on the book. For  mathematics  right 
now, Feferman thinks, "a little bit goes a long way," as 
one of  the essay titles puts it. The full universe of  sets 

admitted by the platonist is unnecessary, he thinks, for 
doing the mathematics  for which we must  currently ac- 
count. Time will tell if future developments will support  
that  view, or whether, like Brouwer 's  view, it will re- 
quire the alteration or outright rejection of  too much 
mathematics  to be viable. Fefernlan's book  shows that, 
far f rom being over, work  on the foundations of  mathe- 
matics is vibrant and continuing, perched deliciously but 
precariously between mathematics  and philosophy. 
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REVIEWED BY JONATHAN M. BORWEIN 

L ists, challenges, and competi t ions have a long and pri- 
marily lustrous history in mathematics.  This is the story 

of  a recent  highly successful challenge. The book  under  re- 
view makes it clear that  with the continued advance of  com- 
puting power  and accessibility, the view that "real mathe- 
maticians don' t  compute" has little traction, especially for 
a newer  generation of  mathematicians who may readily 
take advantage of  the maturat ion of  computat ional  pack- 
ages such as Maple, Mathematica, and MATLAB. 

Numerical Analysis Then and Now 
George Phillips has accurately called Archimedes the first nu- 
merical analyst [2, pp. 165-169]. In the process of  obtaining 
his famous estimate 3 + 10/71 < ~r < 3 + 1/7, he had to mas- 
ter notions of  recursion without  computers,  interval analy- 
sis without zero or  positional arithmetic, and tr igonometry 
without  any of  our modern analytic scaffolding . . . .  Two 
millennia later, the same estimate can be obtained by a 
computer  algebra system [3]. 
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Example  1. A modern computer algebra system can tell 
one that 

f ~ ( 1  - x)4x 4 22 
(1.1) 0 <  1 - + ~  d x -  7 ~' 

since the integral may be interpreted as the area under a 
positive curve. 

This leaves us no wiser as to why! If, however, we ask 
the same system to compute the indefinite integral, we are 
likely to be told that 

1 2t0t   �9 = t 7 - ~- + - t a + 4t - 4 arctan (t). 

Then (1.1) is now rigorously established by differentiation 
and an appeal to Newton's Fundamental theorem of cal- 
culus. [~ 

While there were many fine arithmeticians over the next 
1500 years, this anecdote from Georges Ifrah reminds us 
that mathematical culture in Europe had not sustained 
Archimedes's level up to the Renaissance. 

A wealthy (15th-century) German merchant, seeking to 
provide his son with a good business education, con- 
sulted a learned man as to which European institution 
offered the best training. "If you only want him to be 
able to cope with addition and subtraction," the expert 
replied, "then any French or German university will 
do. But i f  you are intent on your son going on to mul- 
tiplication and divis ion--assuming that he has suffi- 
cient gifts--then you will have to send him to Italy. 1 

By the 19th century, Archimedes had finally been out- 
stripped both as a theorist and as an (applied) numerical 
analyst, see [7]. 

In 1831, Fourier's posthumous work on equations 
showed 33 figures of solution, got with enormous 
labour. Thinking this a good opportunity to illustrate 
the superiority of the method of W. G. Homer, not yet 
known in France, and not much known in England, I 
proposed to one of my  classes, in  1841, to beat Fourier 
on this point, as a Christmas exercise. I received sev- 
eral answers, agreeing with each other, to 50 places 
of decimals. In 1848, I repeated the proposal, request- 
ing that 50 places might be exceeded: I obtained an- 
swers of 75, 65, 63, 58, 57, and 52 places. (Augustus 
De Morgan 2) 

De Morgan seems to have been one of the first to mis- 
trust William Shanks's epic computations of Pi-- to 527, 
607, and 727 places [2, pp. 147-161], noting there were too 
few sevens. But the error was only confirmed three quar- 
ters of a century later in 1944 by Ferguson with the help of 

a calculator in the last pre-computer calculations of ~--- 
though until around 1950 a "computer" was still a person 
and ENIAC was an "Electronic Numerical Integrator and 
Calculator" [2, pp. 277-281] on which Metropolis and Reit- 
wiesner computed Pi to 2037 places in 1948 and confirmed 
that there were the expected number of sevens. 

Reitwiesner, then working at the Ballistics Research 
Laboratory, Aberdeen Proving Ground in Maryland, starts 
his article [2, pp. 277-281] with 

Early in June, 1949, Professor JOHN VON NEUMANN ex- 
pressed an interest in the possibility that the ENIAC 
might sometime be employed to determine the value of 
r and e to m a n y  decimal places with a view toward 
obtaining a statistical measure of the randomness of 
distribution of the digits. 

The paper notes that e appears to be too random this 
is now proven--and ends by respecting an oft-neglected 
"best-practice": 

Values of the auxiliary numbers arccot 5 and arccot 
239 to 2 0 3 5 D . . .  have been deposited in the library of 
Brown University and the UMT fi le of MTAC. 

The 20th century's "Top T e n "  

The digital computer, of course, greatly stimulated both the 
appreciation of and the need for algorithms and for algo- 
rithmic analysis. At the beginning of this century, Sullivan 
and Dongarra could write, "Great algorithms are the poetry 
of computation," when they compiled a list of the l0 algo- 
rithms having "the greatest influence on the development 
and practice of science and engineering in the 20th cen- 
tury". 3 Chronologically ordered, they are: 

#1. 1946: The Metropolis Algorithm for Monte Carlo. 
Through the use of random processes, this algorithm 
offers an efficient way to stumble toward answers to 
problems that are too complicated to solve exactly. 

#2. 1947: Simplex Method for Linear Programming. 
An elegant solution to a common problem in planning 
and decision making. 

#3. 1950: Krylov Subspace Iteration Method. A tech- 
nique for rapidly solving the linear equations that 
abound in scientific computation. 

#4. 1951: The Decompositional Approach to Matrix 
Computations. A suite of techniques for numerical lin- 
ear algebra. 

#5. 1957: The Fortran Optimizing Compiler. Turns 
high-level code into efficient computer-readable code. 

#6. 1959: QR Algorithm for Computing Eigenvalues.  
Another crucial matrix operation made swift and prac- 
tical. 

1 From page 577 of The Universal History of Numbers: From Prehistory to the Invention of the Computer, translated from French, John Wiley, 2000. 
2Quoted by Adrian Rice in "What Makes a Great Mathematics Teacher?" on page 542 of The American Mathematical Monthly, June-July 1999. 
3From "Random Samples," Science page 799, February 4, 2000. The full article appeared in the January/February 2000 issue of Computing in Science & Engineering. 
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#7. 1962: Qu ickso r t  Algor i thms fo r  Sort ing.  For the ef- 
ficient handling of large databases. 

#8. 1965: F a s t  F o u r i e r  T rans fo rm.  Perhaps the most 
ubiquitous algorithm in use today, it breaks down 
waveforms (like sound) into periodic components. 

#9. 1977: I n t e g e r  Rela t ion  Detec t ion .  A fast method for 
spotting simple equations satisfied by collections of 
seemingly unrelated numbers. 

#10. 1987: F a s t  Mul t ipole  Method.  A breakthrough in 
dealing with the complexity of n-body calculations, 
applied in problems ranging from celestial mechanics 
to protein folding. 

I observe that eight of these ten winners appeared in the 
first two decades of serious computing, and that Newton's 
method was apparently ruled ineligible for consideration. 4 
Most of the ten are multiply embedded in every major math- 
ematical computing package. 

Just as layers of software, hardware, and middleware 
have stabilized, so have their roles in scientific, and espe- 
cially mathematical, computing. When I first taught the sim- 
plex method thirty years ago, the texts concentrated on 
"Y2K"-like tricks for limiting storage demands. Now seri- 
ous users and researchers will often happily run large-scale 
problems in MATLAB and other broad-spectrum packages, 
or rely on NAG library routines embedded in Maple. 

While such out-sourcing or commoditization of scien- 
tific computation and numerical analysis is not without its 
drawbacks, I think the analogy with automobile driving in 
1905 and 2005 is apt. We are now in possession of ma tu re - -  
not to be confused with "error-free"--technologies. We can 
be fairly comfortable that Mathematica is sensibly handling 
round-off or cancelation error, using reasonable termina- 
tion criteria and the like. Below the hood, Maple is opti- 
mizing polynomial computations using tools like Homer ' s  
rule, running multiple algorithms when there is no clear 
best choice, and switching to reduced complexity (Karat- 
suba or FVF-based) multiplication when accuracy so de- 
mands. Wouldn't it be nice, though, if all vendors allowed 
as much peering under the bonnet as Maple does! 

Example  2. The number of additive partit ions of n, p(n),  
is generated by 

(1.2) P(q) = 1 + ~ p ( n ) q  n = 1-[ (1 - qn)-l. 
n > l  n > l  

Thus p(5) = 7, because 

5 = 4 + 1 = 3 + 2 = 3 + 1 + 1 = 2 + 2 + 1  
= 2 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1 ,  

as we ignore "0" and permutations. Additive partitions are 
less tractable than multiplicative ones, for there is no ana- 
logue of unique prime factorization nor the correspond- 
ing structure. Partitions provide a wonderful example of 

why Keith Devlin calls mathematics  "the science of pat- 
terns." 

Formula (1.2) is easily seen by expanding (1 - qn)-1 and 
comparing coefficients. A modern computational tempera- 
ment leads to 

Question: How hard is p(n) to compute- - in  1900 (for 
MacMahon the "father of combinatorial analysis") or in 
2000 (for Maple or Mathematica)? 

Answer." The computation of p(200) = 3972999029388 took 
MacMahon months and intelligence. Now, however, we can 
use the most naive approach: Computing 200 terms of the se- 
ries for the inverse product in (1.2) instantly produces the 
result, using either Mathematica or Maple. Obtaining the re- 
sult p(500)= 2300165032574323995027 is not much more 
difficult, using the Maple code 

N : =500, coeff(series(i/product 
(l-q^n,n=l..N+I) ,q,N+l) ,q,N) ; 

Euler's Pentagonal number theorem 
Fifteen years ago computing P(q) in Maple, was very slow, 
while taking the series for the reciprocal Q(q) = 1Jn_>l(1 -- 
q'O was quite manageable! Why? Clearly the series for Q 
must have special properties. Indeed it is lacunary: 
Q(q) = 1 - q - q2 + q5 + q7 _ q12 _ q15 + q22 + q26 

_ q35 _ q40 + q51+ q57 _ q70 _ q77 + q92 + O(ql00) .  (1.3) 

This lacunarity is now recognized automatically by Maple, 
so the platform works much better, but we are much less 
likely to discover Euler's gem: 

I ~  (1 -- qn)  = ~ ,  ( _ l ) n q n ( 3 n + i ) / 2 .  
n - 1  n -zc 

If we do not immediately recognize these pentagonal num- 
bers, then Sloane's online Encyclopedia of Integer Sequences 5 
immediately comes to the rescue, with abundant references 
to boot. 

This sort of mathematical computation is still in its rea- 
sonably early days, but the impact is palpable--and no 
more so than in the contest and book under review. 

&bout  t h e  C o n t e s t  
For a generation Nick Trefethen has been at the van- 

guard of developments in scientific computation, both 
through his own research, on topics such as pseudo-spec- 
tra, and through much thoughtful and vigorous activity in 
the community. In a 1992 essay "The Definition of Numer- 
ical Analysis ''6 Trefethen engagingly demolishes the con- 
ventional definition of Numerical Analysis as "the science 
of rounding errors." He explores how this hyperbolic view 
emerged, and finishes by writing, 

I believe that the existence of f inite algorithms for cer- 
tain problems, together wi th other historical forces, has 

4It would be interesting to construct a list of the ten most influential earlier algorithms. 
5A fine model for of 21st-century databases, it is available at www.research.att.com/-njas/sequences 
6SIAM News, November 1992. 
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distracted us for  decades f r o m  a balanced view of  nu- 
merical analysis. Rounding errors and instabili ty are 
important, and numerical  analysts will always be the 
experts in  these subjects and at pains  to ensure that 
the unwary  are not tripped up by them. But  our cen- 
tral miss ion  is to compute quantities that are typically 
uncomputable, f r o m  an analytical point of  view, and 
to do it wi th  lightning speed. For guidance to the fu-  
ture we should study not Gaussian el imination and 
its beguiling stability properties, but the diabolically 
fas t  conjugate gradient iteration, or Greengard and 
Rokhlin's O(N) multipole algorithm for  particle s imu-  
lations, or the exponential convergence of  spectral 
methods for  solving certain PDEs, or the convergence 
in  O(N) iterations achieved by mult igrid methods for  
m a n y  kinds of  problems, or even Borwein and Bor- 
wein's  7 magical AGM iteration for  determining 
1,000,000 digits of  ~r in  the blink of  an eye. That is the 
heart  of numerical  analysis. 

In the January  2002 issue of SIAMNews,  Nick Trefethen, 
by then of  Oxford University, presented ten diverse prob- 
lems used in teaching modern graduate numerical analysis 
students at Oxford University, the answer  to each being a 
certain real number. Readers were challenged to compute  
ten digits of  each answer, with a $100 prize to be awarded 
to the best  entrant. Trefethen wrote, "If anyone gets 50 dig- 
its in total, I will be impressed." 

And he was. A total  of  94 teams, represent ing 25 dif- 
ferent  nations, submit ted  results. Twenty  of  these teams 
received a full 100 points  (10 cor rec t  digits for each prob- 
lem). They included the late John  Boersma,  working with 
Fred Simons and others;  Gaston Gonnet  (a Maple 
founder)  and Rober t  Israel; a t eam containing Carl De- 
yore; and the authors  of  the b o o k  under  review variously 
working alone and with others.  These results were  much  
bet ter  than expected,  but  an originally anonymous  donor,  
William J. Browning,  provided  funds for  a $100 award  to 
each of  the twenty  perfec t  teams. The present  author,  
David Bailey, s and Greg Fee entered,  but failed to qual- 
ify for  an award. 9 

The ten challenge problems 
The purpose of  computing is insight, not numbers. 
(Richard Hamming 1~ 

The ten problems are: 
#1. What is lim~_~0 f~ x -1 cos(x -1 log x)dx? 
#2. A photon  moving at speed 1 in the x-y plane starts at 

t = 0 at (x,y) = (1/2, 1/10) heading due east. Around 
every integer lattice point  (i, 3) in the plane, a circu- 
lar mirror of  radius 1/3 has been erected. How far f rom 
the origin is the photon  at t = 10? 

#3. The infinite matrix A with entries al l  = 1, a12 = 1/2, 
a21 = 1/3, a13 = 1/4, a22 = 1/5, a 3 1 - - 1 / 6 ,  etc., is a 
bounded operator  on e 2. What is 1~41]? 

#4. What is the global minimum of the function 
exp(sin(50x)) + sin(60e y) + sin(70 sin x) + 
sin(sin(80y)) - sin(10(x + y))  + (x 2 + y2)/4? 

#5. Le t f ( z )  = 1/F(z), where F(z) is the gamma function, 
and let p(z) be the cubic polynomial that best  ap- 
proximates f ( z )  on the unit disk in the supremum 
norm I]" I1~. What is I I f -  PH~ ? 

#6. A flea starts at (0,0) on the infinite 2-D integer lattice 
and executes a biased random walk: At each step it 
hops north or  south with probability 1/4, east  with 
probability 1/4 + e, and west  with probability 1/4 - e. 
The probability that the flea returns to (0,0) sometime 
during its wanderings is 1/2. What is e? 

#7. Let A be the 20000 x 20000 matrix whose  entries are 
zero everywhere except  for the primes 2, 3, 5, 7, �9 �9 �9 

224737 along the main diagonal and the number  1 in 
all the positions aij with li - Jl = 1, 2, 4, 8, �9 �9 �9 16384. 
What is the (1,1) entry of  A - l ?  

#8. A square plate [ -1 ,1 ]  x [ -1 ,1 ]  is at t empera tu re  
u -- 0. At time t = 0 the t empera tu re  is increased  to 
u = 5 along one of  the four  sides while being held 
at u -- 0 along the o ther  three  sides, and heat  then 
f lows into the plate  accord ing  to ut = An. When 
does  the tempera ture  reach  u = 1 at the center  of  
the plate? 

#9. The integral I(a) = f2 [2 + sin(10a)]x ~ sin(a/(2 - x)) 
dx depends on the parameter  a. What is the value a E 
[0,5] at which I(a) achieves its maximum? 

#10. A particle at the center  of  a 10 x 1 rectangle under- 
goes Brownian motion (i.e., 2-D random walk with in- 
finitesimal step lengths) till it hits the boundary. What 
is the probability that it hits at one of  the ends rather 
than at one of  the sides? 

Answers correct to 40 digits to the problems are avail- 
able at http://web.comlab.ox.ac.uk/oucl/work/nick.trefethen/ 
hundred.html 

Quite full details on the contest  and the now substantial 
related literature are beautifully recorded on Bornemann's  
Web site 

h t t p : / /www-m8 .ma . tum.de /m3 /bo rnemann /cha l l enge  
booW 
which accompanies The SIAM l O0-digit Challenge: A Study 
In High-accuracy Numerical Computing, which, for brevity, 
I shall call The Challenge. 

About the Book and Its Authors 
Success in solving these problems requires a broad knowl- 
edge of mathematics and numerical analysis, together with 

7As in many cases, this eponym is inaccurate, if flattering: it really should be Gauss-Brent-Salamin. 
8Bailey wrote the introduction to the book under review. 
9We took Nick at his word and turned in 85 digits! We thought that would be a good enough entry and returned to other activities. 
1~ Numerical Methods for Scientists and Engineers, 1962. 
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significant computational effort, to obtain solutions and en- 
sure correctness of the results. The strengths and limita- 
tions of Maple, Mathematica, MATLAB (The 3Ms), and other 
software tools such as PARI or GAP, are strikingly revealed 
in these ventures. Almost all of the solvers relied in large 
part on one or more of these three packages, and while 
most solvers attempted to confirm their results, there was 
no explicit requirement for proofs to be provided. In De- 
cember 2002, Keller wrote: 

To the Editor. 
Recently, SIAM News published an interesting article 
by Nick Trefethen (July~August 2002, page 1) pre- 
senting the answers to a set of problems he had pro- 
posed previously (January/February 2002, page 1). 
The answers were computed digits, and the clever 
methods of computation were described. 
I found it surprising that no proof of the correctness 
of the answers was given. Omitting such proofs is the 
accepted procedure in scientific computing. However, 
in a contest for calculating precise digits, one might 
have hoped for more. 

Joseph B. Keller, Stanford University 

In my view Keller's request for proofs as opposed to 
compelling evidence of correctness is, in this context, 
somewhat unreasonable, and even in the long term counter- 
productive [3, 4]. Nonetheless, the authors of The Challenge 
have made a complete and cogent response to Keller and 
much much more. The interest generated by the contest 
has with merit extended to The Challenge, which has al- 
ready received reviews in places such as Science, where 
mathematics is not often seen. 

Different readers, depending on temperament, tools, and 
training, will find the same problem more or less interest- 
ing and more or less challenging. The book is arranged so 
the ten problems can be read independently. In all cases 
multiple solution techniques are given; background, math- 
ematics, implementation details--variously in each of the 
3Ms or otherwise--and extensions are discussed, all in a 
highly readable and engaging way. 

Each problem has its own chapter with its own lead 
author. The four authors, Folkmar Bornemann, Dirk Lau- 
rie, Stan Wagon, and J6rg Waldvogel, come from four 
countries on three continents and did not know each 
other as they worked on the book, though Dirk did visit 
J6rge and Stan visited Folkmar as they were finishing 
their manuscript. This illustrates the growing power of 
the collaboration, networking, and the grid--both human 
and computational. 

Some high spots 
As we saw, Joseph Keller raised the question of proof. On 
careful reading of the book, one may discover proofs of 
correctness for all problems except for #1, #3, and #5. For 
problem #5, one difficulty is to develop a robust interval 
implementation for both complex number computation 
and, more importantly, for the Gamma function. While er- 
ror bounds for #1 may be out of reach, an analytic solution 
to #3 seems to this reviewer tantalizingly close. 

The authors ultimately provided 10,000-digit solutions to 
nine of the problems. They say that this improved their 
knowledge on several fronts as well as being "cool." When 
using Integer Relation Methods, ultrahigh precision com- 
putations are often needed [3]. One (and only one) prob- 
lem remains totally intractable]l--at press time, getting 
more than 300 digits for #3 was impossible. 

Some surprises 
According to the authors, 12 they were surprised by the fol- 
lowing, listed by problem: 
#1. The best algorithm for 10,000 digits was the trusty 

trapezoidal rule--a not uncommon personal experi- 
ence of mine. 

#2. Using interval arithmetic with starting intervals of size 
smaller than 10 -5~176176 one can still find the position of 
the particle at time 2000 (not just time ten), which 
makes a fine exercise for very high-precision interval 
computation. 

#4. Interval analysis algorithms can handle similar prob- 
lems in higher dimensions. As a foretaste of future 
graphic tools, one can solve this problem using current 
adaptive 3-D plotting routines which can catch all the 
bumps. As an optimizer by background, this was the 
first problem my group solved using a damped Newton 
method. 
While almost all canned optimization algorithms failed, 
differential evolution, a relatively new type of evolu- 
tionary algorithm, worked quite well. 
This problem has an almost-closed form in terms of el- 
liptic integrals and leads to a study of random walks 
on hypercubic lattices, and Watson integrals [3, 4, 5]. 
The maximum parameter is expressible in terms of a 
MeijerG function. While this was not common knowl- 
edge among the contestants, Mathematica and Maple 
both will figure this out. This is another measure of the 
changing environment. It is usually a good idea--and 
not at all immoral--to data-mine 13 and find out what 
your favourite one of the 3Ms knows about your cur- 
rent object of interest. For example, Maple tells one 
that: 

#5. 

#6. 

#9. 

l~lf only by the authors' new gold standard of 10,000 digits. 
12Start Wagon, private communication. 

~SBy its own count, WaI-Mart has 460 terabytes of data stored on Teradata mainframes, made by NCR, at its Bentonville headquarters. To put that in perspective, the 
Intemet has less than half as much data . . . .  " Constance Hays, "What WaI-Mart Knows About Customers' Habits," New York Times, Nov. 14, 2004. Mathematicians 
also need databases. 
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The Meijer G function is defined by 

Laplace transform 

MeijerG([as,bs] , [cs,ds],z) 
/ 

Y . . . . . . . . .  ! . . . . . . . .  [ - . 9 ~ - - ( - L - - a - s - + - Y - L - - - ~ . ~ - ! - s  z dy 
2 P i  I 0 GAMMA(bs-y )  G A M M A ( 1 - d s + y )  F 

/ 
L 

where 

as = [al,...,am], 

bs = [bl,... ,bn], 

cs: [cl,'. ",cp], 

ds : [dl,.. "dq], 

the inverse 

GAMMA(I-as+y) = GAMMA(I-aI+y) �9 . �9 GAHHA(I-am+y) 

GAMMA (bs-y) = GAMMA (bl-y) �9 �9 �9 GAMMA (bn-y) 

GAMYLA(cs-y) : GAMICr~(cl-y) �9 �9 �9 GAMMA(cp-y) 

GAMMA (l-ds+y) = GAMMA (l-dl+y) �9 �9 �9 GAMMA (l-dq+y) 

Another excellent example of how packages are chang- 
ing mathematics is the Lambert W function [4], whose 
properties and development are very nicely described in a 
recent article by Brian Hayes [8], Why W? 

Two big surprises 
I finish this section by discussing in more detail the two 
problems whose resolution most surprised the authors. 

The essay on Problem #7, whose principal author was 
Bornemann, is titled: "Too Large to be Easy, Too Small to 
Be Hard." Not so long ago a 20,000 x 20,000 matrix was large 
enough to be hard. Using both congruential and p-adic 
methods, Dumas, Turner, and Wan obtained a fully symbolic 
answer, a rational with a 97,000-digit numerator and like de- 
nominator. Wan has reduced the time to obtain this to about 
15 minutes on one machine, from using many days on many 
machines. While p-adic analysis is susceptible to parallelism, 
it is less easily attacked than are congruential methods; the 
need for better parallel algorithms lurks below the surface 
of much modern computational mathematics. 

The surprise here, though, is not that the solution is ra- 
tional, but that it can be explicitly constructed. The chap- 
ter, like the others, offers an interesting menu of numeric 
and exact solution strategies. Of course, in any numeric ap- 
proach ill-conditioning rears its ugly head, while sparsity 
and other core topics come into play. 

My personal favourite, for reasons that may be appar- 
ent, is: 

Problem #10: "Hitting the Ends." Bornemann starts the 
chapter by exploring Monte-Carlo methods, which are 
shown to be impracticable. He then reformulates the prob- 
lem deterministically as the value at the center of a 10 • 
1 rectangle of an appropriate harmonic measure of the 
ends, arising from a 5-point discretization of Laplace's 
equation with Dirichlet boundary conditions. This is then 
solved by a well-chosen sparse Cholesky solver. At this 
point a reliable numerical value of 3.837587979 �9 1 0  - 7  is ob- 
tained. And the posed problem is solved numerically to the 
requisite 10 places. 

But this is only the warm-up. We proceed to develop two 

analytic solutions, the first using separation of variables 
on the underlying PDE on a general 2a • 2b rectangle. We 
learn that 

4 ~. ( - l ) n s e c h ( ~ r ( 2 n + l ) p )  
(3.4) p(a,b) = IT 2n +-----~ 2 

n = 0  

where p:= a/b. A second method using conformal map- 
pings yields 

IT (3.5) arccot p = p(a,b) -~ + arg g(eip(a'b)~r), 

where K is the complete elliptic integral of the first kind. 
It will not be apparent to a reader unfamiliar with inver- 
sion of elliptic integrals that (3.4) and (3.5) encode the same 
solution; but they must, as the solution is unique in (0,1); 
each can now be used to solve for p = 10 to arbitrary pre- 
cision. 

Bornemann fmally shows that, for far from simple rea- 
sons, the answer is 

2 
(3.6) p = - -  arcsin (kl00), 

IT 

where 

k , 0 o  : - -  ( ( 3  - 2 ~ / 2 )  ( 2  + "~/'5) ( - 3  + " ~ )  ( - ~ / ' 2  s 4 ~ / 5 ) 2 )  2 

a simple composition of one arcsin and a few square roots. 
No one anticipated a closed form like this. 

Let me show how to finish up. An apt equation is [5, 
(3.2.29)] showing that 

(3.7) ~ ( -1 )n  s e c h ( i T ( 2 n + l )  ) 1 �9 = - -  ~ a r C S l n  k ,  2 n +  1 2 P = 

exactly when k = k~ is parametrized by thetafunctions in 
terms of the so-called nome, q = exp(-  ITp), as Jacobi dis- 
covered. We have 

02(q) Zn=-~ q(n+u2)2 
(3.8) k~ -- 02(q ) = ~ n = - ~  qn2 

Comparing (3.7) and (3.4), we see that the solution is 

k]00 = 6.02806910155971082882540712292 . . . .  10 -7, 
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as a s se r t ed  in (3.6). The explici t  form now fol lows from 
class ical  n ine teenth-century  theory  as  d i scussed  in [1, 5]. 
In fact  k210 is the  singular  value sent  by  Ramanujan  to Hardy 
in his f amous  le t ter  of  in t roduct ion [2, 5 ] - - i f  only Trefe then 
had asked  for  a ~ x 1 box, or  even be t te r  a ~ / ~  x ~ / ~  
one! 

Alternatively,  a rmed  only with the knowledge  that  the 
singular  values  are  a lways  algebraic,  we may  finish wi th  an 
au courant proof:  numer ica l ly  obta in  the  minimal  polyno-  
mial  f rom a high-precis ion computa t ion  with (3.8), and re- 
cover  the  surds  [4]. 

E x a m p l e  3. Maple al lows the following 

>Digits:=100:with(PolynomialTools): 
>k::s->evalf(EllipticModulus(exp(-Pi*sqrt(s )): 
>p:=latex(MinimalPolynomial(k(100),12)): 
> 'Error',fsolve(p) [l]-evalf(k(100)); galois(p); 

Error, 4 i0 z06 

"8T9", {"D(4) [x]2", "E(8):2"}, "+", 16, {"4 5)(6 7)", 
"(i 8)(2 3)(4 5)(6 7)", "(2 8) (i 3)(4 6)(5 7)"} 

"(4 8) (i 5) (2 6) (3 7)", 

which f inds the  minimal  polynomial  for klo0, checks  it to 
100 places,  tel ls  us the galois group, and re turns  a la tex ex- 
p ress ion  'p'  which  sets as: 

p(_X) = 1 - 1658904 _X - 3317540 X 2 + 1657944 _X 3 
+ 6637254 _X 4 + 1657944 _X 5 
- 3317540 _X 6 - 1658904 _X 7 + _X 8, 

and is self-reciprocal: it sat isfies p(x) = xSp(1/x). This sug- 
gests  taking a square root,  and we d iscover  that  y = 
satisfies 

1 - 1288y + 20y 2 - 1288y 3 - 26y 4 + 1288y 5 
+ 20y6 + 1288y7 + y8. 

Now life is good. The pr ime factors  of  100 are  2 and 5, 
p rompt ing  

subs (_X= z, 
[op( ( (factor (p, {sqrt (2), sqrt (5) }) )))]) ) 

This yields  four  quadrat ic  terms,  the  des i red  one being 

q = z 2 + 322 z - 228 z~x/2 + 144 z~ /5  - 102 z ~ / 5  
+ 323 - 228 ~/2 + 144~f5 - 102~/2~/-5. 

Fo r  securi ty,  

w: =solve (q) [2] : evalf[1000] (k(100)-w^2) ; 

gives a 1000-digit e r ror  check  of  2.20226255 �9 10 998. 
We leave it to the  reader  to find, using one of the 3Ms, 

the  more  beautiful  form of  kloo given above  in (3.6). []  

Consider ing also the many  techniques  and types  of  math- 
emat ics  used, we have a wonderfu l  adver t i sement  for multi- 
field, mult i -person,  mult i -computer ,  mul t i -package col labo-  
ration. 

Concrete Constructive Mathemat ics 

Elsewhere Kronecker said "In mathematics, I recognize 
true scientific value only in concrete mathematical 
truths, or to put  it more pointedly, only in mathemati- 
cal f o r m u l a s . " . . .  I would rather say "computations" 

than "formulas," but m y  view is essentially the same. 
(Harold M. Edwards  [6, p. 1]) 

Edwards  comment s  e l sewhere  in his recen t  Essays on 
Constructive Mathematics that  his own pre fe rence  for  con- 
s t ruct iv ism was  forged by exper ience  of  comput ing  in the  
fifties, when  comput ing p o w e r  was, as  he notes,  "trivial by  
today ' s  s tandards ."  My own similar  a t t i tudes  were  ce- 
mented  pr imar i ly  by the abil i ty in the  ear ly days  of  pe r sona l  
compute r s  to d e c o d e - - w i t h  the help of  A P L - - e x a c t l y  the  
sor t  of  work  by  Ramanujan which  f inished #10. 

The SIAM l O0-Digit Challenge: A Study In High-accu- 
racy Numerical  Computing is a wonderfu l  and well-writ-  
ten book  full of  living mathemat ics  by  lively mathemat i -  
cians. It shows  how far we have come computa t iona l ly  and 
hints tantal izingly at wha t  l ies ahead.  Anyone who has  been  
in teres ted  enough to finish this  review, and had  not  ye t  r ead  
the book,  is s t rongly urged to buy and plunge i n - - c o m p u t e r  
in h a n d - - t o  this fine adver t i sement  for  cons t ruc t ive  math-  
emat ics  21st-century style. I would  equally s t rongly suggest  
a c ross -word  solving s t y l e - - p i c k  a few p rob lems  from the 
list given, and t ry  them before  peeking  at  the  answers  and 
ex tens ions  given in The Challenge. Later, use  it to i l lustrate  
a course  or  jus t  for a refresher;  and be p leasan t ly  r eminded  
that  chal lenging p rob lems  rare ly  have only one pa th  to so- 
lution and usual ly r eward  study. 
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REVIEWED BY JEAN PETITOT 

W hat exactly is the type of reality of mathematical 
ideal entities? This problem remains largely an open 

question. Any ontology of abstract entities will encounter 
certain antinomies which have been well known for cen- 
turies if not millennia. These antinomies have led the var- 
ious schools of contemporary epistemology increasingly to 
deny any reality to mathematical ideal objects, structures, 
constructions, proofs, and to justify this denial philosoph- 
ically, thus rejecting the spontaneous naive Platonism of 
most professional mathematicians. But they throw out the 
baby with the bath water. Contrary to such figures as Poin- 
card, Husserl, Weyl, Borel, Lebesgue, Veronese, Enriques, 
Cavaillbs, Lautman, Gonseth, or the late G6del, the domi- 
nant epistemology of mathematics is no longer an episte- 
mology of mathematical content. For quite serious and pre- 
cise philosophical reasons, it refuses to take into account 
what the great majority of creative brilliant mathematicians 
consider to be the true nature of mathematical knowledge. 
And yet, to quote the subtitle of Hao Wang's (1985) book 
Beyond Analytic Philosophy, one might well ask whether 
the imperative of any valid epistemology should not be "do- 
ing justice to what we know." 

The remarkable debate Conversations on Mind, Mat- 
ter, and Mathematics between Main Connes and Jean- 
Pierre Changeux, both scientific minds of the very first rank 
and professors at the Collbge de France in Paris, takes up 
the old question of the reality of mathematical idealities in 
a rather new and refreshing perspective. To be sure, since 
it is designed to be accessible to a wide audience, the de- 
bate is not framed in technical terms; the arguments often 

employ a broad brush and are not always sufficiently de- 
veloped. Nevertheless, thanks to the exceptional standing 
of the protagonists, the debate manages to be compelling 
and relevant. 

Jean-Pierre Changeux's Neural Materialism 
Let me begin by summarizing some of Jean-Pierre 
Changeux's arguments. 

Because mathematics is a human and cognitive activity, 
it is natural first to analyze it in psychological and neuro- 
cognitive terms. Psychologism, which formalists and logi- 
cists have decried since the time of Frege and Husserl, de- 
velops the reductionist thesis that mathematical objects 
and the logical idealities that formulate them can be re- 
d u c e d - a s  far as their reality is concerned-- to  mental 
states and processes. Depending on whether or not mental 
representations are themselves conceived as reducible to 
the underlying neural activity, this psychologism is either 
a materialist reductionism or a mentalist functionalism. 

J-P. Changeux defends a variant of materialist reduc- 
tionism. His aim is twofold: first, to inquire into the nature 
of mathematics, but also, at a more strategic level, to put 
mathematics in its place, so to speak. He has never con- 
cealed his opposition to Cartesian or Leibnizian ratio- 
nalisms that have made mathematics the "queen" of the sci- 
ences. In his view, mathematics must abdicate its overly 
arrogant sovereignty, stop laying claim to universal valid- 
ity and absolute truth, and accept the humbler role assigned 
to it by Bacon and Diderot-- that  of "servant" to the natural 
sciences (p. 7). And what better way to make mathematics 
surrender its prestigious seniority than to demonstrate sci- 
entifically that its claims to absolute truth have no more ra- 
tional basis than do those of religious faith? 

Pursuing his mission with great conviction, Changeux 
revisits all the traditional touchstones of the empiricist, ma- 
terialist, and nominalist critiques of Platonist idealism in 
mathematics. He cites an impressive mass of scientific data 
along the way, including results from neurobiology and cog- 
nitive psychology in which he has played a leading role. It 
is this aspect of his approach which commands attention. 

1. The empiricist and constructivist theses hold that 
mathematical objects are "creatures of reason" whose re- 
ality is purely cerebral (p. 11). They are representations, 
that is, mental objects that exist materially in the brain, 
and "corresponding to physical [i.e., neural] states" (p. 14). 

Mental representat ions--memory objects--are  coded in 
the brain as forms in the Gestalt sense, and stored in the 
neurons and synapses, despite significant variability in 
synaptic efficacy (p. 128). 

Their object-contents are reflexively analyzable and their 
properties can be clarified axiomatically. But that is possible 
only because, as mental representations, they are endowed 
with a material reality (pp. 11-15). What's more, the axiomatic 
method of analysis is itself a "cerebral process" (10. 30). 

2. One might try to salvage an autonomy for the formal 
logical and mathematical levels by admitting, in line with 
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Ten Problems in Experimental Mathematics

David H. Bailey, Jonathan M. Borwein, Vishaal Kapoor,
and Eric W. Weisstein

1. INTRODUCTION. This article was stimulated by the recent SIAM “100 Digit
Challenge” of Nick Trefethen, beautifully described in [12] (see also [13]). Indeed,
these ten numeric challenge problems are also listed in [15, pp. 22–26], where they
are followed by the ten symbolic/numeric challenge problems that are discussed in
this article. Our intent in [15] was to present ten problems that are characteristic of the
sorts of problems that commonly arise in “experimental mathematics” [15], [16]. The
challenge in each case is to obtain a high precision numeric evaluation of the quantity
and then, if possible, to obtain a symbolic answer, ideally one with proof. Our goal
in this article is to provide solutions to these ten problems and, at the same time, to
present a concise account of how one combines symbolic and numeric computation,
which may be termed “hybrid computation,” in the process of mathematical discovery.

The passage from object α to answer ω often relies on being able to compute the
object to sufficiently high precision, for example, to determine numerically whether
α is algebraic or is a rational combination of known constants. While some of this is
now automated in mathematical computing software such as Maple and Mathematica,
in most cases intelligence is needed, say in choosing the search space and in deciding
the degree of polynomial to hunt for. In a similar sense, using symbolic computing
tools such as those incorporated into Maple and Mathematica often requires significant
human interaction to produce material results. Such matters are discussed in greater
detail in [15] and [16].

Integer relation detection. Several of these solutions involve the usage of inte-
ger relation detection schemes to find experimentally a likely relationship. For a
given real vector (x1, x2, . . . , xn) an integer relation algorithm is a computational
scheme that either finds the n-tuple of integers (a1, a2, . . . , an), not all zero, such
that a1x1 + a2x2 + · · · anxn = 0 or else establishes that there is no such integer vector
within a ball of some radius about the origin, where the metric is the Euclidean norm
(a2

1 + a2
2 + · · · + a2

n)
1/2.

At the present time, the best known integer relation algorithm is the PSLQ algorithm
[25] of Helaman Ferguson, who is well known in the community for his mathematical
sculptures. Simple formulations of the PSLQ algorithm and several variants are given
in [7]. Another widely used integer relation detection scheme involves the Lenstra-
Lenstra-Lovasz (LLL) algorithm. The PSLQ algorithm, together with related lattice
reduction schemes such as LLL, was recently named one of ten “algorithms of the
century” by the publication Computing in Science and Engineering [3].

Perhaps the best-known application of PSLQ is the 1995 discovery, by means of a
PSLQ computation, of the “BBP” formula for π :

π =
∞∑

k=0

1

16k

(
4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

)
.

This formula permits one to calculate directly binary or hexadecimal digits beginning
at the nth digit, without the need to calculate any of the first n − 1 digits [6]. This
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result has, in turn, led to more recent results that suggest a possible route to a proof
that π and some other mathematical constants are 2-normal (i.e., that every m-long
binary string occurs in the binary expansion with limiting frequency b−m [8], [9]). The
BBP formula even has some practical applications: it is used, for example, in the g95
compiler for transcendental function evaluations [34].

All integer relation schemes require very high precision arithmetic, both in the input
data and in the operation of the algorithms. Simple reckoning shows that if an integer
relation solution vector (ai , a2, . . . , an) has Euclidean norm 10d , then the input data
must be specified to at least dn digits, lest the true solution be lost in a sea of numer-
ical artifacts. In some cases, including one mentioned at the end of the next section,
thousands of digits are required before a solution can be found with these methods.
This is the principal reason for the great interest in high-precision numerical evalua-
tions in experimental mathematics research. It is the also the motivation behind this
set of ten challenge problems.

2. THE BIFURCATION POINT B3.

Problem 1. Compute the value of r for which the chaotic iteration

xn+1 = r xn(1 − xn),

starting with some x0 in (0, 1), exhibits a bifurcation between four-way periodicity and
eight-way periodicity. Extra credit: This constant is an algebraic number of degree not
exceeding twenty. Find the minimal polynomial with integer coefficients that it satisfies.

History and context. The chaotic iteration xn+1 = r xn(1 − xn) has been studied since
the early days of chaos theory in the 1950s. It is often called the “logistic iteration,”
since it mimics the behavior of an ecological population that, if its growth one year
outstrips its food supply, often falls back in numbers for the following year, thus con-
tinuing to vary in a highly irregular fashion. When r is less than one iterates of the
logistic iteration converge to zero. For r in the range 1 < r < B1 = 3 iterates con-
verge to some nonzero limit. If B1 < r < B2 = 1 + √

6 = 3.449489 . . . , the limit-
ing behavior bifurcates—every other iterate converges to a distinct limit point. For
r with B2 < r < B3 iterates hop between a set of four distinct limit points; when
B3 < r < B4, they select between a set of eight distinct limit points; this pattern re-
peats until r > B∞ = 3.569945672 . . . , when the iteration is completely chaotic (see
Figure 1). The limiting ratio limn(Bn − Bn−1)/(Bn+1 − Bn) = 4.669201 . . . is known
as Feigenbaum’s delta constant.

A very readable description of the logistic iteration and its role in modern chaos
theory are given in Gleick’s book [26]. Indeed, John von Neumann had suggested
using the logistic map as a random number generator in the late 1940s. Work by W.
Ricker in 1954 and detailed analytic studies of logistic maps beginning in the 1950s
with Paul Stein and Stanislaw Ulam showed the existence of complicated properties
of this type of map beyond simple oscillatory behavior [35, pp. 918–919].

Solution. We first describe how to obtain a highly accurate numerical value of B3

using a relatively straightforward search scheme. Other schemes could be used to find
B3; we present this one to underscore the fact that computational results sufficient for
the purposes of experimental mathematics can often be obtained without resorting to
highly sophisticated techniques.
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Figure 1. Bifurcation in the logistic iteration.

Let f8(r, x) be the eight-times iterated evaluation of r x(1 − x), and let g8(r, x) =
f8(r, x) − x . Imagine a three-dimensional graph, where r ranges from left to right
and x ranges from bottom to top (as in Figure 1), and where g8(r, x) is plotted in
the vertical (out-of-plane) dimension. Given some initial r slightly less than B3, we
compute a “comb” of function values at n evenly spaced x values (with spacing hx )
near the limit of the iteration xn+1 = f8(r, xn). In our implementation, we use n = 12,
and we start with r = 3.544, x = 0.364, hr = 10−4, and hx = 5 × 10−4. With this
construction, the comb has n/2 negative function values, followed by n/2 positive
function values. We then increment r by hr and reevaluate the “comb,” continuing in
this fashion until two sign changes are observed among the n function values of the
“comb.” This means that a bifurcation occurred just prior to the current value of r , so
we restore r to its previous value (by subtracting hr ), reduce hr , say by a factor of four,
and also reduce the hx roughly by a factor of 2.5. We continue in this fashion, moving
the value of r and its associated “comb” back and forth near the bifurcation point
with progressively smaller intervals hr . The center of the comb in the x-direction must
be adjusted periodically to ensure that n/2 negative function values are followed by
n/2 positive function values, and the spacing parameter hx must be adjusted as well to
ensure that two sign changes are disclosed when this occurs. We quit when the smallest
of the n function values is within two or three orders of magnitude of the “epsilon” of
the arithmetic (e.g., for 2000-digit working precision, “epsilon” is 10−2000). The final
value of r is then the desired value B3, accurate to within a tolerance given by the final
value of rh . With 2000-digit working precision, our implementation of this scheme
finds B3 to 1330-digit accuracy in about five minutes on a 2004-era computer. The first
hundred digits are as follows:
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B3 = 3.54409035955192285361596598660480454058309984544457367545781

25303058429428588630122562585664248917999626 . . . .

With even a moderately accurate value of r in hand (at least two hundred digits or
so), one can use a PSLQ program (such as the PSLQ programs available at the URL
http://crd.lbl.gov/~dhbailey/mpdist) to check whether r is an algebraic
constant. This is done by computing the vector (1, r, r 2, . . . , rn) for various n, begin-
ning with a small value such as two or three, and then searching for integer relations
among these n + 1 real numbers. When n ≥ 12, the relation

0 = r 12 − 12r 11 + 48r 10 − 40r 9 − 193r 8 + 392r 7 + 44r 6 + 8r 5 − 977r 4

− 604r 3 + 2108r 2 + 4913 (1)

can be recovered.
A symbolic solution that explicitly produces the polynomial (1) can be obtained as

follows. We seek a sequence x1, x2, . . . , x4 that satisfies the equations

x2 = r x1(1 − x1), x3 = r x2(1 − x2), x4 = r x3(1 − x3), x1 = r x4(1 − x4),

and

1 =
∣∣∣∣∣ 4∏

i=1

r(1 − 2xi )

∣∣∣∣∣ .
The first four conditions represent a period-4 sequence in the logistic equation xn+1 =
r xn(1 − xn), and the last condition represents the stability of the cycle, which must be
1 or −1 for a bifurcation point (see [33] for details).

First, we deal with the system corresponding to 1 + ∏4
i=1 r(1 − 2xi ) = 0. We com-

pute the lexicographic Groebner basis in Maple:

with(Groebner):
L := [x2 - r*x1*(1-x1),x3 - r*x2*(1-x2),x4 - r*x3*(1-x3),

x1 - r*x4*(1-x4),r^4*(1-2*x1)*(1-2*x2)*(1-2*x3)*(1-2*x4) + 1];
gbasis(L,plex(x1,x2,x3,x4,r));

After a cup of coffee, we discover the univariate element

(r 4 + 1)(r 4 − 8r 3 + 24r 2 − 32r + 17) × (r 4 − 4r 3 − 4r 2 + 16r + 17)

× (r 12 − 12r 11 + 48r 10 − 40r 9 − 193r 8 + 392r 7 + 44r 6 + 8r 5 − 977r 4

− 604r 3 + 2108r 2 + 4913)

in the Groebner basis, in which the monomial ordering is lexicographical with r last.
The first three of these polynomials have no real roots, and the fourth has four real

roots. Using trial and error, it is easy to determine that B3 is the root of the minimal
polynomial

r 12 − 12r 11 + 48r 10 − 40r 9 − 193r 8 + 392r 7

+ 44r 6 + 8r 5 − 977r 4 − 604r 3 + 2108r 2 + 4913,
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which has the numerical value stated earlier. The corresponding Mathematica code
reads:

GroebnerBasis[{x2 - r x1(1 - x1), x3 - r x2(1 - x2),
x4 - r x3(1 - x3), x1 - r x4(1 - x4),
r^4(1 - 2x1)(1 - 2x2)(1 - 2x3)(1 - 2x4) + 1},
r,
{x1, x2, x3, x4}, MonomialOrder -> EliminationOrder]//Timing

This requires only 1.2 seconds on a 3 GHz computer. These computations can also be
recreated very quickly in Magma, an algebraic package available at http://magma.
maths.usyd.edu.au/magma:

Q := RationalField(); P<x,y,z,w,r> := PolynomialRing(Q,5);
I:= ideal< P| y - r*x*(1-x), z - r*y*(1-y), w - r*z*(1-z),

x - r*w*(1-w), r^4*(1-2*x)*(1-2*y)*(1-2*z)*(1-2*w)+1>;
time B := GroebnerBasis(I);

This took 0.050 seconds on a 2.4Ghz Pentium 4.
The significantly more challenging problem of computing and analyzing the con-

stant B4 = 3.564407266095 . . . is discussed in [7]. In this study, conjectural reason-
ing suggested that B4 might satisfy a 240-degree polynomial, and, in addition, that
α = −B4(B4 − 2) might satisfy a 120-degree polynomial. The constant α was then
computed to over 10,000-digit accuracy, and an advanced three-level multi-pair PSLQ
program was employed, running on a parallel computer system, to find an integer re-
lation for the vector (1, α, α2, . . . , α120). A numerically significant solution was ob-
tained, with integer coefficients descending monotonically from 25730, which is a
73-digit integer, to the final value, which is one (a striking result that is exceedingly
unlikely to be a numerical artifact). This experimentally discovered polynomial was
recently confirmed in a large symbolic computation [30].

Additional information on the Logistic Map is available at http://mathworld.
wolfram.com/LogisticMap.html.

3. MADELUNG’S CONSTANT.

Problem 2. Evaluate ∑
(m,n,p) �=0

(−1)m+n+p√
m2 + n2 + p2

, (2)

where convergence means the limit of sums over the integer lattice points enclosed
in increasingly large cubes surrounding the origin. Extra credit: Usefully identify this
constant.

History and context. Highly conditionally convergent sums like this are very com-
mon in physical chemistry, where they are usually written down with no thought of
convergence. The sum in question arises as an idealization of the electrochemical sta-
bility of NaCl. One computes the total potential at the origin when placing a positive
or negative charge at each nonzero point of the cubic lattice [16, chap. 4].

Solution. It is important to realize that this sum must be viewed as the limit of the
sum in successively larger cubes. The sum diverges when spheres are used instead. To
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clarify this consider, for complex s, the series

b2(s) =
∑

(m,n) �=0

(−1)m+n

(m2 + n2)s/2
, b3(s) =

∑
(m,n,p) �=0

(−1)m+n+p

(m2 + n2 + p2)s/2
. (3)

These converge in two and three dimensions, respectively, over increasing “cubes,”
provided that Re s > 0. When s = 1, one may sum over circles in the plane but not
spheres in three-space, and one may not sum over diamonds in dimension two. Many
chemists do not know that b3(1) �= ∑

n(−1)n r3(n)/
√

n, a series that arises by sum-
ming over increasing spheres but that diverges. Indeed, the number r3(n) of repre-
sentations of n as a sum of three squares is quite irregular—no number of the form
8n + 7 has such a representation—and is not O(n1/2). This matter is somewhat ne-
glected in the discussion of Madelung’s constant in Julian Havil’s deservedly popular
recent book Gamma: Exploring Euler’s Constant [27], which contains a wealth of
information related to each of our problems in which Euler had a hand.

Straightforward methods to compute (3) are extremely unproductive. Such tech-
niques produce at most three digits—indeed, the physical model should have a solar-
system sized salt crystal to justify ignoring the boundary. Thus, we are led to using
more sophisticated methods. We note that

b3(s) =
∑′ (−1)i+ j+k

(i2 + j2 + k2)s/2
,

where
∑′ signifies a sum over Z3\{(0, 0, 0)}, and let Ms( f ) denote the Mellin trans-

form

Ms( f ) =
∫ ∞

0
f (x)xs−1 dx .

The quantity that we wish to compute is b3(1). It follows by symmetry that

b3(1) =
∑′ (−1)i+ j+k(i2 + j2 + k2)

(i2 + j2 + k2)3/2

= 3
∑′ (−1)i (i2)(−1) j+k

(i2 + j2 + k2)3/2
. (4)

We observe that Ms(e−t) = �(s), so

M3/2

(
qn2+ j2+k2) = �

(
3

2

)
(n2 + j2 + k2)−3/2,

where n, j , and k are arbitrary integers and q = e−t . Continuing, we rewrite equation
(4) as

�

(
3

2

)
b3(1) = 3M3/2

( ∞∑
n=−∞

(−1)nn2qn2
θ2

4 (x)

)
,

where θ4(x) = ∑∞
−∞(−1)nxn2

is the usual Jacobi theta-function. Since the theta trans-
form—a form of Poisson summation—yields θ4(e−π/s) = √

sθ2(e−sπ), it follows that
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�

(
3

2

)
b3(1) = 3

∞∑
n=−∞

n2M3/2

(∑
(−1)nn2qn2 π

x
θ2

2

(
π2

x

))
.

Also, �(3/2) = √
π/2, so

b3(1) = 12
√

π

∞∑
n=1

(−1)nn2
∑

( j,k) odd

∫ ∞

0

[
e−n2x−(π2/4x)( j2+k2)

]
x−1/2 dx .

The integral is evaluated in [19, Exercise 4, sec. 2.2] and is (π/n2)1/2e−πn
√

j2+k2
,

whence

b3(1) = 48π

∞∑
k=0

∞∑
j=0

∞∑
n=1

(−1)nne−πn
√

(2 j+1)2+(2k+1)2
.

Finally, when a > 0,

4
∞∑

n=1

(−1)n+1ne−an = 4e−a

(1 + e−a)2
= sech2

(a

2

)
,

from which we obtain

b3(1) = 12π
∑
m,n≥1

m,n odd

sech2
(π

2
(m2 + n2)1/2

)
. (5)

Summing over m and n from 1 up to 81 in (5) gives

b3(1) = 1.74756459463318219063621203554439740348516143662474175

8152825350765040623532761179890758362694607891 . . . .

It is possible to accelerate the convergence further still. Details can be found in [19],
[16].

There are closed forms for sums with an even number of variables, up to 24 and
beyond. For example, b2(2s) = −4 α(s) β(s), where

α(s) =
∑
n≥0

(−1)n/(n + 1)s

and

β(s) =
∑
n≥0

(−1)n/(2n + 1)s .

In particular, b2(2) = −π log 2. No such closed form for b3 is known, while much
work has been expended looking for one. The formula for b2 is due to Lorenz (1879). It
was rediscovered by G. H. Hardy and is equivalent to Jacobi’s Lambert series formula
for θ2

3 (q):

θ2
3 (q) − 1 = 4

∑
n≥0

(−1)n q2n+1

1 − q2n+1
.
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This, in turn, is equivalent to the formula for the number r2(n) of representations of n
as a sum of two squares, counting order and sign,

r2(n) = 4(d1(n) − d3(n)),

where dk is the number of divisors of n congruent to k modulo four. The analysis of
three squares is notoriously harder.

Additional information on Madelung’s constant and lattice sums is available
at http://mathworld.wolfram.com/MadelungConstants.html and http:
//mathworld.wolfram.com/LatticeSum.html.

4. DOUBLE EULER SUMS.

Problem 3. Evaluate the sum

C =
∞∑

k=1

(
1 − 1

2
+ · · · + (−1)k+1 1

k

)2 1

(k + 1)3
. (6)

Extra credit: Evaluate this constant as a multiterm expression involving well-known
mathematical constants. This expression has seven terms and involves π , log 2, ζ(3),
and Li5(1/2), where Lin(x) = ∑

k>0 xn/nk is the nth polylogarithm. (Hint: The ex-
pression is “homogenous,” in the sense that each term has the same total “degree.”
The degrees of π and log 2 are each 1, the degree of ζ(3) is 3, the degree of Li5(1/2)

is 5, and the degree of αn is n times the degree of α.)

History and context. In April 1993, Enrico Au-Yeung, an undergraduate at the Uni-
versity of Waterloo, brought to the attention of one of us (Borwein) the curious result

∞∑
k=1

(
1 + 1

2
+ · · · + 1

k

)2 1

k2
= 4.59987 . . . ≈ 17

4
ζ(4) = 17π4

360
. (7)

The function ζ(s) in (7) is the classical Riemann zeta-function:

ζ(s) =
∞∑

n=1

1

ns
.

Euler had solved Bernoulli’s Basel problem when he showed that, for each positive
integer n, ζ(2n) is an explicit rational multiple of π2n [16, sec. 3.2].

Au-Yeung had computed the sum in (7) to 500,000 terms, giving an accuracy of five
or six decimal digits. Suspecting that his discovery was merely a modest numerical
coincidence, Borwein sought to compute the sum to a higher level of precision. Using
Fourier analysis and Parseval’s equation, he obtained

1

2π

∫ π

0
(π − t)2 log2

(
2 sin

t

2

)
dt =

∞∑
n=1

(∑n
k=1

1
k

)2

(n + 1)2
. (8)

The idea here is that the series on the right of (8) permits one to evaluate (7), while
the integral on the left can be computed using the numerical quadrature facility of
Mathematica or Maple. When he did this, Borwein was surprised to find that the con-
jectured identity holds to more than thirty digits. We should add here that, by good
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fortune, 17/360 = 0.047222 . . . has period one and thus can plausibly be recognized
from its first six digits, so that Au-Yeung’s numerical discovery was not entirely far-
fetched.

Solution. We define the multivariate zeta-function by

ζ(s1, s2, . . . , sk) =
∑

n1>n2>···>nk>0

k∏
j=1

n
−|s j |
j σ

−n j
j ,

where the s1, s2, . . . , sk are nonzero integers and σ j = signum(s j ). A fast method for
computing such sums based on Hölder convolution is discussed in [20] and imple-
mented in the EZFace+ interface, which is available as an online tool at the URL
http://www.cecm.sfu.ca/projects/ezface+. Expanding the squared term in
(6), we have

C =
∑

0<i, j<k

(−1)i+ j

i jk3
= 2 ζ(3, −1, −1) + ζ(3, 2). (9)

Evaluating this in EZFace+ we quickly obtain

C = 0.156166933381176915881035909687988193685776709840303872957529354

497075037440295791455205653709358147578 . . . .

Given this numerical value, PSLQ or some other integer-relation-finding tool can
be used to see if this constant satisfies a rational linear relation with the following
constants (as suggested in the hint): π5, π4 log(2), π3 log2(2), π2 log3(2), π log4(2),
log5(2), π2ζ(3), π log(2)ζ(3), log2(2)ζ(3), ζ(5), Li5(1/2). The result is quickly found
to be

C = 4Li5

(
1

2

)
− 1

30
log5(2) − 17

32
ζ(5) − 11

720
π4 log(2) + 7

4
ζ(3) log2(2)

+ 1

18
π2 log3(2) − 1

8
π2ζ(3).

This result has been proved in various ways, both analytic and algebraic. Indeed,
all evaluations of sums of the form ζ(±a1, ±a2, . . . , ±am) with weight w = ∑

k ak

(w < 8), as in (9), have been established.

Further history and context. What Borwein did not know at the time was that Au-
Yeung’s suspected identity follows directly from a related result proved by De Doelder
in 1991. In fact, it had cropped up even earlier as a problem in this MONTHLY, but the
story goes back further still. Some historical research showed that Euler considered
these summations. In response to a letter from Goldbach, he examined sums that are
equivalent to

∞∑
k=1

(
1 + 1

2m
+ · · · + 1

km

)
1

(k + 1)n
. (10)

The great Swiss mathematician was able to give explicit values for certain of these
sums in terms of the Riemann zeta-function.
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Starting from where we left off in the previous section provides some insight into
evaluating related sums. Recall that the Taylor expansion of

f (x) = −1

2
log(1 − x) log(1 + x)

takes the form

f (x) =
∞∑

k=1

(
1 − 1

2
+ 1

3
− · · · + 1

2k − 1

)
x2k

2k
.

Applying Parseval’s identity to f (eit), we have an effective way of computing

∞∑
k=1

(
1 − 1

2 + 1
3 − · · · + 1

2k−1

)2

(2k)2

in terms of an integral that can be rapidly evaluated in Maple or Mathematica.
Alternatively, we may compute

∞∑
k=1

(
1 + 1

2 + 1
3 + · · · + 1

k

)2

k2
.

The Fourier expansions of (π − t)/2 and − log |2 sin(t/2)| are

∞∑
n=1

sin(nt)

n
= π − t

2
(0 < t < 2π)

and
∞∑

n=1

cos(nt)

n
= − log |2 sin(t/2)| (0 < t < 2π), (11)

respectively. Multiplying these together, simplifying, and doing a partial fraction de-
composition gives

− log |2 sin(t/2)| · π − t

2
=

∞∑
n=1

1

n

n−1∑
k=1

1

k
sin(nt)

on (0, 2π). Applying Parseval’s identity results in

1

4π

∫ 2π

0
(π − t)2 log2(2 sin(t/2))dt =

∞∑
n=1

(
1 + 1

2 + 1
3 + · · · + 1

n

)2

(n + 1)2
.

The integral may be computed numerically in Maple or Mathematica, delivering an
approximation to the sum.

The Clausen functions defined by

Cl2(θ) =
∞∑

n=1

sin(nθ)

n2
, Cl3(θ) =

∞∑
n=1

cos(nθ)

n3
, Cl4(θ) =

∞∑
n=1

sin(nθ)

n4
, · · ·

arise as repeated antiderivatives of (11). They are useful throughout harmonic analy-
sis and elsewhere. For example, with α = 2 arctan

√
7, one discovers with the aid of
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PSLQ that

6Cl2(α) − 6Cl2(2α) + 2Cl2(3α)
?= 7Cl2

(
2π

7

)
+ 7Cl2

(
4π

7

)
− 7Cl2

(
6π

7

)
(12)

(here the question mark is used because no proof is yet known) or, in what can be
shown to be equivalent, that

24

7
√

7

∫ π/2

π/3
log

(∣∣∣∣∣ tan(t) + √
7

tan(t) − √
7

∣∣∣∣∣
)

dt
?= L−7(2) = 1.151925470 . . . . (13)

This arises from the volume of an ideal tetrahedron in hyperbolic space [15, pp. 90–
91]. (Here L−7(s) = ∑

n>0 χ−7(n)n−s is the primitive L-series modulo seven, whose
character pattern is 1, 1, −1, 1, −1, −1, 0, which is given by

χ−7(k) = 2(sin(kτ) + sin(2kτ) − sin(3kτ))/
√

7

with τ = 2π/7.)
Although (13) has been checked to twenty thousand decimal digits, by using a nu-

merical integration scheme we shall describe in section 8, and although it is known
for K -theoretic reasons that the ratio of the left- and right-hand sides of (12) is ra-
tional [14], to the best of our knowledge there is no proof of either (12) or (13). We
might add that recently two additional conjectured identities related to (13) have been
discovered by PSLQ computations. Let In be the definite integral of (13), except with
limits nπ/24 and (n + 1)π/24. Then

−2I2 − 2I3 − 2I4 − 2I5 + I8 + I9 − I10 − I11
?= 0,

I2 + 3I3 + 3I4 + 3I5 + 2I6 + 2I7 − 3I8 − I9
?= 0. (14)

Readers who attempt to calculate numerical values for either the integral in (13)
or the integral I9 in (14) should note that the integrand has a nasty singularity at
t = arctan

√
7.

In retrospect, perhaps it was for the better that Borwein had not known of De
Doelder’s and Euler’s results, because Au-Yeung’s intriguing numerical discovery
launched a fruitful line of research by a number of researchers that has continued
until the present day. Sums of this general form are known nowadays as “Euler sums”
or “Euler-Zagier sums.” Euler sums can be studied through a profusion of methods:
combinatorial, analytic, and algebraic. The reader is referred to [16, chap. 3] for an
overview of Euler sums and their applications. We take up the story again in Prob-
lem 9.

Additional information on Euler sums is available at http://mathworld.
wolfram.com/EulerSum.html.

5. KHINTCHINE’S CONSTANT.

Problem 4. Evaluate

K0 =
∞∏

k=1

[
1 + 1

k(k + 2)

]log2 k

=
∞∏

k=1

k[log2(1+1/k(k+2))]. (15)
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Extra credit: Evaluate this constant in terms of a less-well-known mathematical con-
stant.

History and context. Given some particular continued fraction expansion α =
[a0, a1, . . .], consider forming the limit

K0(α) = lim
n→∞ (a0 a1 · · · an)

1/n.

Based on the Gauss-Kuzmin distribution, which establishes that the digit distribution
of a random continued fraction satisfies Prob{ak = n} = log2(1 + 1/k(k + 2)), Khint-
chine showed that the limit exists for almost all continued fractions and is a certain
constant, which we now denote K0. This circle of ideas is accessibly developed in
[27]. As such a constant has an interesting interpretation, computation seems like the
next step.

Taking logarithms of both sides of (15) and simplifying, we have

log 2 · log K0 =
∞∑

n=1

log n · log

(
1 + 1

n(n + 2)

)
.

Such a series converges extremely slowly. Computing the sum of the first 10000 terms
gives only two digits of log 2 · log K0. Thus, direct computation again proves to be
quite difficult.

Solution. Rewriting log n as the telescoping sum

log n = (log n − log(n − 1)) + · · · + (log 2 − log 1) =
n∑

k=2

log
k

k − 1
,

we see that

log 2 · log K0 =
∞∑

n=2

n∑
k=2

log
k

k − 1
· log

(n + 1)2

n(n + 2)
.

We interchange the order of summation to obtain

log 2 · log K0 =
∞∑

k=2

∞∑
n=k

log
(n + 1)2

n(n + 2)
log

k

k − 1
. (16)

But

∞∑
n=k

log
(n + 1)2

n(n + 2)
= log

k + 1

k
= log

(
1 + 1

k

)
,

so (16) transforms into

log 2 · log K0 = −
∞∑

k=2

log

(
1 − 1

k

)
log

(
1 + 1

k

)
. (17)

The Maclaurin series for − log(1 − x) log(1 + x) is

∞∑
k=1

(
1 − 1

2
+ 1

3
− · · · + 1

2k − 1

)
x2k

k
.
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This allows us to rewrite log 2 · log K0 as

log 2 · log K0 =
∞∑

k=1

(
1 − 1

2
+ 1

3
− · · · + 1

2k − 1

)
1

k

∞∑
n=2

n−2k

=
∞∑

k=1

(
1 − 1

2
+ 1

3
− · · · + 1

2k − 1

)
1

k
(ζ(2k) − 1).

Appealing to either Maple or Mathematica, we can easily compute this sum. Taking
the first 161 terms, we obtain one hundred digits of K0:

K0 = 2.68545200106530644530971483548179569382038229399446295

3051152345557218859537152002801141174931847709 . . . .

However, faster convergence is possible, and the constant has now been computed
to more than seven thousand places. Moreover, the harmonic and other averages
are similarly treated. It appears to satisfy its own predicted behavior (for details,
see [5], [32]). Correspondingly, using 108 terms one can obtain the approxima-
tion K0(π) ≈ 2.675 . . . . Note however that K0(e) = ∞ = limn→∞ 3n

√
(2n)!, since

e is a member of the measure zero set of exceptions not having K0(α) = K0, as
a result of the non-Gauss-Kuzmin distribution of terms in the continued fraction
e = [2, 1, 2, 1, 1, 4, 1, 1, 6, . . .].

We emphasize that while it is known that almost all numbers α have limits K0(α)

that equal K0, this has not been exhibited for any explicit number α, excluding artificial
examples constructed using their continued fractions [5].

6. RAMANUJAN’S AGM CONTINUED FRACTION.

Problem 5. For positive real numbers a, b, and η define Rη(a, b) by

Rη(a, b) = a

η + b2

η+ 4a2

η+ 9b2
η+

...

.

Calculate R1(2, 2). Extra credit: Evaluate this constant as a two-term expression in-
volving a well-known mathematical constant.

History and context. This continued fraction arises in Ramanujan’s Notebooks. He
discovered the beautiful fact that

Rη(a, b) + Rη(b, a)

2
= Rη

(
a + b

2
,
√

ab

)
.

The authors wished to record this in [15] and to check the identity computationally.
A first attempt to find R1(1, 1) by direct numerical computation failed miserably, and
with some effort only three reliable digits were obtained: 0.693 . . . . With hindsight, it
was realized that the slowest convergence of the fraction occurs in the mathematically
simplest case, namely, when a = b. Indeed, R1(1, 1) = log 2, as the first primitive
numerics had tantalizingly suggested.
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Solution. Attempting a direct computation of R1(2, 2) using a depth of twenty thou-
sand gives only two digits. Thus we must seek more sophisticated methods. From [16,
(1.11.70)] we learn that when 0 < b < a,

R1(a, b) = π

2

∑
n∈Z

aK (k)

K 2(k) + a2n2π2
sech

(
nπ

K (k ′)
K (k)

)
, (18)

where k = b/a = θ2
2 /θ2

3 and k ′ = √
1 − k2. Here θ2 and θ3 are Jacobian theta-

functions, and K is a complete elliptic integral of the first kind.
Writing (18) as a Riemann sum, we find that

R(a) = R1(a, a) =
∫ ∞

0

sech(πx/(2a))

1 + x2
dx

= 2a
∞∑

k=1

(−1)k+1

1 + (2k − 1)a
, (19)

where the final equality follows from the Cauchy-Lindelöf theorem. This sum can also
be written as

R(a) = 2a

1 + a
2 F1

(
1

2a
+ 1

2
, 1; 1

2a
+ 3

2
; −1

)
,

where 2 F1(·) denotes the hypergeometric function [1, p. 556]. The latter form is what
we use in Maple or Mathematica to determine

R(2) = 0.974990988798722096719900334529210844005920219994710605745268

251285877387455708594352325320911129362 . . . .

This constant, as written, is a bit difficult to recognize, but if one first divides by
√

2 and
exploits the Inverse Symbolic Calculator, an online tool available at the URL http:
//www.cecm.sfu.ca/projects/ISC/ISCmain.html, it becomes apparent that
the quotient is π/2 − log(1 + √

2). Thus we conclude, experimentally, that

R(2) = √
2[π/2 − log(1 + √

2)].
Indeed, it follows (see [18]) that

R(a) = 2
∫ 1

0

t1/a

1 + t2
dt.

Note that R(1) = log 2. No nontrivial closed-form expression is known for R(a, b)

when a �= b, although

R1

(
1

4π
β

(
1

4
,

1

4

)
,

√
2

8π
β

(
1

4
,

1

4

))
= 1

2

∑
n∈Z

sech(nπ)

1 + n2

is almost closed. It would be pleasant to find a direct proof of (19). Further details are
to be found in [18], [17], and [16].
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7. EXPECTED DISTANCE ON A UNIT SQUARE.

Problem 6. Calculate the expected distance E2 between two random points on differ-
ent sides of the unit square:

E2 = 2

3

∫ 1

0

∫ 1

0

√
x2 + y2 dx dy + 1

3

∫ 1

0

∫ 1

0

√
1 + (u − v)2 du dv. (20)

Extra credit: Express this constant as a three-term expression involving algebraic con-
stants and an evaluation of the natural logarithm with an algebraic argument.

History and context. This evaluation and the next were discovered, in slightly more
complicated form, by James D. Klein [16, p. 66]. He computed the numerical integral
and compared it with the result of a Monte Carlo simulation. Indeed, a straightforward
approach to a quick numerical value for an arbitrary iterated integral is to use a Monte-
Carlo simulation, which entails approximating the integral by a sum of function values
taken at pseudo-randomly generated points within the region. It is important to use
a good pseudo-random number generator for this purpose. We tried doing a Monte
Carlo evaluation for this problem, using a pseudo-random number generator based
on the recently discovered class of provably normal numbers [9], [15, pp. 169–70].
The results we obtained for the two integrals in question, with 108 pseudo-random
pairs, are 0.765203 . . . and 1.076643 . . . , respectively, yielding an expected distance
of 0.869017 . . . . Unfortunately, none of these three values immediately suggests a
closed form, and they are not sufficiently accurate (because of statistical limitations)
to be suitable for PSLQ or other constant recognition tools. More digits are needed.

Solution. It is possible to calculate high-precision numerical values for these two in-
tegrals using a two-dimensional quadrature (numerical integration) program. In our
program, we employed a two-dimensional version of the “tanh-sinh” quadrature algo-
rithm, which we will discuss in more detail in Problem 8. Two-dimensional quadrature
is usually much more expensive than one-dimensional quadrature, at a given precision
level, because many more function evaluations must be performed. Often a highly par-
allel computer system must be used to obtain a high-precision result in reasonable run
time [11]. Nonetheless, in this case we were able to evaluate the first of the two inte-
grals to 108-digit accuracy in twenty-one minutes run time on a 2004-era computer,
and the second to 118-digit accuracy in just twenty seconds. The first is more difficult
due to nondifferentiability of the integrand at the origin.

Indeed, in this case both Maple and Mathematica are able to evaluate each of these
integrals numerically, as is, to over one hundred decimal digit accuracy in just a few
minutes of run time, either by evaluating the inner integral symbolically and the outer
integral numerically or else by performing full two-dimensional numerical quadrature.
Maple, Mathematica, and the two-dimensional quadrature program all agreed on the
following numerical value for the expected distance:

α = 0.86900905527453446388497059434540662485671927963168056

9660350864584179822174693053113213554875435754 . . . .

Using PSLQ, with the basis elements α,
√

2, log(
√

2 + 1), and 1, we obtain

α = 1

9

√
2 + 5

9
log(

√
2 + 1) + 2

9
. (21)
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An alternate solution is to attempt to evaluate the integrals symbolically! In fact,
in this case Version 5.1 of Mathematica can do both the integrals “out of the box,”
whereas in the first case Maple appears to need coaxing, for instance, by converting to
polar coordinates:

2
∫ π/4

0

∫ sec θ

0
r 2 dr dθ = 2

3

∫ π/4

0
sec3 θ dθ = 1

3

√
2 − 1

6
log(2) + 1

3
log(2 + √

2),

since the radius for a given θ is 1/ cos θ . As for the second integral, Maple and Math-
ematica both give

−1

3

√
2 − 1

2
log(

√
2 − 1) + 1

2
log(1 + √

2) + 2

3
.

To obtain the second integral analytically, write it as 2
∫ 1

0

∫ u
0

√
1 + (u − v)2 dv du.

Now change variables (set t = u − v) to obtain 1/2
∫ 1

0 {u√
1 + u2 + arcsinh u} du.

Thus, the expected distance is

1

9

√
2 − 1

9
log(2) + 2

9
log(2 + √

2) − 1

6
log(

√
2 − 1) + 1

6
log(1 + √

2) + 2

9
,

which can be simplified to the formula (21).
Additional information on the problem is available at http://mathworld.

wolfram.com/SquareLinePicking.html.

8. EXPECTED DISTANCE ON A UNIT CUBE.

Problem 7. Calculate the expected distance between two random points on different
faces of the unit cube. (Hint: This can be expressed in terms of integrals as

E3 : = 4

5

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

√
x2 + y2 + (z − w)2 dw dx dy dz

+ 1

5

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

√
1 + (y − u)2 + (z − w)2 du dw dy dz.)

Extra credit: Express this constant as a six-term expression involving algebraic con-
stants and two evaluations of the natural logarithm with algebraic arguments.

History and context. As we noted earlier, this evaluation was discovered, in essen-
tially the same form, by Klein [16, p. 66]. As with Problem 6, a Monte Carlo integra-
tion scheme can be used to obtain quick approximations to the integrals. The values
we obtained were 0.870792 . . . and 1.148859 . . . , respectively, yielding an expected
distance of 0.926406 . . . . Once again, however, these numerical values do not imme-
diately suggest a closed-form evaluation, yet the accuracy is too low to apply PSLQ
or other constant recognition schemes. What’s more, in this case, unlike Problem 6,
neither Maple nor Mathematica are able to evaluate these four-fold integrals directly—
though Mathematica comes close. As in most cases “help” is needed, in the form of
mathematical manipulation to render these integrals in a form where mathematical
computing software can evaluate them—numerically or symbolically.

Solution. Let 2 F1(·) again denote the hypergeometric function [1, p. 556]. One can
show that the first integral evaluates to
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√
2π

5

∞∑
n=2

2 F1(1/2, −n + 2; 3/2; 1/2)

(2 n + 1)�(n + 2)�(5/2 − n)
+ 4

15

√
2 + 2

5
log

(√
2 + 1

)
− 1

75
π

and the second generalized hypergeometric function formally evaluates to

√
π

10

∞∑
n=0

4 F3(1, 1/2, −1/2 − n, −n − 1; 2, 1/2 − n, 3/2; −1)

(2n + 1)�(n + 2)�(3/2 − n)

− 2

25
+

√
2

50
+ 1

10
log

(√
2 + 1

)
.

(Although the second diverges as a Riemann sum, both Maple and Mathematica can
handle it, with some human help, producing numerical values of the corresponding
Borel sum.) Both expressions are consequences of the binomial theorem, modulo an
initial integration with respect to z in the first case. These expansions allow one to
compute the expectation to high precision numerically and to express both of the in-
dividual integrals in terms of the same set of constants. The numerical value of the
desired expectation is

0.92639005517404672921816358654777901444496019010733504673252192127

1418504594036683829313473075349968212 . . . .

An integer relation search in the span of
{
1, π,

√
2,

√
3, log(1 + √

2), log(2 + √
3)

}
produces

4

75
+ 17

75

√
2 − 2

25

√
3 − 7

75
π + 7

25
log

(
1 + √

2
) + 7

25
log

(
7 + 4

√
3
)

.

With substantial effort we were able to nurse the symbolic integral out of Maple. We
started, as in the previous problem, by integrating with respect to w over [0, z], dou-
bling, and continuing in this fashion until we reduced the problem to showing that

E3 = −
∫ 1

0

(
2 x3 + 6 x2 + 3

)
ln

(√
2 + x2 − 1

)
dx

+
∫ 1

0
3
−(x2 + 1) ln

(√
2 + x2 − 1

) + ln
(√

2 − 1
)

x2(x2 + 1)
dx

= −5

3
π + 7

6

√
2 + 7

2
ln

(
1 + √

2
) − 3

2
ln (2) + ln

(
1 + √

3
)

+ 37

24

+ 3

4
ln

(
1 + √

2
)
π,

which we leave to the reader to establish.
Mathematica was more helpful: consider

4/5 Integrate[Sqrt[x^2 + y^2 + (z - w)^2], {x, 0, 1}, {y, 0, 1},
{w, 0, 1}, {z, 0, 1}]// Timing
{52.483021*Second, (168*Sqrt[2] - 24*Sqrt[3] - 44*Pi + 72*ArcSinh[1] +
162*ArcSinh[1/Sqrt[2]] + 24*Log[2] - 240*Log[-1 + Sqrt[3]] +
192*Log[1 + Sqrt[3]] + 20*Log[26 + 15*Sqrt[3]] + 3*Log[70226 +
40545*Sqrt[3]])/900}
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This form is what the shipping version of Mathematica 5.1 returns on a 3.0 GHz Pen-
tium 4. It evaluates the first integral directly, while the second one can be done with a
little help. The combined outcomes can then be simplified symbolically to the result
shown.

There is also an ingenious method due to Michael Trott using a Laplace transform
to reduce the four-dimensional integrals to integrals over one-dimensional integrands.
It proceeds by eliminating the square roots (which cause most of the difficulty in sym-
bolic evaluation of the multiple integrals) at the expense of introducing one additional
(but “easy”) integral. The original problem can then be written in terms of the single
integral ∫ ∞

0

[
−14

25
e−z2√

πerf2(z) + 28e−2z2
erf(z)

25z
+ 7e−z2

erf(z)

25z
− 12e−3z2

25
√

π

+68e−2z2

75
√

π
+ 8e−z2

75
√

π

]
dz,

which can be evaluated directly in Mathematica to produce the symbolic expression
for E3.

Nonetheless, we must emphasize (i) that one needs to proceed with confidence,
since such symbolic computations can take several minutes, and (ii) that phrases like
“Maple can not” or “Mathematica can” are release-specific and may also depend on
the skill of the human user to make use of expert knowledge in mathematics, symbolic
computation, or both, in order to produce a form of the problem that is most amenable
to computation in a given software system. This explains our desire to illustrate various
solution paths here and elsewhere.

Additional information on this problem is available at http://mathworld.
wolfram.com/CubeLinePicking.html. For more information about the Laplace
transform trick applied to the related problem of expected distance in a unit hypercube,
see http://mathworld.wolfram.com/HypercubeLinePicking.html.

9. AN INFINITE COSINE PRODUCT.

Problem 8. Calculate

π2 =
∫ ∞

0
cos(2x)

∞∏
n=1

cos
( x

n

)
dx .

History and context. The challenge of showing that π2 < π/8 was posed by Bernard
Mares, Jr., along with the problem of demonstrating that

π1 =
∫ ∞

0

∞∏
n=1

cos
( x

n

)
dx <

π

4
.

This is indeed true, although the error is remarkably small, as we shall see.

Solution. The computation of a high-precision numerical value for this integral is
rather challenging, owing in part to the oscillatory behavior of

∏
n≥1 cos(x/n) (see

Figure 2) but mostly because of the difficulty of computing high-precision evaluations
of the integrand. Note that evaluating thousands of terms of the infinite product would
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n=2
n=5
n=10

 

C(x)

–0.2

0

0.2

0.4

0.6

0.8

1

x
3 41 2

Figure 2. Approximations to
∏

n≥1 cos(x/n).

produce only a few correct digits. Thus it is necessary to rewrite the integrand in a
form more suitable for computation.

Let f (x) signify the integrand. We can express f (x) as

f (x) = cos(2x)

[
m∏

k=1

cos
( x

k

)]
exp( fm(x)), (22)

where we choose m greater than x and where

fm(x) =
∞∑

k=m+1

log cos
( x

k

)
. (23)

The kth summand can be expanded in a Taylor series [1, p. 75], as follows:

log cos
( x

k

)
=

∞∑
j=1

(−1) j 22 j−1(22 j − 1)B2 j

j (2 j)!
( x

k

)2 j
,

in which B2 j are Bernoulli numbers. Observe that since k > m > x in (23), this series
converges. We can then write

fm(x) =
∞∑

k=m+1

∞∑
j=1

(−1) j 22 j−1(22 j − 1)B2 j

j (2 j)!
( x

k

)2 j
. (24)
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After applying the identity [1, p. 807]

B2 j = (−1) j+12(2 j)!ζ(2 j)

(2π)2 j

and interchanging the sums, we obtain

fm(x) = −
∞∑
j=1

(22 j − 1)ζ(2 j)

jπ2 j

[ ∞∑
k=m+1

1

k2 j

]
x2 j .

Note that the inner sum can also be written in terms of the zeta-function, as follows:

fm(x) = −
∞∑
j=1

(22 j − 1)ζ(2 j)

jπ2 j

[
ζ(2 j) −

m∑
k=1

1

k2 j

]
x2 j .

This can now be reduced to a compact form for purposes of computation as

fm(x) = −
∞∑
j=1

a j b j,mx2 j , (25)

where

a j = (22 j − 1)ζ(2 j)

jπ2 j
, (26)

b j,m = ζ(2 j) −
m∑

k=1

1/k2 j . (27)

We remark that ζ(2 j), a j , and b j,m can all be precomputed, say for j up to some
specified limit and for a variety of m. In our program, which computes this integral
to 120-digit accuracy, we precompute b j,m for m = 1, 2, 4, 8, 16, . . . , 256 and for j
up to 300. During the quadrature computation, the function evaluation program picks
m to be the first power of two greater than the argument x , and then applies formulas
(22) and (25). It is not necessary to compute f (x) for x larger than 200, since for these
large arguments | f (x)| < 10−120 and thus may be presumed to be zero.

The computation of values of the Riemann zeta-function can be done using a simple
algorithm due to Peter Borwein [21] or, since what we really require is the entire set
of values {ζ(2 j) : 1 ≤ j ≤ n} for some n, by a convolution scheme described in [5].
It is important to note that the computation of both the zeta values and the b j,m must
be done with a much higher working precision (in our program, we use 1600-digit
precision) than the 120-digit precision required for the quadrature results, since the
two terms being subtracted in formula (27) are very nearly equal. These values need
to be calculated to a relative precision of 120 digits.

With this evaluation scheme for f (x) in hand, the integral (8) can be computed us-
ing, for instance, the tanh-sinh quadrature algorithm, which can be implemented fairly
easily on a personal computer or workstation and is also well suited to highly paral-
lel processing [10], [11], [16, p. 312]. This algorithm approximates an integral f (x)

on [−1, 1] by transforming it to an integral on (−∞, ∞) via the change of variable
x = g(t), where g(t) = tanh(π/2 · sinh t):
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∫ 1

−1
f (x) dx =

∫ ∞

−∞
f (g(t))g′(t) dt = h

∞∑
j=−∞

w j f (x j ) + E(h). (28)

Here x j = g(h j) and w j = g′(h j) are abscissas and weights for the tanh-sinh quadra-
ture scheme (which can be precomputed), and E(h) is the error in this approximation.

The function g′(t) = π/2 · cosh t · sech2(π/2 · sinh t) and its derivatives tend to
zero very rapidly for large |t |. Thus, even if the function f (t) has an infinite derivative,
a blow-up discontinuity, or oscillatory behavior at an endpoint, the product function
f (g(t))g′(t) is in many cases quite well behaved, going rapidly to zero (together with
all of its derivatives) for large |t |. In such cases, the Euler-Maclaurin summation for-
mula [2, p. 180] can be invoked to conclude that the error E(h) in the approximation
(28) decreases very rapidly—faster than any power of h. In many applications, the
tanh-sinh algorithm achieves quadratic convergence (i.e., reducing the size h of the
interval in half produces twice as many correct digits in the result).

The tanh-sinh quadrature algorithm is designed for a finite integration interval. In
this problem, where the interval of integration is [0, ∞), it is necessary to convert the
integral to a problem on a finite interval. This can be done with the simple substitution
s = 1/(x + 1), which yields an integral from 0 to 1.

In spite of the substantial computation required to construct the zeta- and b-arrays,
as well as the abscissas x j and weights w j needed for tanh-sinh quadrature, the en-
tire calculation requires only about one minute on a 2004-era computer, using the
ARPREC arbitrary precision software package available at http://crd.lbl.gov/
~dhbailey/mpdist. The first hundred digits of the result are the following:

0.3926990816987241548078304229099378605246454341872315959268122851

62093247139938546179016512747455366777 . . . .

A Mathematica program capable of producing 100 digits of this constant is avail-
able on Michael Trott’s website: http://www.mathematicaguidebooks.org/
downloads/N_2_01_Evaluated.nb.

Using the Inverse Symbolic Calculator, for instance, one finds that this constant is
likely to be π/8. But a careful comparison with a high-precision value of π/8, namely,

0.3926990816987241548078304229099378605246461749218882276218680740

38477050785776124828504353167764633497 . . . ,

reveals that they are not equal—the two values differ by approximately 7.407 × 10−43.
Indeed, these two values are provably distinct. This follows from the fact that

55∑
n=1

1/(2n + 1) > 2 >

54∑
n=1

1/(2n + 1).

See [16, chap. 2] for additional details. We do not know a concise closed-form expres-
sion for this constant.

Further history and context. Recall the sinc function

sinc x = sin x

x
,
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and consider, the seven highly oscillatory integrals:

I1 =
∫ ∞

0
sinc x dx = π

2
,

I2 =
∫ ∞

0
sinc x sinc

( x

3

)
dx = π

2
,

I3 =
∫ ∞

0
sinc x sinc

( x

3

)
sinc

( x

5

)
dx = π

2
,

...

I6 =
∫ ∞

0
sinc x sinc

( x

3

)
· · · sinc

( x

11

)
dx = π

2
,

I7 =
∫ ∞

0
sinc x sinc

( x

3

)
· · · sinc

( x

13

)
dx = π

2
.

It comes as something of a surprise, therefore, that

I8 =
∫ ∞

0
sinc x sinc

( x

3

)
· · · sinc

( x

15

)
dx

= 467807924713440738696537864469

935615849440640907310521750000
π ≈ 0.499999999992646π.

When this was first discovered by a researcher, using a well-known computer algebra
package, both he and the software vendor concluded there was a “bug” in the software.
Not so! It is fairly easy to see that the limit of the sequence of such integrals is 2π1.
Our analysis, via Parseval’s theorem, links the integral

IN =
∫ ∞

0
sinc(a1x) sinc(a2x) · · · sinc(aN x) dx

with the volume of the polyhedron PN described by

PN =
{

x : |
N∑

k=2

ak xk | ≤ a1, |xk | ≤ 1, 2 ≤ k ≤ N

}

for x = (x2, x3, . . . , xN ). If we let

CN = {(x2, x3, . . . , xN ) : −1 ≤ xk ≤ 1, 2 ≤ k ≤ N },
then

IN = π

2a1

Vol(PN )

Vol(CN )
.

Thus, the value drops precisely when the constraint
∑N

k=2 ak xk ≤ a1 becomes active
and bites the hypercube CN . That occurs when

∑N
k=2 ak > a1. In the foregoing,

1

3
+ 1

5
+ · · · + 1

13
< 1,
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but on addition of the term 1/15, the sum exceeds 1, the volume drops, and IN = π/2
no longer holds. A similar analysis applies to π2. Moreover, it is fortunate that we
began with π1 or the falsehood of π2 = 1/8 would have been much harder to see.

Additional information on this problem is available at http://mathworld.
wolfram.com/InfiniteCosineProductIntegral.html and http://math-
world.wolfram.com/BorweinIntegrals.html.

10. A MULTIVARIATE ZETA-FUNCTION.

Problem 9. Calculate ∑
i> j>k>l>0

1

i3 jk3l
.

Extra credit: Express this constant as a single-term expression involving a well-known
mathematical constant.

History and context. We resume the discussion from Problem 3. In the notation in-
troduced there, we ask for the value of ζ(3, 1, 3, 1). The study of such sums in two
variables, as we noted, originated with Euler. These investigations were apparently
due to a serendipitous mistake. Goldbach wrote to Euler [15, pp. 99–100]:

When I recently considered further the indicated sums of the last two series in
my previous letter, I realized immediately that the same series arose due to a
mere writing error, from which indeed the saying goes, “Had one not erred, one
would have achieved less [Si non errasset, fecerat ille minus].”

Euler’s reduction formula is

ζ(s, 1) = s

2
ζ(s + 1) − 1

2

s−2∑
k=1

ζ(k + 1)ζ(s + 1 − k),

which reduces the given double Euler sums to a sum of products of classical ζ -values.
Euler also noted the first reflection formulas

ζ(a, b) + ζ(b, a) = ζ(a)ζ(b) − ζ(a + b),

certainly valid when a > 1 and b > 1. This is an easy algebraic consequence of adding
the double sums. Another marvelous fact is the sum formula∑

�ai =n,ai ≥0

ζ(a1 + 2, a2 + 1, . . . , ar + 1) = ζ(n + r + 1) (29)

for nonnegative integers n and r . This, as David Bradley observes, is equivalent to the
generating function identity

∑
n>0

1

nr (n − x)
=

∑
k1>k2>···kr >0

r∏
j=1

1

k j − x
.

The first three nontrivial cases of (29) are ζ(3) = ζ(2, 1), ζ(4) = ζ(3, 1) + ζ(2, 2),
and ζ(2, 1, 1) = ζ(4).
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Solution. We notice that such a function is a generalization of the zeta-function. Sim-
ilar to the definition in section 4, we define

ζ(s1, s2, . . . , sk; x) =
∑

n1>n2>···>nk>0

xn
1

ns1
1 ns2

2 · · · nsr
r

, (30)

for s1, s2, . . . , sk nonnegative integers. We see that we are asked to compute the value
ζ(3, 1, 3, 1; 1). Such a sum can be evaluated directly using the EZFace+ interface at
http://www.cecm.sfu.ca/projects/ezface+, which employs the Hölder con-
volution, giving us the numerical value

0.005229569563530960100930652283899231589890420784634635522547448

97214886954466015007497545432485610401627 . . . . (31)

Alternatively, we may proceed using differential equations. It is fairly easy to see [16,
sec. 3.7] that

d

dx
ζ(n1, n2, . . . , nr ; x) = 1

x
ζ(n1 − 1, n2, . . . , nr ; x) (n1 > 1), (32)

d

dx
ζ(n1, n2, . . . , nr ; x) = 1

1 − x
ζ(n2, . . . , nr ; x) (n1 = 1), (33)

with initial conditions ζ(n1; 0) = ζ(n1, n2; 0) = · · · = ζ(n1, . . . , nr ; 0) = 0 and
ζ(·; x) ≡ 1. Solving

> dsys1 =
> diff(y3131(x),x) = y2131(x)/x,
> diff(y2131(x),x) = y1131(x)/x,
> diff(y1131(x),x) = 1/(1-x)*y131(x),
> diff(y131(x),x) = 1/(1-x)*y31(x),
> diff(y31(x),x) = y21(x)/x,
> diff(y21(x),x) = y11(x)/x,
> diff(y11(x),x) = y1(x)/(1-x),
> diff(y1(x),x) = 1/(1-x);
> init1 = y3131(0) = 0,y2131(0) = 0, y1131(0) = 0,
> y131(0) = 0,y31(0) = 0,y21(0) = 0,y11(0) = 0,y1(0) = 0;

in Maple, we obtain 0.005229569563518039612830536519667669502942 (this is
valid to thirteen decimal places). Maple’s identify command is unable to iden-
tify portions of this number, and the inverse symbolic calculator does not return a
result. It should be mentioned that both Maple and the ISC identified the constant
ζ(3, 1) (see the remark under the “history and context” heading). From the hint for
this question, we know this is a single-term expression. Suspecting a form similar to
ζ(3, 1), we search for a constants c and d such that ζ(3, 1, 3, 1) = cπd . This leads to
c = 1/81440 = 2/10! and d = 8.

Further history and context. We start with the simpler value, ζ(3, 1). Notice that

− log(1 − x) = x + 1

2
x2 + 1

3
x3 + · · · ,
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so

f (x) = − log(1 − x)/(1 − x) = x +
(

1 + 1

2

)
x2 +

(
1 + 1

2
+ 1

3

)
x3 + · · ·

=
∑

n≥m>0

xn

m
.

As noted in the section on double Euler sums,

(−1)m+1

�(m)

∫ 1

0
xn logm−1 x dx = 1

(n + 1)m
,

so integrating f using this transform for m = 3, we obtain

ζ(3, 1) = 1

2

∫ 1

0
f (x) log2 x dx

= 0.270580808427784547879000924 . . . .

The corresponding generating function is∑
n≥0

ζ({3, 1}n)x
4n = cosh(πx) − cos(πx)

π2 x2
,

equivalent to Zagier’s conjectured identity

ζ({3, 1}n) = 2π4n

(4n + 2)
.

Here {3, 1}n denotes n-fold concatenation of {3, 1}.
The proof of this identity (see [16, p. 160]) derives from a remarkable factorization

of the generating function in terms of hypergeometric functions:∑
n≥0

ζ({3, 1}n)x
4n = 2 F1

(
x
(1 + i)

2
, −x

(1 + i)

2
; 1; 1

)

× 2 F1

(
x
(1 − i)

2
, −x

(1 − i)

2
; 1; 1

)
.

Finally, it can be shown in various ways that

ζ({3}n) = ζ({2, 1}n)

for all n, while a proof of the numerically-confirmed conjecture

ζ({2, 1}n)
?= 23n ζ({−2, 1}n) (34)

remains elusive. Only the first case of (34), namely,

∞∑
n=1

1

n2

n−1∑
m=1

1

m
= 8

∞∑
n=1

(−1)n

n2

n−1∑
m=1

1

m
(= ζ(3))
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has a self-contained proof [16]. Indeed, the only other established case is

∞∑
n=1

1

n2

n−1∑
m=1

1

m

m−1∑
p=1

1

p2

p−1∑
q=1

1

q
= 64

∞∑
n=1

(−1)n

n2

n−1∑
m=1

1

m

m−1∑
p=1

(−1)p

p2

p−1∑
q=1

1

q
(= ζ(3, 3)).

This is an outcome of a complete set of equations for multivariate zeta-functions of
depth four.

There has been abundant evidence amassed to support identity (34) since it was
found in 1996. For example, very recently Petr Lisonek checked the first eighty-five
cases to one thousand places in about forty-one hours with only the expected roundoff
error. And he checked n = 163 in ten hours. This is the only identification of its type
of an Euler sum with a distinct multivariate zeta-function.

11. A WATSON INTEGRAL.

Problem 10. Evaluate

W = 1

π3

∫ π

0

∫ π

0

∫ π

0

1

3 − cos x − cos y − cos z
dx dy dz. (35)

History and context. The integral arises in Gaussian and spherical models of ferro-
magnetism and in the theory of random walks. It leads to one of the most impressive
closed-form evaluations of an equivalent multiple integral due to G. N. Watson:

Ŵ =
∫ π

−π

∫ π

−π

∫ π

−π

1

3 − cos x − cos y − cos z
dx dy dz

= 1

96
(
√

3 − 1) �2

(
1

24

)
�2

(
11

24

)
(36)

= 4π
(

18 + 12
√

2 − 10
√

3 − 7
√

6
)

K2(k6),

where k6 = (2 − √
3)(

√
3 − √

2) is the sixth singular value. The most self-contained
derivation of this very subtle result is due to Joyce and Zucker in [28] and [29], where
more background can also be found.

Solution. In [31], it is shown that a simplification can be obtained by applying the
formula

1

λ
=

∫ ∞

0
e−λt dt (Re λ > 0) (37)

to W3. The three-dimensional integral is then reducible to a single integral by using
the identity

1

π

∫ ∞

0
exp(t cos θ)dθ = I0(t), (38)

in which I0(t) is the modified Bessel function of the first kind. It follows from this
that W = ∫ ∞

0 exp(−3t)I 3
0 (t)dt . This integral can be evaluated to one hundred digits
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in Maple, giving

W3 = 0.50546201971732600605200405322714025998512901481742089

21889934878860287734511738168005372470698960380 . . . . (39)

Finally, an integer relation hunt to express log W in terms of log π, log 2, log �(k/24),
and log(

√
3 − 1) will produce (36).

We may also write W3 as a product solely of values of the gamma function. This is
what our Mathematician’s ToolKit returned:

0 = -1.* log[w3] + -1.* log[gamma[1/24]] + 4.*log[gamma[3/24]] +
-8.*log[gamma[5/24]] + 1.* log[gamma[7/24]] + 14.*log[gamma[9/24]] +
-6.*log[gamma[11/24]] + -9.*log[gamma[13/24]] + 18.*log[gamma[15/24]] +
-2.*log[gamma[17/24]] + -7.*log[gamma[19/24]]

Proving this is achieved by comparing the result with (36) and establishing the implicit
gamma representation of (

√
3 − 1)2/96.

Similar searches suggest there is no similar four-dimensional closed form—the rele-
vant Bessel integral is W4 = ∫ ∞

0 exp(−4t)I 4
0 (t) dt . (N.B.

∫ ∞
0 exp(−2t)I 2

0 (t) dt = ∞.)
In this case it is necessary to compute exp(−t)I0(t) carefully, using a combination of
the formula

exp(−t)I0(t) = exp(−t)
∞∑

n=0

t2n

22n(n!)2

for t up to roughly 1.2 · d, where d is the number of significant digits desired for the
result, and

exp(−t)I0(t) ≈ 1√
2π t

N∑
n=0

∏n
k=1(2k − 1)2

(8t)nn!
for large t , where the upper limit N of the summation is chosen to be the first index n
such that the summand is less than 10−d (since this is an asymptotic expansion, taking
more terms than N may increase, not decrease the error). We have implemented this
as ‘besselexp’ in our Mathematician’s ToolKit, available at http://crd.lbl.gov/
~dhbailey/mpdist. Using this software, which includes a PSLQ facility, we found
that W4 is not expressible as a product of powers of �(k/120) (0 < k < 120) with
coefficients having fewer than 80 digits. This result does not, of course, rule out the
possibility of a larger relation, but it does cast some doubt, in an experimental sense,
that such a relation exists—enough to stop looking.

Additional information on this problem is available at http://mathworld.
wolfram.com/WatsonsTripleIntegrals.html.

12. CONCLUSION. While all the problems described herein were studied with a
great deal of experimental computation, clean proofs are known for the final results
given (except for Problem 7), and in most cases a lot more has by now been proved.
Nonetheless, in each case the underlying object suggests plausible generalizations that
are still open.

The “hybrid computations” involved in these solutions are quite typical of mod-
ern experimental mathematics. Numerical computations by themselves produce no in-
sight, and symbolic computations frequently fail to produce full-fledged, closed-form
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solutions. But when used together, with significant human interaction, they are often
successful in discovering new facts of mathematics and in suggesting routes to formal
proof.
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Book Reviews
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Featured Review: Oxford Users’ Guide to Mathematics. Edited by Eberhard Zeidler.
Oxford University Press, Oxford, 2004. $59.50. xxii+1285 pp., softcover. ISBN 0-19-
850763-1.

1. Dictionaries, Handbooks, Encyclopedias, and Tables.

For thousands of years, dictionaries, encyclopedias, handbooks, manuals, outlines,
primers, problem books, review journals, synopses, tables, and users’ guides have
played a central role in mathematics—from the Rhind or Ahmes papyruses (see [3])
of the Egyptians (c. 3400 bce), through Leonardo (Fibonacci) Pisano’s Liber Abaci
(1202–1228) to the Jahrbuch and later Zentralblatt, Math Reviews/MathSciNet, and
even Wikipedia and MathWorld.

In his preface to Fibonacci’s work, L. E. Sigler, the translator, writes, “Liber
Abaci is an encyclopedic work treating most of the known mathematics of the thir-
teenth century on arithmetic, algebra, and problem solving. . . . Liber Abaci was good
mathematics when it was written and it is good mathematics today.” What a model
to emulate!

Let me continue with a discursive discussion of reference material, and of the
issues any author of such has to deal with, before turning to the (Oxford) guide in
question. Given my own twenty years as book editor, book author, and “accidental
lexicographer”—as described below—I feel reasonably comfortable doing this. There
is a community of compilers and collators, and I write as one of this generally sup-
portive fraternity.

This is in part because as a compiler one largely asserts facts without substanti-
ation. Thus, there is much need for judgment and great room for error—as there is
indeed in a textbook, particularly in exercises (quoted in a book review in Science,
1994):

“[T]he proof is left as an exercise” occurred in De Triangulis Omnimodis
by Regiomontanus, written 1464 and published 1533. He is quoted as
saying “This is seen to be the converse of the preceding. Moreover, it has
a straightforward proof, as did the preceding. Whereupon I leave it to you
for homework.”

Unlike a paper in one’s specialty or even a book in one’s favorite topic, where
one can aspire to mastery of the subject, a compiler is constantly skating on thin ice.
Replacement of an “a” by a “the” can show how thin the veneer of knowledge is. A
reversed inequality might well not be invidious, but mistranscription of a superscript
may well leave an expression mangled as, for example, in equation (1) below. Above
all, placing material in one’s own deft words is a recipe for original sin.

Publishers are invited to send books for review to Book Reviews Editor, SIAM, 3600 University
City Science Center, Philadelphia, PA 19104-2688.

585



586 BOOK REVIEWS

1.1. The Collins Dictionary: A Disclaimer and My Own Experiences. I feel
somewhat in an at-least-apparent conflict of interest. I am coauthor with Ephraim
Borowski1 of the Collins Dictionary of Mathematics [1]. It is now in its 15th printing
and was relaunched in an updated Smithsonian edition late in 2005. Since I write
a less than glowing review it may well seem self-interested and disingenuous. But a
conflict of interest announced is one at least half-resolved.

We started writing the Collins Dictionary in 1985 after a reader of the general
Collins dictionary complained justifiably about certain of the mathematical and logical
entries therein. Borowski2 and I were asked to revise the thousand or so mathematical
terms, which we did. At the end we had a stack of handwritten file cards and a mild
addiction which grew into the dictionary. This was typed on four Macintoshes (one a
repentant Lisa), using the chalkboard as a database manager, with frequent airmailing
of floppy disks across the Atlantic. We ended up having written a 9,000-or-so-term3

book which became the first text set from disk in Europe—an interesting if not a
pretty process. Through ignorance on Collins’ part, we had been left the “electronic
and musical rights.” By the mid-nineties this had resulted in an interactive CD version,
the MathResource, which embeds student Maple (see www.mathresouces.com). Ten
years later the dictionary is sitting symmetrically inside Maple.

After “finishing” the first edition of our dictionary in 1988, I found I could not
enjoy a single colloquium or seminar for more than three years. I would constantly
ask myself, “Did I define that term correctly, should I have included their result?” I
felt like a giant hamster on a never-ending lexical treadwheel. Such is the life of a
lexicographer or a compiler.

1.2. Dictionaries in General. Neglecting entirely Denis Diderot and his Ency-
clopédie4 (1745–1772), let us revisit some of the central events in English. Roget’s
Thesaurus, published in 1852 as “Treasury of Words” by the remarkable Peter Mark
Roget (1779–1869), had rapid and enormous success, even as a fashion accessory for
the cultured; for a period it was good social style to consult it openly in drawing room
conversation. Roget never expected it to be used except by the well educated! It is
now online free at http://thesaurus.reference.com.

Samuel Johnson’s Dictionary (written between 1747 and 1755) is generally viewed
as the first English dictionary. Since only Scotland educated the middle-class in those
days, five out of six paid assistants were Scots, and definitions like oats, as a food that
sustains horses in England but people in Scotland, must be read with this knowledge.
As with Fowler’s Modern English Usage, it had some effect in standardizing usage and
spelling. While most authors aim to be descriptive, not prescriptive, readers often
take prescriptions. Over the last two centuries, Canada has veered between “math”
and “maths,” “analyse” and “analyze,” “cancelled” and “canceled,” “-metre” and
“-meter,” never quite finding the “centre/center.”5

Johnson (1709–1784), immortalized by Boswell’s marvelous 1791 Life of Samuel
Johnson, had all our modern troubles with funding his projects,6 and these are re-

1With the assistance of many others. We met for lexicographic reasons—our names were listed
next to each other on Oxford class lists.

2Who was already engaged in revising philosophy, religion, and other entries.
3Counting dictionary entries is not an exact science.
4Diderot’s original co-editor was the mathematician d’Alembert.
5All MathResources software has to have a bilingual “units toggle.”
6Paid by the chapter for a book on The Snakes of Europe, one chapter in extenso reads “There

are no snakes in Ireland.”

http://www.mathresources.com
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flected in the dictionary. The entry for patron was aimed at the Earl of Chesterton,
who offered patronage only at the end of the day—when success was assured:

patron, n., one who countenances, supports or protects. Commonly a
wretch who supports with insolence, and is paid with flattery.

The dictionary was far from error-free, about which Johnson was refreshingly honest.
When challenged as to why he had defined a pastern to be a horse’s kneecap he
replied, “Ignorance, madam, pure ignorance.”

Johnson’s American competitor Noah Webster (1758–1843) had a dramatic im-
pact on English through his 1840 dictionary.7 The Webster dictionary standardized
spellings such as “colour” and “favour” and led to their acceptance in the UK and
largely in Canada, but by early in the last century had lost out in the U.S. save for
the occasional faux-Victorian “icecream parlour.” Together Webster and Johnson had
spawned the modern dictionary, while the Oxford English Dictionary (OED) of 1928
inarguably nursed it to term.

As charmingly described in Simon Winchester’s best-seller The Professor and
the Madman, the OED was and remains a monumental project that took the better
part of forty years to see the light of day. The OED was perhaps the first clearly
open-source project. Readers everywhere sent paper slips recording what became the
earliest usages one finds today in the OED. The slips arrived from such as W.C.
Minor (the Madman), who contributed thousands of entries from Broadmoor prison,
at the Scriptorium in Oxford, where they were inserted in pigeonholes before being
compared, contrasted, and digested under the direction after 1879 of (the Professor)
James Augustus Henry Murray (1837–1915). What a worthy ancestor to the open-
source Wikipedia8 and shared computations like those at www.mersenne.org.9

1.3. Some “Recent” Mathematical Dictionaries. Mathematics is an ancient
subject and so for me “recent” means roughly since World War Two. This is consonant
with my student days in Oxford, when “modern literature” ended with Ulysses.

When Borowski and I began our work there had been no new one-volume college-
mathematics dictionary for a generation, since the Van Nostrand Mathematics Dic-
tionary by Glen and Robert C. James (1942–1959). In that case a distinguished
mathematician son assisted an older lexicographer father.10 Unlike our predecessors
we opted for a full lexical structure rather than Britannica-like topic entries. I think
that in this we were farsighted, certainly in light of Internet reading habits.

News of our impending Collins volume immediately triggered a similar slimmer
dictionary from Penguin (1989) and Chris Clapham’s Concise Oxford Dictionary of
Mathematics (1990). Volumes followed from Barrons (1995) and McGraw-Hill (1997)
among others. A more modern entrant was Eric Weisstein’s Concise Encyclopedia
of Mathematics (CRC, 1998), which has a CD version and has developed—after an
intellectual property tussle between Wolfram and CRC—into a lovely and comprehen-
sive set of well-maintained11 and much-visited resources on the Mathematica website
http://mathworld.wolfram.com. It now has over 12,000 entries. A more specialized

7After his death and having eschewed copyright protection, it was acquired by the Merriams in
1847, whence the Merriam-Webster Dictionary.

8Derived from the Hawaiian wiki wiki meaning “quick” or “informal,” a wiki is “the simplest
online database that works” (see http://en.wikipedia.org).

9The most recent Mersenne prime was found by an ophthalmologist.
10So also did George assist Tobias Danzig.
11Maintaining a website is in some ways easier (ease of correction and user input) and in others

much harder (pressure to correct) than with print.

http://www.mersenne.org
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but highly rewarding volume is Stephen Finch’s Mathematical Constants (Cambridge
University Press, 2003).

At the other end of the spectrum is the more advanced two-volume topic-based
Encyclopedic Dictionary of Mathematics (1993) from the Mathematical Society of
Japan, which I find unwieldy: too big to use easily and with less information about
more topics than a row of subject books. By contrast, I found the VNR Concise
Encyclopedia of Mathematics (1977), which is aimed at a high-school/early college
market, very nicely illustrated and it proved very useful in my own lexical work.
Unlike all the others mentioned, lamentably it does not seem to have a recent edition.

1.4. The Issues for Authors. These are enormous in ambit. They include the
desired depth and breadth of coverage. Is it fair to suppose that a user consult-
ing “affine variety” has no need to be told much about “affine”? What x-refs are
needed? Achieving balanced coverage is also a huge headache. When I would show
our manuscript to an analyst she would tell me the algebra coverage was excellent
but the analysis was wanting. . . . Especially with multiple authors one should add
uniformity of style and convention.

Originality (authorship) and accuracy (authority) are often in conflict. Collins
used “eight words in sequela” as a definition of plagiarism in trade books. In the
interest of correctness, precise science and engineering are typically excluded from
this impossible constraint—try defining an abelian group; you are appropriately apt
to give the same definition as I did.

Determining which of competing definitions and theorems to trust is problematic:
Is a topology implicitly assumed Hausdorff ? Does a field in the given context always
have characteristic zero? Is a partial order taken to be antisymmetric? May a Banach
space be complex? And so on. Book authors notoriously make running assumptions
that frequent readers become aware of, but not so the innocent compiler or assistant.
Even the best older sources such as Whittacker and Watson’s Modern Analysis are
terribly prone to this. Of course the ideal future includes complete semantics and
wonderful metadata.

In our 2002 edition we added an appendix on the millennium problems to ac-
company the one on the Hilbert problems. My coauthor wanted to write his own
descriptions, but I wished to copy those on the Clay Institute website. We compro-
mised. The definition of plagiarism was plagiarized (from Tom Lehrer and the New
York Times) and I hope it is the only case of plagiarism in the volume. Incidentally,
Noah Webster is accused of great gobs of plagiarism, but he also gets deserved credit
for uniformizing spelling and much else in American English.

Plagiarism is only one of many copyright issues.12 Wikipedia writes,

Copyrights currently last for seventy years after the death of an author, or
seventy-five to ninety-five years in the case of works of corporate authorship
and works first published before January 1, 1978. All works in the United
States before 1923 are in the public domain. . . . Some material from as
recently as 1963 has entered the public domain but some as old as 1923
remains copyrighted if renewals were filed. . . . No additional material will
enter the public domain until 2019 due to changes in the applicable laws.

Such is the “Mickey Mouse” Act introduced in Congress by the late Sonny Bono.
By contrast:

12See http://en.wikipedia.org/wiki/United States copyright law and www.ceic.math.ca.

http://www.ceic.math.ca
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The U.S. Congress first exercised its power to enact copyright legislation
with the Copyright Act of 1790. The Act secured an author the exclusive
right to publish and vend “maps, charts and books” for a term of 14 years,
with the right of renewal for one additional 14 year term if the author was
still alive. The act did not regulate other kinds of writings, such as musical
compositions or newspapers and specifically noted that it did not prohibit
copying the works of foreign authors. The vast majority of writings were
never copyrighted—between 1790 and 1799, of 13,000 titles published in
the United States, only 556 were copyrighted.

The law’s “14 + 14” formula was very much akin the 1710 British Act of Anne.
Many of us would like to see a return to the spirit of Anne.

Both clearing and asserting copyright13 itself can be excruciating. It took three
years to get all permissions needed14 for Pi: A Sourcebook [3]. The laws differ over
many jurisdictions. While the U.S. has First Amendment Rights and notions of fair
use, the EU has Moral Rights, I live in the British Commonwealth (which has neither),
China has not signed the Berne Convention, and nothing is entirely clear on the World
Wide Web. It is not always certain who owns the rights or even sometimes who the au-
thor is. Illustrations are worse; we had to get permission from the British Museum to
place a picture of the Rhind papyrus in [3].15 Our publisher asked us not even to try to
put a picture of Winnie the Pooh doing math in [6]—it meant asking Disney. We were
refused permission by Fox “for reasons we are not at liberty to share with you” to use a
fax (which depicted Bart Simpson) sent to my coauthor requesting the 40,000th digit
of pi—this despite the fact that the answer was used in an episode of The Simpsons.

Maintenance and enhancement are terrible problems. Errors arise in may ways—
from Johnson’s “pasterns” to discontinuity of authorship and changing formats over
the years (in our case from MacWord to HyperCards, PageMaker, TeX, VisualBa-
sic, MathML, and beyond). Especially without the use of relational databases and
other IT tools (we now benefit from having the dictionary fully hyperlinked so miss-
ing or stray x-refs are much easier to find) it is a nightmare to update computations
of pi or Mersenne primes, solutions to once open problems (true and false) such as
Fermat’s last theorem or recent work on the Poincaré conjecture, deaths of living
mathematicians such as Paul Erdős or Claude Shannon, and the like. For each major
revision this process has entailed hiring assistants, often at our own expense. Keeping
prices down for authors is frequently used by book publishers as a reason for resisting
enhancements such as color or paying for more copyediting and fact checking.

A more vexing problem is to capture past lacunae (or is it lacunas?) and to chart
the changing boundary of the relevant collection. For example, between 1985 and
2000 the following entries (which were arguably not needed in our dictionary in 1985)
were among those that had migrated into many undergraduate curricula and were
added or dramatically revamped in the 2002 edition.

Mathematical Neologia: Erdős graph, fractal dimension, genetic algorithm, in-
terior point methods, monster group, q-bit, quantum computer, RSA code,
and Andrew Wiles.

13Charles Dickens was among the foreign (and U.S.) authors who railed at the exclusion of foreign
authors, but it was only in 1891 that this law was changed.

14Even though Springer-Verlag would settle for three active attempts.
15Thereby setting a mathematical record perhaps, since we needed permissions over a five mil-

lennium span.
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Terms such as Groebner basis, integer relation, internet graph, neural network,
and the new polynomial primality algorithm of Aggarwal, Kayal, and Saxenna (AKS)
[7, pp. 300–303] are on the list be added in the next edition.

A compendium is also the easiest of books for a reviewer to tear apart—you
just look for a few maladroit terms in your specialty and build your review around
them. When we were fixing the Collins dictionary, I would read other, say, medical,
entries, as I waited for my colleague to move to the next math term. I always trusted
the medical terms and rarely the math ones. I did have the pleasure of replacing an
erroneous Anglocentric definition of a home run with the compact “A four base hit.”

2. The Pleasures and Perils of Compendia.

Samuel Johnson observed that dictionaries are like watches in that “the best do not
run true, and the worst are better than none.” The same is true of handbooks, tables,
and databases. That is in part why we all need many!

Several years ago I was invited to contemplate being marooned on the
proverbial desert island. What book would I most wish to have there, in
addition to the Bible and the complete works of Shakespeare? My imme-
diate answer was: Abramowitz and Stegun’s Handbook of Mathematical
Functions. If I could substitute for the Bible, I would choose Gradsteyn
and Ryzhik’s Table of Integrals, Series and Products. Compounding the
impiety, I would give up Shakespeare in favor of Prudnikov, Brychkov, and
Marichev’s Tables of Integrals and Series.

· · ·

On the island, there would be much time to think about waves on the
water that carve ridges on the sand beneath and focus sunlight there;
shapes of clouds; subtle tints in the sky. . . . With the arrogance that keeps
us theorists going, I harbor the delusion that it would be not too difficult to
guess the underlying physics and formulate the governing equations. It is
when contemplating how to solve these equations—to convert formulations
into explanations—that humility sets in. Then, compendia of formulas
become indispensable.16

Prudnikov, Brychkov, and Marichev’s excellent three-volume compendium is
printed in a mediocre Soviet format. It contains as Entry 9 on page 750 of Volume 1,

∞∑
k=1

∞∑
l=1

1
k2 (k2 − kl + l2)

=
π?
√

3
30

,(1)

where the “?” is probably “4”. Integer relation methods (see [6, sect. 6.3]) strongly
suggest that no reasonable value of “?” works. I still do not know what is intended in
equation (1).17 There are many such examples in the literature from Lewin’s attempt
to understand an enticing polylogarithmic assertion of Landen (see [7, p. 210]) to
Ramanujan and of course Fermat’s last theorem. We would benefit from a well-
developed set of Forensic Mathematics tools—such as would certainly exist for CSI-
Oberwolfach?

16Michael Berry, “Why Are Special Functions Special?” Physics Today, April 2001; available
online from http://www.physicstoday.org/pt/vol-54/iss-4/p11.html.

17I have intentionally not asked the authors directly, but return to the challenge from time to
time.
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Three quarters of a century ago G. H. Hardy, in his retirement lecture as London
Mathematical Society Secretary, commented (see [8, p. 474]) that

Harald Bohr is reported to have remarked, “Most analysts spend half their
time hunting through the literature for inequalities they want to use, but
cannot prove.”

They still do and so have to choose among consulting good, bad, and indifferent
compendia on inequalities.

2.1. When Good Things Come from Bad Sources. Ramanujan’s form of in-
spiration may be a rather more common story given the presence of the World Wide
Web and the cost of commercial material, especially in the developing world.

The Indian genius Srinivasa Ramanujan (1887–1920), growing up in Kumbakonam,
about 250 km from Madras,18 read what was available in his local library. He learned
what he learned largely from two books: S. L. Loney’s Plane Trigonometry, standard
trigonometry of the time, and A Synopsis of Elementary Results in Pure Mathematics
written by Carr, who was a “crammer” in Cambridge. This is a compilation of many
thousands of results that “might be on exams.” This source apparently contained no
complex variables and so Ramanujan famously knew none when he arrived in Cam-
bridge in 1914. He had, however, worked out marvelous new mathematics based on
what he had gleaned from these unexceptional sources.

Today these sources might be replaced by Schaum’s Outlines19 and Sloane’s won-
derful online Encyclopedia of Sequences20 (www.research.att.com/∼njas/sequences)
or the soon-to-be-released Digital Library of Mathematical Functions (DLMF) be-
ing completed at NIST, originally the National Bureau of Standards; see http://dlmf.
nist.gov. The DLMF is a massive print-CD-and-Web revision of Abramowitz and Ste-
gun’s Handbook of Mathematical Functions, partially funded by the NSF. The Web
version will be freely available and will have quite sophisticated “math-aware” search
capabilities.21

The original book has sold perhaps 750,000 copies between its NIST and Dover
editions —making it the best-selling mathematics reference book ever. The new book
is still over 1,000 pages long but the 500 pages of numerical tables in the original have
almost disappeared (Maple, Mathematica, and MATLAB being broadly accessible)
and been replaced by more and newer mathematics—with formula-level metadata
and with the old grayscale illustrations replaced by fine colored graphics which have
some dynamic functionality in the digital edition.

One hopes any new Ramanujan would also be able to call upon JSTOR (www.jstor.
org) and MathSciNet, (e-math.ams.org/mathscinet), but this will depend on whether
he has directly or indirectly paid for access. He would certainly have access to many
of the resources in the emerging World Digital Mathematics Library (www.wdml.org).

Very recently David Bailey and I have been working on parallel quadrature im-
plementations of Euler–Maclaurin summation [2]. We found that http://planetmath.
org/encyclopedia/ProofOfEulerMaclaurinSummationFormula.html had correct and
useful but nonstandard information, while other sites were less satisfactory. This
was equally true, though, of books as it was of websites.

18He moved to Madras in 1910.
19Or by more dubious variants.
20Based on a 1985 Academic Press book with 5,000 entries, this immaculate database now has

over 110,000 entries.
21And so if Michael Berry’s island has wifi, he could keep Shakespeare in book form. . . .

http://www.research.att.com/~njas/sequences
http://dlmf.nist.gov
http://e-math.ams.org/mathscinet
http://planetmath.org/encyclopedia/ProofOfEulerMaclaurinSummationFormula.html
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3. The Oxford User’s Guide.

The Editorial Review From Book News, Inc. of the Guide says
Recognizing the importance of mathematics in research and commerce, the
many instances in which different aspects of mathematics are coming to in-
form each other, and the prevalence of the personal computer, Zeidler (Max
Planck Institute for Mathematics in the Sciences) and contributors offer a
basic overview of mathematics for students, practitioners, and teachers.

This is fairly accurate as to the actual scope of the Guide, save for the odd
reference to the prevalence of the personal computer. The Oxford University Press
(OUP) description is less on target:

The Oxford User’s Guide to Mathematics in Science and Engineering rep-
resents a comprehensive handbook on mathematics. It covers a broad
spectrum of mathematics. . . . The book offers a broad modern picture of
mathematics starting from basic material up to more advanced topics. . . .
The book addresses students in engineering, mathematics, computer sci-
ence, natural sciences, high-school teachers, as well as a broad spectrum
of practitioners in industry and professional researchers. . . . The bibliog-
raphy represents a comprehensive collection of the contemporary standard
literature in the main fields of mathematics.

Having made these expansive claims, a publisher has some obligation to ensure
they have been met. Expectation management is an issue in all walks of life from
academic publications to national elections.

3.1. Something of the Oxford Users’ Guide. The claims made by OUP may
have been close to true in 1958 but are not today. My quarrel is more with what is left
out than with what is said. Many students view their texts as exoskeletons—what is
not there does not exist. As the case of Ramanujan shows, even mediocre coverage is
often better than complete omission. Zeidler is an excellent researcher, a fine scholar,
and broadly knowledgable; but as I have already indicated, even modest dictionaries
need sizeable and continuing teams.

Let me divide the Guide in four. My notional Part I contains roughly 225 pages
of elementary mathematics and tabular information alluded to earlier. My Part II
follows with 375 pages on analysis (of which less than 10 cover harmonic analysis),
125 pages on algebra and number theory, and 150 pages on geometry (elementary,
algebraic, and differential). This core material is followed by Part III with 30 pages
on foundations, 60 pages on calculus of variations and optimization (linear and non-
linear), and 70 pages on probability and statistics. Part IV comprises 125 pages on
scientific computation: numerical methods for linear algebra, interpolation, nonlinear
equations, and ordinary and partial differential equations. The book is then completed
by a 25-page history of mathematics, a 27-page bibliography, and various indices.

The topics covered are thus somewhat staid. They are, I imagine, quite faith-
ful to a thirty-year-old undergraduate German curriculum, but even undergraduate
mathematics has moved on. Moreover, one uses a compendium especially to look up
material with which one is not familiar—often in subjects not taken in college.

For example, point-set topology (other than metric), algebraic topology, combina-
torics, dynamical systems and chaos, financial mathematics, game theory, and graph
theory, are among the missing or get only the most cursory mention. Thus, on page
833 a footnote refers to another book by Zeidler22 for the definition of topology which

22Published in 1995 in German, with a still only promised English version.
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is needed to make sense of the Zariski topology! Likewise, complexity theory rates
a paragraph on page 1050. So it is puzzling that Oxford recommends the book to
groups such as “students. . . in computer science” or “practitioners in industry.”

Moreover, even the entries on topics like scientific computation and optimization,
whose coverage is touted, are somewhat limited and do not include interior point
methods or much discovered since the simplex method or the singular value decom-
position. A few references to computational science have been sprinkled in rather at
random. For instance, the totality of practical numeric guidance appears to be on the
bottom of page 1049:

Numerical mathematics with Mathematica: With this software pack-
age you are able to perform many of the numerical standard procedures on
your home PC.

. . . . . .

For every imaginable numerical procedure, no matter how elegant it
appears, there are counterexamples for which the method does not
work at all.

The Chinese remainder theorem? Newton’s method for the square root? The
AKS primality algorithm? This is false or at best true but somewhat fatuous. I
suppose this is the sort of thing that justifies OUP’s saying that the Guide “offers a
broad modern picture of mathematics.”

To be fair my serious criticisms are directed largely at OUP—and Teubner before
it—and the process by which both had the Guide refereed and produced. Addi-
tionally, the translation, while largely very good, is a trifle Teutonic and seemingly
done without adequate mathematical copyediting. On page 239 one reads about the
irrationality of

√
2 that

This discovery destroyed the harmonic picture of the universe by the
Pythagoreans and triggered a deep shock.

On page 878 we learn that the method of indirect proof “then leads this assumption to
a contradiction.” Such stiltedness is sometimes to the point of obscuring the meaning:
on page 823, I have no idea what—in the context of Pythagorean triples—an accord
is, despite it being in the index.

Typographically, the Guide has masses of white space and gratuitous boxes of
a kind that probably looked fine at one time. They now only add needless heft to
an already weighty book with too small margins. Unlike the DLMF’s decision that
tables were obsolete, the Guide still has roughly 150 pages of material much better
found online or on a personal computer. Even the binding is dubious: my cover tore
in the first week of very mild use!

A more thorough review and production process would surely have adequately
addressed this last set of issues. I can no better make this point than to quote
Simkin and Fiske quoting the late Stephen J. Gould in a review of Simon Winchester’s
Krakatoa:23

In his review of Winchester’s previous book, The Map That Changed the
World, Stephen Jay Gould wrote: “I don’t mean to sound like an academic
sourpuss, but I just don’t understand the priorities of publishers who spare
no expense to produce an elegantly illustrated and beautifully designed
book and then permit the text to wallow in simple, straight-out factual

23Tom Simkin and Richard S. Fiske, “Clouded Picture of a Big Bang,” Science, July 4 (2003),
pp. 50–51. These reviews do make me question the reliability of The Professor and the Madman.
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errors, all easily corrected for the minimal cost of one scrutiny of the galleys
by a reader with professional expertise. . . .”

With Krakatoa, the publisher clearly spared considerable expense, and
this new book also wallows in errors. Perhaps, given our popular culture’s
appetite for sensationalized disasters, a modern publisher would rather not
see all those pesky details corrected.

It seems this is a somewhat under-considered “economy” English adaptation of a
ten-year-old Teubner book which was itself already somewhat dated, having had its
first of eighteen German editions in 1958. As I have said, I have great respect for
Zeidler and his colleagues. But like a university department’s set of teaching notes,
this Guide has decayed over time. Will current and future generations have a taste
for information served up as it is in the Guide? Would contestants in the recent SIAM
100-Digit Challenge [4, 5] have found the Guide helpful? I suspect not. I decided to
sample Google, MathWorld, and the Guide on the terms in the Neologia above. I did
better on the Web.

4. Conclusion.

There are many positive things to be said about the book under review. The price is
good. What it covers it usually covers well and it seems largely error-free. It contains
several attractive extra features such as a useful biography24 of books on the subjects
it does cover and an amusing brief history of mathematics.25 26

On balance, I am happy to add the Users’ Guide to my reference shelf—right
next to the computer and its online resources. I’ll look in it for topics where it is
strong, such as analysis and classical applied physical mathematics, and avoid its
advice on topics like numerics.

REFERENCES

[1] E. J. Borowski and J. M. Borwein, The Collins Dictionary of Mathematics, with the as-
sistance of J. F. Bowers, A. Robertson, and M. McQuillan, Collins, Glasgow, New York,
1998–2005.

[2] D. H. Bailey and J. M. Borwein, Effective error bounds for Euler-Maclaurin-based quadrature
schemes, Math. Comput., submitted.

[3] L. Berggren, J. M. Borwein, and P. B. Borwein, Pi: A Source Book, 3rd ed., Springer-
Verlag, New York, 2004.

[4] F. Bornemann, D. Laurie, S. Wagon, and J. Waldvogel, The SIAM 100-Digit Challenge:
A Study in High-Accuracy Numerical Computing, SIAM, Philadelphia, 2004.

[5] J. M. Borwein, “The SIAM 100-Digit Challenge”: An extended review, Math. Intelligencer,
27 (2005), pp. 40–48.

[6] J. M. Borwein and D. H. Bailey, Mathematics by Experiment: Plausible Reasoning in the
21st Century, A. K. Peters, Natick, MA, 2004.

[7] J. M. Borwein, D. H. Bailey, and R. Girgensohn, Experimentation in Mathematics: Com-
putational Paths to Discovery, A. K. Peters, Natick, MA, 2004.

[8] G. H. Hardy, Prolegomena to a chapter on inequalities, in Collected Papers of G. H. Hardy,
Vol. 2, Clarendon Press, Oxford, 1967, pp. 471–489.

JONATHAN M. BORWEIN

Dalhousie University, Canada

24I had trouble discerning the rationale for a book to be included in this large, but in no sense
comprehensive, unannotated list.

25Which for some reason includes Mary Queen of Scot’s execution in 1587 and Shakespeare’s
dates, and a lot more Nobel Prize winners than Fields medalists.

26Again, here one sees the difficulty of the task attempted: Claude Shannon (1916–2001) is listed
among the living.





Implications of Experimental Mathematics
for the Philosophy of Mathematics1

Jonathan Borwein, FRSC2

Christopher Koch [35] accurately captures a great scientific distaste for philosophizing:

“Whether we scientists are inspired, bored, or infuriated by philosophy, all our
theorizing and experimentation depends on particular philosophical background
assumptions. This hidden influence is an acute embarrassment to many re-
searchers, and it is therefore not often acknowledged.” (Christopher Koch, 2004)

That acknowledged, I am of the opinion that mathematical philosophy matters more
now than it has in nearly a century. The power of modern computers matched with that
of modern mathematical software and the sophistication of current mathematics is changing
the way we do mathematics.

In my view it is now both necessary and possible to admit quasi-empirical inductive
methods fully into mathematical argument. In doing so carefully we will enrich mathematics
and yet preserve the mathematical literature’s deserved reputation for reliability—even as the
methods and criteria change. What do I mean by reliability? Well, research mathematicians
still consult Euler or Riemann to be informed, anatomists only consult Harvey3 for historical
reasons. Mathematicians happily quote old papers as core steps of arguments, physical
scientists expect to have to confirm results with another experiment.

1 Mathematical Knowledge as I View It

Somewhat unusually, I can exactly place the day at registration that I became a mathemati-
cian and I recall the reason why. I was about to deposit my punch cards in the ‘honours
history bin’. I remember thinking

“If I do study history, in ten years I shall have forgotten how to use the calculus
properly. If I take mathematics, I shall still be able to read competently about the
War of 1812 or the Papal schism.” (Jonathan Borwein, 1968)

The inescapable reality of objective mathematical knowledge is still with me. Nonetheless,
my view then of the edifice I was entering is not that close to my view of the one I inhabit
forty years later.

1The companion web site is at www.experimentalmath.info
2Canada Research Chair, Faculty of Computer Science, 6050 University Ave, Dalhousie University, Nova

Scotia, B3H 1W5 Canada. E-mail: jborwein@cs.dal.ca
3William Harvey published the first accurate description of circulation, “An Anatomical Study of the

Motion of the Heart and of the Blood in Animals,” in 1628.



I also know when I became a computer-assisted fallibilist. Reading Imre Lakatos’ Proofs
and Refutations, [38], a few years later while a very new faculty member, I was suddenly
absolved from the grave sin of error, as I began to understand that missteps, mistakes and
errors are the grist of all creative work.4 The book, his doctorate posthumously published
in 1976, is a student conversation about the Euler characteristic. The students are of var-
ious philosophical stripes and the discourse benefits from his early work on Hegel with the
Stalinist Lukács in Hungary and from later study with Karl Popper at the London School
of Economics. I had been prepared for this dispensation by the opportunity to learn a va-
riety of subjects from Michael Dummett. Dummett was at that time completing his study
rehabilitating Frege’s status, [23].

A decade later the appearance of the first ‘portable’ computers happily coincided with my
desire to decode Srinivasa Ramanujan’s (1887–1920) cryptic assertions about theta functions
and elliptic integrals, [13]. I realized that by coding his formulae and my own in the APL
programming language5, I was able to rapidly confirm and refute identities and conjectures
and to travel much more rapidly and fearlessly down potential blind alleys. I had become
a computer-assisted fallibilist; at first somewhat falteringly but twenty years have certainly
honed my abilities.

Today, while I appreciate fine proofs and aim to produce them when possible, I no longer
view proof as the royal road to secure mathematical knowledge.

2 Introduction

I first discuss my views, and those of others, on the nature of mathematics, and then illustrate
these views in a variety of mathematical contexts. A considerably more detailed treatment
of many of these topics is to be found in my book with Dave Bailey entitled Mathematics
by Experiment: Plausible Reasoning in the 21st Century—especially in Chapters One, Two
and Seven, [9]. Additionally, [2] contains several pertinent case studies as well as a version
of this current chapter.

Kurt Gödel may well have overturned the mathematical apple cart entirely deductively,
but nonetheless he could hold quite different ideas about legitimate forms of mathematical
reasoning, [28]:

“If mathematics describes an objective world just like physics, there is no reason
why inductive methods should not be applied in mathematics just the same as in
physics.” (Kurt Gödel6, 1951)

4Gila Hanna [30] takes a more critical view placing more emphasis on the role of proof and certainty in
mathematics; I do not disagree, so much as I place more value on the role of computer-assisted refutation.
Also ’certainty’ usually arrives late in the development of a proof.

5Known as a ‘write only’ very high level language, APL was a fine tool; albeit with a steep learning curve
whose code is almost impossible to read later.

6Taken from a previously unpublished work, [28].
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While we mathematicians have often separated ourselves from the sciences, they have
tended to be more ecumenical. For example, a recent review of Models. The Third Dimension
of Science, [17], chose a mathematical plaster model of a Clebsch diagonal surface as its only
illustration. Similarly, authors seeking examples of the aesthetic in science often choose
iconic mathematics formulae such as E = MC2.

Let me begin by fixing a few concepts before starting work in earnest. Above all, I hope
to persuade you of the power of mathematical experimentation—it is also fun—and that
the traditional accounting of mathematical learning and research is largely an ahistorical
caricature. I recall three terms.
mathematics, n. a group of related subjects, including algebra, geometry, trigonometry
and calculus, concerned with the study of number, quantity, shape, and space, and their
inter-relationships, applications, generalizations and abstractions.

This definition–taken from my Collins Dictionary [6]—makes no immediate mention of
proof, nor of the means of reasoning to be allowed. The Webster’s Dictionary [54] contrasts:
induction, n. any form of reasoning in which the conclusion, though supported by the
premises, does not follow from them necessarily.; and
deduction, n. a process of reasoning in which a conclusion follows necessarily from the
premises presented, so that the conclusion cannot be false if the premises are true.
b. a conclusion reached by this process.

Like Gödel, I suggest that both should be entertained in mathematics. This is certainly
compatible with the general view of mathematicians that in some sense “mathematical stuff
is out there” to be discovered. In this paper, I shall talk broadly about experimental and
heuristic mathematics, giving accessible, primarily visual and symbolic, examples.

3 Philosophy of Experimental Mathematics

“The computer has in turn changed the very nature of mathematical experience,
suggesting for the first time that mathematics, like physics, may yet become an
empirical discipline, a place where things are discovered because they are seen.”
(David Berlinski, [4])

The shift from typographic to digital culture is vexing for mathematicians. For example,
there is still no truly satisfactory way of displaying mathematics on the web–and certainly
not of asking mathematical questions. Also, we respect authority, [29], but value authorship
deeply—however much the two values are in conflict, [16]. For example, the more I recast
someone else’s ideas in my own words, the more I enhance my authorship while undermining
the original authority of the notions. Medieval scribes had the opposite concern and so took
care to attribute their ideas to such as Aristotle or Plato.

And we care more about the reliability of our literature than does any other science,
Indeed I would argue that we have over-subscribed to this notion and often pay lip-service
not real attention to our older literature. How often does one see original sources sprinkled
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like holy water in papers that make no real use of them–the references offering a false sense
of scholarship?

The traditional central role of proof in mathematics is arguably and perhaps appropriately
under siege. Via examples, I intend to pose and answer various questions. I shall conclude
with a variety of quotations from our progenitors and even contemporaries:
My Questions. What constitutes secure mathematical knowledge? When is computation
convincing? Are humans less fallible? What tools are available? What methodologies?
What of the ‘law of the small numbers’? Who cares for certainty? What is the role of
proof? How is mathematics actually done? How should it be? I mean these questions both
about the apprehension (discovery) and the establishment (proving) of mathematics. This
is presumably more controversial in the formal proof phase.
My Answers. To misquote D’Arcy Thompson (1860–1948) ‘form follows function’, [52]:
rigour (proof) follows reason (discovery); indeed, excessive focus on rigour has driven us
away from our wellsprings. Many good ideas are wrong. Not all truths are provable, and
not all provable truths are worth proving. Gödel’s incompleteness results certainly showed
us the first two of these assertions while the third is the bane of editors who are frequently
presented with correct but unexceptional and unmotivated generalizations of results in the
literature. Moreover, near certainty is often as good as it gets—intellectual context (com-
munity) matters. Recent complex human proofs are often very long, extraordinarily subtle
and fraught with error—consider, Fermat’s last theorem, the Poincaré conjecture, the clas-
sification of finite simple groups, presumably any proof of the Riemann hypothesis, [25]. So
while we mathematicians publicly talk of certainty we really settle for security.

In all these settings, modern computational tools dramatically change the nature and
scale of available evidence. Given an interesting identity buried in a long and complicated
paper on an unfamiliar subject, which would give you more confidence in its correctness:
staring at the proof, or confirming computationally that it is correct to 10,000 decimal
places?

Here is such a formula, [3, p. 20]:
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.

This identity links a volume (the integral) to an arithmetic quantity (the sum). It arose out
of some studies in quantum field theory, in analysis of the volumes of ideal tetrahedra in
hyperbolic space. The question mark is used because, while no hint of a path to a formal
proof is yet known, it has been verified numerically to 20,000 digit precision–using 45 minutes
on 1024 processors at Virginia Tech.

A more inductive approach can have significant benefits. For example, as there is still
some doubt about the proof of the classification of finite simple groups it is important to
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ask whether the result is true but the proof flawed, or rather if there is still perhaps an
‘ogre’ sporadic group even larger than the ‘monster’? What heuristic, probabilistic or com-
putational tools can increase our confidence that the ogre does or does not exist? Likewise,
there are experts who still believe the Riemann hypothesis7 (RH) may be false and that the
billions of zeroes found so far are much too small to be representative.8 In any event, our
understanding of the complexity of various crypto-systems relies on (RH) and we should like
secure knowledge that any counter-example is enormous.

Peter Medawar (1915–87)—a Nobel prize winning oncologist and a great expositor of
science—writing in Advice to a Young Scientist, [44], identifies four forms of scientific exper-
iment:

1. The Kantian experiment: generating “the classical non-Euclidean geometries (hyper-
bolic, elliptic) by replacing Euclid’s axiom of parallels (or something equivalent to it) with
alternative forms.” All mathematicians perform such experiments while the majority of
computer explorations are of the following Baconian form.

2. The Baconian experiment is a contrived as opposed to a natural happening, it “is the
consequence of ‘trying things out’ or even of merely messing about.” Baconian experiments
are the explorations of a happy if disorganized beachcomber and carry little predictive power.

3. Aristotelian demonstrations: “apply electrodes to a frog’s sciatic nerve, and lo, the leg
kicks; always precede the presentation of the dog’s dinner with the ringing of a bell, and lo,
the bell alone will soon make the dog dribble.” Arguably our ‘Corollaries’ and ’Examples’
are Aristotelian, they reinforce but do not predict. Medawar then says the most important
form of experiment is:

4. The Galilean experiment is “a critical experiment – one that discriminates between
possibilities and, in doing so, either gives us confidence in the view we are taking or makes
us think it in need of correction.” The Galilean the only form of experiment which stands to
make Experimental Mathematics a serious enterprise. Performing careful, replicable Galilean
experiments requires work and care.

Reuben Hersh’s arguments for a humanist philosophy of mathematics, especially [31, pp.
590–591] and [32, p. 22], as paraphrased below, become even more convincing in our highly
computational setting.

1. Mathematics is human. It is part of and fits into human culture. It does not match
Frege’s concept of an abstract, timeless, tenseless, objective reality.9

2. Mathematical knowledge is fallible. As in science, mathematics can advance by making
mistakes and then correcting or even re-correcting them. The “fallibilism” of mathematics
is brilliantly argued in Lakatos’ Proofs and Refutations.

3. There are different versions of proof or rigor. Standards of rigor can vary depending
on time, place, and other things. The use of computers in formal proofs, exemplified by

7All non-trivial zeroes—not negative even integers—of the zeta function lie on the line with real part 1/2.
8See [45] and various of Andrew Odlyzko’s unpublished but widely circulated works.
9That Frege’s view of mathematics is wrong, for Hersh as for me, does not diminish its historical impor-

tance.
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the computer-assisted proof of the four color theorem in 1977,10 is just one example of an
emerging nontraditional standard of rigor.

4. Empirical evidence, numerical experimentation and probabilistic proof all can help us
decide what to believe in mathematics. Aristotelian logic isn’t necessarily always the best
way of deciding.

5. Mathematical objects are a special variety of a social-cultural-historical object. Con-
trary to the assertions of certain post-modern detractors, mathematics cannot be dismissed as
merely a new form of literature or religion. Nevertheless, many mathematical objects can be
seen as shared ideas, like Moby Dick in literature, or the Immaculate Conception in religion.

I entirely subscribe to points 2., 3., 4., and with certain caveats about objective knowl-
edge11 to points 1. and 5. In any event mathematics is and will remain a uniquely human
undertaking.

This version of humanism sits fairly comfortably along-side current versions of social-
constructivism as described next.

“The social constructivist thesis is that mathematics is a social construction, a
cultural product, fallible like any other branch of knowledge.” (Paul Ernest, [26,
§3])

But only if I qualify this with “Yes, but much-much less fallible than most branches of
knowledge.” Associated most notably with the writings of Paul Ernest—an English Mathe-
matician and Professor in the Philosophy of Mathematics Education who in [27] traces the
intellectual pedigree for his thesis, a pedigree that encompasses the writings of Wittgenstein,
Lakatos, Davis, and Hersh among others—social constructivism seeks to define mathematical
knowledge and epistemology through the social structure and interactions of the mathemat-
ical community and society as a whole.

This interaction often takes place over very long periods. Many of the ideas our students—
and some colleagues—take for granted took a great deal of time to gel. The Greeks suspected
the impossibility of the three classical construction problems 12 and the irrationality of the
golden mean was well known to the Pythagoreans.

While concerns about potential and completed infinities are very old, until the advent
of the calculus with Newton and Leibnitz and the need to handle fluxions or infinitesimals,
the level of need for rigour remained modest. Certainly Euclid is in its geometric domain
generally a model of rigour, while also Archimedes’ numerical analysis was not equalled until
the 19th century.

10Especially, since a new implementation by Seymour, Robertson and Thomas in 1997 which has produced
a simpler, clearer and less troubling implementation.

11While it is not Hersh’s intention, a superficial reading of point 5. hints at a cultural relativism to which
I certainly do not subscribe.

12Trisection, circle squaring and cube doubling were taken by the educated to be impossible in antiquity.
Already in 414 BCE, in his play The Birds, Aristophanes uses ‘circle-squarers’ as a term for those who attempt
the impossible. Similarly, the French Academy stopped accepting claimed proofs a full two centuries before
the 19th century achieved proofs of their impossibility.
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The need for rigour arrived in full force in the time of Cauchy and Fourier. The treacher-
ous countably infinite processes of analysis and the limitations of formal manipulation came
to the fore. It is difficult with a modern sensibility to understand how Cauchy’s proof of
the continuity of pointwise-limits could coexist in texts for a generation with clear counter-
examples originating in Fourier’s theory of heat.13

By the end of the 19th century Frege’s (1848-1925) attempt to base mathematics in a
linguistically based logicism had foundered on Russell and other’s discoveries of the paradoxes
of naive set theory. Within thirty five years Gödel—and then Turing’s more algorithmic
treatment14—had similarly damaged both Russell and Whitehead’s and Hilbert’s programs.

Throughout the twentieth century, bolstered by the armor of abstraction, the great ship
Mathematics has sailed on largely unperturbed. During the last decade of the 19th and first
few decades of the 20th century the following main streams of philosophy emerged explicitly
within mathematics to replace logicism, but primarily as the domain of philosophers and
logicians.

• Platonism. Everyman’s idealist philosophy—stuff exists and we must find it. De-
spite being the oldest mathematical philosophy, Platonism—still predominant among
working mathematicians—was only christened in 1934 by Paul Bernays.15

• Formalism. Associated mostly with Hilbert—it asserts that mathematics is invented
and is best viewed as formal symbolic games without intrinsic meaning.

• Intuitionism. Invented by Brouwer and championed by Heyting, intuitionism asks for
inarguable monadic components that can be fully analyzed and has many variants;
this has interesting overlaps with recent work in cognitive psychology such as Lakoff
and Nunez’ work, [39], on ‘embodied cognition’.16

• Constructivism. Originating with Markoff and especially Kronecker (1823–1891), and
refined by Bishop it finds fault with significant parts of classical mathematics. Its ‘I’m
from Missouri, tell me how big it is’ sensibility is not to be confused with Paul Ernest’s
‘social constructivism’, [27].

The last two philosophies deny the principle of the excluded middle, “A or not A”,
and resonate with computer science—as does some of formalism. It is hard after all to
run a deterministic program which does not know which disjunctive logic-gate to follow.

13Cauchy’s proof appeared in his 1821 text on analysis. While counterexamples were pointed out almost
immediately, Stokes and Seidel were still refining the missing uniformity conditions in the late 1840s.

14The modern treatment of incompleteness leans heavily on Turing’s analysis of the Halting problem for
so-called Turing machines.

15See Karlis Podnieks, “Platonism, Intuition and the Nature on Mathematics”, available at
http://www.ltn.lv/ podnieks/gt1.html

16The cognate views of Henri Poincaré (1854–1912), [47, p. 23] on the role of the subliminal are reflected
in “The mathematical facts that are worthy of study are those that, by their analogy with other facts are
susceptible of leading us to knowledge of a mathematical law, in the same way that physical facts lead us to
a physical law.” He also wrote “It is by logic we prove, it is by intuition that we invent,” [48].
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By contrast the battle between a Platonic idealism (a ‘deductive absolutism’) and various
forms of ‘fallibilism’(a quasi-empirical ‘relativism’) plays out across all four, but fallibilism
perhaps lives most easily within a restrained version of intuitionism which looks for ‘intuitive
arguments’ and is willing to accept that ‘a proof is what convinces’. As Lakatos shows, an
argument that was convincing a hundred years ago may well now be viewed as inadequate.
And one today trusted may be challenged in the next century.

As we illustrate in the next section or two, it is only perhaps in the last twenty five years,
with the emergence of powerful mathematical platforms, that any approach other than a
largely undigested Platonism and a reliance on proof and abstraction has had the tools17 to
give it traction with working mathematicians.

In this light, Hales’ proof of Kepler’s conjecture that the densest way to stack spheres
is in a pyramid resolves the oldest problem in discrete geometry. It also supplies the most
interesting recent example of intensively computer-assisted proof, and after five years with
the review process was published in the Annals of Mathematics—with an “only 99% checked”
disclaimer.

This process has triggered very varied reactions [34] and has provoked Thomas Hales to
attempt a formal computational proof which he expects to complete by 2011, [25]. Famous
earlier examples of fundamentally computer-assisted proof include the Four color theorem
and proof of the Non-existence of a projective plane of order 10. The three raise and answer
quite distinct questions about computer-assisted proof—both real and specious. For example,
there were real concerns about the completeness of the search in the 1976 proof of the Four
color theorem but there should be none about the 1997 reworking by Seymour, Robertson
and Thomas.18 Correspondingly, Lam deservedly won the 1992 Lester R. Ford award for
his compelling explanation of why to trust his computer when it announced there was no
plane of order ten, [40]. Finally, while it is reasonable to be concerned about the certainty
of Hales’ conclusion, was it really the Annal’s purpose to suggest all other articles have been
more than 99% certified?

To make the case as to how far mathematical computation has come we trace the changes
over the past half century. The 1949 computation of π to 2,037 places suggested by von
Neumann, took 70 hours. A billion digits may now be computed in much less time on a
laptop. Strikingly, it would have taken roughly 100,000 ENIAC’s to store the Smithsonian’s
picture—as is possible thanks to 40 years of Moore’s law in action . . ..19

This is an astounding record of sustained exponential progress without peer in the history
of technology. Additionally, mathematical tools are now being implemented on parallel
platforms, providing much greater power to the research mathematician. Amassing huge
amounts of processing power will not alone solve many mathematical problems. There are
very few mathematical ‘Grand-challenge problems’, [12] where, as in the physical sciences,
a few more orders of computational power will resolve a problem.

17That is, to broadly implement Hersh’s central points (2.-4.).
18See http://www.math.gatech.edu/ thomas/FC/fourcolor.html.
19Moore’s Law is now taken to be the assertion that semiconductor technology approximately doubles in

capacity and performance roughly every 18 to 24 months.
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For example, an order of magnitude improvement in computational power currently trans-
lates into one more day of accurate weather forecasting, while it is now common for biomed-
ical researchers to design experiments today whose outcome is predicated on ‘peta-scale‘
computation being available by say 2010, [51]. There is, however, much more value in very
rapid ‘Aha’s’ as can be obtained through “micro-parallelism”; that is, where we benefit by
being able to compute many simultaneous answers on a neurologically-rapid scale and so can
hold many parts of a problem in our mind at one time.

To sum up, in light of the discussion and terms above, I now describe myself a a social-
constructivist, and as a computer-assisted fallibilist with constructivist leanings. I believe
that more-and-more the interesting parts of mathematics will be less-and-less susceptible to
classical deductive analysis and that Hersh’s ‘non-traditional standard of rigor’ must come
to the fore.

4 Our Experimental Mathodology

Despite Picasso’s complaint that “computers are useless, they only give answers,” the main
goal of computation in pure mathematics is arguably to yield insight. This demands speed
or, equivalently, substantial micro-parallelism to provide answers on a cognitively relevant
scale; so that we may ask and answer more questions while they remain in our consciousness.
This is relevant for rapid verification; for validation; for proofs and especially for refutations
which includes what Lakatos calls “monster barring”, [38]. Most of this goes on in the daily
small-scale accretive level of mathematical discovery but insight is gained even in cases like
the proof of the Four color theorem or the Non-existence of a plane of order ten. Such
insight is not found in the case-enumeration of the proof, but rather in the algorithmic
reasons for believing that one has at hand a tractable unavoidable set of configurations
or another effective algorithmic strategy. For instance, Lam [40] ran his algorithms on
known cases in various subtle ways, and also explained why built-in redundancy made the
probability of machine-generated error negligible. More generally, the act of programming—
if well performed—always leads to more insight about the structure of the problem.

In this setting it is enough to equate parallelism with access to requisite more space
and speed of computation. Also, we should be willing to consider all computations as ‘ex-
act’ which provide truly reliable answers.20 This now usually requires a careful hybrid of
symbolic and numeric methods, such as achieved by Maple’s liaison with the Numerical Al-
gorithms Group (NAG) Library21, see [5, 8]. There are now excellent tools for such purposes
throughout analysis, algebra, geometry and topology, see [9, 10, 5, 12, 15].

Along the way questions required by—or just made natural by—computing start to force
out older questions and possibilities in the way beautifully described a century ago by Dewey
regarding evolution.

20If careful interval analysis can certify that a number known to be integer is larger that 2.5 and less than
3.5, this constitutes an exact computational proof that it is 3.

21See http://www.nag.co.uk/.
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“Old ideas give way slowly; for they are more than abstract logical forms and
categories. They are habits, predispositions, deeply engrained attitudes of aver-
sion and preference. Moreover, the conviction persists—though history shows it
to be a hallucination—that all the questions that the human mind has asked are
questions that can be answered in terms of the alternatives that the questions
themselves present. But in fact intellectual progress usually occurs through sheer
abandonment of questions together with both of the alternatives they assume; an
abandonment that results from their decreasing vitality and a change of urgent
interest. We do not solve them: we get over them. Old questions are solved by
disappearing, evaporating, while new questions corresponding to the changed atti-
tude of endeavor and preference take their place. Doubtless the greatest dissolvent
in contemporary thought of old questions, the greatest precipitant of new methods,
new intentions, new problems, is the one effected by the scientific revolution that
found its climax in the ‘Origin of Species.’ ” (John Dewey, [20])

Lest one think this a feature of the humanities and the human sciences, consider the
artisanal chemical processes that have been lost as they were replaced by cheaper industrial
versions. And mathematics is far from immune. Felix Klein, quoted at length in the intro-
duction to [11], laments that “now the younger generation hardly knows abelian functions.”
He goes on to explain that:

“In mathematics as in the other sciences, the same processes can be observed
again and again. First, new questions arise, for internal or external reasons,
and draw researchers away from the old questions. And the old questions, just
because they have been worked on so much, need ever more comprehensive study
for their mastery. This is unpleasant , and so one is glad to turn to problems
that have been less developed and therefore require less foreknowledge—even if it
is only a matter of axiomatics, or set theory, or some such thing.” (Felix Klein,
[33, p. 294])

Freeman Dyson has likewise gracefully described how taste changes:

“I see some parallels between the shifts of fashion in mathematics and in music.
In music, the popular new styles of jazz and rock became fashionable a little earlier
than the new mathematical styles of chaos and complexity theory. Jazz and rock
were long despised by classical musicians, but have emerged as art-forms more
accessible than classical music to a wide section of the public. Jazz and rock
are no longer to be despised as passing fads. Neither are chaos and complexity
theory. But still, classical music and classical mathematics are not dead. Mozart
lives, and so does Euler. When the wheel of fashion turns once more, quantum
mechanics and hard analysis will once again be in style.” (Freeman Dyson, [24])

For example recursively defined objects were once anathema—Ramanujan worked very
hard to replace lovely iterations by sometimes-obscure closed-form approximations. Addi-
tionally, what is “easy” changes: high performance computing and networking are blurring,
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merging disciplines and collaborators. This is democratizing mathematics but further chal-
lenging authentication—consider how easy it is to find information on Wikipedia22 and how
hard it is to validate it.

Moving towards a well articulated Experimental Mathodology—both in theory and practice—
will take much effort. The need is premised on the assertions that intuition is acquired—we
can and must better mesh computation and mathematics, and that visualization is of growing
importance—in many settings even three is a lot of dimensions.

“Monster-barring” (Lakatos’s term, [38], for refining hypotheses to rule out nasty counter-
examples23) and “caging” (Nathalie Sinclair tells me this is my own term for imposing needed
restrictions in a conjecture) are often easy to enhance computationally, as for example with
randomized checks of equations, linear algebra, and primality or graphic checks of equalities,
inequalities, areas, etc. Moreover, our mathodology fits well with the kind of pedagogy
espoused at a more elementary level (and without the computer) by John Mason in [43].

4.1 Eight Roles for Computation

I next recapitulate eight roles for computation that Bailey and I discuss in our two recent
books [9, 10]:

#1. Gaining insight and intuition or just knowledge. Working algorithmically with
mathematical objects almost inevitably adds insight to the processes one is studying.
At some point even just the careful aggregation of data leads to better understanding.

#2. Discovering new facts, patterns and relationships. The number of additive
partitions of a positive integer n, p(n), is generated by

P (q) := 1 +
∑

n≥1

p(n)qn =
1

∏∞

n=1
(1 − qn)

. (2)

Thus, p(5) = 7 since

5 = 4 + 1 = 3 + 2 = 3 + 1 + 1 = 2 + 2 + 1 = 2 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1.

Developing (2) is a fine introduction to enumeration via generating functions. Additive
partitions are harder to handle than multiplicative factorizations, but they are very
interesting, [10, Chapter 4]. Ramanujan used Major MacMahon’s table of p(n) to
intuit remarkable deep congruences such as

p(5n+4) ≡ 0 mod 5, p(7n+5) ≡ 0 mod 7, p(11n+6) ≡ 0 mod 11,

22Wikipedia is an open source project at http://en.wikipedia.org/wiki/Main Page; “wiki-wiki” is
Hawaiian for “quickly”.

23Is, for example, a polyhedron always convex? Is a curve intended to be simple? Is a topology assumed
Hausdorff, a group commutative?
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from relatively limited data like

P (q) = 1 + q + 2 q2 + 3 q3 + 5 q4 + 7 q5 + 11 q6 + 15 q7

+ 22 q8 + 30 q9 + 42 q10 + 56 q11 + 77 q12 + 101 q13 + 135 q14

+ 176 q15 + 231 q16 + 297 q17 + 385 q18 + 490 q19

+ 627 q20b + 792 q21 + 1002 q22 + · · · + p(200)q200 + · · · (3)

Cases 5n+4 and 7n+5 are flagged in (3). Of course, it is markedly easier to (heuristi-
cally) confirm than find these fine examples of Mathematics: the science of patterns.24

The study of such congruences—much assisted by symbolic computation—is very ac-
tive today.

#3. Graphing to expose mathematical facts, structures or principles. Consider
Nick Trefethen’s fourth challenge problem as described in [5, 8]. It requires one to find
ten good digits of:

4. What is the global minimum of the function

exp(sin(50x))+sin(60ey)+sin(70 sinx)+sin(sin(80y))−sin(10(x+y))+(x2+y2)/4?

As a foretaste of future graphic tools, one can solve this problem graphically and in-
teractively using current adaptive 3-D plotting routines which can catch all the bumps.
This does admittedly rely on trusting a good deal of software.

#4. Rigourously testing and especially falsifying conjectures. I hew to the Poppe-
rian scientific view that we primarily falsify; but that as we perform more and more
testing experiments without such falsification we draw closer to firm belief in the truth
of a conjecture such as: the polynomial P (n) = n2 − n + p has prime values for all
n = 0, 1, . . . , p − 2, exactly for Euler’s lucky prime numbers, that is, p= 2, 3, 5, 11,
17, and 41.25

#5. Exploring a possible result to see if it merits formal proof. A conventional
deductive approach to a hard multi-step problem really requires establishing all the
subordinate lemmas and propositions needed along the way—especially if they are
highly technical and un-intuitive. Now some may be independently interesting or use-
ful, but many are only worth proving if the entire expedition pans out. Computational
experimental mathematics provides tools to survey the landscape with little risk of
error: only if the view from the summit is worthwhile, does one lay out the route
carefully. I discuss this further at the end of the next Section.

#6. Suggesting approaches for formal proof. The proof of the cubic theta function
identity discussed on [10, pp. 210] shows how a fully intelligible human proof can be
obtained entirely by careful symbolic computation.

24The title of Keith Devlin’s 1996 book, [21].
25See [55] for the answer.
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#7. Computing replacing lengthy hand derivations. Who would wish to verify the
following prime factorization by hand?

6422607578676942838792549775208734746307

= (2140992015395526641)(1963506722254397)(1527791).

Surely, what we value is understanding the underlying algorithm, not the human work?

#8. Confirming analytically derived results. This is a wonderful and frequently ac-
cessible way of confirming results. Even if the result itself is not computationally
checkable, there is often an accessible corollary. An assertion about bounded operators
on Hilbert space may have a useful consequence for three-by-three matrices. It is also
an excellent way to error correct, or to check calculus examples before giving a class.

5 Finding Things versus Proving Things

I now illuminate these eight roles with eight mathematical examples. At the end of each I
note some of the roles illustrated.

1. Pictorial comparison of y − y2 and y2 − y4 to −y2 ln(y), when y lies in the unit
interval, is a much more rapid way to divine which function is larger than by using
traditional analytic methods.

Figure 1 below shows that it is clear in the latter case the functions cross, and so it is
futile to try to prove one majorizes the other. In the first case, evidence is provided
to motivate attempting a proof and often the picture serves to guide such a proof—by
showing monotonicity or convexity or some other salient property. �

This certainly illustrates roles #3 and #4, and perhaps role #5.

Figure 1. (Ex. 1.): Graphical comparison of −x2 ln(x) (lower local maximum in
both graphs) with x − x2 (left graph) and x2 − x4 (right graph)

2. A proof and a disproof. Any modern computer algebra can tell one that

0 <

∫

1

0

(1 − x)4x4

1 + x2
dx =

22

7
− π, (4)
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since the integral may be interpreted as the area under a positive curve. We are
however no wiser as to why! If however we ask the same system to compute the
indefinite integral, we are likely to be told that

∫ t

0

· =
1

7
t7 − 2

3
t6 + t5 − 4

3
t3 + 4 t − 4 arctan (t) .

Then (4) is now rigourously established by differentiation and an appeal to the Fun-
damental theorem of calculus. �

This illustrates roles #1 and #6. It also falsifies the bad conjecture that π = 22/7 and
so illustrates #4 again. Finally, the computer’s proof is easier (#7) and very nice, though
probably it is not the one we would have developed by ourselves. The fact that 22/7 is a
continued fraction approximation to π has led to many hunts for generalizations of (4), see
[10, Chapter 1]. None so far are entirely successful.

3. A computer discovery and a ‘proof’ of the series for arcsin2(x). We compute
a few coefficients and observe that there is a regular power of 4 in the numerator, and
integers in the denominator; or equivalently we look at arcsin(x/2)2. The generating
function package ‘gfun’ in Maple, then predicts a recursion, r, for the denominators
and solves it, as R.

>with(gfun):

>s:=[seq(1/coeff(series(arcsin(x/2)^2,x,25),x,2*n),n=1..6)]:

>R:=unapply(rsolve(op(1, listtorec(s,r(m))),r(m)),m);[seq(R(m),m=0..8)];

yields, s := [4, 48, 360, 2240, 12600, 66528],

R := m 7→ 8
4m Γ(3/2 + m)(m + 1)

π1/2Γ(1 + m)
,

where Γ is the Gamma function, and then returns the sequence of values

[4, 48, 360, 2240, 12600, 66528, 336336, 1647360, 7876440].

We may now use Sloane’s Online Encyclopedia of Integer Sequences26 to reveal that
the coefficients are R(n) = 2n2

(

2n
n

)

. More precisely, sequence A002544 identifies

R(n + 1)/4 =
(

2n+1

n

)

(n + 1)2.

> [seq(2*n^2*binomial(2*n,n),n=1..8)];

confirms this with

[4, 48, 360, 2240, 12600, 66528, 336336, 1647360].

Next we write
26At www.research.att.com/∼njas/sequences/index.html
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> S:=Sum((2*x)^(2*n)/(2*n^2*binomial(2*n,n)),n=1..infinity):S=values(S);

which returns
1

2

∞
∑

n=1

(2 x)2n

n2
(

2n
n

) = arcsin2(x).

That is, we have discovered—and proven if we trust or verify Maple’s summation
algorithm—the desired Maclaurin series.

As prefigured by Ramanujan, it transpires that there is a beautiful closed form for
arcsin2m(x) for all m = 1, 2, . . .. In [14] there is a discussion of the use of integer
relation methods, [9, Chapter 6], to find this closed form and associated proofs are
presented. �

Here we see an admixture of all of the roles save #3, but above all #2 and #5.

4. Discovery without proof. Donald Knuth27 asked for a closed form evaluation of:

∞
∑

k=1

{

kk

k! ek
− 1√

2 π k

}

= −0.084069508727655 . . . . (5)

Since about 2000 CE it has been easy to compute 20—or 200—digits of this sum
in Maple or Mathematica; and then to use the ‘smart lookup’ facility in the Inverse
Symbolic Calculator(ISC). The ISC at http://oldweb.cecm.sfu.ca/projects/ISC

uses a variety of search algorithms and heuristics to predict what a number might
actually be. Similar ideas are now implemented as ‘identify’ in Maple and (for algebraic
numbers only) as ‘Recognize’ in Mathematica, and are described in [8, 9, 15, 1]. In this
case it rapidly returns

0.084069508727655 ≈ 2

3
+

ζ (1/2)√
2 π

.

We thus have a prediction which Maple 9.5 on a 2004 laptop confirms to 100 places in
under 6 seconds and to 500 in 40 seconds. Arguably we are done. After all we were
asked to evaluate the series and we now know a closed-form answer.

Notice also that the ‘divergent’ ζ(1/2) term is formally to be expected in that while
∑∞

n=1
1/n1/2 = ∞, the analytic continuation of ζ(s) :=

∑∞

n=1
1/ns for s > 1 evaluated

at 1/2 does occur! �

We have discovered and tested the result and in so doing gained insight and knowledge
while illustrating roles #1, #2 and #4. Moreover, as described in [10, pp. 15], one can also
be led by the computer to a very satisfactory computer-assisted but also very human proof,

27Posed as an MAA Problem [36].
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thus illustrating role #6. Indeed, the first hint is that the computer algebra system returned
the value in (5) very quickly even though the series is very slowly convergent. This suggests
the program is doing something intelligent—and it is! Such a use of computing is termed
“instrumental” in that the computer is fundamental to the process, see [41].

5. A striking conjecture with no known proof strategy (as of spring 2007) given
in [10, p. 162] is: for n = 1, 2, 3 · · ·

8n ζ
(

{2, 1}n

) ?
= ζ ({2, 1}n) . (6)

Explicitly, the first two cases are

8
∑

n>m>0

(−1)n

n2m
=
∑

n>0

1

n3
and 64

∑

n>m>o>p>0

(−1)n+o

n2m o2p
=
∑

n>m>0

1

n3m3
.

The notation should now be clear—we use the ‘overbar’ to denote an alternation. Such
alternating sums are called multi-zeta values (MZV) and positive ones are called Euler
sums after Euler who first studied them seriously. They arise naturally in a variety of
modern fields from combinatorics to mathematical physics and knot theory.

There is abundant evidence amassed since ‘identity’ (6) was found in 1996. For exam-
ple, very recently Petr Lisonek checked the first 85 cases to 1000 places in about 41
HP hours with only the predicted round-off error. And the case n = 163 was checked
in about ten hours. These objects are very hard to compute naively and require sub-
stantial computation as a precursor to their analysis.

Formula (6) is the only identification of its type of an Euler sum with a distinct MZV
and we have no idea why it is true. Any similar MZV proof has been both highly
non-trivial and illuminating. To illustrate how far we are from proof: can just the case
n = 2 be proven symbolically as has been the case for n = 1? �
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Figure 2. (Ex. 6.): “The price of metaphor is eternal vigilance.”
(Arturo Rosenblueth & Norbert Wiener, [42])

This identity was discovered by the British quantum field theorist David Broadhurst and
me during a large hunt for such objects in the mid-nineties. In this process we discovered
and proved many lovely results (see [9, Chapter 2] and [10, Chapter 4]), thereby illustrating
#1,#2, #4, #5 and #7. In the case of ‘identity’ (6) we have failed with #6, but we have
ruled out many sterile approaches. It is one of many examples where we can now have (near)
certainty without proof. Another was shown in equation (1) above.

6. What you draw is what you see. Roots of polynomials with coefficients 1 or -1 up
to degree 18.

As the quote suggests, pictures are highly metaphorical. The shading in Figure 2 is
determined by a normalized sensitivity of the coefficients of the polynomials to slight
variations around the values of the zeros with red indicating low sensitivity and violet
indicating high sensitivity.28 It is hard to see how the structure revealed in the pictures
above29 would be seen other than through graphically data-mining. Note the different
shapes—now proven—of the holes around the various roots of unity.

The striations are unexplained but all re-computations expose them! And the fractal
structure is provably there. Nonetheless different ways of measuring the stability of

28Colour versions may be seen at http://oldweb.cecm.sfu.ca/personal/loki/Projects/Roots/Book/.
29We plot all complex zeroes of polynomials with only -1 and 1 as coefficients up to a given degree. As

the degree increases some of the holes fill in—at different rates.
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the calculations reveal somewhat different features. This is very much analogous to a
chemist discovering an unexplained but robust spectral line. �

This certainly illustrates #2 and #7, but also #1 and #3.

7. Visual Dynamics. In recent continued fraction work, Crandall and I needed to study
the dynamical system t0 := t1 := 1:

tn :=
1

n
tn−1 + ωn−1

(

1 − 1

n

)

tn−2,

where ωn = a2, b2 for n even, odd respectively, are two unit vectors. Think of this
as a black box which we wish to examine scientifically. Numerically, all one sees is
tn → 0 slowly. Pictorially, in Figure 3, we learn significantly more.30 If the iterates are
plotted with colour changing after every few hundred iterates,31 it is clear that they
spiral roman-candle like in to the origin:

Figure 3. (Ex. 7.): “Visual convergence in the complex plane”

Scaling by
√

n, and distinguishing even and odd iterates, fine structure appear in
Figure 4. We now observe, predict and validate that the outcomes depend on whether
or not one or both of a and b are roots of unity (that is, rational multiples of π). Input
a p-th root of unity and out come p spirals, input a non-root of unity and we see a
circle. �

This forceably illustrates role #2 but also roles #1, #3, #4. It took my coauthors and
me, over a year and 100 pages to convert this intuition into a rigorous formal proof, [3].
Indeed, the results are technical and delicate enough that I have more faith in the facts than
in the finished argument. In this sentiment, I am not entirely alone.

30. . . “Then felt I like a watcher of the skies, when a new planet swims into his ken.” From John Keats
(1795-1821) poem On first looking into Chapman’s Homer.

31A colour version may be seen on the cover of [2].
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Figure 4. (Ex. 7.): The attractors for various |a| = |b| = 1

Carl Friedrich Gauss, who drew (carefully) and computed a great deal, is said to have
noted, I have the result, but I do not yet know how to get it.32 An excited young Gauss
writes: “A new field of analysis has appeared to us, self-evidently, in the study of functions
etc.” (October 1798, reproduced in [9, Fig. 1.2, p.15]). It had and the consequent proofs
pried open the doors of much modern elliptic function and number theory.

My penultimate and more comprehensive example is more sophisticated and I beg the
less-expert analyst’s indulgence. Please consider its structure and not the details.

8. A full run. Consider the unsolved Problem 10738 from the 1999 American Mathe-

matical Monthly, [10]:

Problem: For t > 0 let

mn(t) =
∞
∑

k=0

kn exp(−t)
tk

k!

be the nth moment of a Poisson distribution with parameter t. Let cn(t) = mn(t)/n!.
Show

a) {mn(t)}∞n=0 is log-convex33 for all t > 0.

b) {cn(t)}∞n=0 is not log-concave for t < 1.

c∗) {cn(t)}∞n=0 is log-concave for t ≥ 1.

Solution. (a) Neglecting the factor of exp(−t) as we may, this reduces to

∑

k,j≥0

(jk)n+1tk+j

k!j!
≤
∑

k,j≥0

(jk)ntk+j

k! j!
k2 =

∑

k,j≥0

(jk)ntk+j

k!j!

k2 + j2

2
,

and this now follows from 2jk ≤ k2 + j2.

(b) As

mn+1(t) = t
∞
∑

k=0

(k + 1)n exp(−t)
tk

k!
,

32Like so many attributions, the quote has so far escaped exact isolation!
33A sequence {an} is log-convex if an+1an−1 ≥ a2

n
, for n ≥ 1 and log-concave when the inequality is

reversed.
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on applying the binomial theorem to (k+1)n, we see that mn(t) satisfies the recurrence

mn+1(t) = t

n
∑

k=0

(

n

k

)

mk(t), m0(t) = 1.

In particular for t = 1, we computationally obtain as many terms of the sequence

1, 1, 2, 5, 15, 52, 203, 877, 4140 . . .

as we wish. These are the Bell numbers as was discovered again by consulting Sloane’s
Encyclopedia which can also tell us that, for t = 2, we have the generalized Bell
numbers, and gives the exponential generating functions.34 Inter alia, an explicit com-
putation shows that

t
1 + t

2
= c0(t) c2(t) ≤ c1(t)

2 = t2

exactly if t ≥ 1, which completes (b).

Also, preparatory to the next part, a simple calculation shows that

∑

n≥0

cnun = exp (t(eu − 1)) . (7)

(c∗)35 We appeal to a recent theorem, [10, p. 42], due to E. Rodney Canfield which
proves the lovely and quite difficult result below. A self-contained proof would be very
fine.

Theorem 1 If a sequence 1, b1, b2, · · · is non-negative and log-concave then so is the
sequence 1, c1, c2, · · · determined by the generating function equation

∑

n≥0

cnun = exp

(

∑

j≥1

bj
uj

j

)

.

Using equation (7) above, we apply this to the sequence bj = t/(j− 1)! which is log-
concave exactly for t ≥ 1. �

A search in 2001 on MathSciNet for “Bell numbers” since 1995 turned up 18 items.
Canfield’s paper showed up as number 10. Later, Google found it immediately!

Quite unusually, the given solution to (c) was the only one received by the Monthly. The
reason might well be that it relied on the following sequence of steps:

34Bell numbers were known earlier to Ramanujan—an example of Stigler’s Law of Eponymy, [10, p. 60].
Combinatorially they count the number of nonempty subsets of a finite set.

35The ‘*’ indicates this was the unsolved component.
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A (Question Posed) ⇒ Computer Algebra System ⇒ Interface ⇒
Search Engine ⇒ Digital Library ⇒ Hard New Paper ⇒ (Answer)

Without going into detail, we have visited most of the points elaborated in Section 4.1. Now
if only we could already automate this process!

Jacques Hadamard, describes the role of proof as well as anyone—and most persuasively
given that his 1896 proof of the Prime number theorem is an inarguable apex of rigorous
analysis.

“The object of mathematical rigor is to sanction and legitimize the conquests of
intuition, and there was never any other object for it.” (Jacques Hadamard36)

Of the eight uses of computers instanced above, let me reiterate the central importance
of heuristic methods for determining what is true and whether it merits proof. I tentatively
offer the following surprising example which is very very likely to be true, offers no suggestion
of a proof and indeed may have no reasonable proof.

9. Conjecture. Consider

xn =

{

16xn−1 +
120n2 − 89n + 16

512n4 − 1024n3 + 712n2 − 206n + 21

}

(8)

The sequence βn = (⌊16xn⌋), where (xn) is the sequence of iterates defined in equation
(8), precisely generates the hexadecimal expansion of π − 3.

(Here {·} denotes the fractional part and (⌊·⌋) denotes the integer part.) In fact, we
know from [9, Chapter 4] that the first million iterates are correct and in consequence:

∞
∑

n=1

‖xn − {16nπ}‖ ≤ 1.46 × 10−8 . . . . (9)

where ‖a‖ = min(a, 1 − a). By the first Borel-Cantelli lemma this shows that the
hexadecimal expansion of π only finitely differs from (βn). Heuristically, the probability
of any error is very low. �

6 Conclusions

To summarize, I do argue that reimposing the primacy of mathematical knowledge over
proof is appropriate. So I return to the matter of what it takes to persuade an individual to
adopt new methods and drop time honoured ones. Aptly, we may start by consulting Kuhn
on the matter of paradigm shift:

36J. Hadamard, in E. Borel, Lecons sur la theorie des fonctions, 3rd ed. 1928, quoted in [49, (2), p. 127] .
See also [47].
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“The issue of paradigm choice can never be unequivocally settled by logic and
experiment alone. · · · in these matters neither proof nor error is at issue. The
transfer of allegiance from paradigm to paradigm is a conversion experience that
cannot be forced.” (Thomas Kuhn37)

As we have seen, the pragmatist philosopher John Dewey eloquently agrees, while Max
Planck, [46], has also famously remarked on the difficulty of such paradigm shifts. This is
Kuhn’s version38:

“And Max Planck, surveying his own career in his Scientific Autobiography, sadly
remarked that “a new scientific truth does not triumph by convincing its opponents
and making them see the light, but rather because its opponents eventually die,
and a new generation grows up that is familiar with it.” (Albert Einstein, [37, 46])

This transition is certainly already apparent. It is certainly rarer to find a mathematician
under thirty who is unfamiliar with at least one of Maple, Mathematica or MatLab, than it
is to one over sixty five who is really fluent. As such fluency becomes ubiquitous, I expect a
re-balancing of our community’s valuing of deductive proof over inductive knowledge.

In his famous lecture to the Paris International Congress in 1900, Hilbert writes39

“Moreover a mathematical problem should be difficult in order to entice us, yet
not completely inaccessible, lest it mock our efforts. It should be to us a guidepost
on the mazy path to hidden truths, and ultimately a reminder of our pleasure in
the successful solution.” (David Hilbert, [56])

Note the primacy given by a most exacting researcher to discovery and to truth over
proof and rigor. More controversially and most of a century later, Greg Chaitin invites us
to be bolder and act more like physicists.

“I believe that elementary number theory and the rest of mathematics should
be pursued more in the spirit of experimental science, and that you should be
willing to adopt new principles... And the Riemann Hypothesis isn’t self-evident
either, but it’s very useful. A physicist would say that there is ample experimental
evidence for the Riemann Hypothesis and would go ahead and take it as a working
assumption. · · · We may want to introduce it formally into our mathematical
system.” (Greg Chaitin, [9, p. 254])

Ten years later:

37In [50], Who Got Einstein’s Office? The answer is Arne Beurling.
38Kuhn is quoting Einstein quoting Planck. There are various renderings of this second-hand German

quotation.
39See the late Ben Yandell’s fine account of the twenty-three “Mathematische Probleme” lecture, Hilbert

Problems and their solvers, [56]. The written lecture (given in [56]) is considerably longer and further ranging
that the one delivered in person.
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“[Chaitin’s] “Opinion” article proposes that the Riemann hypothesis (RH) be
adopted as a new axiom for mathematics. Normally one could only countenance
such a suggestion if one were assured that the RH was undecidable. However, a
proof of undecidability is a logical impossibility in this case, since if RH is false
it is provably false. Thus, the author contends, one may either wait for a proof,
or disproof, of RH—both of which could be impossible—or one may take the bull
by the horns and accept the RH as an axiom. He prefers this latter course as the
more positive one.” (Roger Heath Brown40)

Much as I admire the challenge of Greg Chaitin’s statements, I am not yet convinced that
it is helpful to add axioms as opposed to proving conditional results that start “Assuming
the continuum hypothesis” or emphasize that “without assuming the Riemann hypothesis
we are able to show ...”. Most important is that we lay our cards on the table. We should
explicitly and honestly indicate when we believe our tools to be heuristic, we should carefully
indicate why we have confidence in our computations—and where our uncertainty lies— and
the like.

On that note, Hardy is supposed to have commented—somewhat dismissively—that Lan-
dau, a great German number theorist, would never be the first to prove the Riemann Hy-
pothesis, but that if someone else did so then Landau would have the best possible proof
shortly after. I certainly hope that a more experimental methodology will better value in-
dependent replication and honour the first transparent proof41 of Fermat’s last theorem as
much as Andrew Wiles’ monumental proof. Hardy also commented that he did his best work
past forty. Inductive, accretive, tool-assisted mathematics certainly allows brilliance to be
supplemented by experience and—as in my case—stands to further undermine the notion
that one necessarily does one’s best mathematics young.

6.1 As for Education

The main consequence for me is that a constructivist educational curriculum—supported
by both good technology and reliable content—is both possible and highly desirable. In
a traditional instructivist mathematics classroom there are few opportunities for realistic
discovery. The current sophistication of dynamic geometry software such as Geometer’s
Sketchpad, Cabri or Cinderella, of many fine web-interfaces, and of broad mathematical
computation platforms like Maple and Mathematica has changed this greatly—though in
my opinion both Maple and Mathematica are unsuitable until late in high-school, as they
presume too much of both the student and the teacher. A thoughtful and detailed discussion
of many of the central issues can be found in J.P. Lagrange’s article [41] on teaching functions
in such a milieu.

Another important lesson is that we need to teach procedural or algorithmic thinking.
Although some vague notion of a computer program as a repeated procedure is probably

40Roger Heath-Brown’s Mathematical Review of [18], 2004.
41Should such exist and as you prefer be discovered or invented.
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ubiquitous today, this does not carry much water in practice. For example, five years or
so ago, while teaching future elementary school teachers (in their final year), I introduced
only one topic not in the text: extraction of roots by Newton’s method. I taught this in
class, tested it on an assignment and repeated it during the review period. About half of the
students participated in both sessions. On the final exam, I asked the students to compute√

3 using Newton’s method starting at x0 = 3 to estimate
√

3 = 1.732050808 . . . so that the
first three digits after the decimal point were correct. I hoped to see x1 = 2, x2 = 7/4 and
x3 = 97/56 = 1.732142857 . . . . I gave the students the exact iteration in the form

xNEW =
x + 3/xOLD

2
, (10)

and some other details. The half of the class that had been taught the method had no
trouble with the question. The rest almost without exception “guessed and checked”. They
tried xOLD = 3 and then rather randomly substituted many other values in (10). If they
were lucky they found some xOLD such that xNEW did the job.

My own recent experiences with technology-mediated curriculum are described in Jen
Chang’s 2006 MPub, [19]. There is a concurrent commercial implementation of such a
middle-school Interactive School Mathematics currently being completed by MathResources.42

Many of the examples I have given, or similar ones more tailored to school [7], are easily
introduced into the curriculum, but only if the teacher is not left alone to do so. Technol-
ogy also allows the same teacher to provide enriched material (say, on fractions, binomials,
irrationality, fractals or chaos) to the brightest in the class while allowing more practice for
those still struggling with the basics. That said, successful mathematical education relies
on active participation of the learner and the teacher and my own goal has been to produce
technological resources to support not supplant this process; and I hope to make learning or
teaching mathematics more rewarding and often more fun.

6.2 Last Words

To reprise, I hope to have made convincing arguments that the traditional deductive ac-
counting of Mathematics is a largely ahistorical caricature—Euclid’s millennial sway not
withstanding.43 Above all, mathematics is primarily about secure knowledge not proof, and
that while the aesthetic is central, we must put much more emphasis on notions of supporting
evidence and attend more closely to the reliability of witnesses.

Proofs are often out of reach—but understanding, even certainty, is not. Clearly, com-
puter packages can make concepts more accessible. A short list includes linear relation
algorithms, Galois theory, Groebner bases, etc. While progress is made “one funeral at a
time,”44 in Thomas Wolfe’s words “you can’t go home again” and as the co-inventor of the

42See http://www.mathresources.com/products/ism/index.html. I am a co-founder of this ten-year
old company. Such a venture is very expensive and thus relies on commercial underpinning.

43Most of the cited quotations are stored at jborwein/quotations.html
44This grim version of Planck’s comment is sometimes attributed to Niels Bohr but this seems specious.

It is also spuriously attributed on the web to Michael Milken, and I imagine many others
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Fast Fourier transform properly observed, in [53]45

“Far better an approximate answer to the right question, which is often vague,
than the exact answer to the wrong question, which can always be made precise.”
(J. W. Tukey, 1962)

References

[1] D.H. Bailey and J.M. Borwein, “Experimental Mathematics: Recent Developments and Future
Outlook,” pp. 51–66 in Vol. I of Mathematics Unlimited—2001 and Beyond, B. Engquist & W.
Schmid (Eds.), Springer-Verlag, 2000.

[2] D. Bailey, J. Borwein, N. Calkin, R. Girgensohn, R. Luke, and V. Moll, Experimental Mathe-

matics in Action, A.K. Peters, 2007.

[3] D.H. Bailey and J.M. Borwein, “Experimental Mathematics: Examples, Methods and Implica-
tions,” Notices Amer. Math. Soc., 52 No. 5 (2005), 502–514.

[4] David Berlinski, “Ground Zero: A Review of The Pleasures of Counting, by T. W. Koerner,”
by David Berlinski. The Sciences, July/August 1997, 37–41.

[5] F. Bornemann, D. Laurie, S. Wagon, and J. Waldvogel, The SIAM 100 Digit Challenge: A
Study in High-Accuracy Numerical Computing, SIAM, Philadelphia, 2004.

[6] E.J. Borowski and J.M. Borwein, Dictionary of Mathematics, Smithsonian/Collins Edition,
2006.

[7] J.M. Borwein “The Experimental Mathematician: The Pleasure of Discovery and the Role of
Proof,” International Journal of Computers for Mathematical Learning, 10 (2005), 75–108.

[8] J.M. Borwein, “The 100 Digit Challenge: an Extended Review,” Math Intelligencer, 27 (4)
(2005), 40–48. Available at http://users.cs.dal.ca/∼jborwein/digits.pdf.

[9] J.M. Borwein and D.H. Bailey, Mathematics by Experiment: Plausible Reasoning in the 21st
Century, AK Peters Ltd, 2003.

[10] J.M. Borwein, D.H. Bailey and R. Girgensohn, Experimentation in Mathematics: Computa-
tional Paths to Discovery, AK Peters Ltd, 2004.

[11] J.M. Borwein and P.B. Borwein, Pi and the AGM, CMS Monographs and Advanced Texts,
John Wiley, 1987.

[12] J.M. Borwein and P.B. Borwein, “Challenges for Mathematical Computing,” Computing in
Science & Engineering, 3 (2001), 48–53.

45Ironically, despite often being cited as in that article, I can not locate it!

25



[13] J.M. Borwein, P.B. Borwein, and D.A. Bailey, “Ramanujan, modular equations and pi or how
to compute a billion digits of pi,” MAA Monthly, 96 (1989), 201–219. Reprint ed in Organic
Mathematics Proceedings, (http://www.cecm.sfu.ca/organics), April 12, 1996. Print version:
CMS/AMS Conference Proceedings, 20 (1997), ISSN: 0731-1036.

[14] Jonathan Borwein and Marc Chamberland, “Integer powers of Arcsin,” Int. J. Math. & Math.
Sci., in press 2007. [D-drive preprint 288].

[15] Jonathan M. Borwein and Robert Corless, “Emerging Tools for Experimental Mathematics,”
MAA Monthly, 106 (1999), 889–909.

[16] J.M. Borwein and T.S. Stanway, “Knowledge and Community in Mathematics,” The Mathe-
matical Intelligencer, 27 (2005), 7–16.

[17] Julie K. Brown, “Solid Tools for Visualizing Science,” Science, November 19, 2004, 1136–37.

[18] G.J. Chaitin, “Thoughts on the Riemann hypothesis,” Math. Intelligencer, 26 (2004), no. 1,
4–7. (MR2034034)

[19] Jen Chang, “The SAMPLE Experience: the Development of a Rich Media Online Mathematics
Learning Environment,” MPub Project Report, Simon Fraser University, 2006. Available at
http://locutus.cs.dal.ca:8088/archive/00000327/.

[20] John Dewey, Influence of Darwin on Philosophy and Other Essays, Prometheus Books, 1997.

[21] Keith Devlin, Mathematics the Science of Patterns, Owl Books, 1996.

[22] J. Dongarra, F. Sullivan, “The top 10 algorithms,” Computing in Science & Engineering, 2

(2000), 22–23. (See www.cecm.sfu.ca/personal/jborwein/algorithms.html.)

[23] Michael Dummett, Frege: Philosophy of Language, Harvard University Press, 1973.

[24] Freeman Dyson, Review of Nature’s Numbers by Ian Stewart (Basic Books, 1995). American
Mathematical Monthly, August-September 1996, p. 612.

[25] “Proof and Beauty,” The Economist, March 31, 2005.
(See www.economist.com/science/displayStory.cfm?story id=3809661.)

[26] Paul Ernest, “Social Constructivism As a Philosophy of Mathematics. Radical Constructivism
Rehabilitated?” A ‘historical paper’ available at www.people.ex.ac.uk/PErnest/.

[27] Paul Ernest, Social Constructivism As a Philosophy of Mathematics, State University of New
York Press, 1998.
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bolically. I’ve been trading similar worksheets for this course with Jason Grout at
Iowa State University and Robert Mař́ık at Mendel University in the Czech Republic,
often by publishing worksheets off the Sage public server. Sage will see significant
action as I finish an integral calculus course this term with infinite series and Taylor
polynomials. Preparing an upcoming presentation will give me an excuse to learn
more about Sage’s graph theory routines.

Sage is big, and there is much to explore and to use in your professional activities
as a mathematician. It is an impressive concentration and unification of mathematical
knowledge. The reliance on mature open-source packages and open standards provides
a measure of confidence and future-proofing. There are a few rough edges as the
project matures, but this also provides the opportunity to get involved and influence
development. But see for yourself by experimenting at the public server (sagenb.org)
along with the over 5,000 others who have accounts there, or simply install your own
copy on your favorite hardware. Either way, it’s free.

Acknowledgments. This review has benefited greatly from the help of the Sage com-
munity, specifically Michael Abshoff, Robert Bradshaw, Craig Citro, Ahmed Fasih,
Jason Grout, Mike Hansen, David Joyner, Josh Kantor, Nancy Neudauer, Harald
Schilly, and William Stein. Their assistance is greatly appreciated.
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The Princeton Companion to Mathematics. Edited by Timothy Gowers, with June Barrow-
Green and Imre Leader. Princeton University Press, Princeton, NJ, 2008. $99.00. xxii+
1034 pp., hardcover. ISBN 978-0-691-11880-2.

Tim Gowers was a 1998 Fields medalist for his marvelous resolution of long-standing
problems in Banach space theory—such as whether it is possible for a Banach space to
have no isomorphic hyperplane (it is)—and in combinatorics; and while he continues
such work, in exemplary fashion he has also found time for various more didactic
and expository projects such as Mathematics: A Very Short Introduction (2002) and
the book under review, activity with various media, and much else. Both associate
editors, June Barrow-Green (Deputy Director for the Centre and Research Fellow in
History of Mathematics at the Open University) and the combinatorist Imre Leader
(Professor at Trinity College, Cambridge), have distinguished records.

This work, which I shall refer to below, as Gowers does, as “The Companion,” is
a fine validation of the well-known proposition that if you want a job done right you
should ask a busy person to do it. In this case many very busy people have performed
an invaluable job very, very well. This handsome, hefty, and attractively priced vol-
ume received Honorable Mention for the 2008 PROSE Award for Professional and
Scholarly Excellence for Single Volume Reference/Science, Association of American
Publishers. In his excellent preface Gowers describes the painstaking six-year process
which led to this work and writes that “the central focus of this book is modern, pure
mathematics,” both highlighted terms being lucidly discussed. Since this review is
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appearing in SIAM Review I should emphasize that a great deal of less pure mathe-
matics is captured. He also points out that a “companion is not an encyclopaedia”
and that

“[t ]he Princeton Companion to Mathematics could be said to be about
everything that Russell’s definition [of pure Mathematics] leaves out.”

Let me complete my review prematurely. Every research mathematician, every
university student of mathematics, and every serious amateur of mathematical science
should own a least one copy of The Companion. Indeed, the sheer weight of the volume
suggests that it is advisable to own two: one for work and one at home. You may want
to get a copy of The Companion for a friend. I bought a copy as an 85th birthday
present for my mathematician father.

Reviews of The Companion, both professional and on Amazon.com (which also
has a good selection of superlative comments extracted from professional reviews),
have been generally laudatory, as indeed they should be. Princeton University Press
also maintains a web site at http://press.princeton.edu/TOCs/c8350.html (whose
scope and intention Gowers describes in his preface) from which the careful potential
buyer can make a fully informed decision to purchase. Additionally, Princeton Uni-
versity Press provides the full table of contents, the preface, the list of contributors
(a most impressive collection which includes mathematical household names such
as Atiyah, Connes, Daubechies, Lax, and Tao, as well as many very distinguished
authors most of whose names are probably not familiar to any given reader), and
very representative sample articles consisting of I.2 “The Language and Grammar
of Mathematics,” II.2 “Geometry,” IV.5 “Arithmetic Geometry,” IV.21 “Numerical
Analysis,” V.10 “Fermat’s Last Theorem,” VI.61 “Jules Henri Poincaré (1854–1912),”
VII.2 “Mathematical Biology,” and VIII.6 “Advice to a Young Mathematician” (by
Sir Michael Atiyah, Bela Bollobas, and others). From this list the reader of this review
can already probably glean the structure of the book, which consists of eight parts.

Part I, “Introduction,” contains “What Is Mathematics About?,” “The Language
and Grammar of Mathematics,” “Some Fundamental Mathematical Definitions” (32
pages), and “The General Goals of Mathematical Research.”

Part II, “The Origins of Modern Mathematics,” has seven entries commencing
with “From Numbers to Number Systems and Geometry” and culminating with “The
Crisis in the Foundations of Mathematics.”

Part III, “Mathematical Concepts,” consists of 99 brief entries arranged alpha-
betically. These entries are typically between one and three pages. They start with
“The Axiom of Choice” and visit topics such as “Calabi–Yau Manifolds,” “Countable
and Uncountable Sets,” “Dynamical Systems and Chaos,” “The Fast Fourier Trans-
form,” “Homology and Cohomology,” “The Ising Model,” “The Leech Lattice,” “Ma-
troids,” “Number Fields,” “Probability Distributions,” “Quantum Computation,”
“Ricci Flow,” and “Special Functions,” before finishing up with “Von Neumann Al-
gebras,” “Wavelets,” and a Joyce-like revisiting of the axioms of set theory with “The
Zermelo–Fraenkel Axioms” (on page 314, which should please the pi lover).

Part IV, “Branches of Mathematics,” occupies pages 315 through 680 and cov-
ers 26 topics including “Algebraic Numbers,” ‘Representation Theory,” “Harmonic
Analysis,” “General Relativity and the Einstein Equations,” “Enumerative and Alge-
braic Combinatorics,” “Numerical Analysis,” and “High-Dimensional Geometry and
Its Probabilistic Analogues.”

Part V, “Theorems and Problems,” has 36 alphabetic entries of between one and
three pages. It starts as it must with “The ABC Conjecture,” and touches upon “The
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Banach–Tarski Paradox,” “Carleson’s Theorem,” “The Classification of Finite Sim-
ple Fermat’s Last Theorem,” “The Four-Color Theorem,” “Gödel’s Theorem,” “The
Insolubility of the Halting Problem,” “Mostow’s Strong Rigidity Theorem,” “The
P versus NP Problem,” “The Poincaré Conjecture,” “The Prime Number Theorem
and the Riemann Hypothesis,” “The Resolution of Singularities,” “The Robertson–
Seymour Theorem,” and “The Weil Conjectures.”

In Part VI, “Mathematicians” are arranged chronologically from Pythagoras (ca.
569 B.C.E.–ca. 494 B.C.E.) and Euclid (ca. 325 B.C.E.–ca. 265 B.C.E.) through Abu
Ja’far Muhammad ibn Musa al-Khwarizmi (800–847), Leonardo of Pisa (known as
Fibonacci) (ca. 1170–ca. 1250), François Viète (1540–1603), Pierre Fermat (160?–
1665), the Bernoullis (fl. 18th century), Leonhard Euler (1707–1783), Jean-Baptiste
Joseph Fourier (1768–1830), Carl Friedrich Gauss (1777–1855), Nicolai Ivanovich
Lobachevskii (1792–1856), William Rowan Hamilton (1805–1865), Eduard Kummer
(1810–1893), James Joseph Sylvester (1814–1897), William Burnside (1852–1927),
Jacques Hadamard (1865–1963), Emmy Noether (1882–1935), Norbert Wiener (1894–
1964), William Vallance Douglas Hodge (1903–1975), Abraham Robinson (1918–
1974), and, finally, as the 96th entry and the only living member of the list, Nicolas
Bourbaki (1935–). If your mathematical hero is missing above, that is likely to be
because of my selection, not the editors’ oversight. Indeed, when I proofread this
review I wondered why my own favorite G.H. Hardy was not listed above, but in fact
he was indeed included.

Part VII, “The Influence of Mathematics,” has fourteen entries, each of approx-
imately ten pages, including “Mathematics and Chemistry,” “The Mathematics of
Traffic in Networks,” “Mathematics and Economic Reasoning,” “Mathematics and
Medical Statistics,” and “Mathematics and Art.”

Part VIII, “Final Perspectives,” comprises seven essays, each between about five
and ten pages in length, entitled “The Art of Problem Solving,” “Why Mathematics?
You Might Ask,” “The Ubiquity of Mathematics,” “Numeracy,” “Mathematics: An
Experimental Science,” “Advice to a Young Mathematician” (perhaps in homage to
Peter Medawar’s wonderful 1979 Advice to a Young Scientist), and “A Chronology of
Mathematical Events.”

The sheer scale and scope of the book, which finishes with a very good index,
should now be fully apparent. In my 2006 featured review in SIAM Review of The
Oxford Users’ Guide to Mathematics (SIAM Rev., 48 (2006), pp. 585–594) I wrote
generally of the issues involved with such projects and, despite great sympathy, I found
much to be critical of with regards to the roles of both its editors and its publisher.
Indeed, I wrote:

A more thorough review and production process would surely have adequately ad-
dressed this last set of issues. I can no better make this point than to quote Simkin and
Fiske quoting [in Science] the late Stephen J. Gould in a review of Simon Winchester’s
Krakatoa. (. . .These reviews do make me question the reliability of The Professor
and the Madman.)

In his review of Winchester’s previous book, The Map That Changed the World,
Stephen Jay Gould wrote: “I don’t mean to sound like an academic sourpuss, but
I just don’t understand the priorities of publishers who spare no expense to produce
an elegantly illustrated and beautifully designed book and then permit the text to
wallow in simple, straight-out factual errors, all easily corrected for the minimal cost
of one scrutiny of the galleys by a reader with professional expertise. . . .”

With Krakatoa, the publisher clearly spared considerable expense, and this new
book also wallows in errors. Perhaps, given our popular culture’s appetite for sensa-
tionalized disasters, a modern publisher would rather not see all those pesky details
corrected.
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Even an academic sourpuss should be pleased with the attention to detail of The
Companion’s publishers, editors, and authors and with many judicious decisions—
about the level of exposition, level of detail, what to include and what to omit, and
much more—which have led to a well-integrated and highly readable volume. Gowers
writes:

[T]he editorial process has been a very active one: we have not just commissioned the
articles and accepted whatever we have been sent. Some drafts have had to be com-
pletely discarded and new articles written in the light of editorial comments. Others
have needed substantial changes, which have sometimes been made by the authors
and sometimes by the editors. A few articles were accepted with only trivial changes,
but these were a very small minority.

I described in my 2006 review how hard it is to produce such a volume—let alone
to do it so splendidly—and how easy it is to find fault in any project with such au-
dacious goals. This I know full well from my own more prosaic efforts as a co-author
of The Collins–Smithsonian Dictionary of Mathematics. Thus, in an attempt to limit
bias, I left a copy in my office for several months and sampled it with students or
colleagues who dropped in for a chat or with a query. I found little missing. Indeed,
the only item I did not find during this process but thought I should have found was
“Turing test,” and that term is perhaps not fairly within the compass of modern pure
mathematics. I finish by quoting again from Gowers’ own preface.

6 Who Is The Companion Aimed At?
The original plan for The Companion was that all of it should be accessible to any-
body with a good background in high school mathematics (including calculus). How-
ever, it soon became apparent that this was an unrealistic aim: there are branches
of mathematics that are so much easier to understand when one knows at least some
university-level mathematics that it does not make good sense to attempt to explain
them at a lower level. On the other hand, there are other parts of the subject that
decidedly can be explained to readers without this extra experience. So in the end
we abandoned the idea that the book should have a uniform level of difficulty.

Accessibility has, however, remained one of our highest priorities, and throughout
the book we have tried to discuss mathematical ideas at the lowest level that is
practical. In particular, the editors have tried very hard not to allow any material
into the book that they do not themselves understand, which has turned out to be a
very serious constraint [my emphasis]. Some readers will find some articles too hard
and other readers will find other articles too easy, but we hope that all readers from
advanced high school level onwards will find that they enjoy a substantial proportion
of the book.

What can readers of different levels hope to get out of The Companion? If you
have embarked on a university level mathematics course, you may find that you are
presented with a great deal of difficult and unfamiliar material without having much
idea why it is important and where it is all going. Then you can use The Companion
to provide yourself with some perspective on the subject. (For example, many more
people know what a ring is than can give a good reason for caring about rings. But
there are very good reasons, which you can read about in RINGS, IDEALS, AND
MODULES [III.81] and ALGEBRAIC NUMBERS [IV.1].)

If you are coming to the end of the course, you may be interested in doing research
in mathematics. But undergraduate courses typically give you very little idea of
what research is actually like. So how do you decide which areas of mathematics
truly interest you at the research level? It is not easy, but the decision can make the
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difference between becoming disillusioned and ultimately not getting a Ph.D., and
going on to a successful career in mathematics. This book, especially Part IV, tells
you what mathematicians of many different kinds are thinking about at the research
level, and may help you to make a more informed decision.

If you are already an established research mathematician, then your main use for
this book will probably be to understand better what your colleagues are up to. Most
non-mathematicians are very surprised to learn how extraordinarily specialized math-
ematics has become. Nowadays it is not uncommon for a very good mathematician to
be completely unable to understand the papers of another mathematician, even from
an area that appears to be quite close. This is not a healthy state of affairs: anything
that can be done to improve the level of communication among mathematicians is a
good idea. The editors of this book have learned a huge amount from reading the
articles carefully, and we hope that many others will avail themselves of the same
opportunity.

Judging by the sales numbers shown on Amazon.com, however they are actually
computed, a great many copies are already with readers, if perhaps not all yet read.
Everyone involved with this project deserves our deep gratitude.

JONATHAN M. BORWEIN

University of Newcastle

Simulation and Inference for Stochas-
tic Differential Equations. By Stefano M.
Iacus. Springer, New York, 2008. $79.95.
xviii+286 pp., hardcover. ISBN 978-0-387-
75838-1.

I jumped at the chance to review this book.
It deals with two themes that deserve a
much higher profile in applied and com-
putational mathematics: uncertainty and
inference. You don’t need to delve into
stochastic models in order to appreciate
their importance. A typical deterministic
model will involve initial data and physical
coefficients that are either

(a) completely unknown, or

(b) known only up to some level of error.

Case (a) would arise, for example, where
one or more rate constants in a chemical
reaction system could not be measured. In
this context, the unknown parameters could
be fitted to time series data relating to the
observed concentrations of various species.
A standard approach in computational and
applied mathematics is to treat this as an
optimization problem and seek the parame-
ter values that best fit the data, for example,
in a least squares sense subject to some re-

alistic constraints. However, the resulting
“point estimate” would be frowned upon
by many experts in statistical inference [2],
who would argue, quite reasonably, that
returning just a single number (or even a
single number plus some sort of local sensi-
tivity estimate) is an inadequate summary,
with the language and tools of probabil-
ity theory providing a more appropriate
setting.

Case (b) could of course arise after ob-
served data has been used to deal with
case (a). It may also arise when coefficients
can be observed directly, but the measure-
ments are subject to experimental errors.
In either circumstance, it seems illogical to
focus all our energies on theoretical or nu-
merical analysis of a single “best guess” of
the underlying problem specification. In-
stead, we should deal with questions such
as: Given a quantitative representation of
the uncertainty in the model, can we find
a quantitative representation of the uncer-
tainty in the output? Of course, analyzing
or computing the solution for a fixed in-
stance of the model will be an important
subproblem. But the bigger picture, which
sits at the intersection between statistics,
probability, computer science, and applied
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Abstract

I believe that the mathematical community (appropriately defined) is facing a
great challenge to re-evaluate the role of proof in light of the power of current com-
puter systems, of modern mathematical computing packages and of the growing
capacity to data-mine on the internet. Add to that the enormous complexity of
many modern mathematical results such as the Poincaré conjecture, Fermat’s last
theorem, and the classification of finite simple groups. With great challenges come
great opportunities. I intend to touch upon the current challenges and opportu-
nities for the learning and doing of mathematics. As the prospects for inductive
mathematics blossom, the need to ensure that the role of proof is properly founded
remains undiminished.

1 Digitally-assisted Discovery and Proof

Exploratory Experimentation

“[I]ntuition comes to us much earlier and with much less outside influence than
formal arguments which we cannot really understand unless we have reached
a relatively high level of logical experience and sophistication.

Therefore, I think that in teaching high school age youngsters we should em-
phasize intuitive insight more than, and long before, deductive reasoning.” —
George Polya (1887-1985) [22, 2 p. 128]

I share this view with Polya who goes on to say that, nonetheless, proof should certainly
be taught in school. I begin with some observations many of which have been fleshed
out in The Computer as Crucible [9], Mathematics by Experiment [7], and Experimental
Mathematics in Action [4]. My musings focus on the changing nature of mathematical
knowledge and in consequence asks the questions such as “How do we come to believe
and trust pieces of mathematics?”, “Why do we wish to prove things?” and “How do we
teach what and why to students?”

While I have described myself in [4] and elsewhere as a “computationally assisted fal-
libilist”, I am far from a social-constructivist. Like Richard Brown, I believe that Science
“at least attempts to faithfully represent reality” [10, p. 7]. I am, though, persuaded by
various notions of embodied cognition. Smail [26, p. 113] writes:

∗University of Newcastle, Australia. Email: jonathan.borwein@newcastle.edu.au. Much of this
material was presented as a plenary talk in May 2009 at the National Taiwan Normal University Workshop
for ICMI Study 19 “On Proof and Proving in Mathematics Education.”
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“[T]he large human brain evolved over the past 1.7 million years to allow
individuals to negotiate the growing complexities posed by human social living.”

In consequence we find various modes of argument more palatable than others, and are
more prone to make certain kinds of errors than others. Likewise, Steve Pinker’s obser-
vation about language [21, p. 83] as founded on

“. . . the ethereal notions of space, time, causation, possession, and goals that
appear to make up a language of thought.”

remain equally potent within mathematics. The computer offers to provide scaffolding
both to enhance mathematical reasoning and to restrain mathematical error.

To begin with let me briefly reprise what I mean by discovery, and by proof. The
following attractive definition of discovery has the satisfactory consequence that a student
can certainly discovery results whether known to the teacher or not. Nor is it necessary
to demand that each dissertation be original (only independently discovered):

“In short, discovering a truth is coming to believe it in an independent, reliable,
and rational way”—Marcus Giaquinto [13, p. 50]

A standard definition1 of proof follows.

PROOF, n. a sequence of statements, each of which is either validly derived from
those preceding it or is an axiom or assumption, and the final member of which, the
conclusion, is the statement of which the truth is thereby established.

As a working definition of mathematics itself, I offer the following in which the word proof
does not enter. Nor should it; mathematics is much more than proof alone:

MATHEMATICS, n. a group of subjects, including algebra, geometry, trigonom-
etry and calculus, concerned with number, quantity, shape, and space, and their
inter-relationships, applications, generalizations and abstractions.
DEDUCTION, n. 1. the process of reasoning typical of mathematics and logic,
in which a conclusion follows necessarily from given premises so that it cannot be
false when the premises are true.
INDUCTION, n. 3. ( Logic) a process of reasoning in which a general conclusion
is drawn from a set of particular premises, often drawn from experience or from ex-
perimental evidence. The conclusion goes beyond the information contained in the
premises and does not follow necessarily from them. Thus an inductive argument
may be highly probable yet lead to a false conclusion; for example, large numbers
of sightings at widely varying times and places provide very strong grounds for the
falsehood that all swans are white.

It awaited the discovery of Australia to confound the seemingly compelling inductive
conclusion that all swans are white. I observe that we typically take for granted the
distinction between induction and deduction and rarely discuss their roles with either our
colleagues or our students.

Despite the conventional identification of Mathematics with deductive reasoning, in
his 1951 Gibbs Lecture Kurt Gödel (1906-1978) said:

1All definitions below are taken from the Collin’s Dictionary of Mathematics which I co-authored. It
is available as software with student Maple inside at:
http://www.mathresources.com/products/mathresource/index.html.
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“If mathematics describes an objective world just like physics, there is no rea-
son why inductive methods should not be applied in mathematics just the same
as in physics.”

He held this view until the end of his life despite the epochal deductive achievement of
his incompleteness results. And this opinion has been echoed or amplified by logicians as
different as Willard Quine and Greg Chaitin. More generally, one discovers a substantial
number of great mathematicians from Archimedes and Galileo—who apparently said “All
truths are easy to understand once they are discovered; the point is to discover them.”—to
Poincaré and Carleson have emphasized how much it helps to “know” the answer. Over
two millennia ago Archimedes wrote to Eratosthenes in the introduction to his long-lost
and recently re-constituted Method of Mechanical Theorems [19]

“I will send you the proofs of the theorems in this book. Since, as I said, I know
that you are diligent, an excellent teacher of philosophy, and greatly interested
in any mathematical investigations that may come your way, I thought it might
be appropriate to write down and set forth for you in this same book a certain
special method, by means of which you will be enabled to recognize certain
mathematical questions with the aid of mechanics. I am convinced that this is
no less useful for finding proofs of these same theorems.
For some things, which first became clear to me by the mechanical method,
were afterwards proved geometrically, because their investigation by the said
method does not furnish an actual demonstration. For it is easier to supply
the proof when we have previously acquired, by the method, some knowledge
of the questions than it is to find it without any previous knowledge.”

Think of the Method as an ur-precursor to today’s interactive geometry software—with the
caveat that, for example, Cinderella actually does provide certificates for much Euclidean
geometry. As 2006 Abel Prize winner Leonard Carleson describes in his 1966 ICM speech
on his positive resolution of Luzin’s 1913 conjecture, about the pointwise convergence
of Fourier series for square-summable functions, after many years of seeking a counter-
example he decided none could exist. The importance of this confidence is expressed as
follows:

“The most important aspect in solving a mathematical problem is the convic-
tion of what is the true result. Then it took 2 or 3 years using the techniques
that had been developed during the past 20 years or so.

Digitally Mediated Mathematics I shall now assume that all proofs discussed are
“non-trivial” in some fashion appropriate to the level of the material—since the issue of
using inductive methods is really only of interest with this caveat. Armed with these
terms, it remains to say that by digital assistance I intend the use of such artefacts as

• Modern Mathematical Computer Packages—be they Symbolic, Numeric, Geometric,
or Graphical. I would capture all as “modern hybrid workspaces”. One should also
envisage much more use of stereo visualization, haptics2, and auditory devices.

• More Specialist Packages or General Purpose Languages such as Fortran, C++,
CPLEX, GAP, PARI, SnapPea, Graffiti, and MAGMA. The story of the SIAM
100-Digits Challenge [6] illustrates the degree to which mathematicians now start

2With the growing realization of the importance of gesture in mathematics “as the very texture of
thinking,” [25, p. 92] it is time to seriously explore tactile devices.
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computational work within a hybrid platform such as Maple, Mathematica or mat-
lab and make only sparing recourse to more specialist packages when the hybrid
work spaces prove too limited.

• Web Applications such as: Sloane’s Online Encyclopedia of Integer Sequences, the
Inverse Symbolic Calculator, Fractal Explorer, Jeff Weeks’ Topological Games, or
Euclid in Java.3

• Web Databases including Google, MathSciNet, ArXiv, JSTOR, Wikipedia, Math-
World, Planet Math, Digital Library of Mathematical Functions (DLMF), MacTu-
tor, Amazon, and many more sources that are not always viewed as part of the
palette. Nor is necessary that one approve unreservedly, say of the historical relia-
bility of MacTutor, to acknowledge that with appropriate discrimination in its use
it is a very fine resource.

All entail data-mining in various forms. Franklin [12] argues that what Steinle has termed
“exploratory experimentation” facilitated by “widening technology” as in pharmacology,
astrophysics, biotechnology is leading to a reassessment of what is viewed as a legitimate
experiment; in that a “local model” is not a prerequisite for a legitimate experiment. Hen-
drik Sørenson [27] cogently makes the case that experimental mathematics—as ‘defined’
below—is following similar tracks.

“These aspects of exploratory experimentation and wide instrumentation origi-
nate from the philosophy of (natural) science and have not been much developed
in the context of experimental mathematics. However, I claim that e.g. the im-
portance of wide instrumentation for an exploratory approach to experiments
that includes concept formation also pertain to mathematics.”

Danny Hillis is quoted as saying recently that:

“Knowing things is very 20th century. You just need to be able to find things.”

on how Google has already changed how we think.4 This is clearly not yet true and will
never be, yet it catches something of the changing nature of cognitive style in the 21st
century.

In consequence, the boundaries between mathematics and the natural sciences and
between inductive and deductive reasoning are blurred and getting blurrier. This is dis-
cussed at some length by Jeremy Avigad [1]. A very useful discussion of similar issues from
a more explicitly pedagogical perspective is given by de Villiers [11] who also provides a
quite extensive bibliography.

Experimental Mathodology We started The Computer as Crucible [9] with then
United States Supreme court Justice Potter Stewart’s famous if somewhat dangerous
1964 comment on pornography:

“I know it when I see it.”

3A cross-section of such resources is available through http://ddrive.cs.dal.ca/∼isc/portal/.
4In Achenblog http://blog.washingtonpost.com/achenblog/ of July 1 2008. Likewise, Chris An-

derson, the Editor-in-Chief of Wired, recently wrote “There’s no reason to cling to our old ways. It’s
time to ask: What can science learn from Google?” in a provocative article The end of Theory, see
http://www.wired.com/science/discoveries/magazine/16-07/pb theory.

4



I complete this section by reprising from [7] what somewhat less informally we mean
by experimental mathematics. I say ‘somewhat’ since I do not take up the perhaps vexing
philosophical question of whether a true experiment in mathematics is even possible—
without adopting a fully realist philosophy of mathematics—or if we should be better to
refer to ‘quasi-experiments’? Some of this is discussed in [4, Chapter 1] and [7, Chapters
1,2, and 8], wherein further limn the various ways in which the term ‘experiment’ is used
and underline the need for mathematical experiments with predictive power.

What is experimental mathematics?

1. Gaining insight and intuition.5

2. Discovering new relationships.6

3. Visualizing math principles.7

4. Testing and especially falsifying conjectures.8

5. Exploring a possible result to see if it merits formal proof.9

6. Suggesting approaches for formal proof.10

7. Computing replacing lengthy hand derivations.11

8. Confirming analytically derived results.12

Of these the first five play a central role in the current context, and the sixth plays a
significant one.

Cognitive Challenges Finally let me touch upon the Stroop effect13 illustrating di-
rected attention or interference. This classic cognitive psychology test, discovered by
John Ridley Stroop in 1935, is as follows. Consider the picture in Figure 1 in which
various coloured words are colored in one of the colours mentioned but not necessarily in
the same one.

5I firmly believe that—in most important senses—intuition, far from being “knowledge or belief ob-
tained neither by reason nor by perception,” as the Collin’s English Dictionary and Kant would have it,
is acquired not innate as is captured by Lewis Wolpert’s 2000 title The Unnatural Nature of Science, see
also [14].

6I use discovery in Giaquinto’s terms as quoted above.
7I intend the fourth Random House sense of “to make perceptible to the mind or imagination” not

just Giaquinto’s more direct meaning.
8Karl Popper’s “critical rationalism” asserts that induction can never lead to truth and hence that

one can only falsify theories [10]. Whether one believes this is the slippery slope to Post modernist
interpretations of science (Brown’s term abbreviated PIS ) or not is open to debate, but Mathematics,
being based largely on deductive science, has little to fear and much to gain from more aggressive use of
falsification.

9‘Merit’ is context dependent. It may mean one thing in a classroom and quite another for a research
mathematician.

10I refer to computer-assisted or computer-directed proof which is quite far from Formal Proof —the
topic of a special issue of the Notices of the AMS in December 2008.

11Hales’ recent solution of the Kepler problem, described in the 2008 Notices article pushes the boundary
on when ‘replacement’ becomes qualitatively different from say factoring a very large prime. Indepen-
dently,

12The a posteriori value of confirmation is huge, whether this be in checking answers while preparing
a calculus class, or in confirming one’s apprehension of a newly acquired fact.

13http://www.snre.umich.edu/eplab/demos/st0/stroopdesc.html has a fine overview.
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Figure 1: An Illustration of the Stroop test.

First, say the colour which
the given word mentions.

Second, say the colour in
which the word is written.

Most people find the second the harder. You may find yourself taking more time
for each word, and may frequently say the word, rather than the color in which the
word appears. Proficient (young) multitaskers find it easy to suppress information and
so perform the second faster than traditionally. Indeed, Cliff Nass’ work in the CHIME
lab at Stanford suggests that neurological changes are taking place amongst the ‘born-
digital.’14 If such cognitive changes are taking place there is even more reason to ensure
that epistemology, pedagogy, and cognitive science are in concert.

Paradigm Shifts

“Old ideas give way slowly; for they are more than abstract logical forms and
categories. They are habits, predispositions, deeply engrained attitudes of aver-
sion and preference. Moreover, the conviction persists-though history shows it
to be a hallucination that all the questions that the human mind has asked are
questions that can be answered in terms of the alternatives that the questions
themselves present. But in fact intellectual progress usually occurs through
sheer abandonment of questions together with both of the alternatives they as-
sume an abandonment that results from their decreasing vitality and a change
of urgent interest. We do not solve them: we get over them.
Old questions are solved by disappearing, evaporating, while new questions cor-
responding to the changed attitude of endeavor and preference take their place.
Doubtless the greatest dissolvent in contemporary thought of old questions, the
greatest precipitant of new methods, new intentions, new problems, is the one
effected by the scientific revolution that found its climax in the “Origin of
Species.” ”—John Dewey (1859-1952)15

Thomas Kuhn (1922-1996) has noted that a true paradigm shift—as opposed to the
cliché—is “a conversion experience.”16 You (and enough others) either have one or you

14See http://www.snre.umich.edu/eplab/demos/st0/stroop program/stroopgraphicnonshockwave.gif.
15In Dewey’s introduction to his 1910 The Influence of Darwin on Philosophy and Other Essays. Dewey,

a leading pragmatist (or instrumentalist) philosopher and educational thinker of his period is also largely
responsible for the Trotsky archives being at Harvard through his activities on the Dewey Commission.

16This was said in an interview in [23], not only in Kuhn’s 1962 The Structure of Scientific Revolutions
which Brown notes is “the single most influential work in the history of science in the twentieth century.”
In Brown’s accounting [10] he bears more responsibility for the slide into PIS than either Dewey or
Popper. An unpremeditated example of digitally assisted research is that—as I type—I am listening to
The Structure of Scientific Revolutions, having last read it 35 years ago.
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don’t. Oliver Heaviside (1850-1925) said in defending his operator calculus before it could
be properly justified: “Why should I refuse a good dinner simply because I don’t understand
the digestive processes involved? But please always remember as Arturo Rosenblueth and
Norbert Wiener wrote: “The price of metaphor is eternal vigilance.” 17 I may not convince
you to reevaluate your view of Mathematics as an entirely deductive science—if so indeed
you view it—but in the next section I will give it my best shot.

2 Mathematical Examples

I continue with various explicit examples. I leave it to the reader to decide how much
or how frequently he or she wishes to exploit the processes I advertise. Nonetheless
they all controvert Picasso’s “Computers are useless they can only give answers.” and
confirm Hamming’s “The purpose of computing is insight not numbers.” As a warm-up
illustration, consider Figure 2. The lower function in both graphs is x 7→ −x2 log x The
left-hand graph compares x 7→ x− x2 while the right-hand graph compares x 7→ x2 − x4

each on 0 ≤ x ≤ 1.
Before the advent of plotting calculators if asked a question like “Is −x2 log x less

than x − x2 on the open interval between zero and one?” one immediately had recourse
to the calculus. Now that would be silly, clearly they cross. In the other case, if there is
a problem it is at the right-hand end point. ‘Zooming’ will probably persuade you that
−x2 log x ≤ x2−x4 on 0 ≤ x ≤ 1 and may even guide a calculus proof if a proof is needed.

Figure 2: Try Visualization or Calculus First?

The examples below contain material on sequences, generating functions, special func-
tions, continued fractions, partial fractions, definite and indefinite integrals, finite and
infinite sums, combinatorics and algebra, matrix theory, dynamic geometry and recur-
sions, differential equations, mathematical physics, among other things. So they capture
the three main divisions of pure mathematical thinking: algebraic-symbolic, analytic,
and topologic-geometric, while making contact with more applied issues in computation,
numerical analysis and the like.

Example I: What Did the Computer Do?

“This computer, although assigned to me, was being used on board the Interna-
tional Space Station. I was informed that it was tossed overboard to be burned
up in the atmosphere when it failed.”—anonymous NASA employee18

17Quoted by R. C. Leowontin, in Science p. 1264, Feb 16, 2001 (the Human Genome Issue).
18Science, August 3, 2007, p. 579: “documenting equipment losses of more than $94 million over the

past 10 years by the agency.”
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In my own work computer experimentation and digitally-mediated research now invari-
ably play a crucial part. Even in many seemingly non-computational areas of functional
analysis and the like there is frequently a computable consequence whose verification pro-
vides confidence in the result under development. Moreover, the process of specifying my
questions enough to program with them invariably enhances my understanding and some-
times renders the actual computer nearly superfluous. For example, in a recent study of
expectation or “box integrals” [5] we were able to evaluate a quantity, which had defeated
us for years, namely

K1 :=

∫ 4

3

arcsec (x)√
x2 − 4x+ 3

dx

in closed-form as

K1 = Cl2 (θ)− Cl2

(
θ +

π

3

)
− Cl2

(
θ − π

2

)
+ Cl2

(
θ − π

6

)
− Cl2

(
3 θ +

π

3

)
(1)

+ Cl2

(
3 θ +

2π

3

)
− Cl2

(
3 θ − 5π

6

)
+ Cl2

(
3 θ +

5π

6

)
+

(
6 θ − 5π

2

)
log
(

2−
√

3
)
.

where Cl2(θ) :=
∑∞

n=1 sin(nθ)/n2 is the Clausen function, and 3 θ := arctan
(

16−3
√

15
11

)
+π.

Along the way to the evaluation above, after exploiting some insightful work by George
Lamb, there were several stages of symbolic computation, at times involving an expression
for K1 with over 28, 000 characters (perhaps 25 standard novel pages). It may well be
that the closed form in (1) can be further simplified. In any event, the very satisfying
process of distilling the computer’s 28, 000 character discovery, required a mixture of art
and technology and I would be hard pressed to assert categorically whether it constituted
a conventional proof. Nonetheless, it is correct and has been checked numerically to over
a thousand-digit decimal precision.

I turn next to a mathematical example which I hope will reinforce my assertion that
there is already an enormous amount to be mined mathematically on the internet. And
this is before any mathematical character recognition tools have been made generally
available and when it is still very hard to search mathematics on the web.

Example II: What is That Number?

“The dictum that everything that people do is ‘cultural’ . . . licenses the idea
that every cultural critic can meaningfully analyze even the most intricate
accomplishments of art and science. . . . It is distinctly weird to listen to pro-
nouncements on the nature of mathematics from the lips of someone who can-
not tell you what a complex number is!”—Norman Levitt19

In 1995 or so Andrew Granville emailed me the number

α := 1.4331274267223 . . . (2)

and challenged me to identify it; I think this was a test I could have failed. I asked Maple
for its continued fraction. In the conventional concise notation I was rewarded with

α = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ...]. (3)

Even if you are unfamiliar with continued fractions, you will agree that the changed
representation in (3) has exposed structure not apparent from (2)! I reached for a good
book on continued fractions and found the answer

α =
I1(2)

I0(2)
(4)

19In The flight From Science and Reason. See Science, Oct. 11, 1996, p. 183.
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where I0 and I1 are Bessel functions of the first kind. Actually I remembered that all
arithmetic continued fractions arise in such fashion, but as we shall see one now does not
need to.

In 2009 there are at least three “zero-knowledge” strategies:

1. Given (3), type “arithmetic progression”, “continued fraction” into Google.

2. Type “1, 4, 3, 3, 1, 2, 7, 4, 2” into Sloane’s Encyclopedia of Integer Sequences.20

3. Type the decimal digits of α into the Inverse Symbolic Calculator.21

I illustrate the results of each strategy.
1. On October 15, 2008, on typing “arithmetic progression”, “continued fraction” into
Google, the first three hits were those shown in Figure 3. Moreover, the MathWorld entry
tells us that any arithmetic continued fraction is of a ratio of Bessel functions, as shown
in the inset to Figure 3 which also refers to the second hit in Figure 3. The reader may
wish to see what other natural search terms uncover (4)—perhaps in the newly unveiled
Wolfram Alpha.

Figure 3: What Google and MathWorld offer.

2. Typing the first few digits into Sloane’s interface results in the response shown in
Figure 4. In this case we are even told what the series representations of the requisite
Bessel functions are, we are given sample code (in this case in Mathematica), and we are
lead to many links and references. Moreover, the site is carefully moderated and continues
to grow. Note also that this strategy only became viable after May 14th 2008 when the
sequence was added to the database which now contains in excess of 158, 000 entries.
3. If one types the decimal representation of α into the Inverse Symbolic Calculator (ISC)
it returns

20See http://www.research.att.com/∼njas/sequences/.
21The online Inverse Symbolic Calculator http://ddrive.cs.dal.ca/∼isc was newly web-accessible

in 1995.
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Figure 4: What Sloane’s Encyclopedia offers.

Best guess: BesI(0,2)/BesI(1,2)

Most of the functionality of the ISC is built into the “identify” function in versions of
Maple starting with version 9.5. For example, identify(4.45033263602792) returns√

3 + e. As always, the experienced user will be able to extract more from this tool than
the novice for whom the ISC will often produce more.

Example III: From Discovery to Proof

“Besides it is an error to believe that rigor in the proof is the enemy of sim-
plicity.”—David Hilbert22

The following integral was made popular in a 1971 Eureka23 article

0 <

∫ 1

0

(1− x)4x4

1 + x2
dx =

22

7
− π (5)

as described in [7]. As the integrand is positive on (0, 1) the integral yields an area and
hence π < 22/7. Set on a 1960 Sydney honours mathematics final exam (5) perhaps
originated in 1941 with the author of the 1971 article—Dalzeil who chose not reference
his earlier self! Why should we trust this discovery? Well Maple and Mathematica both
‘do it’. But this is proof by appeal to authority less imposing than, say, von Neumann [18]
and a better answer is to ask Maple for the indefinite integral∫ t

0

(1− x)4x4

1 + x2
dx = ?

22In his 23 Mathematische Probleme lecture to the Paris International Congress, 1900 [28].
23Eureka was an undergraduate Cambridge University journal.
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The computer algebra system (CAS) will return∫ t

0

x4 (1− x)4

1 + x2
dx =

1

7
t7 − 2

3
t6 + t5 − 4

3
t3 + 4 t− 4 arctan (t) (6)

and now differentiation and the Fundamental theorem of calculus proves the result.
This is probably not the proof one would find by hand, but it is a totally rigorous

one, and represents an “instrumental use” of the computer. The fact that a CAS will
quite possibly be able to evaluate an indefinite integral or a finite sum whenever it can
evaluate the corresponding definite integral or infinite sum frequently allows one to provide
a certificate for such a discovery. In the case of a sum the certificate often takes the
form of a mathematical induction (deductive version). Another interesting feature of this
example is that it appears to be quite irrelevant that 22/7 is an early and the most famous
continued-fraction approximation to π [20]. Not every discovery is part of a hoped-for
pattern.

Example IV: From Concrete to Abstract

“The plural of ‘anecdote’ is not ‘evidence’.”—Alan L. Leshner24

1. In April 1993, Enrico Au-Yeung, then an undergraduate at the University of
Waterloo, brought to my attention the result

∞∑
k=1

(
1 +

1

2
+ · · ·+ 1

k

)2

k−2 = 4.59987 . . . ≈ 17

4
ζ(4) =

17π4

360

He had spotted from six place accuracy that 0.047222 . . . = 17/360. I was very skeptical,
but Parsevals identity computations affirmed this to high precision. This is effectively a
special case of the following class

ζ(s1, s2, · · · , sk) =
∑

n1>n2>···>nk>0

k∏
j=1

n
−|sj |
j σ

−nj

j ,

where sj are integers and σj = signumsj. These can be rapidly computed as implemented
at www.cecm.sfu.ca/projects/ezface+. [8]. In the past 20 years they have become of
more and more interest in number theory, combinatorics, knot theory and mathematical
physics. A marvellous example is Zagier’s conjecture, found experimentally and now
proven in [8], viz;

ζ

( n︷ ︸︸ ︷
3, 1, 3, 1, · · · , 3, 1

)
=

2π4n

(4n+ 2)!
(7)

Along the way to finding the proof we convinced ourselves that (7) held for many values
including n = 163 which required summing a slowly convergent 326-dimensional sum
to 1, 000 places with our fast summation method. Equation (7) is a remarkable non-
commutative counterpart of the classical formula for ζ(2n) [8, Ch. 3].

2. In the course of proving empirically-discovered conjectures about such multiple
zeta values [7] we needed to obtain the coefficients in the partial fraction expansion for

1

xs(1− x)t
=
∑
j≥0

as,tj
xj

+
∑
j≥0

bs,tj
(1− x)j

(8)

24Science’s publisher speaking at the Canadian Federal Science & Technology Forum, Oct 2, 2002.
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It transpires that

as,tj =

(
s+ t− j − 1

s− j

)
with a symmetric expression for bs,tj . This was know to Euler and once known is fairly
easily proved by induction. But it can certainly be discovered in a CAS by considering
various rows or diagonals in the matrix of coefficients—and either spotting the pattern or
failing that by asking Sloane’s Encyclopedia. Partial fractions like continued fractions and
Gaussian elimination are the sort of task that once mastered are much better performed
by computer while one focusses on more conceptual issues they expose.

3. We also needed to show that M := A + B − C was invertible where the n × n
matrices A,B,C respectively had entries

(−1)k+1

(
2n− j
2n− k

)
, (−1)k+1

(
2n− j
k − 1

)
, (−1)k+1

(
j − 1

k − 1

)
. (9)

Thus, A and C are triangular while B is full. For example, in nine dimensions M is
displayed below

1 −34 272 −1360 4760 −12376 24752 −38896 48620

0 −16 136 −680 2380 −6188 12376 −19448 24310

0 −13 105 −470 1470 −3458 6370 −9438 11440

0 −11 88 −364 1015 −2093 3367 −4433 5005

0 −9 72 −282 715 −1300 1794 −2002 2002

0 −7 56 −210 490 −792 936 −858 715

0 −5 40 −145 315 −456 462 −341 220

0 −3 24 −85 175 −231 203 −120 55

0 −1 8 −28 56 −70 56 −28 9


After messing around futilely with lots of cases in an attempt to spot a pattern, it occurred
to me to ask Maple for the minimal polynomial of M .

> linalg[minpoly](M(12),t);

returns −2 + t+ t2. Emboldened I tried

> linalg[minpoly](B(20),t); linalg[minpoly](A(20),t); linalg[minpoly](C(20),t);

and was rewarded with −1 + t3,−1 + t2,−1 + t2. Since a typical matrix has a full degree
minimal polynomial, we are quite assured that A,B,C really are roots of unity. Armed
with this discovery we are lead to try to prove

A2 = I, BC = A, C2 = I, CA = B2 (10)

which is a nice combinatorial exercise (by hand or computer). Clearly then we obtain also

B3 = B ·B2 = B(CA) = (BC)A = A2 = I (11)

and the requisite formula

M−1 =
M + I

2
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is again a fun exercise in formal algebra; in fact, we have

M2 = AA+ AB − AC +BA+BB −BC − CA− CB + CC

= I + C −B − A+ I

= 2I −M.

It is also worth confirming that we have discovered an amusing presentation of the
symmetric group S3. Characteristic or minimal polynomials, entirely abstract for me as
a student, now become members of a rapidly growing box of concrete symbolic tools, as
do many matrix decomposition results, the use of Groebner bases, Robert Risch’s 1968
decision algorithm for when an elementary function has an elementary indefinite integral,
and so on.

Many algorithmic components of CAS are today extraordinarily effective when two
decades ago they were more like ‘toys’. This is equally true of extreme-precision calculation—
a prerequisite for much of my own work [2, 5] and others [6]—or in combinatorics. Consider
the generating function of the number of additive partitions, p(n) of a natural number
where we ignore order and zeroes. Thus,

5 = 4 + 1 = 3 + 2 = 3 + 1 + 1 = 2 + 2 + 1 = 2 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1

and so p(5) = 7. The ordinary generating function (12) discovered by Euler is

∞∑
n=0

p(n)qn =
1∏∞

k=1 (1− qk)
. (12)

This is easily obtained by using the geometric formula for each 1/(1− qk) and observing
how many powers of qn are obtained. The famous computation by MacMahon of p(200) =
3972999029388 if done symbolically and entirely naively from (12) on a reasonable laptop
took 20 minutes in 1991, and about 0.17 seconds today while

p(2000) = 4720819175619413888601432406799959512200344166

took about two minutes in 2009. Moreover, Crandall was able, in December 2008, to
calculate p(109) in 3 seconds on his laptop, using Rademacher’s ‘finite’ series along with
FFT methods. Likewise, the record for computation of π has gone from under 30 million
decimal digits in 1986 to over 1.6 trillion places this year.

Example V: A Dynamic Discovery and Partial Proof

“Considerable obstacles generally present themselves to the beginner, in study-
ing the elements of Solid Geometry, from the practice which has hitherto uni-
formly prevailed in this country, of never submitting to the eye of the student,
the figures on whose properties he is reasoning, but of drawing perspective rep-
resentations of them upon a plane. . . . I hope that I shall never be obliged to
have recourse to a perspective drawing of any figure whose parts are not in the
same plane.”—Augustus De Morgan (1806–1871) [24, p. 540]

In a wide variety of problems (protein folding, 3SAT, spin glasses, giant Sudoku,
etc.) we wish to find a point in the intersection of two sets A and B where B is non-
convex but “divide and concur” works better than theory can explain. Let PA(x) and
RA(x) := 2PA(x)− x denote respectively the projector and reflector on a set A as shown
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Figure 5: Reflector (interior) and Projector (boundary) of a point external to an ellipse.

Figure 6: The first three iterates of (14) in Cinderella.

in Figure 5 where A is the boundary of the shaded ellipse. Then “divide and concur” is
the natural geometric iteration “reflect-reflect-average”:

xn+1 =→ xn +RA (RB(xn))

2
. (13)

Consider the simplest case of a line A of height α (all lines may be assumed horizontal)
and the unit circle B. With zn := (xn, yn) we obtain the explicit iteration

xn+1 := cos θn, yn+1 := yn + α− sin θn, (θn := argzn). (14)

For the infeasible case with α > 1 it is easy to see the iterates go to infinity vertically.
For the tangent α = 1 we provably converge to an infeasible point. For 0 < α < 1 the
pictures are lovely but proofs escape me and my collaborators. Spiraling is ubiquitous in
this case. Two representative Maple pictures follow:

For α = 0 we can prove convergence to one of the two points in A ∩ B if and only
if we do not start on the vertical axis, where we provably have chaos. The iteration
is illustrated in Figure 6 starting at (4.2,−0.51) with α = 0.94. Let me sketch how the
interactive geometry Cinderella25 leads one both to discovery and a proof in this equatorial
case. Interactive applets are easily made and the next two figures come from ones that
are stored on line at

A1. http://users.cs.dal.ca/∼jborwein/reflection.html; and

A2. http://users.cs.dal.ca/∼jborwein/expansion.html respectively.
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Figure 7: The behaviour of (14) for α = 0.95 (L) and α = 1 (R).

Figure 8: Discovery of the proof with α = 0.

Figure 8 illustrates the applet A1. at work: by dragging the trajectory (with N = 28)
one quickly discovers that

(i) as long as the iterate is outside the unit circle the next point is always closer to the
origin;

(ii) once inside the circle the iterate never leaves;

(iii) the angle now oscillates to zero and the trajectory hence converges to (1, 0).

All of this is quite easily made algebraic in the language of (14).
Figure 9 illustrates the applet A2. which takes up to 10, 000 starting points in the

rectangle {(x, y) : 0 ≤ x ≤ 1, |y − α‖ ≤ 1} coloured by distance from the vertical axis
with red on the axis and violet at x = 1, and produces the first hundred iterations in
gestalt. Thus, we see clearly but I cannot yet prove, that all points not on the y-axis
are swept into the feasible point (

√
1− α2, α). It also shows that to accurately record

the behaviour Cinderella’s double precision is inadequate and hence provides a fine if
unexpected starting point for a discussion of numerical analysis and instability.

25Available at http://www.cinderella.de.
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Figure 9: Gestalt of 400 third steps in Cinderella without (L) and with Maple data (R).

“A heavy warning used to be given [by lecturers] that pictures are not rigorous;
this has never had its bluff called and has permanently frightened its victims
into playing for safety. Some pictures, of course, are not rigorous, but I should
say most are (and I use them whenever possible myself).”—J. E. Littlewood,
(1885-1977)26

Á la Littlewood, I find it hard to persuade myself that the applet A2. does not
constitute a generic proof of what it displays in Figure 10.

We have also considered the analogous differential equation since asymptotic tech-
niques for such differential equations are better developed. We decided

x′(t) =
x(t)

r(t)
− x(t)r(t) :=

√
x(t)2 + y(t)2 ] (15)

y′(t) = α− y(t)

r(t)

was a reasonable counterpart to the Cartesian formulation of (14)—we have replaced the
difference xn+1 − xn by x′(t), etc.—as shown in Figure 11.

Now we have a whole other class of discoveries without explanations.
This is also an ideal problem to introduce early under-graduates to research as it

involves only school geometry notions and has many accessible extensions in two or three
dimensions. Much can be discovered and most of it will be both original and unproven.
Consider what happens when B is a line segment or a finite set rather than a line or
when A is a more general conic section. Corresponding algorithms, like “project-project-
average”, are representative of what was used to correct the Hubble telescope’s early
optical abberation problems.

26From p. 53 of the 1953 edition of Littlewood’s Miscellany and so said long before the current fine
graphic, geometric, and other visualization tools were available; also quoted in [18].
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Figure 10: Snapshots of 10, 000 points after 0, 2, 7, 13, 16, 21, and 27 steps in Cinderella.

Example VI: Knowledge without Proof

“All physicists and a good many quite respectable mathematicians are con-
temptuous about proof.” —G. H. Hardy (1877-1947)27

A few years ago Guillera found various Ramanujan-like identities for π, including three
most basic ones:

128

π2
=

∞∑
n=0

(−1)nr(n)5(13 + 180n+ 820n2)

(
1

32

)2n

(16)

8

π2
=

∞∑
n=0

(−1)nr(n)5(1 + 8n+ 20n2)

(
1

2

)2n

(17)

32

π3

?
=

∞∑
n=0

r(n)7(1 + 14n+ 76n2 + 168n3)

(
1

8

)2n

. (18)

where

r(n) =
(1/2)n
n!

=
1/2 · 3/2 · · · · · (2n− 1)/2

n!
=

Γ(n+ 1/2)√
π Γ(n+ 1)

.

As far as we can tell there are no analogous formulae for 1/πN with N ≥ 4. Guillera proved
(16) and (17) in tandem, by using very ingeniously the Wilf–Zeilberger algorithm for
formally proving hypergeometric-like identities [7, 4]. He ascribed the third to Gourevich,
who found it usinginteger relation methods [7, 4]. Formula (18) has been checked to

27In his famous Mathematician’s Apology of 1940. I can not resist noting that modern digital assistance
often makes more careful referencing unnecessary and sometimes even unhelpful!
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Figure 11: ODE solution and vector field for (15) with α = 0.97 in Cinderella.

extreme precision. It is certainly true but has no proof, nor does anyone have an inkling
of how to prove it especially as experiment suggests that it has no mate unlike (16) and
(17). My intuition tells me that if a proof exists it is most probably more a verification
than an explication and so I for one have stopped looking. I am happy just to know the
beautiful identity is true. It may be so for no good reason. It might conceivably have no
proof and be a very concrete Gödel statement.

Example VII. A Mathematical Physics Limit

“Anyone who is not shocked by quantum theory has not understood a single
word.”—Niels Bohr (1885–1962)

The following N -dimensional integrals arise independently in mathematical physics
in statistical mechanics of the Ising Model and as we discovered later in Quantum Field
Theory :

CN =
4

N !

∫ ∞
0

· · ·
∫ ∞

0

1(∑
.Nj=1(uj + 1/uj)

)2 du1

u1

· · · duN
uN

. (19)

We first showed that CN can be transformed to a 1-D integral:

CN =
2N

N !

∫ ∞
0

tKN
0 (t) dt (20)

where K0 is a modified Bessel function—Bessel functions which we met in Example I are
quite ubiquitous. We then computed 400-digit numerical values. This is impossible for
n ≥ 4 from (19) but accessible from (20) and a good algorithm for K0. Thence, we found
the following, now proven, results [3]:

C3 = L−3(2) :=
∑
n≥0

{
1

(3n+ 1)2
− 1

(3n+ 2)2

}
C4 = 14 ζ(3).
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We also observed that

C1024 = 0.630473503374386796122040192710878904354587 . . .

and that the limit as N → ∞ was the same to many digits. We then used the Inverse
Symbolic Calculator, the aforementioned online numerical constant recognition facility,
at

http://ddrive.cs.dal.ca/∼isc/portal
which returned

Output: Mixed constants, 2 with elementary transforms.

.6304735033743867 = sr(2)^2/exp(gamma)^2

from which we discovered that

C1024 ≈ lim
n→∞

Cn = 2e−2γ.

Here γ = 0.57721566490153 . . . is Euler’s constant and is perhaps the most basic constant
which is not yet proven irrational [15]. The limit discovery showed the Bessel function
representation to be fundamental. Likewise ζ(3) =

∑∞
n=1 1/n3 the value of the Riemann

zeta-function at 3, also called Apéry’s constant, was only proven irrational in 1978 and
the irrationality of ζ(5) remains unproven. The limit discovery, and its appearance in the
literature of Bessel functions, persuaded us the Bessel function representation (20) was
fundamental—not just technically useful—and indeed this is the form in which CN , for
odd N appears in quantum field theory [3].

Example VIII: Apéry’s formula

“Another thing I must point out is that you cannot prove a vague theory wrong.
. . . Also, if the process of computing the consequences is indefinite, then with
a little skill any experimental result can be made to look like the expected con-
sequences.”—Richard Feynman ( 1918–1988)

Margo Kondratieva found the following identity in 1890 papers of Markov [4]:

∞∑
n=0

1

(n+ a)3 =
1

4

∞∑
n=0

(−1)n (n!)6

( 2n+ 1)!

(
5 (n+ 1)2 + 6 (a− 1) (n+ 1) + 2 (a− 1)2)∏n

k=0 (a+ k)4 .(21)

Apéry’s 1978 formula

ζ(3) =
5

2

∞∑
k=1

(−1)k+1

k3
(
2k
k

) , (22)

which played a key role in his proof of its irrationality, is the case with a = 0.
Luckily, by adopting Giaquinto’s accounting of discovery we are still entitled to say

that Apéry discovered the formula (22) which now bears his name.
We observe that Maple ‘establishes’ identity (21) in the hypergeometric formula

−1

2
Ψ (2, a) = −1

2
Ψ (2, a)− ζ (3) +

5

4
4F3

(
1, 1, 1, 1
2, 2, 3

2

∣∣∣∣− 1

4

)
,

that is, it has reduced it to a form of (22). Like much of mathematics this example leads
to something whose computational consequences are very far from indefinite. Indeed,
it is the rigidity of much algorithmic mathematics that makes it so frequently the way
hardware or software errors such as the ‘Pentium Bug’ are first uncovered.
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3 Concluding Remarks

“We [Kaplansky and Halmos] share a philosophy about linear algebra: we think
basis-free, we write basis-free, but when the chips are down we close the office
door and compute with matrices like fury.”28

Theory and practice should be better comported!
The students of today live, as we do, in an information-rich, judgement-poor world in

which the explosion of information, and of tools, is not going to diminish. So we have to
teach judgement (not just concern with plagiarism) when it comes to using what is already
possible digitally. This means mastering the sorts of tools I have illustrated. Additionally,
it seems to me critical that we mesh our software design—and our teaching style more
generally—with our growing understanding of our cognitive strengths and limitations as
a species (as touched upon in the introduction). Judith Grabner has noted that a large
impetus for the development of modern rigor in mathematics came with the Napoleonic
introduction of regular courses: lectures and text books force a precision and a codification
that apprenticeship obviates.

As Dave Bailey noted to me recently:

“Moreover, there is a growing consensus that human minds are fundamentally
not very good at mathematics, and must be trained [17]. Given this fact,
the computer can be seen as a perfect complement to humans—we can intuit
but not reliably calculate or manipulate; computers are not yet very good at
intuition, but are great at calculations and manipulations.”

We also have to acknowledge that most of our classes will contain a very broad variety
of skills and interests (and relatively few future mathematicians). Properly balanced,
discovery and proof, assisted by good software, can live side-by-side and allow for the
ordinary and the talented to flourish in their own fashion. Impediments to the assimilation
of the tools I have illustrated are myriad as I am only too aware from recent my own
teaching experiences. These impediments include our own inertia and organizational and
technical bottlenecks (this is often from poor IT design - not so much from too few
dollars). The impediments certainly include under-prepared or misprepared colleagues
and the dearth of good material from which to teach a modern syllabus.

Finally, it will never be the case that quasi-inductive mathematics supplants proof.
We need to find a new equilibrium. Consider the following empirically-discovered identity

∞∑
n=−∞

sinc(n) sinc(n/3) sinc(n/5) · · · sinc(n/23) sinc(n/29) (23)

=

∫ ∞
−∞

sinc(x) sinc(x/3) sinc(x/5) · · · sinc(x/23) sinc(x/29) dx

where the denumerators range over the primes.
Provably, the following is true: The analogous “sum equals integral” identity remains

valid for more than the first 10, 176 primes but stops holding after some larger prime, and
thereafter the ‘sum minus integral” is positive but much less than one part in a googolplex
[2]. It is hard to imagine that inductive mathematics alone will ever be able to handle
such behaviour . Nor, for that matter, is it clear to me what it means psychologically to
digest equations which are false by a near infinitesimal amount.

28In Paul Halmos’ Celebrating 50 Years of Mathematics.
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That said, we are only beginning to scratch the surface of a very exciting set of tools
for the enrichment of mathematics, not to mention the growing power of formal proof
engines. I conclude with one of my favourite quotes from George Polya and Jacques
Hadamard [22]:

“This “quasi-experimental” approach to proof can help to de-emphasise a fo-
cus on rigor and formality for its own sake, and to instead support the view
expressed by Hadamard when he stated “The object of mathematical rigor is
to sanction and legitimize the conquests of intuition, and there was never any
other object for it.””

Unlike Frank Quinn perhaps, I believe that in the most complex modern cases cer-
tainty, in any reasonable sense, is unattainable through proof. I do believe that even then
quasi-inductive methods and experimentation can help us improve our level of certainty.
Like Reuben Hersh [16], I am happy to at least entertain some “non-traditional forms of
proof.” Never before have we had such a cornucopia of fine tools to help us develop and
improve our intuition. The challenge is to learn how to harness them, how to develop and
how to transmit the necessary theory and practice.

Acknowledgements I owe many people thanks for helping refine my thoughts on this
subject over many years. Four I must mention by name: my long-standing collaborators
Brailey Sims, Richard Crandall and David Bailey, and my business partner Ron Fitzgerald
from MathResources who has taught me a lot about balancing pragmatism and idealism
in educational technology—among other things. I also thank Henrik Sørenson whose
thought-provoking analysis gave birth to the title and the thrust of the paper, and my
student Chris Maitland who built most of the Cinderella applets.

References

[1] Avigad, J. (2008). “Computers in mathematical inquiry,” in The Philosophy of
Mathematical Practice, P. Mancuso ed., Oxford University Press, 302–316.

[2] Baillie R., Borwein D., and Borwein J. (2008). “Some sinc sums and integrals,”
American Math. Monthly, 115 (10), 888–901.

[3] Bailey, D. H., Borwein, J. M., Broadhurst, L. M., and Glasser, L. (2008) “Elliptic
integral representation of Bessel moments,” J. Phys. A: Mathematics & Theory, 41,
5203–5231.

[4] Bailey D., Borwein, J., Calkin N, Girgensohn R., Luke R. and Moll V. (2007).
Experimental Mathematics in Action, A K Peters Inc.

[5] Bailey, D. H., Borwein, J. M., and Crandall, R.E. (2009) “Advances in the theory of
box integrals,” preprint, March 2009. [D-drive Preprint 389].

[6] Borwein, J. M. (2005). “The SIAM 100 Digits Challenge”, Extended review in the
Mathematical Intelligencer, 27, 40–48. [D-drive preprint 285]

[7] Borwein, J. M. and Bailey D.H. (2008). Mathematics by Experiment: Plausible
Reasoning in the 21st Century, extended 2nd edition, A K Peters Inc.

[8] Borwein, J. M., Bailey D.H., and Girgensohn, R. (2004). Experimentation in
Mathematics: Computational Pahts to Discovery, A K Peters Inc.

21



[9] Borwein, J. M. and Devlin, K. (2009).The Computer as Crucible, A K Peters Inc.

[10] Brown, R. D. (2008). Are Science and Mathematics Socially Constructed? A
Mathematician Encounters Postmodern Interpretations of Science, World Scientific.

[11] de Villiers, M. (2004). “The Role and Function of Quasi-empirical Methods in
Mathematics,” Can J. Science, Math and Technology Educ. 4, 397–418.

[12] Franklin, L. R. (2005). “Exploratory Experiments,” Philosophy of Science, 72,
888–899.

[13] Giaquinto, M. (2007). Visual Thinking in Mathematics. An Epistemological Study,
Oxford University Press.

[14] Gregory, J. and Miller S. (1998) Science in public, Communication, culture and
credibility, Basic Books.

[15] Havel, J. (2003). Gamma: Exploring Euler’s Constant, Princeton University Press.

[16] Hersh, R. (1997). What is mathematics, really? Oxford University Press.

[17] Ifrah, G. (2000). The Universal History of Numbers, John Wiley and Sons.

[18] Inglis, M., and Mejia-Ramos, J.P. (2009). “The Effect of Authority on the
Persuasiveness of Mathematical Arguments,” preprint.

[19] Livio, M. (2009). Is God a Mathematician? Simon and Schuster.

[20] Lucas, S. K. (2009). “Approximations to π derived from integrals with nonnegative
integrands,” American Math. Monthly 116 (10), 166–172.

[21] Pinker, S. (2007). The Stuff of Thought: Language as a Window into Human
Nature, Allen Lane.

[22] Polya, G. (1981). Mathematical discovery: On Understanding, Learning, and
Teaching Problem Solving, (Combined Edition), New York, John Wiley & Sons.

[23] Regis, E. (1986). Who got Einstein’s Office? Addison-Wesley.

[24] Rice A. (1999). “What Makes a Great Mathematics Teacher?” American Math.
Monthly, 106 (6), 534–552.

[25] Sfard, A. (2009). “What’s all the fuss about gestures: A commmentary,” special
issue on Gestures and Multimodality in the Construction of Mathematical Meaning,
Educ. Stud. Math, 70, 191–200.

[26] Smail, D. L. (2008). On Deep History and the Brain, Caravan Books, University of
California Press.

[27] Sørenson, H. K. (2008). “What’s experimental about experimental mathematics?”
Preprint, September 2008.

[28] Yandell, B. (2002) The Honors Class, A K Peters Inc.

22



EXPLORATORY EXPERIMENTATION AND
COMPUTATION

DAVID H. BAILEY AND JONATHAN M. BORWEIN

Abstract. We believe the mathematical research community is
facing a great challenge to re-evaluate the role of proof in light of
recent developments. On one hand, the growing power of current
computer systems, of modern mathematical computing packages,
and of the growing capacity to data-mine on the Internet, has
provided marvelous resources to the research mathematician. On
the other hand, the enormous complexity of many modern capstone
results such as the Poincaré conjecture, Fermat’s last theorem, and
the classification of finite simple groups has raised questions as to
how we can better ensure the integrity of modern mathematics.
Yet as the need and prospects for inductive mathematics blossom,
the requirement to ensure the role of proof is properly founded
remains undiminished.

1. Exploratory Experimentation

The authors’ thesis—once controversial, but now a common-
place—is that computers can be a useful, even essential, aid
to mathematical research.—Jeff Shallit

Jeff Shallit wrote this in his recent review MR2427663 of [9]. As
we hope to make clear, Shallit was entirely right in that many, if not
most, research mathematicians now use the computer in a variety of
ways to draw pictures, inspect numerical data, manipulate expressions
symbolically, and run simulations. However, it seems to us that there
has not yet been substantial and intellectually rigorous progress in
the way mathematics is presented in research papers, textbooks and
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2 DAVID H. BAILEY AND JONATHAN M. BORWEIN

classroom instruction, or in how the mathematical discovery process is
organized.

1.1. Mathematicians are humans. We share with George Pólya
(1887-1985) the view [24, 2 p. 128] that while learned,

intuition comes to us much earlier and with much less outside
influence than formal arguments.

Pólya went on to reaffirm, nonetheless, that proof should certainly be
taught in school.

We turn to observations, many of which have been fleshed out in
coauthored books such Mathematics by Experiment [9], and Experi-
mental Mathematics in Action [3], where we have noted the changing
nature of mathematical knowledge and in consequence ask questions
such as “How do we teach what and why to students?”, “How do
we come to believe and trust pieces of mathematics?”, and “Why do
we wish to prove things?” An answer to the last question is “That
depends.” Sometimes we wish insight and sometimes, especially with
subsidiary results, we are more than happy with a certificate. The
computer has significant capacities to assist with both.

Smail [26, p. 113] writes:

the large human brain evolved over the past 1.7 million years
to allow individuals to negotiate the growing complexities
posed by human social living.

As a result, humans find various modes of argument more palatable
than others, and are more prone to make certain kinds of errors than
others. Likewise, the well-known evolutionary psychologist Steve Pinker
observes that language [23, p. 83] is founded on

. . . the ethereal notions of space, time, causation, possession,
and goals that appear to make up a language of thought.

This remains so within mathematics. The computer offers scaf-
folding both to enhance mathematical reasoning, as with the recent
computation of the Lie group E8, see http://www.aimath.org/E8/

computerdetails.html, and to restrain mathematical error.

1.2. Experimental mathodology. Justice Potter Stewart’s famous
1964 comment, “I know it when I see it” is the quote with which The
Computer as Crucible [12] starts. A bit less informally, by experimental
mathematics we intend [9]:

(a) Gaining insight and intuition;
(b) Visualizing math principles;
(c) Discovering new relationships;
(d) Testing and especially falsifying conjectures;
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(e) Exploring a possible result to see if it merits formal proof;
(f) Suggesting approaches for formal proof;
(g) Computing replacing lengthy hand derivations;
(h) Confirming analytically derived results.

Of these items (a) through (e) play a central role, and (f) also plays
a significant role for us, but connotes computer-assisted or computer-
directed proof and thus is quite distinct from formal proof as the topic
of a special issue of these Notices in December 2008; see, e.g., [19].

1.2.1. Digital integrity, I. For us (g) has become ubiquitous, and we
have found (h) to be particularly effective in ensuring the integrity of
published mathematics. For example, we frequently check and correct
identities in mathematical manuscripts by computing particular values
on the LHS and RHS to high precision and comparing results—and
then if necessary use software to repair defects.

As a first example, in a current study of “character sums” we wished
to use the following result derived in [13]:
∞∑

m=1

∞∑
n=1

(−1)m+n−1

(2m− 1)(m+ n− 1)3
(1.1)

?
= 4 Li4

(
1

2

)
− 51

2880
π4 − 1

6
π2 log2(2) +

1

6
log4(2) +

7

2
log(2)ζ(3).

Here Li4(1/2) is a polylogarithmic value. However, a subsequent com-
putation to check results disclosed that whereas the LHS evaluates to
−0.872929289 . . ., the RHS evaluates to 2.509330815 . . .. Puzzled, we
computed the sum, as well as each of the terms on the RHS (sans
their coefficients), to 500-digit precision, then applied the “PSLQ” al-
gorithm, which searches for integer relations among a set of constants
[15]. PSLQ quickly found the following:
∞∑

m=1

∞∑
n=1

(−1)m+n−1

(2m− 1)(m+ n− 1)3
(1.2)

= 4 Li4

(
1

2

)
− 151

2880
π4 − 1

6
π2 log2(2) +

1

6
log4(2) +

7

2
log(2)ζ(3).

In other words, in the process of transcribing (1.1) into the original
manuscript, “151” had become “51.” It is quite possible that this error
would have gone undetected and uncorrected had we not been able to
computationally check and correct such results. This may not always
matter, but it can be crucial.

With a current Research Assistant, Alex Kaiser at Berkeley, we have
started to design software to refine and automate this process and
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to run it before submission of any equation-rich paper. This semi-
automated integrity checking becomes pressing when verifiable output
from a symbolic manipulation might be the length of a Salinger novel.
For instance, recently while studying expected radii of points in a hy-
percube [11], it was necessary to show the existence of a “closed form”
for

J(t) :=

∫
[0,1]2

log(t+ x2 + y2)

(1 + x2)(1 + y2)
dx dy. (1.3)

The computer verification of [11, Thm. 5.1] quickly returned a 100000-
character “answer” that could be numerically validated very rapidly to
hundreds of places. A highly interactive process stunningly reduced a
basic instance of this expression to the concise formula

J(2) =
π2

8
log 2− 7

48
ζ(3) +

11

24
πCl2

(π
6

)
− 29

24
πCl2

(
5π

6

)
, (1.4)

where Cl2 is the Clausen function Cl2(θ) :=
∑

n≥1 sin(nθ)/n2 (Cl2 is the
simplest non-elementary Fourier series). Automating such reductions
will require a sophisticated simplification scheme with a very large and
extensible knowledge base.

1.3. Discovering a truth. Giaquinto’s [17, p. 50] attractive encap-
sulation

In short, discovering a truth is coming to believe it in an
independent, reliable, and rational way.

has the satisfactory consequence that a student can legitimately dis-
cover things already “known” to the teacher. Nor is it necessary to
demand that each dissertation be absolutely original—only that it be
independently discovered. For instance, a differential equation thesis is
no less meritorious if the main results are subsequently found to have
been accepted, unbeknown to the student, in a control theory journal
a month earlier—provided they were independently discovered. Near-
simultaneous independent discovery has occurred frequently in science,
and such instances are likely to occur more and more frequently as the
earth’s “new nervous system” (Hillary Clinton’s term in a recent policy
address) continues to pervade research.

Despite the conventional identification of mathematics with deduc-
tive reasoning, Kurt Gödel (1906-1978) in his 1951 Gibbs Lecture said:

If mathematics describes an objective world just like physics,
there is no reason why inductive methods should not be ap-
plied in mathematics just the same as in physics.
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He held this view until the end of his life despite—or perhaps because
of—the epochal deductive achievement of his incompleteness results.

Also, we emphasize that many great mathematicians from Archimedes
and Galileo—who reputedly said “All truths are easy to understand
once they are discovered; the point is to discover them.”—to Gauss,
Poincaré, and Carleson have emphasized how much it helps to “know”
the answer beforehand. Two millennia ago, Archimedes wrote, in the
Introduction to his long-lost and recently reconstituted Method manu-
script,

For it is easier to supply the proof when we have previously
acquired, by the method, some knowledge of the questions
than it is to find it without any previous knowledge.

Archimedes’ Method can be thought of as an uber-precursor to today’s
interactive geometry software, with the caveat that, for example, Cin-
derella actually does provide proof certificates for much of Euclidean
geometry.

As 2006 Abel Prize winner Lennart Carleson describes in his 1966
ICM speech on his positive resolution of Luzin’s 1913 conjecture (that
the Fourier series of square-summable functions converge pointwise a.e.
to the function), after many years of seeking a counterexample, he
finally decided none could exist. He expressed the importance of this
confidence as follows:

The most important aspect in solving a mathematical prob-
lem is the conviction of what is the true result. Then it took
2 or 3 years using the techniques that had been developed
during the past 20 years or so.

1.4. Digital Assistance. By digital assistance, we mean the use of:

(a) Integrated mathematical software such as Maple and Mathemat-
ica, or indeed Matlab and their open source variants.

(b) Specialized packages such as CPLEX, PARI, SnapPea, Cinderella
and MAGMA.

(c) General-purpose programming languages such as C, C++, and
Fortran-2000.
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(d) Internet-based applications such as: Sloane’s Encyclopedia of In-
teger Sequences, the Inverse Symbolic Calculator,1 Fractal Ex-
plorer, Jeff Weeks’ Topological Games, or Euclid in Java.2

(e) Internet databases and facilities including Google, MathSciNet,
arXiv, Wikipedia, MathWorld, MacTutor, Amazon, Amazon
Kindle, and many more that are not always so viewed.

All entail data-mining in various forms. The capacity to consult the
Oxford dictionary and Wikipedia instantly within Kindle dramatically
changes the nature of the reading process. Franklin [16] argues that
Steinle’s “exploratory experimentation” facilitated by “widening tech-
nology” and “wide instrumentation,” as routinely done in fields such
as pharmacology, astrophysics, medicine, and biotechnology, is lead-
ing to a reassessment of what legitimates experiment; in that a “local
model” is not now a prerequisite. Thus, a pharmaceutical company
can rapidly examine and discard tens of thousands of potentially ac-
tive agents, and then focus resources on the ones that survive, rather
than needing to determine in advance which are likely to work well.
Similarly, aeronautical engineers can, by means of computer simula-
tions, discard thousands of potential designs, and submit only the best
prospects to full-fledged development and testing.

Hendrik Sørenson [27] concisely asserts that experimental mathe-
matics —as defined above—is following similar tracks with software
such as Mathematica, Maple and Matlab playing the role of wide
instrumentation.

These aspects of exploratory experimentation and wide in-

strumentation originate from the philosophy of (natural) sci-

ence and have not been much developed in the context of

experimental mathematics. However, I claim that e.g. the

importance of wide instrumentation for an exploratory ap-

proach to experiments that includes concept formation also

pertain to mathematics.

In consequence, boundaries between mathematics and the natural sci-
ences and between inductive and deductive reasoning are blurred and
becoming more so. (See also [2].) This convergence also promises some

1Most of the functionality of the ISC, which is now housed at http:

//carma-lx1.newcastle.edu.au:8087, is now built into the “identify” func-
tion of Maple starting with version 9.5. For example, the Maple command
identify(4.45033263602792) returns

√
3 + e, meaning that the decimal value

given is simply approximated by
√

3 + e.
2A cross-section of Internet-based mathematical resources is available at

http://ddrive.cs.dal.ca/~isc/portal/ and http://www.experimentalmath.

info.
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relief from the frustration many mathematicians experience when at-
tempting to describe their proposed methodology on grant applica-
tions to the satisfaction of traditional hard scientists. We leave unan-
swered the philosophically-vexing if mathematically-minor question as
to whether genuine mathematical experiments (as discussed in [9]) truly
exist, even if one embraces a fully idealist notion of mathematical ex-
istence. It surely seems to us that they do.

2. Pi, Partitions and Primes

The present authors cannot now imagine doing mathematics without
a computer nearby. For example, characteristic and minimal polynomi-
als, which were entirely abstract for us as students, now are members
of a rapidly growing box of concrete symbolic tools. One’s eyes may
glaze over trying to determine structure in an infinite family of matrices
including

M4 =


2 −21 63 −105

1 −12 36 −55

1 −8 20 −25

1 −5 9 −8

 M6 =



2 −33 165 −495 990 −1386

1 −20 100 −285 540 −714

1 −16 72 −177 288 −336

1 −13 53 −112 148 −140

1 −10 36 −66 70 −49

1 −7 20 −30 25 −12


but a command-line instruction in a computer algebra system will re-
veal that both M3

4 − 3M4 − 2I = 0 and M3
6 − 3M6 − 2I = 0. Likewise,

more and more matrix manipulations are profitably, even necessarily,
viewed graphically. As is now well known in numerical linear algebra,
graphical tools are essential when trying to discern qualitative infor-
mation such as the block structure of very large matrices. See, for
instance, Figure 1.

Equally accessible are many matrix decompositions, the use of Groeb-
ner bases, Risch’s decision algorithm (to decide when an elementary
function has an elementary indefinite integral), graph and group cat-
alogues, and others. Many algorithmic components of a computer al-
gebra system are today extraordinarily effective compared with two
decades ago, when they were more like toys. This is equally true of
extreme-precision calculation—a prerequisite for much of our own work
[7, 10, 8]. As we will illustrate, during the three decades that we have
seriously tried to integrate computational experiments into research, we
have experienced at least 12 Moore’s law doublings of computer power
and memory capacity [9, 12], which when combined with the utiliza-
tion of highly parallel clusters (with thousands of processing cores) and
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Figure 1. Plots of a 25 × 25 Hilbert matrix (L) and a
matrix with 50% sparsity and random [0, 1] entries (R).

fiber-optic networking, has resulted in six to seven orders of magnitude
speedup for many operations.

2.1. The partition function. Consider the number of additive par-
titions, p(n), of a natural number, where we ignore order and zeroes.
For instance, 5 = 4+1 = 3+2 = 3+1+1 = 2+2+1 = 2+1+1+1 =
1 + 1 + 1 + 1 + 1, so p(5) = 7. The ordinary generating function (2.1)
discovered by Euler is

∞∑
n=0

p(n)qn =
∞∏
k=1

(
1− qk

)−1
. (2.1)

(This can be proven by using the geometric formula for 1/(1 − qk) to
expand each term and observing how powers of qn occur.)

The famous computation by MacMahon of p(200) = 3972999029388
at the beginning of the 20th century, done symbolically and entirely
naively from (2.1) on a reasonable laptop, took 20 minutes in 1991
but only 0.17 seconds today, while the many times more demanding
computation

p(2000) = 4720819175619413888601432406799959512200344166

took just two minutes in 2009. Moreover, in December 2008, Crandall
was able to calculate p(109) in three seconds on his laptop, using the
Hardy-Ramanujan-Rademacher ‘finite’ series for p(n) along with FFT
methods. Using these techniques, Crandall was also able to calculate
the probable primes p(1000046356) and p(1000007396), each of which
has roughly 35000 decimal digits.
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Such results make one wonder when easy access to computation dis-
courages innovation: Would Hardy and Ramanujan have still discov-
ered their marvelous formula for p(n) if they had powerful computers
at hand?

2.2. Quartic algorithm for π. Likewise, the record for computation
of π has gone from 29.37 million decimal digits in 1986, to over 2.7
trillion digits in 2010. Since the algorithm below was used as part of
each computation, it is interesting to compare the performance in each
case: Set a0 := 6− 4

√
2 and y0 :=

√
2− 1, then iterate

yk+1 =
1− (1− y4k)1/4

1 + (1− y4k)1/4
,

ak+1 = ak(1 + yk+1)
4 − 22k+3yk+1(1 + yk+1 + y2k+1). (2.2)

Then ak converges quartically to 1/π—each iteration approximately
quadruples the number of correct digits. Twenty-one full-precision it-
erations of (2.2), which was discovered on a 16K Radio Shack portable
in 1983, produce an algebraic number that coincides with π to well
more than six trillion places. This scheme and the 1976 Salamin–Brent
scheme [9, Ch. 3] have been employed frequently over the past quarter
century. Here is a highly abbreviated chronology:

• 1986: Computing 29.4 million digits required 28 hours on one
CPU of the new Cray-2 at NASA Ames Research Center, us-
ing (2.2). Confirmation using another algorithm took 40 hours.
This computation uncovered hardware and software errors on
the Cray-2. Success required developing faster FFTs [9, Ch. 3].
• Jan. 2009: Computing 1.649 trillion digits using (2.2) required

73.5 hours on 1024 cores (and 6.348 Tbyte memory) of a Appro
Xtreme-X3 system. This was checked with a computation via
the Salamin-Brent scheme that took 64.2 hours and 6.732 Tbyte
of main memory. The two computations differed only in the last
139 places.
• Apr. 2009: Takahashi increased his record to an amazing 2.576

trillion digits.
• Dec. 2009: Bellard computed nearly 2.7 trillion decimal digits

of π (first in binary), using the Chudnovsky series given below
in (2.9). This took 131 days, but he only used a single four-core
workstation with lots of disk storage and even more human in-
telligence! Full details of these feats are available at http://en.
wikipedia.org/wiki/Chronology_of_computation_of_pi.



10 DAVID H. BAILEY AND JONATHAN M. BORWEIN

1975 1980 1985 1990 1995 2000 2005 2010

107

108

109

1010

1011

1012

Figure 2. Plot of π calculations, in digits (dots), com-
pared with the long-term slope of Moore’s Law (line).

Daniel Shanks, who in 1961 computed π to over 100,000 digits, once
told Phil Davis that a billion-digit computation would be “forever im-
possible.” But both Kanada and the Chudnovskys achieved that in
1989. Similarly, the intuitionists Brouwer and Heyting asserted the
“impossibility” of ever knowing whether the sequence 0123456789 ap-
pears in the decimal expansion of π, yet it was found in 1997 by Kanada,
beginning at position 17387594880. As late as 1989, Roger Penrose ven-
tured in the first edition of his book The Emperor’s New Mind that
we likely will never know if a string of ten consecutive sevens occurs in
the decimal expansion of π. This string was found in 1997 by Kanada,
beginning at position 22869046249.

Figure 2— shows the progress of π calculations since 1970, superim-
posed with a line that charts the long-term trend of Moore’s Law. It is
worth noting that whereas progress in computing π exceeded Moore’s
Law in the 1990s, it has lagged Moore’s Law in the past decade. This
may be due in part to the fact that π programs can no longer em-
ploy system-wide fast Fourier transforms for multiplication (since most
state-of-the-art supercomputers have insufficient network bandwidth),
and so less-efficient hybrid schemes must be used instead.

2.2.1. Digital integrity, II. There are many possible sources of errors
in these and other large-scale computations:

• The underlying formulas used might conceivably be in error.
• Computer programs implementing these algorithms, which em-

ploy sophisticated algorithms such as fast Fourier transforms
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to accelerate multiplication, are prone to human programming
errors.
• These computations usually are performed on highly parallel

computer systems, which require error-prone programming con-
structs to control parallel processing.
• Hardware errors may occur—this was a factor in the 1986 com-

putation of π, as noted above.

So why would anyone believe the results of such calculations? The
answer is that such calculations are always double-checked with an
independent calculation done using some other algorithm, sometimes
in more than one way. For instance, Kanada’s 2002 computation of π
to 1.3 trillion decimal digits involved first computing slightly over one
trillion hexadecimal (base-16) digits. He found that the 20 hex digits
of π beginning at position 1012 + 1 are B4466E8D21 5388C4E014.

Kanada then calculated these hex digits using the “BBP” algorithm
[6]. The BBP algorithm for π is based on the formula

π =
∞∑
i=0

1

16i

(
4

8i+ 1
− 2

8i+ 4
− 1

8i+ 5
− 1

8i+ 6

)
, (2.3)

which was discovered using the “PSLQ” integer relation algorithm [15].
Integer relation methods find or exclude potential rational relations
between vectors of real numbers. At the start of this millennium, they
were named one of the top ten algorithms of the twentieth century by
Computing in Science and Engineering. The most effective is Helaman
Ferguson’s PSLQ algorithm [9, 3].

Eventually PSLQ produced the formula

π = 4 2F1

(
1, 1

4
5
4

∣∣∣∣− 1

4

)
+ 2 tan−1

(
1

2

)
− log 5, (2.4)

where 2F1

(
1, 1

4
5
4

∣∣∣∣− 1
4

)
= 0.955933837 . . . is a Gaussian hypergeomet-

ric function.
From (2.4), the series (2.3) almost immediately follows. The BBP

algorithm, which is based on (2.3), permits one to calculate binary
or hexadecimal digits of π beginning at an arbitrary starting point,
without needing to calculate any of the preceding digits, by means of
a simple scheme that does not require very high precision arithmetic.

The result of the BBP calculation was B4466E8D21 5388C4E014.
Needless to say, in spite of the many potential sources of error in both
computations, the final results dramatically agree, thus confirming (in
a convincing but heuristic sense) that both results are almost certainly
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correct. Although one cannot rigorously assign a “probability” to this
event, note that the chances that two random strings of 20 hex digits
perfectly agree is one in 1620 ≈ 1.2089× 1024.

This raises the following question: What is more securely established,
the assertion that the hex digits of π in positions 1012 + 1 through
1012 + 20 are B4466E8D21 5388C4E014, or the final result of some very
difficult work of mathematics that required hundreds or thousands of
pages, that relied on many results quoted from other sources, and that
(as is frequently the case) only a relative handful of mathematicians
besides the author can or have carefully read in detail?

2.3. Euler’s totient function φ. As another measure of what changes
over time and what doesn’t, consider two conjectures regarding φ(n),
which counts the number of positive numbers less than and relatively
prime to n:

2.3.1. Giuga’s conjecture (1950). An integer n > 1, is a prime if
and only if Gn :=

∑n−1
k=1 k

n−1 ≡ n− 1 mod n.
Counterexamples are necessarily Carmichael numbers—rare birds

only proven infinite in 1994—and much more. In [10, pp. 227] we
exploited the fact that if a number n = p1 · · · pm with m > 1 prime
factors pi is a counterexample to Giuga’s conjecture (that is, satisfies
sn ≡ n− 1 mod n), then for i 6= j we have pi 6= pj,

m∑
i=1

1

pi
> 1,

and the pi form a normal sequence: pi 6≡ 1 mod pj for i 6= j. Thus,
the presence of ‘3’ excludes 7, 13, 19, 31, 37, . . . , and of ‘5’ excludes
11, 31, 41, . . ..

This theorem yielded enough structure, using some predictive ex-
perimentally discovered heuristics, to build an efficient algorithm to
show—over several months in 1995—that any counterexample had at
least 3459 prime factors and so exceeded 1013886, extended a few years
later to 1014164 in a five-day desktop computation. The heuristic is
self-validating every time that the programme runs successfully. But
this method necessarily fails after 8135 primes; someday we hope to
exhaust its use.

While writing this piece, one of us was able to obtain almost as good
a bound of 3050 primes in under 110 minutes on a laptop computer,
and a bound of 3486 primes and 14,000 digits in less than 14 hours;
this was extended to 3,678 primes and 17,168 digits in 93 CPU-hours
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on a Macintosh Pro, using Maple rather than C++, which is often
orders-of-magnitude faster but requires much more arduous coding.

An equally hard related conjecture for which much less progress can
be recorded is:

2.3.2. Lehmer’s conjecture (1932). φ(n)
∣∣(n− 1) if and only if n is

prime. He called this “as hard as the existence of odd perfect numbers.”
Again, prime factors of counterexamples form a normal sequence, but

now there is little extra structure. In a 1997 Simon Fraser M.Sc. thesis,
Erick Wong verified the conjecture for 14 primes, using normality and
a mix of PARI, C++ and Maple to press the bounds of the ‘curse
of exponentiality.’ This very clever computation subsumed the entire
scattered literature in one computation but could only extend the prior
bound from 13 primes to 14.

For Lehmer’s related 1932 question: when does φ(n) | (n+1)?, Wong
showed there are eight solutions with no more than seven factors (six-
factor solutions are due to Lehmer). Let

Lm :=
m−1∏
k=0

Fk

with Fn := 22n + 1 denoting the Fermat primes. The solutions are

2,L1,L2, . . . ,L5,

and the rogue pair 4919055 and 6992962672132095, but analyzing just
eight factors seems out of sight. Thus, in 70 years the computer only
allowed the exclusion bound to grow by one prime.

In 1932 Lehmer couldn’t factor 6992962672132097. If it had been
prime, a ninth solution would exist: since φ(n)|(n + 1) with n + 2
prime implies that N := n(n + 2) satisfies φ(N)|(N + 1). We say
couldn’t because the number is divisible by 73; which Lehmer—a father
of much factorization literature–could certainly have discovered had he
anticipated a small factor. Today discovering that

6992962672132097 = 73 · 95794009207289

is nearly instantaneous, while fully resolving Lehmer’s original question
remains as hard as ever.
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2.4. Inverse computation and Apéry-like series. Three intriguing
formulae for the Riemann zeta function are

(a) ζ(2) = 3
∞∑
k=1

1

k2
(
2k
k

) , (b) ζ(3) =
5

2

∞∑
k=1

(−1)k+1

k3
(
2k
k

) , (2.5)

(c) ζ(4) =
36

17

∞∑
k=1

1

k4
(
2k
k

) .
Binomial identity (2.5)(a) has been known for two centuries, while
(b)—exploited by Apéry in his 1978 proof of the irrationality of ζ(3)—
was discovered as early as 1890 by Markov, and (c) was noted by
Comtet [3].

Using integer relation algorithms, bootstrapping, and the “Pade”
function (Mathematica and Maple both produce rational approxima-
tions well), in 1996 David Bradley and one of us [3, 10] found the
following unanticipated generating function for ζ(4n+ 3):

∞∑
k=0

ζ(4k + 3)x4k =
5

2

∞∑
k=1

(−1)k+1

k3
(
2k
k

)
(1− x4/k4)

k−1∏
m=1

(
1 + 4x4/m4

1− x4/m4

)
. (2.6)

Note that this formula permits one to read off an infinity of formulas
for ζ(4n+3), n > 0, beginning with (2.5)(b), by comparing coefficients
of x4k on the LHS and the RHS.

A decade later, following a quite analogous but much more deliberate
experimental procedure, as detailed in [3], we were able to discover a
similar general formula for ζ(2n+2) that is pleasingly parallel to (2.6):

∞∑
k=0

ζ(2k + 2)x2k = 3
∞∑
k=1

1

k2
(
2k
k

)
(1− x2/k2)

k−1∏
m=1

(
1− 4x2/m2

1− x2/m2

)
. (2.7)

As with (2.6), one can now read off an infinity of formulas, beginning
with (2.5)(a). In 1996, the authors could reduce (2.6) to a finite form
that they could not prove, but Almquist and Granville did a year later.
A decade later, the Wilf-Zeilberger algorithm [28, 22]—for which the
inventors were awarded the Steele Prize—directly (as implemented in
Maple) certified (2.7) [9, 3]. In other words, (2.7) was both discovered
and proven by computer.

We found a comparable generating function for ζ(2n + 4), giving
(2.5) (c) when x = 0, but one for ζ(4n+ 1) still eludes us.

2.5. Reciprocal series for π. Truly novel series for 1/π, based on
elliptic integrals, were discovered by Ramanujan around 1910 [3, 9, 29].
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One is:

1

π
=

2
√

2

9801

∞∑
k=0

(4k)! (1103 + 26390k)

(k!)43964k
. (2.8)

Each term of (2.8) adds eight correct digits. Gosper used (2.8) for the
computation of a then-record 17 million digits of π in 1985—thereby
completing the first proof of (2.8) [9, Ch. 3]. Shortly thereafter, David
and Gregory Chudnovsky found the following variant, which lies in the
quadratic number field Q(

√
−163) rather than Q(

√
58):

1

π
= 12

∞∑
k=0

(−1)k (6k)! (13591409 + 545140134k)

(3k)! (k!)3 6403203k+3/2
. (2.9)

Each term of (2.9) adds 14 correct digits. The brothers used this for-
mula several times, culminating in a 1994 calculation of π to over four
billion decimal digits. Their remarkable story was told in a prizewin-
ning New Yorker article [25]. Remarkably, as we already noted earlier,
(2.9) was used again in late 2009 for the current record computation of
π. In consequence, Fabrice Bellard has provided access to two trillion-
digit integers whose ratio is bizarrely close to π.

2.5.1. Wilf-Zeilberger at work. A few years ago Jésus Guillera found
various Ramanujan-like identities for π, using integer relation methods.
The three most basic—and entirely rational—identities are:

4

π2
=

∞∑
n=0

(−1)nr(n)5(13 + 180n+ 820n2)

(
1

32

)2n+1

(2.10)

2

π2
=

∞∑
n=0

(−1)nr(n)5(1 + 8n+ 20n2)

(
1

2

)2n+1

(2.11)

4

π3

?
=

∞∑
n=0

r(n)7(1 + 14n+ 76n2 + 168n3)

(
1

8

)2n+1

, (2.12)

where r(n) := (1/2 · 3/2 · · · · · (2n− 1)/2)/n! .
Guillera proved (2.10) and (2.11) in tandem, by very ingeniously

using the Wilf-Zeilberger algorithm [28, 22] for formally proving hyper-
geometric-like identities [9, 3, 18, 29]. No other proof is known, and
there seem to be no like formulae for 1/πN with N ≥ 4. The third,
(2.12), is almost certainly true. Guillera ascribes (2.12) to Gourevich,
who used integer relation methods to find it.

We were able to “discover” (2.12) using 30-digit arithmetic, and we
checked it to 500 digits in 10 seconds, to 1200 digits in 6.25 minutes, and
to 1500 digits in 25 minutes, all with naive command-line instructions
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in Maple. But it has no proof, nor does anyone have an inkling of how
to prove it; especially, as experiment suggests, since it has no ‘mate’
in analogy to (2.10) and (2.11) [3]. Our intuition is that if a proof
exists, it is more a verification than an explication and so we stopped
looking. We are happy just to “know” that the beautiful identity is
true (although it would be more remarkable were it eventually to fail).
It may be true for no good reason—it might just have no proof and be
a very concrete Gödel-like statement.

In 2008 Guillera [18] produced another lovely pair of third-millennium
identities—discovered with integer relation methods and proved with
creative telescoping—this time for π2 rather than its reciprocal. They
are

∞∑
n=0

1

22n

(
x+ 1

2

)3
n

(x+ 1)3n
(6(n+ x) + 1) = 8x

∞∑
n=0

(
1
2

)2
n

(x+ 1)2n
, (2.13)

and
∞∑
n=0

1

26n

(
x+ 1

2

)3
n

(x+ 1)3n
(42(n+ x) + 5) = 32x

∞∑
n=0

(
x+ 1

2

)2
n

(2x+ 1)2n
. (2.14)

Here (a)n = a(a+ 1) · ·(a+ n− 1) is the rising factorial. Substituting
x = 1/2 in (2.13) and (2.14), he obtained respectively the formulae

∞∑
n=0

1

22n

(1)3n(
3
2

)3
n

(3n+ 2) =
π2

4
,

∞∑
n=0

1

26n

(1)3n(
3
2

)3
n

(21n+ 13) = 4
π2

3
.

3. Formal Verification of Proof

In 1611, Kepler described the stacking of equal-sized spheres into
the familiar arrangement we see for oranges in the grocery store. He
asserted that this packing is the tightest possible. This assertion is now
known as the Kepler conjecture, and has persisted for centuries without
rigorous proof. Hilbert implicitly included the irregular case of the
Kepler conjecture in problem 18 of his famous list of unsolved problems
in 1900: whether there exist non-regular space-filling polyhedra? the
regular case having been disposed of by Gauss in 1831.

In 1994, Thomas Hales, now at the University of Pittsburgh, pro-
posed a five-step program that would result in a proof: (a) treat maps
that only have triangular faces; (b) show that the face-centered cubic
and hexagonal-close packings are local maxima in the strong sense that
they have a higher score than any Delaunay star with the same graph;
(c) treat maps that contain only triangular and quadrilateral faces (ex-
cept the pentagonal prism); (d) treat maps that contain something
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other than a triangular or quadrilateral face; and (e) treat pentagonal
prisms.

In 1998, Hales announced that the program was now complete, with
Samuel Ferguson (son of mathematician-sculptor Helaman Ferguson)
completing the crucial fifth step. This project involved extensive com-
putation, using an interval arithmetic package, a graph generator, and
Mathematica. The computer files containing the source code and com-
putational results occupy more than three Gbytes of disk space. Ad-
ditional details, including papers, are available at http://www.math.

pitt.edu/~thales/kepler98. For a mixture of reasons—some more
defensible than others—the Annals of Mathematics initially decided to
publish Hales’ paper with a cautionary note, but this disclaimer was
deleted before final publication.

Hales [19] has now embarked on a multi-year program to certify the
proof by means of computer-based formal methods, a project he has
named the “Flyspeck” project. As these techniques become better
understood, we can envision a large number of mathematical results
eventually being confirmed by computer, as instanced by other articles
in the same issue of the Notices as Hales’ article.

4. Limits of Computation

A remarkable example is the following:∫ ∞
0

cos(2x)
∞∏
n=1

cos(x/n) dx = (4.1)

0.392699081698724154807830422909937860524645434187231595926 . . .

The computation of this integral to high precision can be performed
using a scheme described in [5]. When we first did this computation,
we thought that the result was π/8, but upon careful checking with the
numerical value

0.392699081698724154807830422909937860524646174921888227621 . . . ,

it is clear that the two values disagree beginning with the 43rd digit!
Richard Crandall [14, §7.3] later explained this mystery. Via a physi-

cally motivated analysis of running out of fuel random walks, he showed
that π/8 is given by the following very rapidly convergent series expan-
sion, of which formula (4.1) above is merely the first term:

π

8
=

∞∑
m=0

∫ ∞
0

cos[2(2m+ 1)x]
∞∏
n=1

cos(x/n) dx. (4.2)

Two terms of the series above suffice for 500-digit agreement.
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As a final sobering example, we offer the following “sophomore’s
dream” identity

σ29 :=
∞∑

n=−∞

sinc(n) sinc(n/3) sinc(n/5) · · · sinc(n/23) sinc(n/29)

=

∫ ∞
−∞

sinc(x) sinc(x/3) sinc(x/5) · · · sinc(x/23) sinc(x/29) dx,

(4.3)

where the denominators range over the odd primes, which was first
discovered empirically. More generally, consider

σp :=
∞∑

n=−∞

sinc(n) sinc(n/3) sinc(n/5) sinc(n/7) · · · sinc(n/p)

?
=

∫ ∞
−∞

sinc(x) sinc(x/3) sinc(x/5) sinc(x/7) · · · sinc(x/p) dx.

(4.4)

Provably, the following is true: The “sum equals integral” identity,
for σp remains valid at least for p among the first 10176 primes; but
stops holding after some larger prime, and thereafter the “sum less the
integral” is strictly positive, but they always differ by much less than
one part in a googolplex = 10100. An even stronger estimate is possible
assuming the Generalized Riemann Hypothesis (see [14, §7] and [7]).

5. Concluding Remarks

The central issues of how to view experimentally discovered results
have been discussed before. In 1993, Arthur Jaffe and Frank Quinn
warned of the proliferation of not-fully-rigorous mathematical results
and proposed a framework for a “healthy and positive” role for “spec-
ulative” mathematics [20]. Numerous well-known mathematicians re-
sponded [1]. Morris Hirsch, for instance, countered that even Gauss
published incomplete proofs, and the 15,000 combined pages of the
proof of the classification of finite groups raises questions as to when
we should certify a result. He suggested that we attach a label to each
proof – e.g., “computer-aided,” “mass collaboration,” “constructive,”
etc. Saunders Mac Lane quipped that “we are not saved by faith alone,
but by faith and works,” meaning that we need both intuitive work and
precision.
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At the same time, computational tools now offer remarkable facilities
to confirm analytically established results, as in the tools in develop-
ment to check identities in equation-rich manuscripts, and in Hales’
project to establish the Kepler conjecture by formal methods.

The flood of information and tools in our information-soaked world is
unlikely to abate. We have to learn and teach judgment when it comes
to using what is possible digitally. This means mastering the sorts of
techniques we have illustrated and having some idea why a software
system does what it does. It requires knowing when a computation
is or can—in principle or practice—be made into a rigorous proof and
when it is only compelling evidence, or is entirely misleading. For
instance, even the best commercial linear programming packages of
the sort used by Hales will not certify any solution though the codes
are almost assuredly correct. It requires rearranging hierarchies of what
we view as hard and as easy.

It also requires developing a curriculum that carefully teaches exper-
imental computer-assisted mathematics. Some efforts along this line
are already underway by individuals including Marc Chamberland at
Grinnell (http://www.math.grin.edu/~chamberl/courses/MAT444/
syllabus.html), Victor Moll at Tulane, Jan de Gier in Melbourne,
and Ole Warnaar at University of Queensland.

Judith Grabner has noted that a large impetus for the development
of modern rigor in mathematics came with the Napoleonic introduc-
tion of regular courses: lectures and textbooks force a precision and a
codification that apprenticeship obviates. But it will never be the case
that quasi-inductive mathematics supplants proof. We need to find a
new equilibrium. That said, we are only beginning to tap new ways to
enrich mathematics. As Jacques Hadamard said [24]:

The object of mathematical rigor is to sanction and legitimize

the conquests of intuition, and there was never any other

object for it.

Never have we had such a cornucopia of ways to generate intuition.
The challenge is to learn how to harness them, how to develop and
how to transmit the necessary theory and practice. The Priority Re-
search Centre for Computer Assisted Research Mathematics and its
Applications (CARMA), http://www.newcastle.edu.au/research/
centres/carmacentre.html, which one of us directs, hopes to play a
lead role in this endeavor: an endeavor which in our view encompasses
an exciting mix of exploratory experimentation and rigorous proof.
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Who we are and how we got that way

Revised for MAA volume on The Mind of a Mathematician

Jonathan M. Borwein∗

March 5, 2010

Abstract. The typical research mathematician’s view of the external world’s view of
mathematicians is more pessimistic and less nuanced than any objective measure would
support. I shall explore some of the reasons why I think this is so. I submit that math-
ematics is a “science of the artificial” [18] and that we should wholeheartedly embrace
such a positioning of our subject.

1 Putting Things in Perspective

All professions look bad in the movies ... why should scientists expect to be treated
differently? —Michael Crichton1

I greatly enjoyed Steve Krantz’s article in this collection that he showed me when I
asked him to elaborate what he had in mind. I guess I am less pessimistic than he is.
This may well reflect the different milieus we have occupied. I see the same glass but it
is half full.

Some years ago, my brother Peter surveyed other academic disciplines. He discovered
that students who complain mightily about calculus professors still prefer the relative
certainty of what we teach and assess to the subjectivity of a creative writing course or
the rigors of a physics or chemistry laboratory course. Similarly, while I have met my
share of micro-managing Deans—who view mathematics with disdain when they look at
the size of our research grants or the infrequency of our patents—I have encountered more
obstacles to mathematical innovation within than without the discipline.

I do wish to aim my scattered reflections in generally the right direction: I am more
interested in issues of creativity á la Hadamard [4] than in Russell and foundations or
Piaget and epistemology... and I should like a dash of “goodwill computing” thrown in.

∗Centre for Computer Assisted Mathematics and its Applications (CARMA), School of Mathematical
and Physical Sciences, University of Newcastle, NSW, Australia Email: jborwein@newcastle.edu.au

Research supported by the Australian Research Council.
1Addressing the 1999 AAAS Meetings, as quoted in Science of Feb. 19, 1999, p.1111.
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More seriously, I wish to muse about how we work, what keeps us going, how the math-
ematics profession has changed and how “la plus ca change, la plus ca reste la même”,2

and the like while juxtaposing how we perceive these matters and how we are perceived.
Elsewhere, I have discussed at length my own views about the nature of mathematics from
both an aesthetic and a philosophical perspective (see, e.g., [10, 19]). I have described my
self as ‘a computer-assisted quasi-empiricist’. For present more psychological proposes I
will quote approvingly from [5, p. 239]:

... Like 0l’ Man River, mathematics just keeps rolling along and produces at an
accelerating rate “200,000 mathematical theorems of the traditional handcrafted
variety ... annually.” Although sometimes proofs can be mistaken—sometimes
spectacularly—and it is a matter of contention as to what exactly a “proof” is—
there is absolutely no doubt that the bulk of this output is correct (though probably
uninteresting) mathematics.— Richard C. Brown

Why do we produce so many unneeded results? In addition to the obvious pressure
to publish and to have something to present at the next conference, I suspect Irving
Biederman’s observations below plays a significant role.

While you’re trying to understand a difficult theorem, it’s not fun,” said Biederman,
professor of neuroscience in the USC College of Letters, Arts and Sciences. ... “But
once you get it, you just feel fabulous.” ... The brain’s craving for a fix motivates
humans to maximize the rate at which they absorb knowledge, he said. ... “I
think we’re exquisitely tuned to this as if we’re junkies, second by second.”—Irving
Biederman3

Take away all success or any positive reinforcement and most mathematicians will
happily replace research by adminstration, more and (hopefully better) teaching, or per-
haps just a favourite hobby. But given just a little stroking by colleagues or referees and
the occasional opiate jolt, and the river rolls on.

The pressure to publish is unlikely to abate and qualitative measurements of perfor-
mance4 are for the most part fairer than leaving everything to the whim of one’s Head
of Department. Thirty years ago my career review consisted of a two-line mimeo “your
salary for next year will be ...” with the relevant number written in by hand. At the same
time, it is a great shame that mathematicians have a hard time finding funds to go to
conferences just to listen and interact. Csikszentmihalyi [6] writes:

[C]reativity results from the interaction of a system composed of three elements: a
culture that contains symbolic rules, a person who brings novelty into the symbolic
domain, and a field of experts who recognize and validate the innovation. All three
are necessary for a creative idea, product, or discovery to take place.—Mihalyy
Csikszentmihalyi

2For an excellent account of the triumphs and vicissitudes of Oxford mathematics over eight centuries
see [8]. The description of Haley’s ease in acquiring equipment (telescopes) and how he dealt with
inadequate money for personnel is by itself worth the price of the book.,

3Discussing his article in the American Scientist at www.physorg.com/news70030587.html
4For an incisive analysis of citation metrics in mathematics I thoroughly recommend the recent IMU

report and responses at: http://openaccess.eprints.org/index.php?/archives/
417-Citation-Statistics-International-Mathematical-Union-Report.html.
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We have not paid enough attention to what creativity is and how it is nurtured.
Conferences need audiences and researchers need feedback other than the mandatory
“nice talk” at the end of a special session. We have all heard distinguished colleagues
mutter a stream of criticism during a plenary lecture only to proffer “I really enjoyed
that” as they pass the lecturer on the way out. A communal view of creativity requires
more of the audience.

2 Who We Are

As to who we are? Sometimes we sit firmly and comfortably in the sciences. Sometimes we
practice—as the Economist noted—the most inaccessible of the arts5 possessed in Russell’s
terms [17, p. 60] of “a supreme beauty—a beauty cold and austere.” And sometimes we
sit or feel we sit entirely alone. So forgive me if my categorizations slip and slide a bit.
Even when we wish to remove ourselves from the sciences—by dint perhaps of our firm
deductive underpinnings—they are often more than welcoming. They largely fail to see
the stark deductive/inductive and realist/idealist distinctions which reached their apogee
in the past century.

Yet many scientists have strong mathematical backgrounds. A few years ago I had the
opportunity to participate as one of a team of seven scientists and one humanist who were
mandated to write a national report on Canada’s future need for advanced computing [14].
Five of us had at least an honours degree in mathematics. At the time none of us (myself
included) lived in a mathematics department. The human genome project, the burgeoning
development of financial mathematics, finite element modeling, Google and much else
have secured the role of mathematics within modern science and technology research
and development as “the language of high technology”; the most sophisticated language
humanity has ever developed. Indeed, in part this scientific ecumenism reflects what one
of my colleagues has called “an astonishing lack of appreciation for how mathematics is
done.” He went on to remark that in this matter we are closer to the fine arts.

Whenever I have worked on major interdisciplinary committees, my strong sense has
been of the substantial respect and slight sense of intimidation that most other quan-
titative scientists have for mathematics. I was sitting on a multi-science national panel
when Wiles’ proof of Fermat’s last theorem was announced. My confreres wanted to know
“What, why and how?” ‘What’ was easy, as always ‘why’ less so, and I did not attempt
‘how’. In [10] I wrote

While we mathematicians have often separated ourselves from the sciences, they
have tended to be more ecumenical. For example, a recent review of Models. The
Third Dimension of Science6 chose a mathematical plaster model of a Clebsch di-
agonal surface as its only illustration. Similarly, authors seeking examples of the
aesthetic in science often choose iconic mathematics formulae such as E = MC2.

5In “Proof and Beauty,” Economist article, 31 Mar 2005. “Why should the non-mathematician care
about things of this nature? The foremost reason is that mathematics is beautiful, even if it is, sadly,
more inaccessible than other forms of art.”

6See Julie K. Brown, “Solid Tools for Visualizing Science,” Science, November 19, 2004, 1136–37.
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‘How’ is not easy even within mathematics. A Passion for Science [21] is the written
record of thirteen fascinating BBC interviews with scientists including Nobelist Abdus
Salam, Stephen Jay Gould, Michael Berry and Christopher Zeeman. The communalities
of their scientific experiences far outstrip the differences. Zeeman tells a nice story of
how his Centre’s administrator (a non mathematician) in Warwick could tell whether the
upcoming summer was dedicated to geometry and topology, to algebra, or to analysis—
purely on the basis of their domestic arrangements and logistics. For instance algebraists
were very precise in their travel plans, topologists very inclusive in their social group
activities and analysts were predictably unpredictable. I won’t spoil the anecdote entirely
but it reinforces my sense that the cognitive differences between those three main divisions
of pure mathematics are at least as great as those with many cognate fields. In this
taxonomy I am definitely an analyst not a geometer or an algebraist.

There do appear to be some cognitive communalities across mathematics. In [4] my
brother with Peter Liljedahl and Helen Zhai report on the responses to an updated version
of Hadamard’s questionnaire [13] which they circulated to a cross-section of leading living
mathematicians. This was clearly a subject the target group wanted to speak about.
The response rate was excellent (over 50%) and the answers striking. According to the
survey responses, the respondents placed a high premium on serendipity—but as Pasteur
observed “fate favours the prepared mind.” Judging by where they said they have their
best ideas they take frequent showers and like to walk while thinking. They don’t read
much mathematics, preferring to have mathematics explained to them in person. They
much more resemble theorists throughout the sciences than careful methodical scholars
in the humanities.

My academic life started in the short but wonderful infusion of resources for science
and mathematics ‘after sputnik’—I started University in 1967— and now includes the
Kindle Reader (on which I am listening7 to a fascinating new biography of the Defense
Advanced Research Projects Agency, DARPA). The tyranny of a Bourbaki-dominated
curriculum has been largely replaced by the scary grey-literature world of Wikipedia and
Google scholar.

While typing this paragraph I went out on the web and found the Irving Layton poem,
that I quote at the start of Section 4, in entirety within seconds (I merely googled “And me
happiest when I compose poems” (I know the poem is somewhere in my personal library).
For the most part this has been a wonderful journey. Not everything has improved
from that halcyon pre-post-structuralist period a half-century ago when algebraists could
command more attention from funding agencies than could engineers as [5] recalls. But
the sense of time for introspection before answering a colleague’s wafer-thin ‘airmail letter’
enquiry, and the smell of mold that accompanied leisurely rummaging in a great library’s
stacks are losses in my personal life measure the receding role of the University as the
“last successful medieval institution.”[11]

2.1 Stereotypes from without looking in

One of the epochal events of my childhood as a faculty brat in St. Andrews, Scotland
was when C. P. Snow (1905–1980) delivered an immediately controversial 1959 Rede

7They will read to you in a friendly if unnatural voice.
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Lecture in Cambridge entitled “The Two Cultures”.8 Snow argued that the breakdown
of communication between the “two cultures” of modern society—the sciences and the
humanities—was a major obstacle to solving the world’s problems—and he had never
heard of global warming. In particular, he noted the quality of education was everywhere
on the decline. Instancing that many scientists had never read Dickens, while those in
the humanities were equally non-conversant with science, he wrote:

A good many times I have been present at gatherings of people who, by the stan-
dards of the traditional culture, are thought highly educated and who have with
considerable gusto been expressing their incredulity at the illiteracy of scientists.
Once or twice I have been provoked and have asked the company how many of
them could describe the Second Law of Thermodynamics, the law of entropy. The
response was cold: it was also negative. Yet I was asking something which is about
the scientific equivalent of: ‘Have you read a work of Shakespeare’s?’

The British musical satirists Michael Flanders and Donald Swann took immediate heed
of this for their terrific monologue and song “First and Second Law of Thermodynamics”
that I can still recite from memory.

[Michael:] Snow says that nobody can consider themselves educated who doesn’t
know at least the basic language of Science. I mean, things like Sir Edward Boyle’s
Law, for example: the greater the external pressure, the greater the volume of
hot air. Or the Second Law of Thermodynamics - this is very important. I was
somewhat shocked the other day to discover that my partner not only doesn’t know
the Second Law, he doesn’t even know the First Law of Thermodynamics.

Going back to first principles, very briefly, thermodynamics is of course derived from
two Greek words: thermos, meaning hot, if you don’t drop it, and dinamiks, meaning
dynamic, work; and thermodynamics is simply the science of heat and work and
the relationships between the two, as laid down in the Laws of Thermodynamics,
which may be expressed in the following simple terms...

After me...

The First Law of Thermodymamics:
Heat is work and work is heat
Heat is work and work is heat
Very good!
The Second Law of Thermodymamics:
Heat cannot of itself pass from one body to a hotter body

(scat music starts)
Heat cannot of itself pass from one body to a hotter body
Heat won’t pass from a cooler to a hotter
Heat won’t pass from a cooler to a hotter
You can try it if you like but you far better notter
You can try it if you like but you far better notter
‘Cos the cold in the cooler will get hotter as a ruler

...

8Subsequently republished in [20].
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Snow goes on to say:

I now believe that if I had asked an even simpler question - such as, What do you
mean by mass, or acceleration, which is the scientific equivalent of saying, ‘Can you
read?’ - not more than one in ten of the highly educated would have felt that I
was speaking the same language. So the great edifice of modern physics goes up,
and the majority of the cleverest people in the western world have about as much
insight into it as their Neolithic ancestors would have had.

C. P. Snow wrote pre-Kuhn, pre-Foucault, pre-much else [5]; and I submit that a half-
century on the situation is worse, knowledge more fragmented, ignorance of science and
mathematics more damaging to the public discourse.9

In addition, I think the problem was much less symmetric than Snow suggested. I
doubt I have ever met a scientist who had not read (or at least watched on BBC) some
Dickens, who never went to movies, art galleries or the theatre. It is, however, ever more
socially acceptable to be a scientific ignoramus or a mathematical dunce. It is largely
allowed to boast “I was never any good at mathematics at school.” I was once told exactly
that—in soto voce—by the then Canadian Governor General during a formal ceremony
at his official residence in Ottawa. Even here we should be heedful not to over-analyse
as we are prone to do. Afterwards the ‘GG’ (as Canadians call their Queen’s designate)
ruminated apologetically that if he had been a bit better at mathematics he would not
have had to become a journalist. Some of this has been ‘legitimated’ by denigrating
science as ‘reductionist’ and incapable of the deeper verities [5].

As Underwood Dudley has commented, no one apologizes for not being good at geology
in school. Most folks understand that failing “Introduction to Rocks” in Grade Nine
does not knock you off of a good career path. The outside world knows several truths:
mathematics is important, it is hard, it is usually poorly taught in school, and the average
middle-class parent is ill-prepared to redress the matter. I have become quite hard-line
about this. When a traveling companion on a plane starts telling me that “Mathematics
was my worst subject in school.” I will reply “And if you were illiterate would you tell
me?” They usually take the riposte fairly gracefully.

Consider two currently popular TV dramas Numb3rs (mathematical) and House (med-
ical). A few years ago a then colleague, a distinguished pediatrician, asked me whether I
watched Num3rs. I replied “Do you watch House? Does it sometimes make you cringe?”
He admitted that it did but he still watched it. I said the same was true for me with
Numb3rs, that my wife loved it and that I liked lots about it. It made mathematics seem
important and was rarely completely off base. The lead character, Charlie, was brilliant
and good-looking with a cute smart girl friend. The resident space-cadet on the show was
a physicist not a mathematician. What more could one ask for? Sadly for many of our

9I can’t resist including the following email anecdote:

This morning Al Gore gave the “keynote” speech at SC09.10 During the question-answer
period, he mentioned a famous talk “The Two Cultures” about lack of communication
between science and humanities, by one Chester (??)—he drew a blank as to who it was.
Sitting on the third row, I shouted out “Snow” (meaning C. P. Snow). One other person
also shouted “Snow”, and so Gore acknowledged that it was indeed Snow.

.
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colleagues the answer is “absolute fidelity to mathematical truth in every jot and title.”
No wonder so many of us make a dog’s-breakfast of the opportunities given to publicize
our work!

‘Caution, skepticism, scorn, distrust and entitlement seem to be intrinsic to many
of us because of our training as scientists.—Stephen Rosen11

To “Caution, skepticism, scorn, distrust and entitlement,” I’d add “persistence, in-
tensity, a touch of paranoia, and a certain lack of sartorial elegance” but I still would
not have identified mathematicians within the larger scientific herd. I think we are more
inward drawn than theorists in, say, biology or physics. Our terminologies are more speci-
ated between subfields and so we typically graze in smaller groups. But we are still bona
fide scientists—contrary to the views of some laboratory scientists and some of our own
colleagues.

This is the essence of science. Even though I do not understand quantum mechanics
or the nerve cell membrane, I trust those who do. Most scientists are quite ignorant
about most sciences but all use a shared grammar that allows them to recognize
their craft when they see it. The motto of the Royal Society of London is ‘Nullius
in verba’ : trust not in words. Observation and experiment are what count, not
opinion and introspection. Few working scientists have much respect for those who
try to interpret nature in metaphysical terms. For most wearers of white coats,
philosophy is to science as pornography is to sex: it is cheaper, easier, and some
people seem, bafflingly, to prefer it. Outside of psychology it plays almost no part
in the functions of the research machine.—Steve Jones12

2.2 Stereotypes from within looking out

Philosophy (not to mention introspection) is arguably more important to, though little
more respected by, working mathematicians than it is to experimental scientists.

Whether we scientists are inspired, bored, or infuriated by philosophy, all our the-
orizing and experimentation depends on particular philosophical background as-
sumptions. This hidden influence is an acute embarrassment to many researchers,
and it is therefore not often acknowledged. Such fundamental notions as reality,
space, time, and causality–notions found at the core of the scientific enterprise–all
rely on particular metaphysical assumptions about the world. —Christof Koch13

As I alluded to above, working mathematicians—by which I mean those of my per-
sonal or professional acquaintance—are overinclined by temperament and training to see
meaning where none is intended and patterns where none exist. For the most part over

11An astrophysicist, turned director of the Scientific Career Transitions Program in New York City,
giving job-hunting advice in an on-line career counseling session as quoted in Science, August 4 1995, p.
637. He continues that these traits hinder career change!

12From his review of “How the Mind Works” by Steve Pinker, in the New York Review of Books, pp.
13-14, Nov 6, 1997.

13In “Thinking About the Conscious Mind,” a review of John R. Searle’s Mind. A Brief Introduction,
Oxford University Press, 2004.
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the past centuries this somewhat autistic tendency has been a positive adaptation. It
has allowed the discipline to develop the most powerful tools and most sophisticated de-
scriptive language possessed by mankind. But as the nature of mathematics changes we
should be heedful of Napoleon’s adage “Never ascribe to malice that which is adequately
explained by incompetence,”14 or as Goethe (1749-1832) put it in [12]:

Misunderstandings and neglect occasion more mischief in the world than even malice
and wickedness. At all events, the two latter are of less frequent occurrence.

Suppose for ‘malice/wickedness’ we substitute ‘meaning/reason’ and likewise replace
‘incompetence/misunderstandings’ by ‘chance/randomness’. Then these squibs provide
an important caution against seeing mathematical patterns where none exist. They offer
equally good advice when dealing with Deans.

3 Changing Modes of Doing Mathematics

Goethe’s advice is especially timely as we enter an era of intensive computer-assisted
mathematical data-mining; an era in which we will more-and-more encounter unprovable
truths and salacious falsehoods. In [10] I wrote

It is certainly rarer to find a mathematician under thirty who is unfamiliar with at
least one of Maple, Mathematica or Matlab, than it is to find one over sixty five
who is really fluent. As such fluency becomes ubiquitous, I expect a re-balancing of
our community’s valuing of deductive proof over inductive knowledge.

As we again become comfortable with mathematical discovery in Giaquinto’s sense of
being “independent, reliable and rational” [9], assisted by computers, the community sense
of a mathematician as a producer of theorems will probably diminish to be replaced by a
richer community sense of mathematical understanding. It has been said that Riemann
proved very few theorems and even fewer correctly and yet he is inarguably one of the
most important mathematical, indeed scientific, thinkers of all time. Similarly most of us
were warned off pictorial reasoning:

A heavy warning used to be given [by lecturers] that pictures are not rigorous; this
has never had its bluff called and has permanently frightened its victims into playing
for safety. Some pictures, of course, are not rigorous, but I should say most are (and
I use them whenever possible myself).—J. E. Littlewood [16, p. 53]15

Let me indicate how much one can now do with good computer-generated pictures.

3.1 Discovery and proof: Divide-and-concur

In a wide variety of problems such as protein folding, 3SAT, spin glasses, giant Sodoku,
etc., we wish to find a point in the intersection of two sets A and B where B is non-convex.

14I have collected variants old and new on the theme of over-ratiocination at
www.carma.newcastle.edu/jb616/quotations.html

15Littlewood (1885-1977) published this in 1953 and so long before the current fine graphic, geometric,
and other visualization tools were available.
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The notion of “divide-and-concur” as described below often works spectacularly—much
better than theory can currently explain. Let PA(x) and RA(x) := 2PA(x) − x denote
respectively the projector and reflector on a set A as illustrated in Figure 1. Then “divide-
and-concur”16 is the natural geometric iteration “reflect-reflect-average”:

xn+1 =→ xn +RA (RB(xn))

2
.(1)

Consider the simplest case of a line A of height α and the unit circle B [2]. With zn :=
(xn, yn) we have:

xn+1 := cos θn, yn+1 := yn + α− sin θn, (θn := argzn).(2)

This is intended to find a point on the intersection of the unit circle and the line of height
α as shown in Figure 2 for α = .94.

Figure 1: Reflector (interior) and Projector (boundary) of a point external to an ellipse.

Figure 2: The first three iterates of (2) in Cinderella.

16This is Cornell physicist Veit Elser’s slick term for the algorithm in which the reflection can be
performed on separate cpu’s (divide) and then averaged (concur).
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Figure 3: Snapshots of 10, 000 points after 0, 2, 7, 13, 16, 21, and 27 steps of (2).

We have also studied the analogous differential equation since asymptotic techniques
for such differential equations are better developed. We decided

x′(t) =
x(t)

r(t)
− x(t) where r(t) :=

√
x(t)2 + y(t)2 ](3)

y′(t) = α− y(t)

r(t)

was a reasonable counterpart to the Cartesian formulation of (2)—we have replaced the
difference xn+1 − xn by x′(t), etc.—as shown in Figure 4.

Following Littlewood, I find it hard to persuade myself that the pictures in Figures 3
and 4 do not constitute a generic proof of the algorithms they display as implemented
in an applet at http://users.cs.dal.ca/∼jborwein/expansion.html. In Figure 3 we
see the iterates spiralling in towards the right-hand point of intersection with those closest
to the y-axis lagging behind but being unremittingly reeled in to the point. Brailey Sims
and I have now found a conventional proof that the behaviour is as observed [3] but we
discovered all the results first graphically and were lead to the appropriate proofs by the
dynamic pictures we drew.
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Figure 4: ODE solution and vector field for (3) with α = 0.97 in Cinderella.

4 The Exceptionalism of Mathematics

And me happiest when I compose poems.
Love, power, the huzza of battle
Are something, are much;
yet a poem includes them like a pool.—Irving Layton [15, p. 189]

This is the first stanza of the Irving Layton (1912-2006) poem “The Birth of Tragedy.”
Explicitly named after Nietzsche’s first book, Layton tussles with Apollonian and Dionysian
impulses (reason versus emotion). He calls himself “A quiet madman, never far from tears”
and ends “while someone from afar off blows birthday candles for the world.” Layton, who
was far from a recluse, is one of my favourite Canadian poets.

I often think poetry is a far better sustained metaphor for mathematics than either
music or the plastic arts. I do not see poetry making such a good marriage with any
other science. Like good poets, good mathematicians are often slightly autistic observers
of a somewhat dysphoric universe. Both art forms at their best distill and concentrate
beauty like no other and both rely on a delicate balance of form and content, semantics
and syntax.

Like all academic disciplines we are (over-)sure of our own specialness.

• Mathematicians are machines for turning coffee into theorems. (Renyi)

• A gregarious mathematician is one who looks at the other person’s feet when
addressing them.

• Mathematics is what mathematicians do late at night.

• You want proof. I’ll give you proof. (Harris)

• There are three kinds of mathematician, those who can count and those who
can’t.

Most of these can be—and many have been— used with a word changed here or there
about statisticians, computer scientists, chemists, physicists, economists and philosophers.
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For instance “There are 10 kinds of computer scientists, those who understand binary and
those who don’t.” It is amusing to ask colleagues in other sciences for their corresponding
self-identifying traits. All of the above mentioned groups except the philosophers are
pretty much reductionists:

Harvard evolutionary psychologist Steven Pinker is probed on “Evolutionary Psy-
chology and the Blank Slate.” The conversation moves from the structure of the
brain to adaptive explanations for music, creationism, and beyond. Stangroom asks
Pinker about the accusations that biological explanations of behavior are determin-
ist and reduce human beings to the status of automatons.”...“Most people have no
idea what they mean when they level the accusation of determinism,” “Pinker an-
swers. “It’s a nonspecific “boo” word, intended to make something seem bad without
any content.17

Steve Jones is quoted in the same article equating philosophy and pornography and
while many of us, myself included, see a current need to rethink the philosophy of math-
ematics, Pinker and he capture much of the zeitgeist of current science including mathe-
matics.

4.1 Mathematics as a science of the artificial

Pure mathematics, theoretical computer science, and various cognate disciplines are sci-
ences of the artificial in that they study scientifically man-made artificial concepts. Math-
ematical experiments and data collection are clearly not taking place in the natural world.
They are at best quasi-empirical and yet they subscribe fully to the scientific method.
Like other sciences they are increasingly engaged in “exploratory experimentation” [1, 2].
In The Sciences of the Artificial [18, p. 16] Herb Simon compellingly wrote about reduc-
tionism:

This skyhook-skyscraper construction of science from the roof down to the yet
unconstructed foundations was possible because the behaviour of the system at each
level depended only on a very approximate, simplified, abstracted characterization
at the level beneath.1 This is lucky, else the safety of bridges and airplanes might
depend on the correctness of the “Eightfold Way” of looking at elementary particles.

1 “More than fifty years ago Bertrand Russell made the same point about
the architecture of mathematics. See the “Preface” to Principia Mathe-
matica “... the chief reason in favour of any theory on the principles of
mathematics must always be inductive, i.e., it must lie in the fact that the
theory in question allows us to deduce ordinary mathematics. In mathe-
matics, the greatest degree of self-evidence is usually not to be found quite
at the beginning, but at some later point; hence the early deductions, until
they reach this point, give reason rather for believing the premises because
true consequences follow from them, than for believing the consequences
because they follow from the premises.”

17The Scientist of June 20, 2005 describing Jeremy Stangroom’s interviews in What (some) scientists
say, Routledge Press, 2005.
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Contemporary preferences for deductive formalisms frequently blind us to this im-
portant fact, which is no less true today than it was in 1910.

I love the fact that Russell the arch-deductivist so clearly describes the fundamental
role of inductive reasoning within mathematics. This long-but-rewarding quote leads
me to reflect that we mathematicians need more strong-minded and assured critics. I
acknowledge that it is easier to challenge a speaker in history or philosophy. One may
reasonably disagree in a way that is hard in mathematics.18 When someone stands up in a
mathematics lecture and says she can answer the speaker’s hard open question, nine times
out of ten the respondent has misunderstood the question or misremembered her own prior
work. We do, however, need to develop a culture which encourages spirited debate of such
matters as how best to situate our subject within the academy, how important certain
areas and approaches are, how to balance research and scholarship, and so on. Moreover,
fear and lack of mutual respect for another’s discipline makes it hard to venture outside
one’s own niche. For instance, many physicists fear mathematicians who, in turn, are
often most uncomfortable or dismissive of informal reasoning and of ‘physical or economic
intuition.’

4.2 Pure versus applied mathematics

Mathematics is at once both a set of indispensable tools and a self-motivating discipline; a
mind-set and a way of thinking. In consequence there are many research mathematicians
working outside mathematics departments and a smaller but still considerable number of
non-mathematicians working within. What are the consequences? First, it is no longer
possible to assume that all of one’s colleagues could in principle—if not with enthusiasm or
insight—teach all the mathematics courses in the first two years of the university syllabus.
This pushes us in the direction of other disciplines like history or biology in which teaching
has always been tightly coupled with core research competence.

At a more fundamental level, I see the discipline boundary as being best determined
by answering the question as to whether the mathematics at issue is worth doing in its
own right. If the answer is “yes”, then it is ‘pure’19 mathematics and belongs in the
discipline; if not then, however useful or important the outcome, it does not fit. The
later would, for example, be the case of a lot of applied operations research, a good deal
of numerical modeling and scientific computation, and most of statistics. All significant
mathematics should be nourished within mathematics departments, but there are many
important and useful applications that do not by that measure belong.

5 How to Become a Grownup Science

As Darwin [7] ruefully realized rather late in life, we mathematicians have a lot to offer:

18Some years ago I persuaded Amazon to remove several unsubstantiated assertions about “errors on
every page” in one of my books—by a digital groupy turned stalker—from their website after I pointed
out that while one could have an opinion that a Cormac McCarthy novel was dull but assertions of factual
error were subject to test.

19Which may well be highly applicable.
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During the three years which I spent at Cambridge my time was wasted, as far
as the academical studies were concerned, as completely as at Edinburgh and at
school. I attempted mathematics, and even went during the summer of 1828 with
a private tutor (a very dull man) to Barmouth, but I got on very slowly. The work
was repugnant to me, chiefly from my not being able to see any meaning in the
early steps in algebra. This impatience was very foolish, and in after years I have
deeply regretted that I did not proceed far enough at least to understand something
of the great leading principles of mathematics, for men thus endowed seem to have
an extra sense.—Charles Darwin

We also have a lot to catch up with. We have too few accolades compared to other
sciences: prize lectures, medals, fellowships and the like. We are insufficiently adept at
boosting our own cases for tenure, for promotion or for prizes. We are frequently too
honest in reference letters. We are often disgracefully terse—unaware of the need to
make obvious to others what is for us blindingly obvious. I have seen a Fields medalist
recommend a talented colleague for promotion with the one line letter “Anne has done
some quite interesting work.” Leaving aside the ambiguity of the use of the word “quite”
when sent by a European currently based in the United States to a North American
promotion committee, this summary is pretty lame when compared to a three page letter
for an astrophysicist or chemist—that almost always tells you the candidate is the top
whatever-it-is in the field. A little more immodesty in promoting our successes is in order.

I’m not encouraging dishonesty, but it is necessary to understand the ground rules
of the enterprise and to make some attempt to adjust to them. When a good candidate
for a Rhodes Scholarship turns up at ones office, it should be obvious that a pro forma
scrawled note

Johnny is really smart and got an ‘A+’ in my advanced algebraic number theory
class. You should give him a Rhodes scholarship.

is inadequate. Sadly, the only letters of that kind that I’ve seen in Rhodes scholarship
dossiers have come from mathematicians.

I am a mathematician rather than a computational scientist or a computer scientist
primarily because I savour the structures and curiosities (including spandrels and exap-
tations in Gould’s words) of mathematics. I am never satisfied with my first proof of
a result and until I have found limiting counter-examples and adequate corollaries will
continue to worry at it. I like attractive generalizations on their own merits. Very often it
is the unexpected and unintended consequences of a mathematical argument that when
teased out provides the real breakthrough. Such often leads eventually to tangible and
dramatic physical consequences: take quantum mechanical tunneling.

A few years ago I had finished a fine piece of work with a frequent collaborator who
is a quantum field theorist—and a man of great insight and mathematical power. We
had met success by introducing a sixth-root of unity into our considerations. I mooted
looking at higher-order analogues. The reply came back “God in her wisdom is happy to
build the universe with sixth-roots. You, a mathematician, can look for generalizations if
you wish.”
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6 Conclusion

I became a mathematician largely because mathematics satisfied four criteria. (i) I found
it reasonably easy; (ii) I liked understanding or working out how things function; but
(iii) I was not much good with my hands and had limited physical intuition; (iv) I really
disliked pipettes but I wanted to be a scientist. That left mathematics. Artificial yes,
somewhat introspective yes, but informed by many disciplines and clearly an important
science.

I have had several students whom I can not imagine following any other life path but
I was not one of those. I would I imagine have been happily fulfilled in various careers of
the mind; say as an historian or an academic lawyer. But I became a mathematician. It
has been and continues to be a pretty wonderful life.
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1 Preamble: Pi and Popular Culture

The desire to understand π, the challenge, and originally the need, to calculate ever more accurate values
of π, the ratio of the circumference of a circle to its diameter, has challenged mathematicians–great and less
great—for many many centuries and, especially recently, π has provided compelling examples of computational
mathematics. Pi, uniquely in mathematics is pervasive in popular culture and the popular imagination.2

I shall intersperse this largely chronological account of Pi’s mathematical status with examples of its ubiquity.
More details will be found in the selected references at the end of the chapter—especially in Pi: a Source Book
[5]. In [5] all material not otherwise referenced may be followed up upon, as may much other material, both
serious and fanciful. Other interesting material is to be found in [16], which includes attractive discussions of
topics such as continued fractions and elliptic integrals.

Fascination with π is evidenced by the many recent popular books, television shows, and movies—even
perfume—that have mentioned π. In the 1967 Star Trek episode “Wolf in the Fold,” Kirk asks “Aren’t there
some mathematical problems that simply can’t be solved?” And Spock ‘fries the brains’ of a rogue computer
by telling it: “Compute to the last digit the value of Pi.” The May 6, 1993 episode of The Simpsons has the
character Apu boast “I can recite pi to 40,000 places. The last digit is one.” (See Figure 1.)

In November 1996, MSNBC aired a Thanksgiving Day segment about π, including that scene from Star
Trek and interviews with the present author and several other mathematicians at Simon Fraser University. The
1997 movie Contact, starring Jodie Foster, was based on the 1986 novel by noted astronomer Carl Sagan. In
the book, the lead character searched for patterns in the digits of π, and after her mysterious experience found
sound confirmation in the base-11 expansion of π. The 1997 book The Joy of Pi [7] has sold many thousands
of copies and continues to sell well. The 1998 movie entitled Pi began with decimal digits of π displayed on the
screen. And in the 2003 movie Matrix Reloaded, the Key Maker warns that a door will be accessible for exactly
314 seconds, a number that Time speculated was a reference to π.

As a forceable example, imagine the following excerpt from Eli Mandel’s 2002 Booker Prize winning novel
Life of Pi being written about another transcendental number:

“My name is

Piscine Molitor Patel

known to all as Pi Patel.

For good measure I added
π = 3.14

and I then drew a large circle which I sliced in two with a diameter, to evoke that basic lesson of
geometry.”

Equally, National Public Radio reported on April 12, 2003 that novelty automatic teller machine withdrawal
slips, showing a balance of $314, 159.26, were hot in New York City. One could jot a note on the back and,

1This paper is an updated and revised version of [9] and is made with permission of the editor.
2The MacTutor website, http://www-gap.dcs.st-and.ac.uk/~ history, at the University of St. Andrews—my home town in

Scotland—is rather a good accessible source for mathematical history.
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Around 250 BCE, Archimedes of Syracuse
(287–212 BCE) was the first to show that
the “two possible Pi’s” are the same.

Clearly for a circle of radius r and diam-
eter d, Area= π1 r

2 while Perimeter
= π2 d, but that π1 = π2 is not obvious.

This is often overlooked (Figure 4.).

Figure 1: π’s original duality

3 . 1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679

8214808651328230664709384460955058223172535940812848111745028410270193852110555964462294895493038196

4428810975665933446128475648233786783165271201909145648566923460348610454326648213393607260249141273

7245870066063155881748815209209628292540917153643678925903600113305305488204665213841469519415116094

3305727036575959195309218611738193261179310511854807446237996274956735188575272489122793818301194912

9833673362440656643086021394946395224737190702179860943702770539217176293176752384674818467669405132

0005681271452635608277857713427577896091736371787214684409012249534301465495853710507922796892589235

4201995611212902196086403441815981362977477130996051870721134999999837297804995105973173281609631859

5024459455346908302642522308253344685035261931188171010003137838752886587533208381420617177669147303

59825349042875546873115956286388235378759375195778185778053217122680661300192787661119590921642019893

Figure 2: 1,001 Decimal Digits of Pi

apparently innocently, let the intended target be impressed by one’s healthy saving account. Scott Simon, the
host, noted the close resemblance to π. Correspondingly, according to the New York Times of August 18 2005,
Google offered exactly “14, 159, 265 New Slices of Rich Technology” as the number of shares in its then new
stock offering. Likewise, March 14 in North America has become π Day, since in the USA the month is written
before the day (‘314’). In schools throughout North America, it has become a reason for mathematics projects,
especially focussing on Pi.

As another sign of true legitimacy, on March 14, 2007 the New York Times published a crossword in which
to solve the puzzle, one had first to note that the clue for 28 down was “March 14, to Mathematicians,” to
which the answer is piday. Moreover, roughly a dozen other characters in the puzzle are pi—for example, the
clue for 5 down was “More pleased” with the six character answer hapπer. The puzzle is reproduced in [10].
Finally, in March 2009,Congress actually made PiDay an official annual national event!

It is hard to imagine e, γ or log 2 playing the same role. A corresponding scientific example [3, p. 11] is

“A coded message, for example, might represent gibberish to one person and valuable information to
another. Consider the number 14159265... Depending on your prior knowledge, or lack thereof, it is
either a meaningless random sequence of digits, or else the fractional part of pi, an important piece
of scientific information.”

For those who know The Hitchhiker’s Guide to the Galaxy, it is amusing that 042 occurs at the digits ending
at the fifty-billionth decimal place in each of π and 1/π—thereby providing an excellent answer to the ultimate
question, “What is forty two?” A more intellectual offering is “The Deconstruction of Pi” given by Umberto
Eco on page three of his 1988 book Foucault’s Pendulum, [5, p. 658].
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Figure 3: A pictorial proof of Archimedes

Pi. Our central character
π = 3.14159265358979323 . . .

is traditionally defined in terms of the area or perimeter of a unit circle, see Figure 1. The notation of π itself
was introduced by William Jones in 1737, replacing ‘p’ and the like, and was popularized by Leonhard Euler
who is responsible for much modern nomenclature. A more formal modern definition of π uses the first positive
zero of sin defined as a power series. The first thousand decimal digits of Pi are recorded in Figure 2.

Despite continuing rumours to the contrary, π is not equal to 22/7 (see End Note 1). Of course 22/7 is one
of the early continued fraction approximations to π. The first six convergents are

3,
22

7
,
333

106
,
355

113
,
103993

33102
,
104348

33215
.

The convergents are necessarily good rational approximations to π. The sixth differs from π by only 3.31 10−10.
The corresponding simple continued fraction starts

π = [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, 1, 84, 2, 1, 1, . . .],

using the standard concise notation. This continued fraction is still very poorly understood. Compare that for
e which starts

e = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, 1, 1, 14, 1, 1, 16, 1, 1, 18, . . .].

A proof of this observation shows that e is not a quadratic irrational since such numbers have eventually periodic
continued fractions.

Archimedes’ famous computation discussed below is:

3
10

71
< π < 3

10

70
.(1)

Figure 3 shows this estimate graphically, with the digits shaded modulo ten; one sees structure in 22/7, less
obviously in 223/71, and not in π.

2 The Childhood of Pi

Four thousand years ago, the Babylonians used the approximation 31
8 = 3.125. Then, or earlier, according to

ancient papyri, Egyptians assumed a circle with diameter nine has the same area as a square of side eight, which
implies π = 256/81 = 3.1604 . . . . Some have argued that the ancient Hebrews were satisfied with π = 3:
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Archimedes’ construction for the
uniqueness of π, taken from his
Measurement of a Circle

Figure 4: Pi’s uniqueness

“Also, he made a molten sea of ten cubits from brim to brim, round in compass, and five cubits
the height thereof; and a line of thirty cubits did compass it round about.” (I Kings 7:23; see also 2
Chronicles 4:2)

One should know that the cubit was a personal not universal measurement. In Judaism’s further defense, sev-
eral millennia later, the great Rabbi Moses ben Maimon Maimonedes (1135–1204) is translated by Langermann,
in “The ‘true perplexity’ [5, p. 753] as fairly clearly asserting the Pi’s irrationality.

“You ought to know that the ratio of the diameter of the circle to its circumference is unknown, nor
will it ever be possible to express it precisely. This is not due to any shortcoming of knowledge on
our part, as the ignorant think. Rather, this matter is unknown due to its nature, and its discovery
will never be attained.” (Maimonedes)

In each of these three cases the interest of the civilization in π was primarily in the practical needs of
engineering, astronomy, water management and the like. With the Greeks, as with the Hindus, interest was
centrally metaphysical and geometric.

Archimedes’ Method. The first rigorous mathematical calculation of π was due to Archimedes, who used a
brilliant scheme based on doubling inscribed and circumscribed polygons

6 7→ 12 7→ 24 7→ 48 7→ 96

and computing the perimeters to obtain the bounds 310
71 < π < 3 1

7 , that we have recaptured above. The case of
6-gons and 12-gons is shown in Figure 5; for n = 48 one already ‘sees’ near-circles. Arguably no mathematics
approached this level of rigour again until the 19th century.
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Figure 5: Archimedes’ method of computing π with 6- and 12-gons

Archimedes’ scheme constitutes the first true algorithm for π, in that it is capable of producing an arbitrarily
accurate value for π. It also represents the birth of numerical and error analysis—all without positional notation
or modern trigonometry. As discovered severally in the 19th century, this scheme can be stated as a simple,
numerically stable, recursion, as follows [11].

Archimedean Mean Iteration (Pfaff-Borchardt-Schwab) . Set a0 = 2
√
3 and b0 = 3—the values for

circumscribed and inscribed 6-gons. Then define

an+1 =
2anbn
an + bn

(H) bn+1 =
√
an+1bn (G).(2)

This converges to π, with the error decreasing by a factor of four with each iteration. In this case the error is
easy to estimate, the limit somewhat less accessible but still reasonably easy [10, 11].

Variations of Archimedes’ geometrical scheme were the basis for all high-accuracy calculations of π for the
next 1800 years—well beyond its ‘best before’ date. For example, in fifth century CE China, Tsu Chung-Chih
used a variation of this method to get π correct to seven digits. A millennium later, Al-Kashi in Samarkand
“who could calculate as eagles can fly” obtained 2π in sexagecimal:

2π ≈ 6 +
16

601
+

59

602
+

28

603
+

01

604
+

34

605
+

51

606
+

46

607
+

14

608
+

50

609
,

good to 16 decimal places (using 3·228-gons). This is a personal favourite, reentering it in my computer centuries
later and getting the predicted answer gave me goose-bumps.

3 Pre-calculus Era π Calculations

In Figures 6, 8, and 11 we chronicle the main computational records during the indicated period, only com-
menting on signal entries.
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Name Year Digits
Babylonians 2000? BCE 1
Egyptians 2000? BCE 1
Hebrews (1 Kings 7:23) 550? BCE 1
Archimedes 250? BCE 3
Ptolemy 150 3
Liu Hui 263 5
Tsu Ch’ung Chi 480? 7
Al-Kashi 1429 14
Romanus 1593 15
van Ceulen (Ludolph’s number∗) 1615 35

Figure 6: Pre-calculus π Calculations

Little progress was made in Europe during the ‘dark ages’, but a significant advance arose in India (450 CE):
modern positional, zero-based decimal arithmetic—the “Indo-Arabic” system. This greatly enhanced arithmetic
in general, and computing π in particular. The Indo-Arabic system arrived with the Moors in Europe around
1000 CE. Resistance ranged from accountants who feared losing their livelihood to clerics who saw the system
as ‘diabolical’—they incorrectly assumed its origin was Islamic. European commerce resisted into the 18th
century, and even in scientific circles usage was limited until the 17th century.

The prior difficulty of doing arithmetic is indicated by college placement advice given a wealthy German
merchant in the 16th century:

“A wealthy (15th Century) German merchant, seeking to provide his son with a good business edu-
cation, consulted a learned man as to which European institution offered the best training. ‘If you
only want him to be able to cope with addition and subtraction,’ the expert replied, ’then any French
or German university will do. But if you are intent on your son going on to multiplication and
division—assuming that he has sufficient gifts—then you will have to send him to Italy.’” (George
Ifrah, [10])

Claude Shannon (1916–2001) had a mechanical calculator wryly called Throback 1 built to compute in
Roman, at Bell Labs in 1953 to show that it was practicable to compute in Roman!

Ludolph van Ceulen (1540–1610). The last great Archimedean calculation, performed by van Ceulen using
262-gons—to 39 places with 35 correct—was published posthumously. The number is still called Ludolph’s
number in parts of Europe and was inscribed on his head-stone. This head-stone disappeared centuries ago but
was rebuilt, in part from surviving descriptions, recently as shown in Figure 7. It was reconsecrated on July
5th 2000 with Dutch royalty in attendance. Ludolph van Ceulen, a very serious mathematician, was also the
discoverer of the cosine formula.

4 Pi’s Adolescence

The dawn of modern mathematics appears in Viéte’s or Viéta’s product (1579)

2

π
=

√
2

2

√
2 +
√
2

2

√
2 +

√
2 +
√
2

2
· · ·
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considered to be the first truly infinite product; and in the first infinite continued fraction for 2/π given by Lord
Brouncker (1620–1684), first President of the Royal Society of London:

2

π
=

1

1 +
9

2 +
25

2 +
49

2 + · · ·

.

This was based on the following brilliantly ‘interpolated’ product of John Wallis3 (1616–1703)

∞∏
k=1

4k2 − 1

4k2
=

2

π
,(3)

which led to the discovery of the Gamma function, see End Note 2, and a great deal more.

François Viéte (1540–1603). A flavour of Viéte’s writings can be gleaned in this quote from his work, first
given in English in [5, p. 759].

“ Arithmetic is absolutely as much science as geometry [is]. Rational magnitudes are conveniently
designated by rational numbers, and irrational [magnitudes] by irrational [numbers]. If someone
measures magnitudes with numbers and by his calculation get them different from what they really
are, it is not the reckoning’s fault but the reckoner’s.

Rather, says Proclus, arithmetic is more exact then geometry.4 To an accurate calculator,
if the diameter is set to one unit, the circumference of the inscribed dodecagon will be the side of the
binomial [i.e. square root of the difference] 72−

√
3888. Whosoever declares any other result, will be

mistaken, either the geometer in his measurements or the calculator in his numbers.” (Viéte)

This fluent rendition is due to Marinus Taisbak, and the full text is worth reading. It certainly underlines
how influential an algebraist and geometer Viéte was. Viéte, who was the first to introduce literals (‘x’ and ‘y’)
into algebra, nonetheless rejected the use of negative numbers.

Equation (3) may be derived from Leonard Euler’s (1707–1783) product formula for π, given below in (4),

with x = 1/2, or by repeatedly integrating
∫ π/2

0
sin2n(t) dt by parts. One may divine (4) as Euler did by

considering sin(πx) as an ‘infinite’ polynomial and obtaining a product in terms of the roots—0, {1/n2 : n =
±1,±2, · · · }. It is thus plausible that

sin(π x)

x
= c

∞∏
n=1

(
1− x2

n2

)
.(4)

Euler, full well knowing that the whole argument was heuristic, argued that, as with a polynomial, c was
the value at zero, 1, and the coefficient of x2 in the Taylor series must be the sum of the roots. Hence, he was
able to pick off coefficients to evaluate the zeta-function at two:

ζ(2) :=
∑
n

1

n2
=

π2

6
.

This also leads to the evaluation of ζ(2n) :=
∑∞

k=1 1/k
2n as a rational multiple of π2n:

ζ(2) =
π2

6
, ζ(4) =

π4

90
, ζ(6) =

π6

945
, ζ(8) =

π8

9450
, . . .

3One of the few mathematicians whom Newton admitted respecting, and also a calculating prodigy!
4This phrase was written in Greek.
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Figure 7: Ludolph’s rebuilt tombstone in Leiden

in terms of the Bernoulli numbers, Bn, where t/(exp(t) − 1) =
∑

n≥0 Bnt
n/n!, gives a generating function for

the Bn which are perforce rational. The explicit formula which solved the so called Basel problem posed by the
Bernoullis is

ζ(2m) = (−1)m−1 (2π)
2m

2 (2m)!
B2m,

see also [23].

Much less is known about odd integer values of ζ, though they are almost certainly not rational multiple of
powers of π. More than two centuries later, in 1976 Roger Apéry, [5, p. 439], [11], showed ζ(3) to be irrational,
and we now also can prove that at least one of ζ(5), ζ(7), ζ(9) or ζ(11) is irrational, but we can not guarantee
which one. All positive integer values are strongly believed to be irrational. Though it is not relevant to our
story Euler’s work on the zeta-function also lead to the celebrated Riemann hypothesis [10].

5 Pi’s Adult Life with Calculus

In the later 17th century, Newton and Leibnitz founded the calculus, and this powerful tool was quickly exploited
to find new formulae for π. One early calculus-based formula comes from the integral:

tan−1 x =

∫ x

0

dt

1 + t2
=

∫ x

0

(1− t2 + t4 − t6 + · · · ) dt = x− x3

3
+

x5

5
− x7

7
+

x9

9
− · · ·

Substituting x = 1 formally proves the well-known Gregory-Leibnitz formula (1671–74)

π

4
= 1− 1

3
+

1

5
− 1

7
+

1

9
− 1

11
+ · · ·(5)

James Gregory (1638–75) was the greatest of a large Scottish mathematical family. The point, x = 1, however,
is on the boundary of the interval of convergence of the series. Justifying substitution requires a careful error
estimate for the remainder or Lebesgue’s monotone convergence theorem, etc., but most introductory texts
ignore the issue.
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A Curious Anomaly in the Gregory Series. In 1988, it was observed that Gregory’s series for π,

π = 4
∞∑
k=1

(−1)k+1

2k − 1
= 4

(
1− 1

3
+

1

5
− 1

7
+

1

9
− 1

11
+ · · ·

)
(6)

when truncated to 5,000,000 terms, differs strangely from the true value of π:

3.14159245358979323846464338327950278419716939938730582097494182230781640...

3.14159265358979323846264338327950288419716939937510582097494459230781640...

2 -2 10 -122 2770

Values differ as expected from truncating an alternating series, in the seventh place—a “4” which should be a
“6.” But the next 13 digits are correct, and after another blip, for 12 digits. Of the first 46 digits, only four differ
from the corresponding digits of π. Further, the “error” digits seemingly occur with a period of 14, as shown
above. Such anomalous behavior begs explanation. A great place to start is by using Neil Sloane’s Internet-
based integer sequence recognition tool, available at www.research.att.com/~njas/sequences. This tool has
no difficulty recognizing the sequence of errors as twice Euler numbers. Even Euler numbers are generated by
secx =

∑∞
k=0(−1)kE2kx

2k/(2k)!. The first few are 1,−1, 5,−61, 1385,−50521, 2702765. This discovery led to
the following asymptotic expansion:

π

2
− 2

N/2∑
k=1

(−1)k+1

2k − 1
≈

∞∑
m=0

E2m

N2m+1
.(7)

Now the genesis of the anomaly is clear: by chance the series had been truncated at 5,000,000 terms—exactly
one-half of a fairly large power of ten. Indeed, setting N = 10, 000, 000 in Equation (7) shows that the first
hundred or so digits of the truncated series value are small perturbations of the correct decimal expansion for
π. And the asymptotic expansions show up on the computer screen, as we observed above. On a hexadecimal
computer with N = 167 the corresponding strings are:

3.243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89452821E...

3.243F6A6885A308D31319AA2E03707344A3693822299F31D7A82EFA98EC4DBF69452821E...

2 -2 A -7A 2AD2

with the first being the correct value of π. In hexadecimal or hex one uses ‘A,B, . . ., F’ to write 10 through 15
as single ‘hex-digits’. Similar phenomena occur for other constants. (See [5].) Also, knowing the errors means
we can correct them and use (7) to make Gregory’s formula computationally tractable, despite the following
discussion!

6 Calculus Era π Calculations

Used naively, the beautiful formula (5) is computationally useless—so slow that hundreds of terms are needed
to compute two digits. Sharp, under the direction of Halley5, see Figure 8, actually used tan−1(1/

√
3) which is

geometrically convergent.

Moreover, Euler’s (1738) trigonometric identity

tan−1 (1) = tan−1

(
1

2

)
+ tan−1

(
1

3

)
(8)

5The astronomer and mathematician who largely built the Greenwich Observatory and after whom the comet is named.
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Name Year Correct Digits
Sharp (and Haley) 1699 71
Machin 1706 100
Strassnitzky and Dase 1844 200
Rutherford 1853 440
Shanks 1874 (707) 527
Ferguson (Calculator) 1947 808
Reitwiesner et al. (ENIAC) 1949 2,037
Genuys 1958 10,000
Shanks and Wrench 1961 100,265
Guilloud and Bouyer 1973 1,001,250

Figure 8: Calculus π Calculations

produces a geometrically convergent rational series

π

4
=

1

2
− 1

3 · 23
+

1

5 · 25
− 1

7 · 27
+ · · ·+ 1

3
− 1

3 · 33
+

1

5 · 35
− 1

7 · 37
+ · · ·(9)

An even faster formula, found earlier by John Machin, lies similarly in the identity

π

4
= 4 tan−1

(
1

5

)
− tan−1

(
1

239

)
.(10)

This was used in numerous computations of π, given in Figure 8, starting in 1706 and culminating with
Shanks’ famous computation of π to 707 decimal digits accuracy in 1873 (although it was found in 1945 to
be wrong after the 527-th decimal place, by Ferguson, during the last adding machine-assisted pre-computer
computations.6).

Newton’s arcsin computation. Newton discovered a different more effective—actually a disguised arcsin—
formula. He considering the area A of the left-most region shown in Figure 9. Now, A is the integral

A =

∫ 1/4

0

√
x− x2 dx.(11)

Also, A is the area of the circular sector, π/24, less the area of the triangle,
√
3/32. Newton used his newly

developed binomial theorem in (11):

A =

∫ 1
4

0

x1/2(1− x)1/2 dx =

∫ 1
4

0

x1/2

(
1− x

2
− x2

8
− x3

16
− 5x4

128
− · · ·

)
dx

=

∫ 1
4

0

(
x1/2 − x3/2

2
− x5/2

8
− x7/2

16
− 5x9/2

128
· · ·
)

dx

Integrate term-by-term and combining the above produces

π =
3
√
3

4
+ 24

(
1

3 · 8
− 1

5 · 32
− 1

7 · 128
− 1

9 · 512
· · ·
)
.

Newton used this formula to compute 15 digits of π. As noted, he later ‘apologized’ for “having no other
business at the time.” (This was the year of the great plague. It was also directly after the production of
Newton’s Principia.) A standard chronology ([21] and[5, p. 294]) says “Newton significantly never gave a value
for π.” Caveat emptor all users of secondary sources.

6This must be some sort a record for the length of time needed to detect a mathematical error.
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0 0.8

0.2

0.4

0.60.2

-0.4

0.4 1
0

-0.2

“I am ashamed to tell you to how many figures I car-
ried these computations, having no other business at
the time.”
(Isaac Newton, 1666)

The great fire of London ended the plague year in
September 1666.

Figure 9: Newton’s method for π

The Viennese computer. Until quite recently—around 1950—a computer was a person. Hence the name
of ENIAC discussed later. This computer, one Johann Zacharias Dase (1824–1861), would demonstrate his
extraordinary computational skill by, for example, multiplying

79532853× 93758479 = 7456879327810587

in 54 seconds; two 20-digit numbers in six minutes; two 40-digit numbers in 40 minutes; two 100-digit numbers
in 8 hours and 45 minutes. In 1844, after being shown

π

4
= tan−1

(
1

2

)
+ tan−1

(
1

5

)
+ tan−1

(
1

8

)
he calculated π to 200 places in his head in two months, completing correctly—to my mind—the greatest
mental computation ever. Dase later calculated a seven-digit logarithm table, and extended a table of integer
factorizations to 10,000,000. Gauss requested that Dase be permitted to assist this project, but Dase died not
long afterwards in 1861 by which time Gauss himself already was dead.

An amusing Machin-type identity, that is expressing Pi as linear a combination of arctan’s, due to the Oxford
logician Charles Dodgson is

tan−1

(
1

p

)
= tan−1

(
1

p+ q

)
+ tan−1

(
1

p+ r

)
,

valid whenever 1 + p2 factors as qr. Dodgson is much better known as Lewis Carroll, the author of Alice in
Wonderland.

7 The Irrationality and Transcendence of π

One motivation for computations of π was very much in the spirit of modern experimental mathematics: to
see if the decimal expansion of π repeats, which would mean that π is the ratio of two integers (i.e., rational),
or to recognize π as algebraic—the root of a polynomial with integer coefficients—and later to look at digit
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distribution. The question of the rationality of π was settled in the late 1700s, when Lambert and Legendre
proved (using continued fractions) that the constant is irrational.

The question of whether π was algebraic was settled in 1882, when Lindemann proved that π is transcenden-
tal. Lindemann’s proof also settled, once and for all, the ancient Greek question of whether the circle could be
squared with straight-edge and compass. It cannot be, because numbers that are the lengths of lines that can be
constructed using ruler and compasses (often called constructible numbers) are necessarily algebraic, and squar-
ing the circle is equivalent to constructing the value π. The classical Athenian playwright Aristophanes already
‘knew’ this and perhaps derided ‘circle-squarers’ (τετραγωσιειν) in his play The Birds of 414 BCE. Likewise,
the French Academy had stopped accepting proofs of the three great constructions of antiquity—squaring the
circle, doubling the cube and trisecting the angle—centuries earlier.

We next give, in extenso, Ivan Niven’s 1947 short proof of the irrationality of π. It well illustrates the
ingredients of more difficult later proofs of irrationality of other constants, and indeed of Lindemann’s proof of
the transcendence of π building on Hermite’s 1873 proof of the transcendence of e.

8 A Proof that π is Irrational

Proof. Let π = a/b, the quotient of positive integers. We define the polynomials

f(x) =
xn(a− bx)n

n!

F (x) = f(x)− f (2)(x) + f (4)(x)− · · ·+ (−1)nf (2n)(x)

the positive integer being specified later. Since n!f(x) has integral coefficients and terms in x of degree not
less than n, f(x) and its derivatives f (j)(x) have integral values for x = 0; also for x = π = a/b, since
f(x) = f(a/b− x). By elementary calculus we have

d

dx
{F ′(x) sinx− F (x) cosx} = F ′′(x) sinx+ F (x) sinx = f(x) sinx

and ∫ π

0

f(x) sinxdx = [F ′(x) sinx− F (x) cosx]π0

= F (π) + F (0).(12)

Now F (π) + F (0) is an integer, since f (j)(0) and f (j)(π) are integers. But for 0 < x < π,

0 < f(x) sinx <
πnan

n!
,

so that the integral in (12) is positive but arbitrarily small for n sufficiently large. Thus (12) is false, and so is
our assumption that π is rational. QED

Irrationality measures. We end this section by touching on the matter of measures of irrationality. The
infimum µ(α) of those µ > 0 for which ∣∣∣∣α− p

q

∣∣∣∣ ≥ 1

qµ

for all integers p, q with sufficiently large q, is called the Liouville-Roth constant for α and we say that we have
an irrationality measure for α if µ(α) <∞.
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Irrationality measures are difficult. Roth’s theorem, [11], implies that µ(α) = 2 for all algebraic irrationals,
as is the case for almost all reals. Clearly, µ(α) = 1 for rational α and µ(α) = ∞ iff and only if α is Liouville
numbers such as

∑
1/10n!. It is known that µ(e) = 2 while in 1993 Hata showed that µ(π) ≤ 8.02. Similarly,

it is known that µ(ζ(2)) ≤ 5.45, µ(ζ(3)) ≤ 4.8 and µ(log 2) ≤ 3.9.

A consequence of the existence of an irrationality measure µ for π, is the ability to estimate quantities such
as lim sup | sin(n)|1/n = 1 for integer n, since for large integer m and n with m/n→ π, we have eventually

| sin(n)| = | sin(mπ)− sin(n)| ≥ 1

2
|mπ − n| ≥ 1

2mµ−1
.

Related matters are discussed at more length in [1].

9 Pi in the Digital Age

With the substantial development of computer technology in the 1950s, π was computed to thousands and
then millions of digits. These computations were greatly facilitated by the discovery soon after of advanced
algorithms for the underlying high-precision arithmetic operations. For example, in 1965 it was found that the
newly-discovered fast Fourier transform (FFT) [11, 10] could be used to perform high-precision multiplications
much more rapidly than conventional schemes. Such methods (e.g., for ÷,

√
x see [11, 12, 10]) dramatically

lowered the time required for computing π and other constants to high precision. We are now able to compute
algebraic values of algebraic functions essentially as fast as we can multiply, OB(M(N)), where M(N) is the
cost of multiplication and OB counts ‘bits’ or ‘flops’. To convert this into practice: a state-of-the-art processor
in 2010, such as the latest AMD Opteron, which runs at 2.4 GHz and has four floating-point cores, each of
which can do two 64-bit floating-point operations per second, can produce a total of 9.6 billion floating-point
operations per second.

In spite of these advances, into the 1970s all computer evaluations of π still employed classical formulae,
usually of Machin-type, see Figure 8. We will see below methods that compute N digits of π with time
complexity OB(M(N)) logOB(M(N)). Showing that the log term is unavoidable, as seems likely, would provide
an algorithmic proof that π is not algebraic.

Electronic Numerical Integrator and Calculator. The first computer calculation of Pi was performed
on ENIAC—a behemoth with a tiny brain from today’s vantage point. The ENIAC was built in Aberdeen
Maryland by the US Army:

Size/weight. ENIAC had 18,000 vacuum tubes, 6,000 switches, 10,000 capacitors, 70,000 resistors,
1,500 relays, was 10 feet tall, occupied 1,800 square feet and weighed 30 tons.
Speed/memory. A, now slow, 1.5GHz Pentium does 3 million adds/sec. ENIAC did 5,000, three
orders faster than any earlier machine. The first stored-memory computer, ENIAC could hold 200
digits.
Input/output. Data flowed from one accumulator to the next, and after each accumulator finished
a calculation, it communicated its results to the next in line. The accumulators were connected to
each other manually. The 1949 computation of π to 2,037 places on ENIAC took 70 hours in which
output had to be constantly reintroduced as input.

A fascinating description of the ENIAC’s technological and commercial travails is to be found in [20].

Ballantine’s (1939) Series for π. Another formula of Euler for arccot is

x
∞∑

n=0

(n!)
2
4n

(2n+ 1)! (x2 + 1)
n+1 = arctan

(
1

x

)
.
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G.N. Watson elegantly describes feeling

“a thrill which is indistinguishable from the thrill
which I feel when I enter the Sagrestia Nuova of
the Cappella Medici and see before me the aus-
tere beauty of the four statues representing ‘Day’,
‘Night’, ‘Evening’, and ‘Dawn’ which Michelan-
gelo has set over the tomb of Giuliano de’Medici
and Lorenzo de’Medici”

on viewing formulae of Ramanujan, such
as (13).

Figure 10: Ramanujan’s seventy-fifth birthday stamp

This, intriguingly and usefully, allowed Guilloud and Boyer to reexpress the formula, used by them in 1973 to
compute a million digits of Pi, viz, π/4 = 12 arctan (1/18) + 8 arctan (1/57) − 5 arctan (1/239) in the efficient
form

π = 864
∞∑

n=0

(n!)
2
4n

(2n+ 1)! 325n+1 + 1824
∞∑

n=0

(n!)
2
4n

(2n+ 1)! 3250n+1 − 20 arctan

(
1

239

)
,

where the terms of the second series are now just decimal shifts of the first.

Ramanujan-type elliptic series. Truly new types of infinite series formulae, based on elliptic integral
approximations, were discovered by Srinivasa Ramanujan (1887–1920), shown in Figure 10, around 1910, but
were not well known (nor fully proven) until quite recently when his writings were widely published. They are
based on elliptic functions and are described at length in [5, 11, 10].

One of these series is the remarkable:

1

π
=

2
√
2

9801

∞∑
k=0

(4k)! (1103 + 26390k)

(k!)43964k
.(13)

Each term of this series produces an additional eight correct digits in the result. When Gosper used this formula
to compute 17 million digits of π in 1985, and it agreed to many millions of places with the prior estimates,
this concluded the first proof of (13), as described in [13] ! Actually, Gosper first computed the simple continued
fraction for π, hoping to discover some new things in its expansion, but found none.

At about the same time, David and Gregory Chudnovsky found the following rational variation of Ra-
manujan’s formula. It exists because

√
−163 corresponds to an imaginary quadratic field with class number

one:

1

π
= 12

∞∑
k=0

(−1)k (6k)! (13591409 + 545140134k)

(3k)! (k!)3 6403203k+3/2
(14)

Each term of this series produces an additional 14 correct digits. The Chudnovskys implemented this formula
using a clever scheme that enabled them to use the results of an initial level of precision to extend the calculation
to even higher precision. They used this in several large calculations of π, culminating with a then record
computation to over four billion decimal digits in 1994. Their remarkable story was compellingly told by
Richard Preston in a prizewinning New Yorker article “The Mountains of Pi” (March 2, 1992).
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Name Year Correct Digits
Miyoshi and Kanada 1981 2,000,036
Kanada-Yoshino-Tamura 1982 16,777,206
Gosper 1985 17,526,200
Bailey Jan. 1986 29,360,111
Kanada and Tamura Sep. 1986 33,554,414
Kanada and Tamura Oct. 1986 67,108,839
Kanada et. al Jan. 1987 134,217,700
Kanada and Tamura Jan. 1988 201,326,551
Chudnovskys May 1989 480,000,000
Kanada and Tamura Jul. 1989 536,870,898
Kanada and Tamura Nov. 1989 1,073,741,799
Chudnovskys Aug. 1991 2,260,000,000
Chudnovskys May 1994 4,044,000,000
Kanada and Takahashi Oct. 1995 6,442,450,938
Kanada and Takahashi Jul. 1997 51,539,600,000
Kanada and Takahashi Sep. 1999 206,158,430,000
Kanada-Ushiro-Kuroda Dec. 2002 1,241,100,000,000
Takahashi Jan. 2009 1,649,000,000,000
Takahashi April. 2009 2,576,980,377,524
Bellard Dec. 2009 2,699,999,990,000

Figure 11: Post-calculus π Calculations

While the Ramanujan and Chudnovsky series are in practice considerably more efficient than classical for-
mulae, they share the property that the number of terms needed increases linearly with the number of digits
desired: if you want to compute twice as many digits of π, you must evaluate twice as many terms of the series.

Relatedly, the Ramanujan-type series

1

π
=

∞∑
n=0

((
2n
n

)
16n

)3
42n+ 5

16
.(15)

allows one to compute the billionth binary digit of 1/π, or the like, without computing the first half of the series,
and is a foretaste of our later discussion of Borwein-Bailey-Plouffe (or BBP) formulae.

10 Reduced Operational Complexity Algorithms

In 1976, Eugene Salamin and Richard Brent independently discovered a reduced complexity algorithm for π.
It is based on the arithmetic-geometric mean iteration (AGM) and some other ideas due to Gauss and
Legendre around 1800, although Gauss, nor many after him, never directly saw the connection to effectively
computing π.

Quadratic Algorithm (Salamin-Brent). Set a0 = 1, b0 = 1/
√
2 and s0 = 1/2. Calculate

ak =
ak−1 + bk−1

2
(A) bk =

√
ak−1bk−1 (G)(16)

ck = a2k − b2k, sk = sk−1 − 2kck and compute pk =
2a2k
sk

.(17)
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Then pk converges quadratically to π. Note the similarity between the arithmetic-geometric mean iteration
(16), (which for general initial values converges fast to a non-elementary limit) and the out-of-kilter harmonic-
geometric mean iteration (2) (which in general converges slowly to an elementary limit), and which is an
arithmetic-geometric iteration in the reciprocals (see [11]).

Each iteration of the algorithm doubles the correct digits. Successive iterations produce 1, 4, 9, 20, 42, 85, 173, 347
and 697 good decimal digits of π, and takes logN operations for N digits. Twenty-five iterations computes π
to over 45 million decimal digit accuracy. A disadvantage is that each of these iterations must be performed to
the precision of the final result. In 1985, my brother Peter and I discovered families of algorithms of this type.
For example, here is a genuinely third-order iteration:

Cubic Algorithm. Set a0 = 1/3 and s0 = (
√
3− 1)/2. Iterate

rk+1 =
3

1 + 2(1− s3k)
1/3

, sk+1 =
rk+1 − 1

2
and ak+1 = r2k+1ak − 3k(r2k+1 − 1).

Then 1/ak converges cubically to π. Each iteration triples the number of correct digits.

Quartic Algorithm. Set a0 = 6− 4
√
2 and y0 =

√
2− 1. Iterate

yk+1 =
1− (1− y4k)

1/4

1 + (1− y4k)
1/4

and ak+1 = ak(1 + yk+1)
4 − 22k+3yk+1(1 + yk+1 + y2k+1).

Then 1/ak converges quartically to π. Note that only the power of 2 or 3 used in ak depends on k.

There are many more and longer mnemonics than the sample given in the inset box—see [5, p. 405, p.560,
p. 659] for a fine selection.

Mnemonics for Pi

“Now I , even I, would celebrate
In rhyme inapt, the great

Immortal Syracusan, rivaled nevermore,
Who in his wondrous lore,

Passed on before
Left men for guidance

How to circles mensurate.” (30)

“How I want a drink, alcoholic of course, after the heavy lectures involving
quantum mechanics.” (15)

“See I have a rhyme assisting my feeble brain its tasks ofttimes resisting.” (13)

Philosophy of mathematics. In 1997 the first occurrence of the sequence 0123456789 was found (later than
expected heuristically) in the decimal expansion of π starting at the 17, 387, 594, 880-th digit after the decimal
point. In consequence the status of several famous intuitionistic examples due to Brouwer and Heyting has
changed. These challenge the principle of the excluded middle—either a predicate holds or it does not— and
involve classically well-defined objects that for an intuitionist are ill-founded until one can determine when or
if the sequence occurred, [8].

For example, consider the sequence which is ‘0’ except for a ‘1’ in the first place where 0123456789 first
begins to appear in order if it ever occurs. Did it converge when first used by Brouwer as an example? Does it
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now? Was it then and is it now well defined? Classically it always was and converged to ‘0’. Intuitionistically
it converges now. What if we redefine the sequence to have its ‘1’ in the first place that 0123456789101112 first
begins?

11 Back to the Future

In December 2002, Kanada computed π to over 1.24 trillion decimal digits. His team first computed π in
hexadecimal (base 16) to 1,030,700,000,000 places, using the following two arctangent relations:

π = 48 tan−1 1

49
+ 128 tan−1 1

57
− 20 tan−1 1

239
+ 48 tan−1 1

110443

π = 176 tan−1 1

57
+ 28 tan−1 1

239
− 48 tan−1 1

682
+ 96 tan−1 1

12943
.

The first formula was found in 1982 by K. Takano, a high school teacher and song writer. The second formula
was found by F. C. W. Störmer in 1896. Kanada verified the results of these two computations agreed, and
then converted the hex digit sequence to decimal. The resulting decimal expansion was checked by converting
it back to hex. These conversions are themselves non-trivial, requiring massive computation.

This process is quite different from those of the previous quarter century. One reason is that reduced op-
erational complexity algorithms, require full-scale multiply, divide and square root operations. These in turn
require large-scale FFT operations, which demand huge amounts of memory, and massive all-to-all communica-
tion between nodes of a large parallel system. For this latest computation, even the very large system available
in Tokyo did not have sufficient memory and network bandwidth to perform these operations at reasonable
efficiency levels—at least not for trillion-digit computations. Utilizing arctans again meant using many more
arithmetic operations, but no system-scale FFTs, and it can be implemented using ×,÷ by smallish integer
values—additionally, hex is somewhat more efficient!

Kanada and his team evaluated these two formulae using a scheme analogous to that employed by Gosper
and by the Chudnovskys in their series computations, in that they were able to avoid explicitly storing the
multiprecision numbers involved. This resulted in a scheme that is roughly competitive in numerical efficiency
with the Salamin-Brent and Borwein quartic algorithms they had previously used, but with a significantly lower
total memory requirement. Kanada used a 1 Tbyte main memory system, as with the previous computation,
yet got six times as many digits. Hex and decimal evaluations included, it ran 600 hours on a 64-node Hitachi,
with the main segment of the program running at a sustained rate of nearly 1 Tflop/sec.

12 Why Pi?

What possible motivation lies behind modern computations of π, given that questions such as the irrationality
and transcendence of π were settled more than 100 years ago? One motivation is the raw challenge of harnessing
the stupendous power of modern computer systems. Programming such calculations are definitely not trivial,
especially on large, distributed memory computer systems.

There have been substantial practical spin-offs. For example, some new techniques for performing the fast
Fourier transform (FFT), heavily used in modern science and engineering computing, had their roots in attempts
to accelerate computations of π. And always the computations help in road-testing computers—often uncovering
subtle hardware and software errors.

Beyond practical considerations lies the abiding interest in the fundamental question of the normality (digit
randomness) of π. Kanada, for example, has performed detailed statistical analysis of his results to see if there
are any statistical abnormalities that suggest π is not normal, so far the answer is “no”, see Figures 13 and
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Figure 12: Yasumasa Kanada in his Tokyo office

14. Indeed the first computer computation of π and e on ENIAC, discussed above, was so motivated by John
von Neumann. The digits of π have been studied more than any other single constant, in part because of the
widespread fascination with and recognition of π. Kanada reports that the 10 decimal digits ending in position
one trillion are 6680122702, while the 10 hexadecimal digits ending in position one trillion are 3F89341CD5.

Changing world views. In retrospect, we may wonder why in antiquity π was not measured to an accuracy
in excess of 22/7? Perhaps it reflects not an inability to do so but a very different mind set to a modern
experimental—Baconian or Popperian—one. In the same vein, one reason that Gauss and Ramanujan did not
further develop the ideas in their identities for π is that an iterative algorithm, as opposed to explicit results,
was not as satisfactory for them (especially Ramanujan). Ramanujan much preferred formulae like

π ≈ 3√
67

log (5280) ,
3√
163

log (640320) ≈ π

correct to 9 and 15 decimal places both of which rely on deep number theory. Contrastingly, Ramanujan in his
famous 1914 paper Modular Equations and Approximations to Pi [5, p.253] found(

92 +
192

22

)1/4

= 3.14159265258 · · ·

“empirically, and it has no connection with the preceding theory.” Only the marked digit is wrong.

Discovering the π Iterations. The genesis of the π algorithms and related material is an illustrative example
of experimental mathematics. My brother and I in the early eighties had a family of quadratic algorithms for
π, [11], call them PN , of the kind we saw above. For N = 1, 2, 3, 4 we could prove they were correct but and
only conjectured for N = 5, 7. In each case the algorithm appeared to converge quadratically to π. On closer
inspection while the provable cases were correct to 5, 000 digits, the empirical versions of agreed with π to
roughly 100 places only. Now in many ways to have discovered a “natural” number that agreed with π to that
level—and no more—would have been more interesting than the alternative. That seemed unlikely but recoding
and rerunning the iterations kept producing identical results.
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Decimal Digit Occurrences

0 99999485134
1 99999945664
2 100000480057
3 99999787805
4 100000357857
5 99999671008
6 99999807503
7 99999818723
8 100000791469
9 99999854780

Total 1000000000000

Hex Digit Occurrences

0 62499881108
1 62500212206
2 62499924780
3 62500188844
4 62499807368
5 62500007205
6 62499925426
7 62499878794
8 62500216752
9 62500120671
A 62500266095
B 62499955595
C 62500188610
D 62499613666
E 62499875079
F 62499937801

Total 1000000000000

Figure 13: Apparently random behaviour of π base 10 and 16

Two decades ago even moderately high precision calculation was less accessible, and the code was being run
remotely over a phone-line in a Berkeley Unix integer package. After about six weeks, it transpired that the
package’s square root algorithm was badly flawed, but only if run with an odd precision of more than sixty digits!
And for idiosyncratic reasons that had only been the case in the two unproven cases. Needless to say, tracing
the bug was a salutary and somewhat chastening experience. And it highlights why one checks computations
using different sub-routines and methods.

13 How to Compute the N-th Digits of π

One might be forgiven for thinking that essentially everything of interest with regards to π has been dealt with.
This is suggested in the closing chapters of Beckmann’s 1971 book A History of π. Ironically, the Salamin–
Brent quadratically convergent iteration was discovered only five years later, and the higher-order convergent
algorithms followed in the 1980s. Then in 1990, Rabinowitz and Wagon discovered a “spigot” algorithm for
π—the digits ‘drip out’ one by one. This permits successive digits of π (in any desired base) to be computed
by a relatively simple recursive algorithm based on the all previously generated digits.

Even insiders are sometimes surprised by a new discovery. Prior to 1996, most folks thought if you want
to determine the d-th digit of π, you had to generate the (order of) the entire first d digits. This is not true,
at least for hex (base 16) or binary (base 2) digits of π. In 1996, Peter Borwein, Plouffe, and Bailey found an
algorithm for computing individual hex digits of π. It (1) yields a modest-length hex or binary digit string for
π, from an arbitrary position, using no prior bits; (2) is implementable on any modern computer; (3) requires
no multiple precision software; (4) requires very little memory; and (5) has a computational cost growing only
slightly faster than the digit position. For example, the millionth hexadecimal digit (four millionth binary digit)
of π could be found in four seconds on a 2005 Apple computer.

This new algorithm is not fundamentally faster than the best known schemes if used for computing all digits
of π up to some position, but its elegance and simplicity are of considerable interest, and is easy to parallelize.
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Figure 14: A ‘random walk’ on the first one million digits of π (Courtesy D. and G. Chudnovsky)

It is based on the following at-the-time new formula for π:

π =

∞∑
i=0

1

16i

(
4

8i+ 1
− 2

8i+ 4
− 1

8i+ 5
− 1

8i+ 6

)
(18)

which was discovered using integer relation methods (see [10]), with a computer search that lasted for several
months and then produced the (equivalent) relation:

π = 4F

(
1,

1

4
;
5

4
,−1

4

)
+ 2 tan−1

(
1

2

)
− log 5

where F(1, 1/4; 5/4,−1/4) = 0.955933837 . . . is a Gaussian hypergeometric function.

Maple and Mathematica can both now prove (18). A human proof may be found in [10].

The algorithm in action. In 1997, Fabrice Bellard at INRIA–whom we shall meet again in Section 15—
computed 152 binary digits of π starting at the trillionth position. The computation took 12 days on 20
workstations working in parallel over the Internet. Bellard’s scheme is based on the following variant of (18):

π = 4

∞∑
k=0

(−1)k

4k(2k + 1)
− 1

64

∞∑
k=0

(−1)k

1024k

(
32

4k + 1
+

8

4k + 2
+

1

4k + 3

)
,

which permits hex or binary digits of π to be calculated roughly 43% faster than (18).

In 1998 Colin Percival, then a 17-year-old student at Simon Fraser University, utilized 25 machines to
calculate first the five trillionth hexadecimal digit, and then the ten trillionth hex digit. In September, 2000, he
found the quadrillionth binary digit is 0, a computation that required 250 CPU-years, using 1734 machines in
56 countries. We record some computational results in Figure 18.

A last comment for this section is that Kanada was able to confirm his 2002 computation in only 21 hours
by computing a 20 hex digit string starting at the trillionth digit, and comparing this string to the hex string
he had initially obtained in over 600 hours. Their agreement provided enormously strong confirmation.
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Hex strings starting
Position at this Position

106 26C65E52CB4593

107 17AF5863EFED8D

108 ECB840E21926EC

109 85895585A0428B

1010 921C73C6838FB2

1011 9C381872D27596

1.25× 1012 07E45733CC790B

2.5× 1014 E6216B069CB6C1

Borweins and Plouffe (MSNBC, 1996)

Figure 15: Percival’s hexadecimal findings

14 Further BBP Digit Formulae

Motivated as above, constants α of the form

α =
∞∑
k=0

p(k)

q(k)2k
,(19)

where p(k) and q(k) are integer polynomials, are said to be in the class of binary (Borwein-Bailey-Plouffe) BBP
numbers. I illustrate for log 2 why this permits one to calculate isolated digits in the binary expansion:

log 2 =
∞∑
k=0

1

k2k
.(20)

We wish to compute a few binary digits beginning at position d + 1. This is equivalent to calculating
{2d log 2}, where {·} denotes fractional part. We can write

{2d log 2} =

{{
d∑

k=0

2d−k

k

}
+

{ ∞∑
k=d+1

2d−k

k

}}
=

{{
d∑

k=0

2d−k mod k

k

}
+

{ ∞∑
k=d+1

2d−k

k

}}
.(21)

The key observation is that the numerator of the first sum in (21), 2d−k mod k, can be calculated rapidly by
binary exponentiation, performed modulo k. That is, it is economically performed by a factorization based on
the binary expansion of the exponent. For example,

317 = ((((32)2)2)2) · 3

uses only five multiplications, not the usual 16. It is important to reduce each product modulo k. Thus, 317

mod 10 is done as
32 = 9; 92 = 1; 12 = 1; 12 = 1; 1× 3 = 3.

A natural question in light of (18) is whether there is a formula of this type and an associated computational
strategy to compute individual decimal digits of π. Searches conducted by numerous researchers have been
unfruitful and recently D. Borwein (my father), Galway and I have shown that there are no BBP formulae of
the Machin-type (as defined in [10]) of (18) for Pi unless the base is a power of two [10].
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These ‘subtractive’ acrylic circles represent
the weights [4,−2,−2,−1] in Equation (18)

Figure 16: Ferguson’s “Eight-Fold Way” and his BBP acrylic circles

Ternary BBP formulae. Yet, BBP formulae exist in other bases for some constants. For example, Broad-
hurst found this ternary BBP formula for π2:

π2 =
2

27

∞∑
k=0

(
1

3

)9k

×
{

243

(12k + 1)2
− 405

(12k + 2)2
− 81

(12k + 4)2
− 27

(12k + 5)2

− 72

(12k + 6)2
− 9

(12k + 7)2
− 9

(12k + 8)2
− 5

(12k + 10)2
+

1

(12k + 11)2

}
,

and π2 also has a binary BBP formula.

Also, the volume V8 in hyperbolic space of the figure-eight knot complement is well known to be

V8 = 2
√
3

∞∑
n=1

1

n
(
2n
n

) 2n−1∑
k=n

1

k
= 2.029883212819307250042405108549 . . .

Surprisingly, it is also expressible as

V8 =

√
3

9

∞∑
n=0

(−1)n

27n

{
18

(6n+ 1)2
− 18

(6n+ 2)2
− 24

(6n+ 3)2
− 6

(6n+ 4)2
+

2

(6n+ 5)2

}
,

again discovered numerically by Broadhurst, and proved in [10]. A beautiful representation by Helaman Ferguson
the mathematical sculptor is given in Figure 19. Ferguson produces art inspired by deep mathematics, but not
by a formulaic approach.

Normality and dynamics. Finally, Bailey and Crandall in 2001 made exciting connections between the
existence of a b-ary BBP formula for α and its normality base b (uniform distribution of base-b digits)7. They
make a reasonable, hence very hard, conjecture about the uniform distribution of a related chaotic dynamical

7See www.sciencenews.org/20010901/bob9.asp .
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system. This conjecture implies: Existence of a ‘BBP’ formula base b for α ensures the normality base b of α.
For log 2, illustratively8, the dynamical system, base 2, is to set x0 = 0 and compute

xn+1 ←↩ 2
(
xn +

1

n

)
mod 1.

15 Pi in the Third Millennium

15.1 Reciprocal series

A few years ago Jesús Guillera found various Ramanujan-like identities for π, using integer relation methods.
The three most basic are:

4

π2
=

∞∑
n=0

(−1)nr(n)5(13 + 180n+ 820n2)

(
1

32

)2n+1

(22)

2

π2
=

∞∑
n=0

(−1)nr(n)5(1 + 8n+ 20n2)

(
1

2

)2n+1

(23)

4

π3

?
=

∞∑
n=0

r(n)7(1 + 14n+ 76n2 + 168n3)

(
1

8

)2n+1

,(24)

where r(n) := (1/2 ·3/2 · · · · · (2n−1)/2)/n!. Guillera proved (22) and (23) in tandem, using the Wilf–Zeilberger
algorithm for formally proving hypergeometric-like identities [10, 4, 24] very ingeniously. No other proof is
known and there seem to be no like formulae for 1/πd with d ≥ 4. The third (24) is certainly true,9 but has
no proof, nor does anyone have an inkling of how to prove it; especially as experiment suggests that it has no
‘mate’ unlike (22) and (23) [4]. My intuition is that if a proof exists it is more a verification than an explication
and so I stopped looking. I am happy just to know the beautiful identity is true. A very nice account of the
current state of knowledge for Ramanujan-type series for 1/π is to be found in [6].

In 2008 Guillera [17] produced another lovely pair of third millennium identities—discovered with integer
relation methods and proved with creative telescoping—this time for π2 rather than its reciprocal. They are

(25)

∞∑
n=0

1

22n

(
x+ 1

2

)3
n

(x+ 1)3n
(6(n+ x) + 1) = 8x

∞∑
n=0

(
1
2

)2
n

(x+ 1)2n
,

and

(26)
∞∑

n=0

1

26n

(
x+ 1

2

)3
n

(x+ 1)3n
(42(n+ x) + 5) = 32x

∞∑
n=0

(
x+ 1

2

)2
n

(2x+ 1)2n
.

Here (a)n = a(a + 1) · ·(a + n − 1) is the rising factorial. Substituting x = 1/2 in (25) and (26), he obtained
respectively the formulae

∞∑
n=0

1

22n
(1)3n(
3
2

)3
n

(3n+ 2) =
π2

4

∞∑
n=0

1

26n
(1)3n(
3
2

)3
n

(21n+ 13) = 4
π2

3
.

8In this case it is easy to use Weyl’s criterion for equidistribution to establish this equivalence without mention of BBP numbers.
9Guillera ascribes (24) to Gourevich, who used integer relation methods. I’ve ‘rediscovered’ (24) using integer relation methods

with 30 digits. I then checked it to 500 places in 10 seconds, 1200 in 6.25 minutes, and 1500 in 25 minutes: with a naive command-line
instruction in Maple on a light laptop.
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15.2 Computational records

The last decade has seen the record for computation of π broken in some very interesting ways. We have already
described Kanada’s 2002 computation in Section 11 and noted that he also took advantage of the BBP formula
of Section 13. This stood as a record until 2009 when it was broken three times—-twice spectacularly.

Daisuke Takahashi. The record for computation of π went from under 29.37 million decimal digits, by Bailey
in 1986, to over 2.649 trillion places by Takahashi in January 2009. Since the same algorithms were used for each
computation, it is interesting to review the performance in each case: In 1986 it took 28 hours to compute 29.36
million digits on 1 cpu of the then new CRAY-2 at NASA Ames using (18). Confirmation using the quadratic
algorithm 16 took 40 hours. (The computation uncovered hardware and software errors on the CRAY. Success
required developing a speedup of the underlying FFT [10].) In comparison, on 1024 cores of a 2592 core Appro
Xtreme-X3 system 2.649 trillion digits via (16) took 64 hours 14 minutes with 6732 GB of main memory, and
(18) took 73 hours 28 minutes with 6348 GB of main memory. (The two computations differed only in the last
139 places.) In April Takahashi upped his record to an amazing 2,576,980,377,524 places.

Fabrice Bellard. Near the end of 2009, Bellard magnificently computed nearly 2.7 trillion decimal digits
of Pi (first in binary) of Pi using the Chudnovsky series (14). This took 131 days but he only used a single
4-core workstation with a lot of storage and even more human intelligence! For full details of this feat and of
Takahashi’s most recent computation one can look at

http://en.wikipedia.org/wiki/Chronology of computation of pi

16 . . . Life of Pi.

Paul Churchland writing about the sorry creationist battles of the Kansas school board [15, Kindle ed, loc 1589]
observes that:

“Even mathematics would not be entirely safe. (Apparently, in the early 1900’s, one legislator in a
southern state proposed a bill to redefine the value of pi as 3.3 exactly, just to tidy things up.)”

As we have seen the life of Pi captures a great deal of mathematics—algebraic, geometric and analytic, both
pure and applied—along with some history and philosophy. It engages many of the greatest mathematicians
and some quite interesting characters along the way. Among the saddest and least-well understood episodes
was an abortive 1896 attempt in Indiana to legislate the value(s) of Pi. The bill, reproduced in [5, p. 231-235],
is accurately described by David Singmaster, [22] and [5, p. 236-239]. Much life remains in this most central of
numbers.

At the end of the novel, Piscine (Pi) Molitor writes

“I am a person who believes in form, in harmony of order. Where we can, we must give things a
meaningful shape. For example—I wonder—could you tell my jumbled story in exactly one hundred
chapters, not one more, not one less? I’ll tell you, that’s one thing I hate about my nickname, the
way that number runs on forever. It’s important in life to conclude things properly. Only then can
you let go.”

We may well not share the sentiment, but we should celebrate that Pi knows π to be irrational.
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17 End Notes

1. Why π is not 22/7. Today, even the computer algebra systems Maple or Mathematica ‘know’ this since

0 <

∫ 1

0

(1− x)4x4

1 + x2
dx =

22

7
− π,(27)

though it would be prudent to ask ‘why’ each can perform the integral and ‘whether’ to trust it? Assuming
we do trust it, then the integrand is strictly positive on (0, 1), and the answer in (27) is an area and so strictly
positive, despite millennia of claims that π is 22/7. In this case, requesting the indefinite integral provides
immediate reassurance. We obtain∫ t

0

x4 (1− x)
4

1 + x2
dx =

1

7
t7 − 2

3
t6 + t5 − 4

3
t3 + 4 t− 4 arctan (t) ,

as differentiation easily confirms, and so the Newtonian Fundamental theorem of calculus proves (27).

One can take the idea in Equation (27) a bit further, as in [10]. Note that∫ 1

0

x4 (1− x)
4
dx =

1

630
,(28)

and we observe that

1

2

∫ 1

0

x4 (1− x)
4
dx <

∫ 1

0

(1− x)4x4

1 + x2
dx <

∫ 1

0

x4 (1− x)
4
dx.(29)

Combine this with (27) and (28) to derive: 223/71 < 22/7 − 1/630 < π < 22/7 − 1/1260 < 22/7 and so
re-obtain Archimedes’ famous computation

3
10

71
< π < 3

10

70
.(30)

The derivation above was first popularized in Eureka, a Cambridge student journal in 1971.10 A recent study
of related approximations is [19]. (See also [10].)

2. More about Gamma. One may define

Γ(x) =

∫ ∞

0

tx−1e−t dt

for Re x > 0. The starting point is that

xΓ(x) = Γ(x+ 1), Γ(1) = 1.(31)

In particular, for integer n, Γ(n+ 1) = n!. Also for 0 < x < 1

Γ(x) Γ(1− x) =
π

sin(πx)
,

since for x > 0 we have

Γ(x) = lim
n→∞

n!nx∏n
k=0(x+ k)

.

10Equation (27) was on a Sydney University examination paper in the early sixties and the earliest source I know of dates from
the forties [10].
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This is a nice consequence of the Bohr-Mollerup theorem [11, 10] which shows that Γ is the unique log-convex
function on the positive half line satisfying (31). Hence, Γ(1/2) =

√
π and equivalently we evaluate the Gaussian

integral ∫ ∞

−∞
e−x2

dx =
√
π,

so central to probability theory. In the same vein, the improper sinc function integral evaluates as∫ ∞

−∞

sin(x)

x
dx = π.

Considerable information about the relationship between Γ and π is to be found in [10, 16].

The Gamma function is as ubiquitous as π. For example, it is shown in [14] that the expected length, W3, of
a three-step unit-length random walk in the plane is given by

(32) W3 =
3

16

21/3

π4
Γ6

(
1

3

)
+

27

4

22/3

π4
Γ6

(
2

3

)
.

We recall that Γ(1/2)2 = π and that similar algorithms exist for Γ(1/3),Γ(1/4), and Γ(1/6) [11, 10].

2. More about Complexity Reduction. To illustrate the stunning complexity reduction in the elliptic
algorithms for Pi, let us write a complete set of algebraic equations approximating π to well over a trillion digits.

The number π is transcendental and the number 1/a20 computed next is algebraic
nonetheless they coincide for over 1.5 trillion places.

Set a0 = 6− 4
√
2, y0 =

√
2− 1 and then solve the following system:

y1 =
1− 4

√
1− y04

1 + 4
√

1− y04
, a1 = a0 (1 + y1)

4 − 23y1
(
1 + y1 + y1

2)
y2 =

1− 4
√

1− y14

1 + 4
√

1− y14
, a2 = a1 (1 + y2)

4 − 25y2
(
1 + y2 + y2

2)
y3 =

1− 4
√

1− y24

1 + 4
√

1− y24
, a3 = a2 (1 + y3)

4 − 27y3
(
1 + y3 + y3

2)
y4 =

1− 4
√

1− y34

1 + 4
√

1− y34
, a4 = a3 (1 + y4)

4 − 29y4
(
1 + y4 + y4

2)
y5 =

1− 4
√

1− y44

1 + 4
√

1− y44
, a5 = a4 (1 + y5)

4 − 211y5
(
1 + y5 + y5

2)
y6 =

1− 4
√

1− y54

1 + 4
√

1− y54
, a6 = a5 (1 + y6)

4 − 213y6
(
1 + y6 + y6

2)
y7 =

1− 4
√

1− y64

1 + 4
√

1− y64
, a7 = a6 (1 + y7)

4 − 215y7
(
1 + y7 + y7

2)
y8 =

1− 4
√

1− y74

1 + 4
√

1− y74
, a8 = a7 (1 + y8)

4 − 217y8
(
1 + y8 + y8

2)
y9 =

1− 4
√

1− y84

1 + 4
√

1− y84
, a9 = a8 (1 + y9)

4 − 219y9
(
1 + y9 + y9

2)
y10 =

1− 4
√

1− y94

1 + 4
√

1− y94
, a10 = a9 (1 + y10)

4 − 221y10
(
1 + y10 + y10

2)

y11 =
1− 4

√
1− y104

1 + 4
√

1− y104
, a11 = a10 (1 + y11)

4 − 223y11
(
1 + y11 + y11

2)
y12 =

1− 4
√

1− y114

1 + 4
√

1− y114
, a12 = a11 (1 + y12)

4 − 225y12
(
1 + y12 + y12

2)
y13 =

1− 4
√

1− y124

1 + 4
√

1− y124
, a13 = a12 (1 + y13)

4 − 227y13
(
1 + y13 + y13

2)
y14 =

1− 4
√

1− y134

1 + 4
√

1− y134
, a14 = a13 (1 + y14)

4 − 229y14
(
1 + y14 + y14

2)
y15 =

1− 4
√

1− y144

1 + 4
√

1− y144
, a15 = a14 (1 + y15)

4 − 231y15
(
1 + y15 + y15

2)
y16 =

1− 4
√

1− y154

1 + 4
√

1− y154
, a16 = a15 (1 + y16)

4 − 233y16
(
1 + y16 + y16

2)
y17 =

1− 4
√

1− y164

1 + 4
√

1− y164
, a17 = a16 (1 + y17)

4 − 235y17
(
1 + y17 + y17

2)
y18 =

1− 4
√

1− y174

1 + 4
√

1− y174
, a18 = a17 (1 + y18)

4 − 237y18
(
1 + y18 + y18

2)
y19 =

1− 4
√

1− y184

1 + 4
√

1− y184
, a19 = a18 (1 + y19)

4 − 239y19
(
1 + y19 + y19

2)
y20 =

1− 4
√

1− y194

1 + 4
√

1− y194
,a20 = a19 (1 + y20)

4 − 241y20
(
1 + y20 + y20

2) .
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Figure 17: Google’s trend line for ‘Pi’

This quartic algorithm, with the Salamin–Brent scheme, was first used by Bailey in 1986 [13] and was used
repeatedly by Yasumasa Kanada, see Figure 12, in Tokyo in computations of π over 15 years or so, culminating
in a 200 billion decimal digit computation in 1999. As recorded in Figure 11, it has been used twice very
recently by Takahashi. Only thirty five years earlier in 1963, Dan Shanks—a very knowledgeable participant—
was confident that computing a billion digits was forever impossible. Today it is ‘reasonably easy’ on a modest
laptop. A fine self-contained study of this quartic algorithm—along with its cubic confrere also described in
Section 10—can be read in [18]. The proofs are nicely refined specializations of those in [12].

3. The Difficulty of Popularizing Accurately. Churchland in [15] offers a fascinating set of essays full of
interesting anecdotes—which I have no particular reason to doubt—but the brief quote in Section 16 contains
four inaccuracies. As noted above: (i) The event took place in 1896/7 and (ii) in Indiana (a northern state); (iii)
The prospective bill, #246, offered a geometric construction with inconsistent conclusions and certainly offers
no one exact value. Finally, (iv) the intent seems to have been pecuniary not hygienic [22]. As often, this makes
me wonder whether mathematics popularization is especially prone to error or if the other disciplines just seem
better described because of my relative ignorance. On April 1, 2009, an article entitled “The Changing Value
of Pi” appeared in the New Scientist with an analysis of how the value of pi has been increasing over time.
I hope but am not confident that all readers noted that April First is “April fool’s day.” (See entry seven of
http://www.museumofhoaxes.com/hoax/aprilfool/.)

Following Pi on the Web. One can now follow Pi on the web through Wikipedia, MathWorld or elsewhere,
and indeed one may check the performance of π by looking up ‘Pi’ at http://www.google.com/trends. Figure
17 shows very clear seasonal trends.

Acknowledgements. Thanks are due to many, especially my close collaborators P. Borwein and D. Bailey.
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CLOSED FORMS: WHAT THEY ARE AND WHY THEY MATTER

JONATHAN M. BORWEIN AND RICHARD E. CRANDALL

Abstract. The term “closed form” is one of those mathematical notions that
is commonplace, yet virtually devoid of rigor. And, there is disagreement even
on the intuitive side; for example, most everyone would say that (π + log 2) is a
closed form, but some of us would think that the Euler constant γ is not closed.
Like others before us, we shall try to supply some missing rigor to the notion of
closed forms and also to give examples from modern research where the question
of closure looms both important and elusive.

1. Closed Forms: What They Are

Mathematics abounds in terms which are in frequent use yet which are rarely made
precise. Two such are rigorous proof and closed form (absent within differential
algebra). If a rigorous proof is “that which ‘convinces’ the appropriate audience”
then a closed form is “that which looks ‘fundamental’ to the requisite consumer.” In
both cases, this is a community-varying and epoch-dependent notion. What was a
compelling proof in 1810 may well not be now; what is a fine closed form in 2010
may have been anathema a century ago.

Let us begin by sampling the Web for various approaches to informal definitions
of “closed form.”

1.0.1. First approach to a definition of closed form. The first comes from
MathWorld [43] and so may well be the first and last definition a student or other
seeker-after-easy-truth finds.

An equation is said to be a closed-form solution if it solves a given problem
in terms of functions and mathematical operations from a given generally
accepted set. For example, an infinite sum would generally not be considered
closed-form. However, the choice of what to call closed-form and what not is

Date: April 12, 2010.

Borwein: Centre for Computer Assisted Research Mathematics and its Applica-
tions (CARMA), University of Newcastle, Callaghan, NSW 2308, Australia. Email:
jonathan.borwein@newcastle.edu.au.
Crandall: Center for Advanced Computation, Reed College, Portland OR, USA. Email:
crandall@reed.edu.

1



2 JONATHAN M. BORWEIN AND RICHARD E. CRANDALL

rather arbitrary since a new “closed-form” function could simply be defined
in terms of the infinite sum.—Eric Weisstein

There is not much to disagree with in this but it is far from rigorous.

1.0.2. Second approach. The next follows a 16 Sept 1997 question to the long
operating “Dr. Math.” site1 and is a good model of what are interested students are
told.

Subject: Closed form solutions
Dear Dr. Math, What is the exact mathematical definition of a closed

form solution? Is a solution in “closed form” simply if an expression relating
all of the variables can be derived for a problem solution, as opposed to some
higher-level problems where there is either no solution, or the problem can
only be solved incrementally or numerically?
Sincerely, . . . .

The answer followed on 22 Sept:

This is a very good question! This matter has been debated by mathemati-
cians for some time, but without a good resolution.

Some formulas are agreed by all to be “in closed form.” Those are the ones
which contain only a finite number of symbols, and include only the opera-
tors +,−, ∗, /, and a small list of commonly occurring functions such as n-th
roots, exponentials, logarithms, trigonometric functions, inverse trigono-
metric functions, greatest integer functions, factorials, and the like.

More controversial would be formulas that include infinite summations
or products, or more exotic functions, such as the Riemann zeta function,
functions expressed as integrals of other functions that cannot be performed
symbolically, functions that are solutions of differential equations (such as
Bessel functions or hypergeometric functions), or some functions defined
recursively. Some functions whose values are impossible to compute at some
specific points would probably be agreed not to be in closed form (example:
f(x) = 0 if x is an algebraic number, but f(x) = 1 if x is transcendental.
For most numbers, we do not know if they are transcendental or not). I
hope this is what you wanted.

No more formal, but representative of many dictionary definitions is:

1.0.3. Third approach. A coauthor of the current article is at least in part respon-
sible for the following brief definition from a recent mathematics dictionary [16]:

closed form n. an expression for a given function or quantity, especially
an integral, in terms of known and well understood quantities, such as the

1Available at http://mathforum.org/dr/math/.

http://mathforum.org/dr/math/


CLOSED FORMS: WHAT THEY ARE AND WHY THEY MATTER 3

evaluation of ∫ ∞
∞

exp(−x2) dx

as
√
π.—Collins Dictionary

With that selection recorded, let us turn to some more formal proposals.

1.0.4. Fourth approach. Various notions of elementary numbers have been pro-
posed.

Definition [28]. A subfield F of C is closed under exp and log if (1)
exp(x) ∈ F for all x ∈ F and (2) log(x) ∈ F for all nonzero x ∈ F ,
where log is the branch of the natural logarithm function such that −π <
Im(log x) ≤ π for all x. The field E of EL numbers is the intersection of all
subfields of C that are closed under exp and log.—Tim Chow

Tim Chow explains nicely why he eschews capturing all algebraic numbers in his
definition; why he wishes only elementary quantities to have closed forms; whence he
prefers E to Ritt’s 1948 definition of elementary numbers as the smallest algebraically
closed subfield L of C that is closed under exp and log. His reasons include that

[i]ntuitively, “closed-form” implies “explicit,” and most algebraic func-
tions have no simple explicit expression.

Assuming Shanuel’s conjecture [28] then the algebraic members of E are exactly
those solvable in radicals. We may think of Chow’s class as the smallest plausible
class of closed forms.

1.1. Special functions. In an increasingly computational world, an explicit/implicit
dichotomy is occasionally useful; but not very frequently. Often we will prefer com-
putationally the numerical implicit value of an algebraic number to its explicit tower
of radicals; and it seems increasingly perverse to distinguish the root of 2x5−10x+5
to that of 2x4 − 10x + 5 or to prefer arctan(π/7) to arctan(1). We illustrate these
issues further in Example 3.1, 3.3 and 4.3.

We would prefer to view all values of classical special functions of mathematical
physics [41] at algebraic arguments as being closed forms. Again there is no gen-
erally accepted class of special functions, but most practitioners would agree that
the solutions to the classical second-order algebraic differential equations (linear or
say Painlevé) are included. But so are various hypertranscendental functions such as
Γ, B and ζ which are do not arise in that way.2

Hence we can not accept any definition of special function which relies on the
underlying functions satisfying natural differential equations. The class must be
extensible, new special functions are always being discovered.

2Of course a value of an hypertranscendental function at algebraic argument may be very well
behaved, see Example 1.2.
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A recent American Mathematical Monthly review3 of [37] says:

There’s no rigorous definition of special functions, but the following defini-
tion is in line with the general consensus: functions that are commonly used
in applications, have many nice properties, and are not typically available
on a calculator. Obviously this is a sloppy definition, and yet it works fairly
well in practice. Most people would agree, for example, that the gamma
function is included in the list of special functions and that trigonometric
functions are not.

Once again, there is much to agree with, and much to quibble about, in this reprise.
That said, most serious books on the topic are little more specific. For us, special
functions are non-elementary functions about which a significant literature has de-
veloped because of their importance in either mathematical theory or in practice.
We certainly prefer that this literature includes the existence of excellent algorithms
for their computation. This is all consonant with—if somewhat more ecumenical
than—Temme’s description in the preface of his lovely book [41, Preface p. xi]:

[W]e call a function “special” when the function, just like the logarithm,
the exponential and trigonometric functions (the elementary transcenden-
tal functions), belongs to the toolbox of the applied mathematician, the
physicist or engineer.

Even more economically, Andrews, Askey and Roy start the preface to their im-
portant book Special functions [1] by writing:

Paul Turan once remarked that special functions would be more appropri-
ately labeled “useful functions.”

With little more ado, they then start to work on the gamma and Beta functions;
indeed the term “special function” is not in their index. Near the end of their preface,
they also write

[W]e suggest that the day of formulas may be experiencing a new dawn.

This is a sentiment which we both fully share.

Example 1.1 (Lambert’s W). The Lambert W function, W (x), is defined by appro-
priate solution of y · ey = x [19, pp. 277-279]. This is a function which became a
closed form after it was implemented in computer algebra systems (CAS) [36]. It is
now embedded as a primitive in Maple and Mathematica with the same status as any
other well studied special or elementary function. (See for example the tome [24].)
The CAS know its power series and much more. For instance in Maple entering
> fsolve(exp(x)*x=1);identify(%);

returns
0.5671432904, LambertW(1)

3Available at http://www.maa.org/maa%20reviews/4221.html.

http://www.maa.org/maa%20reviews/4221.html


CLOSED FORMS: WHAT THEY ARE AND WHY THEY MATTER 5

We consider this to be a splendid closed form even though assuming Shanuel’s
conjecture W (1) 6∈ E [28]. Additionally, it is only recently rigorously proven that
W is not an elementary function in Liouville’s precise sense [24]. We also note that
successful simplification in a modern CAS [27] requires a great deal of knowledge of
special functions. �

1.2. Further approaches.

1.2.1. Fifth approach. PlanetMath’s offering, as of 15 February 20104, is certainly
in the elementary number corner.

expressible in closed form (Definition) An expression is expressible in
a closed form, if it can be converted (simplified) into an expression con-
taining only elementary functions, combined by a finite amount of rational
operations and compositions.—Planet Math

This reflects what is best and worst about ‘the mathematical wisdom of crowds’.
For the reasons adduced above, we wish to distinguish but admit both those closed
forms which give analytic insight from those which are sufficient and prerequisite to
effective computation. Our own current preferred class [7] is described next.

1.2.2. Sixth approach. We consider generalized hypergeometric evaluations (see [7])
as converging sums

x =
∑
n≥0

cnz
n (1.1)

where z is any algebraic with |z| ≤ 1, c0 is rational, and for n > 0, cn = p(n)
q(n)

cn−1 for

p and q polynomials with integer coefficients, q having no positive integer zeros. The
expansion here for x converges absolutely on the open disk |z| < 1, while for |z| = 1
the convergence is conditional. The ideas herein are readily extended to values x
arising from analytic continuation in the z-plane. Let us denote by X the set of all
such evaluations x, with complex-∞ adjoined, in the following:

Definition [7]. The ring of hyperclosure H is the smallest subring of C
containing the set X. Elements of H are deemed hyperclosed.

In other words, the ring H is generated by all general hypergeometric evaluations,
under the ·,+ operators, all symbolized by

H = 〈X〉·,+ .

H will contain a great many interesting closed forms from modern research. Note
that H contains all closed forms in the sense of [39, Ch. 8] wherein only finite linear
combinations of hypergeometric evaluations are allowed.

4Available at http://planetmath.org/encyclopedia/ClosedForm4.html.

http://planetmath.org/encyclopedia/ClosedForm4.html
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So what numbers are in the ring H? First off, almost no complex numbers belong
to this ring! This is easily seen by noting that the set of general hypergeometric
evaluations is countable, so the generated ring must also be countable. Still, a great
many fundamental numbers are provably hyperclosed. Examples follow, in which we
let ω denote an arbitrary algebraic number and n any positive integer:

ω, logω, eω, π

the dilogarithmic combination Li2(1/
√

5) + (log 2)(log 3),

the elliptic integral K(ω),

the zeta function values ζ(n),

special functions such as the Bessel evaluations Jn(ω).

We are not claiming that hyperclosure is any kind of final definition for “closed
forms.” But we do believe that any defining paradigm for closed forms must in-
clude this ring of hyperclosure H. One way to reach further is to define a ring of
superclosure as the closure

S := 〈HH〉·,+ .

This ring contains numbers such as

eπ + πe,
1

ζ(3)
,

and of course a vast collection of numbers that may not belong to H itself. If we say
that an element of S is superclosed, we still preserve the countability of all superclosed
numbers. Again, any good definition of “closed form” should incorporate whatever
is in the ring S.

It is striking how beautiful combinatorial games can be when played under the
rubric of hyper- or superclosure.

Example 1.2 (Superclosure of Γ(rational)). Let us begin with the Beta function

B(r, s) :=
Γ(r)Γ(s)

Γ(r + s)
.

with Γ(s) defined if one wishes as Γ(s) :=
∫∞
0
ts−1e−t dt. It turns out that for

any rationals r, s the Beta function is hyperclosed. This is immediate from the
hypergeometric identities

1

B(r, s)
=

rs

r + s
2F1(−r,−s, 1; 1),

B(r, s) =
π sin π(r + s)

sin πr sin πs

(1− r)M(1− s)M
M !(1− r − s)M

2F1(r, s,M + 1; 1),
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where M is any integer chosen such that the hypergeometric series converges, say
M = d1 + r + se. (Each of these Beta relations is a variant of the celebrated Gauss
evaluation of 2F1(·, ·, ·; 1) [1, 41].)

We did not seize upon the Beta function arbitrarily, for, remarkably, the hyperclo-
sure of B±1(r, s) leads to compelling results on the Gamma function itself. Indeed,
consider for example this product of four beta-function evaluations:

Γ(1/5)Γ(1/5)

Γ(2/5)
· Γ(2/5)Γ(1/5)

Γ(3/5)
· Γ(3/5)Γ(1/5)

Γ(4/5)
· Γ(4/5)Γ(1/5)

Γ(5/5)
.

We know this product is hyperclosed. But upon inspection we see that the product
is just Γ5(1/5). Along such lines one can prove that for any positive rational a/b (in
lowest terms), we have hyperclosure of powers of the Gamma-function, in the form:

Γ±b(a/b) ∈ H.
Perforce, we have therefore a superclosure result for any Γ(rational) and its reciprocal:

Γ±1(a/b) ∈ S.
One fundamental observation is thus: Γ−2(1/2) = 1

π
is hyperclosed; thus every integer

power of π is hyperclosed. Incidentally, deeper combinatorial analysis shows that—in
spite of our Γ5(1/5) beta-chain above, it really only takes logarithmically many (i.e.,
O(log b)) hypergeometric evaluations to write Gamma-powers. For example,

Γ−7
(

1

7

)
=

1

2376 2F1

(
−1

7
,−1

7
, 1; 1

)4

2F1

(
−2

7
,−2

7
, 1; 1

)2

2F1

(
−4

7
,−4

7
, 1; 1

)
.

We note also that for Γ(n/24) with n integer, elliptic integral algorithms are known
which converge as fast as those for π [25, 20]. �

The above remarks on superclosure of Γ(a/b) lead to the property of superclosure
for special functions such as Jν(ω) for algebraic ω and rational ν; and for many of
the mighty Meijer-G functions, as the latter can frequently be written by Slater’s
theorem [14] as superpositions of hypergeometric evaluations with composite-gamma
products as coefficients. (See Example 3.2 below for instances of Meijer-G in current
research.)

There is an interesting alternative way to envision hyperclosure, or at least some-
thing very close to our above definition. This is an idea of J. Carette [26], to the ef-
fect that solutions at algebraic end-points, and algebraic initial points, for holonomic
ODEs—i.e. differential-equation systems with integer-polynomial coefficients—could
be considered closed. One might say “diffeoclosed.” An example diffeoclosed number
is J1(1), i.e. from the Bessel differential equation for J1(z) with z ∈ [0, 1]; it suffices
without loss of generality to consider topologically clean trajectories of the variable
over [0, 1]. There is a formal ring of diffeoclosure, which ring is very similar to our H;
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however there is the caution that trajectory solutions can sometimes have nontrivial
topology, so precise ring definitions need to be effected carefully.

It is natural to ask “what is the complexity of hypergeometric evaluations?” Cer-
tainly for the converging forms with variable z on the open unit disk, convergence is
geometric, requiring O(D1+ε) operations to achieve D good digits. However in very
many cases this can be genuinely enhanced to O(D1/2+ε)[20].

2. Closed Forms: Why They Matter

In many optimization problems, simple, approximate solutions are more
useful than complex exact solutions.—Steve Wright

As Steve Wright observed in a recent lecture on sparse optimization it may well
be that a complicated analytic solution is practically intractable but a simplifying
assumption leads to a very practical closed form approximation (e.g., in compressed
sensing). In addition to appealing to Occam’s razor, Wright instances that:

(a) the data quality may not justify exactness;
(b) the simple solution may be more robust;
(c) it may be easier to “explain/ actuate/ implement/ store”;
(d) and it may conform better to prior knowledge.

Example 2.1 (The amplitude of a pendulum). Wikipedia5 after giving the classical
small angle (simple harmonic) approximation

p ≈ 2π

√
L

g

for the period p of a pendulum of length L and amplitude α, develops the exact
solution in a form equivalent to

p = 4

√
L

g
K
(

sin
α

2

)
and writes:

This integral cannot be evaluated in terms of elementary functions. It can
be rewritten in the form of the elliptic function of the first kind (also see
Jacobi’s elliptic functions), which gives little advantage since that form is
also insoluble.

True, an elliptic-integral solution is not elementary, yet the notion of insolubility is
misleading for two reasons: First, it is known that for some special angles α, the

5Available at http://en.wikipedia.org/wiki/Pendulum_(mathematics).

http://en.wikipedia.org/wiki/Pendulum_(mathematics)
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pendulum period can be given a closed form. As discussed in [29], one exact solution
is, for α = π/2 (so pendulum is released from horizontal-rod position),

p =

(
2π

√
L

g

) √
π

Γ2(3/4)
.

It is readily measurable in even a rudimentary laboratory that the excess factor here,√
πΓ−2(3/4) ≈ 1.18034 looks just right, i.e., a horizontal-release pendulum takes 18

per cent longer to fall. Moreover, there is an exact dynamical solution—covering
all motion in the time domain—namely for a pendulum with α = π, i.e. the bob
is released from the vertical-upward position, with the assumption of crossing angle
zero at time zero. We have period p = ∞, yet the exact angle α(t) can be written
down in terms of elementary functions!

The second misleading aspect is this: K is—for any α—remarkably tractable in a
computational sense. Indeed K admits of a quadratic transformation

K (k) = (1 + k1) K (k1) , k1 :=
1−
√

1− k2

1 +
√

1− k2
(2.1)

as was known already to Landen, Legendre and Gauss.
In fact all elementary function to very high precision are well computed via K [20].

So the comment was roughly accurate in the world of slide rules or pocket calcula-
tors; it is misleading today—if one has access to any computer package. Nevertheless,
both deserve to be called closed forms: one exact and the other an elegant approxi-
mate closed form (excellent in its domain of applicability, much as with Newtonian
mechanics) which is equivalent to

K
(

sin
α

2

)
≈ π

2

for small initial amplitude α. To compute K(π/6) = 1.699075885 . . . to five places
requires using (2.1) only twice and then estimating the resultant integral by π/2. A
third step gives the ten-digit precision shown. �

It is now the case that much mathematical computation is hybrid : mixing numeric
and symbolic computation. Indeed, which is which may not be clear to the user if,
say, numeric techniques have been used to return a symbolic answer or if a symbolic
closed form has been used to make possible a numerical integration. Moving from
classical to modern physics, both understanding and effectiveness frequently demand
hybrid computation.

Example 2.2 (Scattering amplitudes [2]). An international team of physicists, in
preparation for the Large Hadron Collider (LHC), is computing scattering amplitudes
involving quarks, gluons and gauge vector bosons, in order to predict what results
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could be expected on the LHC. By default, these computations are performed using
conventional double precision (64-bit IEEE) arithmetic. Then if a particular phase
space point is deemed numerically unstable, it is recomputed with double-double
precision. These researchers expect that further optimization of the procedure for
identifying unstable points may be required to arrive at an optimal compromise
between numerical accuracy and speed of the code. Thus they plan to incorporate
arbitrary precision arithmetic, into these calculations. Their objective is to design
a procedure where instead of using fixed double or quadruple precision for unstable
points, the number of digits in the higher precision calculation is dynamically set
according to the instability of the point. Any subroutine which uses a closed form
symbolic solution (exact or approximate) is likely to prove much more robust and
efficient. �

3. Detailed Examples

We start with three examples originating in [15].
In the January 2002 issue of SIAM News, Nick Trefethen presented ten diverse

problems used in teaching modern graduate numerical analysis students at Oxford
University, the answer to each being a certain real number. Readers were challenged
to compute ten digits of each answer, with a $100 prize to the best entrant. Trefethen
wrote,

“If anyone gets 50 digits in total, I will be impressed.”

To his surprise, a total of 94 teams, representing 25 different nations, submitted
results. Twenty of these teams received a full 100 points (10 correct digits for each
problem). The problems and solutions are dissected most entertainingly in [15]. One
of the current authors wrote the following in a review [17] of [15].

Success in solving these problems required a broad knowledge of mathemat-
ics and numerical analysis, together with significant computational effort, to
obtain solutions and ensure correctness of the results. As described in [15]
he strengths and limitations of Maple, Mathematica, Matlab (The 3Ms),
and other software tools such as PARI or GAP, were strikingly revealed in
these ventures. Almost all of the solvers relied in large part on one or more
of these three packages, and while most solvers attempted to confirm their
results, there was no explicit requirement for proofs to be provided.

Example 3.1 (Trefethen problem #2 [15, 17]).

A photon moving at speed 1 in the x-y plane starts at t = 0 at (x, y) =
(1/2, 1/10) heading due east. Around every integer lattice point (i, j)
in the plane, a circular mirror of radius 1/3 has been erected. How far
from the origin is the photon at t = 10?
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Using interval arithmetic with starting intervals of size smaller than 10−5000, one
can actually find the position of the particle at time 2000—not just time ten. This
makes a fine exercise in very high-precision interval computation, but in absence
of any closed form one is driven to such numerical gymnastics to deal with error
propagation. �

Example 3.2 (Trefethen’s problem #9 [15, 17]).

The integral I(a) =
∫ 2

0
[2 + sin(10α)]xα sin(α/(2 − x)) dx depends on

the parameter α. What is the value α ∈ [0, 5] at which I(α) achieves
its maximum?

The maximum parameter is expressible in terms of a Meijer-G function which is
a special function with a solid history. While knowledge of this function was not
common among the contestants, Mathematica and Maple both will figure this out
[14], and then the help files or a web search will quickly inform the scientist.

This is another measure of the changing environment. It is usually a good idea—
and not at all immoral—to data-mine. These Meijer-G functions, first introduced in
1936, also occur in quantum field theory and many other places [8]. For example,
the moments of an n-dimensional random walk in the plane are given for s > 0 by

Wn(s) :=

∫
[0,1]n

∣∣∣∣∣
n∑
k=1

e2πxki

∣∣∣∣∣
s

dx. (3.1)

It transpires [22, 32] that for all complex s

W3(s) =
Γ(1 + s/2)

Γ(1/2)Γ(−s/2)
G2,1

3,3

(
1, 1, 1

1/2,−s/2,−s/2

∣∣∣∣14
)
, (3.2)

W4(s) =
2s

π

Γ(1 + s/2)

Γ(−s/2)
G2,2

4,4

(
1, (1− s)/2, 1, 1

1/2,−s/2,−s/2,−s/2

∣∣∣∣1) . (3.3)

Moreover, for s not an odd integer, we have

W3(s) =
1

22s+1
tan
(πs

2

)( s
s−1
2

)2

3F2

( 1
2
, 1
2
, 1
2

s+3
2
, s+3

2

∣∣∣∣14
)

+

(
s
s
2

)
3F2

(
− s

2
,− s

2
,− s

2

1,− s−1
2

∣∣∣∣14
)
,

and

W4(s) =
1

22s
tan
(πs

2

)( s
s−1
2

)3

4F3

( 1
2
, 1
2
, 1
2
, s
2

+ 1
s+3
2
, s+3

2
, s+3

2

∣∣∣∣1)+

(
s
s
2

)
4F3

( 1
2
,− s

2
,− s

2
,− s

2

1, 1,− s−1
2

∣∣∣∣1) .
We thus know, from our “Sixth approach” section previous in regard to superclo-

sure of Γ-evaluations, that both W3(q),W4(q) are superclosed for rational argument
q for q not an odd integer.
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We illustrate by showing graphs of W3,W4 on the real line in Figure 1 and in
the complex plane in Figure 2. The later highlights the utility of the Meijer-G
representations. Note the poles and removable singularities.

!6 !4 !2 2

!3

!2

!1

1

2

3

4

(a) W3

!6 !4 !2 2

!3

!2

!1

1

2

3

4

(b) W4

Figure 1. W3, W4 analytically continued to the real line.

(a) W3 (b) W4

Figure 2. W3 via (3.2) and W4 via (3.3) in the complex plane.

The Meijer-G functions are now described in the newly completed Digital Library
of Mathematical Functions6 and as such are now full, indeed central, members of the
family of special functions. �

Example 3.3 (Trefethen’s problem #10 [15, 17]).

6A massive revision of Abramowitz and Stegun—with the now redundant tables removed, it is
available at www.dlmf.nist.gov.

www.dlmf.nist.gov
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A particle at the center of a 10 × 1 rectangle undergoes Brownian
motion (i.e., 2-D random walk with infinitesimal step lengths) till it
hits the boundary. What is the probability that it hits at one of the
ends rather than at one of the sides?

Hitting the Ends. Bornemann [15] starts his remarkable solution by exploring
Monte-Carlo methods, which are shown to be impracticable. He then reformulates
the problem deterministically as the value at the center of a 10 × 1 rectangle of an
appropriate harmonic measure [44] of the ends, arising from a 5-point discretization
of Laplace’s equation with Dirichlet boundary conditions. This is then solved by
a well chosen sparse Cholesky solver. At this point a reliable numerical value of
3.837587979 · 10−7 is obtained. And the posed problem is solved numerically to the
requisite ten places.

This is the warm up. We may proceed to develop two analytic solutions, the first
using separation of variables on the underlying PDE on a general 2a× 2b rectangle.
We learn that

p(a, b) =
4

π

∞∑
n=0

(−1)n

2n+ 1
sech

(
π(2n+ 1)

2
ρ

)
(3.4)

where ρ := a/b. A second method using conformal mappings, yields

arccot ρ = p(a, b)
π

2
+ arg K

(
eip(a,b)π

)
(3.5)

where K is again the complete elliptic integral of the first kind. It will not be apparent
to a reader unfamiliar with inversion of elliptic integrals that (3.4) and (3.5) encode
the same solution—though they must as the solution is unique in (0, 1)—and each
can now be used to solve for ρ = 10 to arbitrary precision. Bornemann ultimately
shows that the answer is

p =
2

π
arcsin (k100) , (3.6)

where

k100 :=

((
3− 2

√
2
)(

2 +
√

5
)(
−3 +

√
10
)(
−
√

2 +
4
√

5
)2)2

.

No one (except harmonic analysts perhaps) anticipated a closed form—let alone one
like this.
Where does this come from? In fact [20, (3.2.29)] shows that

∞∑
n=0

(−1)n

2n+ 1
sech

(
π(2n+ 1)

2
ρ

)
=

1

2
arcsin k, (3.7)
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exactly when kρ2 is parameterized by theta functions in terms of the so called nome,
q = exp(−πρ), as Jacobi discovered. We have

kρ2 =
θ22(q)

θ23(q)
=

∑∞
n=−∞ q(n+1/2)2∑∞

n=−∞ q
n2 , q := e−πρ. (3.8)

Comparing (3.7) and (3.4) we see that the solution is

k100 = 6.02806910155971082882540712292 . . . · 10−7

as asserted in (3.6).
The explicit form now follows from classical nineteenth century theory as discussed

say in [15, 20]. In fact k210 is the singular value sent by Ramanujan to Hardy in his
famous letter of introduction [19, 20]. If Trefethen had asked for a

√
210 × 1 box,

or even better a
√

15 ×
√

14 one, this would have shown up in the answer since in
general

p(a, b) =
2

π
arcsin

(
ka2/b2

)
. (3.9)

Alternatively, armed only with the knowledge that the singular values of rational
parameters are always algebraic we may finish entirely computationally as described
in [17]. �

We finish this section with an attractive example from optics.

Example 3.4 (Mirages [38]). In [38] the authors, using geometric methods, develop an
exact but implicit formula for the path followed by a light ray propagating over the
earth with radial variations in the refractive index. By suitably simplifying they are
able to provide an explicit integral closed form. They then expand it asymptotically.
This is done with the knowledge that the approximation is good to six or seven
places—more than enough to use it on optically realistic scales. Moreover, in the
case of quadratic or linear refractive indices these steps may be done analytically.

In other words, as discussed by Wright, a tractable and elegant approximate closed
form is obtained to replace a problematic exact solution. From these forms interest-
ing qualitative consequences follow. With a quadratic index, images are uniformly
magnified in the vertical direction; only with higher order indices can nonuniform
vertical distortion occur. This sort of knowledge allows one, for example, to correct
distortions of photographic images. �

4. Recent Examples from Our Own Work

Example 4.1 (Ising integrals [5, 8]). We recently studied the following classes of
integrals [5]. The Dn integrals arise in the Ising model of mathematical physics, and
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the Cn have tight connections to quantum field theory [8].

Cn =
4

n!

∫ ∞
0

· · ·
∫ ∞
0

1(∑n
j=1(uj + 1/uj)

)2 du1
u1
· · · dun

un

Dn =
4

n!

∫ ∞
0

· · ·
∫ ∞
0

∏
i<j

(
ui−uj
ui+uj

)2
(∑n

j=1(uj + 1/uj)
)2 du1

u1
· · · dun

un

En = 2

∫ 1

0

· · ·
∫ 1

0

( ∏
1≤j<k≤n

uk − uj
uk + uj

)2

dt2 dt3 · · · dtn,

where (in the last line) uk =
∏k

i=1 ti.
Needless to say, evaluating these n-dimensional integrals to high precision presents

a daunting computational challenge. Fortunately, in the first case, the Cn integrals
can be written as one-dimensional integrals:

Cn =
2n

n!

∫ ∞
0

pKn
0 (p) dp,

where K0 is the modified Bessel function. After computing Cn to 1000-digit accuracy
for various n, we were able to identify the first few instances of Cn in terms of well-
known constants, e.g.,

C3 = L−3(2) :=
∑
n≥0

(
1

(3n+ 1)2
− 1

(3n+ 2)2

)
, C4 =

7

12
ζ(3),

where ζ denotes the Riemann zeta function. When we computed Cn for fairly large
n, for instance

C1024 = 0.63047350337438679612204019271087890435458707871273234 . . . ,

we found that these values rather quickly approached a limit. By using the new
edition of the Inverse Symbolic Calculator 7 this numerical value was identified as

lim
n→∞

Cn = 2e−2γ,

where γ is the Euler constant. We later were able to prove this fact—this is merely
the first term of an asymptotic expansion—and thus showed that the Cn integrals
are fundamental in this context [5].

The integrals Dn and En are much more difficult to evaluate, since they are not
reducible to one-dimensional integrals (as far as we can tell), but with certain sym-
metry transformations and symbolic integration we were able to symbolically reduce

7 Available at http://carma.newcastle.edu.au/isc2/.

http://carma.newcastle.edu.au/isc2/
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the dimension in each case by one or two. In the case of D5 and E5, the resulting
3-D integrands are extremely complicated (see Figure 3), but we were nonetheless
able to numerically evaluate these to at least 240-digit precision on a highly parallel
computer system.

In this way, we produced the following evaluations, all of which except the last we
subsequently were able to prove:

D2 = 1/3

D3 = 8 + 4π2/3− 27 L−3(2)

D4 = 4π2/9− 1/6− 7ζ(3)/2

E2 = 6− 8 log 2

E3 = 10− 2π2 − 8 log 2 + 32 log2 2

E4 = 22− 82ζ(3)− 24 log 2 + 176 log2 2− 256(log3 2)/3 + 16π2 log 2− 22π2/3

and

E5
?
= 42− 1984 Li4(1/2) + 189π4/10− 74ζ(3)− 1272ζ(3) log 2 + 40π2 log2 2

−62π2/3 + 40(π2 log 2)/3 + 88 log4 2 + 464 log2 2− 40 log 2, (4.1)

where Li denotes the polylogarithm function.
In the case of D2, D3 and D4, these are confirmations of known results. We tried

but failed to recognize D5 in terms of similar constants (the 500-digit numerical
value is accessible8 if anyone wishes to try to find a closed form; or in the manner
of the hard sciences to confirm our data values). The conjectured identity shown
here for E5 was confirmed to 240-digit accuracy, which is 180 digits beyond the level
that could reasonably be ascribed to numerical round-off error; thus we are quite
confident in this result even though we do not have a formal proof [5].

Note that every one of the D,E forms above, including the conjectured last one,
is hyperclosed in the sense of our “Sixth approach” section. �

Example 4.2 (Weakly coupling oscillators [40, 6]). In an important analysis of cou-
pled Winfree oscillators, Quinn, Rand, and Strogatz [40] developed a certain N -
oscillator scenario whose bifurcation phase offset φ is implicitly defined, with a
conjectured asymptotic behavior: sinφ ∼ 1 − c1/N , with experimental estimate
c1 = 0.605443657 . . .. In [6] we were able to derive the exact theoretical value of this
“QRS constant” c1 as the unique zero of the Hurwitz zeta ζ(1/2, z/2) on z ∈ (0, 2).
In so doing were able to prove the conjectured behaviour. �

It is a frequent experience of ours that the need for high accuracy computation
drives the development of effective analytic expressions (closed forms?) which in
turn typically shed substantial light on the subject being studied.

8Available at http://crd.lbl.gov/~dhbailey/dhbpapers/ising-data.pdf.

http://crd.lbl.gov/~dhbailey/dhbpapers/ising-data.pdf
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E5 =

∫ 1

0

∫ 1

0

∫ 1

0

[
2(1− x)2(1− y)2(1− xy)2(1− z)2(1− yz)2(1− xyz)2(

−
[
4(x+ 1)(xy + 1) log(2)

(
y5z3x7 − y4z2(4(y + 1)z + 3)x6 − y3z

((
y2 + 1

)
z2 + 4(y+

1)z + 5)x5 + y2
(
4y(y + 1)z3 + 3

(
y2 + 1

)
z2 + 4(y + 1)z − 1

)
x4 + y

(
z
(
z2 + 4z

+5) y2 + 4
(
z2 + 1

)
y + 5z + 4

)
x3 +

((
−3z2 − 4z + 1

)
y2 − 4zy + 1

)
x2 − (y(5z + 4)

+4)x− 1)] /
[
(x− 1)3(xy − 1)3(xyz − 1)3

]
+
[
3(y − 1)2y4(z − 1)2z2(yz

−1)2x6 + 2y3z
(
3(z − 1)2z3y5 + z2

(
5z3 + 3z2 + 3z + 5

)
y4 + (z − 1)2z(

5z2 + 16z + 5
)
y3 +

(
3z5 + 3z4 − 22z3 − 22z2 + 3z + 3

)
y2 + 3

(
−2z4 + z3 + 2

z2 + z − 2
)
y + 3z3 + 5z2 + 5z + 3

)
x5 + y2

(
7(z − 1)2z4y6 − 2z3

(
z3 + 15z2

+15z + 1) y5 + 2z2
(
−21z4 + 6z3 + 14z2 + 6z − 21

)
y4 − 2z

(
z5 − 6z4 − 27z3

−27z2 − 6z + 1
)
y3 +

(
7z6 − 30z5 + 28z4 + 54z3 + 28z2 − 30z + 7

)
y2 − 2

(
7z5

+15z4 − 6z3 − 6z2 + 15z + 7
)
y + 7z4 − 2z3 − 42z2 − 2z + 7

)
x4 − 2y

(
z3
(
z3

−9z2 − 9z + 1
)
y6 + z2

(
7z4 − 14z3 − 18z2 − 14z + 7

)
y5 + z

(
7z5 + 14z4 + 3

z3 + 3z2 + 14z + 7
)
y4 +

(
z6 − 14z5 + 3z4 + 84z3 + 3z2 − 14z + 1

)
y3 − 3

(
3z5

+6z4 − z3 − z2 + 6z + 3
)
y2 −

(
9z4 + 14z3 − 14z2 + 14z + 9

)
y + z3 + 7z2 + 7z

+1)x3 +
(
z2
(
11z4 + 6z3 − 66z2 + 6z + 11

)
y6 + 2z

(
5z5 + 13z4 − 2z3 − 2z2

+13z + 5) y5 +
(
11z6 + 26z5 + 44z4 − 66z3 + 44z2 + 26z + 11

)
y4 +

(
6z5 − 4

z4 − 66z3 − 66z2 − 4z + 6
)
y3 − 2

(
33z4 + 2z3 − 22z2 + 2z + 33

)
y2 +

(
6z3 + 26

z2 + 26z + 6
)
y + 11z2 + 10z + 11

)
x2 − 2

(
z2
(
5z3 + 3z2 + 3z + 5

)
y5 + z

(
22z4

+5z3 − 22z2 + 5z + 22
)
y4 +

(
5z5 + 5z4 − 26z3 − 26z2 + 5z + 5

)
y3 +

(
3z4−

22z3 − 26z2 − 22z + 3
)
y2 +

(
3z3 + 5z2 + 5z + 3

)
y + 5z2 + 22z + 5

)
x+ 15z2 + 2z

+2y(z − 1)2(z + 1) + 2y3(z − 1)2z(z + 1) + y4z2
(
15z2 + 2z + 15

)
+ y2

(
15z4

−2z3 − 90z2 − 2z + 15
)
+ 15

]
/
[
(x− 1)2(y − 1)2(xy − 1)2(z − 1)2(yz − 1)2

(xyz − 1)2
]
−
[
4(x+ 1)(y + 1)(yz + 1)

(
−z2y4 + 4z(z + 1)y3 +

(
z2 + 1

)
y2

−4(z + 1)y + 4x
(
y2 − 1

) (
y2z2 − 1

)
+ x2

(
z2y4 − 4z(z + 1)y3 −

(
z2 + 1

)
y2

+4(z + 1)y + 1)− 1) log(x+ 1)] /
[
(x− 1)3x(y − 1)3(yz − 1)3

]
− [4(y + 1)(xy

+1)(z + 1)
(
x2
(
z2 − 4z − 1

)
y4 + 4x(x+ 1)

(
z2 − 1

)
y3 −

(
x2 + 1

) (
z2 − 4z − 1

)
y2 − 4(x+ 1)

(
z2 − 1

)
y + z2 − 4z − 1

)
log(xy + 1)

]
/
[
x(y − 1)3y(xy − 1)3(z−

1)3
]
−
[
4(z + 1)(yz + 1)

(
x3y5z7 + x2y4(4x(y + 1) + 5)z6 − xy3

((
y2+

1)x2 − 4(y + 1)x− 3
)
z5 − y2

(
4y(y + 1)x3 + 5

(
y2 + 1

)
x2 + 4(y + 1)x+ 1

)
z4+

y
(
y2x3 − 4y(y + 1)x2 − 3

(
y2 + 1

)
x− 4(y + 1)

)
z3 +

(
5x2y2 + y2 + 4x(y + 1)

y + 1) z2 + ((3x+ 4)y + 4)z − 1
)
log(xyz + 1)

]
/
[
xy(z − 1)3z(yz − 1)3(xyz − 1)3

])]
/
[
(x+ 1)2(y + 1)2(xy + 1)2(z + 1)2(yz + 1)2(xyz + 1)2

]
dx dy dz

Figure 3. The reduced multidimensional integral for E5, which inte-
gral has led to the conjectured closed form given in (4.1).
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Example 4.3 (Box integrals [3, 7, 21]). There has been recent research on calculation
of expected distance of points inside a hypercube to the hypercube. Such expecta-
tions are also called “box integrals” [21]. So for example, the expectation 〈|~r|〉 for
random ~r ∈ [0, 1]3 has the closed form

1

4

√
3− 1

24
π +

1

2
log
(

2 +
√

3
)
.

Incidentally, box integrals are not just a mathematician’s curiosity—the integrals
have been used recently to assess the randomness of brain synapses positioned within
a parallelepiped [34].

A very recent result is that every box integral 〈|~r|n〉 for integer n, and dimensions
1, 2, 3, 4, 5 are hyperclosed, in the sense of our “Sixth attempt” section. It turns
out that five-dimensional box integrals have been especially difficult, depending on
knowledge of a hyperclosed form for a single definite integral J(3), where

J(t) :=

∫
[0,1]2

log(t+ x2 + y2)

(1 + x2)(1 + y2)
dx dy. (4.2)

A proof of hyperclosure of J(t) for algebraic t ≥ 0 is established in [21, Thm. 5.1].
Thus 〈|~r|−2〉 for ~r ∈ [0, 1]5 can be written in explicit hyperclosed form involving a
105-character symbolic J(3); the authors of [21] were able to reduce the 5-dimensional
box integral down to “only” 104 characters. A companion integral J(2) also starts out
with about 105 characters but reduces stunningly to a only a few dozen characters,
namely

J(2) =
π2

8
log 2− 7

48
ζ(3) +

11

24
πCl2

(π
6

)
− 29

24
πCl2

(
5π

6

)
, (4.3)

where Cl2 is the Clausen function Cl2(θ) :=
∑

n≥1 sin(nθ)/n2 (Cl2 is the simplest
non-elementary Fourier series).

Automating such reductions will require a sophisticated simplification scheme with
a very large and extensible knowledge base. With a current Research Assistant, Alex
Kaiser at Berkeley, we have started to design software to refine and automate this
process and to run it before submission of any equation-rich paper. This semi-
automated integrity checking becomes pressing when—as above—verifiable output
from a symbolic manipulation might be the length of a Salinger novel. �

5. Profound curiosities

In our treatment of numbers enjoying hyperclosure or superclosure, we admitted
that such numbers are countable, and so almost all complex numbers cannot be
given a closed form along such lines. What is stultifying is: We do not know a single
explicit number outside of these countable sets. The situation is tantamount to the
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modern bind in regard to normal numbers; namely, though almost all numbers are
absolutely normal (i.e. have statistically random digit-structure in a certain technical
sense), we do not know a single fundamental constant that is provably absolutely
normal. (We do know some “artificial” normal numbers, see [13].)

Let us focus on some constants that might not be hyperclosed (nor superclosed).
One such constant is the celebrated Euler constant γ := limn→∞

∑n
k=1 1/k − log n.

We know of no hypergeometric form for γ; said constant may well lie outside of H
(or even S). There are expansions for the Euler constant, such as

γ = log π − 4 log Γ(3/4) +
4

π

∑
k≥1

(−1)k+1 log(2k + 1)

2k + 1
,

and even more exotic series (see [12]). One certainly cannot call this a closed form,
even if the infinite sum be conceptually simple. Relatedly, the classical Bessel ex-
pansion is

K0(z) = −
(

ln
(z

2

)
+ γ
)
I0(z) +

∞∑
n=1

∑n−1
k=1

1
k

(n!)2

(
z2

4

)n
.

Now K0(z) has a (degenerate) Meijer-G representation—so potentially is superclosed
for algebraic z—and I0(z) is accordingly hyperclosed, but the harmonic series on the
right is problematic. Likewise what is the status of the Ψ function?

Example 5.1 (Madelung constant [20, 33, 45]). Another fascinating number is the
Madelung constant of chemistry and physics [20, Section 9.3]. This is the potential
energy at the origin of an oscillating-charge crystal structure (most often said crystal
is NaCl (salt)) and is given by the formal sum

M :=
∑

x,y,z 6=0,0,0

(−1)x+y+z√
x2 + y2 + z2

= −1.747564594633..., (5.1)

and has never been given what a reasonable observer would call a closed form. (Na-
ture plays an interesting trick here: There are other crystal structures that are
tractable, yet somehow this exquisitely symmetrical salt structure remains elusive.)
But here we have another example of a constant having no known closed form, yet
rapidly calculable. A classical rapid expansion for Madelung’s constant is due to
Benson:

M = −12π
∑
m,n≥0

sech2
(π

2
((2m+ 1)2 + (2n+ 1)2)1/2

)
, (5.2)

in which convergence is exponential. Summing form,n ≤ 3 produces−1.747564594 . . .,
correct to 8 digits. There are great many other such formulae for M (see [20, 31]).



20 JONATHAN M. BORWEIN AND RICHARD E. CRANDALL

Through the analytic methods of Buhler, Crandall, Tyagi and Zucker since 1999
(see [31, 33, 42, 45]), we now know approximations such as

M ≈ 1

8
− log 2

4π
+

8π

3
+

Γ(1/8)Γ(3/8)

π3/2
√

2
+ log

k24
16k4k′4

,

where k4 := ((21/4 − 1)/(21/4 + 1))2. Two remarkable things: First, this approxi-
mation is good to the same 13 decimals we give in the display (5.1); the missing
O(10−14) error here is a rapidly, exponentially converging—but alas infinite—sum
in this modern approximation theory. Second: this 5-term approximation itself is
indeed hyperclosed, the only problematic term being the Γ-function part, but we did
establish in our “Sixth approach” section that B(1/8, 3/8) and also 1/π are hyper-
closed, which is enough. Moreover, the work of Borwein and Zucker [25] also settles
hyperclosure for that term. �

Certainly we have nothing like a proof, or even the beginnings of one, thatM (or
γ) lies outside H (or even S), but we ask on an intuitive basis: Is a constant such
as the mighty M telling us that it is not hyperclosed, in that our toil only seems to
bring more “closed-form” terms into play, with no exact resolution in sight?

6. Concluding Remarks and Open Problems

• We have posited several approaches to the elusive notion of “closed form.”
But what are the intersections and interrelations of said approaches? For
example, can our “Fourth approach” be absorbed into the evidently more
general “Sixth approach” (hyperclosure and superclosure)?

• How do we find a single number that is provably not in the ring of hyperclosure
H? (Though no such number is yet known, almost all numbers are as noted
not in said ring!) Same question persists for the ring of hyperclosure, S.
Furthermore, how precisely can one create a field out of HH via appropriate
operator extension?

• Though H is a subset of S, how might one prove that H 6= S? (Is the inequality
even true?) Likewise, is the set of closed forms in the sense of [39, Ch. 8] (only
finite linear combinations of hypergeometric evaluations) properly contained

in our H? And what about a construct such as HHH
? Should such an entity

be anything really new? Lest one remark on the folly of such constructions,
we observe that most everyone would say ππ

π
is a closed form!

• Having established the property of hyperclosure for Γb(a/b), are there any
cases where the power b may be brought down? For example, 1/π is hyper-
closed, but what about 1/

√
π?
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• There is expounded in reference [21] a theory of “expression entropy,” whereby
some fundamental entropy estimate gives the true complexity of an expression.
So for example, an expression having 1000 instances of the polylog token
Li3 might really involve only about 1000 characters, with that polylogarithm
token encoded as a single character, say. (In fact, during the research for
[21] it was noted that the entropy of Maple and Mathematica expressions of
the same entity often had widely varying text-character counts, but similar
entropy assessments.)

On the other hand, one basic notion of “closed form” is that explicitly in-
finite sums not be allowed. Can these two concepts be reconciled? Meaning:
Can we develop a theory of expression entropy by which an explicit, infinite
sum is given infinite entropy? This might be difficult, as for example a sum∑∞

n=1
1

n3/2 only takes a few characters to symbolize, as we just did hereby! If
one can succeed, though, in resolving thus the entropy business for expres-
sions, “closed form” might be rephrased as “finite entropy.”

Acknowledgements. Thanks are due to David Bailey for many relevant conversa-
tions and to Armin Straub for the complex plots of W3 and W4.
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Selected Excogitations and General Exegesis

 Go to Newest Quotes
Further details and Related Quotes

``a certain impression I had of mathematicians was ... that they spent immoderate
amounts of time declaring each other's work trivial.''

(Richard Preston)

 From his prize winning article The Mountains of Pi, New Yorker, March 9, 1992.

``It's about as interesting as going to the beach and counting sand. I wouldn't be
caught dead doing that kind of work.''

(Professor Take Your Pick)

``The universe contains at most `two to the power fifty' grains of sand.''

(Archimedes)

``Americans are broad-minded people. They'll accept the fact that a person can be
alcoholic, a dope fiend or a wife-beater, but if a man doesn't drive a car, everybody
thinks that something is wrong with him.''

(Art Buchwald, local newspaper, March 1996)

``Caution, skepticism, scorn, distrust and entitlement seem to be intrinsic to many
of us because of our training as scientists... . These qualities hinder your job search
and career change.''

 Former astrophysicist Stephen Rosen, now director, Scientific Career Transitions
Program, New York City, giving job-hunting advice in an on-line career counseling
session.

(Quoted in Science, 4 August 1995, page 637)

http://www.carma.newcastle.edu.au/~jb616/quotations.html#END
http://www.experimentalmath.info/quotations.html
http://www.barryland.com/pi.html
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``Consider a precise number that is well known to generations of parents and
doctors: the normal human body temperature of 98.6 Farenheit. Recent
investigations involving millions of measurements reveal that this number is wrong;
normal human body temperature is actually 98.2 Farenheit. The fault, however, lies
not iwth Dr. Wunderlich's original measurements - they were averaged and sensibly
rounded to the nearest degree: 37 Celsius. When this temperature was converted to
Farenheit, however, the rounding was forgotten and 98.6 was taken to be accurate
to the nearest tenth of a degree. Had the original interval between 36.5 and 37.5
Celsius been translated, the equivalent Farenheit temperatures would have ranged
from 97.7 to 99.5. Apparently, discalculia can even cause fevers.''

 John Allen Paulus, in `A Mathematician Reads the Newspaper' (Basic Books)

(Quoted in Science, August 18, 1995, page 992)

``When Gladstone was British Prime Minister he visited Michael Faraday's laboratory
and asked if some esoteric substance called `Electricity' would ever have practical
significance.

"One day, sir, you will tax it."

was the answer.''

(Quoted in Science, 1994). As Michael Saunders points out, this can not be correct because
Faraday died in 1867 and Gladstone became PM in 1868. A more plausible PM would be Peel

as electricity was discovered in 1831. Equally well it may be an `urbane legend'.

`` "the proof is left as an exercise" occurred in `De Triangulis Omnimodis' by
Regiomontanus, written 1464 and published 1533. He is quoted as saying "This is
seen to be the converse of the preceding. Moreover, it has a straightforward proof,
as did the preceding. Whereupon I leave it to you for homework." ''

(Quoted in Science, 1994)

``As the fading light of a dying day filtered through the window blinds, Roger stood
over his victim with a smoking .45, surprised at the serenity that filled him after
pumping six slugs into the bloodless tyrant that had mocked him day after day, and
then he shuffled out of the office with one last look back at the shattered computer
terminal lying there like a silicon armidillo left to rot on the information highway.''

 From the winner of the 1994 Bulwer-Lytton Fiction contest for lousy literature 

 Named for the author of `It was a dark and stormy night.' in the novel `Paul
Clifford', 1830. (Later winners are quoted below.)

``I imagine most of that stuff on the information highway is roadkill anyway.''
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(John Updike, 1994)

``It's going to be about bad news. It's going to be about the future of this country,
about foreign policy, about defense policy. There are a lot of issues left. I'm certain
something will pop up in November. So we'll be able to put it together.''

 Robert Dole on `what is the key issue?' in the '96 Presidential election.

(Quoted in the Economist, March 16, 1996, page 23)

``My dearest Miss Dorothea Sankey 

My affectionate & most excellent wife is as you are aware still living - and I am proud
to say her health is good. Nevertheless it is always well to take time by the forelock
and be prepared for all events. Should anything happen to her, will you supply in
her place - as soon as the proper period for decent mourning is over. 

Till then I am your devoted servant 
Anthony Trollope.''

 Anthony Trollope taking precautions in 1861.

 Sotheby's at auction in 1942 described this letter as "one of the most
extraordinary letters ever offered for sale".

(Quoted from The Oxford Book of Letters in the Economist, March 23, 1996, page 90)

``I believe that the motion picture is destined to revolutionize our educational
system and that in a few years it will supplant largely, if not entirely, the use of
textbooks.''

(Thomas Alva Edison, 1922)

``Keynes distrusted intellectual rigour of the Ricardian type as likely to get in the
way of original thinking and saw that it was not uncommon to hit on a valid
conclusion before finding a logical path to it.

`I don't really start', he said, `until I get my proofs back from the printer. Then I
can begin serious writing.' ''

 two excerpts from Keynes the man written on the 50th Anniverary of Keynes'
death.

(Sir Alec Cairncross, in the Economist, April 20, 1996)

``One major barrier to entry into new markets is the requirement to see the future
with clarity. It has been said that to so fortell the future, one has to invent it. To be
able to invent the future is the dividend that basic research pays.''
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 An econonomic case for basic research, by Eugen Wong, Hong Kong University
of Science and Technology

(In Nature, May 16, 1996, pages 178-9)

`` 'Ace, watch your head!' hissed Wanda urgently, yet somehow provocatively,
through red, full, sensuous lips, but he couldn't, you know, since nobody can actually
watch more than part of his nose or a little cheek or lips if he really tries, but he
appreciated her warning.''

 Janice Estey of Aspen 1996 Bulwer-Lytton Grand Prize Winner

``Because the Indians of the high Andes were believed to have little sense of humor,
Professor Juan Lyner was amazed to hear this knee-slapper that apparently had
been around for centuries at all of the Inca spots: `Llama ask you this. Guanaco on
a picnic? Alpaca lunch.' ''

 John Ashman of Houston 1995 Bulwer-Lytton Grand Prize Winner

``We know [smoking is] not good for kids. But a lot of other things aren't good.
Drinking's not good. Some would say milk's not good.''

 Robert Dole echoing the tobacco companies on smoking?

( Page 27 in the Economist, July 6, 1996)

``I feel so strongly about the wrongness of reading a lecture that my language may
seem immoderate .... The spoken word and the written word are quite different arts
.... I feel that to collect an audience and then read one's material is like inviting a
friend to go for a walk and asking him not to mind if you go alongside him in your
car.''

 Sir Lawrence Bragg. What would he say about overheads?

( Page 76 in Science, July 5, 1996)

``I know, it's hard to believe that Microsoft would release a product before it was
ready, but there you have it. A Seattle cyberwag says, "At Microsoft, quality is job
1.1." We had him killed. ''

 from Welcome to Stale

A take-off of Microsoft's ``webzine'', Slate, Stale, August 1996.

``No presidential candidate in the future will be so inept that four of his major
speeches can be boiled down to these four historic sentences: Agriculture is

http://www.stale.com/
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important. Our rivers are full of fish. You cannot have freedom with out liberty. The
future lies ahead.''

 the (no doubt partisan) Louisville Courier-Journal on Thomas Dewey in 1948, quoted in
Jack Beatty's review of James Patterson's Grand Expectations, The United States, 1945-1974.
Beatty goes on to say:

`Tom Dewey, make room for Bob (``like everyone else in this room I was born'')
Dole.`

 and lists many other fine quotes from Patterson's book.

(From pp. 107-112 in the Atlantic Monthly, September 1996)

``Writers often thank their colleagues for their help. Mine have given none. ..
Writers often thank their typists. I thank mine. Mrs George Cook is not a particularly
good typist, but her spelling and grammar are good. The responsibility for any
mistakes is mine, but the fault is hers. Finally, writers too often thank their wives. I
have no wife.''

 Acknowledgement by Edward Ingram in The Beginning of the Great Game in Asia, 1828-
1834.

(From p. 83 in the Economist, September 7th 1996)

``I see some parallels between the shifts of fashion in mathematics and in music. In
music, the popular new styles of jazz and rock became fashionable a little earlier
than the new mathematical styles of chaos and complexity theory. Jazz and rock
were long despised by classical musicians, but have emerged as art-forms more
accessible than classical music to a wide section of the public. Jazz and rock are no
longer to be despised as passing fads. Neither are chaos and complexity theory. But
still, classical music and classical mathematics are not dead. Mozart lives, and so
does Euler. When the wheel of fashion turns once more, quantum mechanics and
hard analysis will once again be in style.''

 Freeman Dyson's review of Nature's Numbers by Ian Stewart (Basic Books, 1995).

(From p. 612 in the American Mathematical Monthly, August-September 1996)

``I was sitting by Dr. Franklin, who perceived that I was not insensible to these
mutilations. I have made a rule, said he, whenever in my power, to avoid becoming
the draughtsman of papers to be reviewed by a public body.''

 Jefferson writing in 1818 of the drafting of the Declaration of Independence.

(From p. 74 of Conor Cruise O'Brien's disturbing article Thomas Jefferson: Radical and Racist,
in the Atlantic Monthly, October 1996) 

 ["The tree of liberty must be refreshed from time to time with the blood of patriots and
tyrants." 

(Jefferson quoted on Oklahoma bomb suspect McVeigh's T-shirt.)]
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``My morale has never been higher than since I stopped asking for grants to keep
my lab going.''

 Robert Pollack, Columbia Professor of biology. Speaking on "the crisis in scientific morale",
September 19, 1996 at GWU's symposium Science in Crisis at the Millennium.

(Quoted from p. 1805 in the September 27, 1996 Science)

``smugness, brutality, unctuous rectitude and tact"

 Cecil Rhodes own sardonic paraphrase of the criteria for a Rhodes Scholarship:

30% for "literary and scholarly attainments";
20% for "fondness of and success in manly outdoor sports";
30% for "qualities of manhood, truth, courage, devotion to duty...";
20% for "moral force of character and instincts to lead and to take an interest in his
school-mates".

(Quoted from Cecil Rhodes Traduced, pp. 80-81 in the October 5, 1996 Economist)

``The dictum that everything that people do is 'cultural' ... licenses the idea that
every cultural critic can meaningfully analyze even the most intricate
accomplishments of art and science. ... It is distinctly weird to listen to
pronouncements on the nature of mathematics from the lips of someone who cannot
tell you what a complex number is!''

 Norman Levitt, from "The flight From Science and Reason," New York Academy of Science.

(Quoted from p. 183 in the October 11, 1996 Science)

``Church discipline is also somewhat of a remove from the time when the Emperor
Henry IV was made to stand in the snow for three days outside the Pope's castle at
Canossa, awaiting forgiveness. A French Bishop, Jacques Gaillot, because of his
ultra-liberal views was recently transferred from his position at Evreux, in Normandy,
and given charge instead of the defunct dioscese of Partenia, in Southern Algeria,
which has been covered by sand since the Middle Ages. Gaillot has retaliated by
creating a virtual dioscese on the Internet, which can be reached at
http://www.partenia.fr ''

 Cullen Murphy, "Broken Covenant?"

(Quoted from p. 24 in the November, 1996 Atlantic Monthly)

``We were a polite society and I expected to lead a quiet life teaching mechanics
and listening to my senior colleagues gently but obliquely poking fun at one another.

http://www.partenia.fr/indexU.html
http://www.partenia.fr/
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This dream of somnolent peace vanished very quickly when Rutherford came to
Cambridge. Rutherford was the only person I have met who immediately impressed
me as a great man. He was a big man and made a big noise and he seemed to
enjoy every minute of his life. I remember that when transatlantic broadcasting first
came in, Rutherford told us at a dinner in Hall how he had spoken into a microphone
to America and had been heard all over the continent. One of the bolder of our
Fellows said "Surely you did not need to use apparatus for that." ''

 Geoffrey Fellows, 1952, as quoted by George Batchelor in The Life and Legacy of G.I.
Taylor (Cambridge University Press).

(Quoted in "Vignettes: Yesteryear in Oxbridge" p. 733 in Science November 1, 1996)

``Then, owls and bats,
Cowls and twats,

Monks and nuns, in a cloister's moods,
Adjourn to the oak-stump pantry.''

 From Robert Browning's (1841) Pippa Passes, which also contains "God's in his Heaven, all's
right with the world."

(Quoted on page 56-66 of Bill Byerson, Mother Tongue: The English Language, Penguin,
1990.)

 He goes on to say about "this disconcerting quote" that

``Browning had apparently somewhere come across the word twat - which meant
precisely the same as it does now - but somehow took it to mean a piece of head
gear for nuns. The verse became a source of twittering amusement for generations
of schoolboys and a perennial embarrassment to their elders, but the word was
never altered and Browning was allowed to live out his life in wholesome ignorance
because no one could think of a suitably delicate way of explaining his mistake to
him.''

``Two major advances are responsible for both the recent progress and current
optimism. First, recombinant DNA technology has made it possible to identify every
gene and protein in an organism and to manipulate them in order to explore their
functions. Second, it has been discovered that the molecular mechanisms of
development have been conserved during animal evolution to a far greater extent
than had been imagined. This conservation means that discoveries about the
development of worms and files, which come from the kind of powerful genetic
studies that are not possible in mammals, greatly accelerate the rate at which we
can discover the mechanisms and molecules that operate during our own
development.

... ...
It is tempting to think that the main principles of neural development will have been
discovered by the end of the century and that the cellular and molecular basis of the
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mind will be the main challenge for the next. An alternative view is that this feeling
that understanding is just a few steps away is a recurring and necessary delusion
that keeps scientists from dwelling on the complexity the face and how much more
remains to be discovered.''

(Editorial on page 1063 of Science November 15, 1996)

 Neural Development: Mysterious No More? written by Martin Raff (University College,
London).

[It is hard to imagine a better case for ``basic science'' than that afforded by this
conservation principle -- if worms were good enough for Darwin ... !]

``3. SPACE SYMPOSIUM: THEOLOGIANS JOIN SCIENTISTS AT WHITE HOUSE.

Vice President Gore, who was clearly on top of the technical issues, met on
Wednesday with a group of tough-minded scientists, clergy and fuzzy romantics to
discuss the questions raised by evidence of extraterrestrial life. For
physicist/astronomer John Bahcall, the remarkable thing was not that such questions
were being asked, but that we have the tools to answer them.''

(From WHAT'S NEW by Robert L. Park -- Friday, 13 Dec 96)

 WHAT'S NEW is published every Friday by the AMERICAN PHYSICAL SOCIETY.

``As the test beds begin to prove WDM (`wavelength division multiplexing')
networks feasible, telephone company executives will have to judge whether they
are wise. If a single glass fiber can carry all the voice, fax, video and data traffic for
a large corporation yet costs little more than today's high-speed Internet
connections, how much will they be able to charge for telephone service? Peter
Cochrane of BT Laboratories in Ipswich, England, predicts that "photonics will
transform the telecoms industry by effectively making bandwidth free and distance
irrelevant." Joel Birnbaum, director of Hewlett-Packard Laboratories, expects that this
will relegate telephone companies to the role of digital utilities. "You will buy
computing like you now buy water or power," he says.

Others, such as industry analyst Francis McInerney, believe the double-time march of
technology has already doomed them to fall behind. AT&T and its ilk, he claims, "are
already dead. When individuals have [megabits per second of bandwidth], telephone
service should cost about three cents a month." Having discovered how to offer high-
bandwidth service, telephone companies may now need to invent useful things to do
with it, just to stay in business. ''

(From BANDWIDTH, UNLIMITED by W. Wayt Gibbs)

 In the January 1997 on-line Scientific American.

``Before Canada jeopardizes its scientific future and compromises its scientific
community to achieve short-term budgetary solutions, it must recognize that the

http://iptsg.epfl.ch/aps/
http://www.sciam.com/
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funding of university sicence is both a government responsibility and a long-range
investment. Without government support, Canada's university science infrastructure
will erode, and along with it, the country's competitiveness in a world economy
increasingly based on knowledge.''

(Editorial on page 139 of Science January 10, 1997)

 Canada's Crisis: Can Business Rescue Science? written by Albert Aguyo and Richard A.
Murphy (McGill, Montreal Neurological).

1. SENATOR GRAMM EMERGES AS THE CHAMPION OF BASIC RESEARCH

178 new bills were introduced in the Senate on Tuesday -- one, S.124, is a thing of
beauty: "The National Research Investment Act of 1997." It calls for doubling the
federal investment in basic science and medical research over a 10-year period (WN
17 Jan 97). Funds must be allocated by a peer review system and can not be used
for the commercialization of technologies. A dozen non-defense agencies and
programs are covered by the bill, which is the work of Phil Gramm (R-TX). Gramm
pointed out that in 1965, 5.7% of the federal budget went for non-defense R&D --
32 years later, that has dropped to only 1.9%, and real spending on research has
declined for four straight years. Ten-year doubling requires an annual increase of 7%
-- just what leaders of the science community have been calling for (WN 10 Jan
97)."

(From WHAT'S NEW by Robert L. Park -- Friday, 24 January, 1997)

 WHAT'S NEW is published every Friday by the AMERICAN PHYSICAL SOCIETY. It is
interesting to contrast a conservative US senator (an ex-academic) from a liberal Canadian
government.

``a British officer told a sergeant to post four lookouts to watch for the German
army which was advancing through Belgium. Later, the officer discovered that the
sergeant had posted only three. Asked to explain his lapse, the soldier said he had
judged the fourth guard unnecessary. 'The enemy would hardly come from that
direction,' he explained, 'it's private property.' ''

(Quoted from Back to the Front by Stephen O'Shea)

 From page 59 in MACLEANS Magazine of February 10, 1997.

``Admirers of Thomas Jefferson have long quoted his statement about black men
and women that is inscribed on the Jefferson Memorial: 'Nothing is more certainly
written in the book of fate than that these people are to be free.' But they and the
inscription, as Conor Cruise O'Brien pointed out in 'Thomas Jefferson: Radical and
Racist' (October, 1996, Atlantic), omit Jefferson's subsequent clause: 'Nor is it less
certain that the two races, equally free, cannot live in the same government.'"

(Quoted from What Jefferson Helps to Explain by Benjamin Schwarz)

http://iptsg.epfl.ch/aps/
http://www.canoe.ca/macleans/home.html
http://www.carma.newcastle.edu.au/~jb616/quotations.html#CONOR
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 From page 60 in the Atlantic Monthly of March, 1997. [There are well established copyright
notions of "paternity" and "integrity" in the use of material -- the later which this clearly
violates!]

``A centre of excellence is, by definition, a place where second class people may
perform first class work.''

``A truly popular lecture cannot teach, and a lecture that truly teaches cannot be
popular.''

``The most prominent requisite to a lecturer, though perhaps not really the most
important, is a good delivery; for though to all true philosophers science and nature
will have charms innumerably in every dress, yet I am sorry to say that the
generality of mankind cannot accompany us one short hour unless the path is
strewed with flowers.''

(Three quotes from Michael Faraday)

 Excerpted from "Michael Faraday -- and the Royal Institution, the genius of man and
place", by J.M. Thomas, Adam Hilger, Bristol, 1991.

``The body of mathematics to which the calculus gives rise embodies a certain
swashbuckling style of thinking, at once bold and dramatic, given over to large
intellectual gestures and indifferent, in large measure, to any very detailed
description of the world. It is a style that has shaped the physical but not the
biological sciences, and its success in Newtonian mechanics, general relativity and
quantum mechanics is among the miracles of mankind. But the era in thought that
the calculus made possible is coming to an end. Everyone feels this is so and
everyone is right.''

(From Vignettes: Changing Times in Science, 28 February 1997, page 1276)

 From David Berlinski's "A Tour of the Calculus" (Pantheon Books, 1995)

``[8] 94m:94015 Beutelspacher, Albrecht Cryptology. An introduction to the art
and science of enciphering, encrypting, concealing, hiding and safeguarding described
without any arcane skullduggery but not without cunning waggery for the delectation
and instruction of the general public. Transformation from German into English
succored and abetted by J. Chris Fisher. MAA Spectrum. Mathematical Association of
America, Washington, DC, 1994. xvi+156 pp. ISBN: 0-88385-504-6 94A60 (94-01)''

(From Math Reviews)

 A serious "best title" candidate...

``It's generally the way with progress that it looks much greater than it really is.''

(From The Wittgenstein Controversy, by Evelyn Toynton in the Atlantic Monthly June 1997,

http://e-math.ams.org/msnprhtml/review_search.html
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pp. 28-41.)

 The epigraph that Ludwig Wittgenstein (1889-1951) ("whereof one cannot speak, thereof
one must be silent") had wished for an unrealized joint publication of Tractatus Logico-
Philosophicus (1922) and Philosophical Investigations (1953): suggesting the two volumes are
not irreconcilable.

Compare the following for which I have no good source:

"The world will change. It will probably change for the better. It won't seem better to
me."

(J. B. Priestly)

``In 1965 the Russian mathematician Alexander Konrod said "Chess is the
Drosophila of artificial intelligence." However, computer chess has developed as
genetics might have if the geneticists had concentrated their efforts starting in 1910
on breeding racing Drosophila. We would have some science, but mainly we would
have very fast fruit flies.''

(From John McCarthy's review of Kasparov versus Deep Blue by Monty Newborn (Springer,
1996) in Science, 6 June 1997, page 1518)

 He goes on to point out that of three features of human chess play two were used in early
programs (forward pruning, identifying parallel moves, and partitioning (never used)). None
survives in present programs. Material on Making computer chess scientific is available
from John McCarthy's web site

``A research policy does not consist of programs, but of hiring high-quality
scientists. When you hire someone good, you've made your research policy for the
next 20 years.''

Chief CNRS advisor Vincent Courtillot quoted in New CNRS Chief Gets Marching Orders,
Science, 18 July, 1997, page 308)

``Mathematicians are like pilots who maneuver their great lumbering planes into the
sky without ever asking how the damn things stay aloft.

...
The computer has in turn changed the very nature of mathematical experience,
suggesting for the first time that mathematics, like physics, may yet become an
empirical discipline, a place where things are discovered because they are seen.

...
The existence and nature of mathematics is a more compelling and far deeper
problem than any of the problems raised by mathematics itself.''

(From David Berlinski's somewhat negative review of The Pleasures of Counting by T. W.
Korner (Cambridge, 1996)

in The Sciences, July/August 1997, pages 37-41)

http://www.hd.uib.no/wab/wabhome.htm
http://www-formal.stanford.edu/jmc/chess.html
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 Korner is a careful and stimulating writer/teacher.

``If I can give an abstract proof of something, I'm reasonably happy. But if I can
get a concrete, computational proof and actually produce numbers I'm much happier.
I'm rather an addict of doing things on the computer, because that gives you an
explicit criterion of what's going on. I have a visual way of thinking, and I'm happy if
I can see a picture of what I'm working with.''

(John Milnor)

 Page 78 of Who got Einstein's Office? by Ed Regis, Addison-Wesley, 1986. A history of
the Institute for Advanced Study. The answer is Arnie Beurling.

``The term "reviewed publication" has an appealing ring for the naive rather than
the realistic... Let's face it: (1) in this day and age of specialization, you may not
find competent reviewers for certain contributions; (2) older scientists may agree
that over the past two decades, the relative decline in research funds has been
accompanied by an increasing number of meaningless, often unfair reviews; (3)
some people are so desperate to get published that they will comply with the
demands of reviewers, no matter how asinine they are.''

(August Epple)

 From Organizing Scientific Meetings quoted on page 400 of Science October 17, 1997.

``The NYT also has a stunning revelation about the way the Ivy League used to do
business. Last Friday, the President of Darmouth used the occasion of dedicating a
campus Jewish student center to haul out a 1934 letter between an alumnus of the
school and the director of admissions. The alum complained that "the campus seems
more Jewish each time I arrive in Hanover. And unfortunately many of them (on
quick judgment) seem to be the 'kike' type." And the Dartmouth admissions man
wrote back, "I am glad to have your comments on the Jewish problem, and I shall
appreciate your help along this line in the future. If we go beyond the 5 percent or 6
percent in the Class of 1938, I shall be grieved beyond words." In reacting to the
revelation, Elie Wiesel summons a simple fact that suggests how much times have
changed: the current presidents of Harvard, Yale, and Princeton are Jewish.''

(SLATE, Tuesday November 11, 1997)

``This is the essence of science. Even though I do not understand quantum
mechanics or the nerve cell membrane, I trust those who do. Most scientists are
quite ignorant about most sciences but all use a shared grammar that allows them to
recognize their craft when they see it. The motto of the Royal Society of London is
'Nullius in verba' : trust not in words. Observation and experiment are what count,
not opinion and introspection. Few working scientists have much respect for those
who try to interpret nature in metaphysical terms. For most wearers of white coats,
philosophy is to science as pornography is to sex: it is cheaper, easier, and some
people seem, bafflingly, to prefer it. Outside of psychology it plays almost no part in
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the functions of the research machine.''

(Steve Jones, University College, London)

 From his review of How the Mind Works (by Steve Pinker) in The New York Review of
Books (pages 13-14) November 6, 1997. [Two solitudes indeed! See below]

``If you have a great idea, solid science, and earthshaking discoveries, you are still
only 10% of the way there,''

(David Tomei, LXR Biotechnology Inc.)

 Quoted in Science page 1039, November 7, 1997. [On the vicissitudes of startup
companies.]

``There he received his hardest job of the war - a rush request to convert
typewriters to twenty-one different languages of Asia and the South Pacific.

...
The implications of the work and its difficulty brought him to near collapse, but he
completed it with only one mistake: on the Burmese typewriter he put a letter upside
down. Years later, after he had discovered his error, he told the language professor
he had worked with that he would fix that letter on the professor's Burmese
typewriter. The professor said not to bother; in the intervening years, as a result of
typewriters copied from Martin's original, that upside-down letter had been accepted
in Burma as proper typewriter style.''

(Ian Frazier)

 Page 88 in Typewriter Man, the Atlantic Monthly, November 1997: "For Martin Tytell, the
machinery of writing has been a life's work." [A fine example of convergence.]

The T-bone terror proves that ministers have no grasp of science or maths - let alone
our liberties

``The giant finger whooshes out of the night sky and points at the dumbstruck face
in the window. "It could be you," says a voice. This week the Agriculture Minister
Jack Cunningham impersonated the National Lottery advertiser. As the nation's fork
was poised with a T-bone steak on its way to the nation's mouth, Dr Cunningham
screamed: "Don't touch it." According to the great god science, new variant
Creutzfeldt-Jakob disease (nvCJD) could be lurking in that mouthful. There is a small
risk, and where there is risk, a government must ban.

Perhaps only mathematicians are aware of the enormity of what the Government did
this week. It took a risk that is statistically negligible and exploited it as an act of
insufferable nannying. Beef ribs, T-bones and oxtails present a public health risk
publicised as "very small" and "a chance of one case per year" (though none of
Britain's 22 nvCJD cases has been positively linked to beef). Most newspapers
cluelessly converted "a chance" into a certainty, and ridiculed the risk as a tiny one in
56 million. But that is not what the scientists said. They suggested the chance was
"5 per cent", so the risk is nearer to one in 1.1 billion, or one in 560 million among

http://www.carma.newcastle.edu.au/~jb616/quotations.html#pinker2
http://www.theatlantic.com/issues/97nov/index.htm
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the half of the population that eats beef. There can have been no more tenuous basis
for an infringement of personal liberty.''

(Simon Jenkins)

 Simon Jenkins on Boneless Wonders in the Times of London, Dec 6, 1997

``The common situation is this: An experimentalist performs a resolution analysis
and finds a limited-range power law with a value of D smaller than the embedding
dimension. Without necessarily resorting to special underlying mechanistic
arguments, the experimentalist then often chooses to label the object for which she
or he finds this power law a ''fractal''. This is the fractal geometry of nature.''

(David Avnir et al, Hebrew University)

 From Is the geometry of nature fractal? in Science January 2, 1998, 39-40. Their review
of all articles from 1990 to 1996 in Physical Reviews suggests very little substance for claims
of fractility.

``Most nonscientists who like to think of themselves as knowledgeable about modern
science really know only about technologies - and specifically those technologies
likely to bring economic profits in the short term.''

(Takashi Tachibana, Japanese Journalist)

 From Closing the Knowledge Gap Between Scientist and Nonscientist in Science
August 7, 1998, 778-779.

``Another thing I must point out is that you cannot prove a vague theory wrong. ...
Also, if the process of computing the consequences is indefinite, then with a little
skill any experimental result can be made to look like the expected consequences.''

(Richard Feynman, 1964)

 Quoted by Gary Taubes in The (Political) Science of Salt, Science August 14, 1998, 898-
907.

``Renyi would become one of Erdos's most important collaborators. ... Their long
collaborative sessions were often fueled by endless cups of strong coffee. Caffeine is
the drug of choice for most of the world's mathematicians and coffee is the preferred
delivery system. Renyi, undoubtedly wired on espresso, summed this up in a famous
remark almost always attributed to Erdos: "A mathematician is a machine for
turning coffee into theorems." ... Turan, after scornfully drinking a cup of
American coffee, invented the corollary: "Weak coffee is only fit for lemmas." ''

(Bruce Schechter, 1998)

 On page 155 of My Brain is Open, Schechter's 1998 Simon and Schuster biography of

http://www.sunday-times.co.uk/news/pages/Times/frontpage.html?1228312
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Erdos. Schechter's Erdos is recognisable. The book contains interesting material on the Erdos-
Selberg controversy (pp. 144-151). For more about the coffee see Dick Askey's recollection.

``Once the opening ceremonies were over, the real meat of the Congress was then
served up in the form of about 1400 individual talks and posters. I estimated that
with luck I might be able to comprehend 2% of them. For two successive weeks in
the halls of a single University, ICM'98 perpetuated the myth of the unity of
mathematics; which myth is supposedly validated by the repetition of that most
weaselly of rhetorical phrases: "Well, in principle, you could understand all the
talks." ''

(Philip Davis, 1998)

 Describing the Berlin International Congress of Mathematicians in the October 1998 SIAM
News.

``Looking over the past 150 years -- at the tiny garden at Brno, the filthy fly room
at Columbia, the labs of the New York Botanical Garden, the basement lab at
Stanford, and the sun-drenched early gatherings at Cold Spring Harbor -- it seems
that the fringes, not the mainstream, are the most promising places to discover
revolutionary advances.''

(Paul Berg and Maxine Singer, 1998)

 In Inspired Choices, Science October 30, 1998, 873-874s, on the past 150 years of
biological research.

``Should we teach mathematical proofs in the high school? In my opinion, the
answer is yes...Rigorous proofs are the hallmark of mathematics, they are an
essential part of mathematics' contribution to general culture.''

 George Polya (1981). Mathematical discovery: On understanding, learning, and
teaching problem solving (Combined Edition), New York, Wiley & Sons (p. 2-126)

``A mathematical deduction appears to Descartes as a chain of conclusions, a
sequence of successive steps. What is needed for the validity of deduction is intuitive
insight at each step which shows that the conclusion attained by that step evidently
flows and necessarily follows from formerly acquired knowledge (acquired directly by
intuition or indirectly by previous steps) ... I think that in teaching high school age
youngsters we should emphasize intuitive insight more than, and long before,
deductive reasoning.'' (ibid, p. 2-128)

 This "quasi-experimental" approach to proof can help to de-emphasis a focus on rigor and
formality for its own sake, and to instead support the view expressed by Hadamard when he
stated "The object of mathematical rigor is to sanction and legitimize the conquests of
intuition, and there was never any other object for it" (J. Hadamard, in E. Borel, Lecons sur la
theorie des fonctions, 3rd ed. 1928, quoted in Polya, (1981), (p. 2/127).

``intuition comes to us much earlier and with much less outside influence than

http://www.carma.newcastle.edu.au/~jb616/quotations.html#ASKEY
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formal arguments which we cannot really understand unless we have reached a
relatively high level of logical experience and sophistication. Therefore, I think that in
teaching high school age youngsters we should emphasize intuitive insight more
than, and long before, deductive reasoning.'' (ibid, p. 2-128)

``In the first place, the beginner must be convinced that proofs deserve to be
studied, that they have a purpose, that they are interesting.'' (ibid, p. 2-128)

``The purpose of a legal proof is to remove a doubt, but this is also the most
obvious and natural purpose of a mathematical proof. We are in doubt about a
clearly stated mathematical assertion, we do not know whether it is true or false.
Then we have a problem: to remove the doubt, we should either prove that assertion
or disprove it.'' (ibid, p. 2-129)

(Polya quotes are thanks to Laurie Edwards)

``The basic difference between playing a human and playing a supermatch against
Deep Blue is the eerie and almost empty sensation of not having a human sitting
opposite you. With humans, you automatically know a lot about their nationality,
gender, mannerisms, and such minor things as a persistent cough or bad breath.
Years ago we had to endure chain-smokers who blew smoke our way. But Deep Blue
wasn't obnoxious, it was simply nothing at all, an empty chair not an opponent but
something empty and relentless.''

(Garry Kasparov, 1998)

 Kasparov writing on TechMate in Forbes (22/2/98) - a collection on super computing.

``All professions look bad in the movies ... why should scientists expect to be
treated differently?''

(Michael Crichton, 1999)

 Addressing the 1999 AAAS Meetings, and quoted in Science February 19, 1999, page
1111.

``the academy was a sort of club for retired Parisian scientists, happy to be able to
come together once a week to talk about science for 2 hours after lunch and a little
nap.''

(Guy Ourison, January 1999)

 Inaugural speech as President to the French Academy of Science quoted in Science April
23, 1999, page 580.

``User-interface criticism is a genre to watch. It will probably be more influential
and beneficial to the next century than film criticism was to the twentieth century.
The twenty-first century will be filled with surprises, but one can safely count on it to
bring more complexity to almost everything. Bearing the full brunt of that

http://www.srl.rmit.edu.au/sunrise/people/laurie/
http://www.forbes.com/asap/99/0222/071.htm
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complexity, the great user-interface designers of the future will provide people with
the means to understand and enrich their own humanity, and to stay human.''

(Jaron Lanier, June 1999)

 From page 43 of Interface-off in The Sciences May/June 1999, pages 38-43.

``A real number complexity model appropriate for this context is given in the recent
landmark work of Blum, Cucker, Shub and Smale . In discussing their motivation for
seeking a suitable theoretical foundation for modern scientific computing, where most
of the algorithms are `real number algorithms' the authors of this work quote the
following illuminating remarks of John von Neumann, made in 1948: ``There exists
today a very elaborate system of formal logic, and specifically, of logic applied to
mathematics. This is a discipline with many good sides but also serious
weaknesses.... Everybody who has worked in formal logic will confirm that it is one
of the technically most refactory parts of mathematics. The reason for this is that it
deals with rigid, all-or-none concepts, and has very little contact with the continuous
concept of the real or the complex number, that is with mathematical analysis. Yet
analysis is the technically most successful and best-elaborated part of mathematics.
Thus formal logic, by the nature of its approach, is cut off from the best cultivated
portions of mathematics, and forced onto the most difficult mathematical terrain, into
combinatorics.

The theory of automata, of the digital, all-or-none type as discussed up to now, is
certainly a chapter in formal logic. It would, therefore, seem that it will have to share
this unattractive property of formal logic. It will have to be, from the mathematical
point of view, combinatorial rather than analytical.''

( l. Blum, P. Cucker, M. Shub and S. Smale (1998), Complexity and Real Computation,
Springer-Verlag, New York)

 Commentary thanks to Larry Nazareth

``Considerable obstacles generally present themselves to the beginner, in studying
the elements of Solid Geometry, from the practice which has hitherto uniformly
prevailed in this country, of never submitting to the eye of the student, the figures
on whose properties he is reasoning, but of drawing perspective representations of
them upon a plane. ...I hope that I shall never be obliged to have recourse to a
perspective drawing of any figure whose parts are not in the same plane.''

(Augustus De Morgan)

 Adrian Rice (What Makes a Great Mathematics Teacher?) from page 540 of The American
Mathematical Monthly, June-July 1999

``In 1831, Fourier's posthumous work on equations showed 33 figures of solution,
got with enormous labour. Thinking this is a good opportunity to illustrate the
superiority of the method of W. G. Horner, not yet known in France, and not much
known in England, I proposed to one of my classes, in 1841, to beat Fourier on this
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point, as a Christmas exercise. I received several answers, agreeing with each other,
to 50 places of decimals. In 1848, I repeated the proposal, requesting that 50 places
might be exceeded: I obtained answers of 75, 65, 63, 58, 57, and 52 places.''

(Augustus De Morgan)

 Adrian Rice from page 542 of The American Mathematical Monthly, June-July 1999

``I think we need more institutes, but then you run into the question, Is it better to
spend $2 million and have another institute or to fund another twenty-five or so
researchers each year? It's a question of trying to keep the discipline alive and
thriving. There's no doubt the really big ideas in mathematics come from maybe 5
percent of the people, but you need a broad base to nourish the 5 percent and to
work out all the details as they move on to more adventuresome things. Look at,
say, mathematicians at Group III universities. It's a rarity when they get funding.
How do you keep them in the system? ... We're under terrific pressure to increase
the size of our grants. If we did what the [National Science] board wants us to do,
we would fund 800 people instead of 1,400. It's a question of whether DMS did the
right thing when they pulled so many people down to one month of summer support.
This took some of the pressure off the Foundation to put more money in
mathematics. Suppose we funded 800 people. How much noise would it create?
Would there be a march on Washington? I often think that's the way to go. See
whether mathematicians would stand up for themselves or whether they'd just
meekly accept. In chemistry, people get declined, and in two months they turn
around with another proposal. Mathematicians --- they get declined twice, and they
fold. I think mathematicians have such a personal investment in their problems that
if you turn down their proposals, they take it as if you're judging them as
mathematicians. They're not as flexible and often don't seem to be able to move to
another class of problems. We fund proposals, not individuals.''

(D. J. Lewis)

 Interview with Allyn Jackson from page 669 of The Notices of The AMS, June-July 1999

``Notices: After your time at the NSF, do you have any advice for the math
community about what they should be doing to try to improve the funding for
mathematics?

Lewis: I don't think that up to this date they've made a very good case for why they
should be funded. The bottom line is, What are you doing for the citizens of the
country?

Notices: When you say ``make the case,'' what do you mean concretely? Do groups
of mathematicians have to descend on Capitol Hill?

Lewis: They've got to do some demonstrations of what mathematics has
accomplished for the good of society. One of the things mathematicians have done is
education. For example, if mathematicians took seriously the job of training
elementary and middle school teachers, they could make some claim that they really
improve things. Also, science is getting so complicated, it can be done only with the

http://www.ams.org/notices/199906/199906-toc.html
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help of mathematics. Is the math community willing to step up and participate?

If so, they will have nonmathematicians making the case for greater funding of
mathematics. It is always best to have outsiders make your case for you. Once upon
a time I thought going to Capitol Hill would be effective. I don't think it will get very
far if mathematicians go to Capitol Hill without the support of others. These days
information technology and biology and medicine are the themes that echo well with
the president and Congress.''

(D. J. Lewis)

 Interview with Allyn Jackson from page 672 of The Notices of The AMS, June-July 1999

``The work then proceeds in a manner unique to science. Because practitioners
publish their work electronically, through the e-print archives at the Los Alamos
National Laboratory in New Mexico, the entire community can read a paper hours
after its authors finish typing the last footnote. As a result, no one theorist or even a
collaboration does definitive work. Instead, the field progresses like a jazz
performance: A few theorists develop a theme, which others quickly take up
and elaborate. By the time it's fully developed, a few dozen physicists, working
anywhere from Princeton to Bombay to the beaches of Santa Barbara, may have
played important parts.''

(Gary Taubes)

 From String Theorists Find a Rosetta Stone on page 513 of Science, 23rd July, 1999

'where almost one quarter hour was spent, each beholding the other with admiration
before one word was spoken: at last Mr. Briggs began "My Lord, I have undertaken
this long journey purposely to see your person, and to know by what wit or
ingenuity you first came to think of this most excellent help unto Astronomy, viz. the
Logarithms: but my Lord, being by you found out, I wonder nobody else found it out
before, when now being known it appears so easy." '

(Henry Briggs, 1617)

 Briggs, later the first Savelian Professor of Geometry in Oxford, is describing his first
meeting with Napier whom he had traveled from London to Edinburgh to meet. From H.W.
Turnbull's The Great Mathematicians, Methuen, 1929.

``Far better an approximate answer to the right question, which is often vague, than
the exact answer to the wrong question, which can always be made precise.''

(J. W. Tuckey, 1962)

 From the Annals of Mathematical Statistics , Volume 33. Compare the 1964 Feynman quote
above!

http://www.carma.newcastle.edu.au/~jb616/briggs.htm
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`` One of the beauties of learning is that it admits its provisionality, its
imperfections. This scholarly scrupulousness, this willingness to admit that even the
best-supported of theories is still a theory, is now being exploited by the
unscrupulous. But that we do not know everything does not mean we know nothing.
Not all theories are of equal weight. The moon, even the moon over Kansas, is not
made of green cheese. Genesis, as a theory, is bunk.

If the overabundant new knowledge of the modern age is, let's say, a tornado, then
Oz is the extraordinary, Technicolored new world in which it has landed us, the world
from which --- life not being a movie --- there is no way home. In the immortal
words of Dorothy Gale, `Toto, something tells me we're not in Kansas any more.' To
which one can only add: Thank goodness, baby, and amen.''

(Salman Rushdie)

 From his article "Locking out that disruptive Darwin fellow" in the Globe and Mail ,
September 2, 1999

``The mental maps, gave rise to industries that could not have been predicted, and
created a new class of technological workers whom wise societies took pains to
nurture. Are we about to go through this process again? A renowned social analyst
and management philosopher looks to history for insights.''

(Peter Drucker)

 Beyond the Information Revolution in The Atlantic Monthly Online November 3, 1999

``When the facts change, I change my mind. What do you do, sir?''

(John Maynard Keynes)

 Quoted in The Economist, December 18 1999, page 47

``Look miss, if I disagree with Darwin, he's not going to send me to hell.''

(An anonymous student's "Pascal wager-style" rationale)

 Quoted in The Globe and Mail, January 1, 2000, page D22 by Laura Penny describing a first
year University class in Buffalo in which one third of the students were creationists.

`` Most working scientists may be naive about the history of their discipline and
therefore overly susceptible to the lure of objectivist mythology. But I have never
met a pure scientific realist who views social context as entirely irrelevant, or only as
an enemy to be expunged by the twin lights of universal reason and incontrovertible
observation. And surely, no working scientist can espouse pure relativism at the
other pole of the dichotomy. (The public, I suspect, misunderstands the basic reason
for such exceptionless denial. In numerous letters and queries, sympathetic and
interested nonprofessionals have told me that scientists cannot be relativists because

http://www.theatlantic.com/issues/99oct/9910drucker.htm
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their commitment to such a grand and glorious goal as the explanation of our vast
and mysterious universe must presuppose a genuine reality "out there" to discover.
In fact, as all working scientists know in their bones, the incoherence of relativism
arises from virtually opposite and much more quotidian motives. Most daily activity in
science can only be described as tedious and boring, not to mention expensive and
frustrating. Thomas Edison was just about right in his famous formula for invention
as 1% inspiration mixed with 99% perspiration. How could scientists ever muster the
energy and stamina to clean cages, run gels, calibrate instruments, and replicate
experiments, if they did not believe that such exacting, mindless, and repetitious
activities can reveal truthful information about a real world? If all science arises as
pure social construction, one might as well reside in an armchair and think great
thoughts.)

Similarly, and ignoring some self-promoting and cynical rhetoricians, I have never
met a serious social critic or historian of science who espoused anything close to a
doctrine of pure relativism. The true, insightful, and fundamental statement that
science, as a quintessentially human activity, must reflect a surrounding social
context does not imply either that no accessible external reality exists, or that
science, as a socially embedded and constructed institution, cannot achieve
progressively more adequate understanding of nature's facts and mechanisms. ''

(Stephen J. Gould)

 From the article: 'Deconstructing the "Science Wars" by Reconstructing an Old Mold' in
Science, Jan 14, 2000: 253-261.

`` caused Thorstein Veblen to comment acerbically in 1908 that "business principles"
were transforming higher education into "a merchantable commodity, to be produced
on a piece-rate plan, rated, bought, and sold by standard units, measured, counted
and reduced to staple equivalence by impersonal, mechanical tests. ''

...

``New products and new processes do not appear full-grown," Vannevar Bush,
President Franklin Roosevelt's chief science adviser, declared in 1944. "They are
founded on new principles and new conceptions, which in turn are painstakingly
developed by research in the purest realms of science." ''

(Eyal Press and Jennifer Washburn)

 From The Kept University in The Atlantic Monthly Online, March 2000. Which quote better
reflects Science in 2001?

``Most important to Fox was a young instructor who had arrived at Cornell two
years before from Williams and Mary. William Lloyd Garrison Williams had written his
Ph.D thesis under Leonard Dickson at Chicago in 1920. Born in Friendship, Kansas,
Williams, who was named for the famous abolitionist William LLoyd Garrison,
attended a small Quaker school in Indiana, taught school briefly in North Dakota and
then attended Haverford College where he earned a B.A. degree. From 1910-13 he
attended Oxford University as a Rhodes Scholar, and after receving a B.A. and M.A.,

http://www.theatlantic.com/issues/2000/03/press.htm
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he took a faculty position at Miami University of Ohio. His Ph.D. work at Chicago was
done during the summers. He also taught briefly at Gettysburg College and William
and Mary before coming to Cornell.

In 1924, Williams moved to McGill University, where he helped develop the graduate
program. He was the founder and organizer of the Canadian Mathematical Congress,
the first meeting of which was in Montreal in 1945. Nearly all of the support the
Congress was able to acquire was due to William's efforts (see W.L.G. Williams,
1888-1976, G. De B. Robinson, Proc. Royal Society of Canada, 1976). A man of
remarkable ability and compassion, Williams took a strong personal interest in his
fellowman. A lifelong member of the Society of Friends, he was a tireless worker for
Quaker causes.''

(James A. Donaldson and Richard J. Fleming)

 From "Elbert F. Fox: An Early Pioneer", American Math Monthly 107 (2000) 105-128.

Gravity Turntable Sets New Record

`LONG BEACH, CALIFORNIA--Scientists have been scrutinizing gravity since the time
of Newton, but they've had difficulty measuring the power of its pull. Now, thanks to
a clever device, physicists have the most precise measurement yet. 

....

"[It] should have been obvious" that previous measures of big G were off, says
physicist Randy Newman of the University of California, Irvine. The new result,
announced this week at the American Physical Society meeting, sets big G tentatively
at 6.67423 0.00009 x 10-11 m3/(kg s2). "It's one of the fundamental constants,"
Gundlach says. "Mankind should just know it. It's a philosophical thing."'

From ScienceNow May 5, 2000.

``Imagine Dostoyevsky. There are some incidents like this, two boys killing other
children, in his famous diary. Imagine what Dostoyevsky would do with that. He
would deal with the transcendentally important question of evil in the child. Today
the editor would say, "Fyodor, tomorrow, please, your piece. Don't tell me you need
ten months for thinking. Fyodor, tomorrow!" "

(George Steiner)

 Quoted in James Gleick's Faster (Pantheon 1999), pages 97-88, on instant opinion -- sound
bites and 'hurry sickness'.

``So my reaction surprises me. I tell Natalie that math is important and relevant and
that I wished I'd made the effort to understand. I wish somebody had found a way of
making sense of it all. This revelation comes from reading a stack of magazines
about the future, about computers and artificial intelligence, cars and planes, food
production and global warming. And I have come to the conclusion that Mr. Kool was
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right.

Math has something to do with calculations, formulas, theories and right angles. And
everything to do with real life. Mathematicians not only have the language of the
future (they didn't send Taming of the Shrew into space, just binary blips) but they
can use it to predict when Andromeda will perform a cosmic dance with the Milky
Way. It's mathematicians who are designing the intelligent car that knows when
you're falling asleep at the wheel or brakes to avoid an accident. It can predict social
chaos and the probability of feeding billions. It even explains the stock market and
oil prices.''

...

Paulette Bourgeois lives in Toronto where she is calculating the probability of ever
balancing her chequebook. She is the author of the Franklin the Turtle books for
children.

(Paulette Bourgeois)

 Quoted from "The Numbers Game," The Globe and Mail July 13, 2000, page A14.

`` Mathematics is the language of high technology. Indeed it is, but I think it is also
becoming the eyes of science.''

(Tom Brzustowski, NSERC President)

 Addressing the MITACS NCE annual general meeting June 6, 2000.

``This is fundamentally wrong. We are not entering a time when copyright is more
threatened than it is in real space. We are instead entering a time when copyright is
more effectively protected than at any time since Gutenberg. The power to regulate
access to and use of copyrighted material is about to be perfected. Whatever the
mavens of the mid-1990s may have thought, cyberspace is about to give the holders
of copyrighted property the biggest gift of protection they have ever known.

In such an age -- in a time when the protections are being perfected -- the real
question for law is not, how can law aid in that protection? but rather, is that
protection too great? The mavens were right when they predicted that cyberspace
will teach us that everything we thought about copyright was wrong. But the lesson
in the future will be that copyright is protected far too well. The problem will center
not on copy-right but on copy-duty -- the duty of owners of protected property to
make that property available.''

(Lawrence Lessig)

 Quoted from page 127 of his book: "Code and other laws of Cyberspace", Basic Books,
1999.

``An informed list of the most profound scientific developments of the 20th century
is likely to include general relativity, quantum mechanics, big bang cosmology, the
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unraveling of the genetic code, evolutionary biology, and perhaps a few other topics
of the reader's choice. Among these, quantum mechanics is unique because of its
profoundly radical quality. Quantum mechanics forced physicists to reshape their
ideas of reality, to rethink the nature of things at the deepest level, and to revise
their concepts of position and speed, as well as their notions of cause and effect. ''

(Daniel Kleppner and Roman Jackiw)

 Quoted from the article "One Hundred Years of Quantum Physics" in Science August 11,
pages 893-898.

http://www.sciencemag.org/cgi/content/full/289/5481/893

``A wealthy (15th Century) German merchant, seeking to provide his son with a
good business education, consulted a learned man as to which European institution
offered the best training. "If you only want him to be able to cope with addition and
subtraction," the expert replied, "then any French or German university will do. But if
you are intent on your son going on to multiplication and division -- assuming that
he has sufficient gifts -- then you will have to send him to Italy.''

(Georges Ifrah)

 From page 577 of "The Universal History of Numbers: From Prehistory to the Invention of
the Computer", translated from French, John Wiley, 2000. (Emphasizing quite how great an
advance positional notation was!)

``2000 was a banner year for scientists deciphering the "book of life"; this year saw
the completion of the genome sequences of complex organisms ranging from the fruit
fly to the human.

Genomes carry the torch of life from one generation to the next for every organism
on Earth. Each genome--physically just molecules of DNA--is a script written in a
four-letter alphabet. Not too long ago, determining the precise sequence of those
letters was such a slow, tedious process that only the most dedicated geneticist
would attempt to read any one "paragraph"--a single gene. But today, genome
sequencing is a billion-dollar, worldwide enterprise. Terabytes of sequence data
generated through a melding of biology, chemistry, physics, mathematics,
computer science, and engineering are changing the way biologists work and
think. Science marks the production of this torrent of genome data as the
Breakthrough of 2000; it might well be the breakthrough of the decade, perhaps
even the century, for all its potential to alter our view of the world we live in.''

(Elizabeth Pennisi)

 From ''BREAKTHROUGH OF THE YEAR: Genomics Comes of Age.'' Cover story in Science of
December 22, 2000.

"Not until the creation and maintenance of decent conditions of life for all people are
recognized and accepted as a common obligation of all people and all countries - not

http://www.sciencemag.org/cgi/content/full/289/5481/893
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until then shall we, with a certain degree of justification, be able to speak of
humankind as civilized."

(Albert Einstein, 1945)

"Capitalism is the extraordinary belief that the nastiest of men, for the nastiest of
reasons, will somehow work for the benefit of us all."

(John Maynard Keynes)

"When we have before us a fine map, in which the line of the coast, now rocky, now
sandy, is clearly indicated, together with the winding of the rivers, the elevations of
the land, and the distribution of the population, we have the simultaneous suggestion
of so many facts, the sense of mastery over so much reality, that we gaze at it with
delight, and need no practical motive to keep us studying it, perhaps for hours
altogether. A map is not naturally thought of as an aesthetic object... And yet, let
the tints of it be a little subtle, let the lines be a little delicate, and the masses of the
land and sea somewhat balanced, and we really have a beautiful thing; a thing the
charm of which consists almost entirely in its meaning, but which nevertheless
pleases us in the same way as a picture or a graphic symbol might please. Give the
symbol a little intrinsic worth of form, line and color, and it attracts like a magnet all
the values of things it is known to symbolize. It becomes beautiful in its
expressiveness."

(George Santayana)

 From "The Sense of Beauty", 1896.

"If my teachers had begun by telling me that mathematics was pure play with
presuppositions, and wholly in the air, I might have become a good mathematician,
because I am happy enough in the realm of essence. But they were overworked
drudges, and I was largely inattentive, and inclined lazily to attribute to incapacity in
myself or to a literary temperament that dullness which perhaps was due simply to
lack of initiation."

(George Santayana}

 From pp. 238-9 "Persons and Places", 1945.

"He designed and built chess-playing, maze-solving, juggling and mind-reading
machines. These activities bear out Shannon's claim that he was more motivated by
curiosity than usefulness. In his words `I just wondered how things were put
together.' "

(Claude Shannon)

 From Claude Shannon's (1916-2001) obituary.

http://www.bell-labs.com/news/2001/february/26/1.html
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"The price of metaphor is eternal vigilance"

(Arturo Rosenblueth and Norbert Wiener)

 Quoted by R. C. Leowontin, in Science page 1264, Feb 16, 2001 (The Human Genome
Issue).

"What is particularly ironic about this is that it follows from the empirical study of
numbers as a product of mind that it is natural for people to believe that numbers
are not a product of mind!"

(George Lakoff and Rafael E. Nunez)

 On page 81 of Where Mathematics Comes From, Basic Books, 2000.

Recent Discoveries about the Nature of Mind. In recent years, there have been
revolutionary advances in cognitive science ---- advances that have a profound
bearing on our understanding of mathematics. Perhaps the most profound of these
new insights are the following: 
1. The embodiment of mind. The detailed nature of our bodies, our brains and our
everyday functioning in the world structures human concepts and human reason. This
includes mathematical concepts and mathematical reason. 
2. The cognitive unconscious. Most thought is unconscious --- not repressed in the
Freudian sense but simply inaccessible to direct conscious introspection. We cannot
look directly at our conceptual systems and at our low-level thought processes. This
includes most mathematical thought. 
3. Metaphorical thought. For the most part, human beings conceptualize abstract
concepts in concrete terms, using ideas and modes of reasoning grounded in
sensory-motor systems. The mechanism by which the abstract is comprehended in
terms of the concept is called conceptual metaphor. Mathematical thought also
makes use of line."

(George Lakoff and Rafael E. Nunez)

 On page 5 of Where Mathematics Comes From, Basic Books, 2000.

"The early study of Euclid made me a hater of geometry."

(James Joseph Sylvester, 1814-97, Second LMS President)

 quoted in D. MacHale, "Comic Sections" (Dublin 1993).

"a thrill which is indistinguishable from the thrill I feel when I enter the Sagrestia
Nuovo of the Capella Medici and see before me the austere beauty of the four
statues representing 'Day', 'Night', 'Evening', and 'Dawn' which Michelangelo has set
over the tomb of Guiliano de'Medici and Lorenzo de'Medici."

(G. N. Watson, 1886-1965)
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"All physicists and a good many quite respectable mathematicians are contemptuous
about proof."

(G. H. Hardy, 1877-1947)

 A century after biology started to think physically:

"The idea that we could make biology mathematical, I think, perhaps is not working,
but what is happening, strangely enough, is that maybe mathematics will become
biological,!"

(Greg Chaitin, Interview, 2000.)

"The waves of the sea, the little ripples on the shore, the sweeping curve of the
sandy bay between the headlands, the outline of the hills, the shape of the clouds,
all these are so many riddles of form, so many problems of morphology, and all of
them the physicist can more or less easily read and adequately solve."

(D'Arcy Thompson, ``On Growth and Form'' 1917)

 In Philip Ball's "The Self-Made Tapestry: Pattern Formation in Nature,''

"A doctorate compels most of us to be detailed and narrow, and to carve out our
own specialities, and tenure commitees rarely like boldness. Later, when our jobs are
safe we can be synthetic, and generalize."

(Paul Kennedy)

 Writing critically about A.J.P. Taylor (`The Nonconformist') in the Atlantic Monthly April
2001, page 114.

``... it is no doubt important to attend to the eternally beautiful and true. But it is
more important not to be eaten."

(Jerry Fodor)

Distinguishing effortless early learning of language and social customs from later
labourious general purpose concept acquisition, Egan writes: 
"The bad news is that our evolution equipped us to live in small, stable, hunter-
gatherer societies. We are Pleistocene people, but our languaged brains have created
massive, multicultural, technologically sophisticated and rapidly changing societies for
us to live in."

---
"The cement like learning of our early years can accomodate almost anything, then it
fixes and becomes almost unmovable."

---
"we can, as a result, change our earlier beliefs and commitments. We also know this

http://www.cs.umaine.edu/~chaitin/cdg.html
http://scoop.crosswinds.net/books/tapestry.html
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is difficult for most people."

(Kieran Egan)

 In Kieran Egan's, Getting it Wrong from the Beginning -- Major Mistakes in the Project to
Educate Everybody (in press).

"EINSTEIN ON SCIENTIFIC TRUTH & ITS TRIUMPH"
This is what Albert Einstein said quoting Max Planck

"...a new scientific truth does not triumph by convincing its opponents and making
them see the light, but rather because its opponents die and a new generation grows
up that's familiar with it." 
or ... 
"A new scientific truth usually does not make its way in the sense that its opponents
are persuaded and declare themselves enlightened, but rather that the opponents
become extinct and the rising generation was made familiar with the truth from the
very beginning".

 Max Planck, in THE QUANTUM BEAT by F.G.Major, Springer (1998).

"And Max Planck, surveying his own career in his Scientific Autobiography, sadly
remarked that 'a new scientific truth does not triumph by convincing its opponents
and making them see the light, but rather because its opponents eventually die, and
a new generation grows up that is familiar with it.'"

(Thomas Kuhn)

 On page 151 of T.S. Kuhn, The Structure of Scientific Revolutions, 3rd ed., Univ. of Chicago
Press, 1996. (Quoting: Max Planck, Scientific Autobiography and Other Papers, trans. F.
Gaynor (New York, 1949), pp. 33-34. See also "Conversations with a Mathematician" by Greg
Chaitin.)

``the idea that we could make biology mathematical, I think, perhaps is not
working, but what is happening, strangely enough, is that maybe mathematics will
become biological, not that biology will become mathematical, mathematics may go
in that direction!"

(Interview with Gregory Chaitin by Hans-Ulrich Obrist (Musee d'Art Moderne de la Ville de
Paris), Paris/CDG Airport, October 2000.)

 In "THE CREATIVE LIFE: SCIENCE VS ART,''

"The message is that mathematics is quasi-empirical, that mathematics is not the
same as physics, not an empirical science, but I think it's more akin to an empirical
science than mathematicians would like to admit."

"Mathematicians normally think that they possess absolute truth. They read God's
thoughts. They have absolute certainty and all the rest of us have doubts. Even the
best physics is uncertain, it is tentative. Newtonian science was replaced by relativity

http://www.cs.umaine.edu/~chaitin/conversations.html
http://www.cs.umaine.edu/~chaitin/conversations.html
http://www.cs.umaine.edu/~chaitin/cdg.html
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theory, and then---wrong!---quantum mechanics showed that relativity theory is
incorrect. But mathematicians like to think that mathematics is forever, that it is
eternal. Well, there is an element of that. Certainly a mathematical proof gives more
certainty than an argument in physics or than experimental evidence, but
mathematics is not certain. This is the real message of Godel's famous
incompleteness theorem and of Turing's work on uncomputability."

"You see, with Godel and Turing the notion that mathematics has limitations seems
very shocking and surprising. But my theory just measures mathematical
information. Once you measure mathematical information you see that any
mathematical theory can only have a finite amount of information. But the world of
mathematics has an infinite amount of information. Therefore it is natural that any
given mathematical theory is limited, the same way that as physics progresses you
need new laws of physics."

"Mathematicians like to think that they know all the laws. My work suggests that
mathematicians also have to add new axioms, simply because there is an infinite
amount of mathematical information. This is very controversial. I think
mathematicians, in general, hate my ideas. Physicists love my ideas because I am
saying that mathematics has some of the uncertainties and some of the
characteristics of physics. Another aspect of my work is that I found randomness in
the foundations of mathematics. Mathematicians either don't understand that
assertion or else it is a nightmare for them... ":

"This skyhook-skyscraper construction of science from the roof down to the yet
unconstructed foundations was possible because the behaviour of the system at each
level depended only on a very approximate, simplified, abstracted characterization at
the level beneath1. This is lucky, else the safety of bridges and airplanes might
depend on the correctness of the "Eightfold Way" of looking at elementary particles.

1 ... More than fifty years ago Bertrand Russell made the same point about the
architecture of mathematics. See the "Preface" to Principia Mathematica "... the chief
reason in favour of any theory on the principles of mathematics must always be
inductive, i.e., it must lie in the fact that the theory in question allows us to deduce
ordinary mathematics. In mathematics, the greatest degree of self-evidence is
usually not to be found quite at the beginning, but at some later point; hence the
early deductions, until they reach this point, give reason rather for believing the
premises because true consequences follow from them, than for believing the
consequences because they follow from the premises." Contemporary preferences for
deductive formalisms frequently blind us to this important fact, which is no less true
today than it was in 1910."

(Herbert A. Simon)

 On page 16 of ``The Sciences of the Artificial," MIT Press, 1996.

" Hardy `asked `What's your father doing these days. How about that esthetic
measure of his?' I replied that my father's book was out. He said, 'Good, now he can
get back to real mathematics'."

http://www.carma.newcastle.edu.au/~jb616/quotations.html#tthFtNtAAB%20
http://www.carma.newcastle.edu.au/~jb616/quotations.html#tthFrefAAB
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(Garret Birkoff)

 Quoted in Towering Figures, 1890-1950, by David E. Zitarelli on page 618 of MAA Monthly
Aug-Sept, Vol 108, (2001), 606-635 : regarding G. D. Birkhoff's Aesthetic Measures (1933).

"I DO CONSIDER it appropriate to pay one's tribute to Prof. Subramanyan
Chandrasekhar at the outset, before taking a plunge into the aesthetics of macro-
causality, based on his book Truth and Beauty: Aesthetics and Motivations in
Science. Brought up on the refined diet of music, mathematics and aesthetics,
Chandrasekhar's own writing is probably the most appropriate mirror of his
personality. I quote: "When Michelson was asked towards the end of his life, why he
had devoted such a large fraction of his time to the measurement of the velocity of
light, he is said to have replied 'It was so much fun'." Prof. Chandrasekhar goes on
to some length to explain the term quoting even the Oxford Dictionary -- "fun"
means "drollery", what Michelson really meant, Chandrasekhar asserts is "pleasure"
and "enjoyment" - evidently "fun" in the colloquial sense, a concept, so familiar in
our so called ordinary life has no place in Chandrasekhar's dictionary..."

(Bikash Sinha)

 In AESTHETICS AND MOTIVATIONS IN ARTS AND SCIENCE.

" `His peculiar gift was the power of holding continuously in his mind a purely
mental problem until he had seen straight through it. I fancy his preeminence is due
to his muscles of intuition being the strongest and most enduring with which a man
has ever been gifted. Anyone who has ever attempted pure scientific or philosophical
thought knows how one can hold a problem momentarily in one's mind and apply all
one's powers of concentration to piercing through it, and how it will dissolve and
escape and you find that what you are surveying is a blank. I believe that Newton
could hold a problem in his mind for hours and days and weeks until it surrendered
to him its secret. Then being a supreme mathematical technician he could dress it
up, how you will, for purposes of exposition, but it was his intuition which was pre-
eminently extraordinary---"so happy in his conjectures", said de Morgan, "as to
seem to know more than he could possibly have any means of proving."'-- J. M.
Keynes 1956

...

If Edison, Fineman, Gauss, and Newton had all been intensely tutored from the age
of three by brilliant parents, as J.S. Mill was, then I might at least consider the
possibility that my own mental muscles might have been stronger if my own parents
had been more demanding. But they were not and I will not. `When you see
[Edison's] mind at play in his notebooks, the sheer multitude and richness of his
ideas makes you recognize that there is something that can't be understood easily---
that we may never be able to understand.' (historian Paul Israel, quoted in McAuliffe
1995). I think what lies at the heart of these mysteries is genetic, probably
emergenic. The configuration of traits of intellect, mental energy, and temperament
with which, during the plague years of 1665--6, Isaac Newton revolutionized the
world of science were, I believe, the consequence of a genetic lottery that occurred
about nine months prior to his birth, on Christmas day, in 1642.

http://ignca.nic.in/ks_30_cn.htm


Jonathan Borwein's Quotations Page

file:///C|/...rs/jb616/Documents/Jon%20%20%20Files/Publishing%20(Mine)/Quotations/Jonathan%20Borwein's%20Quotations%20Page.htm[4/13/2010 3:33:30 PM]

...

Gauss's second son, Eugene, emigrated to the United States in 1830, enlisted in the
army, and later went into business in Missouri. Eugene is said to have had some of
his father's gift for languages and the ability to perform prodigious arithmetic
calculations, which he did for recreation after his sight failed him in old age. "

(David T. Lykken)

 In THE GENETICS OF GENIUS.

`For Poincare, ignoring the emotional sensibility, even in mathematical
demonstrations "would be to forget the feeling of mathematical beauty, of the
harmony of numbers and forms, of geometric elegance. This is a true esthetic feeling
that all real mathematicians know, and surely it belongs to emotional sensibility" (p.
2047).'

(Nathalie Sinclair)

 Quoting Henri Poincare's "Mathematical creation" (1956). In J. Newman (Ed.), The World of
Mathematics ( pp. 2041-2050). Simon and Schuster.

"The controversy between those who think mathematics is discovered and those who
think it is invented may run and run, like many perennial problems of philosophy.
Controversies such as those between idealists and realists, and between dogmatists
and sceptics, have already lasted more than two and a half thousand years. I do not
expect to be able to convert those committed to the discovery view of mathematics
to the inventionist view. However what I have shown is that a better case can be put
for mathematics being invented than our critics sometimes allow. Just as realists
often caricature the relativist views of social constructivists in science, so too the
strengths of the fallibilist views are not given enough credit. For although fallibilists
believe that mathematics has a contingent, fallible and historically shifting character,
they also argue that mathematical knowledge is to a large extent necessary, stable
and autonomous. Once humans have invented something by laying down the rules
for its existence, like chess, the theory of numbers, or the Mandelbrot set, the
implications and patterns that emerge from the underlying constellation of rules may
continue to surprise us. But this does not change the fact that we invented the game
in the first place. It just shows what a rich invention it was. As the great eighteenth
century philosopher Giambattista Vico said, the only truths we can know for certain
are those we have invented ourselves. Mathematics is surely the greatest of such
inventions."

(Paul Ernst)

 From Is Mathematics Discovered or Invented? (THES, 1996 and after).

" Who owns the Internet? Until recently, nobody. That's because, although the
Internet was "Made in the U.S.A.," its unique design transformed it into a resource
for innovation that anyone in the world could use. Today, however, courts and

http://cogprints.soton.ac.uk/documents/disk0/00/00/06/11/cog00000611-00/genius.html
http://www.ex.ac.uk/~PErnest/pome12/article2.htm
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corporations are attempting to wall off portions of cyberspace. In so doing, they are
destroying the Internet's potential to foster democracy and economic growth
worldwide. "

(Lawrence Lessig)

 From Who Owns The Internet? Foreign Policy, November-December 2001.

"Predicting the future is an activity fraught with error. Wilbur Wright, co-inventor of
the motorized airplane that successfully completed the first manned flight in 1903,
seems to have learned this lesson when he noted: "In 1901, I said to my brother
Orville that man would not fly for 50 years. Ever since I have ... avoided
predictions." Despite the admonition of Wright, faulty future forecasting seems a
favored human pastime, especially among those who would presumably avoid
opportunities to so easily put their feet in their mouths.

What follows are some of the more striking exemplars of expert error in forecasting
the future of technological innovations.

"Louis Pasteur's theory of germs is ridiculous fiction." -- Piem Pachet, Professor of
Physiology, 1872

"The abdomen, the chest, and the brain will forever be shut from the intrusion of the
wise and humane surgeon." -- Sir John Eric Erickren, British surgeon to Queen
Victoria, 1873

"Radio has no future. Heavier than air flying machines are impossible. X-rays will
prove to be a hoax." -- William Thomson (Lord Kelvin), English physicist and
inventor, 1899

"There is not the slightest indication that nuclear energy will ever be obtainable. It
would mean that the atom would have to be shattered at will." -- Albert Einstein,
1932

"Man will never reach the moon, regardless of all future scientific advances." -- Lee
De Forest, Radio pioneer, 1957

Computers and information technologies seem to hold a special place in the
forecasters' hall of humiliation, be they predictions from the media, business,
politicians, scientists, or technologists. Here are some examples:

"This 'telephone' has too many shortcomings to be seriously considered as a means
of communication. The device is inherently of no value to us." -- Western Union
internal memo, 1876

"I think there is a world market for maybe five computers." -- Thomas Watson, chair
of IBM, 1943

"The problem with television is that people must sit and keep their eyes glued on a
screen; the average American family hasn't time for it." -- New York Times, 1949

"Where ... the ENIAC is equipped with 18,000 vacuum tubes and weights 30 tons,

http://www.foreignpolicy.com/issue_novdec_2001/lessig.html
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computers in the future may have only 1,000 vacuum tubes and weigh only 1.5
tons." -- Popular Mechanics, 1949

"Folks, the Mac platform is through -- totally." -- John C. Dvorak, PC Magazine, 1998

"There is no reason anyone would want a computer in their home." -- Ken Olson,
president, chairman and founder, Digital Equipment Corp, 1977

"640K ought to be enough for anybody." -- Attributed to Bill Gates, Microsoft chair,
1981

"By the turn of this century, we will live in a paperless society." -- Roger Smith,
chair of General Motors, 1986

"I predict the Internet ... will go spectacularly supernova and in 1996 catastrophically
collapse." -- Bob Metcalfe, 3Com founder and inventor, 1995

"Credit reports are particularly vulnerable ... [as] are billing, payroll, accounting,
pension and profit-sharing programs." -- Leon A Kappelman [author of this article]
on likely Y2K problems, 1999 "

(Leon A Kappelman)

 From "The Future is Ours," Communications of the ACM, March 2001, pg. 46.

" Computation with Roman numerals is certainly algorithmic - it's just that the
algorithms are complicated.

In 1953, I had a summer job at Bell Labs in New Jersey (now Lucent), and my
supervisor was Claude Shannon (who has died only very recently). On his desk was
a mechanical calculator that worked with Roman numerals. Shannon had designed it
and had it built in the little shop Bell Labs had put at his disposal. On a name plate,
one could read that the machine was to be called: Throback I.

Martin from a foggy morning in Berkeley"

(Martin Davis)

 Martin Davis, Visiting Scholar UC Berkeley, Professor Emeritus, NYU. Following up on queries
on the Historia Mathematica list, Jan 12, 2002.

" [1] If nature has made any one thing less susceptible than all others of exclusive
property, it is the action of the thinking power called an idea, which an individual
may exclusively possess as long as he keeps it to himself; but the moment it is
divulged, it forces itself into the possession of everyone, and the receiver cannot
dispossess himself of it. [2] Its peculiar character, too, is that no one possesses the
less, because every other possesses the whole of it. He who receives an idea from
me, receives instruction himself without lessening mine; as he who lites his taper at
mine, receives light without darkening me. [3] That ideas should freely spread from
one to another over the globe, for the moral and mutual instruction of man, and
improvement of his condition, seems to have been peculiarly and benevolently
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designed by nature, when she made them, like fire, expansible over all space,
without lessening their density at any point, and like the air in which we breathe,
move, and have our physical being, incapable of confinement, or exclusive
appropriation. [4] Inventions then cannot, in nature, be a subject of property. "

(Thomas Jefferson)

 Letter from Thomas Jefferson to Issac McPherson (August 13, 1813), in The Writings of
Thomas Jefferson 6 quoted from page 94 of the future of ideas by Lawrence Lessig, Random
House, 2001.

The question of the ultimate foundations and the ultimate meaning of mathematics
remains open: we do not know in what direction it will find its final solution or even
whether a final objective answer can be expected at all. 'Mathematizing' may well be
a creative activity of man, like language or music, of primary originality, whose
Historical decisions defy complete objective rationalisation."

(Hermann Weyl)

 In "Obituary: David Hilbert 1862 - 1943", RSBIOS, 4, 1944, pp. 547 - 553; and American
Philosophical Society Year Book, 1944, pp. 387 - 395, p. 392.

Thus mathematics may be defined as the subject in which we never know what we
are talking about, nor whether what we are saying is true. People who have been
puzzled by the beginnings of mathematics will, I hope, find comfort in this definition,
and will probably agree that it is accurate."

Bertrand Russell)

 From "Recent Work on the Principles of Mathematics in International Monthly, 4 (July,
1901), 83-101. (Collected Papers, v3, p.366; revised version in Newman's World of
Mathematics, v3, p. 1577.)

"The problems of mathematics are not problems in a vacuum. There pulses in them
the life of ideas which realize themselves in concreto through our [or throught]
human endeavors in our historical existence, but forming an indissoluble whole
transcending any particular science."

(Hermann Weyl)

 In "David Hilbert and his mathematical work," Bull. Am. Math. Soc., 50 (1944), p. 615.

THE FUTURE OF E-PUBLISHING. Although e-publishing has suffered a series of
setbacks this year, Wired magazine still found plenty of optimism about the future of
e-books. Michael S. Hart of Project Guttenberg, which offers books in electronic form,
says: "The number of e-books available for free download on the Net will pass
20,000. The number of Net users will start heading towards 1 billion." Librarian
Cynthia Orr, a co-founder of BookBrowser.com, thinks e-publishers should pay more
attention to libraries, and says that if the major publishers worked with librarians or
distributors "to figure out how to let libraries purchase or license their e-books, and
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let readers 'check them out' for free," that would help build "a market that otherwise
threatens to just collapse for lack of interest. Librarians have been careful defenders
of copyright over the years ... and our budgets are far higher than they realize." And
Mark Gross, president of Data Conversion Laboratory, thinks that the e-publishing
has already won a stealth war: ""What people forget is e-books were going strong
before they were called e-books and they went on to sweep into many aspects of
business and publishing. Most of this has gone unnoticed by the media. Probably
because it has been a kind of backdoor revolution. To cite one example: Print law
books are just about gone. People don't use them in law firms anymore. It's all
electronic books or online. A revolution has occurred, but no one's noticed."

(Wired Magazine)
 Wired, December 25, 2001.

"Dear brother;

I have often been surprised that Mathematics, the quintessence of Truth, should
have found admirers so few and so languid. Frequent consideration and minute
scrutiny have at length unravelled the cause; viz. that though Reason is feasted,
Imagination is starved; while Reason is luxuriating in its proper Paradise, Imagination
is wearily travelling on a dreary desert. To assist Reason by the stimulus of
Imagination is the design of the following production."

Samuel Taylor Coleridge then launches into an ode on mathematics, the first verses of which
are as follows:

" On a given finite line 
Which must no way incline; 

To describe an equi - 
- lateral tri - 

A -N -G -L -E. 
Now let AB 

Be the given line 
Which must no way incline; 

The great Mathematician 
Makes this requisition, 

That we describe an Equi - 
- lateral Tri - 
- angle on it; 

Aid us, Reason - aid us, Wit! 

From the centre A at the distance AB, 
Describe the circle BCD 
At the distance BA from B the centre 
The round ACE to describe boldly venture. 
(Third postulate see) 
And from the point C 
In which the circles make a pother 
cutting and slashing one another 
Bid the straight lines a journeying go. 
CACB those lines will show 

http://www.wired.com/news/culture/0,1284,49297,00.html
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To the points, which by AB are reckoned 
And postulate the second 
For authority you know 
ABC Triumphant shall be 
An equilateral Triangle 
No Peter Pindar carp, nor Zoilus can wrangle."

(Samuel Coleridge)

 In a letter to his brother the Reverend George Coleridge.

"There is a story, no doubt exaggerated, that the Pope once remarked that two types
of proposals exist for peace in the Middle East: The realistic and the miraculous. The
realistic solution is divine intervention. The miraculous involves a voluntary
agreement between the two sides."

(Paul Adams)

 From his article "Israel, Palestinians now further apart than two years ago" in the The Globe
and Mail, Monday, April 15,2002

"Moreover a mathematical problem should be difficult in order to entice us, yet not
completely inaccessible, lest it mock our efforts. It should be to us a guidepost on
the mazy path to hidden truths, and ultimately a reminder of our pleasure in the
successful solution.

...

Besides it is an error to believe that rigor in the proof is the enemy of simplicity."

(David Hilbert)

 In his `23' Mathematische Probleme lecture to the Paris International Congress, 1900 (see
Yandell's, fine account in The Honors Class, A.K. Peters, 2002).

``... waved his manuscript and confessed his publishing woes. ... "I said, 'I'm afraid
no one's going to get to read these words. And I love these words.'"

Ann Sparanese, a librarian in the audience, sent an SOS over the Internet to fellow
librarians. Within hours, they inundated HarperCollins with angry e-mails - and
orders for Stupid White Men. Some also threatened a boycott.

"Those librarians," says Moore, ... "That's one terrorist group you don't want to mess
with."

HarperCollins caved.

...

(Jan Wong)
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 Quoted from "Lunch with Michael Moore - A smart white guy with attitude," The Globe and
Mail May 18, 2002, page F2.

`` Old ideas give way slowly; for they are more than abstract logical forms and
categories. They are habits, predispositions, deeply engrained attitudes of aversion
and preference. Moreover, the conviction persists-though history shows it to be a
hallucination that all the questions that the human mind has asked are questions that
can be answered in terms of the alternatives that the questions themselves present.
But in fact intellectual progress usually occurs through sheer abandonment of
questions together with both of the alternatives they assume an abandonment that
results from their decreasing vitality and a change of urgent interest. We do not
solve them: we get over them.

Old questions are solved by disappearing, evaporating, while new questions
corresponding to the changed attitude of endeavor and preference take their place.
Doubtless the greatest dissolvent in contemporary thought of old questions, the
greatest precipitant of new methods, new intentions, new problems, is the one
effected by the scientific revolution that found its climax in the " Origin of Species."
``

(John Dewey)

 Quoted from The Influence of Darwin on Philosophy, 1910.

``The first [axiom] said that when one wrote to the other (they often preferred to
exchange thoughts in writing instead of orally), it was completely indifferent whether
what they said was right or wrong. As Hardy put it, otherwise they could not write
completely as they pleased, but would have to feel a certain responsibility thereby.
The second axiom was to the effect that, when one received a letter from the other,
he was under no obligation whatsoever to read it, let alone answer it, - because, as
they said, it might be that the recipient of the letter would prefer not to work at that
particular time, or perhaps that he was just then interested in other problems.... The
third axiom was to the effect that, although it did not really matter if they both
thought about the same detail, still, it was preferable that they should not do so.
And, finally, the fourth, and perhaps most important axiom, stated that it was quite
indifferent if one of them had not contributed the least bit to the contents of a paper
under their common name; otherwise there would constantly arise quarrels and
difficulties in that now one, and now the other, would oppose being named co-
author.''

(Harald Bohr)

 Hardy and Littlewood's Four Axioms for Collaboration quoted from the preface of Bella
Bollobas' 1988 edition of Littlewood's Miscellany. (Other quotes from the Miscellany.)

"I got into a research project which can be very simply described as concerned with
the realization of the "Nash program" (making use of words made conventional by
others that refer to suggestions I had originally made in my early works in game

http://spartan.ac.brocku.ca/~lward/dewey/Dewey_1910b/Dewey_1910_01.html
http://www-gap.dcs.st-and.ac.uk/~history/Quotations/Littlewood.html
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theory).

In this project a considerable quantity of work in the form of calculations has been
done up to now. Much of the value of this work is in developing the methods by
which tools like Mathematica can be used with suitable special programs for the
solution of problems by successive approximation methods."

(John Nash)

 On page 241 of "The Essential John Nash", edited by Harold W. Kuhn and Sylvia Nasar,
Princeton Univ. Press, 2001.

"A proof is a proof. What kind of a proof? It's a proof. A proof is a proof. And when
you have a good proof, it's because it's proven."

(Jean Chretien)

 The Canadian Prime Minister explaining Canada's conditions for determining if Iraq has
complied, September 5, 2002. Sounds a lot like Bertrand Russell!

"No man can worthely praise Ptolemye ... yet muste ye and all men take heed, that
both in him and in all mennes workes, you be not abused by their autoritye, but
evermore attend to their reasons, and examine them well, ever regarding more what
is saide, and how it is proved, than who saieth it, for autorite often times deceaveth
many menne."

(Robert Record)

 The great textbook writer in his cosmology text `The castle of knowledge' (1556) quoted on
page 47 of Oxford Figures, Oxford University Press, 2000.

"The future has arrived; it's just not evenly distributed."

(Douglas Gibson)

 On his Vancouver home page.

"The plural of 'anecdote' is not 'evidence'."

(Alan L. Leshner)

 Science's publisher speaking at the Federal S&T Forum, Oct 2, 2002.

" ... Several years ago I was invited to contemplate being marooned on the
proverbial desert island. What book would I most wish to have there, in addition to
the Bible and the complete works of Shakespeare? My immediate answer was:
Abramowitz and Stegun's Handbook of Mathematical Functions. If I could substitute
for the Bible, I would choose Gradsteyn and Ryzhik's Table of Integrals, Series and

http://cbc.ca/stories/2002/09/05/iraq_pm020905
http://www.carma.newcastle.edu.au/~jb616/quotations.html#RUSSELL
http://fusionanomaly.net/williamgibson.html
http://www.ccmd-ccg.gc.ca/events/conferences/sciandtech/index_e.html
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Products. Compounding the impiety, I would give up Shakespeare in favor of
Prudnikov, Brychkov And Marichev's of Integrals and Series ... On the island, there
would be much time to think about waves on the water that carve ridges on the sand
beneath and focus sunlight there; shapes of clouds; subtle tints in the sky... With the
arrogance that keeps us theorists going, I harbor the delusion that it would be not
too difficult to guess the underlying physics and formulate the governing equations.
It is when contemplating how to solve these equations - to convert formulations into
explanations - that humility sets in. Then, compendia of formulas become
indispensable."

(Michael Berry)

 "Why are special functions special?" Physics Today, April 2001.

"I will be glad if I have succeeded in impressing the idea that it is not only pleasant
to read at times the works of the old mathematical authors , but this may
occasionally be of use for the actual advancement of science."

(Constantin Caratheodory)

 Speaking to an MAA meeting in 1936.

"I have myself always thought of a mathematician as in the first instance an
observer, a man who gazes at a distant range of mountains and notes down his
observations. His object is simply to distinguish clearly and notify to others as many
different peaks as he can. There are some peaks which he can distinguish easily,
while others are less clear. He sees A sharply, while of B he can obtain only
transitory glimpses. At last he makes out a ridge which leads from A, and following it
to its end he discovers that it culminates in B. B is now fixed in his vision, and from
this point he can proceed to further discoveries. In other cases perhaps he can
distinguish a ridge which vanishes in the distance, and conjectures that it leads to a
peak in the clouds or below the horizon. But when he sees a peak he believes that it
is there simply because he sees it. If he wishes someone else to see it, he points to
it, either directly or through the chain of summits which led him to recognize it
himself. When his pupil also sees it, the research, the argument, the proof is finished.

The analogy is a rough one, but I am sure that it is not altogether misleading. If we
were to push it to its extreme we should be led to a rather paradoxical conclusion;
that we can, in the last analysis, do nothing but point; that proofs are what
Littlewood and I call gas, rhetorical flourishes designed to affect psychology, pictures
on the board in the lecture, devices to stimulate the imagination of pupils. This is
plainly not the whole truth, but there is a good deal in it. The image gives us a
genuine approximation to the processes of mathematical pedagogy on the one hand
and of mathematical discovery on the other; it is only the very unsophisticated
outsider who imagines that mathematicians make discoveries by turning the handle
of some miraculous machine. Finally the image gives us at any rate a crude picture
of Hilbert's metamathematical proof, the sort of proof which is a ground for its
conclusion and whose object is to convince ."

(G.H. Hardy)
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 From the Preface to David Broussoud's recent book "Proofs and Confirmation: The Story
of the Alternating Sign Matrix Conjecture," MAA, 1999. Broussoud cites Hardy's "Rouse
Ball Lecture of 1928".

"[T]o suggest that the normal processes of scholarship work well on the whole and in
the long run is in no way contradictory to the view that the processes of selection
and sifting which are essential to the scholarly process are filled with error and
sometimes prejudice."

(Kenneth Arrow)

 From E. Roy Weintraub and Ted Gayer, "Equilibrium Proofmaking," Journal of the History of
Economic Thought, 23 (Dec. 2001), 421-442.

"Mathematical proofs like diamonds should be hard and clear, and will be touched
with nothing but strict reasoning."

(John Locke)

 From The Mathematical Universe by William Dunham, John Wiley, 1994.

``In his review of Winchester's previous book, The Map That Changed the World (3),
Stephen Jay Gould wrote: 

I don't mean to sound like an academic sourpuss, but I just don't understand the
priorities of publishers who spare no expense to produce an elegantly illustrated and
beautifully designed book and then permit the text to wallow in simple, straight-out
factual errors, all easily corrected for the minimal cost of one scrutiny of the galleys
by a reader with professional expertise... (4) 

With Krakatoa, the publisher clearly spared considerable expense, and this new book
also wallows in errors. Perhaps, given our popular culture's appetite for
sensationalized disasters, a modern publisher would rather not see all those pesky
details corrected.''

(Tom Simkin and Richard S. Fiske)

 Review entitled "Clouded Picture of a Big Bang" from Science, July 4, 2003, page 50-51)

"Again, I have to repeat the dictum of Harvard's president, Larry Summers: "In the
history of the world, no one has ever washed a rented car." Most Iraqis still feel
they are renting their own country --- first from Saddam and now from us. They
have to be given ownership. If the Bush team is ready to put in the time, energy and
money to make that happen --- great. But if not, it's going to have to make the
necessary compromises to bring in the U.N. and the international community to help.
''

(Thomas Freedman)

http://www.maa.org/pubs/books/pac_preface.pdf
http://www.maa.org/pubs/books/pac_preface.pdf
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 New York Times August 26, 2003.

"The paomnnehil pweor of the hmuan mnid. Aoccdrnig to a rscheearch at Cmabrigde
Uinervtisy, it deosn't mttaer in waht oredr the ltteers in a wrod are, the olny
iprmoetnt tihng is taht the frist and lsat ltteer be at the rghit pclae. The rset can be a
total mses and you can sitll raed it wouthit porbelm. Tihs is bcuseae the huamn mnid
deos not raed ervey lteter by istlef, but the wrod as a wlohe."

 Psased on by Kevin Hare, Spetmber 2003.

" "The great tragedy of science," the biologist Thomas Henry Huxley lamented, is
"the slaying of a beautiful hypothesis by an ugly fact." By that standard, political
science is going through a homely phase. It's not even three weeks since the Iowa
caucuses, and voters have wiped out several decades' worth of conventional wisdom
about presidential primaries."

 Some columnist in February 2004.

"By 1948, the Marxist-Leninist ideas about the proletariat and its political capacity
seemed more and more to me to disagree with reality ... I pondered my doubts, and
for several years the study of mathematics was all that allowed me to preserve my
inner equilibrium. Bolshevik ideology was, for me, in ruins. I had to build another
life."

(Jean Van Heijenoort, 1913-1986)

 From his autobiography With Trotsky in Exile, quoted in Anita Feferman's From Trotsky to
Godel

"Numbers are not the only thing that computers are good at processing. Indeed, only
a cursory familiarity with fractal geometry is needed to see that computers are good
at creating and manipulating visual representations of data. There is a story told of
the mathematician Claude Chevalley, who, as a true Bourbaki, was extremely
opposed to the use of images in geometric reasoning. He is said to have been giving
a very abstract and algebraic lecture when he got stuck. After a moment of
pondering, he turned to the blackboard, and, trying to hide what he was doing, drew
a little diagram, looked at it for a moment, then quickly erased it, and turned back to
the audience and proceeded with the lecture. It is perhaps an apocryphal story, but it
illustrates the necessary role of images and diagrams in mathematical reasoning-
even for the most diehard anti-imagers. The computer offers those less expert, and
less stubborn than Chevalley, access to the kinds of images that could only be
imagined in the heads of the most gifted mathematicians, images that can be
coloured, moved and otherwise manipulated in all sorts of ways. "

(Nathalie Sinclair, 2004)

 From Making the Connection: Research and Practice in Undergraduate Mathematics, M.
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Carlson and C. Rasmussen (Eds), MAA Notes, in press.

Greenwood: It was quite a popular course. There used to be a saying that if
Wedderburn says something is true, accept it but don't try to prove it because you
won't be able to. If Eisenhart says something is true, get out his book and by using
cross references 20 to 30 times you can work up a proof for it. And if Lefschetz says
something is true ...

Tucker: It is probably false.

Greenwood: ... my apologies to Professor Lefschetz, look for a proof and for a
counterexample at the same time.

Aspray: Since you both had close associations with Church, I was wondering if you
could tell me something about him. What was his wider mathematical training and
interests? What were his research habits? I understood he kept rather unusual
working hours. How was he as a lecturer? As a thesis director?

Rosser: In his lectures he was painstakingly careful. There was a story that went
the rounds. If Church said it's obvious, then everybody saw it a half hour ago. If
Weyl says it's obvious, von Neumann can prove it. If Lefschetz says it's obvious, it's
false.

 From the Princeton Oral History Project

Excerpts from Google's filing with the SEC

-- Google is not a conventional company. We do not intend to become one.

-- A management team distracted by a series of short-term targets is as pointless as
a dieter stepping on the scale every half hour.

-- We will not hesitate to place major bets on promising new opportunities.

-- For example, we would fund projects that have a 10 percent chance of earning a
billion dollars over the long term. Do not be surprised if we place smaller bets in
areas that seem very speculative or even strange.

-- Our employees, who have named themselves Googlers, are everything.

-- We provide many unusual benefits for our employees, including meals free of
charge, doctors and washing machines.

-- Don't be evil. We believe strongly that in the long term, we will be better served

-- as shareholders and in all other ways -- by a company that does good things for
the world even if we forgo some short-term gains."

(John Shinal)

 From San Francisco Chronicle, Friday, April 30, 2004

http://infoshare1.princeton.edu/libraries/firestone/rbsc/finding_aids/mathoral/pmc23.htm
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"The discussion was going beautifully until I discovered that he was talking about the
Peloponnesian War while I was discussing WW II."

(Nicholas Katzenbach)

 Katzenbach writing in the The American Oxonian, describing his first meeting with his tutor
Lord Lindsay in Balliol around 1948. The subject was the effect of war upon morals.

"A coded message, for example, might represent gibberish to one person and
valuable information to another. Consider the number 14159265... Depending on
your prior knowledge, or lack thereof, it is either a meaningless random sequence of
digits, or else the fractional part of pi, an important piece of scientific information."

(Hans Christian von Baeyer)

 On page 11 of his recent book Information The New Language of Science, Weidenfeld and
Nicolson, 2003.

The metaphor of shooting naturally became a familiar one in writings about his
photography. Cartier-Bresson himself used it often: "approach tenderly, gently . . .
on tiptoe even if the subject is a still life," he said. "A velvet hand, a hawk's eye
these we should all have." He also said: "I adore shooting photographs. It's like
being a hunter. But some hunters are vegetarians which is my relationship to
photography." And later, explaining his dislike of the automatic camera, he said, "It's
like shooting partridges with a machine gun."

With a Brownie that he had received as a gift, he began to snap photographs in
Africa, but they ended up ruined. Contracting blackwater fever, he nearly died. The
way he told the story, a witch doctor got him out of a coma. While still feverish, he
wrote a postcard to his grandfather asking that he be buried in Normandy, at the
edge of the Eawy forest, with Debussy's string quartet to be played at the funeral.
An uncle wrote back: "Your grandfather finds all that too expensive. It would
be preferable that you return first."

(New York Times)

 From Henri Cartier-Bresson's New York Times Obituary of August 4, 2004.

"Despite the narrative force that the concept of entropy appears to evoke in
everyday writing, in scientific writing entropy remains a thermodynamic quantity and
a mathematical formula that numerically quantifies disorder. When the American
scientist Claude Shannon found that the mathematical formula of Boltzmann defined
a useful quantity in information theory, he hesitated to name this newly discovered
quantity entropy because of its philosophical baggage. The mathematician John Von
Neumann encouraged Shannon to go ahead with the name entropy, however, since
"no one knows what entropy is, so in a debate you will always have the
advantage."



Jonathan Borwein's Quotations Page

file:///C|/...rs/jb616/Documents/Jon%20%20%20Files/Publishing%20(Mine)/Quotations/Jonathan%20Borwein's%20Quotations%20Page.htm[4/13/2010 3:33:30 PM]

 From The American Heritage Book of English Usage, p. 158.

"The connections between chemical science and technology in the new synthetic-dye
industry that began to develop after William Henry Perkin's synthesis of mauve in
1856 are complex. But one contribution of the science of carbon chemistry to the
synthetic-dye industry was clearly crucial: chemical theory embodied in chemical
formulae. Linear chemical formulae, like H2O for water, had been introduced by the
Swedish chemist Jacob Berzelius (1779-1848) in 1813. They presented the
composition of chemical compounds according to a theory of definite quantitative
units or portions of substances. With atomism, this new quantitative theory shared
the assumption of discontinuous composition of substances. But the algebraic form of
Berzelian formulae avoided narrow definitions in terms of "atoms," which many
chemists rejected as metaphysical entities. Letters, numbers, and additivity were
sufficient to represent quantitative units of elements and discontinuous composition
of compounds. Different arrangements of letters visually showed how units of
elements were combined with each other. The structural formulae of the 1860s
displayed chemical and spatial arrangements in an even more pictorial form.

Beginning in the late 1820s, chemists used chemical formulae as tools on paper to
model the constitution of organic compounds. Using chemical formulae as paper
tools, chemists reduced the complexity in the "jungle of organic chemistry" (F.
Wehler). Chemical formulae enabled them, for example, to order organic chemical
reactions by formula equations that distinguished between a main reaction, side
reactions, and successive reactions.

In the 1860s, chemical formulae had become an emblem not only of
academic chemistry but also of the synthetic-dye industry. Quantitative
chemical theory was implemented in the new alliance between carbon chemistry and
the synthetic-dye industry in the form of paper tools that were subordinated to
chemists' experimental and technological goals (6). Compared with the connections
between academic chemistry and the arts and crafts in the 18th

(Ursala Klein)

 In "Not a Pure Science: Chemistry in the 18th and 19th Centuries" Science, 5 November
2004

"Whether we scientists are inspired, bored, or infuriated by philosophy, all our
theorizing and experimentation depends on particular philosophical background
assumptions. This hidden influence is an acute embarrassment to many researchers,
and it is therefore not often acknowledged. Such fundamental notions as reality,
space, time, and causality--notions found at the core of the scientific enterprise--all
rely on particular metaphysical assumptions about the world."

(Christof Koch)

 In ``Thinking About the Conscious Mind," a review of John R. Searle's Mind. A Brief
Introduction, OUP 2004.
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"And it is one of the ironies of this entire field that were you to write a history of
ideas in the whole of DNA, simply from the documented information as it exists in
the literature - that is, a kind of Hegelian history of ideas - you would certainly say
that Watson and Crick depended on Von Neumann, because von Neumann essentially
tells you how it's done. But of course no one knew anything about the other. It's a
great paradox to me that this connection was not seen. Of course, all this leads to a
real distrust about what historians of science say, especially those of the history of
ideas."

(Sidney Brenner)

 2002 Nobelist Sidney Brenner talking about von Neumann's essay on The General and
Logical Theory of Automata on pages 35--36 of My life in Science as told to Lewis Wolpert.

 "Sometime in the 1970s Paul Turan spent part of a summer in Edmonton. I wanted
to meet him so went there. He was a few days late so I had arrived a couple of days
earlier. A group went to the airport to meet him, and stopped at a coffee shop before
going to the university. It was very hot so I offered to stay in the car and keep the
windows down. I said I did not drink coffee. Turan then told the joke about
mathematicians being machines which turn coffee into theorems, and then added:
"You prove good theorems. Just think how much better they would be if you
drank coffee". I have heard the statement attributed to Renyi by more than one
Hungarian, but this was somewhat later. Turan just stated it."

(Richard Askey)

 The definitive version of "Erdos and Coffee"? As told to the historia mathematica list on
Feb 3, 2005.

Elsewhere Kronecker said "In mathematics, I recognize true scientific value
only in concrete mathematical truths, or to put it more pointedly, only in
mathematical formulas." ... I would rather say "computations" than "formulas",
but my view is essentially the same.

(Harold M. Edwards)

 On page 1 of Essays on Constructive Mathematics, Springer 2005. Edwards comments
elswhere that his own preference for constructivism was forged by experience of computing in
the fifties---"trivial by today's standards".

"One little know piece of Mayr's history, Rubinoff said, was his service on a National
Research Council committee, which formed in the late 1960's, to examine the
consequences of building a sea-level canal through the Isthmus of Panama. Mayr
was accused by one of the committee engineers of "having an elastic collision with
reality." But, said Rubinoff, if it weren't for Mayr's tenacity, the proposed canal would
have destroyed 3 million years of isolated evolution.

Frank Sulloway, author and former Mayr student, said that his career was influenced
by meeting two minds: Darwin's and Mayr's. "The minute you meet one, you sooner

http://www.carma.newcastle.edu.au/~jb616/quotations.html#ERDOS
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or later meet the other," he said.

Both were famously persistent. Quoting 19th-century novelist Anthony Trollope,
"Darwin once wrote: "It's dogged as does it... I have often and often thought
that this is the motto for every scientific worker." "The only person I know
who's about as dogged is Ernst Mayr," said Sulloway."

(The Scientist)

 February 3, 2005 obituary of Ernst Meyr. (See
www.biomedcentral.com/news/20050204/01.)

"Dear Friend Wollstein, By the time you receive these lines, we three will have solved
the problem in another way - in the way which you have continually attempted to
dissuade us. ... What has been done against the Jews in recent months arouses well-
founded anxiety that we will no longer be allowed to experience a bearable situation.
... Forgive us, that we still cause you trouble beyond death; I am convinced that you
will do what you are able to do (and which perhaps is not very much). Forgive us
also our desertion! We wish you and all our friends will experience better times.

Yours faithfully, Felix Hausdorff"

(Felix Hausdorff)

 MacTutor gives more of Felix Hausdorff's last letter written on the eve of suicide (January
25, 1942).

About H.E. Smith: In the book "Elementary Number Theory" (Chelsea, New York,
1958. An English translation of vol. 1 of the German book Vorlesungen ueber
Zahlentheorie), p.31, the author, Edmund Landau, mentions the question whether
the infinite series $\sum \mu(n)/n$ converges (TEX notation; \mu is the Moebius
function). After giving a reference to the answer in Part 7 of the same V.u.Z, and
without saying what the answer is, Landau writes: "Gordan used to say something
to the effect that 'Number Theory is useful since one can, after all, use it to
get a doctorate with.' In 1899 I received my doctorate by answering this
question."

He was a brilliant talker and wit. Working in the purely speculative region
of the theory of numbers, it was perhaps natural that he should take an
anti-utilitarian view of mathematical science, and that he should express it
in exaggerated terms as a defiance to the grossly utilitarian views then
popular. It is reported that once in a lecture after explaining a new solution
of an old problem he said, "It is the peculiar beauty of this method,
gentlemen, and one which endears it to the really scientific mind, that
under no circumstances can it be of the smallest possible utility." I believe
that it was at a banquet of the Red Lions that he proposed the toast "Pure
mathematics; may it never be of any use to anyone."

This is taken from Alexander Macfarlane, _Ten British Mathematicians of the
Nineteenth Century_ (1916), 63-4. The text is that of lectures he gave in 1903-

http://www.biomedcentral.com/news/20050204/01
http://www-history.mcs.st-and.ac.uk/~history/Mathematicians/Hausdorff.html
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1904, and the editors in their introduction say that "His personal acquaintance with
British mathematicians of the nineteenth century imparts to many of these lectures a
personal touch which greatly adds to their general interest."

A copy of the book is available on the Project Gutenberg website:

"By its own count, Wal-Mart has 460 terabytes of data stored on Teradata
mainframes, made by NCR, at its Bentonville headquarters.

To put that in perspective, the Internet has less than half as much data, according to
experts."

(Constance Hays)

 In "What Wal-Mart Knows About Customers' Habits", NYT November 14, 2004.

Just what does it mean to prove something? Although the Annals will publish Dr
Hales's paper, Peter Annals, an editor of the Annals, whose own work does not
involve the use of computers, says that the paper will be accompanied by an unusual
disclaimer, stating that the computer programs accompanying the paper have not
undergone peer review. There is a simple reason for that, Dr Sarnak says-it is
impossible to find peers who are willing to review the computer code. However, there
is a flip-side to the disclaimer as well-Dr Sarnak says that the editors of the Annals
expect to receive, and publish, more papers of this type-for things, he believes, will
change over the next 20-50 years. Dr Sarnak points out that maths may become "a
bit like experimental physics" where certain results are taken on trust, and
independent duplication of experiments replaces examination of a colleague's paper.

Why should the non-mathematician care about things of this nature? The foremost
reason is that mathematics is beautiful, even if it is, sadly, more inaccessible than
other forms of art. The second is that it is useful, and that its utility depends in part
on its certainty, and that that certainty cannot come without a notion of proof. Dr
Gonthier, for instance, and his sponsors at Microsoft, hope that the techniques he
and his colleagues have developed to formally prove mathematical theorems can be
used to "prove" that a computer program is free of bugs-and that would certainly be
a useful proposition in today's software society if it does, indeed, turn out to be true.

 In Proof and beauty, the Economist, March 31, 2005

Writers we admire and re-read are absorbed into the fine print of our consciousness,
into the white noise of our thoughts, and in this sense, they can never die. Saul
Bellow started publishing in the 1940's, and his work spreads across the century he
helped to define. He also redefined the novel, broadened it, liberated it, made it
warm with human sense and wit and grand purpose. Henry James once proposed an
obvious but helpful truth: "the deepest quality of a work of art will always be
the quality of the mind of the producer." We are saying farewell to a mind of
unrivalled quality. He opened our universe a little more. We owe him everything.

(Ian McEwan)

http://www.economist.com/science/PrinterFriendly.cfm?Story_ID=3809661
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 Master of the Universe, an obituary for Saul Bellow (1915-2005) NYT April 7, 2005.

Why should I refuse a good dinner simply because I don't understand the digestive
processes involved?

(Oliver Heaviside)

 Heaviside (1850-1925) when criticized for his daring use of operators before they could be
justified formally.

Die Mathematiker sind eine Art Franzosen; redet man mit ihnen, so übersetzen sie
es in ihre Sprache, und dann ist es alsobald ganz etwas anderes. [Mathematicians
are a kind of Frenchman: whatever you say to them they translate into their own
language, and right away it is something entirely different.]

(Johann Wolfgang von Goethe)

 Maximen und Reflexionen, no. 1279, on page 160 of the Penguin classic edition.

Ask Dr. Edward Witten of the Institute for Advanced Study in Princeton, New Jersey
what he does all day, and it's difficult to get a straight answer.

"There isn't a clear task," Witten told CNN. "If you are a researcher you are trying to
figure out what the question is as well as what the answer is.

"You want to find the question that is sufficiently easy that you might be able to
answer it, and sufficiently hard that the answer is interesting. You spend a lot of time
thinking and you spend a lot of time floundering around." "

(Ed Witten)

 CNN June 27, 2005.

"I don't think biochemists are going to be the least bit interested in what
philosophers think about genes," Jones replies. "As I've said in the past, philosophy
is to science as pornography is to sex: It's cheaper, easier, and some people prefer
it.", Moving swiftly along, Jones and Stangroom ponder racial differences in IQ, the
debate over genetically modified crops, health insurance, and the future of the
human race.

In the next chapter, Harvard evolutionary psychologist Steven Pinker is probed on
"Evolutionary Psychology and the Blank Slate." The conversation moves from the
structure of the brain to adaptive explanations for music, creationism, and beyond.
Stangroom asks Pinker about the accusations that biological explanations of behavior
are determinist and reduce human beings to the status of automatons. " "Most
people have no idea what they mean when they level the accusation of
determinism," "Pinker answers. "It's a nonspecific "boo" word, intended to make
something seem bad without any content."

http://www.nytimes.com/2005/04/07/opinion/07mcewan.html?hp
http://edition.cnn.com/2005/TECH/science/06/27/witten.physics/index.html
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(Jeremy Stangroom's interviews)

 The Scientist describing What (some) scientists say (Routledge Press). June 20th, 2005.
[For earlier quote See above]

Harald Bohr is reported to have remarked "Most analysts spend half their time
hunting through the literature for inequalities they want to use, but cannot
prove."

(D.J.H. Garling)

 On page 575 of his very positive review of Michael Steele's The Cauchy Schwarz Master
Class in the MAA Monthly, June-July 2005, 575-579.

"How ridiculous to make evolution the enemy of God. What could be more elegant,
more simple, more brilliant, more economical, more creative, indeed more divine
than a planet with millions of life forms, distinct and yet interactive, all ultimately
derived from accumulated variations in a single double-stranded molecule, pliable
and fecund enough to give us mollusks and mice, Newton and Einstein? Even if it did
give us the Kansas State Board of Education, too."

(Charles Krauthammer)

 In "Phony Theory, False Conflict. 'Intelligent Design' Foolishly Pits Evolution Against Faith."
The Washington Post 18/11/2005

"The chief aim of all investigations of the external world should be to discover the
rational order and harmony which has been imposed on it by God and which He
revealed to us in the language of mathematics. "

(Johannes Kepler)

 Johannes Kepler (1571 - 1630)

"[Maxwell asked whether he would like to see an experimental demonstration of
conical refraction] No. I have been teaching it all my life, and I do not want to
have my ideas upset."

(Isaac Todhunter)

 Isaac Todhunter (1820 - 1884)

"Rigour is the affair of philosophy, not of mathematics."

(Bonaventura Cavalieri)

 Bonaventura Cavalieri (1598 - 1647)

http://www.carma.newcastle.edu.au/~jb616/quotations.html#pinker1
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"How dreadful are the curses which Mohammedanism lays on its votaries! Besides
the fanatical frenzy, which is as dangerous in a man as hydrophobia in a dog, there
is this fearful fatalistic apathy. The effects are apparent in many countries.
Improvident habits, slovenly systems of agriculture, sluggish methods of commerce,
and insecurity of property exist wherever the followers of the Prophet rule or live. A
degraded sensualism deprives this life of its grace and refinement; the next of its
dignity and sanctity. The fact that in Mohammedan law every woman must belong to
some man as his absolute property, either as a child, a wife, or a concubine, must
delay the final extinction of slavery until the faith of Islam has ceased to be a great
power among men.

Individual Moslems may show splendid qualities, but the influence of the religion
paralyses the social development of those who follow it. No stronger retrograde force
exists in the world. Far from being moribund, Mohammedanism is a militant and
proselytizing faith. It has already spread throughout Central Africa, raising fearless
warriors at every step; and were it not that Christianity is sheltered in the strong
arms of science, the science against which it had vainly struggled, the civilization of
modern Europe might fall, as fell the civilization of ancient Rome." "

(Winston Churchill)

 Speech by Churchill in The River War, ed 1, Vol. II, pages 248-50 (London: Longmans,
Green & Co., 1899).

"How extremely stupid not to have thought of that!"

(T.H. Huxley)

 Thomas Henry Huxley (1825--1895). Huxley, known as `Darwin's Bulldog' for his tireless
defense of Darwin, was initially unconvinced of evolution. Converted by the `Origin of Species',
he is recorded (much like Briggs) as saying "How extremely stupid not to have thought of
that!"

"All truths are easy to understand once they are discovered; the point is to discover
them."

(Galileo Galilei, 1564-1642)

 Galileo's view is apparently not a view shared by all. The following thoughts on quantum
theory by various scientists come from the NYT of Dec 26, 2005.

"On quantum theory, I use up more brain grease than on relativity." (Albert
Einstein to Otto Stern in 1911)

"Those are the crazy people who are not working on quantum theory." (Albert
Einstein referring to the inmates of an insane asylum near his office in Prague, in
1911)

"I could probably have arrived at something like this myself, but if all this is
true then it means the end of physics." (Albert Einstein, referring to a 1913

http://www.carma.newcastle.edu.au/~jb616/quotations.html#briggs
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breakthrough by Niels Bohr)

"Anyone who is not shocked by quantum theory has not understood a single
word." (Niels Bohr)

"I don't like it, and I'm sorry I ever had anything to do with it." (Erwin
Schrödinger about the probability interpretation of quantum mechanics)

"What we observe is not nature itself, but nature exposed to our method of
questioning." (Werner Heisenberg, 1963)

"You know how it always is, every new idea, it takes a generation or two until
it becomes obvious that there's no real problem. I cannot define the real
problem, therefore I suspect there's no real problem, but I'm not sure there's
no real problem." (Richard Feynman, 1982)

"Logic is the hygiene the mathematician practices to keep his ideas healthy and
strong."

(Hermann Weyl, 1885 - 1955)

 Weyl brings us full circle back to rigour.

Math Will Rock Your World. A generation ago, quants turned finance upside
down. Now they're mapping out ad campaigns and building new businesses
from mountains of personal data.

"These slices of our lives now sit in databases, many of them in the public domain.
From a business point of view, they're just begging to be analyzed. But even with
the most powerful computers and abundant, cheap storage, companies can't sort out
their swelling oceans of data, much less build businesses on them, without enlisting
skilled mathematicians and computer scientists. The rise of mathematics is heating
up the job market for luminary quants, especially at the Internet powerhouses where
new math grads land with six-figure salaries and rich stock deals. Tom Leighton, an
entrepreneur and applied math professor at Massachusetts Institute of Technology,
says: "All of my students have standing offers at Yahoo! and Google." Top
mathematicians are becoming a new global elite. It's a force of barely 5,000,
by some guesstimates, but every bit as powerful as the armies of Harvard
University MBAs who shook up corner suites a generation ago."

 Business Week Cover Story January 23, 2006.

"The formulas move in advance of thought, while the intuition often lags behind; in
the oft-quoted words of d'Alembert, "L'algebre est genereuse, elle donne
souvent plus qu'on lui demande.""

(Edward Kasner, 1905)

 Edward Kasner, "The Present Problems of Geometry," Bulletin of the American Mathematical
Society, (1905) volume XI, p.285.

http://www.businessweek.com/magazine/content/06_04/b3968001.htm
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"Science is a differential equation. Religion is a boundary condition."

(Alan Turing, 1912 - 1954)

 I'm not sure what it means, but I like it!

'Thirst for knowledge' may be opium craving

Neuroscientists have proposed a simple explanation for the pleasure of grasping a
new concept: The brain is getting its fix. The "click" of comprehension triggers a
biochemical cascade that rewards the brain with a shot of natural opium-like
substances, said Irving Biederman of the University of Southern California. He
presents his theory in an invited article in the latest issue of American Scientist.

"While you're trying to understand a difficult theorem, it's not fun," said
Biederman, professor of neuroscience in the USC College of Letters, Arts and
Sciences.

"But once you get it, you just feel fabulous."

The brain's craving for a fix motivates humans to maximize the rate at which they
absorb knowledge, he said.

I think we're exquisitely tuned to this as if we're junkies, second by second."

(Irving Biederman, 2006)

 From www.physorg.com/news70030587.html .

"We [Kaplansky and Halmos] share a philosophy about linear algebra: we think
basis-free, we write basis-free, but when the chips are down we close the office door
and compute with matrices like fury."

(Irving Kaplansky, 1917-2006)

 Quoted in Paul Halmos' Celebrating 50 Years of Mathematics.

"The war became more and more bitter. The Dominican Father Caccini preached a
sermon from the text, ``Ye men of Galilee, why stand ye gazing up into heaven?''
and this wretched pun upon the great astronomer's name ushered in sharper
weapons; for, before Caccini ended, he insisted that ``geometry is of the devil,''
and that ``mathematicians should be banished as the authors of all heresies.''
The Church authorities gave Caccini promotion."

 From A History of the Warfare of Science with Theology in Christendom by Andrew Dickson
White, Chapter 3, Section 3. An online copy is at:
www.cscs.umich.edu/~crshalizi/White/.

http://www.physorg.com/news70030587.html
http://www.cscs.umich.edu/~crshalizi/White/
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"Equations are more important to me, because politics is for the present, but an
equation is something for eternity."

(Albert Einstein)

 Like so many Einstein quotes, this appears everywhere and seemingly without direct
attribution.

"Never Ascribe to malice that which is adequately explained by incompetence."
(Napolean Bonaparte?)
"Misunderstandings and neglect occasion more mischief in the world than even
malice and wickedness. At all events, the two latter are of less frequent
occurrence." (Goethe in The Sorrows of Young Werther)
"You have attributed conditions to villainy that simply result from stupidity".
(Robert Heinlein in the Logic of Empire (1941). He calls this the "devil theory"
of sociology.
"Many journalists have fallen for the conspiracy theory of government. I do
assure you that they would produce more accurate work if they adhered to the
cock-up theory." (Bernard Ingam, 1932- who was Thatcher's press secretary.)

 This is now also called Hanlon's Razor (1980).

I'm here to help. (With the Poincare conjecture. As for the family, you're on your
own.) Poincare conjectured that three-dimensional shapes that share certain easy-
to-check properties with spheres actually are spheres. What are these properties? My
fellow geometer Christina Sormani describes the setup as follows:

"The Poincare Conjecture says, Hey, you've got this alien blob that can
ooze its way out of the hold of any lasso you tie around it? Then that blob
is just an out-of-shape ball. [Grigory] Perelman and [Columbia University's
Richard] Hamilton proved this fact by heating the blob up, making it sing,
stretching it like hot mozzarella, and chopping it into a million pieces. In
short, the alien ain't no bagel you can swing around with a string through
his hole."

(Jordan Ellenberg)

 In Who Cares About Poincare Million-dollar math problem solved. So what? from
Slate Posted Friday, Aug. 18, 2006, at 11:59 AM ET

Thank you for your reply. I certainly understand what it means to recall something and have
the trail disappear!

The reason I inquired, as in my Tobias conversations with George and his comments re how
Tobias influenced him by "feeding" him thousands of geometry problems to solve (see More
Mathematical People, Albers et al. (eds.) , Harcourt Brace Jovanovich, 1990), he never
indicated that he (George) had any input to Tobias' work. In fact, it went the other way in one
important instance. As you may not have encountered it, I cite the following. George wrote in
his paper "Reminiscences about the origins of linear programming," 1, 2, Operations Research

http://www.slate.com/id/2147954/nav/tap1/
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Letters, April 1982 (p. 47):

""The term Dual is not new. But surprisingly the term Primal, introduced around
1954, is. It came about this way. W. Orchard-Hays, who is responsible for the first
commercial grade L.P. software, said to me at RAND one day around 1954: 'We need
a word that stands for the original problem of which this is the dual.' I, in turn,
asked my father, Tobias Dantzig, mathematician and author, well known for his
books popularizing the history of mathematics. He knew his Greek and Latin.
Whenever I tried to bring up the subject of linear programming, Toby (as he was
affectionately known) became bored and yawned. But on this occasion he did give
the matter some thought and several days later suggested Primal as the natural
antonym since both primal and dual derive from the Latin. It was Toby's one and
only contribution to linear programming: his sole contribution unless, of course, you
want to count the training he gave me in classical mathematics or his part in my
conception. "

A lovely story. I heard George recount this a few times and, when he came to the "conception"
part, he always had a twinkle in his eyes.

(Saul Gass)

 In a September 2006 SIAM book review, I asserted George Dantzig assisted his father
Tobias---for reasons I believed but cannot now reconstruct. I also called Lord Chesterfield,
Chesterton (gulp!).

"Nothing has afforded me so convincing a proof of the unity of the Deity as these
purely mental conceptions of numerical and mathematical science which have been
by slow degrees vouchsafed to man, and are still granted in these latter times by the
Differential Calculus, now superseded by the Higher Algebra, all of which must have
existed in that sublimely omniscient Mind from eternity."

(Mary Somerville, 1780-1872)

 Quoted in Martha Somerville, Personal Recollections of Mary Somerville (Boston, 1874)

Today's outcome may end the interest in future chess matches between human
champions and computers, according to Monty Newborn, a professor of computer
science at McGill University in Montreal. Professor Newborn, who helped organize the
match between Mr. Kasparov and Deep Blue, said of future matches: "I don't know
what one could get out of it at this point. The science is done."

Mr. Newborn said that the development of chess computers had been useful.

"If you look back 50 years, that was one thing we thought they couldn't do," he said.
"It is one little step, that's all, in the most exciting problem of what can't computers
do that we can do."

Speculating about where research might go next, Mr. Newborn said, "If you are
interested in programming computers so that they compete in games, the
two interesting ones are poker and go. That is where the action is."

http://users.cs.dal.ca/~jborwein/userguide.pdf
http://www.agnesscott.edu/lriddle/women/somer.htm
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(Dylan Loeb McClain)

From a report of the defeat of world champion Vladimir Kramnik by Deep Fritz in
Once Again, Machine Beats Human Champion at Chess NYT, December 5, 2006.

"Je n'ai fait celle-ci plus longue que parceque je n'ai pas eu le loisir
de la faire plus courte.(I have only made this letter rather long because I
have not had time to make it shorter.)"

(Blaise Pascal)

From Pascal's Lettres provinciales, 16, Dec 14, 1656. [Cassell's Book of Quotations,
London,1912. P.718.] Similar quotes are due to Goethe and perhaps to Augustine
and Cicero.

Of course, identifying with one's captors is nothing new. Perhaps the most
famous example is the 1973 Norrmalmstorg bank robbery in Stockholm.
During the five days they were held hostage, the bank employees came to
sympathize with the robbers and defended them against the police.

(Globe and Mail, January 2007)

 Describing the origin of the Stockholm Syndrome. Try looking up the Jerusalem
Syndrome and recently named Paris Syndrome (2004). What other cities have
such an honour?

"Bulls don't run reviews. Bulls of 25 don't marry old women of 55 and
expect to be invited to dinner. Bulls do not get you cited as co-respondent
in Society divorce trials. Bulls don't borrow money. Bulls are edible after
they have been killed."

(Ernest Hemingway, 1925)

 From Napoleon's love letter found in laundry room (Toronto Star, June 4,
2007). "Another lot of interest is a letter written by Ernest Hemingway to the
American poet and critic Ezra Pound in 1925, explaining why bulls are better than
literary critics."

Memorable Ends

1. Here lies Ezekial Aikle. Aged 102. The good die young.

2. Here lies an Atheist. All dressed up. And no place to go.

3. A tomb now suffices him for whom the world was not enough.
(Alexander the Great)

4. The body of Benjamin Franklin, printer (like the cover of an old book, its

http://en.wikipedia.org/wiki/Stockholm_syndrome
http://en.wikipedia.org/wiki/Jerusalem_syndrome
http://en.wikipedia.org/wiki/Jerusalem_syndrome
http://en.wikipedia.org/wiki/Paris_syndrome
http://www.thestar.com/News/article/221287
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contents worn out, and stript of its lettering and gilding) lies here, food for
worms. Yet the work itself shall not be lost, for it will, as he believed
appear once more. In a new and more beautiful edition, corrected and
amended by its Author. (Benjamin Franklin)

5. She did it the hard way. (Bette Davis)

6. The best is yet to come. (Frank Sinatra)

7. That's all folks! (Mel Blanc - voice of Bugs Bunny)

8. I told you I was ill. (Spike Milligan)

9. Ope'd my eyes. Took a peep. Didn't like it. Went back to sleep.

10. Called back. (Emily Dickinson)

(Various)

 Posted by Joanna Sugdden, July 24th London Times. Franklin's epitaph has been
banned in Texas school texts (it is clearly anti-Christian).

And Bloomberg can also flash a hard-edged candor. At the breakfast with
business leaders, he scoffed at a question about whether the schools'
emphasis on math and reading testing was taking away from the "richness"
of education in subjects such as art and music. "Well, I don't know about
the 'richness of education,' " he said, his voice thick with sarcasm. "In my
other life, I own a business, and I can tell you, being able to do 2-
plus-2 is a lot more important than a lot of other things."

...

Giuliani seized on it to bolster his campaign's theme, saying, "Today's
arrests remind us that we are at war." Bloomberg offered a noticeably
milder response: "You can't sit there and worry about everything. You
have a much greater danger of being hit by lightning than being
struck by a terrorist. Get a life."

(Michael Bloomberg)

 Washington Post, August 6, 2007

"This computer, although assigned to me, was being used on board the
International Space Station. I was informed that it was tossed overboard to
be burned up in the atmosphere when it failed."

(Anonymous)

 Science, August 3, 2007, p. 579: "A NASA employee's explanation for the loss of a
laptop, recorded in a recent report by the U.S. Government Accountability Office
documenting equipment losses of more than $94 million over the past 10 years by

http://www.washingtonpost.com/wp-dyn/content/article/2007/07/05/AR2007070502056.html?hpid=topnews
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the agency."

"Rick Wilson, a Republican consultant based in Florida who has worked for
Rudolph W. Giuliani, the former New York mayor, and Katherine Harris, the
former Florida congresswoman, among others, said that most states have
their own expressions for the circumstances under which open secrets stay
secret. In Florida, he said, it's the 'Three County Rule': no girlfriends within
three counties of your home district. In New York, it's the 'Bear Mountain
Compact': nobody talks about what politicians do with their free time once
they've crossed the Bear Mountain Bridge en route to Albany from points
south."

(Abby Goodnough)

 From Oh, everyone knows that (except you) in the NYT of Sept 2, 2007.

Easy as 1, 2, 3 -- Except for The Maybes. Why No One Can Count On
Those Delegates

"The lesson is not to trust the numbers too much. If math were a guy,
math would be a pompous guy, the sort who's absolutely always sure
about everything and never apologizes when he's wrong. And the fact is,
math isn't actually ever wrong, not technically. Math is a perfectly logical
and intelligent guy. He just sometimes makes the wrong assumptions. "

(Libby Copeland)

 From Washington Post Friday, April 25, 2008.

" the problem of course presents itself already when you are a student and
I was thinking about the problem on and off, but the situation was more
interesting than that. The great authority in those days was Zygmund and
he was completely convinced that what one should produce was not a
proof but a counter-example. When I was a young student in the United
States, I met Zygmund and I had an idea how to produce some very
complicated functions for a counter-example and Zygmund encouraged me
very much to do so. I was thinking about it for about 15 years on and off,
on how to make these counter-examples work and the interesting thing
that happened was that I realised why there should be a counter-example
and how you should produce it. I thought I really understood what was the
background and then to my amazement I could prove that this "correct"
counter-example couldn't exist and I suddenly realised that what you
should try to do was the opposite, you should try to prove what was not
fashionable, namely to prove convergence. The most important aspect in
solving a mathematical problem is the conviction of what is the true
result. Then it took 2 or 3 years using the techniques that had been
developed during the past 20 years or so. .. "

(Lennart Carleson, 1966)

http://www.nytimes.com/2007/09/02/weekinreview/02goodnough.html?hp
http://www.washingtonpost.com/wp-dyn/content/article/2008/04/24/AR2008042403393.html
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 From 1966 IMU address on his positive solution of Luzin's 1913 conjecture that the
Fourier series of every square integrable function converges a.e. to the function.

"In a mathematical conversation, someone suggested to Grothendieck that
they should consider a particular prime number. "You mean an actual
number?" Grothendieck asked. The other person replied, yes, an actual
prime number. Grothendieck suggested, "All right, take 57."

But Grothendieck must have known that 57 is not prime, right? Absolutely
not, said David Mumford of Brown University. "He doesn't think concretely."
Consider by contrast the Indian mathematician Ramanujan, who was
intimately familiar with properties of many numbers, some of them huge.
That way of thinking represents a world antipodal to that of Grothendieck.
"He really never worked on examples," Mumford observed. "I only
understand things through examples and then gradually make them
more abstract. I don't think it helped Grothendieck in the least to
look at an example. He really got control of the situation by thinking
of it in absolutely the most abstract possible way. It's just very
strange. That's the way his mind worked.""

(Allyn Jackson, 2004)

 From a two-part biography in the Notices of the AMS.

"The letter was written in German in 1954 to philosopher Eric Gutkind. It is
to be auctioned in London, England, on Thursday by Bloomsbury Auctions,
and is expected to fetch between $12,000 and $16,000 US. Einstein writes
"the word God is for me nothing more than the expression and
product of human weaknesses, the Bible a collection of honourable
but still primitive legends which are nevertheless pretty childish.""

 From a letter by Einstein auctioned in May 2008 as described on CBC.

"It is not knowledge, but the act of learning, not possession but the act of
getting there, which grants the greatest enjoyment. When I have clarified
and exhausted a subject, then I turn away from it, in order to go into
darkness again; the never-satisfied man is so strange if he has completed
a structure, then it is not in order to dwell in it peacefully,but in order to
begin another. I imagine the world conqueror must feel thus, who, after
one kingdom is scarcely conquered, stretches out his arms for others."

(Carl Friedrich Gauss, 1777-1855)

 From an 1808 letter to his friend Farkas Bolyai (the father of Janos Bolyai).

"The difficulty lies, not in the new ideas, but in escaping the old ones,
which ramify, for those brought up as most of us have been, into every

http://www.cbc.ca/world/story/2008/05/13/einstein-religion.html
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corner of our minds"

(John Maynard Keynes, 1883-1946)

 Quoted in K E Drexler, Engines of Creation: The Coming Era of Nanotechnology,
New York, 1987.

"He is like the fox, who effaces his tracks in the sand with his tail."

(Niels Abel, 1802-1829)

 Regarding Gauss' mathematical writing style quoted in G. F. Simmons, Calculus
Gems New York: Mcgraw Hill, 1992, p. 177.

"We have a habit in writing articles published in scientific journals to make
the work as finished as possible, to cover up all the tracks, to not worry
about the blind alleys or describe how you had the wrong idea first, and so
on. So there isn't any place to publish, in a dignified manner, what you
actually did in order to get to do the work."

(Richard Feynman, 1918-1988)

 In his 1966 Nobel acceptance lecture.

"Gauss could be a stern, demanding individual, and it is reported that this
resulted in friction with two of his sons that caused them to leave Germany
and come to the United States; they settled in the midwest and have
descendants throughout the plains states. I was living in Greeley, Colorado,
when I read this in 1972; looking in the phone book, I found a listing for a
Charlotte Gauss living two blocks from my apartment! After considerable
internal debate, I called her and found that she was indeed related to
Gauss.

My wife, Paulette, and I visited several times with Charlotte and her sister
Helen; they were bright, alert, and charming young women, ages 93 and
94, respectively. Their father, Gauss' grandson, had been a Methodist
missionary to the region, and he had felt it unseemly to take pride in his
famous ancestor (maybe there were some remnants of his father's feelings
on leaving Germany); they were nevertheless happy to talk Gauss and
their family. They showed us a baby spoon which their father had made out
of a gold medal awarded to Gauss, some family papers, and a short
biography of Gauss written by an aunt. I vividly remember Helen describing
the reaction of one of her math teachers when he discovered he had a real,
live, Gauss in his class."

(Jim Kuzmanovichi)

 Quoted from http://www.wfu.edu/~kuz/Stamps/Gauss/Gauss.html.

http://www.e-drexler.com/d/06/00/EOC/EOC_Cover.html
http://www.wfu.edu/~kuz/Stamps/Gauss/Gauss.html
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"Forget the 'precautionary principle.' The amount of risk to which the public
should be exposed is greater than zero."

(Michael Krauss)

 Quoted from "Too cautious" in the Financial Post, June 20, 2008.

"Knowing things is very 20th century. You just need to be able to find
things."

(Danny Hillis)

 On how Google has changed the way we think as quoted in Achenblog, July 1
2008.

"McCain would also be wise to study the etymology of his "maverick"
image. The term entered the political lexicon because of one Samuel
Augustus Maverick, a land owner, legislator, and former mayor of San
Antonio who was the grandfather of Maury Maverick, the famous New
Dealer who described democracy as "liberty plus groceries." Samuel
Maverick stubbornly refused to brand his calves and let them roam
wherever they wanted. Other ranchers who encountered these free-spirited
yearlings referred to them as "mavericks." Journalists later employed the
term to describe politicians who bucked the party line and struck an
independent course."

(John Podesta and John Halpin)

 From 'The Maverick' gets the branding iron in the Politico July 17, 2008.

"Of course I believe in luck. How otherwise to explain the success of those
you dislike?"

(Jean Cocteau)

 From Making His Own Luck. Eugene Robinson writing about Obama, July 17,
2008.

His ambition to write may have prompted an exchange with T. S. Eliot,
then in his late 50s, on the day they met in 1946, when Mr. Giroux, “just
past 30,” as he recalled the moment in “The Oxford Book of Literary
Anecdotes,” was an editor at Harcourt, Brace. “His most memorable remark
of the day,” Mr. Giroux said, “occurred when I asked him if he agreed with
the definition that most editors are failed writers, and he replied, ‘Perhaps,
but so are most writers.’“

(T. S. Elliot)

http://www.nationalpost.com/opinion/story.html?id=599844&p=3
http://blog.washingtonpost.com/achenblog/?hpid=opinionsbox1
http://www.politico.com/news/stories/0708/11831.html
http://www.realclearpolitics.com/articles/2008/07/hard_working_obama_gets_lucky.html
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 From Robert Giroux, Publisher, Dies at 94 . New York Times, Sept 5, 2008.

" For those who had realized big losses or gains, the mania redistributed
wealth. The largest honest fortune was made by Thomas Guy, a stationer
turned philanthropist, w ho owned £54,000 of South Sea stock in April
1720 and sold it over the following six weeks for £234,000. Sir Isaac
Newton, scientist, master of the mint, and a certifiably rational man, fared
less well. He sold his £7,000 of stock in April for a profit of 100 percent.
But something induced him to reenter the market at the top, and he lost
£20,000. "I can calculate the motions of the heavenly bodies," he said,
"but not the madness of people."

(Isaac Newton)

 Quoted by Christopher Reed in "The Damn'd South Sea”, Harvard Magazine,
May-June 1999. See Newton on Cosmology.

"When asked about the interruptions to her career caused by three
marriages and three divorces, she shrugs. "You can like 'em," she jokes
about men, "but it doesn't mean you have to sample every single one."

...
“Toward the end of the writing process, Proulx will often work 16 hours a
day. "I love shaping things, pruning out the unnecessary, shaping
unshapely sentences. After things are published I never read them again. I
never, ever read reviews." (In the case of "Fine Just the Way It Is," that's
just as well, since the reviews have been mixed.)."

(Annie Proulx)

 Quoted by Susan Renolds in "Annie Proulx no longer at home on the range",
LA Times, October 18, 2008.

"Genetics by second nature Growing up in Arlington, Virginia, Buckler
had unlimited access to a personal computer, on which he designed his
own games. To him, genetics is basically life's equivalent of computer
programming. "There are not many rules: You get to recombine and to
mutate, but you can make incredibly complex things." Buckler laughs,
giving his boyish smile: "And it's more rewarding to do genetics than
programming."."

(Edward Buckler)

 Quoted by Elizabeth Pennisi in "EDWARD BUCKLER PROFILE: Romping Through
Maize Diversity”, Science, 3 October 2008, pp. 40 – 41.

"Every once in while during a crisis or history-altering event, you run
across a quote or an observation that sort of summarizes events on the

http://www.carma.newcastle.edu.au/~jb616/%60%60http://www.nytimes.com/2008/09/05/books/06giroux.html?pagewanted=2&hp%94
http://www.carma.newcastle.edu.au/~jb616/%60%60
http://www.carma.newcastle.edu.au/~jb616/quotations.html#Newton2
http://www.carma.newcastle.edu.au/~jb616/%60%60http://www.latimes.com/news/nationworld/nation/la-et-proulx18-2008oct18,0,3383917.story?page=2%94
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ground, in a nutshell. Former U.S. Federal Reserve Chairman Paul Volcker
articulated one such observation during a recent chat he had with PBS'
Charlie Rose. "It seems to me what our nation needs is more civil
engineers and electrical engineers and fewer financial engineers," Volker
said."

(Joseph Lazaro)

 Posted Oct 24th 2008 3:56pm at www.bloggingstocks.com.

EDITOR’S ENDNOTES "Jeffrey Lagarias (University of Michigan), Colin
Mallows (Avaya Labs), and Allan Wilks (AT&T Labs–Research) submitted the
following correction to their article "Beyond the Descartes Circle Theorem,"
which appeared in the April, 2002 issue: We have an historical and a
mathematical correction. First, it has been brought to our attention that
Frederick Soddy, who won a Nobel Prize in Chemistry (1921) for the
discovery of isotopes, did not receive a knighthood (in the English honours
list). Davies [loc. cit.] quotes a letter from his nephew, Dr. Kenneth Soddy:
"He suffered a good deal of what might be termed persecution during the
first World War . . . It was the recollection of these troubles that made him
decline Honours later on." Besides his scientific work, Soddy loved
mathematics and worked on it as a hobby. He also wrote several books
setting forth unpopular economic views. Our awarding him a spurious
knighthood is an example of the "Matthew effect" the phenomenon by
which famous people become more famous, and less famous people
become less famous. Unfortunately this error has propagated to Mumford
et al. [Indra's Pearls]"

(Dan Velleman)

 American Mathematical Monthly, Oct 2008, page 769. See also Robert K. Merton,
“The Matthew effect in science,” Science 159 (1968) 56–63.

“Considering that past, perhaps the most incisive comment on Mr. Obama’s
election actually came long ago. The Rev. Dr. Martin Luther King Jr.
addressed the Hawaii Legislature in 1959, two years before Mr. Obama was
born in Honolulu, and declared that the civil rights movement aimed not
just to free blacks but “to free the soul of America.”

Mr. King ended his Hawaii speech by quoting a prayer from a preacher who
had once been a slave, and it’s an apt description of the idea of America
today: “Lord, we ain’t what we want to be; we ain’t what we ought to be;
we ain’t what we gonna be, but, thank God, we ain’t what we was.”

(Nicholas Kristof)

 From "The Obama Dividend," NYT, November 5, 2008.

""The collapse of communism pushed China to the center and [America] to

http://www.bloggingstocks.com/2008/10/24/volcker-u-s-needs-more-civil-engineers-and-fewer-financial-eng/
http://www.nytimes.com/2008/11/06/opinion/06kristof.html?em
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the extreme,” said Ben Simpfendorfer, chief China economist at Royal Bank
of Scotland.

The Madoff affair is the cherry on top of a national breakdown in financial
propriety, regulations and common sense. Which is why we don’t just need
a financial bailout; we need an ethical bailout. We need to re-establish the
core balance between our markets, ethics and regulations. I don’t want to
kill the animal spirits that necessarily drive capitalism — but I don’t want
to be eaten by them either."

(Thomas Friedman)

 From "The Great Unravelling," NYT, December 16, 2008.

"The orbit of any one planet depends on the combined motions of all the
planets, not to mention the actions of all these on each other. To consider
simultaneously all these causes of motion and to define these motions by
exact laws allowing of convenient calculation exceeds, unless I am
mistaken, the forces of the entire human intellect."

(Isaac Newton, 1687)

 Both Cosmology and Commerce are complicated. See G. Lake, T. Quinn and D. C.
Richardson, "From Sir Isaac to the Sloan Survey: Calculating the Structure and
Chaos Due to Gravity in the Universe,"Proceedings of the Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, SIAM, Philadelphia, 1997, pg. 1-10.

About TierneyLab

"John Tierney always wanted to be a scientist but went into
journalism because its peer-review process was a great deal
easier to sneak through. Now a columnist for the Science Times
section, Tierney previously wrote columns for the Op-Ed page,
the Metro section and the Times Magazine. Before that he
covered science for magazines like Discover, Hippocrates and
Science 86.

With your help, he's using TierneyLab to check out new research
and rethink conventional wisdom about science and society. The
Lab's work is guided by two founding principles:

Just because an idea appeals to a lot of people doesn't mean
it's wrong.
But that's a good working theory.

 From http://tierneylab.blogs.nytimes.com.

"I don’t think of myself as having gone squishy. I think of myself
as having grown sober. And my conservative critics? On them, I

http://www.carma.newcastle.edu.au/~jb616/quotations.html#anima
http://www.carma.newcastle.edu.au/~jb616/quotations.html#Newton
http://tierneylab.blogs.nytimes.com/
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think the most apt verdict was delivered by Niccolo Macchiavelli,
500 years ago: “This is the tragedy of man. Circumstances
change, and he does not.”

(David Frum)

 From "Lies about me, and the lying liars who tell them," National Post,
March 28, 2009. Compare various of quotes above by Keynes and those of
some of the many bankers and economists who are now suffering buyer's
remorse.

"The late Huw Wheldon of the BBC once described to me a series,
made in the early days of radio, about celebrated exiles who had
lived in London. At one stage, this had involved tracking down an
ancient retiree who had toiled in the British Museums reading
room during the Victorian epoch. Asked if he could remember a
certain Karl Marx, the wheezing old pensioner at first came up
empty. But when primed with different prompts about the once-
diligent attendee (monopolizing the same seat number, always
there between opening and closing time, heavily bearded,
suffering from carbuncles, tending to lunch in the Museum
Tavern, very much interested in works on political economy), he
let the fount of memory be unsealed.Oh Mr. Marx, yes, to be
sure. Gave us a lot of work e did, with all is calls for books and
papers. His interviewers craned forward eagerly, to hear the man
say: And then one day e just stopped coming. And you know
whats a funny fing, sir? A pregnant pause. Nobodys ever eard of
im since! This, clearly, was one of those stubborn proletarians for
the alleviation of whose false consciousness Marx had labored in
vain.

(Christopher Hitchens)

 In the The Revenge of Karl Marx in The Atlantic, April 2009.

Here endeth the Seder.

This year our ceremony still contains some time for reflection,
and some ability to remain on the same topic for more than a
minute or two. But next year, may our ceremony be faster,
divided into bite-sized chunks, and with each utterance no more
than 140 characters. And so we say together,

NEXT YEAR IN TWITTER.

(Carl Elkin, 2009)

 From A Facebook Haggadah.

http://www.theatlantic.com/doc/200904/hitchens-marx
http://9a4440c5.fb.joyent.us/haggadah/ultraModern2.php
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"If you're worried that lions are eating too many zebras, you
don't say to the lions, 'You're eating too many zebras.' You have
to build a fence around the lions. They're not going to build it."

(Judge Richard A. Posner)

 "One of the most prominent proponents of free-market capitalism is
having second thoughts" in Huffington Post, April 20, 2009. A week
earlier he wrote in "Shorting Reason" (The New Republic of April 15):

"They want a pedigree, or a sacred text, to lend authority to their
thesis, and they want to champion the liberal Keynes over the
conservative Friedman.

 Hence their appropriation of the term "animal spirits" from a
famous passage in The General Theory "Most, probably, of our
decisions to do something positive, the full consequences of
which will be drawn out over many days to come, can only be
taken as a result of animal spirits--of a spontaneous urge to
action rather than inaction, and not as the outcome of a weighted
average of quantitative benefits multiplied by quantitative
probabilities.... Thus if the animal spirits are dimmed and the
spontaneous optimism fades, enterprise will fade and die.... It is
our innate urge to activity which makes the wheels go round, our
rational selves choosing between the alternatives as best we are
able, calculating where we can, but often falling back for our
motive on whim or sentiment or chance."

"John Maynard Keynes wrote that ideas, “both when they are
right and when they are wrong, are more powerful than is
commonly understood. Indeed the world is ruled by little else.”
This idea popularized by Professor Singer — that we have ethical
obligations that transcend our species — is one whose time
appears to have come."

(Nicholas Kristof)

 in Humanity Even for Nonhumans (for better or worse) in NYT, April 8
2009.

"Maddox was always a believer in the possibilities of science,
reluctant to accept that it could cause problems as well as solve
them. When a wave of environmental pessimism swept over the
Western world in the early 1970s he was one of the few to resist.
He published a book, The Doomsday Syndrome (1972),
denouncing the gloom as overdone. 
... 
after retiring as Nature Editor he wrote a scientific tour d’horizon,
What Remains to be Discovered, asserting that far from
approaching the end of its glorious run, science was only just

http://www.huffingtonpost.com/2009/04/20/judge-richard-posner-disc_n_188950.html
http://www.nytimes.com/2009/04/09/opinion/09kristof.htm
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beginning to tackle a multitude of new problems. The future
offered an infinity of possibilities, most of them attractive."

 From the London Times obituary of John Maddox (1925-2009).

""6. We have a patriotic duty to stand up against
Washington taxes!" Just the opposite. We have a patriotic duty
to pay taxes. As multi-billionaire Warren Buffett put it, "If you
stick me down in the middle of Bangladesh or Peru or someplace,
you'll find out how much this talent is going to product in the
wrong kind of soil. I will be struggling thirty years later. President
Teddy Roosevelt made the case in 1906 when he argued in favor
of continuing the inheritance tax. "The man of great wealth owes
a particular obligation to the state because he derives special
advantages from the mere existence of government."”

(Robert Reich)

 From "A Short Citizen's Guide to Kooks, Demagogues, and Right-
Wingers," in the Huffington Post April 15 (Tax Day).

"The most complete unfolding of his later sense of things can
probably be found in a quite astonishing book-length interview
published by the magazine Research as the self-standing
Research No 8/9 (1984) but he remained unfailingly eloquent
until the end of his life, as the interviews assembled in
Conversations (2005) attest. "At times", he said in 2004, "I look
around the executive housing estates of the Thames Valley and
feel that [a vicious and genuinely mindless neo-fascism] is
already here, quietly waiting its day, and largely unknown to
itself ... What is so disturbing about the 9/11 hijackers is that
they had not spent the previous years squatting in the dust on
some Afghan hillside ... These were highly educated engineers
and architects who had spent years sitting around in shopping
malls in Hamburg and London, drinking coffee and listening to
the muzak."

(The Independent)

 April 21 Obituary of JG Ballard.

"A heavy warning used to be given [by lecturers] that pictures
are not rigorous; this has never had its bluff called and has
permanently frightened its victims into playing for safety. Some
pictures, of course, are not rigorous, but I should say most are
(and I use them whenever possible myself)."

(J. E. Littlewood, 1885-1977)

http://www.timesonline.co.uk/tol/comment/obituaries/article6087234.ece
http://www.huffingtonpost.com/robert-reich/a-short-citizens-guide-to_b_187485.html
http://www.independent.co.uk/news/obituaries/jg-ballard-writer-whose-dystopian-visions-helped-shape-our-view-of-the-modern-world-1671634.html
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 From Littlewood's Miscellany (p 35 in 1953 edition). Said long before the
current graphic, visualization and geometric tools were available.

Assorted Americans on Paris (collected in 2003)

"France has neither winter nor summer nor morals. Apart from
these drawbacks it is a fine country. France has usually been
governed by prostitutes." --Mark Twain.

"I would rather have a German division in front of me than a
French one behind me."---General George S. Patton.

"Going to war without France is like going deer hunting
without your accordion."---Secretary of Defense Donald
Rumsfeld.

"We can stand here like the French, or we can do
something about it."---Marge Simpson.

"As far as I'm concerned, war always means failure."---
Jacques Chirac, President of France.

"As far as France is concerned, you're right."---Rush
Limbaugh.

"The only time France wants us to go to war is when
the German Army is sitting in Paris sipping coffee."---
Regis Philbin.

"The French are a smallish, monkey-looking bunch and
not dressed any better, on average, than the citizens of
Baltimore.

True, you can sit outside in Paris and drink little cups of
coffee, but why this is more stylish than sitting inside
and drinking large glasses of whisky I don't know."---
P.J O'Rourke (1989).

"You know, the French remind me a little bit of an
aging actress of the 1940s who was still trying to dine
out on her looks but doesn't have the face for it."---
John McCain, U.S. Senator from Arizona.

"You know why the French don't want to bomb Saddam
Hussein? Because he hates America, he loves
mistresses, and wears a beret. He is French, people."---
Conan O'Brien.

"I don't know why people are surprised that France
won't help us get Saddam out of Iraq. After all, France
wouldn't help us get Hitler out of France either."---Jay
Leno.
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"The last time the French asked for 'more proof' it came
marching into Paris under a German flag." ---David
Letterman

"Only thing worse than a Frenchman is a Frenchman
who lives in Canada."---Ted Nugent.

"The favorite bumper sticker in Washington D.C. right
now is one that says, 'First Iraq, then France.'"---Tom
Brokaw.

"What do you expect from a culture and a nation that
exerted more of its national will fighting against Disney
World and Big Macs than the Nazis?"---Dennis Miller.

"It is important to remember that the French have
always been there when they needed us."---Alan Kent.

"They've taken their own precautions against al-Qa'ida.
To prepare for an attack, each Frenchman is urged to
keep duct tape, a white flag, and a three-day supply of
mistresses in the house."---Argus Hamilton.

"Somebody was telling me about the French Army rifle
that was being advertised on eBay the other day--the
description was, 'Never shot. Dropped once.'"---Rep.
Roy Blunt (MO) ).

"The French will only agree to go to war when we've
proven we've found truffles in Iraq."---Dennis Miller.

"Question: What did the mayor of Paris say to the
German army as they entered the city in WWII?

Answer: Table for cent milles m'sieur?"

"Do you know how many Frenchmen it takes to defend
Paris? It's not known, it's never been tried."---Rep. R.
Blount (MO).

"Do you know it only took Germany three days to
conquer France in WWII? And that's because it was
raining."--John Xereas, Manager, DC Improv.

"The AP and UPI reported that the French Government
announced after the London bombings that it has raised
its terror alert level from Run to Hide. The only two
higher levels in France are Surrender and Collaborate."

" The rise in the alert level was precipitated by a recent
fire which destroyed France's white flag factory,
effectively disabling their military."
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"French Ban Fireworks at Euro Disney (AP), Paris, March
5, 2003, The French government announced today that
it is imposing a ban on the use of fireworks at Euro
Disney. The decision comes the day after a nightly
fireworks display at the park, located just 30 miles
outside of Paris, caused the soldiers at a nearby French
army garrison to surrender to a group of Czech
tourists."

"Roberts’s opinion drew an incredulous dissent from
Stevens, who said that the Chief Justice’s words
reminded him of “Anatole France’s observation” that the
“majestic equality” of the law forbade “rich and poor
alike to sleep under bridges, to beg in the streets, and
to steal their bread.”"

(Jeffrey Toobin)

 Anotole France's famous observation in an incisive if depressing
analysis of the Chief Justice: No More Mr. Nice Guy in the New
Yorker.

"During the three years which I spent at Cambridge my
time was wasted, as far as the academical studies were
concerned, as completely as at Edinburgh and at school.
I attempted mathematics, and even went during the
summer of 1828 with a private tutor (a very dull man)
to Barmouth, but I got on very slowly. The work was
repugnant to me, chiefly from my not being able to see
any meaning in the early steps in algebra.This
impatience was very foolish, and in after years I have
deeply regretted that I did not proceed far enough at
least to understand something of the great leading
principles of mathematics, for men thus endowed seem
to have an extra sense. "

(Charles Darwin)

 From the Autobiography of Charles Darwin.

"He made little in public of his famous grandfather,
Sigmund, who in 1938 followed other members of his
family in migrating to Britain beginning in 1933, the
year Hitler came to power — “refugees from the Nazis
before the habit caught on,” as Sir Clement, a secular
Jew like many in his family, said many years later. He
said he remembered his grandfather, who died in
London in 1939, mostly as a faltering old man with oral

http://www.newyorker.com/reporting/2009/05/25/090525fa_fact_toobin?currentPage=4
http://www.newyorker.com/reporting/2009/05/25/090525fa_fact_toobin?currentPage=4
http://infomotions.com/etexts/gutenberg/dirs/etext99/adrwn10.htm
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cancer. “He was not, to me, famous,” he said, but
rather “a good grandfather in that he didn’t forget my
birthdays.”

"[He] had a testy relationship with his older brother
Lucian, the artist, now 86, who is regarded by many
critics as one of the greatest Realists of the past
century. Late in life Sir Clement told The Observer
newspaper he had no interest in reconciling with his
brother. “I’m not great at forgiving,” he said.“If I decide
I don’t like someone, that’s it.”

(John F. Burns)

 In "Clement Freud, Wit, Politician and Grandson of Famous
Psychoanalyst, Dies at 84", NYT, April 16, 2009.

Three "laws" of prediction

"When a distinguished but elderly scientist states
that something is possible, he is almost certainly
right. When he states that something is impossible,
he is very probably wrong.
"The only way of discovering the limits of the
possible is to venture a little way past them into
the impossible.
"Any sufficiently advanced technology is
indistinguishable from magic."

(Arthur C. Clarke)

 From Wikpedia

"The first of the three laws, previously termed Clarke's
Law, was proposed by Arthur C. Clarke in the essay
"Hazards of Prophecy: The Failure of Imagination", in
Profiles of the Future (1962). The second law is offered
as a simple observation in the same essay; its status as
Clarke's Second Law was conferred on it by others. In a
1973 revision of his compendium of essays, Profiles of
the Future, Clarke acknowledged the Second Law and
proposed the Third in order to round out the number,
adding "As three laws were good enough for Newton, I
have modestly decided to stop there." Of the three, the
Third Law is the best known and most widely cited. [It
was used by JPL reporting on gravitational boosting]"

"It was because Hopkins’s superiors in England had so
little use for him…that they encouraged him to take a
position as Professor of Greek and Examiner in Classics

http://www.nytimes.com/2009/04/17/arts/17freud.html?hpw
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at the Royal University of Ireland, in Dublin. This
prestigious-sounding post actually involved teaching
elementary Latin and grading a truly staggering number
of tests: six examinations times seven hundred and fifty
students, according to Hopkins, for a total of forty-five
hundred papers every year.

"Such was the life of Gerard Manley Hopkins, who
fortuntely was able to write a little poetry amidst all
that grading. His lament about this predicament has its
own poetic quality:

"From the college, he issues a series of increasingly
desperate cries for help. “The melancholy I have all my
life been subject to has become in late years not indeed
more intense in its fits but rather more distributed,
constant, and crippling."

(Adam Kirsch)

 Review of of “Gerard Manley Hopkins” by Paul Mariani in the
New Yorker May 11, 2009.

"Such reversals have led the veteran Silicon Valley
technology forecaster Paul Saffo to proclaim: “never
mistake a clear view for a short distance.”"

(John Markoff)

 A look at Strong AI being back in style in The Coming
Superbrain NYT, May 23, 2009.

"These aspects of exploratory experimentation and wide
instrumentation originate from the philosophy of
(natural) science and have not been much developed in
the context of experimental mathematics. However, I
claim that e.g. the importance of wide instrumentation
for an exploratory approach to experiments that
includes concept formation also pertain to
mathematics."

(Hendrik Sorenson)

 From his 2008 preprint "How Experimental is Experimental
Mathematics?" discussing Franklin's argument that Steinle's
notion of ``exploratory experimentation" facilitated by
``widening technology" (as in pharmacology, astrophysics,
medicine, and biotechnology) is leading to a reassessment of
what legitimates experiment; in that even a ``local model" is not
now prerequisite.

http://www.newyorker.com/arts/critics/books/2009/05/11/090511crbo_books_kirsch
http://www.nytimes.com/2009/05/24/weekinreview/24markoff.html?ref=weekinreview
http://www.nytimes.com/2009/05/24/weekinreview/24markoff.html?ref=weekinreview
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Relatedly, as Dave Bailey and I wrote recently

In a provocative 2008 article entitled "The End of
Theory:" The Data Deluge Makes the Scientific Method
Obsolete" Chris Anderson, the Editor-in-Chief of Wired,
heralds a new mode of scientific inquiry where
exploding repositories of data, analyzed using advanced
mathematical and statistical techniques in the same
manner as Google has analyzed the Internet, are
sufficient to render the traditional scientific method
(hypothesize, model, test) obsolete:

"The new availability of huge amounts of data,
along with the statistical tools to crunch these
numbers, offers a whole new way of
understanding the world. Correlation
supersedes causation, and science can
advance even without coherent models,
unified theories, or really any mechanistic
explanation at all. There's no reason to cling
to our old ways. It's time to ask: What can
science learn from Google?''

Kevin Kelly, in a response to Anderson's article, makes
a more modest statement:

"My guess is that this emerging method will
be one additional tool in the evolution of the
scientific method. It will not replace any
current methods (sorry, no end of science!)
but will complement established theory-driven
science. ... The model may be beyond the
perception and understanding of the creators
of the system, and since it works it is not
worth trying to uncover it. But it may still be
there. It just operates at a level we don't
have access to.''

And it may not be there in some circumstances; both in
mathematics and in what we properly call reality.

"The empirical spirit on which the Western democratic
societies were founded is currently under attack, and
not just by such traditional adversaries as religious
fundamentalists and devotees of the occult. Serious
scholars claim that there is no such thing as progress
and assert that science is but a collection of opinions,
as socially conditioned as the weathervane world of
Paris couture. "

(Timothy Ferris)

http://crd.lbl.gov/~dhbailey/dhbpapers/dhb-jmb-comp-stat.pdf
http://www.wired.com/science/discoveries/magazine/16-07/pb_theory
http://www.wired.com/science/discoveries/magazine/16-07/pb_theory
http://www.edge.org/discourse/the_end_of_theory.html
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 From The Whole Shebang: A State of the Universe(s) Report,
Simon and Shuster, 1998, pg. 1.

"My larger target is those contemporaries who—in
repeated acts of wish-fulfillment—have appropriated
conclusions from the philosophy of science and put
them to work in aid of a variety of social cum political
causes for which those conclusions are ill adapted.
Feminists, religious apologists (including "creation
scientists"), counterculturalists, neo-conservatives, and
a host of other curious fellow-travelers have claimed to
find crucial grist for their mills in, for instance, the
avowed incommensurability and underdetermination of
scientific theories. The displacement of the idea that
facts and evidence matter by the idea that everything
boils down to subjective interests and perspectives is—
second only to American political campaigns—the most
prominent and pernicious manifestation of anti-
intellectualism in our time."

(Larry Laudan)

 From Science and Relativism, University of Chicago Press,
1990, pg. x.

"So to summarise, according to the citation count, in
order of descent, the authors are listening to
themselves, dead philosophers, other specialists in
semiotic work in mathematics education research, other
mathematics education research researchers and then
just occasionally to social scientists but almost never to
other education researchers, including mathematics
teacher education researchers, school teachers and
teacher educators. The engagement with Peirce is being
understood primarily through personal engagements
with the original material rather than as a result of
working through the filters of history, including those
evidenced within mathematics education research
reports in the immediate area. The reports, and the
hierarchy of power relations implicit in them,
marginalise links to education, policy implementation or
the broader social sciences."

(Tony Brown)

 From "Signifying "students", "teachers" and "mathematics": a
reading of a special issue Published online: 28 May 2008,
Springer Science + Business Media B.V. 2008.



Jonathan Borwein's Quotations Page

file:///C|/...rs/jb616/Documents/Jon%20%20%20Files/Publishing%20(Mine)/Quotations/Jonathan%20Borwein's%20Quotations%20Page.htm[4/13/2010 3:33:30 PM]

Enter Don Tapscott, who is looking at the challenges the
digital revolution poses to the fundamental aspects of
the University.

"Universities are finally losing their monopoly on higher
learning", he writes. "There is fundamental challenge to
the foundational modus operandi of the University —
the model of pedagogy. Specifically, there is a widening
gap between the model of learning offered by many big
universities and the natural way that young people who
have grown up digital best learn."

The old-style lecture, with the professor standing at the
podium in front of a large group of students, is still a
fixture of university life on many campuses. It's a model
that is teacher-focused, one-way, one-size-fits-all and
the student is isolated in the learning process. Yet the
students, who have grown up in an interactive digital
world, learn differently. Schooled on Google and
Wikipedia, they want to inquire, not rely on the
professor for a detailed roadmap. They want an
animated conversation, not a lecture. They want an
interactive education, not a broadcast one that might
have been perfectly fine for the Industrial Age, or even
for boomers. These students are making new demands
of universities, and if the universities try to ignore
them, they will do so at their peril.

Contrary to Nicholas Carr's proposition that Google is
making us stupid, Tapscott counters with the following:

My research suggests these critics are wrong. Growing
up digital has changed the way their minds work in a
manner that will help them handle the challenges of the
digital age. They're used to multi-tasking, and have
learned to handle the information overload. They expect
a two-way conversation. What's more, growing up
digital has encouraged this generation to be active and
demanding enquirers. Rather than waiting for a trusted
professor to tell them what's going on, they find out on
their own on everything from Google to Wikipedia."

(Don Tapscott)

 The Edge describing his article The impending demise of the
university.

Britain pays its penny to poke a stick at Susan Boyle

In one of the few commentaries written by a man,

http://www.edge.org/documents/archive/edge288.html#tapscott
http://www.edge.org/documents/archive/edge288.html#tapscott


Jonathan Borwein's Quotations Page

file:///C|/...rs/jb616/Documents/Jon%20%20%20Files/Publishing%20(Mine)/Quotations/Jonathan%20Borwein's%20Quotations%20Page.htm[4/13/2010 3:33:30 PM]

Thomas Sutcliffe at The Independent draws
uncomfortable parallels with the treatment of the insane
in the 18th century.

“You could pay a penny to visit Bedlam (or Bethlehem
mental hospital) and chortle at the deranged. You were
even allowed to poke them with a stick if they failed to
caper or roar in a satisfactory way 
…
and can ease our disquiet about the ethics of such a
spectacle by reassuring ourselves that none of these
people are under restraint. They choose to take part
and, in so choosing, sign up to the loss of dignity that
often comes with participation … The novelty with Susan
Boyle was that she sang well enough to get through to
the final, elevating her from temporary comic relief into
a real person whose health and well-being might arouse
our protective sympathy. I doubt very much that she is
the first participant to have been left in a state of
anxiety by the stress and exposure of such programs,
though she is probably the first person whose reaction
has had any kind of widespread media coverage.”

(Araminta Wordsworth)

 From a Financial Post compendium on June 2, 2009.

Borwein's Five Laws of Travel

1. Distance Independence. "It is an easy 15
minute walk" covers anything from 500 to 5000
metres.
2. Time Invariance. You will learn all the relevant
details of how to negotiate your host city and the
like adequately, exactly twenty-four hours before
your departure. This is independent of the length
of your stay.
3. Universal Expressions. Beware of such
expressions as they have no fixed meaning. They
include: "Free Internet," "Easy Access to Beach,"
and "Full Continental Breakfast."
4. Travel Agents. Never travel with a travel agent
who has never travelled. They will rarely make
reasonable bookings and will often make infeasible
ones.
5a. First Law of Directions. Never rely on oral
directions given in a foreign language. All
consonants sound the same after one or two city
blocks, while left and right are nearly always wrong
and wronger.

http://network.nationalpost.com/np/blogs/fullcomment/archive/2009/06/02/britain-pays-its-penny-to-poke-a-stick-at-susan-boyle.aspx
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5b. Second law of Directions. All directions
written or oral given by a host will be missing one
salient detail that is so obvious to any local as to
be unrememberable. This applies to geography,
computer access and much else.

(Jonathan Borwein)

 Based on decades of personal experience.

"And yet since truth will sooner come out of error than
from confusion."

(Francis Bacon, 1561-1626)

 From The New Organon (1620) in The Works of Francis Bacon,
James Spedding, Robert Ellis and Douglas Heath (eds.) (1887-
1901), Vol. 4, p. 149.

"In closing, I offer two examples from economics of
what I hope to have said. Marx said that quantitative
differences become qualitative ones, but a dialogue in
Paris in the 1920's sums it up even more clearly: 
FITZGERALD: The rich are different from us. 
HEMINGWAY: Yes, they have more money."

(Phillip Anderson)

 Writing in "More Is Different," Science, New Series, Vol. 177,
No. 4047. (Aug. 4, 1972), pp. 393-396.

"Who ever became more intelligent," Gödel answered,
"by reading Voltaire?"

"Only fables," he said, "present the world as it should
be and as if it had meaning."

(Kurt Gödel)

 In Palle Yourgrau's, A World Without Time, Basic Books, 2005,
p. 15 and p. 5 respectively.

"In all likelihood, our post-modern habit of viewing
science as only a paradigm would evaporate if we
developed appendicitis. We should look for a medically
trained surgeon who knew what an appendix was,
where it was, and how to cut it out without killing us.
Likewise, we should be happy to debate the essentially
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fictive nature of, let us say, Newton’s Laws of Gravity
unless and until someone threatened to throw us out of
a top-storey window. Then the law of gravity would
seem very real indeed."

(A. N. Wilson)

 Quoted from God’s Funeral, Norton, 1999, p. 178, in Richard C.
Brown, Are Science and Mathematics Socially Constructed? World
Scientific, 2009, p 207.

"Philosophical theses may still be churned out about it,
....

but the question of nonconstructive existence proofs or
the heinous sins committed with the axiom of choice
arouses little interest in the average mathematician.
Like 0l' Man River, mathematics just keeps rolling along
and produces at an accelerating rate "200,000
mathematical theorems of the traditional handcrafted
variety ... annually." Although sometimes proofs can be
mistaken---sometimes spectacularly---and it is a
matter of contention as to what exactly a "proof" is---
there is absolutely no doubt that the bulk of this output
is correct (though probably uninteresting)
mathematics."

(Richard C. Brown)

 Brown is discussing constructivism and intuitionism in Are
Science and Mathematics Socially Constructed? World Scientific,
2009, p 239.

A QUOTE BY ALBERT EINSTEIN When Paul Newman died, they
said how great he was but they failed to mention he considered
himself Jewish (born half-Jewish).

When Helen Suzman (who fought apartheid and helped Nelson
Mandela) died recently, they said how great she was, but they
failed to mention she was Jewish.

On the other side of the equation, when Ivan Boesky or Andrew
Fastow or Bernie Madoff committed fraud, almost every article
mentioned they were Jewish.

However, when Ken Lay, Jeff Skilling, Martha Stewart, Randy
Cunningham, Gov. Edwards, Conrad Black, Senator Keating, Gov
Ryan, and Gov Blagojevich messed up; no one reported what
religion or denomination they were, because they were not
Jewish.
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All of this leads to a famous Einstein quote: In 1921, Albert
Einstein presented a paper on his then-infant Theory of Relativity
at the Sorbonne, the prestigious French university.

"If I am proved correct," he said, 
"the Germans will call me a German, 
the Swiss will call me a Swiss citizen, 
and the French will call me a great scientist".

"If relativity is proved wrong, 
the French will call me a Swiss, 
the Swiss will call me a German, 
and the Germans will call me a Jew."

(anon@anon.com, July 2009)

 For another funny-serious reflexion on like matters see
Krauthammer's Law (everyone is Jewish until proven
otherwise) extended to we are all Jews now.

It was time to leave, but not before raising one last
subject. Obama started his campaign in the shadow of
the Old State Capitol in Springfield, Ill., where Lincoln
had delivered his famous "House Divided" speech,
warning that the nation could not survive half-slave and
half-free. Now, as he prepared to return to Washington,
his transition team had announced plans for him to
follow the last part of Lincoln's train ride to Washington
before his inauguration. We wondered how Lincoln, an
Illinois lawyer with little national experience, affected
Obama's thoughts about his own presidency as another
young Illinois lawyer with limited national experience
soon to take his oath of office.

"Lincoln's my favorite president and one of my personal
heroes," he answered. "I have to be very careful here
that in no way am I drawing equivalence between my
candidacy, my life experience, or what I face and what
he went through. I just want to put that out there so
you don't get a bunch of folks saying I'm comparing
myself to Lincoln."

He paused. "What I admire so deeply about Lincoln --
number one, I think he's the quintessential American
because he's self-made. The way Alexander Hamilton
was self-made or so many of our great iconic
Americans are, that sense that you don't accept limits,
that you can shape your own destiny. That obviously
has appeal to me, given where I came from. That
American spirit is one of the things that is most
fundamental to me, and I think he embodies that.

http://www.townhall.com/Columnists/Column.aspx?ContentGuid=baf4318c-0e09-4476-b82e-24921943dacf
http://www.townhall.com/Columnists/Column.aspx?ContentGuid=baf4318c-0e09-4476-b82e-24921943dacf
http://neoneocon.com/2006/09/29/krauthammers-law-extended-we-are-all/
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"But the second thing that I admire most in Lincoln is
that there is just a deep-rooted honesty and empathy
to the man that allowed him to always be able to see
the other person's point of view and always sought to
find that truth that is in the gap between you and me.
Right? That the truth is out there somewhere and I
don't fully possess it and you don't fully possess it and
our job then is to listen and learn and imagine enough
to be able to get to that truth.

"If you look at his presidency, he never lost that. Most
of our other great presidents, there was that sense of
working the angles and bending other people to their
will. FDR being the classic example. And Lincoln just
found a way to shape public opinion and shape people
around him and lead them and guide them without
tricking them or bullying them, but just through the
force of what I just talked about: that way of helping to
illuminate the truth. I just find that to be a very
compelling style of leadership.

"It's not one that I've mastered, but I think that's when
leadership is at its best."

(Barak Obama, 2008)

 From 'The Battle for America 2008: The Story of an
Extraordinary Election' By Dan Balz and Haynes Johnson,
Washington Post, Friday, July 31, 2009. How well will this mesh
with general perceptions in 2012?

"Progress had always been made, but the nature of the
progress could never be divulged."

(Franz Kafka)

 From The Trial page 138.

"Bean, who had said of Monash "We do not want
Australia represented by men mainly because of
their ability, natural and inborn in Jews, to push
themselves", conspired with Keith Murdoch to
undermine Monash, and have him removed from the
command of the Australian Corps. They misled Prime
Minister Billy Hughes into believing that senior officers
were opposed to Monash. Hughes arrived at the front
before the Battle of Hamel prepared to replace Monash,
but after consulting with senior officers, and after seeing
the superb power of planning and execution displayed

http://www.washingtonpost.com/wp-dyn/content/article/2009/07/31/AR2009073101582_4.html?hpid=topnews&sid=ST2009073103099
http://www.washingtonpost.com/wp-dyn/content/article/2009/07/31/AR2009073101582_4.html?hpid=topnews&sid=ST2009073103099
http://www.washingtonpost.com/wp-dyn/content/article/2009/07/31/AR2009073101582_4.html?hpid=topnews&sid=ST2009073103099
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by Monash, he changed his mind."

(Wikipedia)

 From Wikipedia entry on John Monash.

"Almodóvar was vague, saying, ''Everything that isn't
autobiographical is plagiarism.''"

(Lynn Hirschberg)

 From an NYT interview with Pedro Almodóvar on Sept 5,
2004.

"As Aldous Huxley opined, the strict materialist
cannot yet derive Shakespeare from the advanced
biochemistry of mutton."

(Richard Gallagher)

 From letters on Nicholas Wade's review of Richard Dawkin's
Greatest Show on Earth.

Understanding Human Origins

"Responding to a question about his soon-to-be-
published On the Origin of Species, Charles Darwin
wrote in 1857 to Alfred Russel Wallace, "You ask
whether I shall discuss ‘man’; I think I shall avoid
the whole subject, as so surrounded with
prejudices, though I freely admit that it is the
highest and most interesting problem for the
naturalist." Only some 14 years later, in The Descent
of Man, did Darwin address this "highest problem"
head-on: There, he presciently remarked in his
introduction that "It has often and confidently been
asserted, that man's origin can never be known:
but ... it is those who know little, and not those
who know much, who so positively assert that this
or that problem will never be solved by science. "

(Bruce Alberts)

 Editorial in Science 2 October 2009: Vol. 326. no. 5949, p. 17.

"One mathematician rushes into the office of another
and says 'Have you got a minute? I am a bit stuck on
this problem. You see ... [goes on for many minutes

http://www.nytimes.com/2004/09/05/magazine/05ALMODOVAR.html
http://papercuts.blogs.nytimes.com/2009/10/23/letters-scientists-respond-to-our-review-of-richard-dawkinss-greatest-show-on-earth/
http://www.sciencemag.org/cgi/content/summary/326/5949/17?sa_campaign=Email/toc/2-October-2009/10.1126/science.1182387
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explaining details] ... ah! Thanks very much!' and
leaves; the colleague has said nothing, and has not
needed to say anything. This behaviour is quite typical.
"

(John Mason)

 On page 127 of "Learning from Listening to yourself" in
Listening Figures, Trentham Books, 2009.

"In Farrell v. Burke, Sotomayor, resisting the
temptation to wax about the First Amendment, chose
simply to include the following exchange from the
testimony of a police officer who had charged a
convicted sex offender for violating the terms of his
probation by possessing obscene materials:

MR. NATHANSON: Ae you saying, for example, that that
condition of parole would prohibit Mr. Farrell from
possessing, say, Playboy magazine? 
P.O. BURKE: Yes. 
MR. NATHANSON: Are you saying that that condition of
parole would prohibit Mr. Farrell from possessing a
photograph of Michelangelo[’s] David? 
P.O. BURKE: What is that? 
MR. NATHANSON: Are you familiar with that sculpture? 
P.O. BURKE: No. 
MR. NATHANSON: If I tell you it’s a large sculpture of a
nude youth with his genitals exposed and visible, does
that help to refresh your memory of what that is? P.O.
BURKE: If he possessed that, yes, he would be locked
up for that.

Still, Sotomayor ruled that Farrell had violated his
parole. “Although a series of strongly worded
opinions by this Court and others suggest that the
term ‘pornography’ is unconstitutionally vague, we
hold that 'Scum' falls within any reasonable
definition of pornography,” she wrote. "

(Lauren Collins)

 From The Life of Sonia Sotomayor. The New Yorker, Jan 11,
2010.

"And so Einstein and his new wife, Elsa, set sail in late
March 1921 for their first visit to America. On the way
over, Einstein tried to explain relativity to Weizmann.
Asked upon their arrival whether he understood the
theory, Weizmann gave a puckish reply: “Einstein

http://www.newyorker.com/reporting/2010/01/11/100111fa_fact_collin
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explained his theory to me every day, and by the
time we arrived I was fully convinced that he
really understands it.” "

(Walter Isaacson)

 From How Einstein Divided America's Jews in the Atlantic,
December 2009.

“That is a brute, cold, hard fact of the universe. When
you pull the battery out of your computer, it shuts off.
When you end a life, it shuts off. And I think that’s just
it.”

(Brian Greene)

 From The Listener by Timothy Lavin in the Atlantic, January
2010.

“Why can't people just have complex views about food
without resorting to extremist ideas that both fit as
fashions and act as cure-all's for the health of America?
Eating and nutrition are complex algorithms to get
right! Michael Pollan knows this, because he wrote a
great book [In Defense of Food] with a great mantra
—Eat food. Not too much. Mostly plants.— that
stood in the middle. And guess what happened? He
heard from every asshole with a fully organic
nightshade garden or a meat locker of terror in their
brownstone because he wasn't on one side or the other:

The adverb "mostly" has been the most controversial. It
makes everybody unhappy. The meat people are really
upset I'm taking a swipe at meat eating, and the
vegetarians are saying, "What's with the ‘mostly?' Why
not go all the way?" You can't please everyone. In a
way that little word is the most important. It's not all or
nothing. Mostly. It's about degree.”

(Foster Kamer)

 A sensible sentiment from Of Early Birds and Cavemen: The
Two Dumbest Hipster Food Trends You'll Read About This
Week in the Gawker.

“Initiations are welcome, of course, but we do not give
children a high school diploma simply for showing up
for school on the first day of the first grade. For the
same reasons "born-again" moral characters should

http://www.theatlantic.com/doc/200912/isaacson-einstein
http://www.theatlantic.com/doc/201001/coast-to-coast
http://gawker.com/5444859/of-early-birds-and-cavemen-the-two-dumbest-hipster-food-trends-youll-read-about-this-week
http://gawker.com/5444859/of-early-birds-and-cavemen-the-two-dumbest-hipster-food-trends-youll-read-about-this-week
http://gawker.com/5444859/of-early-birds-and-cavemen-the-two-dumbest-hipster-food-trends-youll-read-about-this-week
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probably wait a similar period of time before celebrating
their moral achievment or pressing their moral
authority.”

(Paul Churchland)

 From Neurophilosophy at Work, Cambridge University Press
2007 (Locations 10199-25 of the Kindle version).

“Now my mum had no interest whatsoever in science,
and I was forever trying to explain to her why, for
instance, people in Australia did not fall off the other
side of the world. So when I arrived at Caltech, I had
an idea: plucking up my courage, I knocked on
Feynman's office door and asked, nervously, whether he
would write to my mum.

He did. "Dear Mrs Chown,"" he wrote. "Please
ignore your son's attempts to teach you physics.
Physics is not the most important thing. Love is.
Richard Feynman."”

(Marcus Chown)

 From Quantum theory via 40-tonne trucks: How science
writing became popular in the Independent January 17, 2010.

Serendipitous Astronomy "Many of the seminal discoveries in
astronomy have been unanticipated."

“So our celestial science seems to be primarily
instrument-driven, guided by unanticipated discoveries
with unique telescopes and novel detection equipment.
With our current knowledge, we can be certain that the
observed universe is just a modest fraction of what
remains to be discovered. Recent evidence for dark,
invisible matter and mysterious dark energy indicate
that the main ingredients of the universe remain largely
unknown, awaiting future, serendipitous discoveries."

(Kenneth R. Lang)

 More evidence for "Exploratory Experimentation and Widening
Technology" from Science, 1 January 2010: Vol. 327. no. 5961,
pp. 39-40. DOI: 10.1126/science.1183653.

“Even mathematics would not be entirely safe.
(Apparently, in the early 1900's, one legislator in a
southern state proposed a bill to redefine the value of

http://www.independent.co.uk/arts-entertainment/books/features/quantum-theory-via-40tonne-trucks-how-science-writing-became-popular-1866934.html
http://www.independent.co.uk/arts-entertainment/books/features/quantum-theory-via-40tonne-trucks-how-science-writing-became-popular-1866934.html
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pi as 3.3 exactly, just to tidy things up.)"

(Paul Churchland)

 Writing about the creationist sagas of the Kansas school board
in Neurophilosophy at Work (Cambridge, 2007); at location
1589 of the Kindle edition. This is a fascinating set of essays and
full of interesting anecdotes --- which I have no particular reason
to doubt --- but this one quote contains four inaccuracies.

(i) The event took place in the 1897 (ii) in Indiana (a
northern state). (iii) The prospective bill (#246) offers a
geometric construction with inconsistent conclusions and
certainly offers no exact value. Finally, (iv) the intent seems
to have been pecuniary not hygenic. See "The legal values of
Pi" by David Singmaster, Math Intelligencer, 7, (1985), 69-
72. (Also in Pi, a Sourcebook, by Borwein, Borwein and
Berggren.)

As often this makes me wonder whether mathematics
popularization is especially prone to error or if the other
disciplines just seem better described because of my relative
ignorance.

“The spread of information networks is forming a new
nervous system for our planet.

Now, in many respects, information has never been so
free. There are more ways to spread more ideas to
more people than at any moment in history. And even
in authoritarian countries, information networks are
helping people discover new facts and making
governments more accountable.

...

Because amid this unprecedented surge in connectivity,
we must also recognize that these technologies are not
an unmitigated blessing. These tools are also being
exploited to undermine human progress and political
rights. Just as steel can be used to build hospitals or
machine guns, or nuclear power can either energize a
city or destroy it, modern information networks and the
technologies they support can be harnessed for good or
for ill. The same networks that help organize
movements for freedom also enable al-Qaida to spew
hatred and incite violence against the innocent. And
technologies with the potential to open up access to
government and promote transparency can also be
hijacked by governments to crush dissent and deny
human rights.
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...

In the last year, we’ve seen a spike in threats to the
free flow of information. China, Tunisia, and Uzbekistan
have stepped up their censorship of the internet. In
Vietnam, access to popular social networking sites has
suddenly disappeared. And last Friday in Egypt, 30
bloggers and activists were detained."

(Hilary Rodham Clinton)

 Remarks on Internet Freedom January 20, 2010 at the
Newseum. See also James Fallows' percipient analysis.

To Clinton's list of ills one should add "antisocial
networking" of the kind that allows Bill Deagle and
thousands of other sociopaths or madmen to exploit the
weaknesses of others. Much of this---from newage medicine
to "truthers, birthers, teabaggers," Alex Jones and worse---
sadly is now being cultivated by the "mainstream" right.

“This is not to say that I am not interested in the quest
for intelligent machines. My many exhibitions with chess
computers stemmed from a desire to participate in this
grand experiment. It was my luck (perhaps my bad
luck) to be the world chess champion during the
critical years in which computers challenged, then
surpassed, human chess players. Before 1994 and
after 2004 these duels held little interest. The
computers quickly went from too weak to too strong.
But for a span of ten years these contests were
fascinating clashes between the computational power of
the machines (and, lest we forget, the human wisdom
of their programmers) and the intuition and knowledge
of the grandmaster."

...

"Perhaps the current trend of many chess professionals
taking up the more lucrative pastime of poker is not a
wholly negative one. It may not be too late for humans
to relearn how to take risks in order to innovate and
thereby maintain the advanced lifestyles we enjoy. And
if it takes a poker-playing supercomputer to remind us
that we can't enjoy the rewards without taking the
risks, so be it."

(Gary Kasparov)

 In The Chess Master and the Computer a review of Chess
Metaphors: Artificial Intelligence and the Human Mind by Diego

http://www.state.gov/secretary/rm/2010/01/135519.htm
http://jamesfallows.theatlantic.com/archives/2010/01/a_momentous_40_hours.php
http://www.thecoast.ca/halifax/the-prophet-in-clayton-park/Content?oid=961304
http://www.theatlantic.com/doc/201001/coast-to-coast
http://www.nybooks.com/articles/23592
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Rasskin-Gutman. (In the New York Review of Books Volume 57,
Number 2 · February 11, 2010.)

"The reference to Tokyo Rose was probably lost on
many of Justice Stevens’s readers. But the concluding
sentence of what may be his last major dissent could
not have been clearer.

“While American democracy is imperfect,” he wrote,
"few outside the majority of this court would have
thought its flaws included a dearth of corporate
money in politics."

(Adam Liptak)

 In After 34 Years, a Plainspoken Justice Gets Louder NYT
Jan 26, 2010.

“Only two years ago, Jobs contemptuously predicted
that the Kindle would flop: “It doesn’t matter how
good or bad the product is,” he told The New York
Times, because “the fact is that people don’t read
anymore. Forty percent of the people in the U.S.
read one book or less last year. The whole
conception is flawed at the top because people
don’t read anymore."

(Alan Deutschman)

 In Steve Jobs: Flip-Flopper, Daily Beast of Jan 26, 2010.

Cut This Story!

“There’s an old joke about the provincial newspaper
that reports a nuclear attack on the nation’s largest city
under the headline “Local Man Dies in NY Nuclear
Holocaust.” Something similar happens at the national
level, where everything is filtered through politics. (“In
what was widely seen as a setback for Democrats
just a year before the midterm elections, nuclear
bombs yesterday obliterated seven states, five of
which voted for President Obama in the last
election ...”)"

(Michael Kinsley)

 Writing instructively in the Atlantic (Feb-March 2010) about the
fact that "Newspaper articles are too long" and massively
formulaic.

http://www.nytimes.com/2010/01/26/us/26bar.html?em
http://www.thedailybeast.com/blogs-and-stories/2010-01-26/steve-jobs-flip-flopper/
http://www.theatlantic.com/doc/201001/short-writing
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“I started drinking the Kool-Aid so long ago that I can
no longer taste it. I am sure I will continue my
unbroken streak of mindless devotion to Apple and find
a way to love the iPad, no matter how expensive and
unnecessary it is. Knowledge of self is no fun."

(Sasha Frere-Jones)

 One of many entertaining snippets in the New Yorker's survey
of their staffers immediate responses to the IPAD (Jan 27,
2010).

“As Garry Trudeau (who is not on Twitter) has his
Washington “journotwit” Roland Hedley tweet at the end
of “My Shorts R Bunching. Thoughts?,” ... “The time
you spend reading this tweet is gone, lost forever,
carrying you closer to death. Am trying not to
abuse the privilege.”

(George Packer)

 From Neither Luddite nor Biltonite February 4, 2010. One
can google "Biltonite".

“Emerson was a touchstone, and Salinger often quoted
him in letters. For instance, ``A man must have
aunts and cousins, must buy carrots and turnips,
must have barn and woodshed, must go to market
and to the blacksmith’s shop, must saunter and
sleep and be inferior and silly." Writers, he thought,
had trouble abiding by that, and he referred to Flaubert
and Kafka as “two other born non-buyers of carrots and
turnips."

(Lillian Ross)

 The distinguished editor, journalist, and author on My long
friendship with J. D. Salinger.

“Fifth, society is too transparent. Since Watergate, we
have tried to make government as open as possible.
But as William Galston of the Brookings Institution
jokes, government should sometimes be shrouded
for the same reason that middle-aged people
should be clothed. This isn’t Galston’s point, but I’d
observe that the more government has become
transparent, the less people are inclined to trust it."

http://www.newyorker.com/online/blogs/newsdesk/2010/01/ipad.html
http://www.newyorker.com/online/blogs/georgepacker/2010/02/neither-luddite-nor-biltonite.html
http://www.newyorker.com/talk/2010/02/08/100208ta_talk_ross
http://www.newyorker.com/talk/2010/02/08/100208ta_talk_ross
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(David Brooks)

 Five observations on the growing insensitivity of The Power
Elite to societal pressures in the NYT February 18, 2010.

“My specific aims didn't have `discover telomerase'. I
didn't even know I wanted to discover telomerase," she
said."

(Elizabeth Blackburn)

 The Australian 2009 Nobelist discussing research in The
Australian of February 24, 2010. In a followup piece on
collaboration she comments:

"My feeling is not to get too cross-disciplinary and
shallow and spread all over the place too quick."
Blackburn tells the HES while visiting Monash
University, where she is a distinguished visiting
professor.

"One needs to be able to bring something very
substantive to the table because I can see the
temptation would be to try to be overly generalised and
shallowness would be the consequence."

This is an opinion I've been expressing: see Innovation and
Creativity.

“Math came naturally to Martin, and he sought
sports with similar elements, anything with angles,
geometry, calculations. He smacked his first pool ball
the day he could see over the table. He played billiards
for hours at the local senior center, and after the
employees there grew tired of unlocking the door at
odd times, they made him a key.

Martin idolized Ed Lukowich, a champion curler out of
Calgary, Alberta. Martin loved the smooth delivery, the
flawless mechanics. Lukowich wrapped math into
curling’s motions.

Opponents describe Martin the same way, as a master
craftsman, calm, certain, a skip with all the angles, a
bald man with a bald eagle’s eyesight. He attacks his
sport with a farmer’s sensibility and a
mathematician’s wit."

(Greg Bishop)

http://www.nytimes.com/2010/02/19/opinion/19brooks.html
http://www.theaustralian.com.au/higher-education/nobel-prize-out-of-reach-for-locals/story-e6frgcjx-1225833598182
http://www.theaustralian.com.au/higher-education/nobel-prize-out-of-reach-for-locals/story-e6frgcjx-1225833598182
http://www.theaustralian.com.au/higher-education/deep-specialisation-key-to-collaboration/story-e6frgcjx-1225833598153
http://www.theaustralian.com.au/higher-education/deep-specialisation-key-to-collaboration/story-e6frgcjx-1225833598153
http://www.carma.newcastle.edu.au/~jb616/IandC.ppsx
http://www.carma.newcastle.edu.au/~jb616/IandC.ppsx
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 See The Pride of Canada, Especially the Grandmas -- an
article about Canadian Olympic curling skipper Kevin Martin (K-
Mart) in the NYT of Feb 25, 2010.

"My name is Odd-Bjoern Hjelmeset. I skied the second
lap and I fucked up today. I think I have seen too much
porn in the last 14 days. I have the room next to Petter
Northhug and every day there is noise in there. So I
think that is the reason I fucked up. By the way, Tiger
Woods is a really good man."

(Odd-Bjoern Hjelmeset)

 Proving that some athletes are still kids. He did also manage to
share a silver relay medal. See Norwegian skier walks away
with Quote of the Games. (February 25, 2010)

"Writing in a 2005 Wired article that “new technologies
redefine us,” William Gibson hailed audience
participation and argued that “an endless, recombinant,
and fundamentally social process generates countless
hours of creative product.” Indeed, he said, “audience is
as antique a term as record, the one archaically
passive, the other archaically physical. The record, not
the remix, is the anomaly today. The remix is the very
nature of the digital.”

To Mr. Lanier, however, the prevalence of mash-ups in
today’s culture is a sign of “nostalgic malaise.” “Online
culture,” he writes, “is dominated by trivial mash-ups of
the culture that existed before the onset of mash-ups,
and by fandom responding to the dwindling outposts of
centralized mass media. It is a culture of reaction
without action.”

He points out that much of the chatter online today is
actually “driven by fan responses to expression that
was originally created within the sphere of old media,”
which many digerati mock as old-fashioned and passé,
and which is now being destroyed by the Internet.
“Comments about TV shows, major movies,
commercial music releases and video games must
be responsible for almost as much bit traffic as
porn,” Mr. Lanier writes. “There is certainly
nothing wrong with that, but since the Web is
killing the old media, we face a situation in which
culture is effectively eating its own seed stock.” "

(Michiko Kakutani)

http://www.nytimes.com/2010/02/25/sports/olympics/25curling.html?hp
http://www.cbc.ca/olympics/blogs/postblog/2010/02/norwegian-skier-walks-away-with-quote-of-the-games.html
http://www.cbc.ca/olympics/blogs/postblog/2010/02/norwegian-skier-walks-away-with-quote-of-the-games.html
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 From Texts Without Context, NYT, March 21, 2010.

'Bonkers' Crochet book knits up oddest title prize

"This year's Diagram Prize for oddest book title has
gone to Crocheting Adventures with Hyperbolic Planes,
by mathematician Daina Taimina.

The 32nd annual award, which carries no monetary
reward, was announced late Friday by The Bookseller, a
U.K. trade magazine.

"I've never won any prizes before. This is my first prize
and it's wonderful," said Taimina, who teaches at
Cornell University in Ithaca, New York.

The book details how Taimina uses crochet to create
hyperbolic planes in which lines curve away from each
other instead of running parallel. Her pieces look like
complex flowers.

"These are two-dimensional objects which you can see
only in three dimensions," explains Taimina.

Philip Stone, an editor with The Bookseller, said the
professor's book won because "very simply, the title is
completely bonkers."

"On the one hand you have the typically feminine,
gentle and woolly world of needlework and on the other,
the exciting but incredibly un-woolly world of hyperbolic
geometry and negative curvature … the two worlds
collide in a captivating and quite breathtaking way,"
Stone said in a statement."

(CBC Arts)

The second and third-place finishers were: What Kind of Bean is
This Chihuahua? and Collectible Spoons of the Third Reich.

Others in the running include: Afterthoughts of a Worm Hunter.
Governing Lethal Behavior in Autonomous Robots. The Changing
World of Inflammatory Bowel Disease. Last year's winner was The
2009-2014 World Outlook for 60-Milligram Containers of Fromage
Frais by Philip M. Parker. Winners are chosen through a public
vote. More than 4,500 people voted online this year, Stone said.
(Read more.)

"Harold Macmillan, prime minister of Britain from 1957
to 1963, used to quote the opinion of his classics tutor

http://www.nytimes.com/2010/03/21/books/21mash.html
http://www.cbc.ca/arts/books/story/2010/03/27/odd-title-crochet.html#ixzz0jPkUZsHu
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at Oxford: “Nothing you will learn in the course of
your studies will be of the slightest possible use to
you in after life, save only this: That if you work
hard and diligently you should be able to detect
when a man is talking rot. And that, in my view, is
the main, if not the sole purpose of education.”"

(Robert Fulford)

 In The latest from the anti-racism industry Posted: April
03, 2010, 10:00 AM.

" But the Senate is supposed to be above the game, I tell him
[Bob Bennett], at least in the election off-season. Richard Russell,
the legendary

“I know,” he said. “My father used to quote it: ‘The Senate allows
you two years as a statesman, two years as a politician, and two
years as a demagogue.’?” He gave me a wistful look right then,
and proceeded to say exactly what I’d been thinking. “And that’s
actually changed. You’re now a demagogue the full six years.”

(Jennifer Senior)

 From Mr Woebegone goes to Washington, NY Magazine, April 4,
2010; a useful article on the US Senate's total disfunction.
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