Mathematics 2600 Second Midterm Test, September 25, 2008

There are ten multiple choice questions worth 1 point and four Maple tasks worth 2.5 points: for a total of 20 points.

NO stands for "none of the previous".

Part A: Multiple Choice: answer on this paper

1. The instruction > matrix(2,3,[seq(k^3,k=1..9)]); will produce a matrix with
A. 3 rows, 2 columns
B. 3 rows, 3 columns
C. 2 rows, 3 columns
D. NO
2. Determine the determinant of the matrix

$$
M:=\left[\begin{array}{rrrr}
2 & 5 & 10 & 17 \\
26 & 37 & 50 & 65 \\
82 & 101 & 122 & 145 \\
170 & 197 & 226 & 257
\end{array}\right]
$$

A. 0
B. 1
C. 16 !
D. NO
3. The inequality $x \sin \left(1 / x^{2}\right) \leq x$ holds for
A. All real x.
B. $x>0$
C. $x \geq 0$
D. NO
4. The integral $\frac{1}{2} \int_{-\infty}^{\infty} \frac{\sin (x)^{2}}{x^{2}} d x$ is
A. π
B. $\pi / 2$
C. 1.570796327...
D. NO
5. The sum $\sum_{k=0}^{11} k^{10}$ is
A. 14914341925.0
B. 142364319625
C. 14914341925
D. NO
6. The largest prime less than a billion is
A. 9999999999989
B. 99999999989
C. 99999999987
D. NO
7. The picture below is the graph for $0<x<1 / 2$ of
A. $x \sin (1 / x)$
B. $x^{2} \sin \left(1 / x^{2}\right)$
C. $x^{2} \sin (1 / x)^{2}$
D. NO

8. The value of $\lim _{x \rightarrow \infty}(1+\pi / x)^{\pi x}$ is
A. $\exp (2 \pi)$
B. $\exp (\pi)$
C. $\exp \left(\pi^{2}\right)$
D. NO
9. With the procedure
reshape:=proc(L,n,m) local k; linalg[matrix](n,m,%5Bseq(L%5Bk%5D,k=1..m*n)%5D); end:
> reshape([seq(k^2,k=1..9)],2,4);
will produce a matrix with
A. 4 rows, 2 columns
B. 2 rows, 4 columns
C. 3 rows, 3 columns
D. NO
10. These multiple choice questions were
A. Fair
B. Too hard
C. Too Easy
D. About right

Part B: Maple Tasks.

Open a Maple session and record your work. Name your file with your surname and initial (save it frequently). For example, Matt's file would be named SkerrittM.mws. Remove things you do not wish marked.

1. (a) Compute the factorization of the first 50 Mersenne numbers: $M(n):=2^{n}-1$. (b) Determine for which n the number is a Mersenne prime.
2. (a) Write code to evaluate $S_{n}:=\sum_{k=0}^{n-1} F_{n-k} 10^{k}$ where F_{n} is the nth Fibonacci number for $1 \leq n \leq 20$.
(b) What can you say about the behaviour of S_{n} for large n ?
3. (a) Plot the following expression

$$
x \sin \left(\frac{1}{x}\right)+y \sin \left(\frac{1}{y}\right)
$$

on the unit square $-1 \leq x \leq 1,-1 \leq y \leq 1$.
Use enough points to get a realistic picture (Hint: look at plot3d[option].)
(b) Describe qualitatively what you can see in the picture.
4. (a) Write Maple for the matrix below as a function of p and q :

$$
\mathrm{A}:=\left[\begin{array}{ccc}
p & q & 1-p-q \\
1-p-q & p & q \\
q & 1-p-q & p
\end{array}\right]
$$

(b) By examining various numerical cases, conjecture the behaviour of the matrix A^{n} as $n \rightarrow \infty$ for $1-\mathrm{p}-\mathrm{q}>0, \mathrm{p}>0, \mathrm{q}>0$.

