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Preface

[I]ntuition comes to us much earlier and with much less outside in-
fluence than formal arguments which we cannot really understand
unless we have reached a relatively high level of logical experience
and sophistication. . . . In the first place, the beginner must be con-
vinced that proofs deserve to be studied, that they have a purpose,
that they are interesting.

George Polya, Mathematical Discovery: On Understanding,
Learning and Teaching Problem Solving, 1968

The authors first met in 1985, when Bailey used the Borwein quartic
algorithm for π as part of a suite of tests on the new Cray-2 then be-
ing installed at the NASA Ames Research Center in California. As our
collaboration has grown over the past 18 years, we have became more
and more convinced of the power of experimental techniques in mathe-
matics. When we started our collaboration, relatively few mathematicians
employed computations in serious research work. In fact, there appeared
to be a widespread view in the field that “real mathematicians don’t com-
pute.” In the ensuing years, computer hardware has skyrocketed in power
and plummeted in cost, thanks to the remarkable phenomenon of Moore’s
Law. In addition, numerous powerful mathematical software products,
both commercial and noncommercial, have become available. But just im-
portantly, a new generation of mathematicians is eager to use these tools,
and consequently numerous new results are being discovered.

The experimental methodology described in this book, as well as in
the second volume of this work, Experimentation in Mathematics: Com-
putational Paths to Discovery [72], provides a compelling way to generate
understanding and insight; to generate and confirm or confront conjectures;
and generally to make mathematics more tangible, lively and fun for both
the professional researcher and the novice. Furthermore, the experimen-
tal approach helps broaden the interdisciplinary nature of mathematical
research: a chemist, physicist, engineer, and a mathematician may not
understand each others’ motivation or technical language, but they often

vii
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viii Preface

share an underlying computational approach, usually to the benefit of all
parties involved.

Our views have been expressed well by Epstein and Levy in a 1995
article on experiment and proof [136].

The English word “prove”—as its Old French and Latin ancestors—
has two basic meanings: to try or test, and to establish beyond doubt.
The first meaning is largely archaic, though it survives in technical
expressions (printer’s proofs) and adages (the exception proves the
rule, the proof of the pudding). That these two meanings could have
coexisted for so long may seem strange to us mathematicians today,
accustomed as we are to thinking of “proof” as an unambiguous
term. But it is in fact quite natural, because the most common way
to establish something in everyday life is to examine it, test it, probe
it, experiment with it.

As it turns out, much the same is true in mathematics as well. Most
mathematicians spend a lot of time thinking about and analyzing
particular examples. This motivates future development of theory
and gives one a deeper understanding of existing theory. Gauss de-
clared, and his notebooks attest to it, that his way of arriving at
mathematical truths was “through systematic experimentation.” It
is probably the case that most significant advances in mathemat-
ics have arisen from experimentation with examples. For instance,
the theory of dynamical systems arose from observations made on
the stars and planets and, more generally, from the study of physi-
cally motivated differential equations. A nice modern example is the
discovery of the tree structure of certain Julia sets by Douady and
Hubbard: this was first observed by looking at pictures produced by
computers and was then proved by formal arguments.

Our goal in these books is to present a variety of accessible examples of
modern mathematics where intelligent computing plays a significant role
(along with a few examples showing the limitations of computing). We have
concentrated primarily on examples from analysis and number theory, as
this is where we have the most experience, but there are numerous excur-
sions into other areas of mathematics as well (see the Table of Contents).
For the most part, we have contented ourselves with outlining reasons and
exploring phenomena, leaving a more detailed investigation to the reader.
There is, however, a substantial amount of new material, including nu-
merous specific results that have not yet appeared in the mathematical
literature, as far as we are aware.

This work is divided into two volumes, each of which can stand by it-
self. This volume, Mathematics by Experiment: Plausible Reasoning in the
21st Century, presents the rationale and historical context of experimental
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mathematics, and then presents a series of examples that exemplify the ex-
perimental methodology. We include in this volume a reprint of an article
co-authored by one of us that complements this material. The second book,
Experimentation in Mathematics: Computational Paths to Discovery, con-
tinues with several chapters of additional examples. Both volumes include
a chapter on numerical techniques relevant to experimental mathematics.

Each volume is targeted to a fairly broad cross-section of mathemati-
cally trained readers. Most of this volume should be readable by anyone
with solid undergraduate coursework in mathematics. Most of the second
volume should be readable by persons with upper-division undergraduate
or graduate-level coursework. None of this material involves highly abstract
or esoteric mathematics.

The subtitle of this volume is taken from George Polya’s well-known
work, Mathematics and Plausible Reasoning [235]. This two-volume work
has been enormously influential—if not uncontroversial—not only in the
field of artificial intelligence, but also in the mathematical education and
pedagogy community.

Some programming experience is valuable to address the material in this
book. Readers with no computer programming experience are invited to
try a few of our examples using commercial software such as Mathematica
and Maple. Happily, much of the benefit of computational-experimental
mathematics can be obtained on any modern laptop or desktop computer—
a major investment in computing equipment and software is not required.

Each chapter concludes with a section of commentary and exercises.
This permits us to include material that relates to the general topic of
the chapter, but which does not fit nicely within the chapter exposition.
This material is not necessarily sorted by topic nor graded by difficulty,
although some hints, discussion and answers are given. This is because
mathematics in the raw does not announce, “I am solved using such and
such a technique.” In most cases, half the battle is to determine how to
start and which tools to apply.

We should mention two recent books on mathematical experimentation:
[158] and [203]. In both cases, however, the focus and scope centers on the
teaching of students and thus is quite different from ours.

We are grateful to our colleagues Victor Adamchik, Heinz Bauschke, Pe-
ter Borwein, David Bradley, Gregory Chaitin, David and Gregory Chud-
novsky, Robert Corless, Richard Crandall, Richard Fateman, Greg Fee,
Helaman Ferguson, Steven Finch, Ronald Graham, Andrew Granville,
Christoph Haenel, David Jeffrey, Jeff Joyce, Adrian Lewis, Petr Lisonek,
Russell Luke, Mathew Morin, David Mumford, Andrew Odlyzko, Hristo
Sendov, Luis Serrano, Neil Sloane, Daniel Rudolph, Asia Weiss, and John
Zucker who were kind enough to help us prepare and review material for
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this book; to Mason Macklem, who helped with material, indexing (note
that in the index definitions are marked in bold, and quotes with a suffix
“†”), and more; to Jen Chang and Rob Scharein, who helped with graphics;
to Janet Vertesi who helped with bibliographic research; to Will Galway,
Xiaoye Li, and Yozo Hida, who helped with computer programming; and
to numerous others who have assisted in one way or another in this work.
We thank Roland Girgensohn in particular for contributing a significant
amount of material and reviewing several drafts. We owe a special debt of
gratitude to Klaus Peters for urging us to write this book and for helping
us nurse it into existence. Finally, we wish to acknowledge the assistance
and the patience exhibited by our spouses and family members during the
course of this work.

Borwein’s work is supported by the Canada Research Chair Program
and the Natural Sciences and Engineering Council of Canada. Bailey’s
work is supported by the Director, Office of Computational and Technol-
ogy Research, Division of Mathematical, Information, and Computational
Sciences of the U.S. Department of Energy, under contract number DE-
AC02-05CH11231.

Photo and Illustration Credits

We are grateful to the following for permission to reproduce material:
Béla Bollobás (Littlewood’s Miscellany), David and Gregory Chudnovsky
(Random Walk on Pi), George Paul Csicsery (Paul Erdős photo), Hela-
man Ferguson (Sculpture photos), Göttingen University Library (Riemann
manuscript), Mathematical Association of America (Polya’s coin graphic),
Andrew Odlyzko (Data and graphs of Riemann zeta function), The Smith-
sonian Institution (ENIAC computer photo), Nick Trefethen (Daisy
pseudospectrum graphic), Asia Weiss (Coxeter’s memorabilia)

Experimental Mathematics Web Site

The authors have established a web site containing an updated collection
of links to many of the URLs mentioned in the two volumes, plus errata,
software, tools, and other web useful information on experimental mathe-
matics. This can be found at the following URL:

http://www.experimentalmath.info

Jonathan M. Borwein August 2003
David H. Bailey
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Expanded Second Edition

In this edition, in addition to correcting various minor infelicities and up-
dating references, we have replaced the original Chapter 7 (which was a
reprint of a philosophical article [76]) by roughly 100 pages of new mate-
rial. We wish to thank Peter Borwein, David Bradley, David Broadhurst,
Marc Chamberland, O-Yeat Chan, John Cosgrave, Richard Crandall, Karl
Dilcher, Frank Garvan, John Holte, Manuel Kauers, Dante Manna, Veron-
ica Pillwein, Mark Pinsky, Andrew Shouldice, Fernando Villegas, and Stan
Wagon, among those who have provided interesting material for this new
chapter. As before, our thanks go to our friends and editors at A K Peters
for their support and care of our work.

Jonathan M. Borwein May 2008
David H. Bailey
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1 What is Experimental
Mathematics?

The computer has in turn changed the very nature of mathemati-
cal experience, suggesting for the first time that mathematics, like
physics, may yet become an empirical discipline, a place where things
are discovered because they are seen.

– David Berlinski, “Ground Zero: A Review of The Pleasures
of Counting, by T. W. Koerner,” 1997

If mathematics describes an objective world just like physics, there
is no reason why inductive methods should not be applied in math-
ematics just the same as in physics.

– Kurt Gödel, Some Basic Theorems on the Foundations, 1951

1.1 Background

One of the greatest ironies of the information technology revolution is that
while the computer was conceived and born in the field of pure mathe-
matics, through the genius of giants such as John von Neumann and Alan
Turing, until recently this marvelous technology had only a minor impact
within the field that gave it birth.

This has not been the case in applied mathematics, as well as in most
other scientific and engineering disciplines, which have aggressively inte-
grated computer technology into their methodology. For instance, physi-
cists routinely utilize numerical simulations to study exotic phenomena
ranging from supernova explosions to big bang cosmology—phenomena
that in many cases are beyond the reach of conventional laboratory experi-
mentation. Chemists, molecular biologists, and material scientists make use
of sophisticated quantum-mechanical computations to unveil the world of
atomic-scale phenomena. Aeronautical engineers employ large-scale fluid
dynamics calculations to design wings and engines for jet aircraft. Ge-
ologists and environmental scientists utilize sophisticated signal process-
ing computations to probe the earth’s natural resources. Biologists har-

1



�

�

�

�

�

�

�

�

2 1. What is Experimental Mathematics?

ness large computer systems to manage and analyze the exploding vol-
ume of genome data. And social scientists—economists, psychologists, and
sociologists—make regular use of computers to spot trends and inferences
in empirical data.

In the late 1980s, recognizing that its members were lagging behind
in embracing computer technology, the American Mathematical Society
began a regular “Computers and Mathematics” section in the monthly
newsletter, Notices of the American Mathematical Society, edited at first
by Jon Barwise and subsequently by Keith Devlin. This continued until
the mid-1990s and helped to convince the mathematical community that
the computer can be a useful research tool. In 1992, a new journal, Ex-
perimental Mathematics, was launched, founded on the belief “that theory
and experiment feed on each other, and that the mathematical community
stands to benefit from a more complete exposure to the experimental pro-
cess.” It encouraged the submission of algorithms, results of experiments,
and descriptions of computer programs, in addition to formal proofs of new
results [135].

Perhaps the most important advancement along this line is the devel-
opment of broad spectrum mathematical software products such as Math-
ematica and Maple. These days, many mathematicians are highly skilled
with these tools and use them as part of their day-to-day research work.
As a result, we are starting to see a wave of new mathematical results dis-
covered partly or entirely with the aid of computer-based tools. Further
developments in hardware (the gift of Moore’s Law of semiconductor tech-
nology), software tools, and the increasing availability of valuable Internet-
based facilities, are all ensuring that mathematicians will have their day in
the computational sun.

This new approach to mathematics—the utilization of advanced com-
puting technology in mathematical research—is often called experimental
mathematics. The computer provides the mathematician with a “labora-
tory” in which he or she can perform experiments: analyzing examples,
testing out new ideas, or searching for patterns. Our book is about this
new, and in some cases not so new, way of doing mathematics. To be
precise, by experimental mathematics, we mean the methodology of doing
mathematics that includes the use of computations for:

1. Gaining insight and intuition.

2. Discovering new patterns and relationships.

3. Using graphical displays to suggest underlying mathematical princi-
ples.

4. Testing and especially falsifying conjectures.
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1.2. Complexity Considerations 3

5. Exploring a possible result to see if it is worth formal proof.

6. Suggesting approaches for formal proof.

7. Replacing lengthy hand derivations with computer-based derivations.

8. Confirming analytically derived results.

Note that the above activities are, for the most part, quite similar to the
role of laboratory experimentation in the physical and biological sciences.
In particular, they are very much in the spirit of what is often termed “com-
putational experimentation” in physical science and engineering, which is
why we feel the qualifier “experimental” is particularly appropriate in the
term experimental mathematics.

We should note that one of the more valuable benefits of the computer-
based experimental approach in modern mathematics is its value in reject-
ing false conjectures (Item 4): A single computational example can save
countless hours of human effort that would otherwise be spent attempting
to prove false notions.

With regards to Item 5, we observe that mathematicians generally do
not know during the course of research how it will pan out, but nonethe-
less must, in a conventional mathematical approach, prove all the pieces
along the way as assurance that the project makes sense and remains on
course. The methods of experimental mathematics allow mathematicians
to maintain a reasonable level of assurance without nailing down all the
lemmas the first time through. At the end of the day, they can decide if
the result merits proof. If it is not the answer that was sought, or if it is
simply not interesting enough, much less time will have been spent coming
to this conclusion.

Many mathematicians remain uncomfortable with the appearance in
published articles of expressions such as “proof by Mathematica” or “es-
tablished by Maple” (see Item 7 above). There is, however, a clear trend in
this direction, and it seems to us to be both futile and counterproductive to
resist it. In Chapter 7 we will further explore the nature of mathematical
experimentation and proof.

1.2 Complexity Considerations

Gordon Moore, the co-founder of Intel Corporation, noted in a 1965 article

The complexity for minimum component costs has increased at a
rate of roughly a factor of two per year. . . . Certainly over the short
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4 1. What is Experimental Mathematics?

term this rate can be expected to continue, if not to increase. Over
the longer term, the rate of increase is a bit more uncertain, although
there is no reason to believe it will not remain nearly constant for at
least 10 years. [219]

With these sentences, Moore stated what is now known as Moore’s
Law, namely the observation that semiconductor technology approximately
doubles in capacity and overall performance roughly every 18 to 24 months
(not quite every year as Moore predicted above). This trend has continued
unabated for nearly 40 years, and, according to Moore and other industry
analysts, there is still no end in sight—at least another ten years is assured
[2]. This astounding record of sustained exponential progress has no peer
in the history of technology. What’s more, we will soon see mathematical
computing tools implemented on parallel computer platforms, which will
provide even greater power to the research mathematician.

However, we do not suggest that amassing huge amounts of processing
power can solve all mathematical problems, even those that are amenable to
computational analysis. There are doubtless some cases where a dramatic
increase in computation could, by itself, result in significant breakthroughs,
but it is easier to find examples where this is unlikely to happen.

For example, consider Clement Lam’s 1991 proof of the nonexistence
of a finite projective plane of order ten [200]. This involved a search for a
configuration of n2 +n+1 points and equally many lines. Lam’s computer
program required thousands of hours of run time on a Cray computer
system. Lam estimates that the next case (n = 18) susceptible to his
methods would take millions of years on any conceivable architecture.

Along this line, although a certain class of computer-based mathemat-
ical analysis is amenable to “embarrassingly parallel” (the preferred term
is now “naturally parallel”) processing, these tend not to be problems of
central interest in mathematics. A good example of this is the search for
Mersenne primes, namely primes of the form 2n − 1 for integer n. While
such computations are interesting demonstrations of mathematical com-
putation, they are not likely to result in fundamental breakthroughs. By
contrast let us turn to perhaps the most fundamental of current algorith-
mic questions.

The P versus NP problem. (This discussion is taken from [67].) Of
the seven million-dollar Millennium Prize problems, the one that is most
germane to our present voyage is the so-called “P versus NP problem,” also
known as the “P �= NP” problem. We quote from the discussion on the
Clay web site:

It is Saturday evening and you arrive at a big party. Feeling shy, you
wonder whether you already know anyone in the room. Your host
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1.2. Complexity Considerations 5

proposes that you must certainly know Rose, the lady in the corner
next to the dessert tray. In a fraction of a second you are able to
cast a glance and verify that your host is correct. However, in the
absence of such a suggestion, you are obliged to make a tour of the
whole room, checking out each person one by one, to see if there is
anyone you recognize. This is an example of the general phenomenon
that generating a solution to a problem often takes far longer than
verifying that a given solution is correct. Similarly, if someone tells
you that the number 13, 717, 421 can be written as the product of two
smaller numbers, you might not know whether to believe him, but
if he tells you that it can be factored as 3607 times 3803, then you
can easily check that it is true using a hand calculator. One of the
outstanding problems in logic and computer science is determining
whether questions exist whose answer can be quickly checked (for
example by computer), but which require a much longer time to
solve from scratch (without knowing the answer). There certainly
seem to be many such questions. But so far no one has proved that
any of them really does require a long time to solve; it may be that we
simply have not yet discovered how to solve them quickly. Stephen
Cook formulated the P versus NP problem in 1971.

Although in many instances one may question the practical distinction
between polynomial and nonpolynomial algorithms, this problem really is
central to our current understanding of computing. Roughly it conjectures
that many of the problems we currently find computationally difficult must
per force be that way. It is a question about methods, not about actual
computations, but it underlies many of the challenging problems one can
imagine posing. A question that requests one to “compute such and such a
sized incidence of this or that phenomena” always risks having the answer,
“It’s just not possible,” because P �= NP.

With the “NP” caveat (though factoring is difficult it is not generally
assumed to be in the class ofNP -hard problems), let us offer two challenges
that are far fetched, but not inconceivable, goals for the next few decades.

First Challenge. Design an algorithm that can reliably factor a
random thousand digit integer.

Even with a huge effort, current algorithms get stuck at about 150 digits.
Details can be found at http://www.rsasecurity.com/rsalabs/node.asp?id=
2094 where the current factoring challenges are listed. One possible solution
to the factorization problem may come through quantum computing, using
an algorithm found by Peter Shor in 1994 [258]. However, it is still not clear
whether quantum phenomenon can be harnessed on the scale required for
this algorithm to be practical.
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6 1. What is Experimental Mathematics?

With regards to cash prizes, there is also $100, 000 offered for any honest
10, 000, 000 digit prime: http://www.mersenne.org/prime.htm.

Primality checking is currently easier than factoring, and there are some
very fast and powerful probabilistic primality tests—much faster than those
providing “certificates” of primality. There is also the recently discovered
“AKS” deterministic polynomial time algorithm for primality, whose imple-
mentations, as we note in Section 7.2 of the second volume, keep improving.

Given that any computation has potential errors due to: (i) subtle (or
even not-so-subtle) programming bugs, (ii) compiler errors, (iii) system
software errors, and (iv) undetected hardware integrity errors, it seems
increasingly pointless to distinguish between these two types of primality
tests. Many would take their chances with a (1−10−100) probability statis-
tic over a “proof” any day (more on this topic is presented in Section 7.2
of the second volume).

The above questions are intimately related to the Riemann Hypothesis
and its extensions, though not obviously so. They are also critical to issues
of Internet security. If someone learns how to rapidly factor large numbers,
then many current security systems are no longer secure.

Many old problems lend themselves to extensive exploration. One ex-
ample that arose in signal processing is called the Merit Factor problem,
and is due in large part to Marcel Golay with closely related versions due
to Littlewood and to Erdős. It has a long pedigree though certainly not as
elevated as the Riemann Hypothesis.

The problem can be formulated as follows. Suppose An consists of all
sequences (a0 = 1, a1, · · · , an) of length n+1 where each ai is restricted to
1 or −1, for i > 0. If ck =

∑n−k
j=0 ajaj+k, then the problem is to minimize∑n

k=−n c
2
k over An for each fixed n. This is discussed at length in [82].

Minima have been found up to about n = 50. The search space of
sequences of size 50 is 250 ≈ 1015, which approaches the limit of the very
large-scale calculations feasible today. The records use a branch and bound
algorithm which grows more or less like 1.8n. This is marginally better than
the naive 2n growth of a completely exhaustive search but is still painfully
exponential.

Second Challenge. Find the minima in the merit factor problem
for sizes n ≤ 100.

The best hope for a solution lies in development of better algorithms.
The problem is widely acknowledged as a very hard problem in combina-
torial optimization, but it isn’t known to be in one of the recognized hard
classes like NP . The next best hope is a radically improved computer tech-
nology, perhaps quantum computing. And there is always a remote chance
that analysis will lead to a mathematical solution.
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1.3 Proof versus Truth

In any discussion of an experimental approach to mathematical research,
the questions of reliability and standards of proof justifiably come to center
stage. We certainly do not claim that computations utilized in an exper-
imental approach to mathematics by themselves constitute rigorous proof
of the claimed results. Rather, we see the computer primarily as an ex-
ploratory tool to discover mathematical truths, and to suggest avenues for
formal proof.

For starters, it must be acknowledged that no amount of straightforward
case checking constitutes a proof. For example, the “proof” of the Four
Color Theorem in the 1970s, namely that every planar map can be colored
with four colors so adjoining countries are never the same color, was consid-
ered a proof because prior mathematical analysis had reduced the problem
to showing that a large but finite number of bad configurations could be
ruled out. The “proof” was viewed as somewhat flawed because the case
analysis was inelegant, complicated and originally incomplete (this com-
putation was recently redone after a more satisfactory analysis). Though
many mathematicians still yearn for a simple proof, there is no particu-
lar reason to believe that all elegant true conjectures have elegant proofs.
What’s more, given Gödel’s result, some may have no proofs at all.

Nonetheless, we feel that in many cases computations constitute very
strong evidence, evidence that is at least as compelling as some of the more
complex formal proofs in the literature. Prominent examples include: (1)
the determination that the Fermat number F24 = 2224

+ 1 is composite, by
Crandall, Mayer, and Papadopoulos [118, page 219]; (2) the recent compu-
tation of π to more than one trillion decimal digits by Yasumasa Kanada
and his team; and (3) the Internet-based computation of binary digits of
π beginning at position one quadrillion organized by Colin Percival. These
are among the largest computations ever done, mathematical or otherwise
(the π computations will be described in greater detail in Chapter 3). Given
the numerous possible sources of error, including programming bugs, hard-
ware bugs, software bugs, and even momentary cosmic-ray induced glitches
(all of which are magnified by the sheer scale of these computations), one
can very reasonably question the validity of these results.

But for exactly such reasons, computations such as these typically
employ very strong validity checks. For example, the Crandall-Mayer-
Papadopoulos computation employed a “wavefront” scheme. Here a faster
computer system computed a chain of squares modulo F24, such as 321000000

mod F24, 322000000
mod F24, 323000000

mod F24, · · · . Then each of a set of
slower computers started with one of these intermediate values, squared it
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1,000,000 times modulo F24, and checked to see if the result (a 16-million-
bit integer) precisely reproduced the next value in the chain. If it did, then
this is very strong evidence that both computations were correct. If not,
then the process was repeated [118, page 219].

In the case of computations of digits of π, it has been customary for
many years to verify a result either by repeating the computation using a
different algorithm, or by repeating with a slightly different index position.
For example, if one computes hexadecimal digits of π beginning at position
one trillion (we shall see how this can be done in Chapter 3), then this
can be checked by repeating the computation at hexadecimal position one
trillion minus one. It is easy to verify (see Algorithm 3.4 in Section 3.4)
that these two calculations take almost completely different trajectories,
and thus can be considered “independent.” If both computations generate
25 hexadecimal digits beginning at the respective positions, then 24 digits
should perfectly overlap. If these 24 hexadecimal digits do agree, then
we can argue that the probability that these digits are in error, in a very
strong (albeit heuristic) sense, is roughly one part in 1624 ≈ 7.9 × 1028, a
figure much larger even than Avogadro’s number (6.022× 1023). Percival’s
actual computation of the quadrillionth binary digit (i.e., the 250 trillionth
hexadecimal digit) of π was verified by a similar scheme, which for brevity
we have simplified here.

Kanada and his team at the University of Tokyo, who just completed a
computation of the first 1.24 trillion decimal digits of π, employed an even
more impressive validity check (Kanada’s calculation will be discussed in
greater detail in Section 3.1). They first computed more than one trillion
hexadecimal digits, using two different formulas. The hexadecimal digit
string produced by both of these formulas, beginning at hex digit position
1,000,000,000,001, was B4466E8D21 5388C4E014. Next, they employed the al-
gorithm, mentioned in the previous paragraph and described in more detail
in Chapter 3, which permits one to directly compute hexadecimal digits be-
ginning at a given position (in this case 1,000,000,000,001). This result was
B4466E8D21 5388C4E014. Needless to say, these two sets of results, obtained
by utterly different computational approaches, are in complete agreement.
After this step, they converted the hexadecimal expansion to decimal, then
back to hexadecimal as a check. When this final check succeeded, they felt
safe to announce their results.

As a rather different example, a computation jointly performed by one
of the present authors and David Broadhurst, a British physicist, discovered
a previously unknown integer relation involving a set of 125 real constants
associated with the largest real root of Lehmer’s polynomial [34]. This
computation was performed using 50,000 decimal digit arithmetic and re-
quired 44 hours on 32 processors of a Cray T3E parallel supercomputer.
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1.3. Proof versus Truth 9

The 125 integer coefficients discovered by the program ranged in size up
to 10292. The certification of this relation to 50,000 digit precision was
thus at least 13,500 decimal digits beyond the level (292 × 125 = 36, 500)
that could reasonably be ascribed to numerical roundoff error. This result
was separately affirmed by a computation on a different computer system,
using 59,000-digit arithmetic, or roughly 22,500 decimal digits beyond the
level of plausible roundoff error.

Independent checks and extremely high numerical confidence levels still
do not constitute formal proofs of correctness. What’s more, we shall see in
Section 1.4 of the second volume some examples of “high-precision frauds,”
namely “identities” that hold to high precision, yet are not precisely true.
Even so, one can argue that many computational results are as reliable, if
not more so, than a highly complicated piece of human mathematics. For
example, perhaps only 50 or 100 people alive can, given enough time, digest
all of Andrew Wiles’ extraordinarily sophisticated proof of Fermat’s Last
Theorem. If there is even a one percent chance that each has overlooked
the same subtle error (and they may be psychologically predisposed to do
so, given the numerous earlier results that Wiles’ result relies on), then we
must conclude that computational results are in many cases actually more
secure than the proof of Fermat’s Last Theorem.

Richard Dedekind’s marvelous book, Two Essays on Number Theory
[129], originally published in 1887, provides a striking example of how the
nature of what is a satisfactory proof changes over time. In this work,
Dedekind introduces Dedekind cuts and a modern presentation of the con-
struction of the reals (see Item 2 at the end of this chapter). In the second
essay, “The Nature and Meaning of Numbers,” an equally striking discus-
sion of finite and infinite sets takes place. Therein, one is presented with
Theorem 66:

Theorem. There exist infinite systems.

Proof. My own realm of thoughts, i.e., the totality S of all things,
which can be objects of my thought, is infinite. For if s signifies
an element of S, then is the thought s′, that s can be object of my
thought, itself an element of S. If we regard this as transform φ(s) of
the element s then has the transformation φ of S, thus determined,
the property that the transform S′ is part of S; and S′ is certainly
proper part of S, because there are elements in S (e.g., my own
ego) which are different from such thought s′ and therefore are not
contained in S′. Finally, it is clear that if a, b are different elements
of S, their transformation φ is a distinct (similar) transformation
(26). Hence S is infinite, which was to be proved.

A similar presentation is found in §13 of the Paradoxes des Unendlichen,
by Bolzano (Leipzig, 1851). Needless to say, such a “proof” would not be
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acceptable today. In our modern formulation of mathematics there is an
Axiom of Infinity, but recall that this essay predates the publications of
Frege and Russell and the various paradoxes of modern set theory.

Some other examples of this sort are given by Judith Grabiner, who for
instance compares Abel’s comments on the lack of rigor in 18th-century ar-
guments with the standards of Cauchy’s 19th-century Cours d’analyse [151].

1.4 Paradigm Shifts

We acknowledge that the experimental approach to mathematics that we
propose will be difficult for some in the field to swallow. Many may still
insist that mathematics is all about formal proof, and from their viewpoint,
computations have no place in mathematics. But in our view, mathemat-
ics is not ultimately about formal proof; it is instead about secure mathe-
matical knowledge. We are hardly alone in this regard—many prominent
mathematicians throughout history have either exemplified or explicitly
espoused such a view.

Gauss expressed an experimental philosophy, and utilized an experi-
mental approach on numerous occasions. In the next section, we shall
present one significant example. Examples from de Morgan, Klein, and
others will be given in subsequent sections.

Georg Friedrich Bernhard Riemann (1826–1866) was one of the most
influential scientific thinkers of the past 200 years. However, he proved
very few theorems, and many of the proofs that he did supply were flawed.
But his conceptual contributions, such as Riemannian geometry and the
Riemann zeta function, as well as his contributions to elliptic and Abelian
function theory, were epochal.

Jacques Hadamard (1865–1963) was perhaps the greatest mathemati-
cian to think deeply and seriously about cognition in mathematics. He is
quoted as saying “. . . in arithmetic, until the seventh grade, I was last or
nearly last,” which should give encouragement to many young students.
Hadamard was both the author of The Psychology of Invention in the
Mathematical Field [160], a 1945 book that still rewards close inspection,
and co-prover of the Prime Number Theorem in 1896, which stands as
one of the premier results of 19th century mathematics and an excellent
example of a result whose discovery and eventual proof involved detailed
computation and experimentation. He nicely declared:

The object of mathematical rigor is to sanction and legitimize the
conquests of intuition, and there was never any other object for it.
(J. Hadamard, from E. Borel, “Lecons sur la theorie des fonctions,”
1928, quoted in [234])
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G. H. Hardy was another of the 20th century’s towering figures in math-
ematics. In addition to his own mathematical achievements in number the-
ory, he is well known as the mentor of Ramanujan. In his Rouse Ball lecture
in 1928, Hardy emphasized the intuitive and constructive components of
mathematical discovery:

I have myself always thought of a mathematician as in the first in-
stance an observer, a man who gazes at a distant range of mountains
and notes down his observations. . . . The analogy is a rough one, but
I am sure that it is not altogether misleading. If we were to push it
to its extreme we should be led to a rather paradoxical conclusion;
that we can, in the last analysis, do nothing but point; that proofs
are what Littlewood and I call gas, rhetorical flourishes designed to
affect psychology, pictures on the board in the lecture, devices to
stimulate the imagination of pupils. This is plainly not the whole
truth, but there is a good deal in it. The image gives us a gen-
uine approximation to the processes of mathematical pedagogy on
the one hand and of mathematical discovery on the other; it is only
the very unsophisticated outsider who imagines that mathematicians
make discoveries by turning the handle of some miraculous machine.
Finally the image gives us at any rate a crude picture of Hilbert’s
metamathematical proof, the sort of proof which is a ground for its
conclusion and whose object is to convince. [87, Preface]

As one final example, in the modern age of computers, we quote John
Milnor, a contemporary Fields medalist:

If I can give an abstract proof of something, I’m reasonably happy.
But if I can get a concrete, computational proof and actually produce
numbers I’m much happier. I’m rather an addict of doing things on
computer, because that gives you an explicit criterion of what’s going
on. I have a visual way of thinking, and I’m happy if I can see a
picture of what I’m working with. [241, page 78]

We should point out that paradigm shifts of this sort in scientific re-
search have always been difficult to accept. For example, in the original
1859 edition of Origin of the Species, Charles Darwin wrote,

Although I am fully convinced of the truth of the views given in this
volume . . ., I by no means expect to convince experienced naturalists
whose minds are stocked with a multitude of facts all viewed, during
a long course of years, from a point of view directly opposite to mine.
. . . [B]ut I look with confidence to the future—to young and rising
naturalists, who will be able to view both sides of the question with
impartiality. [122, page 453]
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12 1. What is Experimental Mathematics?

In the 20th century, a very similar sentiment was expressed by Max
Planck regarding quantum physics:

[A] new scientific truth does not triumph by convincing its opponents
and making them see the light, but rather because its opponents die
and a new generation grows up that is familiar with it. [232, page
33–34]

Thomas Kuhn observed in his epochal work The Structure of Scientific
Revolutions,

I would argue, rather, that in these matters neither proof nor error
is at issue. The transfer of allegiance from paradigm to paradigm is
a conversion experience that cannot be forced. [195, page 151]

Two final quotations deal with the dangers of overreliance on tradi-
tion and “authority” in scientific research. The first is an admonition by
the early English scholar-scientist Robert Record, in his 1556 cosmology
textbook The Castle of Knowledge:

No man can worthily praise Ptolemye . . . yet muste ye and all men
take heed, that both in him and in all mennes workes, you be not
abused by their autoritye, but evermore attend to their reasons, and
examine them well, ever regarding more what is saide, and how it is
proved, than who saieth it, for autorite often times deceaveth many
menne. [138, page 47]

The following is taken from an intriguing, recently published account of
why one of the most influential articles of modern mathematical economics,
which in fact later led to a Nobel Prize for its authors (John R. Hicks and
Kenneth J. Arrow), was almost not accepted for publication:

[T]o suggest that the normal processes of scholarship work well on
the whole and in the long run is in no way contradictory to the
view that the processes of selection and sifting which are essential to
the scholarly process are filled with error and sometimes prejudice.
(Kenneth Arrow [285])

1.5 Gauss, the Experimental Mathematician

Carl Friedrich Gauss once confessed

I have the result, but I do not yet know how to get it. [11, page 115]
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Gauss was particularly good at seeing meaningful patterns in numerical
data. When just 14 or 15 years old, he conjectured that π(n), the number
of primes less than n, is asymptotically approximated by n/ logn. This
conjecture is, of course, the Prime Number Theorem, eventually proved
by Hadamard and de la Vallée Poussin in 1896. This will be discussed in
greater detail in Section 2.8.

Here is another example of Gauss’s prowess at “mental experimental
mathematics.” One day in 1799, while examining tables of integrals pro-
vided originally by James Stirling, he noticed that the reciprocal of the
integral

2
π

∫ 1

0

dt√
1 − t4

,

agreed numerically with the limit of the rapidly convergent arithmetic-
geometric mean iteration: a0 = 1, b0 =

√
2 ;

an+1 =
an + bn

2
, bn+1 =

√
anbn. (1.1)

The sequences (an) and (bn) have the limit 1.1981402347355922074 . . . in
common. Based on this purely computational observation, Gauss was able
to conjecture and subsequently prove that the integral is indeed equal to
this common limit. It was a remarkable result, of which he wrote in his
diary (see [74, pg. 5] and below) “[the result] will surely open up a whole
new field of analysis.” He was right. It led to the entire vista of 19th
century elliptic and modular function theory.

We reproduce the relevant pages from his diary as Figures 1.1 and
1.2. The first shows the now familiar hypergeometric series which, along
with the arithmetic-geometric mean iteration, we discuss in some detail in
Section 5.6.2.

In Figure 1.2, an excited Gauss writes:

Novus in analysi campus se nobis aperuit, scilicet investigatio func-
tionem etc. (October 1798) [A new field of analysis has appeared to
us, evidently in the study of functions etc.]

And in May 1799 (a little further down the page), he writes:

Terminum medium arithmetico-geometricum inter 1 et (root 2) esse
pi/omega usque ad figuram undcimam comprobaviums, qua re demon-
strata prorsus novus campus in analysi certo aperietur. [We have
shown the limit of the arithmetical-geometric mean between 1 and
root 2 to be pi/omega up to eleven figures, which on having been
demonstrated, a whole new field in analysis is certain to be opened
up.]
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Figure 1.1. Gauss on the lemniscate.
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Figure 1.2. Gauss on the arithmetic-geometric mean.
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1.6 Geometric Experiments

Augustus de Morgan (1806–71), the first President of the London Mathe-
matical Society, was equally influential as an educator and a researcher [242].
As the following two quotes from De Morgan show, neither a pride in nu-
merical skill nor a desire for better geometric tools is new. De Morgan like
many others saw profound differences between two and three dimensions:

Considerable obstacles generally present themselves to the beginner,
in studying the elements of Solid Geometry, from the practice which
has hitherto uniformly prevailed in this country, of never submitting
to the eye of the student, the figures on whose properties he is rea-
soning, but of drawing perspective representations of them upon a
plane. . . . I hope that I shall never be obliged to have recourse to
a perspective drawing of any figure whose parts are not in the same
plane.

There is considerable evidence that young children see more naturally
in three than two dimensions.

Elsewhere, de Morgan celebrates:

In 1831, Fourier’s posthumous work on equations showed 33 figures
of solution, got with enormous labor. Thinking this is a good oppor-
tunity to illustrate the superiority of the method of W. G. Horner,
not yet known in France, and not much known in England, I pro-
posed to one of my classes, in 1841, to beat Fourier on this point, as
a Christmas exercise. I received several answers, agreeing with each
other, to 50 places of decimals. In 1848, I repeated the proposal,
requesting that 50 places might be exceeded: I obtained answers of
75, 65, 63, 58, 57, and 52 places.

Angela Vierling’s web page http://math.bu.edu/people/angelav
/projects/models describes well the 19th century desire for aids to visu-
alization:

During many of these investigations, models were built to illus-
trate properties of these surfaces. The construction and study of
plaster models was especially popular in Germany (particularly in
Göttingen under the influence of Felix Klein). Many of the models
were mass produced by publishing houses and sold to mathemati-
cians and mathematics departments all over the world. Models were
built of many other types of surfaces as well, including surfaces aris-
ing from the study of differential geometry and calculus. Such mod-
els enjoyed a wonderful reception for a while, but after the 1920’s
production and interest waned.
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Felix Klein, like De Morgan, was equally influential as researcher and as
educator. These striking and very expensive models still exist in many uni-
versity departments and can be viewed as a precursor to modern electronic
visualization tools such as Rob Scharein’s KnotPlot site http://www.colab
.sfu.ca/KnotPlot, which now has a three dimensional “immersive reality”
version, and the remarkable Electronic Geometry Models site http://www
.eg-models.de.

While we will not do a great deal of geometry in this book, this arena
has great potential for visualization and experimentation. Three beautiful
theorems come to mind where visualization, in particular, plays a key role:

1. Pick’s theorem on the area of a simple lattice polygon, P :

A(P ) = I(P ) +
1
2
B(P ) − 1, (1.2)

where I(P ) is the number of lattice points inside P and B(P ) is the
number of lattice points on the boundary of P including the vertices.

2. Minkowski’s seminal result in the geometry of numbers that a sym-
metric convex planar body must contain a nonzero lattice point in its
interior if its area exceeds four.

3. Sylvester’s theorem: Given a noncollinear finite set in the plane, one
can always draw a line through exactly two points of the set.

In the case of Pick’s theorem it is easy to think of a useful experiment
(one of the present authors has invited students to do this experiment).
It is reasonable to first hunt for a formula for acute-angled triangles. One
can then hope to piece together the more general result by triangulating
the polygon (even if it is nonconvex), and then clearly for right-angled
triangles. Now place the vertices at (n, 0), (0,m), and (0, 0) and write a
few lines of code that separately totals the number of times (j, k) lies on
the boundary lines or inside the triangle as j ranges between 0 and n and
k between 0 and m. A table of results for small m and n will expose the
result. For example, if we consider all right-angled triangles of height h
and width w with area 30, we obtain:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

h w A I B
10 6 30 22 18
12 5 30 22 18
15 4 30 21 20
20 3 30 19 24
30 2 30 14 34
60 1 30 0 62

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (1.3)
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It is more of a challenge to think of a useful experiment to determine
that “4” is the right constant in Minkowski’s theorem. Both of these results
are very accessibly described in [227].

James Sylvester, mentioned in Item 3 above, was president of the Lon-
don Mathematical Society in the late 19th century. He once wrote, “The
early study of Euclid made me a hater of geometry” [208]. Discrete ge-
ometry (now much in fashion as “computational geometry” and another
example of very useful pure mathematics) was clearly more appealing to
Sylvester. For Sylvester’s theorem (posed but not solved by Sylvester), one
can imagine various Java applets but scattering a fair number of points on
a sheet of white paper and using a ruler seems more than ample to get a
sense of the truth of the result.

Sylvester’s conjecture was largely forgotten for 50 years. It was first
established—“badly” in the sense that the proof is much more complicated
than it needed to be—by Gallai (1943) and also by Paul Erdős, who named
“the Book” in which God keeps elegant and aesthetically perfect proofs.
Kelly’s proof, which was declared by Erdős to be “in the Book,” was actu-
ally published by Donald Coxeter in the American Mathematical Monthly
in 1948 (this is a good example of how easily the archival record is often
obscured). A marvellous eponymous book is [4]. It is chock full of proofs
that are or should be in the book and, for example, gives six proofs of the
infinitude of primes.

Proof Sketch. Let S be the given set of points. Consider the collection
C of pairs (L, p), where L is a line through (at least two distinct) points
in S and where p is a point in S not on L. Then C is nonempty and
contains only finitely many such pairs. Among those, pick (L, p) such that
the distance from p to L is minimal. We claim that L harbors exactly two
points from S.

Assume not, then, L contains 3 or more points. In Figure 1.3, L is
represented as the horizontal line. Let q be the projection of p onto L. In
Figure 1.3, we drew 3 points of S on L. Label these points a, b, c. (Two
must be on one side of q.) Consider b and draw the line L′ through p and
either a or c, whichever line is closer to b. In Figure 1.3, L′ is the slanted
line. Then (L′, b) belongs to C and the distance from b to L′ is strictly
smaller than the distance from p to L. But this contradicts the choice of
(L, p). �

As with the visual proof of the irrationality of
√

2, which we will give in
Section 2.9, we see forcibly the power of the right minimal configuration.

Dirac conjectured that every sufficiently large set of n noncollinear
points contains at least n/2 proper (or elementary) lines through exactly
two points.
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Sylvester

Figure 1.3. Kelly’s 1948 “Proof from the Book.”

By contrast,

The Desmic configuration, discovered by Stephanos in 1890, is [· · · ] a
configuration spanning 3-space, consisting of three tetrads of points,
each two of the tetrads being in perspective from the four points of
the third tetrad. This means that any line intersecting two of the
tetrads also intersects the third. [81]

It is conjectured that in many senses this configuration (built from the
corners of the cube and a point at infinity) is unique [81]. One can view the
Desmic configuration as showing that the Sylvester-Gallai theorem “fails
in three dimensions.”

Sylvester had a most colorful and somewhat difficult life which included
a seminal role in the founding of Johns Hopkins University, and ended as
the first Jewish Chair in Oxford. Educated in Cambridge, he could not
graduate until 1871, when theological tests were finally abolished. This is
engagingly described in Oxford Figures [138].

Along this line, readers may be interested in Figures 1.4 and 1.5, which
are taken from Part VII of a 19th century experimental geometry book by
the French educator Paul Bert. The intention was to make school geometry
more intuitive and empirical, quite far from Euclid’s Elements.
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Figure 1.4. Paul Bert’s 1886 experimental geometry text, pages 66–67.

Figure 1.5. Paul Bert’s text, pages 68–69.
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Figure 1.6. Polya’s illustration of the change solution.

1.6.1 On Picture-Writing

George Polya, in an engaging eponymous American Mathematical Monthly
article, provides three compelling examples of converting pictorial represen-
tations of problems into generating function solutions [233]:

1. In how many ways can you make change for a dollar?

This leads to the (US currency) generating function

∞∑
k=1

Pkx
k =

1
(1 − x1)(1 − x5)(1 − x10)(1 − x25)(1 − x50)

,

which one can easily expand using a Mathematica command,

Series[1/((1-x)*(1-x^5)*(1-x^10)*(1-x^25)*(1-x^50)), {x, 0, 100}]

to obtain P100 = 292 (242 for Canadian currency, which lacks a 50
cent piece). Polya’s illustration is shown in Figure 1.6.

2. Dissect a polygon with n sides into n− 2 triangles by n− 3 diagonals
and compute Dn, the number of different dissections of this kind.

This leads to the fact that the generating function for D3 = 1, D4 =
2, D5 = 5, D6 = 14, D7 = 42, . . .

D(x) =
∞∑

k=1

Dkx
k
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satisfies

D(x) = x [1 +D(x)]2 ,

whose solution is therefore

D(x) =
1 − 2x−√

1 − 4x
x

,

and Dn+2 turns out to be the n-th Catalan number
(
2n
n

)
/(n+ 1).

3. Compute Tn, the number of different (rooted) trees with n knots.

The generating function of the Tn becomes a remarkable result due
to Cayley:

T (x) =
∞∑

k=1

Tkx
k = x

∞∏
k=1

(1 − xk)−Tk , (1.4)

where remarkably the product and the sum share their coefficients.
This produces a recursion for Tn in terms of T1, T2, · · · , Tn−1, which
starts: T1 = 1, T2 = 1, T3 = 2, T4 = 4, T5 = 9, T6 = 20, · · · We shall
revisit such products in Section 4.2 of the second volume of this work.

In each case, Polya’s main message is that one can usefully draw pictures
of the component elements—(a) in pennies, nickels, dimes and quarters
(plus loonies in Canada and half dollars in the US), (b) in triangles and (c)
in the simplest trees (with the fewest knots).

1.7 Sample Problems of Experimental Math

In the January 2002 issue of SIAM News, Nick Trefethen of Oxford Uni-
versity presented ten diverse problems used in teaching graduate numerical
analysis students at Oxford University, the answer to each being a certain
real number. Readers were challenged to compute ten digits of each an-
swer, with a $100 prize to the best entrant. Trefethen wrote, “If anyone
gets 50 digits in total, I will be impressed.”

Success in solving these problems requires a broad knowledge of mathe-
matics and numerical analysis, together with significant computational ef-
fort to obtain solutions and ensure correctness of the results. The strengths
and limitations of Maple, Mathematica, Matlab and other software tools
are strikingly revealed in these exercises.
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A total of 94 teams, representing 25 different nations, submitted results.
Twenty of these teams received a full 100 points (10 correct digits for each
problem). Since these results were much better than expected, an initially
anonymous donor, William J. Browning, provided funds for a $100 award
to each team. The present authors and Greg Fee entered, but failed to
qualify for an award. The ten problems are:

1. What is limε→0

∫ 1

ε x
−1 cos(x−1 log x) dx?

2. A photon moving at speed 1 in the x-y plane starts at t = 0 at
(x, y) = (1/2, 1/10) heading due east. Around every integer lattice
point (i, j) in the plane, a circular mirror of radius 1/3 has been
erected. How far from the origin is the photon at t = 10?

3. The infinite matrix A with entries a11 = 1, a12 = 1/2, a21 = 1/3,
a13 = 1/4, a22 = 1/5, a31 = 1/6, etc., is a bounded operator on �2.
What is ||A||?

4. What is the global minimum of the function exp(sin(50x))+sin(60ey)+
sin(70 sinx) + sin(sin(80y)) − sin(10(x+ y)) + (x2 + y2)/4?

5. Let f(z) = 1/Γ(z), where Γ(z) is the gamma function, and let p(z)
be the cubic polynomial that best approximates f(z) on the unit disk
in the supremum norm || · ||∞. What is ||f − p||∞?

6. A flea starts at (0, 0) on the infinite 2-D integer lattice and executes
a biased random walk: At each step it hops north or south with
probability 1/4, east with probability 1/4 + ε, and west with proba-
bility 1/4−ε. The probability that the flea returns to (0, 0) sometime
during its wanderings is 1/2. What is ε?

7. Let A be the 20000 × 20000 matrix whose entries are zero every-
where except for the primes 2, 3, 5, 7, · · · , 224737 along the main di-
agonal and the number 1 in all the positions aij with |i − j| =
1, 2, 4, 8, · · · , 16384. What is the (1, 1) entry of A−1.

8. A square plate [−1, 1]× [−1, 1] is at temperature u = 0. At time t = 0
the temperature is increased to u = 5 along one of the four sides while
being held at u = 0 along the other three sides, and heat then flows
into the plate according to ut = Δu. When does the temperature
reach u = 1 at the center of the plate?

9. The integral I(α) =
∫ 2

0
[2 + sin(10α)]xα sin(α/(2− x)) dx depends on

the parameter α. What is the value α ∈ [0, 5] at which I(α) achieves
its maximum?
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10. A particle at the center of a 10 × 1 rectangle undergoes Brownian
motion (i.e., 2-D random walk with infinitesimal step lengths) till it
hits the boundary. What is the probability that it hits at one of the
ends rather than at one of the sides?

These problems and their solutions are described in detail in a forth-
coming book [63]. Answers correct to 40 digits are available at the URL
http://web.comlab.ox.ac.uk/oucl/work/nick.trefethen/hundred.html.

Inspired by this set of problems, the present authors have assembled
a similar set of problems, similar in style to the SIAM/Oxford 100 Digit
Challenge, but emphasizing the flavor of experimental mathematics. As in
the above problem set, a real constant is defined in each case. The objec-
tive here is to produce at least 100 correct digits, so that a total of 1000
points can be earned. Several of these can be solved by fairly direct appli-
cation of numerical computation, but others require mathematical analysis
and reduction before computation can be done in reasonable time. Each
problem provides an “extra credit” question, for which an additional 100
points may be earned. The maximum total score is thus 2000 points.

In each case, these problems can be solved with techniques presented
either in this volume or in the companion volume. Answers and discussion
of techniques for solution are given in [32].

1. Compute the value of r for which the chaotic iteration xn+1 = rxn(1−
xn), starting with some x0 ∈ (0, 1), exhibits a bifurcation between 4-
way periodicity and 8-way periodicity.

Extra credit: This constant is an algebraic number of degree not
exceeding 20. Find the minimal polynomial with integer coefficients
that it satisfies.

2. Evaluate ∑
(m,n,p) �=0

(−1)m+n+p√
m2 + n2 + p2

, (1.5)

where convergence means the limit of sums over the integer lattice
points enclosed in increasingly large cubes surrounding the origin.

Extra credit: Identify this constant.

3. Evaluate the sum

∞∑
k=1

(
1− 1

2
+ · · ·+ (−1)k+1 1

k

)2

(k + 1)−3.
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Extra credit: Evaluate this constant as a multiterm expression in-
volving well-known mathematical constants. This expression has
seven terms, and involves π, log 2, ζ(3), and Li5(1/2), where Lin(x) =∑

k>0 x
n/nk is the polylogarithm of order n. For n = 2, 3 these are

also called the dilogarithm and trilogarithm respectively.

Hint: The expression is “homogenous,” in the sense that each term
has the same total “degree.” The degrees of π and log 2 are each 1,
the degree of ζ(3) is 3, the degree of Li5(1/2) is 5, and the degree of
αn is n times the degree of α.

4. Evaluate

∞∏
k=1

[
1 +

1
k(k + 2)

]log2 k

=
∞∏

k=1

k[log2(1+ 1
k(k+2) )].

Extra credit: Evaluate this constant in terms of a less-well-known
mathematical constant.

5. Given a, b, η > 0, define

Rη(a, b) =
a

η +
b2

η +
4a2

η +
9b2

η + ...

.

Calculate R1(2, 2).

Extra credit: Evaluate this constant as a two-term expression involv-
ing a well-known mathematical constant.

6. Calculate the expected distance between two random points on dif-
ferent sides of the unit square.

Hint: This can be expressed in terms of integrals as

2
3

∫ 1

0

∫ 1

0

√
x2 + y2 dx dy +

1
3

∫ 1

0

∫ 1

0

√
1 + (y − u)2 du dy.

Extra credit: Express this constant as a three-term expression involv-
ing algebraic constants and an evaluation of the natural logarithm
with an algebraic argument.
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7. Calculate the expected distance between two random points on dif-
ferent faces of the unit cube. Hint: This can be expressed in terms
of integrals as

4
5

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

√
x2 + y2 + (z − w)2 dw dx dy dz

+
1
5

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

√
1 + (y − u)2 + (z − w)2 du dw dy dz.

Extra credit: Express this constant as a six-term expression involving
algebraic constants and two evaluations of the natural logarithm with
algebraic arguments.

8. Calculate ∫ ∞

0

cos(2x)
∞∏

n=1

cos
(x
n

)
dx.

Extra credit: Express this constant as an analytic expression.

Hint: It is not what it first appears to be.

9. Calculate ∑
i>j>k>l>0

1
i3jk3l

.

Extra credit: Express this constant as a single-term expression in-
volving a well-known mathematical constant.

10. Evaluate

W1 =
∫ π

−π

∫ π

−π

∫ π

−π

1
3 − cos (x) − cos (y) − cos (z)

dx dy dz.

Extra credit: Express this constant in terms of the Gamma function.

1.8 Internet-Based Mathematical Resources

We list here some Internet-based resources that we have found useful in our
research. We have selected those that we believe will be fairly permanent,
but some may become defunct with the passage of time. An updated list
of these URLs, with links, can be found at http://www.experimentalmath
.info.
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Institutional Sites

1. American Institute of Mathematics:
http://www.aimath.org

2. The American Mathematical Society’s Mathematics of Computation
journal:
http://www.ams.org/mcom

3. The Association for Computing Machinery’s Journal of Experimental
Algorithms:
http://www.jea.acm.org

4. Canadian Mathematical Society’s KaBoL site:
http://camel.math.ca/Kabol

5. Clay Mathematics Institute:
http://www.claymath.org

6. Experimental Mathematics Journal:
http://www.expmath.org

7. European Mathematical Society:
http://elib.uni-osnabrueck.de

8. Mathematical Association of America Online:
http://www.maa.org

9. Math-Net (International Mathematical Union):
http://www.Math-Net.org

10. MathSciNet:
http://e-math.ams.org/mathscinet

11. Society for Industrial and Applied Mathematics:
http://www.siam.org

Commercial Sites

1. Apple Computer’s Advanced Computation Group research site:
http://developer.apple.com/hardware/ve/acgresearch.html

2. The Cinderella interactive geometry site:
http://www.cinderella.de

3. Integrals.com (operated by Wolfram Research):
http://www.integrals.com
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4. Maplesoft (Maple):
http://www.maplesoft.com
http://www.mapleapps.com

5. MathResources interactive dictionaries:
http://www.mathresources.com

6. Mathworks (Matlab):
http://www.mathworks.com

7. MathPro Press (online index of math problems and mathematics
problem books):
http://www.mathpropress.com

8. The Weisstein-Wolfram Mathworld site:
http://mathworld.wolfram.com

9. The Weisstein-Wolfram Experimental Mathematics site:
http://mathworld.wolfram.com/ExperimentalMathematics.html

10. Wolfram Research, Inc. (Mathematica):
http://www.wolfram.com

Noncommercial Software and Tools

1. The 3D-XplorMath Consortium’s math visualization tool:
http://rsp.math.brandeis.edu/3D-XplorMath/TopLevel/gallery.html

2. Alf-Christian Achilles’ computer science bibliography:
http://liinwww.ira.uka.de/bibliography

3. The Algorithm Project software library:
http://algo.inria.fr/libraries/software.html

4. The ArXiv mathematics article database:
http://www.arxiv.org

5. The Boyer-Moore theorem prover:
http://www.cs.utexas.edu/users/moore/best-ideas/nqthm

6. The CECM Euler-zeta computation tool:
http://oldweb.cecm.sfu.ca/projects/ezface+

7. The CECM integer relation tool:
http://oldweb.cecm.sfu.ca/projects/IntegerRelations
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8. The CECM inverse symbolic calculator (ISC):
http://oldweb.cecm.sfu.ca/projects/ISC

9. Richard Crandall’s integer computation software:
http://www.perfsci.com

10. The Dalhousie University inverse symbolic calculator version 2 (ISC2):
http://ddrive.cs.dal.ca/∼isc

11. The FFTW site (FFT software):
http://www.fftw.org

12. The FIZ-Karlsruhe journal and abstract database:
http://www.zentralblatt-math.org/portal/en

13. The GNU high-precision arithmetic library:
http://www.gnu.org/software/gmp/gmp.html

14. The LBNL double-double, quad-double, and arbitrary precision com-
putation software:
http://crd.lbl.gov/∼dhbailey/mpdist

15. The LBNL Experimental Mathematician’s Toolkit:
http://crd.lbl.gov/∼dhbailey/mpdist

16. The LBNL PiSearch facility (searches for names or hex digit se-
quences in the first several billion binary digits of π):
http://pisearch.lbl.gov

17. The LinBox symbolic linear algebra software library:
http://www.linalg.org/linbox-html/index.html

18. The Magma computational algebra system:
http://magma.maths.usyd.edu.au/magma

19. The Netlib software repository (linear algebra and other math soft-
ware):
http://www.netlib.org

20. PSU’s CiteSeer database:
http://citeseer.ist.psu.edu

21. The Research Institute for Symbolic Computation (RISC) website:
http://www.risc.uni-linz.ac.at/research/combinat/software

22. Neil Sloane’s online dictionary of integer sequences:
http://www.research.att.com/∼njas/sequences
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Other Sites of Interest

1. Abramowitz and Stegun’s Handbook of Mathematical Functions (67
Mbyte; scanned copy courtesy Simon Plouffe; not subject to copy-
right):
http://www.experimentalmath.info/othersites/Abramowitz&Stegun
.pdf

2. David Anderson’s decimal pi search facility:
http://www.angio.net/pi/piquery

3. David Bailey’s pi pages:
http://crd.lbl.gov/∼dhbailey/pi

4. Lee Borrell’s “Absolute Certainty?” site:
http://www.fortunecity.com/emachines/e11/86/certain.html

5. Jonathan Borwein’s π pages:
http://oldweb.cecm.sfu.ca/personal/jborwein/pi cover.html

6. The CECM π recital site (recites π in numerous languages):
http://oldweb.cecm.sfu.ca/pi/yapPing.html

7. Gregory Chaitin’s site on algorithmic information theory:
http://www.cs.umaine.edu/∼chaitin

8. Ivan Cnop’s Exploot site:
http://we.vub.ac.be/exploot/summary.html

9. The de Smit-Lenstra site on the mathematics of Escher’s “Print
Gallery”:
http://escherdroste.math.leidenuniv.nl

10. Stewart Dickson’s math art site:
http://emsh.calarts.edu/∼mathart

11. The electronic geometry site:
http://www.eg-models.de

12. The Embree-Trefethen-Wright pseudospectra and eigenproblem site:
http://web.comlab.ox.ac.uk/projects/pseudospectra

13. Helaman Ferguson’s mathematical sculpture site:
http://www.helasculpt.com

14. Steven Finch’s mathematical constant site:
http://pauillac.inria.fr/algo/bsolve/constant/constant.html
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15. The Geometry Analysis Numerics Graphics (GANG) site:
http://www.gang.umass.edu

16. Xavier Gourdon and Pascal Sebah’s site for famous math constants:
http://numbers.computation.free.fr/Constants/constants.html

17. Andrew Granville’s Pascal triangle site:
http://www.cecm.sfu.ca/organics/papers/granville/support
/pascalform.html

18. David Griffeath’s cellular automata site:
http://psoup.math.wisc.edu

19. Jerry Grossman’s Erdős number site:
http://www.oakland.edu/enp/

20. Thomas Hales’ Kepler problem site:
http://www.math.pitt.edu/∼thales/kepler98

21. David Joyce’s site (Java implementation of Euclid’s Elements, and
the Mandelbrot and Julia set explorer):
http://aleph0.clarku.edu/∼djoyce

22. Yasumasa Kanada’s π site:
http://www.super-computing.org

23. Leonard Lewin’s listing of polylogarithm formulas (7 Mbyte; taken
from Polylogarithms and Associated Functions, with permission):
http://www.experimentalmath.info/othersites/Lewin-polylog.pdf

24. The mathpages.com site (various interesting notes about mathemat-
ics):
http://www.mathpages.com

25. The Mersenne prime site:
http://www.mersenne.org

26. National Institute of Standards and Technology’s Digital Library of
Mathematical Functions:
http://dlmf.nist.gov

27. The Organic Mathematics Project site:
http://www.cecm.sfu.ca/organics

28. The Piworld site (features artwork based on π):
http://www.piworld.de
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29. George Reese’s Buffon needle site:
http://www.mste.uiuc.edu/reese/buffon/buffon.html

30. RSA Security’s factorization challenge site:
http://www.rsasecurity.com/rsalabs/node.asp?id=2094

31. Saint Andrews College’s history of mathematics site (and curve re-
source):
http://www-gap.dcs.st-and.ac.uk/∼history

32. The Science Lab’s mathematics site:
http://www.the-science-lab.com/Math

33. Rob Scharein’s KnotPlot research and development site:
http://www.colab.sfu.ca/KnotPlot

34. Angela Vierling’s mathematical models site:
http://math.bu.edu/people/angelav/projects/models

35. Jeff Weeks’ topology and geometry site:
http://www.geometrygames.org

36. Figure 1.7 shows a Sierpinski cube plotted in JavaView
http://oldweb.cecm.sfu.ca/news/coolstuff/JVL/htm/gallery.htm

Figure 1.7. The Sierpinski cube.
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1.9 Commentary and Additional Examples

1. The old and the new. David Joyce’s Java implementation of Eu-
clid’s Elements and his Mandelbrot and Julia Set Explorer show
what technology can offer, for old and new material, when used
appropriately:

http://aleph0.clarku.edu/∼djoyce/java/elements/elements.html and
http://aleph0.clarku.edu/∼djoyce/julia/explorer.html.

2. Dedekind’s preference for mental constructs is also apparent
in his development of the real numbers [129]:

Many authors who adopted Dedekind’s basic ideas preferred not
to follow him in defining the real numbers as creations of the
mind corresponding to cuts in the system of rational numbers.
. . . Bertrand Russell emphasised the advantage of defining the
real numbers simply as . . . segments of the rationals. . . . But
Dedekind had his reasons . . . for defining the real numbers as
he did. When Heinrich Weber expressed his opinion in a letter
to Dedekind that an irrational number should be taken to be
the cut, instead of something new which is created in the mind
and supposed to correspond to the cut, Dedekind replied “We
have the right to grant ourselves such a creative power, and
besides it is much more appropriate to proceed thus because
of the similarity of all numbers. The rational numbers surely
also produce cuts, but I will certainly not give out the rational
number as identical with the cut generated by it; and also by
introduction of the irrational numbers, one will often speak of
cut-phenomena with such expressions, granting them such at-
tributes, which applied to the numbers themselves would sound
quite strange.” [155, page 224]

3. Hardy’s “apology.” G. H. Hardy (1877–1947), the leading British
analyst of the first half of the 20th century, wrote compellingly in
defense of pure mathematics. In his essay, A Mathematician’s Apol-
ogy [161], he noted that

All physicists and a good many quite respectable mathemati-
cians are contemptuous about proof.

Hardy’s Apology is also a spirited defense of beauty over utility:

Beauty is the first test. There is no permanent place in the
world for ugly mathematics.



�

�

�

�

�

�

�

�

34 1. What is Experimental Mathematics?

Along this line, many have noted his quote,

Real mathematics . . . is almost wholly “useless.”

This has been overplayed and is now very dated, given the importance
of cryptography, data compression and other applications of algebra
and number theory that have arisen in recent years. But Hardy
does acknowledge that if number theory could be employed for any
“practical and obviously honourable purpose,” then “neither Gauss
nor any other mathematician would have been so foolish as to decry
or regret such applications.”

4. Ramsey’s theorem. Ramsey’s theorem asserts that given positive
integers k and l there is an integer R(k, l) so that any graph with
R(k, l) vertices either possesses a clique (complete subgraph) with k
vertices or an independent set with l vertices. R(3) = R(3, 3) = 6
and R(4) = R(4, 4) = 18. This is often described as saying that at
a six-person dinner party either there are three friends or there are
three strangers. Such numbers R(k, 1) are very hard to compute.

Indeed, Paul Erdős suggested that if an alien demanded we give it
the value of R(5) in order to save the Earth, we should set all math-
ematicians and computers to calculating the value. But if the alien
demanded R(6), then humanity should attempt to destroy it before
it destroyed us.

The following is from the site:

http://www.math.uchicago.edu/∼mileti/museum/ramsey.html

One version of Ramsey’s Theorem states that no matter which
number k you choose, you can find a number n such that given
any arrangement of n pegs, [connected by red or green string]
there must exist a monochromatic collection of k pegs. We will
denote the smallest such n that works for a given k by R(k).
The above results can be stated more succinctly by saying that
R(3) = 6 and R(4) = 18. It is easy to see that R(1) = 1
(given only 1 peg, there are no pieces of string, so it forms a
monochromatic collection for vacuous reasons) and R(2) = 2 (If
you only have 2 pegs, there is only piece of string, so the 2 pegs
form a monochromatic collection).

Perhaps surprisingly, nobody knows the value of R(k) for any k
larger than 4. The best results currently known state that R(5)
is somewhere between 43 and 49 (inclusive) and R(6) is some-
where between 102 and 165. You might wonder why, given the
incredible computing power at our disposal, we can not simply
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search through all arrangements of string for 43 pegs through
49 pegs to find the actual value of R(5). However, one can
calculate that there are 2903 (a number that has 272 decimal
digits!) ways to arrange red and green string among 43 pegs,
which is a number beyond ordinary comprehension (scientists
estimate that there are about 80 digits in the number of elec-
trons in the universe). By using symmetry, one can drastically
lower the number of such arrangements a computer would have
to look at, but even if we only had to examine 1 out of every
1 trillion configurations, we would still be left with over 2864

arrangements (a number that has 261 digits!). Estimating the
values of R(k) requires mathematical ingenuity in addition to
brute force calculations.

5. Gödel’s theorem and complexity. While there are still no “or-
dinary” Gödel statements (that is, true but unprovable), the Paris-
Harrington theorem comes close. It is “[a]n arithmetically expressible
true statement from finitary combinatorics . . . that is not provable in
Peano arithmetic. The statement S in question is the strengthening
of the finite Ramsey theorem by requiring the homogeneous set H
to be ‘relatively large,’ i.e., card H ≥ minH .” (Math Reviews). See
also http://www.cs.utexas.edu/users/moore/best-ideas/nqthm and
http://www.fortunecity.com/emachines/e11/86/certain.html.

6. Goodstein’s theorem. Another very striking example is that of
Goodstein sequences [261]. Consider writing a number base b. Doing
the same for each of the exponents in the resulting representations,
until the process stops, yields the hereditary base b representation of
n. For example, the hereditary base 2 representation of 266 is

266 = 222+1
+ 22+1 + 21.

Base change. Let Bb(n) be the natural number obtained on replac-
ing each b by b+ 1 in the hereditary base b representation of n. For
example, “bumping the base” from 2 to 3 above gives

B2(266) = 333+1
+ 33+1 + 3.

Consider a sequence of integers obtained by repeatedly applying the
operation: Bump the base and subtract one from the result . Itera-
tively performing this procedure for 266 yields
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2660 = 266
2661 = 333+1

+ 33+1 + 2
2662 = 444+1

+ 44+1 + 1
2663 = 555+1

+ 55+1

2664 = 666+1
+ 66+1 − 1

= 666+1
+ 5 · 66 + 5 · 65 + · · · + 5 · 6 + 5

2665 = 777+1
+ 5 · 77 + 5 · 75 + · · · + 5 · 7 + 4

· · ·

Done generally, this determines the Goodstein sequence starting at n.
That is, we recursively define nonnegative integers n0 = n, n1, · · · , nk, . . .
by

nk+1 = Bk+2(nk) − 1,

if nk > 0 and nk+1 = 0 otherwise. We initially obtain very rapid
growth: 2668 ≈ 101011

and 4k first reaches 0 for k = 3
(
2402653211 − 1

) ≈
10121210695.

However, Goodstein in 1944 proved that every Goodstein sequence
converges to 0.

Remarkably, in 1982 Paris and Kirby showed that Goodstein’s the-
orem is not provable in ordinary Peano arithmetic, despite being a
fairly ordinary sounding number-theoretic fact.

There are quite natural, closely related games on finite trees such as
“Hercules and the Hydra” in which the fact that Hercules always has
a winning strategy to defeat a many-headed hydra is independent of
arithmetic. Such results show that even in a seemingly computational
framework, we may bump into Gödel’s theorem [189].

7. Hales’ computer-assisted proof of Kepler’s conjecture. In
1611, Kepler described the stacking of equal-sized spheres into the
familiar arrangement we see for oranges in the grocery store. He
asserted that this packing is the tightest possible. This assertion is
now known as the Kepler conjecture, and has persisted for centuries
without rigorous proof. Hilbert included the Kepler conjecture in his
famous list of unsolved problems in 1900. In 1994, Thomas Hales, now
at the University of Pittsburgh, proposed a five-step program that
would result in a proof: (a) treat maps that only have triangular faces;
(b) show that the face-centered cubic and hexagonal-close packings
are local maxima in the strong sense that they have a higher score
than any Delaunay star with the same graph; (c) treat maps that
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contain only triangular and quadrilateral faces (except the pentagonal
prism); (d) treat maps that contain something other than a triangle
or quadrilateral face; (e) treat pentagonal prisms.

In 1998, Hales announced that the program was now complete, with
Samuel Ferguson (son of Helaman Ferguson) completing the crucial
fifth step. This project involved extensive computation, using an in-
terval arithmetic package, a graph generator, and Mathematica. The
computer files containing the source code and computational results
occupy more than three Gbytes of disk space. Additional details, in-
cluding papers, are available at the URL http://www.math.pitt.edu/
∼thales/kepler98.

The Annals of Mathematics originally decided to publish Hales’ paper
with a cautionary note that although a team of referees is “99% cer-
tain” that the computer-assisted proof is sound, they have not been
able to verify every detail [272]. But the paper eventually appeared
without the disclaimer.

8. “That’s Mathematics”( c© Tom Lehrer 1995, used by permission)
in song.

1. Counting sheep
When you’re trying to sleep,
Being fair
When there’s something to share,
Being neat
When you’re folding a sheet,
That’s mathematics!

3. How much gold can you hold in
an elephant’s ear?
When it’s noon on the moon,
then what time is it here?
If you could count for a year,
would you get to infinity,
Or somewhere in that vicinity?

2. When a ball
Bounces off of a wall,
When you cook
From a recipe book,
When you know
How much money you owe,
That’s mathematics!

4. When you choose
How much postage to use,
When you know
What’s the chance it will snow,
When you bet
And you end up in debt,
Oh try as you may,
You just can’t get away
From mathematics!
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5. Andrew Wiles gently smiles,
Does his thing, and voila!
Q.E.D., we agree,
And we all shout hurrah!
As he confirms what Fermat
Jotted down in that margin,
Which could’ve used some enlargin’.

6. Tap your feet,
Keepin’ time to a beat
Of a song
While you’re singing along,
Harmonize
With the rest of the guys,
Yes, try as you may,
You just can’t get away
From mathematics!

9. Mathematics of Escher’s “Print Galley.” In Maurits C. Es-
cher’s 1956 painting “Prentententoonstelling,” a young man is view-
ing a painting in an exhibition gallery. As his eyes follow the water-
front buildings shown in this painting around in a circle, he discovers
among these buildings the very gallery he is standing in. Bart de Smit
and Hendrik Lenstra have shown that the painting can be viewed as
drawn on an elliptic curve over the complex plane, and if contin-
ued would repeat itself, with each iteration reduced in size by a fac-
tor of 22.5836845286 . . . and rotated clockwise by 157.6255960832 . . .
degrees [127]. This research received feature coverage in the New
York Times [246]. Details are available at http://escherdroste.math
.leidenuniv.nl.

10. Techniques for putting the Internet to work.

As a teenager in early 19th Century Britain, Michael Faraday
struggled to overcome a lack of formal education by reading
(among other things) self-help books that were popular at the
time. It was from one such book (Improvement of the Mind,
authored by Isaac Watts) that Faraday learned four ways to
become smarter: (1) attend lectures, (2) take notes, (3) cor-
respond with people of similar interests, (4) join a discussion
group. (Scott Butner, ChemAlliance Staff)

11. Gravitational boosting. “The Voyager Neptune Planetary Guide”
(JPL Publication 89–24) has an excellent description of Michael Mi-
novitch’s computational and unexpected discovery of gravitational
boosting (otherwise known as slingshot magic) at the Jet Propulsion
Laboratory in 1961.

The article starts by quoting Arthur C. Clarke: “Any sufficiently ad-
vanced technology is indistinguishable from magic.” Until Minovitch
discovered that the so-called Hohmann transfer ellipses were not the
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minimum energy way of getting to the outer planets, “most plane-
tary mission designers considered the gravity field of a target planet
to be somewhat of a nuisance, to be cancelled out, usually by onboard
Rocket thrust.” For example, without a gravitational boost from the
orbits of Saturn, Jupiter and Uranus, the Earth-to-Neptune Voyager
mission (achieved in 1989 in little more than a decade) would have
taken more than 30 years!

12. John Maynard Keynes. Two excerpts follow from Keynes the
Man, written on the 50th anniversary of the great economist’s death,
by Sir Alec Cairncross, in the Economist, April 20, 1996:

Keynes distrusted intellectual rigour of the Ricardian type as
likely to get in the way of original thinking and saw that it
was not uncommon to hit on a valid conclusion before finding
a logical path to it. . . . “I don’t really start,” he said, “until I
get my proofs back from the printer. Then I can begin serious
writing.”

Keynes’ undergraduate training was in mathematics at Cambridge,
where he excelled as at most things he tried. He was an avid col-
lector of rare books and manuscripts, Newton’s included. Keynes
and Hardy were virtually the only scientists who intersected with the
Bloomsbury group.

13. A world of doughnuts and spheres. As this book was going to
press, the Russian mathematician Grigori Perelman was lecturing on
a proof of the Poincaré Conjecture. His potentially ground-breaking
work, if found to be valid, may earn him a share of a $1 million
prize for solving one of the Clay Mathematics Institute’s “Millennium
Prize Problems.” The Clay Institute’s web site describes the Poincaré
Conjecture in these terms:

If we stretch a rubber band around the surface of an apple,
then we can shrink it down to a point by moving it slowly,
without tearing it and without allowing it to leave the surface.
On the other hand, if we imagine that the same rubber band has
somehow been stretched in the appropriate direction around a
doughnut, then there is no way of shrinking it to a point without
breaking either the rubber band or the doughnut [Figure 1.8].
We say the surface of the apple is “simply connected,” but that
the surface of the doughnut is not. Poincaré, almost a hundred
years ago, knew that a two dimensional sphere is essentially
characterized by this property of simple connectivity, and asked
the corresponding question for the three dimensional sphere (the
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Figure 1.8. The torus and the two-sphere.

set of points in four dimensional space at unit distance from the
origin). This question turned out to be extraordinarily difficult,
and mathematicians have been struggling with it ever since.

Peter Sarnak, a well-known Princeton University mathematician, de-
scribed Perelman’s work in these words: “He’s not facing Poincaré
directly, he’s just trying to do [a] grander scheme.” The Poincaré re-
sult is merely “a million dollar afterthought.” Prof. Sun-Yung Alice
Chang observed that the Poincaré Conjecture is “in the same scale as
Fermat’s Last Theorem. [Proving] it puts you in the history of math-
ematics; the dream of every mathematician” [97]. Along this line, a
New York Times report [177] observed, “That grown men and women
can make a living pondering such matters is a sign that civilization,
as fragile as it may sometimes seem, remains intact.”

14. The number partitioning problem. Given a set of n nonnegative
integers a1, a2, · · · , an, the number partitioning problem is to divide
this set into two subsets such that the sums of the numbers in each
subset are as nearly equal as possible. Brian Hayes calls this “the
easiest hard problem” [166]. It is well known to be NP -complete.
Nonetheless, some reasonably effective heuristic algorithms are known
for solution. Hayes provides the following analogy for one of these:

One of the cherished customs of childhood is choosing up sides
for a ball game. Where I grew up, we did it this way: The
two chief bullies of the neighborhood would appoint themselves
captains of the opposing teams, and then they would take turns
picking other players. On each round, a captain would choose
the most capable (or, toward the end, the least inept) player
from the pool of remaining candidates, until everyone present
had been assigned to one side or the other. The aim of this ritual
was to produce two evenly matched teams and, along the way,
to remind each of us of our precise ranking in the neighborhood
pecking order. It usually worked.
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None of us in those days—not the hopefuls waiting for our
name to be called, and certainly not the two thick-necked team
leaders—recognized that our scheme for choosing sides imple-
ments a greedy heuristic for the balanced number partition-
ing problem. And we had no idea that this problem is NP-
complete—that finding the optimum team rosters is certifiably
hard. We just wanted to get on with the game.

Solutions to this problem exhibit a curious experimental phenomenon:
When n is smaller than the number of bits needed to encode the ai,
the computational cost grows exponentially with n. When n is larger
than this value, the computational cost actually decreases, then levels
off, growing only linearly with n [218].

15. Hersh’s humanist philosophy of mathematics. However hard
mathematical paradigm shifts are to accept and whatever the result of
these tides, mathematics is and will remain a uniquely human under-
taking. Indeed, Reuben Hersh’s arguments for a humanist philosophy
of mathematics [168, 169], as paraphrased below, become even more
convincing in our experimental setting:

1. Mathematics is human. It is part of and fits into human cul-
ture. It does not match Frege’s concept of an abstract, timeless,
tenseless, objective reality.

2. Mathematical knowledge is fallible. As in science, mathe-
matics can advance by making mistakes and then correcting or
even re-correcting them. The “fallibilism” of mathematics is
brilliantly argued in Lakatos’ Proofs and Refutations.

3. There are different versions of proof or rigor. Standards of
rigor can vary depending on time, place, and other things. The
use of computers in formal proofs, exemplified by the computer-
assisted proof of the four color theorem in 1977, is just one
example of an emerging nontraditional standard of rigor.

4. Empirical evidence, numerical experimentation and proba-
bilistic proof all can help us decide what to believe in mathemat-
ics. Aristotelian logic isn’t necessarily always the best way of
deciding.

5. Mathematical objects are a special variety of a social-cultural-
historical object. Contrary to the assertions of certain post-
modern detractors, mathematics cannot be dismissed as merely
a new form of literature or religion. Nevertheless, many math-
ematical objects can be seen as shared ideas, like Moby Dick in
literature, or the Immaculate Conception in religion.
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16. Quantum computer, n. a radical, still largely theoretical, alter-
native to the von neuman architecture of present digital com-
puters. First posited by Richard Feynman in 1982, and detailed by
Deutsch (1985) it relies on exploiting quantum mechanical proper-
ties of: quantization, entanglement, and especially quantum interfer-
ence. Interference means outcomes of quantum processes depend on
all possible histories of a process, and makes quantum computers ex-
ponentially more powerful than classical ones. Entanglement means
spatially separated, non-interacting, systems with prior interaction
may still have locally inaccessible information in common. This is
what makes quantum encryption possible. The field exploded after
1994 when Peter Shor discovered a quantum algorithm for efficient
factorization of very large numbers. Such methods would render
current coding theory and encryption techniques, such as rsa,
ineffective.

qubit, n. the quantum computer analogue of a computer
bit. It models the fact that atoms can be prepared in a super-
position of two different electronic states. Analogously, a quantum
two-state system—a quantum bit or qubit—can be prepared in a
superposition of its two logical states 0 and 1. Thus a qubit can si-
multaneously be both 0 and 1. (The above two definitions are taken
from [64].)

17. Mathematics, history and philosophy.

The history of mathematics, lacking the guidance of philosophy,
has become blind, while the philosophy of mathematics, turning
its back on the most intriguing phenomena in the history of
mathematics, has become empty. (Imre Lakatos, in Proofs and
Refutations [180,199])

18. Nature of mathematical genius. Mathematical genius appears
to be a rare but remarkable phenomenon. Is it a genetic? An emer-
gent accident of DNA? The result of good parenting? A stimulating
intellectual environment? The product of inspiring teachers?

(a) Recent interviews (Peter Liljedahl, SFU, unpublished PhD work)
with top-level mathematicians suggests that most do not read
very much, preferring to have results described to them, and put
a large emphasis on the role of chance—which always favors the
prepared mind.

(b) Mathematical genius is almost always noted early in life and
blossoms rather soon. As G. H. Hardy observed in his A Math-
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ematician’s Apology, “Mathematics, more than any other art
or science, is a young man’s game. . . . I do not know an in-
stance of a major mathematical advance initiated by a man past
fifty. . . . [Newton’s] “greatest ideas of all, fluxions and the law
of gravitation, came to him about 1666, when he was twenty-
four.” [161, pg. 78]. Needless to say, this does not bode well for
the present authors!

(c) Archimedes, Newton, Euler, Gauss, Ramanujan, and others all
seem to have had extraordinary facilities for numerical and al-
gebraic computation. Most of us know the story of Gauss who,
when his teacher asked the class to sum the integers from 1 to
100, quickly noted that this was 50 × 101 = 5050, and was the
only student to obtain the correct answer! Ramanujan’s genius
was his incredible skill at algebraic manipulation, a skill that
flowered largely in a vacuum of advanced training in modern
mathematics. The following is told of John von Neumann, who
made fundamental contributions to computer science, mathe-
matical economics, meteorology, probability theory, and quan-
tum mechanics in the early 20th century [211, pg. 10]:

Two bicyclists are 20 miles apart and head toward each other
at 10 miles per hour each. At the same time a fly traveling
at a steady 15 miles per hour starts from the front wheel of
the northbound bicycle. It lands on the front wheel of the
southbound bicycle, and then instantly turns around and
flies back, and after next landing instantly flies north again.
Question: What total distance did the fly cover before it
was crushed between the two front wheels?

The slow way of answering is to calculate the distance that
the fly travels on its first trip to the southbound front wheel,
then the distance it travels on its next trip to the north-
bound wheel, and finally to sum the infinite series so ob-
tained. . . . The short way is to note that the bicycles will
meet exactly an hour after starting, by which time the 15-
miles-per-hour fly must have covered 15 miles. When the
question was put to [John von Neumann], he danced and an-
swered immediately, “15 miles.” “Oh, you’ve heard the trick
before,” said the disappointed questioner. “What trick?”
asked the puzzled Johnny. “I simply summed the infinite
series.”
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(d) Others are known for their prodigious skill and boundless en-
ergy in ranging over a wide variety of very difficult topics with
ease. The following is told of Nobel-prize-winning mathemat-
ical physicist Richard Feynman, during a lecture at CalTech
[149,207]:

Feynman immediately rose, astonishingly, to say that such
objects would be gravitationally unstable. Furthermore, he
said that the instability followed from general relativity. The
claim required a calculation of the subtle countervailing ef-
fects of stellar forces and relativistic gravity. Fowler thought
he was talking through his hat. A colleague later discovered
that Feynman had done a hundred pages of work on the
problem years before. The Chicago astrophysicist Subrah-
manyan Chandrasekhar independently produced Feynman’s
result—it was part of the work for which he won a Nobel
Prize twenty years later. Feynman himself never bothered
to publish. Someone with a new idea always risked finding,
as one colleague said, “that Feynman had signed the guest
book and already left.”

John Maynard Keynes, who studied the original writings of Isaac
Newton while riding taxicabs between British treasury board
meetings, wrote this of Newton on the tricentenary of his birth
[186,207]:

His peculiar gift was the power of holding continuously in
his mind a purely mental problem until he had seen straight
through it. I fancy his pre-eminence is due to his muscles of
intuition being the strongest and most enduring with which
a man has ever been gifted. Anyone who has ever attempted
pure scientific or philosophical thought knows how one can
hold a problem momentarily in one’s mind and apply all
one’s powers of concentration to piercing through it, and
how it will dissolve and escape and you find that what you
are surveying is a blank. I believe that Newton could hold a
problem in his mind for hours and days and weeks until
it surrendered to him its secret. Then being a supreme
mathematical technician he could dress it up, how you will,
for purposes of exposition, but it was his intuition which was
pre-eminently extraordinary—“so happy in his conjectures,”
said de Morgan, “as to seem to know more than he could
possibly have any means of proving.”

(e) In a recent provocative essay, David Lykken explores the emer-
gence of genius. Here is his conclusion [207]:

Ericsson and Charness [137] are willing to acknowledge that
genetic differences in temperament and “preferred activity
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level” may determine which of us go for the gold but, curi-
ously, they cling to the assumption that individual genetic
differences in both physical and mental capacities are not
important, perhaps nonexistent. This would require us to
believe that . . . little Gauss’s ability to correct his father’s
arithmetic at three and confound his school master at ten re-
sulted, not from extraordinary mental hardware, but from
mental software acquired through self-directed practice in
an intellectually unstimulating environment.

Those of us who have studied MZ [monozygote, i.e., identi-
cal] twins reared apart from one another find these assump-
tions . . . incredible. We cannot believe that MZA twins
[monozygote twins reared apart] correlate .75 in IQ merely
because, in their separate environments, their similarities in
temperament led them to indulge in very similar amounts
of practice on very similar topics. . . .

I think we must agree with Ericsson, however, that works of
genius tend to be the product of minds enriched by years of
concentrated effort. Isaac Newton often became so caught
up in cerebration that he would forget to eat or sleep. Ed-
win Land, inventor of the instant Polaroid camera and of
a sophisticated computational theory of color vision, some-
times worked at his desk for 36 hours or more, unaware of
the passage of time until he felt faint on standing up. Simi-
lar stories were told of Edison. It does not follow, however,
that these were ordinary minds to begin with.

Edison, Feynman, Land, and Newton all from their boyhood
had intense curiosity, an enthusiasm or zeal for discovery
and understanding. Each of them was able to take seri-
ously hypotheses that others thought to be implausible (or
had not thought about at all). All four possessed a kind of
intellectual arrogance that permitted them to essay prodi-
gious tasks, to undertake to solve problems that most of
their contemporaries believed to be impossible. And each of
them had quite extraordinary powers of concentration. . . .

I think what lies at the heart of these mysteries is genetic,
probably emergenic. The configuration of traits of intel-
lect, mental energy, and temperament with which, during
the plague years of 1665–6, Isaac Newton revolutionized the
world of science were, I believe, the consequence of a genetic
lottery that occurred about nine months prior to his birth,
on Christmas day, in 1642.
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2 Experimental Mathematics
in Action

The purpose of computing is insight, not numbers.

– Richard Hamming, Numerical Methods for Scientists and
Engineers, 1962

In this chapter, we will present a few particularly engaging examples of
modern experimental mathematics in action. We invite those readers with
access to some of the computational tools we mention below to personally
try some of these examples—with some sense of realism.

2.1 Pascal’s Triangle

Although Blaise Pascal (1623–1662) is commonly credited with what is now
known as Pascal’s triangle, namely the array of integers such that row m
and column n has the value (

m

n

)
this well-known numerical scheme is actually much older. The earliest writ-
ten account may be in a 1303 Chinese book by Chu Shih-Chieh, entitled
Precious Mirror of the Four Elements, but even here, Pascal’s triangle is
called “The Old Method.” Thus it is at least 700 years old, and proba-
bly centuries older still. Given its simplicity and antiquity, it is natural to
expect that every conceivable aspect of this venerable scheme has been dis-
covered and studied at length. But even in such arenas, diligent researchers
can sometimes glean new insights.

Start with the familiar binomial coefficient,(
m

n

)
=

m!
n!(m− n)!

, (2.1)

and consider the remainders on division by 2. That is, set

F2(m,n) =
(
m

n

)
mod 2. (2.2)

47
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Let N2(m) be the number of 1s in the set (F2(m,n), 0 ≤ n ≤ m).
By means of an algebraic argument, it can be shown that N2(m) is

given by

N2(m) = 2B1(m), (2.3)

where B1(m) is the number of 1s in the binary representation of m [153].
But there is another proof of this fact that demonstrates the power of

visualization in experimental mathematics.
Pascal’s triangle has long been used as a tool to visualize the behavior of

the binomial coefficient function. For example, the combinatorial identity(
m

n

)
=
(
m− 1
n− 1

)
+
(
m− 1
n

)
is equivalent to the Pascal triangle rule that the value of entry (m,n) is
merely the sum of the entries to the left and right of it, on the previous row.
As another example, the fact that binomial coefficients are greatest when
n = 	m/2
 is evident from visual inspection—centrally located cells have
had the greatest benefit of the combining add operation in the rows above,
and this visual observation can indeed be fashioned into a rigorous proof.

Consider now a modified Pascal triangle where entries are reduced mod-
ulo 2, as shown in Figure 2.1. Such a figure was easy to generate using the
Internet-based tool available at http://www.cecm.sfu.ca/organics/papers/
granville/support/pascalform.html. It is evident from the left-hand image
in Figure 2.1 (see Color Plate I), which comes from the interface, that
the entries of this Pascal triangle form a Sierpinski triangle, which in the
limit is a self-similar figure akin to those studied by Mandelbrot [214].
In fact, it can be seen that this figure exhibits the fractional dimension
log2 3 = 1.58496 . . . [290].

The right-hand figure shows a computer realization of this process on
a tetrahedron, due to Darrell Hepting. Now let’s take a look at a proof
of identity (2.3) in the style of experimental mathematics, a proof that we
argue is significantly easier than the usual algebraic proof of this result.

Given a positive integer m, construct a Pascal triangle modulo 2 of
size 2�log2 m�. In this way the m-th row corresponds to a line that crosses
the lower half of the largest upright triangle. Note that successive binary
digits of m specify whether the line crosses the upper (0) or the lower
(1) half of successively smaller upright triangles. The upper halves always
contain one half-sized upright triangle, whereas the lower halves contain two
such triangles. The total number of triangles crossed by the line is thus
multiplied by a factor of two whenever the lower half is crossed. The total
number of ones in the m-th row is thus the product of the factors of two
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Figure 2.1. Pascal triangles modulo two? (See Color Plate I.) Courtesy of Daryl
Hepting.

associated with each one in the binary expansion of m. This proves (2.3).
See Stephen Wolfram’s article [290] and the Crandall-Pomerance book [118]
(research problem 8.22) for additional details and some generalizations.

We should add here that Wolfram has recently published his long-
awaited tome A New Kind of Science, an exhaustive study of cellular au-
tomata with connections to numerous other fields of science. Wolfram’s
approach in this book is almost exclusively experimental, employing nearly
1000 high-resolution graphical examples to highlight his observations, build-
ing up to his “Principle of Computational Equivalence.” In this regard, one
could view Pascal’s triangle modulo 2 as merely a particular instance of a
one-dimensional cellular automata [291].

We might note in passing that the Sierpinski triangle has a habit of
appearing in quite a few unexpected places in mathematics. One remark-
able example, in quite a different context, is the following. Construct an
“arbitrary” triangle, with vertices (x1, y1), (x2, y2) and (x3, y3). Specify a
starting point (x, y) within the triangle. Then iterate the following con-
struction: First select a random integer r in the set (1, 2, 3), and then
construct a new point (x′, y′) as follows:

(x′, y′) =
(

1
2
(x+ xr),

1
2
(y + yr)

)
. (2.4)

This procedure is then iterated indefinitely.
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Figure 2.2. Sierpinski triangle by random selections.

If you carry out this procedure on a computer with a high-resolution
display, it is immediately evident that, no matter what triangle is speci-
fied, and no matter what initial point is selected, the resulting figure (after
possibly the first few points) is a Sierpinski triangle contained in the orig-
inal triangle—see, for example, Figure 2.2. In other words, the Sierpinski
triangle is the “attractor” set for this iteration (by the way, it is easier to
“see” this fact than to prove it). The study of these fractal objects and
the schemes used to generate them is by itself a fascinating example of
experimental mathematics in action. See, for example, Michael Barnsley’s
interesting book, Fractals Everywhere [44].

2.2 A Curious Anomaly in the Gregory Series

In 1988, Joseph Roy North of Colorado Springs observed that Gregory’s
series for π,

π = 4
∞∑

k=1

(−1)k+1

2k − 1
= 4(1 − 1/3 + 1/5 − 1/7 + · · · ), (2.5)
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when truncated to 5,000,000 terms, gives a value that differs strangely from
the true value of π. Here is the truncated Gregory value and the true value
of π:

3.14159245358979323846464338327950278419716939938730582097494182230781640...

3.14159265358979323846264338327950288419716939937510582097494459230781640...

2 -2 10 -122 2770

The series value differs, as one might expect from a series truncated to
5,000,000 terms, in the seventh decimal place—a “4” where there should
be a “6.” But the next 13 digits are correct! Then, following another
erroneous digit, the sequence is once again correct for an additional 12
digits. In fact, of the first 46 digits, only four differ from the corresponding
decimal digits of π. Further, the “error” digits appear to occur in positions
that have a period of 14, as shown above. Such anomalous behavior begs
explanation.

Once observed, it is natural (and easy given a modern computer algebra
system) to ask if something similar happens with the logarithm. Indeed
it does, as the following value obtained by truncating the series log 2 =
1 − 1/2 + 1/3 − 1/4 + · · · shows:

0.69314708055995530941723212125817656807551613436025525140068000949418722...

0.69314718055994530941723212145817656807550013436025525412068000949339362...

1 -1 2 -16 272 -7936

Here again, the “erroneous” digits appear in locations with a period of 14.
In the first case, the differences from the “correct” values are (2, -2, 10, -122,
2770), while in the second case the differences are (1,−1, 2,−16, 272,−7936).
We note that each integer in the first set is even; dividing by two, we obtain
(1,−1, 5,−122, 1385).

How can we find out exactly what is going on here? A great place to
start is by enlisting the help of an excellent resource for the computational
mathematician: Neil Sloane and Simon Plouffe’s Internet-based integer
sequence recognition tool, available at http://www.research.att.com/∼njas
/sequences. This tool has no difficulty recognizing the first sequence as
“Euler numbers” and the second as “tangent numbers.” Euler numbers
and tangent numbers are defined in terms of the Taylor’s series for secx
and tanx, respectively:

sec x =
∞∑

k=0

(−1)kE2kx
2k

(2k)!

tanx =
∞∑

k=0

(−1)k+1T2k+1x
2k+1

(2k + 1)!
. (2.6)
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Indeed, this discovery, made originally through the print version of the
sequence recognition tool available more than a decade ago, led to a formal
proof that these sequences are indeed the source of the “errors” in these
sequences. The precise result is that the following asymptotic expansions
hold:

π

2
− 2

N/2∑
k=1

(−1)k+1

2k − 1
≈

∞∑
m=0

E2m

N2m+1
(2.7)

log 2 −
N/2∑
k=1

(−1)k+1

k
≈ 1

N
+

∞∑
m=1

T2m−1

N2m
. (2.8)

Now the genesis of the anomaly mentioned above is clear: North, in com-
puting π by Gregory’s series, had by chance truncated the series at 5,000,000
terms, which is exactly one-half of a fairly large power of ten. Indeed, set-
ting N = 10, 000, 000 in Equation (2.7) shows that the first hundred or
so digits of the truncated series value are small perturbations of the cor-
rect decimal expansion for π. And the asymptotic expansions show up on
the computer screen, as we observed above. Similar phenomena occur for
other constants. (See [69] for proofs of (2.7) and (2.8), together with some
additional details.)

2.3 Bifurcation Points in the Logistic Iteration

Of course, our earlier remarks about pure mathematicians being slow to
take advantage of the computer do have some exceptions. In particular, the
entire area of dynamical systems (sometimes referred to as chaos theory)
owes its very existence to modern information technology. And one of the
classic examples of a chaotic iteration is known as the logistic iteration: Fix
a real number r > 0, select x0 in the unit interval (0, 1), and then iterate

xk+1 = rxk(1 − xk). (2.9)

This is termed the “logistic” iteration because of its roots in computational
ecology: It mimics the behavior of a biological population, which, if it
becomes too numerous, exhausts its available food supply and then falls
back to a smaller population, possibly oscillating in an irregular manner
over many generations.

For values of r < 1, the iterates (xk) quickly converge to zero. For
1 < r < 3, the iterates converge to a single nonzero limit point. At r = 3, a
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Figure 2.3. Bifurcation in the logistic iteration.

bifurcation occurs: For 3 < r < 3.449489 . . .= 1+
√

6, the iterates oscillate
between two distinct limit points. A second bifurcation occurs at r =
1+

√
6. In particular, for 1+

√
6 < r < 3.544090359 . . ., the iterates oscillate

in a periodic fashion between four distinct limit points. This pattern of
limit point bifurcation and period doubling occurs at successively shorter
intervals, until r > 3.5699457 . . ., when iterates behave in a completely
chaotic manner. This behavior is shown in Figure 2.3.

Until recently, the identity of the third bifurcation point, namely the
constant b3 = 3.544090359 . . ., was not known. It is fairly straightforward,
by means of recursive substitutions of Equation (2.9), to demonstrate that
this constant must be algebraic, but the bound on the degree of the integer
polynomial that b3 satisfies is quite large and thus not very useful.

A tool that can be used in such situations is an integer relation algo-
rithm. This is an algorithm which, when given n real numbers (x1, x2, · · · ,
xn), returns integers (a1, a2, · · · , an), not all zero, such that a1x1 + a2x2 +
· · ·+anxn = 0 (if such a solution exists). Such computations must be done
using very high precision arithmetic, or else the results are not numerically
significant. At present the best algorithm for integer relation detection
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appears to be the “PSLQ” algorithm of mathematician-sculptor Helaman
Ferguson [18, 35, 140], although the “LLL” algorithm is also often used.
We will discuss integer relation detection in greater depth in Section 6.3.1.
For the time being we mention the Internet-based integer relation tool at
http://oldweb.cecm.sfu.ca/projects/IntegerRelations and the Experimental
Mathematician’s Toolkit at http://www.experimentalmath.info.

One straightforward application of an integer relation tool is to recover
the polynomial satisfied by an algebraic number. If you suspect that a
constant α, whose numerical value can be calculated to high precision,
is algebraic of degree n, then you can test this conjecture by comput-
ing the (n + 1)-long vector (1, α, α2, · · · , αn), and then using this vector
as input to an integer relation calculation. If it finds a solution vector
(a0, a1, a2, · · · , an) with a sufficiently high degree of numerical accuracy,
then you can be fairly confident that these integers are precisely the coef-
ficients of the polynomial satisfied by α.

In the present example, where α = b3, a predecessor algorithm to PSLQ
recovered the polynomial

0 = 4913 + 2108t2 − 604t3 − 977t4 + 8t5 + 44t6 + 392t7 − 193t8 − 40t9

+48t10 − 12t11 + t12. (2.10)

You might like to try to rediscover this polynomial by using the Internet-
based tool mentioned above. To do this requires a high-precision value of
b3. Its value correct to 120 decimal digits is:

3.5440903595 5192285361 5965986604 8045405830 9984544457 3675457812
5303058429 4285886301 2256258566 4248917999 6260899277 5899745457

If you do not wish to type this number in, you may find it by using Math-
ematica:

FindRoot[4913 + 2108*t^2 - 604*t^3 - 977*t^4 + 8*t^5

+ 44*t^6 + 392*t^7 - 193*t^8 - 40*t^9 + 48*t^10 - 12*t^11

+ t^12 == 0, {t, 3.544}, WorkingPrecision -> 125]

or by using a similar command with the Experimental Mathematician’s
Toolkit.

Recently, the fourth bifurcation point b4 = 3.564407266095 . . .was iden-
tified by a similar, but much more challenging, integer relation calculation.
In particular, it was found that α = −b4(b4 − 2) satisfies a certain integer
polynomial of degree 120. The recovered coefficients descend monotonically
from 25730 ≈ 1.986×1072 down to 1. This calculation required 10,000 dec-
imal digit precision arithmetic, and more than one hour on 48 processors
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of a parallel computer system. Full details can be found in [35]. The rela-
tion produced was recently verified by Konstantinos Karamanos, using the
Magma computer algebra system [191].

We add in passing that the limiting ratio of the intervals between suc-
cessive bifurcation points in the logistic iteration is 4.669201609 . . . This is
known as Feigenbaum’s constant, named for Mitchell Feigenbaum who first
observed, as a result of computational experiments, that this limiting ratio
holds for a wide class of chaotic iterations, not just the logistic iteration.
A fascinating account of this discovery is given in [148]. Researchers have
subsequently made numerous attempts to recognize Feigenbaum’s constant
as an algebraic number, or as a simple formula involving other well-known
constants of mathematics, but these efforts have failed so far. An algorithm
for calculating Feigenbaum’s constant to high precision is given in [88].

2.4 Experimental Mathematics and Sculpture

In the previous section, we mentioned the PSLQ algorithm, which was dis-
covered in 1993 by Helaman Ferguson. This is certainly a signal accomplish-
ment—for example, the PSLQ algorithm (with associated lattice reduction
algorithms) was recently named one of ten “algorithms of the century”
by Computing in Science and Engineering [18]. Nonetheless Ferguson is
even more well-known for his numerous mathematics-inspired sculptures,
which grace numerous research institutes in the United States. Photos and
highly readable explanations of these sculptures can be seen in a lovely
book written by his wife, Claire [139]. Together, the Fergusons recently
won the 2002 Communications Award, bestowed by the Joint Policy Board
of Mathematics. The citation for this award declares that the Fergusons
“have dazzled the mathematical community and a far wider public with
exquisite sculptures embodying mathematical ideas, along with artful and
accessible essays and lectures elucidating the mathematical concepts.”

Ferguson notes that the PSLQ algorithm can be thought of as a n-
dimension extension of the Euclidean algorithm, and is, like the Euclidean
scheme, fundamentally a “subtractive” algorithm. As Ferguson explains,
“It is also true that my sculptural form of expression is subtractive: I get
my mathematical forms by direct carving of stone.” [237]

There is a remarkable and unanticipated connection between Ferguson’s
PSLQ algorithm and at least one of Ferguson’s sculptures. It is known that
the volumes of complements of certain knot figures (which volumes in R3

are infinite) are finite in hyperbolic space, and sometimes are given by
certain explicit formulas. This is not true of all knots. Many of these
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hyperbolic complements of knots correspond to certain discrete quotient
subgroups of matrix groups.

One of Ferguson’s sculptures, known as the “Eight-Fold Way,” is housed
at the Mathematical Sciences Research Institute in Berkeley, California (see
Figure 2.4, Color Plate IV, and Item 32 at the end of this chapter).

Another of Ferguson’s well-known sculptures is the “Figure-Eight Com-
plement II” (see Figure 2.5, Color Plate IV, and Item 32 at the end of this
chapter). It has been known for some time that the hyperbolic volume V
of the figure-eight knot complement is given by the formula

V = 2
√

3
∞∑

n=1

1
n
(
2n
n

) 2n−1∑
k=n

1
k

(2.11)

= 2.029883212819307250042405108549 . . . (2.12)

In 1998, British physicist David Broadhurst conjectured that V/
√

3 is a
rational linear combination of

Cj =
∞∑

n=0

(−1)n

27n(6n+ j)2
. (2.13)

Indeed, it is, as Broadhurst [93] found using a PSLQ program:

V =
√

3
9

∞∑
n=0

(−1)n

27n

(
18

(6n+ 1)2
− 18

(6n+ 2)2
− 24

(6n+ 3)2

− 6
(6n+ 4)2

+
2

(6n+ 5)2

)
. (2.14)

You can verify this yourself, using for example the Mathematician’s Toolkit,
available at http://www.experimentalmath.info. Just type the following
lines of code:

v = 2 * sqrt[3] * sum[1/(n * binomial[2*n,n]) * sum[1/k, \

{k, n, 2*n-1}], {n, 1, infinity}]

pslq[v/sqrt[3], table[sum[(-1)^n/(27^n*(6*n+j)^2), \

{n, 0, infinity}], {j, 1, 6}]]

When this is done you will recover the solution vector (9,−18, 18, 24, 6,
−2, 0). A proof that formula (2.14) holds, together with a number of other
identities for V , is given at the end of this chapter in Items 33 and 34. As
you will see, this proof is a classic example of a proof from experimental
methodology, in that it relies on “knowing” ahead of time that the formula
holds.
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Figure 2.4. Ferguson’s “Eight-Fold Way” sculpture (see Color Plate IV). Courtesy
of Helaman Ferguson.

Figure 2.5. Ferguson’s “Figure-Eight Knot Complement” sculpture (see Color
Plate IV). Courtesy of Helaman Ferguson.
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As we shall see in Section 3.4, constants given by a formula of the
general type given in (2.14), namely a “BBP-type” formula, possess some
remarkable properties, among them the fact that you can calculate the n-
th digit (base-3 digit in this case) of such constants by means of a simple
algorithm, without having to compute any of the first n− 1 digits.

Ferguson comments that the discovery of this BBP-type expression for
V is a “major advance toward understanding the figure-eight knot com-
plement volume.” Accordingly, he has carved Broadhurst’s formula on the
figure-eight knot complement sculptures commissioned by the Clay Math-
ematics Institute, both the Inner Mongolian black granite piece and the
smaller bronzes (the Clay Math Award pieces). As he explains, “Finally the
subtractive sculpture and the subtractive algorithm have come together.”

2.5 Recognition of Euler Sums

In April 1993, Enrico Au-Yeung, an undergraduate at the University of
Waterloo, brought to the attention of one of us (Borwein) the curious re-
sult [65]

∞∑
k=1

(
1 +

1
2

+ · · · + 1
k

)2

k−2 = 4.59987 . . .

≈ 17
4
ζ(4) =

17π4

360
. (2.15)

The function ζ(s) in (2.15) is the classical Riemann zeta function,

ζ(s) =
∞∑

n=1

1
ns
.

Euler showed that for even integers, ζ(2n) is a rational multiple of π2n [74].
(Euler’s result is proved in Section 3.2 of the second volume of this work.)

Au-Yeung had computed the sum in (2.15) to 500,000 terms, giving
an accuracy of 5 or 6 decimal digits. Suspecting that his discovery was
merely a numerical coincidence, Borwein sought to compute the sum to a
higher level of precision. Using Fourier analysis and Parseval’s equation,
he obtained

1
2π

∫ π

0

(π − t)2 log2(2 sin
t

2
) dt =

∞∑
n=1

(
∑n

k=1
1
k )2

(n+ 1)2
. (2.16)
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The idea here is that the series on the right of (2.16) permits one to evaluate
(2.15), while the integral on the left can be computed using the numerical
quadrature facility of Mathematica or Maple. When he did this, he was
surprised to find that the conjectured identity holds to more than 30 digits.
We should add here that by good fortune, 17/360 = 0.047222 . . . has period
one and thus can plausibly be recognized from its first six digits, so that
Au-Yeung’s numerical discovery was not entirely far-fetched.

What Borwein did not know at the time was that Au-Yeung’s sus-
pected identity follows directly from a related result proved by De Doelder
in 1991 [131]. In fact, it had cropped up even earlier as a problem in
the American Mathematical Monthly, but the story goes back further still.
Some historical research showed that Euler considered these summations.
In response to a letter from Goldbach, he examined sums that are equiva-
lent to

∞∑
k=1

(
1 +

1
2m

+ · · · + 1
km

)
(k + 1)−n. (2.17)

The great Swiss mathematician was able to give explicit values for certain
of these sums in terms of the Riemann zeta function. For example, he
found an explicit formula for the case m = 1, n ≥ 2.

In retrospect, perhaps it was for the better that Borwein had not known
of De Doelder’s and Euler’s results, because Au-Yeung’s intriguing numeri-
cal discovery launched a fruitful line of research by a number of researchers
that continued until nearly the present day. Sums of this general form are
nowadays known as “Euler sums” or “Euler-Zagier sums.”

In order to explore them more rigorously, it has been necessary to de-
velop an efficient means to calculate their value to high precision—namely
the 200 or more digit accuracy needed to obtain numerically significant
results using integer relation calculations. Along this line, one of us (Bai-
ley [31]) found a satisfactory scheme involving the Euler-Maclaurin sum-
mation formula. Another, more powerful scheme is described in [67]. These
techniques will be discussed in Section 7.5 of the second volume of this work.

High precision calculations of many of these sums, together with consid-
erable investigations involving heavy use of Maple’s symbolic manipulation
facilities, eventually yielded numerous new results.

Below are just a few of the interesting results that were first discov-
ered numerically and have since been established analytically [66]. Since
these results were first obtained in 1994, many more specific identities have
been discovered, and a growing body of general formulas and other results
have been proven. These results, together with the underlying numerical
and symbolic techniques used in their derivation, are discussed further in
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Chapter 3 of the second volume.

∞∑
k=1

(
1 +

1
2

+ · · · + 1
k

)2

(k + 1)−4 =
37

22680
π6 − ζ2(3),

∞∑
k=1

(
1 +

1
2

+ · · · + 1
k

)3

(k + 1)−6 =

ζ3(3) +
197
24

ζ(9) +
1
2
π2ζ(7) − 11

120
π4ζ(5) − 37

7560
π6ζ(3),

∞∑
k=1

(
1 − 1

2
+ · · · + (−1)k+1 1

k

)2

(k + 1)−3 =

4 Li5

(
1
2

)
− 1

30
log5(2) − 17

32
ζ(5) − 11

720
π4 log(2) +

7
4
ζ(3) log2(2)

+
1
18
π2 log3(2) − 1

8
π2ζ(3), (2.18)

where Lin(x) =
∑

k>0 x
k/kn denotes the polylogarithm function.

2.6 Quantum Field Theory

In another recent development, David Broadhurst (who discovered the iden-
tity (2.14) for Ferguson’s Clay Math Award sculpture) has found, using
similar methods, that there is an intimate connection between Euler sums
and constants resulting from evaluation of Feynman diagrams in quantum
field theory [95, 96]. In particular, the renormalization procedure (which
removes infinities from the perturbation expansion) involves multiple zeta
values, which we will discuss in detail in Chapter 3 of the second volume.

Broadhurst’s recent results are even more remarkable. He has shown
[93], using PSLQ computations, that in each of ten cases with unit or
zero mass, the finite part of the scalar 3-loop tetrahedral vacuum Feynman
diagram reduces to four-letter “words” that represent iterated integrals in
an alphabet of seven “letters” comprising the single 1-form Ω = dx/x and
the six 1-forms ωk = dx/(λ−k −x), where λ = (1+

√−3)/2 is the primitive
sixth root of unity, and k runs from 0 to 5. A four-letter word here is a
four-dimensional iterated integral, such as

U = ζ(Ω2ω3ω0) =∫ 1

0

dx1

x1

∫ x1

0

dx2

x2

∫ x2

0

dx3

(−1 − x3)

∫ x3

0

dx4

(1 − x4)
=

∑
j>k>0

(−1)j+k

j3k
.
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Figure 2.6. The ten tetrahedral configurations.

There are 74 such four-letter words. Only two of these are primitive terms
occurring in the 3-loop Feynman diagrams: U , above, and

V = Re[ζ(Ω2ω3ω1)] =
∑

j>k>0

(−1)j cos(2πk/3)
j3k

.

The remaining terms in the diagrams reduce to products of constants found
in Feynman diagrams with fewer loops. These ten cases are shown in
Figure 2.6. In these diagrams, dots indicate particles with nonzero rest
mass. The formulas that have been found, using PSLQ, for the cor-
responding constants are given in Table 2.1. In the table the constant
C =

∑
k>0 sin(πk/3)/k2.

V1 = 6ζ(3) + 3ζ(4)
V2A = 6ζ(3) − 5ζ(4)
V2N = 6ζ(3) − 13

2 ζ(4) − 8U
V3T = 6ζ(3) − 9ζ(4)
V3S = 6ζ(3) − 11

2 ζ(4) − 4C2

V3L = 6ζ(3) − 15
4 ζ(4) − 6C2

V4A = 6ζ(3) − 77
12ζ(4) − 6C2

V4N = 6ζ(3) − 14ζ(4) − 16U
V5 = 6ζ(3) − 469

27 ζ(4) + 8
3C

2 − 16V
V6 = 6ζ(3) − 13ζ(4) − 8U − 4C2

Table 2.1. Formulas found by PSLQ for the ten tetrahedral diagrams.
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2.7 Definite Integrals and Infinite Series

We mention here one particularly useful application of experimental math-
ematics methodology: evaluating definite integrals and sums of infinite
series by means of numerical calculations. In one sense, there is nothing
new here, since mathematicians have utilized computers to compute the
approximate numerical value of definite integrals and infinite series since
the dawn of computing. What we suggest here, however, is a slightly dif-
ferent approach: Use advanced numerical quadrature techniques and series
summations methods, extended to the realm of high-precision arithmetic,
and then use the computed values (typically accurate to tens or even hun-
dreds of decimal digits) as input to a computer-based constant recognition
tool, which hopefully can recognize the constant as a simple expression
involving known mathematical constants.

We will discuss techniques for computing definite integrals and sums of
series to high precision in Section 7.4 of the second volume of this work.
For the time being, we simply note that both Mathematica and Maple have
incorporated some reasonably good numerical facilities for this purpose,
and it is often sufficient to rely on these packages when numerical values
are needed.

For our first example, we use Maple or Mathematica to compute the
following three integrals to over 100 decimal digit accuracy:∫ 1

0

t2 log(t) dt
(t2 − 1)(t4 + 1)

=

0.180671262590654942792308128981671615337114571018296766266
240794293758566224133001770898254150483799707740 . . .

∫ π/4

0

t2 dt

sin2(t)
=

0.843511841685034634002620051999528151651689086421444293697
112596906587355669239938399327915596371348023976 . . .

∫ π

0

x sinxdx
1 + cos2 x

=

2.467401100272339654708622749969037783828424851810197656603
337344055011205604801310750443350929638057956006 . . . (2.19)
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(the third of these is from [158]). Both Maple and Mathematica attempt
to evaluate these definite integrals analytically. In each case, however,
while the results appear to be technically correct, they are not very useful,
in that they are either rather lengthy, or involve advanced functions and
complex entities. We suspect that there are considerably simpler closed-
form versions.

Indeed, using the Inverse Symbolic Calculator (ISC) tool (a constant
recognition facility) at http://ddrive.cs.dal.ca/∼isc, we obtain the following,
based solely on the numerical values above:∫ 1

0

t2 log(t) dt
(t2 − 1)(t4 + 1)

=
π2(2 −√

2)
32∫ π/4

0

t2 dt

sin2(t)
= −π

2

16
+
π log(2)

4
+G

∫ π

0

x sinxdx
1 + cos2 x

=
π2

4
, (2.20)

where G denotes Catalan’s constant

G =
∞∑

n=0

(−1)n

(2n+ 1)2
.

We might add that Catalan’s constant is widely believed to be irrational,
but this has never been proved. Using an integer relation tool, together
with a high-precision numerical value of Catalan (which can easily be found
by typing N[Catalan, 100] in Mathematica), you can see that it is not a
root of an integer polynomial with reasonable degree and reasonable-sized
coefficients.

As an exercise, we challenge you to evaluate∫ π/4

0

t3 dt

sin2(t)
.

Other examples of numerical identification of definite integrals will be pre-
sented in Section 7.4 of the second volume of this work.

As a second example, as we shall see in Section 3.1, rational linear
combinations of arctangent formulas can be devised to produce relatively
efficient algorithms for computing π. In fact, such formulas have been used
for centuries. One approach to finding such formulas is to analytically
derive them. Another approach is to simply explore for them using the
numerical values of individual arctan formulas. For instance, by computing
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values of the individual arctans below to moderately high precision, and
applying an integer relation tool, one can easily deduce the relations

π = 48 arctan
1
49

+ 128 arctan
1
57

− 20 arctan
1

239
+ 48 arctan

1
110443

π = 176 arctan
1
57

+ 28 arctan
1

239
− 48 arctan

1
682

+ 96 arctan
1

12943
.

(2.21)

One way to do this is by using the “Experimental Mathematician’s Toolkit,”
which is available at http://www.experimentalmath.info. Type the string

pslq[pi, arctan[1/49], arctan[1/57], arctan[1/239], arctan[1/110443]]

and you will obtain the vector (1,−48,−128, 20,−48), which gives the first
formula of (2.21). These particular formulas were used by Kanada in his
latest computation of π to more than one trillion decimal digits.

A third example, one of the most remarkable examples of constant
recognition in the literature, is due to Ronald Graham and Henry Pollak
[152]. They were studying the sequences (an) and (bn), defined by a0 = m,
then

an+1 = 	
√

2an(an + 1)
 (2.22)

followed by

bn = a2n+1 − 2a2n−1. (2.23)

Can the sequence (an) and/or (bn) be identified? Graham and Pollak found
that if you define the constants α(m), for integers m ≥ 1,

α(m) = 0.b1b2b3 · · ·2 , (2.24)

meaning that the sequence (bn) is to be interpreted as the binary expansion
of the constant α(m), then the resulting constants are simple algebraic
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numbers. In particular,

α(1) =
√

2 − 1

α(2) =
√

2 − 1

α(3) = 2
√

2 − 2

α(4) = 2
√

2 − 2

α(5) = 3
√

2 − 4

α(6) = 4
√

2 − 5

α(7) = 3
√

2 − 4

α(8) = 5
√

2 − 7

α(9) = 4
√

2 − 5

α(10) = 6
√

2 − 8.

This recognition led to an explicit formula for the sequence (an) as

an = 	τ(2(n−1)/2 + 2(n−2)/2)
, (2.25)

where τ is the m-th smallest real number in the set {1, 2, 3, · · · }∪ {√2, 2
√

2,
3
√

2, · · · }. See [152] for complete details. It is not known if generalized
sequences such as

an+1 = 	
√

3an(an + 1)
 (2.26)

an+1 = 	 3
√

2an(an + 1)(an + 2)
 (2.27)

have analogous properties.
We will discuss constant recognition techniques more in Section 6.3.

2.8 Prime Numbers and the Zeta Function

The oldest systematic treatment of prime numbers is in Euclid’s Elements,
written about 300 BCE. Euclid’s results on prime numbers, like his results
on geometry, are presented entirely as theorems and proofs, with scarcely
any motivating examples or mention of how these results were first discov-
ered. Thus it is not possible to learn to what extent experimental methods
were used in the original discovery of these principles. In more recent times,
we have written accounts of the discoveries of various prime number results,
and we can find several clear examples of experimental mathematics in ac-
tion. As a canonical example, in 1849 Gauss recounted his analysis of the
density of prime numbers:
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I pondered this problem as a boy, in 1792 or 1793, and found that the
density of primes around t is 1/ log t, so that the number of primes
up to a given bound x is approximately

∫ x

2
dt/ log t. [150,154]

Formal proof that the above approximation is asymptotically correct,
which is now known as the Prime Number Theorem, did not come until
1896, more than 100 years after Gauss’ experimental discovery [118]. In his
writings on the subject, Gauss expressed a fascination with prime numbers
that is reminiscent of the fascination other mathematicians have expressed
with the digits of π:

The problem of distinguishing prime numbers from composite num-
bers and of resolving the latter into their prime factors is known to
be one of the most important and useful in arithmetic. It has en-
gaged the industry and wisdom of ancient and modern geometers to
such an extent that it would be superfluous to discuss the problem at
length. . . . Further, the dignity of the science itself seems to require
that every possible means be explored for the solution of a problem
so elegant and so celebrated. [145, Article 329 (1801)]

This fascination with prime numbers has not diminished in the 201
years since this was written. Compare for example the comments of Don
Zagier, in a recent article analyzing the first 50 million prime numbers:

[T]here is no apparent reason why one number is prime and another
not. To the contrary, upon looking at these numbers one has the
feeling of being in the presence of one of the inexplicable secrets of
creation. [293]

In recent years, with the advent of computers, the prime-counting func-
tion π(x) has been tabulated precisely for rather large values of x. This
has been done by using some rather advanced techniques that we will not
describe here. Interested readers are referred to the new book, Prime Num-
bers: A Computational Perspective, by Richard Crandall and Carl Pomer-
ance [118], where two different advanced techniques are presented. Table
2.2 gives values of π(x) for powers of ten up to 1022, together with the
corresponding values of the approximate formula given by the Prime Num-
ber Theorem, and the differences

∫ x

2
dt/ log t − π(x). The last-listed and

most recent calculation is due to P. Demichel and X. Gourdon (February
2001). This data was obtained from Eric Weisstein’s very useful “World of
Mathematics” web site http://mathworld.wolfram.com.

One of the principal motivations of computing values of the prime-
counting function π(x) is to explore a fascinating and highly promising
connection to the Riemann zeta function, a discovery which is a classic
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example of an experimental approach to mathematical research. The fol-
lowing material is adapted in part from an excellent and very readable
article by Andrew Granville [154].

In examining the data in Table 2.2, we observe that the overcount val-
ues in the last column appear to be roughly

√
x. Thus one might think that

by subtracting
√
x, one would get an asymptotically better approximation.

This is not the case—in 1914, Littlewood proved that the differences be-
tween π(x) and Gauss’ approximation change sign infinitely often. In 1933,
Skewes showed (on the Riemann hypothesis) that the first sign change must

occur at least by 10101034

, a number known as the Skewes number because
of its prodigious size (see [118], Exercise 1.35). This bound has recently
been reduced to a “tiny” number, a mere 10316 [154]. Littlewood [204, pg.
110–112] gives a fascinating discussion of his interaction with Skewes.

x π(x)
∫ x

2
dt/ log t Difference

101 4 5 1

102 25 29 4

103 168 177 9

104 1229 1245 16

105 9592 9629 37

106 78498 78627 129

107 6 64579 6 64917 338

108 57 61455 57 62208 753

109 508 47534 508 49234 1700

1010 4550 52511 4550 55614 3103

1011 41180 54813 41180 66400 11587

1012 3 76079 12018 3 76079 50280 38262

1013 34 60655 36839 34 60656 45809 1 08970

1014 320 49417 50802 320 49420 65691 3 14889

1015 2984 45704 22669 2984 45714 75287 10 52618

1016 27923 83410 33925 27923 83442 48556 32 14631

1017 2 62355 71576 54233 2 62355 71656 10821 79 56588

1018 24 73995 42877 40860 24 73995 43096 90414 219 49554

1019 234 05766 72763 44607 234 05766 73762 22381 998 77774

1020 2220 81960 25609 18840 2220 81960 27836 63483 2227 44643

1021 21127 26948 60187 31928 21127 26948 66161 26181 5973 94253

1022 2 01467 28668 93159 06290 2 01467 28669 12482 61497 19323 55207

Table 2.2. The prime-counting function π(x) and Gauss’ approximation.
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Figure 2.7. Page 1 of Riemann’s 1859 manuscript. Courtesy of Niederschsische
Staats- und Universittsbibliothek Gttingen.



�

�

�

�

�

�

�

�

2.8. Prime Numbers and the Zeta Function 69

Figure 2.8. Page 2 of Riemann’s 1859 manuscript. Courtesy of Niederschsische
Staats- und Universittsbibliothek Gttingen.
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A key development in this area stems from Riemann’s discovery in 1859
that

π(x) − ∫ x

2 dt/ log t√
x/ logx

≈ −1− 2
∑
γ∈S

sin(γ log x)
γ

, (2.28)

where S is the set of γ such that γ > 0 and 1/2+ iγ is a zero of the analytic
continuation of the Riemann zeta function ζ(s) =

∑
k>0 1/ks. The left-

hand side of (2.28) is simply the overcount noted in Table 2.2, divided by
what we earlier observed to be the apparent size of the error term, namely√
x/ log x (a more accurate version of the approximation

√
x). The right-

hand side of (2.28) is suggestive of a Fourier series—it is as if the prime
numbers have “music” in them.

In Riemann’s 1859 memoir, in which he presented this approximation
formula (2.28), he noted that the result was contingent upon (actually
equivalent to) the hypothesis that the only zeroes of ζ(s) for complex num-
bers s = σ + iγ with 0 ≤ σ ≤ 1 are for σ = 1/2 [243]. This is the famous
Riemann Hypothesis, whose proof has eluded the best mathematicians for
nearly 150 years. Photocopies of the first two pages of Riemann’s memoir
on the zeta function, stored in Göttingen, are shown in Figure 2.7 and
Figure 2.8.

Riemann’s 1859 memoir did not contain any clues as to how he was
led to make this conjecture. For many years mathematicians believed that
Riemann had come to this conjecture on the basis of some profound in-
tuition. Indeed, the Riemann Hypothesis has been held up as a premier
example of the heights one could attain by sheer intellect alone. In 1929,
long after Riemann’s death, the renowned number theorist Carl Ludwig
Siegel (1896–1981) learned that Riemann’s widow had donated his work-
ing papers to the Göttingen University library. Among these papers Siegel
found several pages of heavy-duty numerical calculations, with a number
of the lowest-order zeroes of the zeta function calculated to several decimal
places each. As Andrew Granville has observed, “So much for pure thought
alone” [154]. The Riemann-Siegel formula is developed further in Item 2
of Chapter 3 in the second volume.

In 1936 Cramer proposed a probabilistic model of the primes. In par-
ticular, he defined a sequence X3, X4, · · · of independent random variables
on {0, 1} with P (Xn = 1) = 1/ logn, and P (Xn = 0) = 1 − 1/ logn
(here, P denotes probability). This turns out to be a fairly good model for
occurrence of prime numbers. In fact, it can be shown that

lim
n→∞

∑
x≤n≤x+hXn∫ x+h

x dt/ log t
= 1 (2.29)
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with probability 1. In such comparisons of statistical distributions, it is
natural to consider the variance,

V = E

⎛⎝ ∑
x≤n≤x+h

Xn −
∫ x+h

x

dt

log t

⎞⎠2

. (2.30)

(here, E denotes expected value). Unfortunately, it can be shown that this
variance is not the same as the corresponding statistical variance of the
prime counting function π(x). In Figure 2.9, we show 100 zeroes of the
zeta function, beginning with the (1021 + 1)-th zero, displayed as the dot-
ted line, with pseudo-random numbers (added and scaled to the endpoints
of the graph) displayed as the dashed line for comparison. The ranks of
the zeroes, minus (1021 + 1), are plotted on the x-axis, while the imagi-
nary parts of the zeroes, minus the imaginary part of the (1021 +1)-th zero
(namely 144176897509546973538.498 . . .), are plotted on the y axis. It is
clear from this plot that the zeroes of the Riemann zeta function are hardly
“randomly” spaced—they adhere to a straight line much more closely than
the pseudorandom data. It is as if the zeroes of the Riemann zeta func-
tion consciously “repel” each other, so as to stay much closer to constant
spacing.

Given how well Gauss’ model has worked in the past, this breakdown
was both unexpected and disconcerting. As Paul Erdős wrote, “God may
not play dice with the universe, but something strange is going on with the
primes.” [209]

In 1976, Julia Mueller revisited the question of the variance of the prime
counts in her PhD dissertation. Building on her work, Daniel Goldston
and Hugh Montgomery soon made the remarkable discovery that a good
understanding of the variance is actually equivalent to the spacing between
pairs of zeroes of the zeta function. Three years earlier, while investigating
a different question of number theory, Montgomery had been led to the
following conjecture: The expected number of zeroes of the zeta function
in a gap of length T times the average gap, following a zero, is∫ T

0

(
1 −

(
sinπu
πu

)2
)
du. (2.31)

If the zeroes of the zeta function were randomly spaced, this value would
simply be T . This conjecture agrees with the observed repulsion of zeroes,
as observed in Figure 2.9. For example, we would expect to find another
zero within 0.01 times the average spacing roughly one time in 100 trials
for random spacing, whereas this formula predicts that such close spacing
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Figure 2.9. Zeta function zeroes (dotted) vs pseudo-random data (dashed).

would occur only one time in nearly 1,000,000 instances. We can compare
how closely this data matches with actual nearest-neighbor spacing for
the zeta function, by examining calculated data by Andrew Odlyzko [225].
Figure 2.10 shows this spacing data based on a billion zeroes near the
1.3 × 1016-th zero.

As you can see from this graph, this function agrees extremely well
with the experimentally measured spacings. Montgomery has now par-
tially proven that his conjecture is correct—he has shown that the Fourier
transform of his distribution function is correct in a small range, assuming
the Riemann Hypothesis.

The next step in this saga is even more remarkable. Soon after his ex-
perimental discovery on the prime counts and zero spacing, Montgomery
visited the Institute for Advanced Study in Princeton, hoping to discuss
his new ideas with Selberg and Bombieri, who were both at the Institute
at the time. In a communal afternoon tea, Montgomery happened to chat
with Freeman Dyson, the renowned mathematical physicist (although he
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Figure 2.10. Nearest neighbor spacing versus Montgomery’s distribution.

originally was a number theorist). When Montgomery told Dyson of his
new ideas on the zeroes of the Riemann zeta function, Dyson responded
that he was very familiar with this problem, and in fact was even aware
of the issue of the spacing of the zeroes. But it wasn’t from number
theory that Dyson was aware of these phenomena; instead, Dyson had
encountered these questions through quantum mechanics. In fact, Mont-
gomery’s distribution was precisely the function that Dyson had found ten
years earlier when modeling energy levels in quantum chaos. These re-
searchers immediately realized that this serendipitious coincidence would
likely lead to more progress on both the number theory and quantum
physics fronts.
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The quantum chaos equations are comparatively simpler than those of
prime number theory, and so they were better understood. As a result,
there was a flurry of new activity in the field. Researchers focused not only
on close pairs of zeroes, but also three-at-a-time correlations and n-at-a-
time correlations. However, it was 20 years later (1994) before Rudnick and
Sarnak proved the quantum mechanics analogue of Montgomery’s result
(that the Fourier transform of the distribution function is correct in a small
range, assuming the Riemann Hypothesis) [250]. Then in 1996, two math-
ematical physicists (Bogolmony and Keating) rederived the Montgomery-
Dyson prediction for n-at-a-time correlations from a new angle. They took
a classic conjecture of number theory, namely the Hardy-Littlewood version
of the prime k-tuplets conjecture, and showed that this also led to a similar
conclusion [55]. Since then there has been a flurry of new research in this
area, both on the number theory and mathematical physics fronts. These
developments have led some in the field to optimistically predict that the
long-sought proof of the Riemann Hypothesis may be at hand. As Michael
Berry said in 2000,

I have a feeling that the Riemann Hypothesis will be cracked in the
next few years. I see the strands coming together. Someone will
soon get the million dollars. [187]

The million dollars Berry mentions here refers to a prize that has been
offered for the proof of the Riemann Hypothesis (and for several other
outstanding mathematical problems) by the Clay Mathematics Institute.
Details of this prize are available on the Clay Institute web site http://www
.claymath.org. A very readable recent survey is to be found in [110].

2.9 Two Observations about
√

2

As we observed earlier in the discussion of Pascal’s triangle, it is still pos-
sible to find new insights even in the oldest areas of mathematics. We
illustrate this principle again with two intriguing observations on that old-
est of irrational constants, the square root of two.

2.9.1 Irrationality

We first present Tom Apostol’s lovely new geometric proof of the irrational-
ity of

√
2 [9].

Proof. To say
√

2 is rational is to draw a right-angled isoceles triangle
with integer sides. Consider the smallest right-angled isoceles triangle with
integer sides—that is with shortest hypotenuse.
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Figure 2.11. Root two is irrational (see Color Plate II).

Suppose ABC is that triangle with apex A and hypotenuse AC. Draw
a circle centered at A of length AB and mark the point D where it cuts the
hypotenuse. Now draw the tangent to the circle at D and mark the point
E where it cuts the base of the triangle. Then DEC is a smaller isoceles
right-angled triangle and again has integer sides (see Figure 2.11 and Color
Plate II). This is a contradiction. �

As Figure 2.11 suggests, this can be beautifully illustrated in a dynamic
geometry package such as Geometer’s Sketchpad or Cinderella. We can
continue to draw smaller and smaller integer-sided similar triangles until
the area drops below 1

2 . But we give it here to emphasize the ineffably
human component of the best proofs, and to suggest the role of the visual.

Algebraically this leads to the following proof that nonperfect squares
have irrational roots: If p/q =

√
n, then

p′

q′
=

n q − 	√n
 p
p− 	√n
 q =

p

q
(2.32)

and 0 < p′ < p, 0 < q′ < q. It is left to the reader to convert this into a
picture along the lines of Figure 2.11.
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2.9.2 Rationality

Ironically,
√

2 can sometimes make things rational:(√
2
√

2
)√

2

=
√

2
(
√

2·√2)
=

√
2

2
= 2. (2.33)

Hence, by the principle of the excluded middle ,

either
√

2
√

2 ∈ Q or
√

2
√

2
/∈ Q.

In either case, we can deduce that there are irrational numbers α and β
with αβ rational. But how do we know which ones? This is not an adequate
proof for an Intuitionist nor a Constructivist. It is entirely ineffective,
and we may build a whole mathematical philosophy project around such

issues. Actually,
√

2
√

2
is transcendental by the Gelfond-Schneider theorem

(Exercise 27), but proofs of this are hard and usually suffer from the same
flaws.

It is instructive to compare this result with the assertion that α =
√

2
and β = 2 log2(3) yield αβ = 3 as Mathematica confirms. This illustrates
nicely that verification is often easier than discovery. Similarly, the fact that
multiplication is easier than factorization is at the base of secure encryption
schemes for e-commerce.

Indeed, there are eight possible rational/irrational triples: αβ = γ; find-
ing examples of all cases is now a good exercise (Exercise 28). Note how
much can be taught about computation with rational numbers, approxi-
mation to irrationals, rates of convergence, etc. from these simple pieces.

We close the section with a description of the meeting between the
inventor of logarithms (John Napier) and the scientist who made them
into technology (Henry Briggs) [279]:

[W]here almost one quarter hour was spent, each beholding the other
with admiration before one word was spoken: at last Mr. Briggs
began “My Lord, I have undertaken this long journey purposely to
see your person, and to know by what wit or ingenuity you first
came to think of this most excellent help unto Astronomy, viz. the
Logarithms: but my Lord, being by you found out, I wonder nobody
else found it out before, when now being known it appears so easy.”

2.10 Commentary and Additional Examples

1. The hardest possible proof? Use Fermat’s last theorem to prove
21/n is irrational for integer n > 2. Generalize.
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2. The final digit of a sum. Problem: Determine the final digit �n of
σn =

∑n
k=1 k. (Taken from [158]).

Solution: Computational experimentation shows the pattern repeats
modulo 20; �n+20 = �n mod 20 is easily proven from σn+20 = σn +∑n+20

n+1 k.

3. The 3x + 1 problem. This is a classic example of an innocent
looking, but highly intractable problem:

For integer x, let T (x) = (3x + 1)/2 for x odd and x/2 for x
even. The 3x + 1 conjecture is that starting from any positive
integer n, repeated iteration of T eventually returns to 1.

This problem is best described in the interactive article by Jeff La-
garias at http://www.cecm.sfu.ca/organics/papers/lagarias (see also
[198]), with records stored at http://www.ieeta.pt/∼tos/3x+1.html.
This conjecture has been “checked” to at least 100 · 250.

4. Limit of a simple iteration. Establish the limit of the iteration
that starts with a0 = 0, a1 = 1/2 and iterates an+1 = (1 + an +
a3

n−1)/3, for n > 1. Determine what happens as a1 = a is allowed to
vary.

5. Putnam problem 1985–B5. Evaluate

K =
∫ ∞

0

t−1/2e−1985(t+t−1) dt.

Answer: K =
√
πe−3970/

√
1985. The Putnam problems listed here

and in subsequent chapters are taken from [185]. Hint: This is prob-
lematic to evaluate numerically as stated, since its value is tiny. So
consider instead K(α) =

∫∞
0 t−1/2e−α(t+t−1) dt for some other specific

(or general) constant α.

6. Putnam problem 1987–A6. Let n be a positive integer and let
a3(n) be the number of zeroes in the ternary expansion of n. Deter-
mine for which positive x the series

∑∞
n=1 x

a3(n)/n3 converges. An-
swer: For x < 25. In the b-ary analogue,

∑∞
n=1 x

ab(n)/nb converges
if and only if x < bb − b+ 1.

7. Putnam problem 1987–B1. Evaluate∫ 4

2

√
log (9 − x)√

log (9 − x) +
√

log (3 + x)
dx (= 1).
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8. Putnam problem 1991–A5. Find the supremum of∫ y

0

√
x4 + (y − y2)2 dx,

for 0 ≤ y ≤ 1. Hint: Plot the function.

9. Putnam problem 1992–A2. Evaluate∫ 1

0

C(−y − 1)
1992∑
k=1

1
y + k

dy,

where C(α) is the coefficient of x1992 in the Maclaurin expansion of
(1 + x)α. Answer: 1992.

10. Putnam problem 1992–B3. Consider the dynamical system gen-
erated by a0 = x and

an+1 =
y2 + a2

n

2
,

for n ≥ 0. Determine the region in the plane for which the iteration
converges. What is its area? Hint: Try computing some values and
plot the results. Assuming without loss of generality x, y > 0, the
limit must satisfy 2�− �2 = y2. Thus the region defined is the convex
hull of unit circles centered at (±1, 0). Answer: π + 4.

11. Random projections. Consider a arbitrary point inside a triangle.
Determine what happens asymptotically when the point is projected
to successive sides of the triangle, where the side is selected either in
cyclical order or pseudo-randomly. Hint: Consider first what happens
in an obtuse triangle.

12. Putnam problem 1995–B4. Determine a simple expression for

σ =
8

√√√√√√2207 − 1

2207− 1

2207 − 1
2207− · · ·

. (2.34)

Hint: Calculate this limit to 15 decimal place accuracy, using ordi-
nary double-precision arithmetic. Then use the ISC tool, with the
“integer relation algorithm” option, to recognize the constant as a
simple algebraic number. The result can be proved by noting that
σ8 = 2207− 1/σ8, so that σ4 + σ−4 = 47. Answer: (3 +

√
5)/2.
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13. Berkeley problem 1.1.35. Find the derivative at x = 0 of∫ cos(x)

sin(x)

et2+xt dt.

Hint: Plot it. Answer = (e−3)/2. The Berkeley problems listed here
and in subsequent chapters are taken from [128].

14. Berkeley problem 7.6.6. Compute A106
and A−7 for

A =

[
3/2 1/2

−1/2 1/2

]
.

Hint: Use Mathematica or Maple to evaluateAn for various integers n.

15. Two radical expressions. (From [167, pg. 81, 84]). Express

3

√
cos

(
2
7
π

)
+ 3

√
cos

(
4
7
π

)
+ 3

√
cos

(
6
7
π

)

3

√
cos

(
2
9
π

)
+ 3

√
cos

(
4
9
π

)
+ 3

√
cos

(
8
9
π

)
as radicals. Hint: Calculate to high precision, then use the ISC tool
to find the polynomial they satisfy.

Answers: 3

√
1
2 (5 − 3 3

√
7) and 3

√
3
2

3
√

9 − 3/2.

16. Some simple continued fractions. Compute the simple continued
fraction for e, (e− 1)/2, e2, log(2), log(10), 31/2, 21/3, π, π/2, eπ, and
πe.

17. Crandall’s continued fraction. Compute, then guess and prove,
the continued fraction for

√
2
e
√

2 + 1
e
√

2 − 1
,

which fraction is manifestly not periodic, proving in this way that e
√

2

is irrational. Richard Crandall informs us that this (in 1968) was the
first and perhaps only interesting thing he ever proved all by himself.

18. Putnam problem 1988–B2. Prove or disprove: If x and y are real
numbers with y ≥ 0 and y(y + 1) ≤ (x + 1)2, then y(y − 1) ≤ x2.
Hint: Plot it.
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19. Putnam problem 1989–A3. Show that all roots of

11 z10 + 10 iz9 + 10 iz − 11 = 0

lie on the unit circle. Hint: This can be solved explicitly using Maple,
Mathematica, or a custom-written root-finding program that employs
Newton iterations. A detailed discussion of polynomial root-finding
techniques can be found in Section 7.3 of the second volume.

20. Putnam problem 1992–A3. For a given positive integer m find
all triples (n, x, y) of positive integers with (n, m) = 1 solving (x2 +
y2)m = (xy)n. Hint: Using a symbolic math program, try finding
solutions for various integer pairs x, y. Answer: The only solution is
(m + 1, 2m/2, 2m/2) for m even.

21. Berkeley problem 6.11.5. Prove that
√

2+ 3
√

3 is irrational. Hint:
Use Maple or Mathematica to find the minimum polynomial of this
constant.

22. The happy end problem. The happy end problem is to find, for
n ≥ 3, the smallest positive integer N(n) such that any set of N(n)
points, no three of which are collinear, must contain n points that
are the vertices of a convex n-gon. It is so called because Ester Klein,
who posed the problem, married George Szekeres shortly after he and
Paul Erdős proved the first bounds on the problem [205]. It is still
open [205].

23. The Mann iteration. For any continuous function f : [0, 1] �→ [0, 1],
the iteration x0 = x ∈ [0, 1] and

xn =
1
n

n−1∑
k=0

f(xk)

(the Césaro average) always converges to a fixed point of f . One can
study many other summability methods similarly. Since the function
can be highly obstreperous, this is largely a theoretical real-variable
iteration, albeit a beautiful one. Easy examples will convince one of
how painfully slow or unstable convergence can be. This is especially
understandable in light of

Theorem 2.1 (Sharkovsky). If a continuous self-mapping of the
reals, f , possesses a periodic point of order m, then f will possess a
periodic point of order n, precisely when n follows m in the following
ordering of the natural numbers:

3, 5, 7, · · · 2·3, 2·5, 2·7, · · · 223, 225, 227, · · · 233, 235, 237, · · · , · · · , 23, 222, 2, 1.
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In particular this includes the famous result of Li and Yorke to the
effect that “period three implies chaos.”

24. Finding coefficients of an integer polynomial. The numerical
identification methods described here work especially well when you
know a priori that a given integral, sum or other constant is a linear
combination of given quantities, and you wish only to obtain the
precise integer coefficients. For example, if you are told that, for any
integer N > 0,

∞∑
n=0

nne−n

(n+N)!

evaluates to a polynomial of degree N in e, then it is an easy matter,
for any given small N , to pick off the integers. Indeed, for N < 10,
say, you can discover that

QN =
∞∑

n=0

nne−n

(n+N)!
−

N∑
k=1

(−1)k−1ek

(N − k)! kk
(2.35)

is a rational number. The first four are −1,−1/4,−7/108, −97/6912.
Continuing in this manner, you can ultimately discover that

QN =
N∑

k=1

(−1)k

(N − k)!kk

k−1∑
n=0

kn

n!
. (2.36)

This relies on replacing exp(−n) by its series, exchanging order of
summation, and then discovering and deriving the identity

n∑
k=0

(−1)k kn

(
N + n

N + k

)
= (−1)n

N∑
k=1

kn(−1)k−1

(
N + n

N − k

)
(2.37)

or equivalently,

M+N∑
k=0

(−1)k (M − k)M

(
M +N

k

)
= 0 (2.38)

for all M,N > 0. This in turn follows (using the binomial theorem)
from

P∑
k=0

(−1)k kn

(
P

k

)
= 0, (2.39)
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for all 0 ≤ n < P . The final identity (2.39) is established by setting
Df(x) = xf ′(x) and observing that Dk(1 − x)P has a zero at 1 for
k < P .

25. A taste of J. E. Littlewood’s Miscellany. We record a variety of
observations, mathematical, stylistic and personal from Littlewood’s
wonderful Miscellany, a collection originally published in 1953, but
republished with an excellent introduction by Béla Bollobás in 1988
[204]. More of Littlewood is to be found at the end of Chapter 4 of
the second volume.

(a) (Entry (10) page 28) Dissection of squares and cubes into squares
and cubes, finite in number and all unequal. “The square dis-

Figure 2.12. Duijvestijn’s dissection. Courtesy of Bela Bollobas.
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section is possible in an infinity of different ways (the simplest,
due to Duijvestijn, is shown in Figure 2.12). A cube dissection
is not possible.” The proof of the second is short and elegant.

(b) (Entry (19) page 32) An isoperimerical problem: an area of
(greatest) diameter not greater than 1 is at most 1

4π.
Outline: “It is easy to see that we may suppose the area convex
and on one side of one of its ‘tangents’.” With polar coordinates

area =
1
2

∫ π
2

0

(
r2(θ) + r2(θ − π

2
)
)
dθ,

and the integrand never exceeds one.

(c) (Page 38) Kakeya’s problem. “Find the region of least area in
which a segment of unit length can turn continuously through
360o (minimize the area swept over). It was long thought that
the answer was as in Figure 2.13 and the area 1

8π. In 1930
[sic], however, A. S. Besicovitch, (Math. Zeit. 27 (1928), 312–
320.) showed that the answer is zero area (unattained): given
an arbitrarily small ε the area swept can be less than ε.”

Figure 2.13. Kakeya’s conjectured answer—the three-cusp hypocycloid.
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(d) (§2, Misprints, page 56)
“I once challenged Hardy to find a misprint on a certain
page of a joint paper. He failed: it was in his own name
‘G, H. Hardy’.”

“A minute I wrote (about 1917) for the Ballistics office
ended with the sentence ‘Thus σ should be made as small as
possible.’ This did not appear in the printed minute. But
P. J. Brigg said ‘What is that?’ A speck in the blank space
turned out to be the tiniest σ I have ever seen (the printers
must have scoured London for it.).”

26. The hypocycloid. Cartesian coordinates are given by

x = (a− b) cos(t) + b cos ((a/b− 1)t) ,

y = (a− b) sin(t) − b sin ((a/b− 1)t)

for a > b > 0. This is plotted for a = 1, b = 2/3 in Figure 2.13.

An excellent source for curves is

http://www-gap.dcs.st-and.ac.uk/∼history/Curves/Curves.html.

27. The Gelfond-Schneider theorem. This is the result that for com-
plex algebraic numbers α �= 0, 1 and β irrational, the quantity αβ is
transcendental. It follows that

(a)
√

2
√

2
is transcendental; and

(b) eπ = (−1)−i is transcendental.

28. Eight solutions. Find examples of all eight rational and irrational
possibilities of αβ = γ.

29. Quantum connections. Another connection between quantum the-
ory and the Riemann zeta is the observation, by Richard Crandall in
1991, that there exists an initial wave function ψ(x, 0)—having no
zero-crossings whatever (it looks like a “bell curve,” for example)—
which, under standard Schroedinger propagation, has evolved at a
certain time T into a ψ(x, T ) with infinitely many zero-crossings,
each such zero corresponding to a critical zero of ζ(1/2 + ix). It
is not yet known whether there are additional consequences of this
observation. Some details are given in [118].

30. H. S. M. (Donald) Coxeter (1907–2003). The renowned Cana-
dian geometer H. S. M. Coxeter passed away in late March 2003.
Coxeter was known for making extensive use of physical models in
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Figure 2.14. Donald Coxeter’s own kaleidoscope (see Color Plate VII). Courtesy
of Asia Weiss.

his research. A portion of his collection is on display at the Univer-
sity of Toronto, where he worked for 67 years. The model shown in
Figure 2.14 now resides at York University in Toronto. A sculpture
of five touching spheres, by John Robinson, which was presented to
Coxeter on his 90th birthday, is shown in Figure 2.15.

Figure 2.15. The “Firmament” by John Robinson (see Color Plate VI). Courtesy
of Asia Weiss.
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Among his numerous published books, Regular Complex Polytopes,
for example, is lavishly illustrated with beautiful and often intricate
figures. He was a friend of Maurits C. Escher, the graphic artist.
In a 1997 paper, Coxeter showed that Escher, despite knowing no
mathematics, had achieved “mathematical perfection” in his etching
“Circle Limit III.” “Escher did it by instinct,” Donald Coxeter noted,
“I did it by trigonometry.”

His Introduction to Geometry was widely used as a text for university
courses in geometry. The spirit of his work is perhaps best captured
by a quote from Bertrand Russell that Coxeter includes in the preface
to Introduction to Geometry:

Mathematics, rightly viewed, possesses not only truth, but su-
preme beauty—a beauty cold and austere, without appeal to
any part of our weaker nature, without the gorgeous trappings
of painting or music, yet sublimely pure, and capable of a stern
perfection such as only the greatest art can show. [251, pg. 73]

This quote is doubly interesting given the fact that Russell may have
been responsible for Coxeter pursuing a mathematical career, accord-
ing to Arthur Sherk, the executor for Coxeter’s mathematics. Russell,
who was a family friend, read a prize-winning essay on dimensionality
that Coxeter wrote at age 16. He then told Coxeter’s father that his
son was unusually gifted mathematically, and urged him to change
the direction of Coxeter’s education.

Along this line, Robert Moody wrote the following, in a letter sup-
porting Coxeter’s nomination to receive an honorary doctorate at
York University in Toronto, Canada:

Modern science is often driven by fads and fashion, and mathe-
matics is no exception. Coxeter’s style, I would say, is singularly
unfashionable. He is guided, I think, almost completely by a
profound sense of what is beautiful.

Two sculptures based on Coxeter’s work decorate the Fields Institute
in Toronto. One, hanging from the ceiling, is a three-dimensional
projection of a four-dimensional regular polytope whose 120 faces are
dodecahedrons as shown in Figure 2.16 (see Color Plate III).

Coxeter’s fascination with geometry extended beyond the purely in-
tellectual. For example, he was intrigued by the suggestion that Ein-
stein’s brain exhibited unusual bilateral symmetry, which in part ac-
counted for his genius, and has made provision for his brain to be
similarly examined.



�

�

�

�

�

�

�

�

2.10. Commentary and Additional Examples 87

Figure 2.16. A projection of a four dimensional polytope (see Color Plate III).

David Mumford recently commented that Coxeter placed great value
on working out the details of complicated explicit examples:

In my book, Coxeter has been one of the most important 20th
century mathematicians—not because he started a new perspec-
tive, but because he deepened and extended so beautifully an
older esthetic. The classical goal of geometry is the exploration
and enumeration of geometric configurations of all kinds, their
symmetries and the constructions relating them to each other.
The goal is not especially to prove theorems but to discover these
perfect objects and, in doing this, theorems are only a tool that
imperfect humans need to reassure themselves that they have
seen them correctly. This is a flower garden whose beauty has
almost been forgotten in the 20th century rush to abstraction
and generality. I share Coxeter’s love of this perspective, which
has deep roots in algebraic as well as Euclidean geometry. I
always found the algebraic roots-and-weights approach to Lie
groups arid and unsatisfying until I found Coxeter’s work flesh-
ing this out with a rich tapestry of examples. My own inter-
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est in explicit compactifications of the moduli space of Abelian
varieties led me to wonderful parts of his work on explicit fun-
damental domains for quadratic forms modulo GLn(Z). In the
21st century, I think we see signs of a renewed appreciation of
the significance of the classical geometry mode in mathematics,
perhaps linked with having easily usable computational tools. I
trust that this perspective will never die. [220]

A color illustration of the of the octahedral kaleidoscope Coxeter built
is pictured in Color Plate VII. Asia Weiss writes

The kaleidoscope was not built by Coxeter, but rather designed
by him and made in a workshop in London, England I believe
in the late 1920s. . . . Two kaleidoscopes were made: octahedral
and icosahedral. (As the tetrahedral group is a subgroup in the
octahedral group, the tetrahedral kaleidoscope was not made.)
We also have the icosahedral one, but this one is damaged and
I did not have it repaired as yet. [286]

31. Math meets ice. Figure 2.17 (see Color Plate V) shows Helaman
Ferguson’s Costa surface sculpture, which he entered in the Inter-
national Snow Sculpture Championship held at Breckenridge, Col-

Figure 2.17. Ferguson’s “Invisible Handshake” sculpture (see Color Plate V).
Courtesy of Helaman Ferguson.
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orado, January 19-24, 1999 [107]. This piece was entitled “Invisible
Handshake,” because it is the space between two hands just before
they clasp. Ferguson carved this piece with the assistance of Stan
Wagon, Dan Schwalbe, Tomas Nemeth, and (posthumously) Alfred
Gray. Here is Ferguson’s account:

I choose this negative Gaussian curvature geometric form specif-
ically because of the material properties of snow. Snow with its
fair compressive strength and poor tensile strength is a carica-
ture of stone. But negative Gaussian curvature, even in snow,
presents a fabric of saddle points everywhere. Each point of
the surface is the keystone of a pair of principal arches. There
were 14 other snow sculptures completed at the Breckenridge
affair; a week later they all completely imploded in the heat
wave. Our negative Gaussian curvature snow carving stood, re-
tained its structure, sublimed, thinned, gracile. (Taken from
http://www.helasculpt.com.)

32. Mathematics of Ferguson’s sculptures. The quotient group cor-
responding to Ferguson’s “Eight-Fold Way” sculpture is a certain
subgroup of SL2(Z), i.e., the set of invertible, unit-determinant 2×2
matrices with integer entries. One particular subgroup of SL2(Z)
corresponds to a tessellation of the hyperbolic circle by 7-gons. This
design is used as the tiled base of Ferguson’s “Eight-Fold Way,” which
is at the Mathematical Sciences Research Institute in Berkeley, CA.
Another subgroup has a fundamental domain of 24 seven-gons, which
has identifications corresponding to the surface of the marble sculp-
ture above the base.

Ferguson’s “Figure-Eight Knot Complement II” sculpture corresponds
to a certain subgroup of index 12 in the Bianchii group, which is
SL2(Z[ω3]), where ω3 = (−1 + i

√
3)/2 is a third root of unity. Let

Γ denote the multiplicative group of 2× 2 matrices generated by the
matrices [

1 0
0 ω3

]
and

[
0 −1
1 0

]
. (2.40)

This Γ is the fundamental group of the figure-eight knot comple-
ment. The complement is the double quotient U2\SL2(C)/Γ, where
U2 is the group of unitary matrices (i.e., inverse is conjugate trans-
pose) in C. The first quotient U2\SL2(C) is geometrically the three-
dimensional hyperbolic space. This group Γ is an “arithmetic” sub-
group of SL2(C). The group SL2(Z[ω3]) is known as the Eisenstein
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integers, a ring of algebraic integers. The figure-eight knot is abso-
lutely unique in this respect—there is no other knot with this double
quotient possessing the discrete group arithmetic property. For fur-
ther details of the group-theoretic structure of these objects, see [277].

33. Clausen’s function and the figure-eight knot complement
volume. As we saw in Section 2.4, the volume of the figure-eight
knot complement is given by Equation (2.14). That is,

V =
2√
27

∞∑
k=0

(−1
27

)k ( 9
(6k + 1)2

− 9
(6k + 2)2

− 12
(6k + 3)2

− 3
(6k + 4)2

+
1

(6k + 5)2

)
. (2.41)

The reason is sketched below. Note that this proof crucially requires
knowing the answer in advance, and moving back from the discovered
result to something provable.

(a) We take the log sine integral

V = −2
∫ π/3

0

log
(

2 sin
(
t

2

))
dt (2.42)

as the defining formula for the requisite volume. Recall that the
Clausen function is given by

Cl2(θ) =
∑
n>0

sin(nθ)
n2

, (2.43)

which satisfies Cl2(π
2 ) = G. Then integration of (2.42) shows

V = i
{
Li2

(
e−iπ/3

)
− Li2

(
eiπ/3

)}
= 2 ImLi2

(
1 + i

√
3

2

)
= 2 Cl2

(π
3

)
= 3 Cl2

(
2 π
3

)
.

All the requisite details about Clausen’s function are to be found
in Lewin [202].
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(b) A hypergeometric equivalent formulation of (2.41) is

V√
3

= 2F
(

1
6
,
1
6
, 1;

7
6
,
7
6
;
−1
27

)
− 1

2
F

(
1
3
,
1
3
, 1;

4
3
,
4
3
;
−1
27

)
− 8

27
F

(
1
2
,
1
2
, 1;

3
2

3
2
;
−1
27

)
− 1

24
F

(
2
3
,
2
3
, 1;

5
3
,
5
3
;
−1
27

)
+

2
225

F

(
5
6
,
5
6
, 1;

11
6
,
11
6

;
−1
27

)
which with some effort is expressible in terms of the dilogarithm.
This leads to the following:

V
?= Im

{
4 Li2

(
i
√

3
3

)
− 8

3
Li2

(
i
√

3
9

)

+ Li2

(
1
2
− i

√
3

6

)
+ 8 Li2

(
−1

2
+
i
√

3
6

)}
.

(c) Now, Lewin in Equation (5.5) of [202] gives

Im Li2
(
reiθ

)
= ω log(r)+

1
2
Cl2 (2ω)−1

2
Cl2 (2ω + 2θ)+

1
2
Cl2 (2θ) ,

where ω = arctan(r sin θ/(1 − r cos θ)). Using this, a proof that
(2.41) holds is reduced to showing that, with α = arctan(

√
3/9),

4 Cl2
(π

3

)
= 2 Cl2 (2α) + Cl2 (π + 2α) − 3 Cl2

(
5
3
π + 2α

)
,

which is true by applying the two variable identities for Clausen’s
function given in Equations (4.61) and (4.63) of [202], with θ =
π
3 .

(d) Many other identities lie in (4.63) such as, with α = arctan
(

1
3

)
,

6G = 2 Cl2 (2α) − 3 Cl2
(
2α− π

2

)
+ Cl2

(
2α+

π

2

)
.

A much harder identity is

7
√

7
4

L−7 (2) ?= 3 Cl2 (α) − 3 Cl2 (2α) + Cl2 (3α)

with α = 2 arctan
(√

7
)
.
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34. Further identities for the knot complement volume. These
are explored below.

(a) On expanding the Clausen function of (2.43), we obtain

V =
∑
n≥1

2 sin(nπ/3)
n2

=
√

3

( ∞∑
n=0

1
(6n+ 1)2

+
∞∑

n=0

1
(6n+ 2)2

−
∞∑

n=0

1
(6n+ 4)2

−
∞∑

n=0

1
(6n+ 5)2

)
,

or equivalently,

V =
√

3
9

∑
n≥1

n− 1
2

(n− 1
3 )2(n− 2

3 )2
.

(b) Changing variables in (2.42) and using the binomial theorem,
we derive

V = −2
∫ 1

0

log (y)√
1 − (

y
2

)2 dy = 2
∞∑

n=0

(
2 n
n

)
(2n+ 1)2 16n

.

The next two equivalent identities are derivable using (1.76) in
[202] which gives the series for Li2(ei π/3):

(c)

V =
2π
3

⎛⎝1 − log
(π

3

)
+
∑
m≥1

ζ(2m)
m(2m+ 1)62m

⎞⎠ ,

and

V =
2π
3

− 2π
3

log
(π

3

)
+ 2

∑
n≥1

Bn

2n
(π

3 )2n+1

(2n+ 1)!
.

(d) Show that

V = 2
√

3 Im Li2

(
i
√

3 + 1
2

)
= −√

3
∫ 1

0

log y
1 − y + y2

dy.
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(e) Hence expanding the last denominator and differentiating the
β-function (see Section 5.4), deduce that

V =
√

3
∑
n≥1

{Ψ (n) − Ψ (2n)}β (n, n) = 2
√

3
∑
n≥1

∑2n−1
k=n

1
k

n
(
2n
n

)
= 2

√
3
∑
n≥1

∑2n−1
k=1

1
k

n
(
2n
n

) − 2
√

3
∑
n≥1

∑n−1
k=1

1
k

n
(
2n
n

) .

(f) This is equivalent to

V = 2
√

3
∫ 1/2

0

log
(

1+s
1−s

)
(1 − s2)

√
1 − 4 s2

ds−2
√

3
∫ 1/2

0

−s log
(
1 − s2

)
(1 − s2)

√
1 − 4 s2

ds,

where the first integral corresponds to
∑2n−1

k=1 1/k and the second
to

∑n−1
k=1 1/k. These are equivalent to

V =
√

3
∫ π/2

0

log
(

1+(sin t)/2
1−(sin t)/2

)
1 − (sin2 t)/4

ds

−
√

3
∫ π/2

0

(− sin t
2

)
log(1 − (sin2 t)/4)

1 − (sin2 t)/4
dt,

where
∫ π/2

0
sin2N+1 t dt = Γ2(N+1)4N/Γ(2N+2), and

∫ π/2

0
sin2N

t dt = Γ2(N + 1/2)22N−1/Γ(2N + 1). A symmetric rendition of
the integral is:

V = 2
√

3
∫ 1/2

0

(1 + s) log (1 + s) − (1 − s) log (1 − s)
(1 − s2)

√
1 − 4 s2

ds.

(g) Deduce that

V =
√

3
∞∑

n=0

∑2 n+1
k=1 (−1)k+1k−1(

2 n
n

)
(2n+ 1)

.

(h) Finally,

−√
3

∞∑
n=2

∑n−1
k=1 k

−1

n
(
2 n
n

) =
√

3
2

∫ 1

0

log (1 − t (1 − t))
1 − t+ t2

dt.
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Let

H1 =
∞∑

n=1

∑n−1
k=1 k

−1

n
(
2 n
n

) , H2 =
∞∑

n=1

∑2n−1
k=1 k−1

n
(
2 n
n

) .

Then V = 2
√

3 {H2 −H1} and, following the logic of the previ-
ous exercise,

H1 =
∞∑

k=0

(−1
27

)k {
− 1/3

(6k + 1)2
+

1
(6k + 2)2

+
10/9

(6k + 3)2

+
1/3

(6k + 4)2
− 1/27

(6k + 5)2

}
,

while

H2 =
∞∑

k=0

(−1
27

)k { 2/3
(6k + 1)2

− 2/9
(6k + 3)2

− 2/27
(6k + 5)2

}
.

See [93, 202] for additional details.

35. Census of hypberbolic knots. The URL http://newweb.cecm.sfu
.ca/cgi-bin/KnotPlot/objtest/hyperbolic census?knot=k4.1 contains
a census of hyperbolic knots (most, but not all, knots are hyperbolic).
The figure-eight knot, not the trefoil, is now simplest when viewed
by the number of perfect tetrahedra in its complement.

36. Jeff Weeks on experimental topology. Jeff Weeks recently wrote:

There are plenty of such [experimentally discovered topology] re-
sults, but most would require a fair amount of explanation to be
significant to non-specialists. For example, one of my favorites
is the (computationally discovered!) pattern in the canonical
triangulation for two-bridge knot and link complements. The
canonical triangulation is geometrically defined, yet it exactly
encodes the twists in the (topological) tangle decomposition of
the knot or link. The correspondence is remarkably simple, with
exactly two tetrahedra realizing each twist. This result has since
been proved, but the proof is long and difficult. . . . I could try
to dig up a figure illustrating how the pairs of tetrahedra realize
the twists, . . . but then it’s not clear that you could explain it
easily so that a non-specialist would understand why it’s such an
amazingly beautiful thing (as opposed to the reader struggling
just to get a dim grasp of what the result is saying, without
really appreciating what makes it cool).
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Figure 2.18. Weeks’ two-bridge discovery.

Figure 2.18 attempts to illustrate Jeff Weeks’ beautiful discovery.

37. Griffeath’s “psoup” cellular automata web site. David Grif-
feath well describes his site http://psoup.math.wisc.edu as follows:

Hi there. I’m a math prof at the University of Wisconsin-
Madison whose research these days focuses on self-organization
of random cellular automata. For the past ten years or so I have
been producing colorful computer graphics and animations that
illustrate the ability of local parallel update rules to generate
spatial structure from disordered initial states. My work has
appeared in numerous books and periodicals, including Nonlin-
ear Science Today and Scientific American. Some of my cellu-
lar automaton (CA) rules have been featured in the simulation
packages CA-LAB and James Gleick’s Chaos: The Software.
This home page is intended to provide a gallery of my images
and movies, as well as links to software that allows you to design
your own.

It’s tempting to think of self-organization as evolution from pri-
mordial soup. Machines that orchestrate such dynamics are
sometimes called mixmasters. I use both garden-variety PCs
and dedicated Cellular Automaton Machines (CAMs) as mix-
masters. Since my other great fixation in life is gastronomy
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(witness the important 3-letter word hidden in my Welsh last
name), this site is laid out as a kitchen.

38. Fractal cards. Not all impressive representations require a com-
puter. Elaine Simmt and Brent Davis [260] describe lovely construc-
tions made by repeated paper folding and cutting that result in beau-
tiful fractal “pop-up” cards. Nonetheless, in Figure 2.19, we show the
seventh iterate of a Sierpinski triangle built in software by following
those paper cutting and folding rules in software. Note the similar-
ity to the tetrahedron in Figure 2.1. Recursive Maple code is given
below:

sierpinski:= proc( n::nonnegint )

local p1, p2, q1, q2, r1, r2, plotout;

p1:= [1.,0.,0.]; q1:= [-1.,0.,0.]; r1:= [0.,0.,1.];

p2:= [1.,1.,0.]; q2:= [-1.,1.,0.]; r2:= [0.,1.,1.];

plotout:= polys(n, p1, p2, r1, r2, q1, q2);

return PLOT3D( plotout, SCALING(CONSTRAINED),

AXESSTYLE(NONE), STYLE(PATCHNOGRID), ORIENTATION(90,45) );

end:

polys:= proc( n::nonnegint, p1, p3, r1, r3, q1, q3 )

local p2, q2, r2, s1, s2, s3, t1, t2, t3, u2, u3;

Figure 2.19. 7th iterate of Sierpinski triangle made by paper cutting and folding.
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if n=0 then return POLYGONS([p1,p3,r3,r1], [q1,q3,r3,r1]) fi;

p2:= (p1+p3)/2; q2:= (q1+q3)/2; r2:= (r1+r3)/2;

s1:= (p1+r1)/2; s2:= (p2+r2)/2; s3:= (p3+r3)/2;

t1:= (q1+r1)/2; t2:= (q2+r2)/2; t3:= (q3+r3)/2;

u2:= (p2+q2)/2; u3:= (p3+q3)/2;

return polys(n-1, p2, p3, s2, s3, u2, u3),

polys(n-1, s1, s2, r1, r2, t1, t2),

polys(n-1, u2, u3, t2, t3, q2, q3),

POLYGONS([p1,p2,s2,s1], [q1,q2,t2,t1]); end:

39. Gauss on learning. In Boris Stoicheff’s often enthralling biography
of Gerhard Herzberg (1903-1999), Gauss is recorded as writing

It is not knowledge, but the act of learning, not possession but
the act of getting there which generates the greatest satisfaction.
[266, page 42]

Herzberg, who fled Germany for Saskatchewan in 1935, won the 1971
Nobel Prize in Chemistry for his pioneering work in molecular spec-
troscopy. His impact on Canadian—and international—science, sig-
nally in chemistry, physics and astronomy, has been enormous.

40. Horizontal Riemann curves. Figure 2.20 plots the modulus of
the function Z defined by (x, y) �→ |ζ(x+ iy)| for 1/5 < x < 4/5 and
1 < y < 100. Much related material and many illustrations are to be
found in Brian Conrey’s survey [110].

Figure 2.20. The modulus of the zeta function.
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Plot Z(x, y) as a function of x on the critical strip [0, 1] for various
values of y. (Compare what happens with the roles of x and y re-
versed.) As it turns out, the monotonicity exhibited in the graph of
level curves of Z(·, y) implies the Riemann Hypothesis. This conclu-
sion is given in [296], and was discovered while the first author of that
paper was teaching an undergraduate complex variable class.

41. Hardy and Littlewood’s Four Axioms for Collaboration. Har-
ald Bohr, quoting from the preface of Béla Bollobás’ 1988 edition of
Littlewood’s Miscellany, said:

The first [axiom] said that when one wrote to the other (they of-
ten preferred to exchange thoughts in writing instead of orally),
it was completely indifferent whether what they said was right
or wrong. As Hardy put it, otherwise they could not write
completely as they pleased, but would have to feel a certain re-
sponsibility thereby. The second axiom was to the effect that,
when one received a letter from the other, he was under no
obligation whatsoever to read it, let alone answer it—because,
as they said, it might be that the recipient of the letter would
prefer not to work at that particular time, or perhaps that he
was just then interested in other problems. . . . The third axiom
was to the effect that, although it did not really matter if they
both thought about the same detail, still, it was preferable that
they should not do so. And, finally, the fourth, and perhaps
most important axiom, stated that it was quite indifferent if
one of them had not contributed the least bit to the contents
of a paper under their common name; otherwise there would
constantly arise quarrels and difficulties in that now one, and
now the other, would oppose being named co-author.

These rules work very well in the present age.

42. What is a tool? James O’Donnell wrote a mere five years ago:

I am a student of the works of St. Augustine and shall begin ac-
cordingly with confession. The single most transforming feature
of cyberspace as we inhabit it in 1997 for my own scholarship
can be found in a warehouse on the edges of downtown Seattle.
I mean the nerve center of www.amazon.com. [226]

Google, MathSciNet—the online version of Mathematical Reviews
at http://e-math.ams.org/mathscinet, and Amazon.com are just as
much tools of discovery as are PSLQ, the Inverse Calculator and
Mathematica.
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43. Tea with John-Paul II. James Glanz wrote in “Web Archive Opens
a New Realm of Research” (New York Times, April 30, 2001):

Three years ago, said Dr. Zanelli in Chile, one of his own stu-
dents posted a paper and the next day received an e-mail mes-
sage from Dr. Witten. The student was at first so shocked that
he accused Dr. Zanelli of playing an elaborate practical joke.

“We learned that great physicists do read the archives daily and
they browse through all the preprints,” Dr. Zanelli said, “even
if they come from an obscure place in the end of the world.”

Dr. Witten’s instant response, Dr. Zanelli said, “was like having
the pope drop by for tea.”

Such is the promise of the wired world, deluges of spam not with-
standing.

44. False proofs of big theorems. David Einstein has commented that
in the last generation, there has always been at least one somewhat
serious purported proof of the Poincaré conjecture under scrutiny.
Similar comments hold for Fermat’s Last Theorem, the Riemann Hy-
pothesis, the Four Color Theorem, and so on. Many famous math-
ematicians have survived premature publicity for proofs found later
to be unavoidably flawed. Hans Rademacher’s putative proof of the
falsehood of the Riemann Hypothesis made the pages of Time in the
late forties, even after the flaw had been discovered by Siegel. [110]

Of course, even the existence of generally accepted proofs does not
discourage many amateurs from hunting for counterexamples nor
from trying to square the circle or trisect angles.

45. Research, teaching and communication. The Fields medalist
Bill Thurston, in his 1995 article, “On proof and progress,” makes
the observation about researchers’ habits that

Mathematicians have developed habits of communication that
are often dysfunctional. Organizers of colloquium talks every-
where exhort speakers to explain things in elementary terms.
Nonetheless, most of the audience at an average colloquium talk
gets little of value from it. Perhaps they are lost within the first
5 minutes, yet sit silently through the remaining 55 minutes. Or
perhaps they quickly lose interest because the speaker plunges
into technical details without presenting any reason to investi-
gate them. At the end of the talk, the few mathematicians who
are close to the field of the speaker ask a question or two to
avoid embarrassment.
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This pattern is similar to what often holds in classrooms, where
we go through the motions of saying for the record what we
think the students “ought” to learn, while the students are try-
ing to grapple with the more fundamental issues of learning our
language and guessing at our mental models. Books compensate
by giving samples of how to solve every type of homework prob-
lem. Professors compensate by giving homework and tests that
are much easier than the material “covered” in the course, and
then grading the homework and tests on a scale that requires
little understanding. We assume that the problem is with the
students rather than with communication: that the students
either just don’t have what it takes, or else just don’t care.

Outsiders are amazed at this phenomenon, but within the math-
ematical community, we dismiss it with shrugs.

46. Riemann and robust notation. Figures 2.7 and 2.8, which repro-
duce the first two pages of the final manuscript of Riemann’s cele-
brated 1859 paper [243] illustrate how robust mathematical notation
is. If a counter-example or theorem is originally due to Hilbert or
Cauchy, there is a good chance we reproduce it with exactly the
same syntax.

47. Hoffman’s art. Experimental visualization in low-dimensional ge-
ometry was one of the primary motivations for Klaus Peters’ decision
in the early nineties to establish the journal Experimental
Mathematics—see http://www.expmath.org. This is now a flourish-
ing, high quality journal with several Fields medalists on its board.
Some of the better examples of geometric visualization are due
to David Hoffman—see the web sites http://www.gang.umass
.edu and http://emsh.calarts.edu/∼mathart/portfolio/SPD Costa
portfolio.html.

48. Euler, Goldbach and the birth of ζ. What follows is a direct
transcription of correspondence between Euler and Goldbach [179],
leading to the origin of the zeta function and multi-zeta values.

(a) 59. Goldbach an Euler, Moskau, 24. Dez. 1742 [footnote:
AAL: F.136, Op. 2, Nr.8, Blatt 54–55]
[. . . ] Als ich neulich die vermeinten summas der beiden let-
zteren serierum in meinem vorigen Schreiben wieder betrachtet,
habe ich alsofort wahrgenommen, daß selbige aus einem bloßem
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Schreibfehler entstanden, von welchem es aber in der Tat heißet:
Si non errasset, fecerat ille minus1.

denn ich bin durch diese Gelegenheit auf summationes aliarum
serierum geraten, die ich sonst kaum gesuchet, viel weniger ge-
funden haben würde.

Ich halte dafür, daß es ein problema problematum ist, die sum-
mam huius:

/54r/1 +
1

2n

(
1 +

1

2m

)
+

1

3n

(
1 +

1

2m
+

1

3m

)
+

1

4n

(
1 +

1

2m
+

1

3m
+

1

4m

)
+ etc.

in den casibus zu finden, wo m et n nicht numeri integri pares et
sibi aequales sind, doch gibt es casus, da die summa angegeben
werden kann, exempli gr[atia], si m = 1, n = 3, denn es ist

1 +
1

23

(
1 +

1

2

)
+

1

33

(
1 +

1

2
+

1

3

)
+

1

43

(
1 +

1

2
+

1

3
+

1

4

)
+ etc. =

π4

72
.

(wenn π gewöhnlichermaßen für die peripheriam circuli, cuius
diameter = 1, genommen wird), hingegen wieß ich die summas
serierum

A · · · 1 +
1

25

(
1 +

1

2

)
+

1

35

(
1 +

1

2
+

1

3

)
+

1

45

(
1 +

1

2
+

1

3
+

1

4

)
+ etc.

B · · · 1 +
1

24

(
1 +

1

2

)
+

1

34

(
1 +

1

2
+

1

3

)
+

1

44

(
1 +

1

2
+

1

3
+

1

4

)
+ etc.

noch nicht, ob ich gleich weiß , daß 2A+ B = 19π6

2·5·7·34 , wie ich
denn auch die summam der folgenden beiden /55/ serieum C+D
allezeit finden kann, si m et n sint numeri pares quicunque

C · · · 1 +
1

2n

(
1 +

1

2m

)
+

1

3n

(
1 +

1

2m
+

1

3m

)
+ etc.

D · · · 1 +
1

2m

(
1 +

1

2n

)
+

1

3m

(
1 +

1

2n
+

1

3n

)
+ etc.

Übrigens beziehe ich mich auf mein voriges Schreiben und ver-
bleibe nächst herzlicher Anwünschung eines glücklichen neuen
Jahres[. . . ]

(b) “Lisez Euler, lisez Euler, c’est notre maitre a tous.” [132]
This letter is the first in which Goldbach precisely formulates
the series which sparked Euler’s further investigations into what
would become known as the Zeta-function. These investigations
were apparently due to a serendipitous mistake. The first sen-
tence above translates as follows:

1Frei zitiert nach Marcus Valerius Martialis, I, 21,9
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When I recently considered further the indicated sums of
the last two series in my previous letter, I realized immedi-
ately that the same series arose due to a mere writing error,
from which indeed the saying goes, “Had one not erred, one
would have achieved less.”(Si non errasset, fecerat ille mi-
nus). [Translation thanks to Martin Matmüller, scientific
collaborator of Euler’s Opera Omnia, vol. IVA4, Birkhuser
Verlag.]

(c) Confirm Goldbach’s evaluation (m = 3, n = 1):

ζ(3, 1) + ζ(4) =
π4

72

(in the language of Section 3.4 of the second volume of this
work).

49. Gauss: the next generation.

Gauss’s second son, Eugene, emigrated to the United States
in 1830, enlisted in the army, and later went into business in
Missouri. Eugene is said to have had some of his father’s gift
for languages and the ability to perform prodigious arithmetic
calculations, which he did for recreation after his sight failed
him in old age. (David T. Lykken [207])

50. Flexibility.

When the facts change, I change my mind. What do you do,
sir? (John Maynard Keynes, quoted in The Economist, Dec.
18, 1999, pg. 47)

51. Mathematics and the aesthetic impulse.

If my teachers had begun by telling me that mathematics was
pure play with presuppositions, and wholly in the air, I might
have become a good mathematician, because I am happy enough
in the realm of essence. But they were overworked drudges,
and I was largely inattentive, and inclined lazily to attribute to
incapacity in myself or to a literary temperament that dullness
which perhaps was due simply to lack of initiation. (George
Santayana, Persons and Places [254, pg. 238–9])
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I am ashamed to tell you to how many figures I carried these com-
putations, having no other business at the time.

– Issac Newton, personal journal, 1666

The desire, as well as the need, to calculate ever more accurate values of
π, the ratio of the circumference of a circle to its diameter, has challenged
mathematicians for many centuries. In recent years, π computations have
provided some fascinating examples of computational mathematics. But
first, a little historical background, which we have condensed from a 1997
article [23]. Additional historical details are available from the fascinating
new book Pi Unleashed [10], and from [49, 74]. We should also mention
the MacTutor web site, maintained by the Department of Mathematics
at the University of St. Andrews in Scotland: http://www-gap.dcs.st-and
.ac.uk/∼history. This is particularly good for biographical information
about historical mathematicians, including those involved with π.

3.1 A Short History of Pi

About 2000 BCE, the Babylonians used the approximation 3 1
8 = 3.125.

At this same time or earlier, according to an ancient Egyptian document,
Egyptians assumed that a circle with diameter nine has the same area as a
square of side eight, which implies π = 256

81 = 3.1604 . . . Some have argued
from the following biblical passage that the ancient Hebrews used π = 3:

Also, he made a molten sea of ten cubits from brim to brim, round
in compass, and five cubits the height thereof; and a line of thirty
cubits did compass it round about (1 Kings 7:23; see also 2 Chron.
4:2).

The first rigorous mathematical calculation of the value of π was due
to Archimedes (ca. 250 BCE), who used a scheme based on inscribed
and circumscribed polygons to obtain the bounds 3 10

71 < π < 3 1
7 . Indeed,

Archimedes’ scheme constitutes the first true algorithm for π, in the sense

103
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that it is a well-defined scheme that is capable of producing an arbitrarily
accurate value for the constant. This scheme can be stated as a simple
recursion, as follows. Set a0 = 2

√
3 and b0 = 3. Then define

an+1 =
2anbn
an + bn

bn+1 =
√
an+1bn. (3.1)

This recursion converges to π, with the error decreasing by a factor of
approximately four with each iteration. Variations of Archimedes’ geomet-
rical scheme were the basis for all high-accuracy calculations of π for the
next 1,800 years. For example, the Chinese mathematician Tsu Chung-
Chih used a variation of this method to compute π correct to seven digits
in the fifth century CE.

Little progress was made in Europe during the dark ages, but one very
significant advance in arithmetic was made in India. This was the invention,
in about 450 CE, of our modern positional, zero-based decimal arithmetic
system—the Indo-Arabic system. This discovery greatly accelerated arith-
metic in general, and computing π in particular. The Indo-Arabic system
was introduced into Europe in 1000 CE, but due to resistance from several
quarters, centuries elapsed before it finally enjoyed widespread use. The
resistance ranged from accountants who didn’t want their livelihood up-
set to clerics who regarded the system as “diabolical,” on account of what
they incorrectly assumed was its origin in the Arabic world. European
commerce resisted the system until the 18th century, and even in scientific
circles, its usage was limited until the 17th century [174]. The difficulty of
doing arithmetic prior to the Indo-Arabic system is indicated by the words
of counsel given to a wealthy German merchant in the 16th century, who
was considering where to send his son for college:

If you only want him to be able to cope with addition and sub-
traction, then any French or German university will do. But if you
are intent on your son going on to multiplication and division—
assuming that he has sufficient gifts—then you will have to send him
to Italy. [174, pg. 577]

In the 17th century, Newton and Leibniz discovered calculus, and this
powerful new tool was quickly exploited to find new formulas for π. One
early calculus-based formula comes from the integral

arctanx =
∫ x

0

dt

1 + t2
=

∫ x

0

(1 − t2 + t4 − t6 + · · · ) dt

= x− x3

3
+
x5

5
− x7

7
+
x9

9
− · · · . (3.2)
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Substituting x = 1 gives the well-known Gregory–Leibniz formula

π/4 = 1 − 1/3 + 1/5 − 1/7 + 1/9 − 1/11 + · · · (3.3)

(recall our discussion of Gregory’s series in Section 2.2). This particular
series is practically useless for computing π—it converges so slowly that
hundreds of terms would be required to compute even two correct digits.
However, by employing a trigonometric identity

π/4 = arctan(1/2) + arctan(1/3), (3.4)

attributed to Euler in 1738, you can obtain

π/4 =
1
2
− 1

3 · 23
+

1
5 · 25

− 1
7 · 27

+ · · ·

+
1
3
− 1

3 · 33
+

1
5 · 35

− 1
7 · 37

+ · · · , (3.5)

which converges much more rapidly. An even faster formula, discovered a
generation earlier by Machin, can be obtained using the identity

π/4 = 4 arctan(1/5)− arctan(1/239) (3.6)

in a similar way. This formula was used in numerous computations of π,
culminating with Shanks’ computation of π to 707 decimal digits accuracy
in 1874 (although it was later found that this result was in error after the
527th decimal place).

Newton himself discovered a different formula. He began by considering
the area A of the left-most region under the circle as shown in Figure 3.1.
On one hand, this is merely the difference between the area of the circular
sector, which is π/24, and the area of the triangle, which is

√
3/32. On the

other hand, A can be written as the integral

A =
∫ 1/4

0

√
x− x2 dx. (3.7)

By employing his own binomial theorem, Newton wrote (3.7) as:

A =
∫ 1/4

0

x1/2(1 − x)1/2 dx

=
∫ 1/4

0

x1/2
(
1 − x/2 − x2/8 − x3/16 − 5x4/128− · · · ) dx

=
∫ 1/4

0

(
x1/2 − x3/2

2
− x5/2

8
− x7/2

16
− 5x9/2

128
− · · ·

)
dx. (3.8)



�

�

�

�

�

�

�

�

106 3. Pi and Its Friends

Figure 3.1. Newton’s scheme to compute π.

Integrating this series term-by-term and combining the above results yielded
the formula

π =
3
√

3
4

+ 24
(

1
3 · 8 − 1

5 · 32
− 1

7 · 128
− 1

9 · 512
− · · ·

)
. (3.9)

Newton personally used this formula to compute π. He recorded 15 digits
in his diary, but as he later confessed, “I am ashamed to tell you to how
many figures I carried these computations, having no other business at the
time.”

One of the more interesting figures in the history of π calculations is
Johan Zacharias Dase, who lived in Vienna in the mid-1800s. According
to the MacTutor web site (see above), Dase once demonstrated his com-
putational skill by multiplying 79532853× 93758479 = 7456879327810587
in just 54 seconds; two 20-digit numbers required 6 minutes; two 40-digit
numbers required 40 minutes; two 100-digit numbers required 8 hours 45
minutes. After being shown how to use the formula

π/4 = arctan(1/2) + arctan(1/5) + arctan(1/8), (3.10)

he calculated π to 200 places in his head. He later calculated a seven-
digit logarithm table, and extended a table of integer factorizations to
10,000,000. Gauss requested that Dase be permitted to assist him, but
Dase died shortly afterward.

Along this line, recent historical research has uncovered several non-
European mathematicians who did notable early work on π that until
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recently was not well known. For example, the Chinese mathematician
Tsu Chung-Chih used a variation of Archimedes’ method to compute π
correct to seven digits in the fifth century. A millennium later Al-Kāshi
in Samarkand, “who could calculate as eagles can fly,” computed 2π in
sexagecimal as

6 +
16
60

+
59
602

+
28
603

+
01
604

+
34
605

+
51
606

+
46
607

+
14
608

+
50
609

(accurate to seventeen decimal places) using 3 · 228-gons. Another remark-
able but little-known mathematician was Madhava of Sangamagramma,
who lived in India in the late 1300s and early 1400s. Madhava derived
the Gregory-Leibniz series for π (3.3) at least 200 years before Gregory or
Leibniz found it. He also derived the variant series

π =
√

12
(

1 − 1
3 · 3 +

1
5 · 32

− 1
7 · 33

+ · · ·
)
, (3.11)

and used it to compute π to 11 decimal places. For additional information,
see [49] and the MacTutor web site.

One motivation for computations of π was very much in the spirit of
modern experimental mathematics: to see if the decimal expansion of π
repeats, which would mean that π is the ratio of two integers (i.e., rational),
or to recognize π as some algebraic constant. The question of the rationality
of π was settled in the late 1700s, when Lambert and Legendre proved
that the constant is irrational. The question of whether π is algebraic
was settled in 1882, when Lindemann proved that it is transcendental.
Lindemann’s proof also settled, once and for all, the ancient Greek question
of whether the circle could be squared with ruler and compass: It cannot,
because numbers that are the lengths of lines that can be constructed using
ruler and compasses (often called constructible numbers) are necessarily
algebraic, and squaring the circle is equivalent to constructing the value π.

In 1945, Ferguson utilized some mechanical calculating machines to
compute π to 530 decimal digits, using the formula

π

4
= 3 arctan

(
1
4

)
+ arctan

(
1
20

)
+ arctan

(
1

1985

)
, (3.12)

and over the next two years increased this to 808 digits. With this result,
they discovered that Shanks’ 1874 computation was wrong after the first
527 places.

While such devices saved considerable labor compared with pencil-
and-paper arithmetic, they were still a far cry from modern high-speed
computers—each operand had to be manually typed, for example. The
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first truly electronic computation of π was performed in 1949 on the orig-
inal ENIAC. This calculation was suggested by John von Neumann, who
wished to study the digits of π and e. Computing 2037 decimal places of
π on the ENIAC required 70 hours. A similar calculation today could be
performed in a fraction of second on a personal computer.

Later computer calculations were further accelerated by the discovery of
advanced algorithms for performing the required high-precision arithmetic
operations. For example, in 1965 it was found that the newly-discovered
fast Fourier transform (FFT) could be used to perform high-precision mul-
tiplications much more rapidly than conventional schemes. These meth-
ods dramatically lowered the computer time required for computing π and
other mathematical constants to high precision. These techniques will be
discussed more in Section 6.2. See also [13] and [86].

In spite of these advances, until the 1970s all computer evaluations of π
still employed classical formulas, usually one of the Machin-type formulas.
Some new infinite series formulas were discovered by Ramanujan around
1910, but these were not well known until quite recently when his writings
were widely published. Ramanujan’s related mathematics may be followed
in [51, 75, 162]. One of these series is the remarkable formula

1
π

=
2
√

2
9801

∞∑
k=0

(4k)!(1103 + 26390k)
(k!)43964k

. (3.13)

Each term of this series produces an additional eight correct digits in the
result. Gosper used this formula to compute 17 million digits of π in 1985.
Gosper also computed the first 17 million terms of the continued fraction
expansion of π. Figure 3.2 is a reproduction of a first day issue stamp
commemorating the 75th birthday of Ramanujan. It was mailed from India
with the correct postage added on the back. It arrived safely in Scotland
despite the address being David Borwein’s home address.

At about the same time, David and Gregory Chudnovsky found the
following variation of Ramanujan’s formula:

1
π

= 12
∞∑

k=0

(−1)k (6k)!(13591409 + 545140134k)
(3k)! (k!)3 6403203k+3/2

. (3.14)

Each term of this series produces an additional 14 correct digits. The
Chudnovskys implemented this formula using a clever scheme that enabled
them to utilize the results of an initial level of precision to extend the
calculation to even higher precision. They used this method in several
large calculations of π, culminating with a computation to over four billion
decimal digits in 1994.
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Figure 3.2. Ramanujan’s 75th birthday stamp. Courtesy of Naomi Borwein.

Along this line, it is interesting to note that the Ramanujan-type series
(see [74, pg. 188])

1
π

=
∞∑

n=0

((
2n
n

)
16n

)3
42n+ 5

16
(3.15)

permits one to compute the billionth binary digit of 1/π without computing
the first half of the series.

While the Ramanujan and Chudnovsky series are considerably more
efficient than the classical formulas, they share with them the property
that the number of terms one must compute increases linearly with the
number of digits desired in the result. In other words, if you want to
compute π to twice as many digits, you have to evaluate twice as many
terms of the series.

In 1976, Eugene Salamin and Richard Brent independently discovered
an algorithm for π based on the arithmetic-geometric mean (AGM) and
some ideas originally due to Gauss in the 1800s (although for some reason
Gauss never saw the connection to computing π). The Salamin–Brent
algorithm may be stated as follows. Set a0 = 1, b0 = 1/

√
2 and s0 = 1/2.
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Calculate

ak =
ak−1 + bk−1

2
bk =

√
ak−1bk−1

ck = a2
k − b2k

sk = sk−1 − 2kck

pk =
2a2

k

sk
. (3.16)

Then pk converges quadratically to π: Each iteration of this algorithm
approximately doubles the number of correct digits—successive iterations
produce 1, 4, 9, 20, 42, 85, 173, 347, and 697 correct decimal digits of π.
Twenty-five iterations are sufficient to compute π to over 45 million decimal
digit accuracy. However, each of these iterations must be performed using
a level of numeric precision that is at least as high as that desired for the
final result.

Beginning in 1985, one of the present authors (Jonathan Borwein) and
his brother Peter Borwein discovered some additional algorithms of this
type [74]. One is as follows. Set a0 = 1/3 and s0 = (

√
3 − 1)/2. Iterate

rk+1 =
3

1 + 2(1 − s3k)1/3

sk+1 =
rk+1 − 1

2
ak+1 = r2k+1ak − 3k(r2k+1 − 1). (3.17)

Then 1/ak converges cubically to π—each iteration approximately triples
the number of correct digits. Another algorithm is as follows: Set a0 =
6 − 4

√
2 and y0 =

√
2 − 1. Iterate

yk+1 =
1 − (1 − y4

k)1/4

1 + (1 − y4
k)1/4

ak+1 = ak(1 + yk+1)4 − 22k+3yk+1(1 + yk+1 + y2
k+1). (3.18)

Then ak converges quartically to 1/π. This particular algorithm, together
with the Salamin–Brent scheme, has been employed by Yasumasa Kanada
of the University of Tokyo in several computations of π over the past 15
years or so, including his 1999 computation of π to more than 206 billion
decimal digits.

Daniel Shanks, who in 1961 computed π to over 100,000 digits, once de-
clared that a billion digit computation would be “forever impossible.” But
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both Kanada and the Chudnovskys computed more than one billion digits
in 1989. Similarly, the intuitionist mathematicians Brouwer and Heyting
once asserted the “impossibility” of ever knowing whether the sequence
“0123456789” appears in the decimal expansion of π [170]. This sequence
was found in 1997 by Kanada, beginning at position 17,387,594,880. Even
as late as 1989, British mathematical physicist Roger Penrose ventured, in
the first edition of his book The Emperor’s New Mind, that we are not
likely to know whether a string of ten consecutive sevens occurs in the
decimal expansion of π [230, pg. 115]. By the time his book was pub-
lished, Kanada had already found a string of ten consecutive sixes in his
480-million-digit computation of π. When one of the present authors men-
tioned this to Penrose in 1990, he replied that he was “startled to learn
how far the combination of human mathematical ingenuity with computer
technology has enabled the calculation of the decimal expansion of π to
be carried out.” Accordingly, he changed his text to “twenty consecutive
sevens,” which appeared in subsequent printings of the book. This was
just in time, as a string of ten consecutive sevens was found by Kanada in
1997, beginning at position 22,869,046,249.

As the first edition of this book was nearing completion (2003), the au-
thors learned that Kanada, with a team consisting of Y. Ushiro of Hitachi,
H. Kuroda, and M. Kudoh of the University of Tokyo, and the assistance of
nine others from Hitachi, have now computed π to over 1.24 trillion decimal
digits. Kanada and his team first computed π in hexadecimal (base 16) to
1,030,700,000,000 places, using the following two arctangent relations for
π:

π = 48 arctan
1
49

+ 128 arctan
1
57

− 20 arctan
1

239
+ 48 arctan

1
110443

π = 176 arctan
1
57

+ 28 arctan
1

239
− 48 arctan

1
682

+ 96 arctan
1

12943
.

(3.19)

The first formula was found in 1982 by K. Takano, a high school teacher
and song writer. The second formula was found by F. C. W. Störmer in
1896.

Kanada and his team evaluated these formulas using a scheme analo-
gous to that employed by Gosper and the Chudnovskys, in that they were
able to avoid explicitly storing the multiprecision numbers involved. This
resulted in a scheme that is roughly competitive in efficiency compared
to the Salamin-Brent and Borwein quartic algorithms they had previously
used, yet with a significantly lower total memory requirement. In par-
ticular, they were able to perform their latest computation on a system
with 1 Tbyte (1012 bytes) main memory, the same as with their previous
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computation, yet obtain six times as many digits.
After Kanada and his team verified that the hexadecimal digit strings

produced by these two computations were in agreement, they performed an
additional check by directly computing 20 hexadecimal digits beginning at
position 1,000,000,000,001. This calculation, which employed an algorithm
that we shall describe in Section 3.4, required 21 hours, much less than the
time required for the first step. The result of this calculation, B4466E8D21
5388C4E014, perfectly agreed with the corresponding digits produced by the
two arctan formulas. At this point they converted their hexadecimal value
of π to decimal, and converted back to hexadecimal as a check. These con-
versions employed a numerical approach similar to that used in the main
and verification calculations. The entire computation, including hexadec-
imal and decimal evaluations and checks, required roughly 600 hours on
their 64-node Hitachi parallel supercomputer. The main segment of the
computation ran at nearly 1 Tflop/s (i.e., one trillion floating-point oper-
ations per second), although this performance rate was slightly lower than
the rate of their previous calculation of 206 billion digits. Full details will
appear in an upcoming paper [182].

According to Kanada, the ten decimal digits ending in position one tril-
lion are 6680122702, while the ten hexadecimal digits ending in position one
trillion are 3F89341CD5. Some data on the frequencies of digits in π, based on
Kanada’s computations, are given in Section 4.1. Additional information of
this sort is available from Kanada’s web site: http://www.super-computing.
org. Additional historical background on record-breaking computations of
π is available at http://www.cecm.sfu.ca/personal/jborwein/pi cover.html.
A listing of some milestones in the history of the computation of π is given
in Tables 3.1, 3.2, and 3.3.

In retrospect, one might wonder why in antiquity π was not measured
to an accuracy in excess of 22/7. One conjecture is that it reflects not an
inability to do so, but instead a very different mind set to a modern (Baco-
nian) experimental one. Along this line, Marty Gerrietts, an acquaintance
of one of the present authors, may provide an explanation:

I work at a youth emergency shelter and my students (right now)
are 11 to 17. My youngest were as accurate as my oldest. They
measured circles that I had drawn on paper . . . and used rulers to
measure the string. It was probably coincidental, but they were
consistently coming up with 3.1, 3.15, 3.11. That’s pretty good for
string and rulers. You have to understand that they didn’t have a
clue that we were finding pi. These students have very poor edu-
cational backgrounds. Those that had heard of it thought it was
some magic number that only geometry teachers know about. The
concept that is just a ratio between diameter and circumference had



�

�

�

�

�

�

�

�

3.1. A Short History of Pi 113

Name Year Digits Value
Babylonians 2000? BCE 1 3.125 (3 1

8 )
Egyptians 2000? BCE 1 3.16045 (4(8

9 )2)
China 1200? BCE 1 3
Bible (1 Kings 7:23) 550? BCE 1 3
Archimedes 250? BCE 3 3.1418 (ave.)
Chang Hong 130 CE 1 3.1622 (

√
10)

Ptolemy 150 CE 3 3.14166
Wang Fau 250 CE 1 3.15555 (142

45 )
Liu Hui 263 CE 5 3.14159
Siddhanta 380 CE 3 3.1416
Tsu Ch’ung Chi 480 CE 7 3.1415926 (355/113)
Aryabhata 499 CE 4 3.14156 (62832/2000)
Brahmagupta 640 CE 1 3.162277 (=

√
10)

Al-Khowarizmi 800 CE 4 3.1416
Fibonacci 1220 CE 3 3.141818
Madhava 1400 CE 11 3.14159265359
Al-Kāshi 1429 CE 14 3.14159265358979
Otho 1573 CE 6 3.1415929
Viéte 1593 CE 9 3.1415926536 (ave.)
Romanus 1593 CE 15 3.141592653589793
Van Ceulen 1596 CE 20 3.14159265358979323846
Van Ceulen 1615 CE 35

Table 3.1. Pre-calculus era π calculations.

Name Year Digits
Newton 1665 16
Sharp 1699 71
Seki Kowa 1700 10
Kamata 1730 25
Machin 1706 100
De Lagny 1719 127 (112 correct)
Takebe 1723 41
Matsunaga 1739 50
Von Vega 1794 140 (136 correct)
Rutherford 1824 208 (152 correct)
Strassnitzky and Dase 1844 200
Clausen 1847 248
Lehmann 1853 261
Rutherford 1853 440
Shanks 1874 707 (527 correct)

Table 3.2. Calculus era π calculations.
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Name Year Digits
Ferguson 1946 620
Ferguson 1947 710
Ferguson and Wrench 1947 808
Smith and Wrench 1949 1,120
Reitwiesner et al. (ENIAC) 1949 2,037
Nicholson and Jeenel 1954 3,092
Felton 1957 7,480
Genuys 1958 10,000
Felton 1958 10,021
Guilloud 1959 16,167
Shanks and Wrench 1961 100,265
Guilloud and Filliatre 1966 250,000
Guilloud and Dichampt 1967 500,000
Guilloud and Bouyer 1973 1,001,250
Miyoshi and Kanada 1981 2,000,036
Guilloud 1982 2,000,050
Tamura 1982 2,097,144
Tamura and Kanada 1982 4,194,288
Tamura and Kanada 1982 8,388,576
Kanada, Yoshino and Tamura 1982 16,777,206
Ushiro and Kanada Oct. 1983 10,013,395
Gosper Oct. 1985 17,526,200
Bailey Jan. 1986 29,360,111
Kanada and Tamura Sep. 1986 33,554,414
Kanada and Tamura Oct. 1986 67,108,839
Kanada, Tamura, Kubo, et. al Jan. 1987 134,217,700
Kanada and Tamura Jan. 1988 201,326,551
Chudnovskys May 1989 480,000,000
Chudnovskys Jun. 1989 525,229,270
Kanada and Tamura Jul. 1989 536,870,898
Kanada and Tamura Nov. 1989 1,073,741,799
Chudnovskys Aug. 1989 1,011,196,691
Chudnovskys Aug. 1991 2,260,000,000
Chudnovskys May 1994 4,044,000,000
Takahashi and Kanada Jun. 1995 3,221,225,466
Kanada Aug. 1995 4,294,967,286
Kanada Oct. 1995 6,442,450,938
Kanada and Takahashi Jun. 1997 51,539,600,000
Kanada and Takahashi Sep. 1999 206,158,430,000
Kanada, Ushiro, Kuroda, Kudoh Dec. 2002 1,241,100,000,000

Table 3.3. Digital era π calculations.
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never been presented to any of them. For my convenience, I had
made the circles with diameters of 2, 3, 4, 5 and 7. I had them mea-
sure and record the diameter, then loop the string around the circle
and record the circumference. Then I had them go back and find the
ratio in each case. Of course, it came to about 3 in each case and
they were astounded! From there we went to a historical perspective
of pi and they created their own formula for finding circumference.

In the same vein, one likely reason that Gauss and Ramanujan did
not further develop the ideas in their identities for π is that an iterative
algorithm, as opposed to explicit results, was not satisfactory for them
(especially Ramanujan). Ramanujan would much have preferred formulae
such as π ≈ 3 log 5280/

√
67 or π ≈ 3 log 640320/

√
163.

3.2 Fascination with Pi

One might wonder what has been the motivation behind these modern
computations of π, given that questions such as the irrationality and tran-
scendence of π were settled more than 100 years ago. Doubtless one moti-
vation is simply the raw challenge of harnessing the stupendous power now
available in modern computer systems for this classical computational prob-
lem. We should add that programming such calculations is definitely not
trivial, especially on large, distributed memory computer systems. There
have been several practical spin-off benefits from these efforts. For exam-
ple, some new techniques for performing the fast Fourier transform (FFT),
which is heavily used in modern science and engineering computing, had
their roots in attempts to accelerate computations of π.

What’s more, it has long been recognized that the computation of π
is a very strong test of computer system integrity. As we pointed out
both in Section 1.3 and in our discussion above on Kanada’s calculation,
such computations are typically checked by repeating the computation with
a different formula, or even with a completely different computation ap-
proach. When two independent computations produce the same result,
this is rather strong evidence that the computer has performed trillions of
arithmetic operations, and transferred trillions of bytes of data between
different components of the computer system, without error. In 1985, one
of the present authors used two computations of π to test a new Cray-2
supercomputer at NASA’s Ames Research Center, and these computations
in fact disclosed at least one significant hardware defect. Testing computer
integrity and performance is Yasumasa Kanada’s primary motivation in
the computations he has done on Hitachi supercomputers.
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Beyond purely practical considerations is the continuing interest in the
fundamental question of the normality (digit randomness) of π. Kanada,
for example, has performed detailed statistical analysis of his computed
results of π to see if there are any statistical abnormalities that suggest π
is not normal. We shall discuss this question more fully in Section 4.1.

But there is no doubt that one motivation for computations of π is
the eternal fascination with this most prominent and mysterious of mathe-
matical constants, a fascination shared both by professional scientists and
mathematicians as well as the lay public. At the present time there are hun-
dreds of web sites devoted to π (see, for example, http://www.piworld.de),
and thousands of online research papers and other documents dealing
with π. There are even several Internet-based clubs devoted to π, one
of which requires that initiates recite by heart the first 100 digits of π with
“respect, fluency, and smoothness” (see http://pi314.at). The very popular
website http://www.cecm.sfu.ca/pi/yapPing.html recites π in many differ-
ent languages.

Fascination with π is also evident in the many recent popular books,
television shows, and movies that have mentioned π. In the 1967 Star
Trek episode “Wolf in the Fold,” Spock foiled the evil computer by telling
it to compute the last digit of π. A May 1993 segment of The Simpsons
featured the character Apu boasting that he can recite π to 40,000 digits,
and that the last digit is a “1” (one of the present authors was asked by the
show’s writers for this digit) [222]. In November 1996, the MSNBC network
aired a news segment about π, including interviews with one of the present
authors and several other mathematicians at Simon Fraser University. The
1997 movie Contact, starring Jodie Foster, was based on the 1986 book
by noted astronomer Carl Sagan. In the book version, the lead female
character searched for patterns in the digits of π, and after her mysterious
experience found confirmation in the base-11 expansion of π [252]. A 1997
book entitled The Joy of Pi sold thousands of copies [54]. A 1998 movie
entitled Pi began with decimal digits of π displayed on the screen. The
2001 Academy Award-winning movie A Beautiful Mind , which portrayed
the life of mathematician John Nash, shows π in equations scribbled by the
lead actor Russell Crowe (although the π characters here appear to denote
the prime-counting function and other nongeometric entities). The 2002
book Life of Pi by Canadian author Yann Martel won the Booker Prize, a
prestigious British literary award [215]. Finally, in the 2003 movie Matrix
Reloaded, the Key Maker warns that a door will be accessible for exactly
314 seconds, a figure that Time speculated was a reference to π [115].

Along this line, National Public Radio reported on April 12, 2003 that
novelty automatic teller machine withdrawal slips, showing a balance of
$314, 159.26, are popular in New York City. One can scribble a note on
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the back and, apparently innocently, let the intended target be suitably
impressed by one’s amazingly healthy saving account. Scott Simon, the
host of this NPR show, noted the close resemblance to π.

For those who know The Hitchhiker’s Guide to the Galaxy, it is amusing
that 042 occurs at the digits ending at the fifty-billionth decimal place in
each of π and 1/π—thereby providing an excellent answer to the ultimate
question, “What is forty two?”

It is hard to imagine e or log 2 playing the same role. That said, the
publicity surrounding the Millennium problems has lead to a spate of recent
popular books on the Riemann Hypothesis. The million dollar prize for
the Riemann Hypothesis even formed the basis of a recent episode of the
television program Law and Order, in which student notebooks contained
quite accurate formulas.

3.3 Behind the Cubic and Quartic Iterations
The genesis of the π algorithms (3.13), (3.17), (3.18) and related material is
itself an illustrative example of experimental mathematics. For nonnegative
integer N , the function

α(N) =
E′(kN )
K(kN )

− π

4K2(kN )
(3.20)

had arisen, where kN is the N -th singular value, and K and E′ are com-
plete elliptic integrals as detailed in the discussion of Legendre’s relation
in Section 5.6.1. For present purposes, it suffices that (3.20) is very easy to
compute. For example, the first few non–composite values are (to 20 digit
accuracy):

α(1) ≈ 0.49999999999999999999
α(2) ≈ 0.41421356237309504880
α(3) ≈ 0.36602540378443864678
α(5) ≈ 0.33188261099247156221
α(7) ≈ 0.32287565553229529536.

It is obvious that α(1) = 1/2 and easy to spot that α(2) =
√

2−1, from
which it was quickly observed that α(3) = (

√
3 − 1)/2 and that α(7) =

(
√

7− 2)/2, but α(5) did not appear to be a quadratic. Twenty years ago,
such identification was not as easy, and it was only when it occurred to the
Borweins that quadratic fields congruent to ±1 mod 4 behave differently
that they stumbled upon (experimentally) the identity

α(5) =
√

5 −
√

2
√

5 − 2
2

. (3.21)
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Nowadays, this is almost trivial: A “Minpoly” calculation immediately
returns 29−80x−24x2+16x4 = 0 and this has the surd above as its smallest
positive root. At this point, the authors could use known results only to
prove the value of α(1), α(2) and α(3). Those for α(5) and α(7) remained
conjectural. There was, however, an empirical family of algorithms for π:
let α0 = α(N) and k0 = k′N (where k′ =

√
1 − k2) and iterate

kn+1 =
1 − k′n
1 + k′n

(3.22)

αn+1 = (1 + kn+1)2αn −
√
N 2n+1kn+1. (3.23)

Then

lim
n→∞α−1

n = π. (3.24)

Again, (3.24) was provable for N = 1, 2, 3 and only conjectured for
N = 5, 7. In each case the algorithm appeared to converge quadratically
to π. On closer inspection while the provable cases were correct to 5, 000
digits, the empirical ones agreed with π to roughly 100 places only. Now,
in many ways to have discovered a “natural” number that agreed with
π to that level—and no more—would have been more interesting than
the alternative. That seemed unlikely, but recoding and rerunning the
iterations kept producing identical results.

Twenty years ago, very high-precision calculation was less accessible,
and the code was being run in a Berkeley Unix integer package. After
about six weeks of effort, it was found that the square root algorithm in
the package was badly flawed, but only if run with an odd precision of more
than 60 digits! And for idiosyncratic reasons that had only been the case
in the two unproven cases. Needless to say, tracing the bug was a salutary
and somewhat chastening experience.

3.4 Computing Individual Digits of Pi

An outsider might be forgiven for thinking that essentially everything of
interest with regards to π has been discovered. For example, this sentiment
is suggested in the closing chapters of Beckmann’s 1971 book on the history
of π [48, pg. 172]. Ironically, the Salamin–Brent quadratically convergent
iteration was discovered only five years later, and the higher-order conver-
gent algorithms followed in the 1980s. In 1990, Rabinowitz and Wagon
discovered a “spigot” algorithm for π, which permits successive digits of
π (in any desired base) to be computed with a relatively simple recursive
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algorithm based on the previously generated digits (see [239] and Item 15
at the end of this chapter).

But even insiders are sometimes surprised by a new discovery. Prior
to 1996, almost all mathematicians believed that if you want to determine
the d-th digit of π, you have to generate the entire sequence of the first d
digits. (For all of their sophistication and efficiency, the schemes described
above all have this property.) But it turns out that this is not true, at least
for hexadecimal (base 16) or binary (base 2) digits of π. In 1996, Peter
Borwein, Simon Plouffe, and one of the present authors (Bailey) found an
algorithm for computing individual hexadecimal or binary digits of π [33].
To be precise, this algorithm:

(1) directly produces a modest-length string of digits in the hexadecimal
or binary expansion of π, beginning at an arbitrary position, without
needing to compute any of the previous digits;

(2) can be implemented easily on any modern computer;

(3) does not require multiple precision arithmetic software;

(4) requires very little memory; and

(5) has a computational cost that grows only slightly faster than the digit
position.

Using this algorithm, for example, the one millionth hexadecimal digit
(or the four millionth binary digit) of π can be computed in less than a
minute on a 2003-era computer. The new algorithm is not fundamentally
faster than best-known schemes for computing all digits of π up to some
position, but its elegance and simplicity are nonetheless of considerable
interest. This scheme is based on the following remarkable new formula
for π:

Theorem 3.1.

π =
∞∑

i=0

1
16i

(
4

8i+ 1
− 2

8i+ 4
− 1

8i+ 5
− 1

8i+ 6

)
. (3.25)

Proof. First note that for any k < 8,∫ 1/
√

2

0

xk−1

1 − x8
dx =

∫ 1/
√

2

0

∞∑
i=0

xk−1+8i dx

=
1

2k/2

∞∑
i=0

1
16i(8i+ k)

. (3.26)
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Thus one can write
∞∑

i=0

1
16i

(
4

8i+ 1
− 2

8i+ 4
− 1

8i+ 5
− 1

8i+ 6

)

=
∫ 1/

√
2

0

4
√

2 − 8x3 − 4
√

2x4 − 8x5

1 − x8
dx, (3.27)

which on substituting y =
√

2x becomes∫ 1

0

16 y − 16
y4 − 2 y3 + 4 y − 4

dy =
∫ 1

0

4y
y2 − 2

dy −
∫ 1

0

4y − 8
y2 − 2y + 2

dy

= π. (3.28)

�

However, in presenting this formal derivation, we are disguising the
actual route taken to the discovery of this formula. This route is a superb
example of experimental mathematics in action.

It all began in 1995, when Peter Borwein and Simon Plouffe of Simon
Fraser University observed that the following well-known formula for log 2
permits one to calculate isolated digits in the binary expansion of log 2:

log 2 =
∞∑

k=0

1
k2k

. (3.29)

This scheme is as follows. Suppose we wish to compute a few binary digits
beginning at position d + 1 for some integer d > 0. This is equivalent to
calculating {2d log 2}, where {·} denotes fractional part. Thus we can write

{2d log 2} =

{{
d∑

k=0

2d−k

k

}
+

∞∑
k=d+1

2d−k

k

}

=

{{
d∑

k=0

2d−k mod k
k

}
+

∞∑
k=d+1

2d−k

k

}
. (3.30)

We are justified in inserting “mod k” in the numerator of the first summa-
tion, because we are only interested in the fractional part of the quotient
when divided by k.

Now the key observation is this: The numerator of the first sum in
Equation (3.30), namely 2d−k mod k, can be calculated very rapidly by
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means of the binary algorithm for exponentiation, performed modulo k.
The binary algorithm for exponentiation is merely the formal name for the
observation that exponentiation can be economically performed by means
of a factorization based on the binary expansion of the exponent. For
example, we can write 317 = ((((32)2)2)2) · 3, thus producing the result
in only 5 multiplications, instead of the usual 16. According to Knuth,
this technique dates back at least to 200 BCE [188, pg. 461]. In our
application, we need to obtain the exponentiation result modulo a positive
integer k. This can be done very efficiently by reducing modulo k the
intermediate multiplication result at each step of the binary algorithm for
exponentiation. A formal statement of this scheme is as follows:

Algorithm 3.2. Binary algorithm for exponentiation modulo k.

To compute r = bn mod k, where r, b, n and k are positive integers: First
set t to be the largest power of two such that t ≤ n, and set r = 1. Then

A: if n ≥ t then r ← br mod k; n← n− t; endif
t← t/2
if t ≥ 1 then r ← r2 mod k; go to A; endif �

Note that the above algorithm is performed entirely with positive inte-
gers that do not exceed k2 in size. Thus ordinary 64-bit floating-point or
integer arithmetic, available on almost all modern computers, suffices for
even rather large calculations. 128-bit floating-point arithmetic (double-
double or quad precision), available at least in software on many systems
(see Section 6.2.1), suffices for the largest computations currently feasible.

We can now present the algorithm for computing individual binary dig-
its of log 2.

Algorithm 3.3. Individual digit algorithm for log 2.

To compute the (d + 1)-th binary digit of log 2: Given an integer d > 0,
(1) calculate each numerator of the first sum in Equation (3.30), using
Algorithm 3.2, implemented using ordinary 64-bit or 128-bit floating-point
arithmetic; (2) divide each numerator by the respective value of k, again
using ordinary floating-point arithmetic; (3) sum the terms of the first
summation, while discarding any integer parts; (4) evaluate the second
summation as written using floating-point arithmetic—only a few terms are
necessary since it rapidly converges; and (5) add the result of the first and
second summations, discarding any integer part. The resulting fraction,
when expressed in binary, gives the first few digits of the binary expansion
of log 2 beginning at position d+ 1. �
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As soon as Borwein and Plouffe found this algorithm, they began seek-
ing other mathematical constants that shared this property. It was clear
that any constant α of the form

α =
∞∑

k=0

p(k)
q(k)2k

, (3.31)

where p(k) and q(k) are integer polynomials, with deg p < deg q and q
having no zeroes at nonnegative integer arguments, is in this class. Further,
any rational linear combination of such constants also shares this property.
Checks of various mathematical references eventually uncovered about 25
constants that possessed series expansions of the form given by Equation
(3.31).

As you might suppose, the question of whether π also shares this prop-
erty did not escape these researchers. Unfortunately, exhaustive searches
of the mathematical literature did not uncover any formula for π of the
requisite form. But given the fact that any rational linear combination of
constants with this property also shares this property, Borwein and Plouffe
performed integer relation searches to see if a formula of this type existed for
π. This was done, using computer programs written by one of the present
authors (Bailey), which implement the “PSLQ” integer relation algorithm
in high-precision, floating-point arithmetic [16, 140]. We will discuss the
PSLQ algorithm and related techniques more in Section 6.3.

In particular, these three researchers sought an integer relation for the
real vector (α1, α2, · · · , αn), where α1 = π and (αi, 2 ≤ i ≤ n) is the
collection of constants of the requisite form gleaned from the literature,
each computed to several hundred decimal digit precision. To be precise,
they sought an n-long vector of integers (ai) such that

∑
i aiαi = 0, to

within a very small “epsilon.” After a month or two of computation, with
numerous restarts using new α vectors (when additional formulas were
found in the literature) the identity (3.25) was finally uncovered. The
actual formula found by the computation was:

π = 4F (1/4, 5/4; 1;−1/4)+ 2 arctan(1/2) − log 5, (3.32)

where F (1/4, 5/4; 1;−1/4) = 0.955933837 . . . is a hypergeometric function
evaluation. Reducing this expression to summation form yields the new π
formula:

π =
∞∑

i=0

1
16i

(
4

8i+ 1
− 2

8i+ 4
− 1

8i+ 5
− 1

8i+ 6

)
. (3.33)

To return briefly to the derivation of Formula (3.33), let us point out
that it was discovered not by formal reasoning, or even by computer-based
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symbolic processing, but instead by numerical computations using a high-
precision implementation of the PSLQ integer relation algorithm. It is
most likely the first instance in history of the discovery of a new formula
for π by a computer. We might mention that, in retrospect, Formula (3.33)
could be found much more quickly, by seeking integer relations in the vector
(π, S1, S2, · · · , S8), where

Sj =
∞∑

k=0

1
16k(8k + j)

. (3.34)

Such a calculation could be done in a few seconds on a computer, even if
one did not know in advance to use 16 in the denominator and 9 terms in
the search, but instead had to stumble on these parameters by trial and
error. But this observation is, as they say, 20-20 hindsight. The process of
real mathematical discovery is often far more tortuous and less elegant than
the polished version typically presented in textbooks and research journals.

It should be clear at this point that the scheme for computing individual
hexadecimal digits of π is very similar to Algorithm 3.3. For completeness,
we state it as follows:

Algorithm 3.4. Individual digit algorithm for π.

To compute the (d+ 1)-th hexadecimal digit of π: Given an integer d > 0,
we can write

{16dπ} = {4{16dS1} − 2{16dS4} − {16dS5} − {16dS6}}, (3.35)

using the Sj notation of Equation (3.34). Now apply Algorithm 3.3, with

{16dSj} =

{{
d∑

k=0

16d−k

8k + j

}
+

∞∑
k=d+1

16d−k

8k + j

}

=

{{
d∑

k=0

16d−k mod 8k + j

8k + j

}
+

∞∑
k=d+1

16d−k

8k + j

}
(3.36)

instead of Equation (3.30), to compute {16dSj} for j = 1, 4, 5, 6. Combine
these four results, discarding integer parts, as shown in (3.35). The result-
ing fraction, when expressed in hexadecimal notation, gives the hex digit
of π in position d+ 1, plus a few more correct digits. �

As with Algorithm 3.3, multiple-precision arithmetic software is not
required—ordinary 64-bit or 128-bit floating-point arithmetic suffices even
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for some rather large computations. We have omitted here some numer-
ical details for large computations—see [33]. Sample implementations in
both C and Fortran-90 are available from http://www.experimentalmath
.info.

One mystery that remains unanswered is why Formula (3.33) was not
discovered long ago. As you can see from the above proof, there is nothing
very sophisticated about its derivation. There is no fundamental reason
why Euler, for example, or Gauss or Ramanujan, could not have discov-
ered it. Perhaps the answer is that its discovery was a case of “reverse
mathematical engineering.” Lacking a motivation to find such a formula,
mathematicians of previous eras had no reason to derive one. But this still
doesn’t answer the question of why the algorithm for computing individual
digits of log 2 had not been discovered before—it is based on a formula,
namely Equation (3.29), that has been known for centuries.

Needless to say, Algorithm 3.4 has been implemented by numerous re-
searchers. In 1997, Fabrice Bellard of INRIA computed 152 binary digits of
π starting at the trillionth binary digit position. The computation took 12
days on 20 workstations working in parallel over the Internet. His scheme
is actually based on the following variant of 3.33:

π = 4
∞∑

k=0

(−1)k

4k(2k + 1)

− 1
64

∞∑
k=0

(−1)k

1024k

(
32

4k + 1
+

8
4k + 2

+
1

4k + 3

)
. (3.37)

This formula permits individual hex or binary digits of π to be calculated
roughly 43% faster than (3.25).

A year later, Colin Percival, then a 17-year-old student at Simon Fraser
University, utilized a network of 25 machines to calculate binary digits in
the neighborhood of position 5 trillion, and then in the neighborhood of 40
trillion. In September 2000, he found that the quadrillionth binary digit
is “0,” based on a computation that required 250 CPU-years of run time,
carried out using 1,734 machines in 56 countries. Table 3.4 gives some
results known as of this writing.

One question that immediately arises in the wake of this discovery is
whether or not there is a formula of this type and an associated compu-
tational scheme to compute individual decimal digits of π. Searches con-
ducted by numerous researchers have been unfruitful. Now it appears that
there is no nonbinary formula of this type—this is ruled out by a new result
co-authored by one of the present authors (see Section 3.7) [73]. However,
none of this removes the possibility that there exists some completely differ-
ent approach that permits rapid computation of individual decimal digits
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Hex Digits Beginning
Position at This Position
106 26C65E52CB4593
107 17AF5863EFED8D
108 ECB840E21926EC
109 85895585A0428B
1010 921C73C6838FB2
1011 9C381872D27596
1.25 × 1012 07E45733CC790B
2.5 × 1014 E6216B069CB6C1

Table 3.4. Computed hexadecimal digits of π.

of π. Also, as we will see in the next section, there do exist formulas for
certain other constants that admit individual digit calculation schemes in
various nonbinary bases (including base ten).

3.5 Unpacking the BBP Formula for Pi

It is worth asking “why” the formula

π =
∞∑

i=0

1
16i

(
4

8i+ 1
− 2

8i+ 4
− 1

8i+ 5
− 1

8i+ 6

)
(3.38)

exists. As observed above, this identity is equivalent to, and can be proved
by establishing:

π =
∫ 1/

√
2

0

4
√

2 − 8x3 − 4
√

2x4 − 8x5

1 − x8
dx.

The present version of Maple evaluates this integral to

−2 log 2 + 2 log(2 −
√

2) + π + 2 log(2 +
√

2), (3.39)

which simplifies to π. In any event, one can ask what the individual series
in (3.38) comprise. So consider

Sb =
∞∑

k=0

1
16k(8k + b)
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for 1 ≤ b ≤ 8 and the corresponding normalized integrals

I(b) = 2b/2

∫ 1/
√

2

0

xb−1

1 − x8
dx. (3.40)

Again, Maple provides closed forms for I(b) in which the basic quanti-
ties seem to be the following: arctan(2), arctan(1/2),

√
2 arctan(1/

√
2),

log(2), log(3), log(5), and log(
√

2 ± 1). At this point one may use integer
relation methods and obtain:

S1 =
π

8
+

log 5
8

−
√

2 log(
√

2 − 1)
4

− arctan(1/2)
4

+
√

2 arctan(
√

2/2)
4

S2 =
log(3)

4
+

arctan(1/2)
2

S3 =
π

4
−

√
2 log(

√
2 − 1)

2
− arctan(1/2)

2
−

√
2 arctan(

√
2/2)

2
− log 5

4

S4 =
log 5

2
− log 3

2

S5 = −π
2
−
√

2 log(
√

2 − 1) + arctan(1/2) +
√

2 arctan(
√

2/2) − log 5
2

S6 = log 3 − 2 arctan(1/2)

S7 = −π + log 5 − 2
√

2 log(
√

2 − 1) + 2 arctan(1/2)− 2
√

2 arctan(
√

2/2)
S8 = 8 log 2 − 2 log 5 − 2 log 3. (3.41)

Thus the “simple” hexadecimal formula (3.38) is actually a molecule made
up of more subtle hexadecimal atoms: with the final bond coming from
the simple identity arctan 2 + arctan(1/2) = π/2. As an immediate conse-
quence, one obtains the formula arctan(1/2) = S2 − S6/4.

Furthermore, the facts that

Im
(

log
(

1 − 1 − i

x

))
= arctan

(
1

1 − x

)
2 arctan(1/3) + arctan(1/7) = arctan(1/2) + arctan(1/3)

= arctan1 = π/4 (3.42)

allow one to write directly a base-64 series for arctan(1/3) (using x = 4) and
a base-1024 series for arctan(1/7) (using x = 8). This yields the identity

π

4
=

1
16

∞∑
n=0

(−1)n

64n

(
8

4n+ 1
+

4
4n+ 2

+
1

4n+ 3

)

+
1

256

∞∑
n=0

(−1)n

1024n

(
32

4n+ 1
+

8
4n+ 2

+
1

4n+ 3

)
, (3.43)
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which is similar to, although distinct from, the identity used by Bellard
and Percival in their computations.

3.6 Other BBP-Type Formulas

A formula of the type mentioned in the previous sections, namely

α =
∞∑

k=0

p(k)
bkq(k)

, (3.44)

is now referred to as a BBP-type formula, named after the initials of the
authors of the 1997 paper where the π hex digit algorithm appeared [33].
For a constant α given by a formula of this type, it is clear that individual
base-b digits can be calculated, using the scheme similar to the ones outlined
in the previous section. The paper [33] includes formulas of this type for
several other constants. Since then, a large number of other BBP-type
formulas have been discovered.

Most of these identities were discovered using an experimental ap-
proach, using PSLQ searches. Others were found as the result of educated
guesses based on experimentally obtained results. In each case, these for-
mulas have been formally established, although the proofs are not always
as simple as the proof of Theorem 3.1. We present these results, in part,
to underscore the fact that the approach used to find the new formula for
π has very broad applicability.

A sampling of the known binary BBP-type formulas (i.e., formulas with
a base b = 2p for some integer p) is shown in Table 3.5. Some nonbinary
BBP-type formulas are shown in Table 3.6. These formulas are derived
from several sources: [33,93,94]. An updated collection is available at [19].
The constant G that appears in Table 3.5 is Catalan’s constant, namely
G = 1 − 1/32 + 1/52 − 1/72 + · · · = 0.9159655941 . . .

In addition to the formulas in Tables 3.5 and 3.6, there are two other
classes of constants known to possess binary BBP-type formulas. The
first is logarithms of certain integers. Clearly, logn can be written with
a binary BBP formula (i.e. a formula with b = 2m for some integer m)
provided n factors completely using primes whose logarithms have binary
BBP formulas—one merely combines the individual series for the different
primes into a single binary BBP formula. We have seen that the logarithm
of the prime 2 possesses a binary BBP formula, and so does log 3, by the
following reasoning:
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log 3 = 2 log 2 + log
(

1 − 1
4

)
= 2

∞∑
k=1

1
k2k

−
∞∑

k=1

1
k4k

=
1
2

∞∑
k=0

1
4k

(
2

2k + 1
+

1
2k + 2

)
− 1

4

∞∑
k=0

1
4k

(
2

2k + 2

)

=
∞∑

k=0

1
4k

(
1

2k + 1

)
. (3.46)

π
√

3 =
9

32

∞∑
k=0

1

64k

(
16

6k + 1
+

8

6k + 2
− 2

6k + 4
− 1

6k + 5

)

π2 =
9

8

∞∑
k=0

1

64k

(
16

(6k + 1)2
− 24

(6k + 2)2
− 8

(6k + 3)2
− 6

(6k + 4)2

+
1

(6k + 5)2

)
log2 2 =

1

32

∞∑
k=0

1

64k

(
64

(6k + 1)2
− 160

(6k + 2)2
− 56

(6k + 3)2
− 40

(6k + 4)2

+
4

(6k + 5)2
− 1

(6k + 6)2

)
π log 2 =

1

256

∞∑
k=0

1

4096k

(
4096

(24k + 1)2
− 8192

(24k + 2)2
− 26112

(24k + 3)2
+

15360

(24k + 4)2

− 1024

(24k + 5)2
+

9984

(24k + 6)2
+

11520

(24k + 8)2
+

2368

(24k + 9)2
− 512

(24k + 10)2

+
768

(24k + 12)2
− 64

(24k + 13)2
+

408

(24k + 15)2
+

720

(24k + 16)2

+
16

(24k + 17)2
+

196

(24k + 18)2
+

60

(24k + 20)2
− 37

(24k + 21)2

)
G =

1

1024

∞∑
k=0

1

4096k

(
3072

(24k + 1)2
− 3072

(24k + 2)2
− 23040

(24k + 3)2
+

12288

(24k + 4)2

− 768

(24k + 5)2
+

9216

(24k + 6)2
+

10368

(24k + 8)2
+

2496

(24k + 9)2
− 192

(24k + 10)2

+
768

(24k + 12)2
− 48

(24k + 13)2
+

360

(24k + 15)2
+

648

(24k + 16)2

+
12

(24k + 17)2
+

168

(24k + 18)2
+

48

(24k + 20)2
− 39

(24k + 21)2

)

Table 3.5. Binary BBP-type formulas.
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log 2 =
2

3

∞∑
k=0

1

9k(2k + 1)

π
√

3 =
1

9

∞∑
k=0

1

729k

(
81

12k + 1
− 54

12k + 2
− 9

12k + 4
− 12

12k + 6

− 3

12k + 7
− 2

12k + 8
− 1

12k + 10

)

log 3 =
1

729

∞∑
k=0

1

729k

(
729

6k + 1
+

81

6k + 2
+

81

6k + 3
+

9

6k + 4

+
9

6k + 5
+

1

6k + 6

)

π2 =
2

27

∞∑
k=0

1

729k

(
243

(12k + 1)2
− 405

(12k + 2)2
− 81

(12k + 4)2

− 27

(12k + 5)2
− 72

(12k + 6)2
− 9

(12k + 7)2
− 9

(12k + 8)2

− 5

(12k + 10)2
+

1

(12k + 11)2

)

log

(
9

10

)
=

−1

10

∞∑
k=1

1

k10k

log

(
1111111111

387420489

)
=

1

108

∞∑
k=0

1

1010k

(
108

10k + 1
+

107

10k + 2
+

106

10k + 3

+
105

10k + 4
+

104

10k + 5
+

103

10k + 6
+

102

10k + 7

+
10

10k + 8
+

1

10k + 9

)
25

2
log

(
781

256

(
57 − 5

√
5

57 + 5
√

5

)√
5
)

=

∞∑
k=0

1

55k

(
5

5k + 2
+

1

5k + 3

)
(3.45)

Table 3.6. Nonbinary BBP-type formulas.

In a similar manner, it can be shown, by examining the factorization of
2n + 1 and 2n − 1, where n is an integer, that numerous other primes have
this property. Some additional primes can be obtained by noting that the
real part of the Taylor series expansion of

α = log
(

1 ± (1 + i)k

2n

)
(3.47)

yields a BBP-type formula. See [19] for details.



�

�

�

�

�

�

�

�

130 3. Pi and Its Friends

The logarithms of the following primes are now known to possess binary
BBP formulas [103]:

2, 3, 5, 7, 11, 13, 17, 19, 29, 31, 37, 41, 43, 61, 73, 109, 113, 127, 151,
241, 257, 331, 337, 397, 683, 1321, 1429, 1613, 2113, 2731, 5419, 8191,
14449, 26317, 38737, 43691, 61681, 65537, 87211, 131071, 174763,
246241, 262657, 268501, 279073, 312709, 524287, 525313, 599479,
2796203, 4327489, 7416361, 15790321, 18837001, 22366891 (3.48)

This list is certainly not complete, and it is unknown whether or not all
primes have this property, or even whether the list of such primes is finite
or infinite. One can also obtain BBP-type formulas in nonbinary bases for
the logarithms of certain integers and rational numbers. One example is
given by the base ten formula for log(9/10) in Table 3.6. This has been
used to compute the ten billionth decimal digit of log(9/10) [33].

One additional class of binary BBP-type formulas that we will mention
here is arctangents of certain rational numbers. We present here the results
of experimental searches, using the PSLQ integer relation algorithm, which
we have subsequently established formally. The formal derivation of these
results proceeds as follows. Consider the set of rationals given by q =
|Im(T )/Re(T )| or |Re(T )/Im(T )|, where

T =
m∏

k=1

(
1 ± i

2tk

)uk
(

1 ± 1 + i

2vk

)wk

(3.49)

for various m-long nonnegative integer vectors t, u, v, w and choices
of signs as shown [74, pg. 344]. For example, setting t = (1, 1), u =
(1, 1), v = (1, 3), w = (1, 1), with signs (1,−1,−1, 1), gives the result
T = 25/32 − 5i/8, which yields q = 4/5. Indeed, one can obtain the
formula

arctan
(

4
5

)
=

1
217

∞∑
k=0

1
220k

(
524288
40k + 2

− 393216
40k + 4

− 491520
40k + 5

+
163840
40k + 8

+
32768

40k + 10
− 24576

40k + 12
+

5120
40k + 15

+
10240

40k + 16

+
2048

40k + 18
+

1024
40k + 20

+
640

40k + 24
+

480
40k + 25

+
128

40k + 26
− 96

40k + 28
+

40
40k + 32

+
8

40k + 34

− 5
40k + 35

− 6
40k + 36

)
. (3.50)
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The set of rationals for which BBP formulas can be obtained in this
way can be further expanded by applying the formula

tan(r + s) =
tan r + tan s

1 − tan r tan s
, (3.51)

for rationals r and s for which binary BBP-type formulas are found. By
applying these methods, it can be shown that binary BBP formulas exist
for the arctangents of the following rational numbers. Only those rationals
with numerators < denominators ≤ 25 are listed here.

1/2, 1/3, 2/3, 1/4, 3/4, 1/5, 2/5, 3/5, 4/5, 1/6, 5/6, 1/7, 3/7,
4/7, 5/7, 6/7, 1/8, 7/8, 1/9, 2/9, 7/9, 8/9, 3/10, 1/11, 2/11,
3/11, 7/11, 8/11, 10/11, 1/12, 5/12, 1/13, 4/13, 6/13, 7/13, 9/13,
11/13, 12/13, 3/14, 5/14, 1/15, 4/15, 8/15, 1/16, 7/16, 11/16, 13/16,
15/16, 1/17, 4/17, 6/17, 7/17, 9/17, 11/17, 15/17, 16/17, 1/18, 13/18,
3/19, 4/19, 6/19, 7/19, 8/19, 9/19, 11/19, 17/19, 9/20, 1/21, 13/21,
16/21, 20/21, 3/22, 7/22, 9/22, 19/22, 21/22, 2/23, 4/23, 6/23, 7/23,
9/23, 10/23, 11/23, 14/23, 15/23, 7/24, 11/24, 23/24, 1/25, 2/25,
13/25, 19/25, 21/25 (3.52)

Note that not all “small” rationals appear in this list. As it turns out, by
applying the methods given in the paper [73] (see the next section), one
can rule out the possibility of Machin-type BBP formulas (as described
in Section 3.6) for the arctangents of 2/7, 3/8, 5/8, 4/9, and 5/9. Thus
we believe the above list to be complete for rationals with numerators
and denominators up to ten. Beyond this level, we do not know for sure
whether this list is complete, or whether applying formula (3.49), together
with addition and subtraction formulas, generates all possible rationals
possessing binary BBP-type formulas.

One can obtain BBP formulas in nonbinary bases for the arctangents of
certain rational numbers by employing an appropriate variant of formula
(3.49).

3.7 Does Pi Have a Nonbinary BBP Formula?

As we mentioned above, from the day that the BBP-formula for π was
discovered, many researchers have wondered whether there exist BBP-type
formulas that would permit computation of individual digits in bases other
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than powers of two (such as base ten). This is not such a far-fetched
possibility, because both base-2 and base-3 formulas are known for π2, as
well as for log 2 (see Tables 3.5 and 3.6). But extensive computations failed
to find any nonbinary formulas for π.

Recently one of the present authors, together with David Borwein (Jon’s
father) and William Galway, established that there are no nonbinary Machin-
type arctangent formulas for π. We believe that if there is no nonbinary
Machin-type arctangent formula for π, then there is no nonbinary BBP-
type formula of any form for π. We will summarize this result here. Full
details and other related results can be found in [73].

We say that the integer b > 1 is not a proper power if it cannot be
written as cm for any integers c and m > 1. We will use the notation
ordp(z) to denote the p-adic order of the rational z ∈ Q. In particular,
ordp(p) = 1 for prime p, while ordp(q) = 0 for primes q �= p, and ordp(wz) =
ordp(w) + ordp(z). The notation νb(p) will mean the order of the integer
b in the multiplicative group of the integers modulo p. We will say that
p is a primitive prime factor of bm − 1 if m is the least integer such that
p|(bm−1). Thus p is a primitive prime factor of bm−1 provided νb(p) = m.
Given the Gaussian integer z ∈ Q[i] and the rational prime p ≡ 1 (mod 4),
let θp(z) denote ordp(z) − ordp(z), where p and p are the two conjugate
Gaussian primes dividing p, and where we require 0 < �(p) < R(p) to
make the definition of θp unambiguous. Note that

θp(wz) = θp(w) + θp(z). (3.53)

Given κ ∈ R, with 2 ≤ b ∈ Z and b not a proper power, we say that
κ has a Z-linear or Q-linear Machin-type BBP arctangent formula to the
base b if and only if κ can be written as a Z-linear or Q-linear combination
(respectively) of generators of the form

arctan
(

1
bm

)
= � log

(
1 +

i

bm

)
= bm

∞∑
k=0

(−1)k

b2mk(2k + 1)
. (3.54)

We will also use the following theorem, first proved by Bang in 1886:

Theorem 3.5. The only cases where bm − 1 has no primitive prime fac-
tor(s) are when b = 2, m = 6, bm−1 = 32 ·7; and when b = 2N −1, N ∈ Z,
m = 2, bm − 1 = 2N+1(2N−1 − 1).

We can now state the main result of this section:

Theorem 3.6. Given b > 2 and not a proper power, then there is no Q-
linear Machin-type BBP arctangent formula for π.
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Proof. It follows immediately from the definition of a Q-linear Machin-
type BBP arctangent formula that any such formula has the form

π =
1
n

M∑
m=1

nm� log(bm − i) (3.55)

where n > 0 ∈ Z, nm ∈ Z, and M ≥ 1, nM �= 0. This implies that

M∏
m=1

(bm − i)nm ∈ eniπQ× = Q× (3.56)

For any b > 2 and not a proper power we have Mb ≤ 2, so it follows
from Bang’s Theorem that b4M − 1 has a primitive prime factor, say p.
Furthermore, p must be odd, since p = 2 can only be a primitive prime
factor of bm−1 when b is odd andm = 1. Since p is a primitive prime factor,
it does not divide b2M −1, and so p must divide b2M +1 = (bM + i)(bM − i).
We cannot have both p|bM + i and p|bM − i, since this would give the
contradiction that p|(bM + i) − (bM − i) = 2i. It follows that p ≡ 1
(mod 4), and that p factors as p = pp over Z[i], with exactly one of p, p
dividing bM − i. Referring to the definition of θ, we see that we must have
θp(bM − i) �= 0. Furthermore, for any m < M , neither p nor p can divide
bm − i since this would imply p | b4m − 1, 4m < 4M , contradicting the
fact that p is a primitive prime factor of b4M − 1. So for m < M , we have
θp(bm − i) = 0. Referring to equation (3.55), using Equation (3.53) and
the fact that nM �= 0, we get the contradiction

0 �= nMθp(bM − i) =
M∑

m=1

nmθp(bm − i) = θp(Q×) = 0. (3.57)

Thus our assumption that there was a b-ary Machin-type BBP arctangent
formula for π must be false. �

3.8 Commentary and Additional Examples

1. The ENIAC Integrator and Calculator. ENIAC, built in 1946
at the University of Pennsylvania, had 18,000 vacuum tubes, 6,000
switches, 10,000 capacitors, 70,000 resistors, 1,500 relays, was 10 feet
tall, occupied 1,800 square feet, and weighed 30 tons. ENIAC could
perform 5,000 arithmetic operations per second—1,000 times faster
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Figure 3.3. The ENIAC computer. Courtesy of Smithsonian Institution.

than any earlier machine, but a far cry from today’s leading-edge mi-
croprocessors, which can perform more than four billion operations
per second. The first stored-memory computer, ENIAC could store
200 digits, which again is a far cry from the hundreds of megabytes in
a modern personal computer system. Data flowed from one accumu-
lator to the next, and after each accumulator finished a calculation, it
communicated its results to the next in line. The accumulators were
connected to each other manually. A photo is shown in Figure 3.3.

2. Four approximations to pi. Here are two well known, but fasci-
nating, approximations to π:

π ≈ 3√
163

log (640320) ,

correct to 15 decimal places, and

π ≈ 3√
67

log (5280) ,
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correct to 9 decimal places. Both rely on somewhat deeper number
theory (see Section 1.4 in the second volume). Here are two nice
algebraic π approximations:

π ≈ 66
√

2
33

√
29 − 148

and

π ≈ 63
25

17 + 15
√

5
7 + 15

√
5
.

3. An arctan series for pi. Find rational coefficients ai such that the
identity

π = a1 arctan
1

390112
+ a2 arctan

1
485298

+a3 arctan
1

683982
+ a4 arctan

1
1984933

+a5 arctan
1

2478328
+ a6 arctan

1
3449051

+a7 arctan
1

18975991
+ a8 arctan

1
22709274

+a9 arctan
1

24208144
+ a10 arctan

1
201229582

+a11 arctan
1

2189376182

holds [10, pg. 75]. Also show that an identity with even simpler
coefficients exists if arctan 1/239 is included as one of the terms on
the RHS. Hint: Use an integer relation program (see Section 6.3), or
try the tools at one of these sites: http://oldweb.cecm.sfu.ca/projects/
IntegerRelations or http://www.experimentalmath.info.

4. Ballantine’s series for pi. A formula of Euler for arccot is

x

∞∑
n=0

(n!)2 4n

(2n+ 1)! (x2 + 1)n+1 = arctan
(

1
x

)
. (3.58)

As observed by Ballantine in 1939, ( [49]) this allows one to rewrite
the variant of Machin’s formula, used by Guilloud and Bouyer in 1973
to compute a million digits of π,

π

4
= 12 arctan

1
18

+ 8 arctan
1
57

− 5 arctan
1

239
(3.59)
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in the neat form

π = 864
∞∑

n=0

(n!)2 4n

(2n+ 1)! 325n+1 + 1824
∞∑

n=0

(n!)2 4n

(2n+ 1)! 3250n+1

− 20 arctan
1

239
, (3.60)

where the terms of the second series are just decimal shifts of the
terms of the first.

5. Convergence rates for pi formulas. Analyze the rates of con-
vergence of Archimedes iteration (3.1), the Salamin-Brent iteration
(3.16), the Borwein cubic iteration (3.17) and the Borwein quartic
iteration (3.18), by means of explicit computations. Use the high-
precision arithmetic facility built into Maple or Mathematica, or write
your own C++ or Fortran-90 code using the ARPREC arbitrary
precision software available at http://www.experimentalmath.info, or
the GNU multiprecision software available at http://www.gnu.org
/software/gmp/gmp.html. Such iterations are discussed more in Sec-
tions 5.6.2 and 5.6.3.

6. Biblical pi. As noted in Section 3.1, the Biblical passages 1 Kings
7:23 and 2 Chronicles 4:2 indicate that π = 3. In spite of the fact the
context of these verses clearly suggests an informal approximation,
not a precise statement of mathematical fact, this discrepancy has
been a source of consternation among Biblical literalists for centuries.
For example, an 18th-century German Bible commentary attempted
to explain away this discrepancy using the imaginative (if pathetic)
suggestion that the circular pool in Solomon’s temple (clearly de-
scribed in 2 Chron. 4:2 as “round in compass”) was instead hexago-
nal in shape [48, pg. 75–76]. Even today, some are still unwilling to
accept that the Bible could simply be mistaken here. One evangelical
scholar, for example, writes:

However, the recorded dimensions are still no problem if we
consider the shape of the vessel. In 1 Kings 7:26, we read that
its “brim was made like the brim of a cup, as a lily blossom.”
Hence, the sea was not a regular cylinder, but had an outward
curving rim. Although we do not know the exact points on
the vessel where the measurements were taken, the main part
of the sea always will be somewhat smaller than the 10 cubits
measured “from brim to brim.” [213]
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Another geometric difficulty in these Biblical passages is that 1 Kings
7:26 (three verses after it gives its dimensions) gives a volume of 2,000
“baths” for the basin, while 2 Chron. 4:5 gives the figure 3,000 baths.
2 Chron. 4:2 gives the height of the basin as five cubits. Using the
accepted conversions that one “cubit” is roughly 46 cm, and that
one “bath” is roughly 23 liters, then assuming Solomon’s pool was
cylindrical in shape, we obtain an actual volume of roughly 1660
baths. If the basin was rounded on the bottom, then its volume was
even lower than this.

7. Exponentiation of pi. Arguably the most accessible transcendental
number to compute is eπ, which can be computed using the following
iteration.

Algorithm 3.7. Computation of exp(π).

Set k0 = 1/
√

2 and for n < N = �log2(D/1.36)� iterate

k′n =
√

1− k2
n, kn+1 =

1− k′n
1 + k′n

.

Then return (
kN

4

)−1/2N−1

.

Some care needs to be taken with guard digits. �

8. Algorithms for Gamma values. An algorithm for π may be
viewed as an algorithm for Γ

(
1
2

)
, and there is a quite analogous

iteration for Γ at the values 1/3, 2/3, 1/4, 3/4, 1/6, and 5/6. This,
in turn, allows rapid computation of Γ

(
k
24

)
, for all integer k. We

illustrate with:

Algorithm 3.8. Computation of Γ
(

1
4

)
.

Let x0 = 21/2, y1 = 21/4. Let

xn+1 =
√
xn + 1/

√
xn

2
(3.61)

yn+1 =
yn
√
xn + 1/

√
xn

yn + 1
. (3.62)
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Then

Γ4

(
1
4

)
= 16 (1 +

√
2)3

∞∏
n=1

x−1
n

(
1 + xn

1 + yn

)3

.

This yields a quadratically convergent iteration for Γ
(

1
4

)
. �

No such iteration is known for Γ
(

1
5

)
; see [68, 74].

9. An integral representation of Euler’s constant. While it is
known that Γ

(
1
3

)
and Γ

(
1
4

)
are transcendental, the status of Euler’s

constant

γ = lim
n→∞

n∑
k=1

1
k
− log(n) (3.63)

is unsettled.

Problem: Show that

γ =
∫ ∞

0

(
1

et − 1
− 1
t et

)
dt.

10. Computation of Euler’s constant. Perhaps the most efficient
method of computation, due to Brent and MacMillan ( [74, pg. 336]),
is based on Bessel function identities. It allows one to show that if
γ is rational it must have a denominator with millions of digits. The
underlying identity, known to Euler, is

γ + log(z/2) =
S0(z) −K0(z)

I0(z)
(3.64)

where Iν(z) =
∑∞

k=0(z/2)2k+ν/(k! Γ(k + ν + 1)), while K0(z) =
∂I0(z)/∂ν and S0(z) =

∑∞
k=0(

∑k
j=1 1/j) (z/2)2k/(k!)2.

An algorithm follows from knowing the first terms of the asymptotic
expansion for K0 and I0. It is

Algorithm 3.9. Computation of K0 and I0:

A0 = − log(n), B0 = 1, U0 = A0, V0 = 1, and for k = 1, 2, · · · ,

Bk = Bk−1n
2/k2, Ak = (Ak−1n

2/k +Bk)/k,
Uk = Uk−1 +Ak, Vk = Vk−1 +Bk. (3.65)
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Terminate when Uk and Vk no longer change, and return γ ≈ Uk/Vk.
With log(n) computed efficiently, this scheme takes O(D) storage and
approximately 2.07D steps to compute γ to D decimal places. �

11. Buffon’s needle. Suppose we have a lined sheet of paper, and a
needle that is precisely as long as the distance between the lines.
Compute the probability that the needle “thrown at random” on the
sheet of paper will lie on a line. Answer: 2/π. Although this is
certainly not a good way to calculate π (millions of trials would be
required to obtain just a few digits), it is an instructive example of
how π arises in unlikely settings (see also the next two exercises).
Some additional discussion of this problem, plus a computer-based
tool that allows one to perform these trials, is available at the URL
http://www.mste.uiuc.edu/reese/buffon/buffon.html.

12. Putnam problem 1993-B3. If two real numbers x and y are gen-
erated uniformly at random in (0, 1), what is the probability that the
nearest integer to x/y is even? Hint: Ignoring negligible events, for
this to occur either 0 < x/y < 1/2 or (4n− 1)/2 < x/y < (4n+ 1)/2.
The first occurs in a triangle of area 1/4 and the subsequent in trian-
gles of area 1/(4n− 1)− 1/(4n+ 1). Now apply the Gregory-Leibniz
formula. Answer: The probability is (5 − π)/4 ≈ 0.4646018.

13. Number-theory probabilities. Prove (a) The probability that an
integer is square-free is 6/π2. (b) The probability that two integers
are relatively prime is also 6/π2. This is a good example of π appear-
ing in a number-theory setting. See [163].

14. The irrationality of pi. We reproduce in extenso Ivan Niven’s 1947
very concise proof that π is irrational [224].

Let π = a/b, the quotient of positive integers. We define the polyno-
mials

f(x) =
xn(a− bx)n

n!

F (x) = f(x) − f (2)(x) + f (4)(x) − · · · + (−1)nf (2n)(x),

the positive integer n being specified later. Since n!f(x) has integral
coefficients and terms in x of degree not less than n, f(x) and its
derivatives f (j)(x) have integral values for x = 0; also for x = π =
a/b, since f(x) = f(a/b− x). By elementary calculus we have

d

dx
{F ′(x) sinx− F (x) cos x} = F ′′(x) sin x+ F (x) sinx = f(x) sin x
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and∫ π

0

f(x) sinxdx = [F ′(x) sin x− F (x) cos x]π0 = F (π) + F (0). (3.66)

Now F (π)+F (0) is an integer, since f (j)(0) and f (j)(π) are integers.
But for 0 < x < π,

0 < f(x) sinx <
πnan

n!
,

so that the integral in (3.66) is positive but arbitrarily small for n
sufficiently large. Thus (3.66) is false, and so is our assumption that
π is rational. �

This proof gives a good taste of the ingredients of more subtle irra-
tionality and transcendence proofs.

15. A spigot algorithm for e and pi. A spigot method for a numerical
constant is one that can produce digits one by one (“drop by drop”)
[239]. This is especially easy for e as carries are not a big issue.

(a) The following algorithm, due to Rabinowitz and Wagon, gener-
ates successive digits of e. Initialize an array A of length n+ 1
to 1. Then repeat the following n − 1 times: (a) multiply each
entry in A by ten; (b) Starting from the right, reduce the i-th
entry of A modulo i + 1, carrying the quotient of the division
one place left. The final quotient produced is the next digit of
e. This algorithm is based on the following formula, which is
simply a restatement of e =

∑
1/i!.

e = 1 +
1
1

(
1 +

1
2

(
1 +

1
3

(
1 +

1
4

(
1 +

1
5

(1 + · · · )
))))

.

(b) Implement a parallel spigot algorithm for π, based on showing
that:

π = 2 +
1
3

(
2 +

2
5

(
2 +

3
7

(
2 + · · ·

(
2 +

k

2k + 1
· · ·

))))
.

The last term can be approximated by 2 + 4k/(2k + 1) where
k = log2(10)n to produce n digits of π “drop by drop.” If one
wishes to run the algorithm without a specified end, one must
take more care.
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One may view the iteration (4.7), which we will study in Chapter 4,
as a spectacular (albeit unproven) spigot algorithm for π base 16.

16. Wagon’s BBP identity. Determine the range of validity of the
following identity, which is due to Stan Wagon:

π + 4 arctan z + 2 log
(

1 − 2z − z2

z2 + 1

)
=

∞∑
k=0

1
16k

(
4(z + 1)1+8k

1 + 8k
− 2(z + 1)4+8k

4 + 8k
− (z + 1)5+8k

5 + 8k
− (z + 1)6+8k

6 + 8k

)
.

17. Monte Carlo calculation of pi. Monte Carlo simulation was pio-
neered during the Manhattan project by Stanislaw Ulam and others,
who recognized that this scheme permitted simulations beyond the
reach of conventional methods on the systems then available. We il-
lustrate here a Monte Carlo calculation of π, which is a poor method
to compute π, but illustrative of this general class of computation.
Nowadays, Monte Carlo methods are quite popular because they are
well suited to parallel computation on systems such as “Beowulf”
clusters.

(a) Design and implement a Monte Carlo simulation for π, based
on generating pairs of uniformly distributed numbers in the unit
square and testing whether they lie inside the unit circle. Use
the pseudorandom number generator x0 = 314159 and xn =
cxn−1 mod 232, where c = 59 = 1953125. This generator is
of the well known class of linear congruential generators and
has period 230 [188, pg. 21]. It can be easily implemented on a
computer using IEEE 64-bit “double” datatype, since the largest
integer that can arise here is less than 253. Variations with longer
periods can easily be designed, although the implementation is
not as convenient. The results of this generator are normalized,
by 232 in this case, to produce results in the unit interval.

(b) Extend your program to run on a parallel computer system, with
the property that your parallel program generates the same over-
all scheme of pseudorandom numbers, and thus gets the same
result for π, as a serial implementation (you may for conve-
nience assume that n, the total number of pseudorandom num-
bers generated, is evenly divisible by p, the number of proces-
sors). This is a very desirable feature of a parallel program,
because it allows you to certify your parallel results by com-
paring them with a conventional single-processor run, and it
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permits you to take advantage of a range of system sizes. Hint:
Design the program so that processor k (where processors are
numbered from 0 to p − 1) generates the m = n/p members of
the sequence (xkm, xkm+1, xkm+2, · · · , xkm+m−1). Note that the
starting value xkm for processor k can be directly computed as
xkm = 59kmx0 mod 232. This exponentiation modulo 232 may
be performed by using Algorithm 3.2, implemented with 128-bit
floating-point or “double-double” arithmetic (see Section 6.2.1).

(c) Generate the following sequence of pseudorandom numbers and
experimentally determine what distribution they satisfy (i.e., by
computing means, standard deviations, graphs, etc.): Let x1 and
x2 be a pair of uniform (0, 1) pseudorandom numbers generated
as described above. Set v =

√
x2

1 + x2
2 and w =

√−2 log v/v.
Then produce the results y1 = wx1 and y2 = wx2.

18. Life of Pi. At the end of his story, Piscine (Pi) Molitor [215, pp.316–
7] writes

I am a person who believes in form, in harmony of order. Where
we can, we must give things a meaningful shape. For example—I
wonder—could you tell my jumbled story in exactly one hundred
chapters, not one more, not one less? I’ll tell you, that’s one
thing I hate about my nickname, the way that number runs on
forever. It’s important in life to conclude things properly. Only
then can you let go.

We may not share the sentiment, but we should celebrate that Pi
knows π to be irrational.
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Anyone who wants to make a name for himself can examine the major
issue of whether π is normal, or perhaps more accurately, whether π
is not normal.

– Jörg Arndt and Christoph Haenel, Pi Unleashed, 2001

In this chapter, we address a fundamental problem of mathematics, a para-
dox of sorts: Whereas on one hand it can be proven that “almost all” real
numbers are normal, and whereas it appears from experimental analysis
that many of the fundamental constants of mathematics are normal to
commonly used number bases, as yet there are no proofs, nor even any
solid reason why we should observe this behavior. What we shall show
here is that the theory of BBP constants, which as we have seen is a classic
case study of experimental mathematics in action, opens a pathway into the
investigation of normality, and in fact has already yielded some intriguing
results.

4.1 Normality: A Stubborn Question

Given a real number α and an integer b > 2, we say that α is b-normal
or normal base b if every sequence of k consecutive digits in the base-b
expansion of α appears with limiting frequency b−k. In other words, if
a constant is 10-normal, then the limiting frequency of “3” (or any other
single digit) in its decimal expansion is 1/10, the limiting frequency of
“58” (or any other two-digit pair) is 1/100, and so forth. We say that a
real number α is absolutely normal if it is b-normal for all integers b > 1
simultaneously.

In spite of these strong conditions, it is well known from measure the-
ory that the set of absolutely normal real numbers in the unit interval has
measure one, or in other words, that almost all real numbers are abso-
lutely normal (see Exercise 1 at the end of this chapter). Further, from

143
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numerous analyses of computed digits, it appears that many of the fun-
damental constants of mathematics are normal to commonly used number
bases. By “fundamental constants,” we include π, e,

√
2, the golden mean

τ = (1 +
√

5)/2, as well as logn and the Riemann zeta function ζ(n) for
positive integers n > 1, and many others. For example, it is a reasonable
conjecture that every irrational algebraic number is absolutely normal,
since there is no known example of an irrational algebraic number whose
decimal expansion (or expansion in any other base) appears to have skewed
digit-string frequencies.

Decimal values are given for a variety of well known mathematical con-
stants in Table 4.1 [99,142]. In addition to the widely recognized constants
such as π and e, we have listed Catalan’s constant (G), Euler’s constant
(γ), an evaluation of the elliptic integral of the first kind K(1/

√
2), an eval-

uation of an elliptic integral of the second kind E(1/
√

2), Feigenbaum’s α
and δ constants, Khintchine’s constant K, and Madelung’s constant M3.
Binary values for some of these constants, as well as Chaitin’s Ω constant
(from the field of computational complexity) [99], are given in Table 4.2.
As you can see, none of the expansions in either table exhibits any evident
“pattern.”

The digits of π have been studied more than any other single constant,
in part because of the widespread fascination with π. Along this line,
Yasumasa Kanada of the University of Tokyo has tabulated the number
of occurrences of the ten decimal digits “0” through “9” in the first one
trillion decimal digits of π. These counts are shown in Table 4.3. For
reasons given in Section 3.4, binary (or hexadecimal) digits of π are also of
considerable interest. To that end, Kanada has also tabulated the number
of occurrences of the 16 hexadecimal digits “0” through “F,” as they appear
in the first one trillion hexadecimal digits. These counts are shown in Table
4.4. As you can see, both the decimal and hexadecimal single-digit counts
are entirely reasonable.

Some readers may be amused by the LBNL PiSearch utility, which is
available at http://pisearch.lbl.gov. This online tool permits one to enter
one’s name (or any other modest-length alphabetic string, or any modest-
length hexadecimal string) and see if it appears encoded in the first several
billion binary digits of π. Along this line, a graphic based on a random
walk of the first million decimal digits of π, courtesy of David and Gregory
Chudnovsky, is shown in Figure 4.1 (see Color Plate VIII). It maps the
digit stream to a surface in ways similar to those used by Mandelbrot and
others.

As we mentioned in Section 3.2, the question of whether π, in particular,
or, say,

√
2, is normal or not has intrigued mathematicians for centuries.

But in spite of centuries of effort, not a single one of the fundamental
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Constant Value√
2 1.4142135623730950488 . . .√
3 1.7320508075688772935 . . .√
5 2.2360679774997896964 . . .

φ =
√

5−1
2 0.61803398874989484820 . . .
π 3.1415926535897932384 . . .

1/π 0.31830988618379067153 . . .
e 2.7182818284590452353 . . .

1/e 0.36787944117144232159 . . .
eπ 23.140692632779269005 . . .

log 2 0.69314718055994530941 . . .
log 10 2.3025850929940456840 . . .

log2 10 3.3219280948873623478 . . .
log10 2 0.30102999566398119521 . . .
log2 3 1.5849625007211561814 . . .
ζ(2) 1.6449340668482264364 . . .
ζ(3) 1.2020569031595942854 . . .
ζ(5) 1.0369277551433699263 . . .
G 0.91596559417721901505 . . .
γ 0.57721566490153286060 . . .

Γ(1/2) =
√
π 1.7724538509055160272 . . .

Γ(1/3) 2.6789385347077476336 . . .
Γ(1/4) 3.6256099082219083119 . . .

K(1/
√

2) 1.8540746773013719184 . . .
E(1/

√
2) 1.3506438810476755025 . . .
αf 4.6692016091029906718 . . .
δf 2.5029078750958928222 . . .
K 2.6854520010653064453 . . .

M3 1.7475645946331821903 . . .

Table 4.1. Decimal values of various mathematical constants.

Constant Value
π 11.001001000011111101101010100010001000010110100011000010001 . . .
e 10.101101111110000101010001011000101000101011101101001010100 . . .√
2 1.0110101000001001111001100110011111110011101111001100100100 . . .√
3 1.1011101101100111101011101000010110000100110010101010011100 . . .

log 2 0.1011000101110010000101111111011111010001110011110111100110 . . .
log 3 1.0001100100111110101001111010101011010000001100001010100101 . . .

Ω 0.0000001000000100001000001000011101110011001001111000100100 . . .

Table 4.2. Binary values of various mathematical constants.
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Digit Occurrences
0 99999485134
1 99999945664
2 100000480057
3 99999787805
4 100000357857
5 99999671008
6 99999807503
7 99999818723
8 100000791469
9 99999854780

Total 1000000000000

Table 4.3. Statistics for the first trillion decimal digits of π.

Digit Occurrences
0 62499881108
1 62500212206
2 62499924780
3 62500188844
4 62499807368
5 62500007205
6 62499925426
7 62499878794
8 62500216752
9 62500120671
A 62500266095
B 62499955595
C 62500188610
D 62499613666
E 62499875079
F 62499937801

Total 1000000000000

Table 4.4. Statistics for the first trillion hexadecimal digits of π.
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Figure 4.1. A random walk based on one million digits of π (see Color Plate VIII).
Courtesy of David and Gregory Chudnovsky.

constants of mathematics has ever been proven to be b-normal for any
integer b, much less for all integer bases simultaneously. And this is not for
lack of trying—some very good mathematicians have seriously investigated
this problem, but to no avail. Even much weaker results, such as the digit
“1” appears with nonzero limiting frequency in the binary expansion of π,
and the digit “5” appears infinitely often in the decimal expansion of

√
2,

have heretofore remained beyond the reach of modern mathematics.
One result in this area is the following. Let f(n) =

∑
1≤j≤n	log10 j
.

Then the Champernowne number,

∞∑
n=1

n

10n+f(n)
= 0.12345678910111213141516171819202122232425 . . . ,

where the positive integers are concatenated in a decimal value, is known to
be 10-normal (See Exercise 5). There are similar constants and normality
results for other number bases. However, no one, to the authors’ knowl-
edge, has ever argued that this constant and its relatives are “natural” or
“fundamental” constants.

Consequences of a proof in this area would definitely be interesting. For
starters, such a proof would immediately provide an inexhaustible source
of provably reliable pseudorandom numbers for numerical or scientific ex-
perimentation. We also would obtain the mind-boggling but uncontestable
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consequence that if π, for example, is shown to be 2-normal, then the en-
tire text of the Bible, the Koran and the works of William Shakespeare,
as well as the full LATEX source text for this book, must all be contained
somewhere in the binary expansion of π, where consecutive blocks of eight
bits (two hexadecimal digits) each represent one ASCII character. Unfortu-
nately, this would not be much help to librarians or archivists, since every
conceivable misprint of each of these books would also be contained in the
binary digits of π.

Before continuing, we should mention the “first digit” principle, also
known as Benford’s principle. In the 1880s, Simon Newcomb observed a
pattern in the first digits of logarithm tables: A “1” is significantly more
likely to occur than “2,” a “2” more than a “3,” and so on. In other words,
the collection of first digits of data in logarithm tables certainly does not
reflect the statistics expected of 10-normal numbers. In the 20th century,
Frank Benford rediscovered this phenomenon, noting that it applies to
many types of numerical data, ranging from values of physical constants to
census data to the stock market. One can deduce this principle by observing
that natural laws surely cannot be dependent on our choice of units, and
thus must be scale-independent. This suggests that we view numerical data
on a logarithmic scale. In the logarithmic sense, a leading “1” appears
roughly 30% of the time (since log10 2 − log10 1 = 0.30102999 . . .), a “2”
appears roughly 17.6% of the time (since log10 3− log10 2 = 0.1760912 . . .),
and so on. More recently scientists have applied Benford’s principle in
diverse ways, including fraud detection in business accounting [172].

4.2 BBP Constants and Normality

Until recently, the BBP formulas mentioned in Sections 3.4 and 3.6 were
assigned by some to the realm of “recreational” mathematics—interesting
but of no serious consequence. But the history of mathematics has seen
many instances where results once thought to be idle curiosities were later
found to have significant consequences. This now appears to be the case
with the theory of BBP-type constants.

What we shall establish below, in a nutshell, is that the 16-normality
of π (which, of course, is equivalent to the 2-normality of π), as well as the
normality of numerous other irrational constants that possess BBP-type
formulas, can be reduced to a certain plausible conjecture in the theory
of chaotic sequences. At this time we do not know the full implications
of this result. It may be the first salvo in the resolution of this age-old
mathematical question, or it may be merely a case of reducing one very
difficult mathematical problem to another. But at the least, this result
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appears to lay out a structure—a “roadmap” of sorts—for the analysis of
this question. Thus it seems worthy of investigation.

We shall also establish that a certain well-defined class of real numbers,
uncountably infinite in number, is indeed b-normal for certain bases b. This
result is not dependent on any unproven conjecture. We will also present
some results on the digit densities of algebraic irrationals. All of these
recent results are direct descendants of the theory of BBP-type constants
that we have presented in Sections 3.4 and 3.6.

The results for BBP-type constants derive from the following obser-
vation, which was given in a recent paper by one of the present authors
and Richard Crandall [36]. Here we define the norm ||α|| for α ∈ [0, 1) as
||α|| = min(α, 1 − α). With this definition, ||α− β|| measures the shortest
distance between α and β on the unit circumference circle in the natural
way. Suppose α is given by a BBP-type formula, namely

α =
∞∑

k=0

p(k)
bkq(k)

, (4.1)

where p and q are polynomials with integer coefficients, with 0 ≤ deg p <
deg q, and with q having no zeroes at nonnegative integer arguments. Now
define the recursive sequence (xn) as x0 = 0, and

xn =
{
bxn−1 +

p(n)
q(n)

}
, (4.2)

where the notation {·} denotes the fractional part as before. Recall from
Section 3.4 that we can write the base-b expansion of α beginning at posi-
tion n+ 1, which we denote αn, as

αn = {bnα} =

{ ∞∑
k=0

bn−kp(k)
q(k)

}

=

{{
n∑

k=0

bn−kp(k)
q(k)

}
+

∞∑
k=n+1

bn−kp(k)
q(k)

}
. (4.3)

Now observe that the sequence (xn) generates the first part of this
expression. In particular, given ε > 0, assume that n is sufficiently large
such that p(k)/q(k) < ε for all k ≥ n. Then we can write, for all sufficiently
large n,

||xn − αn|| ≤
∣∣∣∣∣

∞∑
k=n+1

bn−kp(k)
q(k)

∣∣∣∣∣
≤ ε

∞∑
k=n+1

bn−k =
ε

b− 1
≤ ε. (4.4)
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With this argument, we have established the following, which we observe
is also true if the expression p(k)/q(k) is replaced by any more general
sequence r(k) that tends to zero for large k:

Theorem 4.1. Let α be a BBP-type constant as defined above, with αn

the base-b expansion of α beginning at position n + 1, and (xn) the BBP
sequence associated with α, as given in (4.2) above. Then ||xn − αn|| → 0
as n→ ∞.

In other words, the BBP sequence associated with α, as given in For-
mula (4.2), is a close approximation to the sequence (αn) of shifted digit
expansions, so much so that if one has a property such as equidistribution
in the unit interval, then the other does also (this will be made precise
in Section 4.5). We now state a hypothesis, which is believed to be true,
based on experimental evidence, but which is not yet proven:

Hypothesis 4.2 (Bailey-Crandall). Let p(x) and q(x) be polynomials
with integer coefficients, with 0 ≤ deg p < deg q, and with q having no
zeroes for nonnegative integer arguments. Let b ≥ 2 be an integer, and let
rn = p(n)/q(n). Then the sequence x = (x0, x1, x2, · · · ) determined by the
iteration x0 = 0, and

xn = {bxn−1 + rn} (4.5)

either has a finite attractor or is equidistributed in [0, 1).

We shall define “equidistributed” and “finite attractor” in Section 4.5. In
the meantime we rely on intuition.

Theorem 4.3. Assuming Hypothesis 4.2, any constant α given by a for-
mula of the type α =

∑
k≥0 p(k)/(b

kq(k)), with p(k) and q(k) polynomials
as given in Hypothesis 4.2, is either rational or b-normal.

The proof of this theorem is given in Section 4.5. We should note here
that even if a particular instance of Hypothesis 4.2 could be established, it
would have significant consequences. For example, if it could be established
that the simple iteration given by x0 = 0 and

xn =
{

2xn−1 +
1
n

}
(4.6)

is equidistributed in [0, 1), then it would follow from Theorem 4.3 that log 2
is 2-normal. Observe that this sequence is simply the BBP sequence for
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log 2. In a similar vein, if it could be established that the iteration given
by x0 = 0 and

xn =
{

16xn−1 +
120n2 − 89n+ 16

512n4 − 1024n3 + 712n2 − 206n+ 21

}
(4.7)

is equidistributed in [0, 1), then it would follow that π is 16-normal (and
so is 2-normal also). This is the BBP sequence for π. The fractional term
here is obtained by combining the four fractions in the BBP formula for π,
namely Equation (3.25), into one fraction, and then shifting the index by
one.

Before continuing, we wish to mention a curious phenomenon. Suppose
we compute the binary sequence yn = 	2xn
, where (xn) is the sequence
associated with log 2 as given in Equation 4.6. In other words, (yn) is
the binary sequence defined as yn = 0 if xn < 1/2 and yn = 1 if xn ≥ 1/2.
Theorem 4.1 tells us, in effect, that (yn) eventually should agree very
well with the true sequence of binary digits of log 2. In explicit compu-
tations, we have found that the sequence (yn) disagrees with 15 of the
first 200 binary digits of log 2, but in only one position over the range 5000
to 8000.

As noted above, the BBP sequence for π is x0 = 0, and xn as given
in Equation (4.7). In a similar manner as with log 2, we can compute
the hexadecimal digit sequence yn = 	16xn
. In other words, we can di-
vide the unit interval into 16 equal subintervals, labeled (0, 1, 2, 3, · · · , 15),
and set yn to be the label of the subinterval in which xn lies. When
this is done, a remarkable phenomenon occurs: The sequence (yn) appears
to perfectly (not just approximately) produce the hexadecimal expansion of
π. In explicit computations, the first 1,000,000 hexadecimal digits
generated by this sequence are identical with the first 1,000,000 hexadec-
imal digits of π − 3. (This is a fairly difficult computation, as it requires
roughly n2 bit-operations, and is not easily performed on a parallel com-
puter system.)

Conjecture 4.4. The sequence (	16xn
), where (xn) is the sequence of
iterates defined in equation (4.7), precisely generates the hexadecimal ex-
pansion of π − 3.

Evidently, this phenomenon arises from the fact that in the sequence asso-
ciated with π, the perturbation term rn = p(n)/q(n) is summable, whereas
the corresponding expression for log 2, namely 1/n, is not summable. In
particular, note that expression (4.4) for α = π gives
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||αn − xn|| ≤
∞∑

k=n+1

120k2 − 89k + 16
16j−n(512k4 − 1024k3 + 712k2 − 206k + 21)

≈ 120(n+ 1)2 − 89(n+ 1) + 16
16(512(n+ 1)4 − 1024(n+ 1)3 + 712(n+ 1)2 − 206(n+ 1) + 21)

(4.8)

so that
∞∑

n=1

||αn − xn|| ≤ 0.01579 . . . . (4.9)

For the sake of heuristic argument, let us assume for the moment that
the αn are independent, uniformly distributed random variables in (0, 1),
and let δn = ||αn − xn||. Note that an error (i.e. an instance where xn

lies in a different subinterval of the unit interval than αn) can only occur
when αn is within δn of one of the points (0, 1/16, 2/16, · · · , 15/16). Since
xn < αn for all n (where < is interpreted in the wrapped sense when xn

is slightly less than one), this event has probability 16δn. Then the fact
that the sum (4.9) has a finite value implies, by the first Borel-Cantelli
lemma, that there can only be finitely many errors [53, pg. 153]. The
comparable figure for log 2 is infinite, which implies by the second Borel-
Cantelli lemma that discrepancies can be expected to appear indefinitely,
but with decreasing frequency. Further, the small value of the sum (4.9)
suggests that it is unlikely that any errors will be observed. If instead
of summing (4.9) from one to infinity, we instead sum from 1,000,001 to
infinity (since we have computationally verified that there are no errors in
the first 1,000,000 elements), then we obtain 1.465 × 10−8, which suggests
that it is very unlikely that any errors will ever occur.

4.3 A Class of Provably Normal Constants

We now summarize an intriguing recent development in this arena, due to
one of the present authors and Richard Crandall, which offers additional
hope that the BBP approach may eventually yield the long-sought proof of
normality for π, log 2, and other BBP-type constants [37]. In the previous
section, we noted that the 2-normality of

log 2 =
∞∑

n=1

1
n2n

(4.10)



�

�

�

�

�

�

�

�

4.3. A Class of Provably Normal Constants 153

rests on the (unproven) conjecture that the iteration given by x0 = 0 and
xn = {2xn−1+1/n} is equidistributed in the unit interval. We now consider
the class of constants where the summation defining log 2, namely (4.10),
is taken over a certain subset of the positive integers:

αb,c =
∑

n=ck>1

1
nbn

=
∞∑

k=1

1
ckbck , (4.11)

where b > 1 and c > 2 are integers. The simplest instance of this class is

α2,3 =
∑

n=3k>1

1
n2n

=
∞∑

k=1

1
3k23k (4.12)

= 0.0418836808315029850712528986245716824260967584654857 . . .10
= 0.0AB8E38F684BDA12F684BF35BA781948B0FCD6E9E06522C3F35B . . .16 .

We first prove the following interesting fact:

Theorem 4.5. Each of the constants αb,c, where b > 1 and c > 2 are
integers, is transcendental.

Proof. A famous theorem due to Roth states [248] that if |P/Q − α| <
1/Q2+ε admits infinitely many rational solutions P/Q (i.e., if α is approx-
imable to degree 2 + ε for some ε > 0), then α is transcendental. We show
here that αb,c is approximable to degree c− δ. Fix a k and write

αb,c = P/Q+
∑
n>k

1
cnbcn , (4.13)

where gcd(P,Q) = 1 and Q = ckbc
k

. The sum over n gives

|αb,c − P/Q| <
2

ck+1(Q/ck)c
<

ckc

Qc
. (4.14)

Now ck log b+ k log c = logQ, so that ck < logQ/ log b, and we can write

ckc < (logQ/ log b)c = Qc(log log Q−log log b)/ log Q. (4.15)

Thus for any fixed δ > 0,

|αb,c − P/Q| <
1

Qc(1+log log b/ log Q−log log Q/ log Q)
<

1
Qc−δ

, (4.16)

for all sufficiently large k. �
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Consider now the BBP sequence associated with α2,3, namely the se-
quence defined by x0 = 0, and

xn = {2xn−1 + rn}, (4.17)

where rn = 1/n if n = 3k, and rn = 0 otherwise. Successive iterates of this
sequence are:

0, 0, 0,
1

3
,

2

3
,

1

3
,

2

3
,

1

3
,

2

3
,

4

9
,

8

9
,

7

9
,

5

9
,

1

9
,

2

9
,

4

9
,

8

9
,

7

9
,

5

9
,

1

9
,

2

9
,

4

9
,

8

9
,

7

9
,

5

9
,

1

9
,

2

9
,

13

27
,

26

27
,

25

27
,

23

27
,

19

27
,

11

27
,

22

27
,

17

27
,

7

27
,

14

27
,

1

27
,

2

27
,

4

27
,

8

27
,

16

27
,

5

27
,

10

27
,

20

27
,

13

27
,

26

27
,

25

27
,

23

27
,

19

27
,

11

27
,

22

27
,

17

27
,

7

27
,

14

27
,

1

27
,

2

27
,

4

27
,

8

27
,

16

27
,

5

27
,

10

27
,

20

27
,

13

27
,

26

27
,

25

27
,

23

27
,

19

27
,

11

27
,

22

27
,

17

27
,

7

27
,

14

27
,

1

27
,

2

27
,

4

27
,

8

27
,

16

27
,

5

27
,

10

27
,

20

27
.

A pattern is clear: The sequence consists of a concatenation of triply-
repeated segments, each consisting of fractions whose denominators are suc-
cessively higher powers of 3, and whose numerators range over all integers
less than the denominator that are coprime to the denominator. Indeed,
the successive numerators in each subsequence are given by the simple lin-
ear congruential pseudorandom number generator zn = 2zn−1 mod 3j for
a fixed j.

What we have observed is that the question of the equidistribution
of the sequence (xn) (and, hence, the question of the normality of α2,3)
reduces to the behavior of a concatenation of normalized pseudorandom
sequences of a type (namely linear congruential) that have been studied in
mathematical literature, and which in fact are widely implemented for use
by scientists and engineers. These observations lead to a rigorous proof of
normality for many of these constants. In particular, we obtain the result
that each of the constants

αb,c =
∑

n=ck>1

1
nbn

=
∞∑

k=1

1
ckbck , (4.18)

where b > 1, and c is co-prime to b, is b-normal. This result was first
given in [37]. We present here a significantly simpler proof, based on the
following lemma:
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Lemma 4.6 (Hot spot lemma). The constant α is b-normal if and only
if there exists a constant M such that for every interval (c, d),

lim sup
n→∞

#0≤j<n[{bjα} ∈ (c, d)]
n(d− c)

≤ M. (4.19)

This result is proved in [196, pg. 77]. A stronger result is given in [39].

Theorem 4.7. Each of the constants

αb,c =
∞∑

k=1

1
ckbck , (4.20)

where b > 1, and c is co-prime to b, is b-normal.

Proof. For convenience, we will establish the result for α = α2,3. Let
(xn) be the BBP sequence associated with α, as given in (4.17). From this
pattern it follows that if n < 3p+1 then xn is a multiple of 1/3p. Also, if
rk = 1/k if k = 3r, and zero otherwise (as above), then

|xn − {2nαn}| =

∣∣∣∣∣
∞∑

k=n+1

2n−krk

∣∣∣∣∣ < 1
2n
. (4.21)

Suppose we are given some half-open interval [c, d). Observe, in view of
(4.21), that if {2jα} ∈ [c, d), then xj ∈ [c−1/(2j), d+1/(2j)). Let n be any
integer greater than 1/(d−c)2, and let 3p denote the largest power of 3 less
than or equal to n, so that 3p ≤ n < 3p+1. Let m = 	1/(d− c)
 + 1. Now
note that for j ≥ m, we have [c− 1/(2j), d+ 1/(2j)) ⊂ [c− (d − c)/2, d+
(d− c)/2). Since the length of this latter interval is 2(d− c), the number of
multiples of 1/3p that it contains is either 	2 ·3p(d−c)
 or 	2 ·3p(d−c)
+1.
Thus there can be at most three times this many j’s less than n for which
xj ∈ D = [c− (d− c)/2, d+ (d− c)/2). Therefore we can write

#0≤j<n({2jα} ∈ [c, d))
n(d− c)

≤ m+ #m≤j<n(xj ∈ D)
n(d− c)

≤ m+ 3(2 · 3p(d− c) + 1)
n(d− c)

< 8.

We have shown that for all [d− c),

lim sup
n≥1

#0≤j<n({2jα} ∈ [c, d))
n

≤ 8(d− c),

so by the hot spot lemma, α is 2-normal. �
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We should add that α2,3 was actually proven 2-normal by Stoneham in
1970 [267]. The new BBP-based approach described above now makes it
possible to extend these and other previous results to a much larger class.
For example, it is shown in [37] that all constants of the form

α2,3(r) =
∞∑

k=1

1
3k23k+rk

, (4.22)

where rk is the k-th bit in the binary expansion of r ∈ (0, 1), are 2-normal
and transcendental. It is fairly easy to show that if r �= s, then α2,3(r) �=
α2,3(s). In other words, for every real number r ∈ (0, 1), there corresponds
a distinct real constant α2,3(r). Since there are uncountably many reals in
(0, 1), it follows that there are uncountably many 2-normal, transcendental
numbers of the form given by (4.22).

As an amusing sidelight, these α constants also possess the rapid in-
dividual digit computation property possessed by conventional BBP-type
constants. Furthermore, in this case the computation is extraordinarily
rapid. For example, the googol-th (i.e., the 10100-th) binary digit of α2,3

can be calculated in less than one second on a 2003-era computer. This
digit is 0. The first ten hexadecimal digits starting at this position are
2205896E7B.

4.4 Algebraic Irrationals

Although there is no proof of this assertion, as far as we can tell, there
are no BBP-type formulas for algebraic irrationals such as

√
2, 3

√
10 and

φ = (1+
√

5)/2. Thus it appears that the theory we have developed above to
address the question of normality for BBP-type constants is inapplicable
to the case of algebraic irrationals. Yet from all available experimental
evidence, these constants are also b-normal for all commonly used number
bases. In any event, even basic questions such as whether the decimal
expansion of

√
2 has infinitely many fives remain unanswered.

Recently, some results on the density of ones in binary expansions of
certain algebraic irrationals were obtained by the present authors, Richard
Crandall, and Carl Pomerance [30]. These results are certainly much
weaker than full normality, but are worth mentioning given the paucity
of results in this arena.

If a is an integer, we shall define B(a) as the number of ones in the
binary representation of a. If x is real, 0 < x < 1, then by Bn(x), we shall
mean the number of ones in the first n binary digits of x after the “decimal”
point. Note that if x is a binary fraction (i.e., x = c/2d for integers c and
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d), then x has two valid binary expansions—one terminating in zeroes and
the other terminating in ones. Thus in such instances below, we shall
clarify which expansion we mean. For a rational number r with 0 < r < 1,
we define the function C(r) = 1 in the case that r is a binary fraction;
otherwise, C(r) = c/d, where c is the number of ones in the terminally
repeating block of digits in the binary expansion of r, and where d is the
length of the block of repeating digits.

For real numbers x and y, with 0 < x < 1 and 0 < y < 1, we use the
notation (Ak(x, y, n), 0 ≤ k < 2n) to denote the acyclic convolution of the
first n binary digits of x and the first n binary digits of y. To be specific,
let the binary digits of x and y be indexed starting with 0. Then

Ak(x, y, n) =
n−1∑
j=0

xjyk−j , 0 ≤ k < 2n,

where by the subscript k − j we mean k − j + n if k < j.

Theorem 4.8. Let r be a rational number, 0 < r < 1, and suppose that
s =

√
r is irrational. Then

lim inf
n→∞

Bn(s)√
C(r)n

≥ 1,

We first prove two lemmas.

Lemma 4.9. For any two positive integers a and b, B(a+b) ≤ B(a)+B(b),
and B(ab) ≤ B(a)B(b). The same is true for reals, namely Bn(x + y) ≤
Bn(x) +Bn(y) and Bn(xy) ≤ Bn(x)Bn(y), provided we first trim x and y
to n bits.

Proof. The assertion on sums is easily shown by verifying it for one- and
two-bit values of a and b, and then arguing by induction on the number
of bits in a and b. The assertion on products follows from the first by
observing that the process of binary multiplication is merely a sequence of
binary additions with shifts by appending zeroes. �

Lemma 4.10. For x and y with 0 < x, y < 1, define

zn(x, y) =
2n−1∑
k=0

Ak(x, y, n)2−k−1. (4.23)
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Then |zn(x, y) − xy| < 21−n. In other words, the binary expansion of
zn(x, y) agrees with x · y up to approximately n digits (it might be slightly
fewer because of trailing ones, but the bound still holds).

Proof. This follows by the simple observation that the acyclic convolution
reproduces the process of multiplication of two binary fractions. The error
in using only the first n bits of the two operands can be found as follows.
Write x = αn + βn, where αn is the value obtained by using only the first
n bits of the binary expansion of x, with β < 2−n, and similarly write
y = γn + δn. Since zn(x, y) = αnγn precisely, we have

|zn(x, y) − xy| < αnδn + γnβn + βnδn < 2 · 2−n = 21−n. (4.24)

Note that zn(x, y) is always an underestimate of xy, except in the case
where x and y are binary fractions represented using the expansion ter-
minating in zeroes, in which case zn(x, y) = xy exactly for all sufficiently
large n. �

Proof of Theorem 4.8. In the hypothesis of Theorem 4.8, r is rational,
but s =

√
r is irrational. Since s is irrational, |zn(s, s) − r| < 21−n, and

further since the binary expansion of s has infinitely many ones (and it
cannot terminate in zeroes or ones), zn(s, s) will always underestimate s2 =
r. In the case that r is a binary fraction, this underestimation means that
the approximations zn(s, s) cannot possibly replicate the binary expansion
that terminates in zeroes, but they can and therefore must replicate with
increasing fidelity the expansion that terminates in ones. In the case that r
is not a binary fraction, the approximations zn(s, s) must replicate with
increasing fidelity the unique binary expansion of r. Here by “replicate with
increasing fidelity,” we mean that the relevant binary expansions of zn(s, s)
and r agree for all digits up to some position n−d for some fixed integer d.

Here we observe that Lemma 4.9 also applies to the real fraction
multiplication (i.e., convolution) process described in Lemma 4.10. Thus
Bn(zn(s, s)) ≤ B2

n(s). Now since zn(s, s) replicates with increasing fidelity
the expansion of r, we must have, at the least,

lim inf
n→∞

Bn(zn(s, s))
n

= lim inf
n→∞

Bn(r)
n

. (4.25)

But since Bn(r)/n converges to C(r), this means that given ε > 0,

n(Bn(s)/n)2 ≥ Bn(zn(s, s))/n ≥ Bn(r)/n− ε ≥ C(r) − 2ε (4.26)

for all sufficiently large n, which establishes our result. �
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Theorem 4.8 only applies to irrational square roots of rational numbers.
In a new paper (2003) by the present authors, Richard Crandall, and Carl
Pomerance, this result has been significantly strengthened to the following:

Theorem 4.11. For positive real algebraic x of degree d > 1 and for any
ε > 0 there exists some N (depending on x and ε) such that for all n > N ,

Bn(x) > (1 − ε)(2ad)−1/dn1/d,

where ad > 0 is the leading coefficient of the minimum integer polynomial
for y = x/2
log2 x�.

The proof of this result is given in [30]. Interestingly, this proof involves
“BBP tails,” or, in other words, BBP sums beyond certain digit positions,
driving home once more the usefulness of the BBP idea.

Whereas with Theorem 4.8, we had that the number of ones in the first
n bits of an irrational square root is asymptotically at least a constant times√
n, with Theorem 4.11 we have a constant times the d-th root of n, where

d is the algebraic degree. So, for example, the number of ones in the first n
bits of 3

√
2 must be at least some constant times 3

√
n. Obviously we do not

believe that this is the strongest result possible. All experimental evidence
suggests that the limiting density of ones in the binary expansion of any
algebraic irrational is not only greater than zero, but in fact is precisely
1/2, and further that the density of each of the four two-bit combinations
is 1/4, etc. But lacking formal proof, such a supposition could conceivably
be incorrect.

4.5 Periodic Attractors and Normality

In this section, we shall prove the result mentioned above, namely Theorem
4.3, which implies normality for irrational BBP-type constants, conditional
on Hypothesis 4.2. For some additional results and full details, consult [36],
from which we have adapted this material. First, some preliminaries:

As before, we define the norm ||α|| for α ∈ [0, 1) as ||α|| = min(α, 1−α).
With this definition, ||α−β|| measures the shortest distance between α and
β on the unit circumference circle in the natural way. A simple result, which
we will term the “dilated-norm rule,” is the following: If 0 ≤ δ ≤ 1/(2||z||),
then because ||δz|| is now bounded above by 1/2, we have ||δz|| = δ||z||.

A base-b expansion α = 0.α1α2α3 · · · , where each αj is an integer in
[0, b−1], is taken to be unique for α. When competing expansions exist, as
in decimal 0.1000 . . . = 0.0999 . . ., we select the variant with trailing zeroes.
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We define the frequency (when it exists) with which a given finite digit
string (d1d2 · · · dk) appears in α to be the limit as N → ∞ of the number
of instances where αj = d1, αj+1 = d2, · · · , αj+k−1 = dk, j ≤ N + 1 − k,
divided by N .

For a sequence x = (x0, x1, · · · ) of real numbers in [0, 1), we define the
counting function

C(x, c, d,N) = #(xj ∈ [c, d) : j < N).

In other words, the C function gives the count of the first N elements of
the sequence x that lie in the interval [c, d). We now introduce a standard
definition from the literature:

Definition 4.12. A sequence x in [0, 1) is said to be equidistributed if for
any 0 ≤ c < d < 1 we have

lim
N→∞

C(x, c, d,N)
N

= d− c.

This definition is identical to that of “uniform distribution modulo 1,” as
given in [196, p.1]. The following two basic results are taken from that
source:

Theorem 4.13. Let (xn) be equidistributed. If a sequence (yn) has the
property that {yn} → β (constant β) as n→ ∞, then the sequence ({xn +
yn}) is likewise equidistributed. In particular, if yn → 0, then ({xn + yn})
is equidistributed.

Theorem 4.14. A number α is b-normal if and only if the sequence ({bnα} :
n = 1, 2, 3, · · · ) is equidistributed.

We now define the notions of finite attractor and periodic attractor:

Definition 4.15. A sequence x = (xn) in [0, 1) is said to have a finite
attractor W = (w0, w1, · · · , wP−1) if for any ε > 0, there is some K = K(ε)
such that for all k ≥ 0, we have ||xK+k − wt(k)|| < ε, for some function
t(k), with 0 ≤ t(k) < P .

Definition 4.16. A sequence x = (xn) in [0, 1) is said to have a periodic
attractorW = (w0, w1, · · · , wP−1), if for any ε > 0, there is some K = K(ε)
such that for any k ≥ 0, we have ||xK+k − wk mod P || < ε.
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Theorem 4.17. Assume a sequence (yn) has the property that yn → β
(with β constant) as n → ∞. Then a sequence (xn) in [0, 1) has a finite
attractor (alternatively, a periodic attractor) if and only if ({xn+yn}) does.

Proof. This follows immediately from the ε-restriction in the definitions
of finite attractor and periodic attractor. �

We will now show that in certain cases of interest here, these two notions
of attractor coincide:

Theorem 4.18. Let α be real and assume an integer base b ≥ 2. If the
sequence x = ({bnα}) has a finite attractor W , then W is a periodic at-
tractor, and the structure of the attractor W is necessarily

W = (w0, {bw0}, {b2w0}, · · · , {bP−1w0}).

Moreover, each element in W is rational.

Proof. Let W = {w0, w1, · · · , wP−1} be the finite attractor for x. Let
d = min0≤i,j<P (||wi − wj ||), and choose ε < d/(4b). Let Wε be the set of
all z in [0, 1) such that ||z − wi|| < ε for some 0 ≤ i < P . Then we know
that there is some K ′(ε) such that for all k > K ′ we have xk ∈Wε. Let K
be the first k > K ′, such that ||xk − w0|| < ε. We then have:

||xK+1 − bw0|| = ||bxK − bw0|| = b||xK − w0|| < bε < d/4, (4.27)

where the second equality follows from the bounded dilation rule mentioned
at the start of the present section.

It follows that xK+1 is within bε of {bw0}, and similarly xK+k+1 is
within bε of {bw0} whenever xK+k is within ε of w0, which must occur
infinitely often. Since there can be at most one element of the attractor
set W in the region of size d/4 about {bw0}, and since the choice of ε
above was arbitrary, we conclude that bw0 must be the element of W in
that region. We can for notational convenience assume that w1 = {bw0}.
Then ||xK+1 − w1|| < ε, and the argument can be repeated to show that
xK+2 is close to w2 = {b2w0}, etc., and finally that xK+P−1 is close to
wP−1 = {bP−1w0}. It then follows that the member of W which xK+P is
close to must be w0, since otherwise the ε region around w0 would never
be visited again by the x sequence and thus w0 could not be a member of
the attractor set. Therefore, W = (w0, {bw0}, · · · , {bP−1w0}), and W is a
periodic attractor for the x sequence. Rationality of the attractor points
is demonstrated by noting the periodicity condition w0 = {bPw0},which
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implies that for some integer m, we have w0 = m/(bP − 1), and similarly
for the other wi ∈W . �

Theorem 4.19. If the sequence (xn) as defined by x0 = 0, xn = {bxn−1 +
rn}, where b is a positive integer, rn → 0 and rn �= 0, has a finite attractor
W , then W is a periodic attractor, and each element of W is rational.

Proof. Let W = {w0, w1, · · · , wP−1} be the finite attractor for x. Let
d = min0≤i,j<P (||wi −wj ||), and choose ε < d/(4b+ 4). Let Wε be the set
of all z in [0, 1) such that ||z−wi|| < ε for some 0 ≤ i < P . Then we know
that there is some K ′(ε) such that for all k > K ′, we have xk ∈ Wε and
|rk| < ε. Let K be the first k > K ′, such that ||xk−w0|| < ε. We then have
(again we use the dilated-norm rule from the start of the present section):

||xK+1 − bw0|| = ||bxK + rK+1 − bw0|| ≤ b||xK − w0|| + ε

< (b+ 1)ε < d/4. (4.28)

The remainder of the proof of this result follows the second paragraph of
the proof of Theorem 4.18. �

Now we are in a position to establish the following result:

Theorem 4.20. The sequence ({bnα}) has a finite attractor if and only if
α is rational.

Proof. Assume that the sequence ({bnα}) has a finite attractor. By
Theorem 4.18 it then has a periodic attractor. In the definition of a periodic
attractor, let K be the index corresponding to ε = 1/(4b), and set h =
||xK − w0||. Suppose h > 0. Then let m = 	logb(ε/h)
, and note that
bmh ≤ ε < bm+1h < bε < 1/4. Thus we can write (once again using the
dilated-norm rule):

||xK+m+1 − wm+1 mod P || = ||bm+1xK − bm+1w0|| = bm+1||xK − w0||
= bm+1h > ε. (4.29)

But this contradicts the definition of the periodic attractor. Thus we con-
clude that h = 0, so that xK+k = wk mod P for all k ≥ 0. In other words,
after at most K initial digits, the base-b expansion of α repeats with pe-
riod P , so that α is rational. As for the converse, α = p/q rational implies
the sequence (bnp/q) = (((pbn) mod q)/q) is periodic, having in fact the
period 1 for α = 0 and, for p/q in lowest terms, the period of the powers
of b modulo q. �
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We may now prove Theorem 4.3.

Theorem 4.3. Assuming Hypothesis 4.2, every irrational constant with a
BBP-type formula for a given base b is b-normal.

Proof. Assume Hypothesis 4.2. Then suppose a real number α possesses
a formula of the form

α =
∞∑

k=1

1
bk
p(k)
q(k)

, (4.30)

where p(k) and q(k) are integer polynomials, with deg p < deg q and with
q(k) not having any zeroes for positive integers k. We first observe that α
is rational if and only if the sequence (xn), where

xn =
{
bxn−1 +

p(n)
q(n)

}
has a finite attractor. To see this, we know from Theorem 4.20 that the
sequence ({bnα}) has a periodic attractor if and only if α is rational. Fol-
lowing the BBP strategy, we can write

{bnα} =

{
n∑

k=1

bn−kp(k)
q(k)

+
∞∑

k=n+1

bn−kp(k)
q(k)

}
(4.31)

= {xn + tn}, (4.32)

where x is defined by x0 = 0 and the recursion

xn = bxn−1 +
p(n)
q(n)

,

with the sequence t given by

tn =
∞∑

k=1

1
bk
p(k + n)
q(k + n)

.

Provided that deg p < deg q as in Hypothesis 4.2, given any ε there is some
n such that |p(k + n)/q(k + n)| < ε for all k ≥ 1. For such n, we have
|tn| < ε

∑
k≥1 b

−k = ε/(b− 1) ≤ ε. Thus tn converges to zero as n → ∞.
Hence, it follows from Theorem 4.20 that (xn) has a periodic attractor if
and only if α is rational. �
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4.6 Commentary and Additional Examples

1. Borel’s normal number theorem. This theorem asserts that al-
most every real number has normally distributed digits in any or all
bases. It is a special case of the strong law of large numbers ap-
plied to Bernoulli trials, or of the first Borel-Cantelli lemma that
if a sequence of events An is such that

∑
n P (An) converges, then

lim supnAn(= ∪n ∩m>n Am) = 0.

(a) Show that the real numbers in I = [0, 1] with no fives in prime
positions base ten form a negligible set.

(b) Prove the Borel normal law for binary numbers. Hint: Let
sn(ω) =

∑n
k=1 rk(ω) where

rk(ω) =

{
+1, dk = 1
−1, dk = 0,

and dk = dk(ω) is the k-th digit of ω. Note that sn(ω)/n→ 0 if
and only if

∑
k≤n dk(ω)/n→ 1/2. Show for ε > 0 that

P [ω : |sn(ω)| ≥ nε] ≤ 1
n4ε4

∫ 1

0

s4n dω.

Then show that ∫ 1

0

s4n dω = n+ 3n(n− 1)

and deduce the P [ω : |sn(ω)| ≥ nε] ≤ 3/(n2ε4). If we choose
εn appropriately

∑
n P [ω : |sn(ω)| ≥ nεn] is finite. Conclude

that sn(ω)/n → 0 for almost all ω and observe that this is the
asserted conclusion.

(c) Generalize this to an arbitrary base. Conclude that almost ev-
ery number is absolutely normal. In 1916, Sierpinski gave an
“effective” construction of an absolutely normal number. This
has recently been expressed recursively in [47]. There are still
no “natural” examples of absolutely normal numbers, unless one
considers Chaitin’s constant to be one.

The second Borel-Cantelli lemma shows that for a sequence of in-
dependent events when

∑
n P (An) diverges, then lim supn An = 1.

Together they provide a “zero-one” law. Full details are in [53].
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2. The normal numbers are small topologically. We note that
while the absolutely normal numbers comprise a set of full measure,
Salt proved in 1966 that it is of the first Baire category. Indeed, let
b, r, and n be integers 0 ≤ r < b, b > 1, and for 0 ≤ x < 1, let
Nn(r, x) denote the number of occurrences of r in the first n terms of
the base-b expansion of x, and let L(r, x) denote the set of limit points
of the sequence whose nth term is N(r, x)/n. Then L(r, x) = [0, 1]
for all x ∈ [0, 1) with the exception of a set of the first category (i.e.,
a countable union of nowhere dense sets). By contrast, the Liouville
numbers form a set of transcendental numbers of measure zero whose
complement is first category [74, pg. 352].

3. Rational times normal is normal.

Theorem 4.21. Whenever α is normal to base b, then so is rα for
every nonzero positive rational r.

Proof. This result is an example application of the hot spot lemma,
namely Lemma 4.6. First, suppose that α is normal, and consider
pα for a positive integer p. Let {·} denote fractional part. Then
{bjpα} ∈ [x, y) implies that one of the following p mutually exclusive
conditions must hold:

{bjα} ∈ [x/p, y/p)
{bjα} ∈ [x/p+ 1/p, y/p+ 1/p)
{bjα} ∈ [x/p+ 2/p, y/p+ 2/p)

· · · · · ·
{bjα} ∈ [x/p+ (p− 1)/p, y/p+ (p− 1)/p).

Since α is normal, the limiting frequency of each of the above is
(y − x)/p. Thus the limiting frequency of {bjpα} ∈ [x, y) is p times
this value, or y − x. This establishes that pα is normal.

Now suppose that α is normal, and consider α/p for a positive integer
p. We can assume that y − x < 1/p, because otherwise we can take
C = 2p in the condition of Theorem 4.21. Then {bjα/p} ∈ [x, y)
implies {bjα} ∈ [{px}, {py}), where we understand that in some cases
{px} > {py}, due to “wrapping” around the unit interval, in which
case we take this to mean the union of the two intervals [0, {py}) and
[{px}, 1). However, in either case, the total length is p(y−x), so that
the limiting frequency of {bjα} in this set is p(y − x). Thus we can
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write

lim sup
n→∞

#0≤j≤n−1({bjα/p} ∈ [x, γ))
n

≤ p(γ − x),

where we must use ≤ since whereas {bjα/p} ∈ [x, γ) implies {bjα} ∈
[{px}, {py}), the converse is not true. But this is good enough for
Theorem 4.6, which then implies that α/p is normal. This proof is
taken from [41]. See also exercise 8.9 in [196, pg. 77]. �

4. Rational plus normal is normal.

Theorem 4.22. Whenever α is normal to base b, then so is r + α
for every nonzero positive rational r.

Proof. This proof is left as an exercise (see proof of Theorem 4.21
above).

5. Proof that Champernowne’s constant is 10-normal. Using the
hot spot lemma, one can fairly easily prove that Champernowne’s
number C = 0.12345678910111213141516 . . . is 10-normal:

(a) Observe that the decimal expansion of C consists of a concate-
nation of sections of k-long integers, with section k having length
Lk = 9k10k−1.

(b) Within section k, observe, by experimental calculations if de-
sired, that among all j-long strings of decimal digits with j ≤ k,
the all-ones string appears most frequently, and this string ap-
pears Aj,k = (j + 9k)10k−j−1 times. Prove that this expression
(or a somewhat larger upper bound) holds. Hint: Enumerate
the number of ways a j-long string of ones is entirely contained
within a k-digit integer, and also the number of instances where
a j-long string of ones spills from one k-digit integer to the next,
in the Champernowne expansion.

(c) Let nk denote the positions of the successive ends of sections in
the Champernowne expansion, i.e., nk = L1 + L2 + · · · + Lk.
Calculate an upper bound for cj,k = Aj,1 +Aj,2 + · · ·+Aj,k, the
total count of appearances of the j-long all-one string through
the end of section k.

(d) Apply the hot spot lemma, namely Lemma 4.6, to prove that
C is 10-normal. Hint: Note that for nk−1 < n < nk, the count
of appearances of any j-long string in the first n digits is no
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greater than cj,k, and that for n in this range, n > Lk−1. Also
observe that any given interval contains a subinterval with dec-
imal fraction endpoints, with length at least 1/10 of the length
of the interval.

6. Density of binary digits in algebraic irrationals. In some analy-
sis of the density of binary digits in the expansions of certain algebraic
irrationals, the present authors, together with Richard Crandall and
Carl Pomerance, attempted to estimate the following function, as R
goes to infinity:

Ud(R) =
∞∑

m=1

(
R+m+d−1

d−1

)
2m

(r,D ∈ N).

(a) It is easy to discover that Ud(R) satisfies the recursion

f (R, d) − 2 f (R, d− 1) =
(
R+ d− 1
d− 1

)
. (4.33)

Now Maple can “tell” one that

Ud(R) =
1
2

(
R+ d

d− 1

)
F
(

1, d+R + 1, R+ 2;
1
2

)
, (4.34)

and a computer-algebra-assisted use of Euler’s integral for the
hypergeometric function simplifies to

∞∑
m=1

(
R+m+d−1

d−1

)
2m

=

∫ 1

0 (2 − x)d−1
xR dx

β (R+ 1, d)
(4.35)

(the β function is discussed in Section 5.4). From (4.35), it
is fairly easy to obtain precise asymptotics and estimates as
needed. However, it is more relevant that it is now easy by
computer to show that the right side of (4.35), call this Vd(R),
satisfies (4.33). As

V1(R) = (R+ 1)
∫ 1

0

xRdx =
∞∑

m=1

1
2m

= U1(R) = 1,

we are done, in what is an exemplary use of experimental math.

(b) Problem. Compute a good upper bound for Ud(R) for large R
and determine its asymptotic behaviour in R.
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Answer. We assume R > d and begin by writing

K(R, d) =
∫ 1

0

(2 − x)d−1
xR dx, (4.36)

so that

Vd(R) =
K(R, d)

β (R+ 1, d)
. (4.37)

Observe with a change of variables

1
R+ 1

< K(R, d) =
∫ 1

0

(1 + t)d−1 (1 − t)R dt

=
∫ 1

0

(
1 − t2

)d−1
(1 − t)R+1−d dt

<

∫ 1

0

(1 − t)R+1−d dt =
1

R+ 2 − d
,

where the lower bound comes from estimating the original inte-
gral. In a similar manner,

1
β (R + 1, d)

=
Γ(R + 1 + d)
Γ(R+ 1)Γ(d)

=
1

(d− 1)!

d∏
k=1

(
1 +

k

R

)

<
Rd

(d− 1)!

(
1 +

d

R

)d

<
Rd

(d− 1)!
ed/R.

Combining these last two inequalities yields

Ud(R) <
[

R

R+ 2 − d
ed/R

]
R(d−1)

(d− 1)!
,

for R > d. If we call this last bracketed expression γd(R), we
see that

R

R + 2
≤ γd(R) <

(
1 +

1
m

)
e

1
m+1

for R > md,m ≥ 1. Thus, globally the constant is bounded
above by 2

√
e and asymptotically in R the upper and lower

bounds tend to 1. This also shows

lim sup
R→∞

Ud(R)(
R(d−1)/(d− 1)!

) ≤ 1.
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We leave it to the reader to show, using Stirling’s formula, that
indeed

lim
R→∞

Ud(R)(
R(d−1)/(d− 1)!

) = 1.

(c) Show that

Ud(R) =
d−1∑
j=0

(
R+ d

j

)
.

See [30] for further details.

7. Sierpinski’s number. As noted in this chapter, in 1916 Sierpinski
gave an “effective” construction of an absolutely normal number, σ,
recently expressed recursively in [47]. That said, the present algo-
rithm does not allow computation of any digits of σ. It would be
very interesting to rectify this state of affairs.

8. A normal number as a pseudorandom number generator.
Recall the constant α2,3 defined in Section 4.3, which is known to
be 2-normal. The binary expansion of α2,3 is a good pseudorandom
bit generator, and the sequence yn = {2nα2,3} of shifted fractional
parts is a good (0, 1) uniform pseudorandom number generator. In
particular, the sequence y53n can be used to generate independent
64-bit IEEE floating-point iterates, each with 53 bits of α2,3, with a
scheme that can be easily implemented in any programming language
and is well suited for parallel computation:

(a) Observe that in the sequence (4.17), each section of length 2 ·3k

starts with 	3k/2
/3k.

(b) Note that if m is the largest power of three less than n, then

xn =
2n−m	m/2
 mod m

m
.

The exponentiation here can be done using Algorithm 3.2 (Sec-
tion 3.4), implemented using 128-bit integer or double-double
floating-point arithmetic (see Section 6.2.1).

(c) Observe that if yn is the sequence of shifted fractional parts
as defined above, then xn is identical to yn, to within the 53-
bit accuracy of IEEE double floating-point arithmetic, provided
that n is not within 100 of a power of three. Hint: Recall the
proof of Theorem 4.1.
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(d) Observe that the numerators of successive elements of the se-
quence x53n (within a 2m/3-long segment) can be generated
using the iteration x53(n+1) = qx53n mod m, where q = 253.

(e) Implement this scheme on a computer, generating n independent
IEEE 64-bit floating-point values in (0, 1), each with successive
53-bit sections of α2,3, beginning at a given starting index a in
the binary expansion of α2,3, subject to the assumed restriction
that the range a ≤ j < a+ n does not include any value within
100 of a power of 3.

(f) Show that the period of the resulting pseudorandom number
generator is 2m/3, where m is the largest power of three less
than or equal to the starting index a. Hint: See [188, pg. 21].
What range should a be chosen in, so as to insure that the period
is as large as possible, yet not so large as to result in numeric
overflows, given the computer arithmetic being used (say 128-bit
integer or double-double floating-point—see Section 6.2.1)?

(g) Implement this scheme on a parallel computer, preserving the
property that the overall sequence of pseudo-random numbers
generated by all processors is identical to that generated by a
single-processor program. This property is important in parallel
computing not only for debugging purposes, but also to permit
flexibility in the number of processors used. Hint: Note that
each processor can independently calculate the starting value of
its assigned segment of the sequence. See also Exercise 17 of
Chapter 3.

9. Chaitin’s (Omega) constant. Chaitin’s constant is perhaps the
most compact information theoretic way to encode undecidability via
the halting problem for Turing machines. One common accounting of
this is as follows. Fix a prefix-free universal Turing machine U : (i.e.,
if instances U(p) and U(q) each halt, then neither p nor q is a prefix
of the other.) Then Chaitin’s Omega is defined by

Ω =
∑

{U(p) halts}
2−|p|.

Despite being intrinsically incomputable, the first 64 binary digits of
this version of Chaitin’s constant are

0000001000000100000110001000011010001111110010111011101000010000,

as has been recently established in [99].
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10. Transcendentality and irrationality.

(a) Prove that loga b and a1/b are irrational except in the obvious
cases.

(b) Prove that e is irrational by considering∣∣∣∣∣pq −
q∑

n=0

1
n!

∣∣∣∣∣ < 1
q · q! .

(c) More generally, prove that
∑

n≥0(±1)n/n! is irrational for all
choices of (±1)n, thus explicitly constructing continuum-many
irrational numbers.

(d) Establish Liouville’s theorem that if α is algebraic of degree n,
then for all ε > 0 and all c > 0

0 <
∣∣∣∣α− p

q

∣∣∣∣ < c

qn+ε

has only finitely many solutions with p and q integer.

(e) Deduce that
∑

n≥0(±1)n/10n! is transcendental for all choices of
(±1)n, thus explicitly constructing an uncountably infinite class
of transcendental numbers.

11. The Copeland-Erdős constant. This is 0.23571113171923 . . .,
obtained by concatenating the primes. It is sequence A033308 in
Sloane’s online sequence encyclopedia. This and other information
may be found by entering the decimal in the Inverse Symbolic Cal-
culator. In 1946, Copeland and Erdős showed that it is 10-normal.

12. Paul Erdős, a life that added up to something. In 1996 the
mathematical community lost a brilliant and beloved colleague. Here
are excerpts from an essay written by Charles Krauthammer of the
Washington Post [193]:

One of the most extraordinary minds of our time has left. “Left”
is the word Paul Erdős, a prodigiously gifted and productive
mathematician, used for “died.” “Died” is the word he used to
signify “stopped doing math.” Erdős never died. He continued
doing math, notoriously a young person’s field, right until the
day he died Friday, Sept. 20. He was 83. . . .

He had no home, no family, no possessions, no address. He went
from math conference to math conference, from university to
university, knocking on the doors of mathematicians throughout
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the world, declaring “My brain is open” and moving in. His
colleagues, grateful for a few days collaboration with Erdős—
his mathematical breadth was as impressive as his depth—took
him in.

Erdős traveled with two suitcases, each half-full. One had a
few clothes; the other, mathematical papers. He owned nothing
else. Nothing. His friends took care of the affairs of everyday
life for him—checkbook, tax returns, food. He did numbers. . . .

His Washington Post obituary ends with this abrupt and rather
painful line: “He leaves no immediate survivors.”

But in reality he did: hundreds of scientific collaborators and
1,500 mathematical papers produced with them. An astonish-
ing legacy in a field where a lifetime product of 50 papers is
considered extraordinary.

Mathematicians tend to bloom early and die early. The great In-
dian genius, Srinivasa Ramanujan, died at 32. The great French
mathematician, Evariste Galois died at 21. (In a duel. The
night before, it is said, he stayed up all night writing down ev-
erything he knew. Premonition?) And those who don’t literally
die young, die young in Erdős’ sense. By 30, they’ve lost it.

Erdős didn’t. He began his work early. At 20 he discovered
a proof for a classic theorem of number theory (that between
any number and its double must lie a prime, i.e., indivisible,
number). He remained fecund till his death. Indeed, his friend
and benefactor, Dr. (of math, of course) Ron Graham, estimates
that perhaps 50 new Erdős papers are still to appear.

Erdős was unusual in yet one other respect. The notion of the
itinerant, eccentric genius, totally absorbed in his own world of
thought, is a cliche that almost always attaches to the adjective
“anti-social.” From Bobby Fischer to Howard Hughes, obsession
and misanthropy seem to go together.

Not so Erdős. He was gentle, open and generous with others.
He believed in making mathematics a social activity. Indeed, he
was the most prolifically collaborative mathematician in history.
Hundreds of colleagues who have published with him or been
advised by him can trace some breakthrough or insight to an
evening with Erdős, brain open.
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The picture of Paul Erdős in Figure 4.2 captures him very well. It is
shown at Grossman’s Erdős Number Project (see http://www.oakland.
edu/enp/. Using this online tool, one finds, for example, that there
are three Borweins with “Erdős number two,” which connotes that
they each wrote a paper with some direct co-author of Erdős, but
not with Erdős himself. One also finds that Roland Girgensohn has
Erdős number two, and that David Bailey has Erdős number three.

Figure 4.2. A 1993 photo of Paul Erdős. Photograph of Paul Erdos by George
Csicsery from his documentary film “N is a Number: A Portrait of Paul Erdos”
(1993).
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5 The Power of
Constructive Proofs

A proof is a proof. What kind of a proof? It’s a proof. A proof is a
proof. And when you have a good proof, it’s because it’s proven.

– Jean Chretien, Prime Minister of Canada, on the need for
evidence of weaponry in Iraq, CBC News, Sept. 5, 2002.

The advent of the modern computer mathematics systems makes much
previously elusive material tangible and certainly helps drive a taste for
the concrete. Even when not explicitly using such software, a constructive
computational approach to mathematical proofs and derivations is often
significantly more enlightening and intuition-promoting than purely ab-
stract approaches. Illustrating both the power and the pleasure of these
constructive approaches is the aim of this chapter.

5.1 The Fundamental Theorem of Algebra

We will start this chapter with a proof of the Fundamental Theorem of
Algebra, as an experimental mathematician might construct. Let p be a
polynomial defined on the complex plane C:

p(x) = a0 + a1x+ a2x
2 + · · · + anx

n. (5.1)

Suppose that p(x) has no roots in C. For some sufficiently large s, we can
assume |p(x)| > 1 for all x with |x| ≥ s, because for sufficiently large x, the
xn term dominates. Since |p(x)| is continuous on the interior and boundary
of the circle with radius s, it follows from fundamental continuity axioms
that |p(x)| achieves a minimum value at a point t in this (solid) circle. We
will see numerous examples in subsequent sections of this “min/max” or
“variational” approach in action. Now write

q(z) = p(z − t) = q0 + q1z + · · · + qnz
n. (5.2)

Presumably the polynomial q has a global minimum M at 0, and M =
|q0| = |q(0)| > 0.

175
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Our proof strategy is to construct some point x, close to the origin,
such that |q(x)| < |q(0)|, thus contradicting the presumption that q has
a global minimum at zero. One idea that immediately suggests itself to
the experimental mathematician is to employ Newton’s method, for finding
roots of a function f . This is the well-known scheme in which we choose
x0 to be some initial value, and then iterate

xk+1 = xk − f(xk)
f ′(xk)

(5.3)

(see Section 6.2.5). One detail that needs to be observed here is how to
handle the case where the derivative in Newton’s iteration (5.3) is zero. In
that case we simply adapt a higher-order approximation from the Taylor’s
series of the function f(x). In particular, if the first m derivatives of f(x)
at xk are zero, but not the (m+ 1)-st derivative, then we can write

xk+1 = xk +
(−m!f(xk)
f (m)(xk)

)1/m

, (5.4)

where the m-th root of a complex number z = aeib is calculated using the
well-known formula

z1/m = a1/m (cos(b/m) + i sin(b/m)) . (5.5)

In general we have no global guarantee that xk+1 is closer to the root than
xk, but for the purposes of our present proof strategy, we do not require
this—we only require some point x whose function value is slightly smaller
than the function value at zero. If Newton’s method gives us merely a
direction in the complex plane for which the function value decreases in
magnitude (a descent direction), then by moving a small distance in that
direction, we hope to achieve our goal of exhibiting a complex x such that
|q(x)| < |q(0)|. This is the strategy we will pursue.

So suppose that the first nonzero coefficient of q, following q0, is qm (if
there is no nonzero coefficient following q0, then the polynomial reduces to
a constant):

q(x) = q0 + qmx
m + qm+1x

m+1 + · · · + qnx
n. (5.6)

Note that q(m)(x) = m!qm. Thus, in accordance with (5.4), we will choose
x to be the complex number

x = r

(−q0
qm

)1/m

(5.7)
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for some small positive real r that we will specify below. Now we can write

q(x) = q0 − q0r
m + qm+1r

m+1

(−q0
qm

)1+1/m

+ · · · + qnr
n

(−q0
qm

)n/m

= q0(1 − rm) + E , (5.8)

where the error term E satisfies

|E| ≤ rm+1 max |qi|
1 − s

∣∣∣∣ q0qm
∣∣∣∣1+1/m

(5.9)

for s = r|q0/qm|, which is smaller than one when r is sufficiently small. In
this way, E can be made arbitrarily small in ratio to |q0|rm by choosing r
small enough. Thus, for such an r, we have |q(x)| = |q(0)(1 − rm) + E| <
|q(0)|, which contradicts our original assumption that q(x) has a global
minimum at zero.

This establishes the Fundamental Theorem of Algebra. Continuing by
induction, we have constructively proven:

Theorem 5.1. Every complex polynomial of degree n has exactly n com-
plex roots.

More importantly, we have gained some modest insight into how to prac-
tically locate roots. Indeed, a careful scheme along these lines can lead to
a fairly robust numerical procedure for finding polynomial roots (this is
discussed more in Section 7.3 of the second volume of this work).

5.1.1 Liouville’s Theorem and the Sine Product

Of course, depending on what tools we consider elementary, other proofs
may seem equally or more transparent. Suppose we are familiar with the
following generalization of the Fundamental Theorem of Algebra, an appli-
cation of the Cauchy-Goursat theorem:

Theorem 5.2 (Liouville). Every entire function in the complex plane
with polynomial growth of degree at most n is a polynomial of degree at
most n.

Then the assumption that

p(x) = a0 + a1x+ a2x
2 + · · · + anx

n

never vanishes leads almost immediately to the Fundamental Theorem of
Algebra.
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We illustrate the use of Theorem 5.2 by deriving the product formula for
the sin function (5.41). This will be discussed more completely in Section
5.4. We begin by considering

σ(z) = π z

∞∏
n=1

(
1 − z2

n2

)
, (5.10)

for z ∈ C, and analyzing the quotient

q(z) =
σ(z)

sin(πz)
. (5.11)

We rewrite σ as

σ(z) = π z(1 − z)
∞∏

n=1

(
1 +

z(1 − z)
n(n+ 1)

)
,

by gathering the terms in 1 + z/n and 1 − z/(n+ 1) together. This shows
that σ(1 − z) = σ(z) and so that σ(z + 1) = −σ(z). Thus, q is entire as
both numerator and denominator have simple zeroes at the integers and
are pole free. Moreover,

q(z + 1) = q(z),

and

q(n) = q(0) = lim
z→0

sin(z)
z

= 1, (5.12)

for each integer n. It remains to bound q. First, we write∣∣∣∣∣
∞∏

n=1

(
1 − z2

n2

)∣∣∣∣∣ ≤ exp

( ∞∑
k=1

log
(

1 +
|z|2
k2

))
(5.13)

≤ exp
(

log(1 + |z|2) +
∫ ∞

1

log
(

1 +
|z|2
u2

)
du

)
= exp(π|z| − 2|z| arctan(1/|z|)) ≤ exp(π|z|).

Then we observe that, as q has period 1, it suffices to establish that

|q(z)| ≤ a |z|+ b, when − 1/2 ≤ Re(z) ≤ 1/2 (5.14)

for some a, b > 0. Once (5.14) is established, Theorem 5.2 ensures that q
is at most linear, but as q takes the value 1 infinitely often, q(z) ≡ 1 and
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we are done. To establish Equation (5.14), let us write x and y for the real
and imaginary parts of z. We note that

inf
|x|,|y|≤1/2

∣∣∣∣sin zz
∣∣∣∣ > 0 (5.15)

as sin has zeroes only at the integers, while for |x| ≤ 1/2 and |y| ≥ 1/2 we
have

| sin(πz)| ≥ | sinh(π|y|)| ≥ c exp(π|z|) − d, (5.16)

for c, d > 0. Combining these last two estimates with that of (5.10) pro-
duces (5.14).

Even if we distrust and only partially understand Theorem 5.2, and we
perform the steps in the previous proof informally, we finish with greater
security that the result is true and more reason to search for a compelling
and constructive proof.

That said, computer algebra systems are not perfect and this seems an
appropriate place to highlight one of the issues most vexing for symbolic
computation—selecting the right branch of the inverse of a function.

5.1.2 Roots and Branches

We start with two “failures”:

Example 5.3. Simplifying
√
x.

Evaluating asymptotic expansions for the Airy function (the first solution
of w′′ − zw = 0, which one can see in the rainbow), Rob Corless and Dave
Jeffrey could not get correct values for negative x, in Maple version 4 (circa
1988).

The problem turned out to be in the calculation of
√−x .

Maple was “simplifying” automatically
√−x→ i

√
x ,

and therefore when it tried substituting, say, x = −4 it computed as follows.
√−x → i

√
x; i

√
x → i

√−4; i
√−4 → i2

√
4 → −2 .

Of course, they wanted
√−(−4) = 2. Corless and Jeffrey’s quick fix

was to program
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temp:= -x; sqrt(temp);

The slow fix was to identify a set of problems called generically by Maple
developers as “The Square Root Bug.” Of course, humans routinely write√
x2 = x and worry about it afterwards. �

Example 5.4. Simplifying sin(arcsin(x)).

One computer algebra system simplified SIN(ASIN(5/4)) → −5/4 using the
“standard” formulae:

arcsin z = arctan
(

z√
1 − z2

)
(5.17)

sin (arctan z) =
z√

z2 + 1
, (5.18)

and internally used (5.17) to convert inverse sine to inverse tangent:

arcsin(5/4) = arctan(−5i/3).

The system then used (5.18), with the complex number, and got the wrong
sign:

−5i/3√
52(−1)/32 + 1

=
−5i/3√−16/9

= −5/4.

This time the cure was to modify

arcsin z = arctan
(

z√
1 − z2

)
sin (arctan z) =

z√
z2 + 1

= z
1√

z2 + 1

to

arcsin z = arctan
(

z√
1 − z2

)
(5.19)

sin (arctan z) = z

√
1

z2 + 1
, (5.20)

and to ensure that√
1
z

was not automatically simplified to
1√
z
.

�
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Additionally, the different systems and reference books do not neces-
sarily agree on what the domain of arcsin is (even, for example, in different
editions of Abromowitz and Stegun [1]), or where the branch cut for log
occurs.

These and other examples show how errors may be caused by any of
the following

√
xy → √

x
√
y,

√
x2 → x,√

1
z

→ 1√
z
, log(ez) → z,

log(1/z) → − log z, arctan z = arcsin
(

z√
z2 + 1

)
,

being used in simplifications.

The source of the problems is that in the complex plane, functions such
as log, square root, are multi-valued. In each problematic transformation,
at least one multi-valued function is being manipulated in the complex
plane using a law that applies to the single-valued function defined for real,
positive arguments. The issue becomes how to treat multivalued functions
(i) in human mathematics, and (ii) in a computer system.

Many solutions have been proposed:

Example 5.5. Simplifying logAB.

Consider the relation

log(AB) = logA+ logB .

Maple proves this is wrong by substituting A = B = −1.

> eq:= log(A*B)=log(A)+log(B);

eq := ln(A B) = ln(A) + ln(B)

> subs({A=-1,B=-1},eq);

ln(1) = 2 ln(-1)

> simplify(%);

0 = 2 I Pi

Many people are quite unhappy with this. They reply either (i) Abramowitz
and Stegun define the multivalued function Log (a Principal Value) and this
is the function to use: the correct equation should be

Log(AB) = LogA+ LogB;
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or (ii) they observe that the trouble is that Maple is not working on the
Riemann surface, and if it did, all its problems would be solved.

To explain these responses, several terms need to be specified. A multi-
valued function is a function (e.g., log, inverse sine, square root) that can,
in principle, have multiple values associated with it. A function returning
multiple values is a multivalued function that is defined to return more
than one value. The values might be returned as a set or in some other
data structure. A principal-valued function is a selection of multivalued
function that specifies a single preferred value. Corless and Jeffrey then
asked whether log(−1) represents the single number iπ? All the solutions
z of the equation exp(z) = −1, as the set {iπ+ 2iπk | k ∈ Z}? Some object
in between these two, perhaps a single number iπ+ 2iπk with the value of
k being fixed later?

A traditional response was provided by Carathéodory writing on the
equation

log z1z2 = log z1 + log z2 , (5.21)

for complex z1, z2.

The equation merely states that the sum of one of the (infinitely
many) logarithms of z1 and one of the (infinitely many) logarithms
of z2 can be found among the (infinitely many) logarithms of z1z2,
and conversely every logarithm of z1z2 can be represented as a sum
of this kind (with a suitable choice of log z1 and log z2).

The above definition is not an equality between sets. Consider a special
case of 3 log z = log z3.

3 log(−1) = log[(−1)3] = log(−1) .

The left-hand side is the set {3iπ + 6iπk}, but the right-hand is the set
{iπ + 2iπk}. Also, mathematically, log z does not have a unique value,
while computer algebra systems accept a specific value for z and return a
unique log z. From another point of view, the value of log z is no longer
determined solely by the value of z: The value to be given to log z is also
determined by the context. Thus, if the left-hand side log(−1) equals iπ,
then the right-hand log(−1) equals 3iπ.

Multiple values are not computational as working with the solution of
the cubic equation z3 +3qz−2r = 0 shows. In keeping with Carathéodory,
the solution by radicals, ascribed to Cardano (1501–1576) and Tartaglia
(1499–1557), is written as

z =
(
r +

(
r2 + q3

)1/2
)1/3

+
(
r − (

r2 + q3
)1/2

)1/3

.
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Each square root has two values and each cube root has three, and each
term in the addition takes an independent value. Even allowing for sym-
metry, z is elected from a set of more than three possible z.

Jeffrey writes:

Traditionally, this inefficiency has not bothered human mathemati-
cians, who patiently try all the solutions until the three correct ones
are verified, but it is not desirable in a computer system.

He likewise argues against using Riemann surfaces (others disagree) and
ends up recommending the use of principal values in computer systems,
with labeled branches to express multivaluedness better, and the use of the
so-called unwinding number [113, 176] to keep transformations correct. In
conclusion he appropriately notes that there is reluctance to give up the
old formulae ⎛⎝((((

z2
)1/2

)3
)1/3

)4
⎞⎠1/4

= z ??

and that there are limits to what computer algebra systems can introduce,
unilaterally, in the way of new mathematical ideas and notation. We refer
the reader to [112] for a fuller discussion of the issues in “reasoning about
the elementary functions of complex analysis.”

When a program returns a patently negative value for an area or a
complex number in a real integral, any alert user will be flagged. While
numerical checking will help, it is much more invidious when simplification
of an expression takes a wrong branch internally, but returns, say, log(7/9)
when the right answer is log(4/5).

Suffice it to say that the user of any system should be alert to such issues
and on the inherent difficulties in addressing the underlying problems.

5.2 The Uncertainty Principle

In this section, we illustrate in detail how one may be led to a larger
discovery by directed computation and visualization.

Some readers may be familiar with the uncertainty principle from quan-
tum mechanics, which is often expressed as the fact that the position and
momentum of a subatomic-scale particle cannot simultaneously be pre-
scribed or measured to arbitrary accuracy. Other readers may be familiar
with the uncertainty principle from signal processing theory, which is often
expressed as the fact that a signal cannot simultaneously be “time-limited”
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and “frequency-limited.” Remarkably, the precise mathematical formula-
tions of these two principles are identical.

Richard Crandall illustrates the uncertainty principle with a “thought
experiment.” Imagine that a tuning fork is struck, then very quickly
silenced—just a brief burst of sound. If the duration Δt is short enough,
the perceived pitch would be ambiguous, so that the “uncertainty” in the
frequency Δf would be large. More precisely, the spectrum of such a sound,
if viewed on a spectrum analyzer, would be rather broad. If the duration
is long, then the listener (and the spectrum analyzer) can hear enough cy-
cles of the signal to gauge the pitch quite accurately, in which case Δf is
small—the spectrum would be sharply peaked at the tuning fork’s natural
frequency. Thus we can write ΔtΔf > C for some constant C. This is the
basic idea of the uncertainty principle.

The most common proof of the uncertainty principle is not terribly
difficult, although it is hardly intuitive (and certainly not very enlightening)
at first reading. We will sketch it here, assuming some elementary facts
of analysis. Let us consider a real, continuously differentiable, L2 function
f(t), which further satisfies f(t)

√
t → 0 as |t| → ∞. For convenience, we

will also assume here that f(−t) = f(t), as this insures that the Fourier
transform f̂(x) of f(t) is purely real, although in general this condition is
not necessary. Define (see also Section 2.2 of the second volume):

E(f) =
∫ ∞

−∞
f2(t) dt

V (f) =
∫ ∞

−∞
t2f2(t) dt

f̂(x) =
∫ ∞

−∞
f(t)e−itx dt

Q(f) =
V (f)
E(f)

· V (f̂)

E(f̂)
. (5.22)

Theorem 5.6. With the above assumptions and definitions, Q(f) ≥ 1/4,
with equality if and only if f(t) = ae−(bt)2/2 for real constants a and b.

Proof. By applying the integral form of the Schwarz inequality [5, pg. 256]
(see also formula (5.32)), to the functions tf(t) and f ′(t), we can write∣∣∣∣∫ ∞

−∞
tf(t)f ′(t) dt

∣∣∣∣2 ≤
[∫ ∞

−∞
t2f2(t) dt

] [∫ ∞

−∞
(f ′(t))2dt

]
. (5.23)
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Furthermore,∫ ∞

−∞
tf(t)f ′(t) dt =

1
2

∫ ∞

−∞
t
df2(t)
dt

dt = −1
2
E(f) (5.24)

by applying integration by parts. Let g(t) = f ′(t). By noting that ĝ(x) =
−ixf̂(x), and by applying Parseval’s identity [229, pg. 65] to f(t) and g(t),
we obtain, respectively,∫ ∞

−∞
|f(t)|2 dt =

1
2π

∫ ∞

−∞
|f̂(x)|2 dx∫ ∞

−∞
|f ′(t)|2 dt =

1
2π

∫ ∞

−∞
x2|f̂(x)|2 dx. (5.25)

Combining these results, we obtain our desired inequality. Recall that
equality in the Schwarz inequality occurs only when the two functions (tf(t)
and f ′(t) in this case) are linear scalings of each other, i.e., f ′(t) = ctf(t)
for some c. By solving this elementary differential equation, we conclude
that the minimum value 1/4 is achieved if and only if f(t) = ae−(bt)2/2

for constants a and b, or in other words for a scaled Gaussian probability
density function. By the way, it is worth noting that Q(f) is unaffected
by a linear scaling of either the function argument t or the function value
f(t). �

Now let us approach this problem as an experimental mathematician
might. As was mentioned above, it is natural when studying Fourier trans-
forms (particularly in the context of signal processing) to consider the “dis-
persion” of a function and to compare this with the dispersion of its Fourier
transform. Noting what appears to be an inverse relationship between these
two quantities, we are naturally led to consider the expression

Q(f) =
V (f)
E(f)

· V (f̂)

E(f̂)
. (5.26)

With the assistance of Maple or Mathematica, we can readily work out
some examples, as shown in Table 5.1. We note that each of the entries in
the last column of the table is in the range (1/4, 1/2). For example, the
expression in the bottom right corner of the table is approximately 0.26329.
Can we get any lower?

To further study this problem with an experimental approach, we em-
ploy numerical methods, since these permit the above calculations to be
performed for a wide variety of functions, analytic or tabular. We can
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f(t) Interval f̂(x) E(f) V (f) V (f̂) Q(f)

1 − t sgnt [−1, 1] 2(1 − cosx)/x2 2/3 1/15 4π 3/10

1 − t2 [−1, 1] 4(sin x− x cos x)/x3 16/15 16/105 16π/3 5/14

1/(1 + t2) [−∞,∞] π exp(−x sgnx) π/2 π/2 π2/2 1/2

e−|t| [−∞,∞] 2/(1 + x2) 1 1/2 2π 1/2

1 + cos t [−π, π] 2 sin(πx)/(x− x3) 3π π3 − 15π/2 2π2 (π2 − 15/2)/9

Table 5.1. Q values for various functions.

do this by approximating the Fourier transform f̂(x) by means of a step-
function approximation to the integral, as follows (see also Section 6.1).
Assume that f(t) is zero (or sufficiently small) outside [−a/2, a/2], and its
Fourier transform f̂(x) is zero (or sufficiently small) outside [−b/2, b/2].
Select an even integer n so that ab = 2πn. This usually requires that we
adjust a and b to be larger than the minimum values needed, particularly
if a large value of n is needed for high accuracy in the approximation. n is
typically chosen to be a power of two. Then we can write

f̂

(
bk

n

)
=

∫ ∞

−∞
f(t)e−itbk/n dt

≈ a

n

n
2 +1∑

j=−n
2 +1

f

(
aj

n

)
e−i(aj/n)(bk/n) (5.27)

=
a

n

n
2 +1∑

j=−n
2 +1

f

(
aj

n

)
e−2πijk/n (5.28)

for −n/2 + 1 ≤ k ≤ n/2. If we adopt the convention that f(t) = f(t− a)
for t > a/2, and f̂(x) = f̂(x− b) for x > b/2, then we can write

f̂

(
bk

n

)
=

a

n

n−1∑
j=0

f

(
aj

n

)
e−2πijk/n, (5.29)

for 0 ≤ k ≤ n − 1, which is now in a form suitable for the application of
widely available fast Fourier transform (FFT) routines.

The integrals in the definition of Q can now be computed using similar
step-function approximations, as follows:
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E(f) =
∫ ∞

−∞
f2(t) dt ≈ a

n

n
2 +1∑

j=− n
2 +1

f2

(
aj

n

)

V (f) =
∫ ∞

−∞
t2f2(t) dt ≈ a

n

n
2 +1∑

j=− n
2 +1

(
aj

n

)2

f2

(
aj

n

)

E(f̂) =
∫ ∞

−∞
f̂2(x) dx ≈ b

n

n
2 +1∑

j=−n
2 +1

f̂2

(
bj

n

)

V (f̂) =
∫ ∞

−∞
x2f̂2(x) dx ≈ b

n

n
2 +1∑

j=−n
2 +1

(
bj

n

)2

f̂2

(
bj

n

)
, (5.30)

where we use the results of the FFT scheme for the indicated array of f̂
values.

Given an equispaced array (tk) with spacing d, and a corresponding
array (yk), define f(t) to be the function given by parabolic interpolation in
the (yk) array. To be precise, this means that for t in the interval (tk, tk+1),
define f(t) = yk−h(3yk−4yk+1+yk+2)/2+h2(yk−2yk+1+yk+2)/2, where
h = (t− tk)/d. We can now employ a simple search strategy to explore the
space of continuous functions to find one that minimizes Q:

Algorithm 5.7. To find a Q-minimizing function f(t).

Given c and m, first construct the (m+3)-long abscissa array (tk = ck/m),
for 0 ≤ k ≤ m + 2, which has spacing d = c/m. Define the tent-function
array (yk = 1 − k/m) for 0 ≤ k ≤ m, with ym+1 = ym+2 = 0. Define
f(t) as above based on the (yk) array. For negative t, define f(t) = f(−t),
and define f(t) = 0 for |t| > c. Initially set δ to be some small value, and
calculate Qmin = Q(f), utilizing the scheme described above, for f(t) as
just defined. Now iterate as follows: Starting with k = 1 (not k = 0),
increase yk by δ (leaving other yj unchanged) and calculate Q(f) for f(t)
associated with this altered y array. If Q(f) < Qmin, then replace Qmin by
Q(f), and replace the y array with the altered y array; if not, then decrease
yk by δ, and replace as before if Q(f) < Qmin. Either way, increment k
and perform similar tests until the case k = m is complete. If for some
k the test Q(f) < Qmin was true, then repeat beginning with k = 1. If
not, then reduce δ by a factor of two and start again. Terminate when δ is
sufficiently small. �
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In our implementation of this procedure, we use the parameters a =
128, b = 64π and n = 4096 for the FFT and integration procedures (so
that ab = 2πn as required in the FFT). In the search procedure, we set
c = 8 and m = 32. We set the initial δ = 1/16, and we terminate when
δ < 10−6. This requires about 30 minutes on a 2003-era personal computer
or workstation. An acceptable, but less accurate, result is obtained in just
a minute or so by using the termination condition δ < 10−4.

The final experimentally determined Q-minimizing function f(t) that
we obtain is plotted in Figure 5.1. Needless to say, its shape strongly
suggests a Gaussian probability curve. Actually, we have graphed both
f(t) and the function e−(bt)2/2, where b = 0.45446177, on the same plot—
they are identical to the precision of the plot! We graphed the difference
between these two functions in Figure 5.2. The value of Q corresponding
to this f(t) is 0.25001158, which indeed is very close to 1/4.

If you do calculations of this sort, you may discover a curious fact.
When the numeric computational scheme described above (which is based
on discrete, step-function approximations for the various integrals involved)
is applied to compute Q for a scaled Gaussian function (namely a function
of the form ae−(bt)2/2), the result of this calculation is very accurate. The
value of Q produced by our program is 1/4, correct to 15 decimal places
(using ordinary IEEE double floating-point arithmetic), even with a modest
value of n. For other types of functions, with a step-function interval of
10−4 or so, typically only six or seven digits are good.

What is happening here is that we have experimentally uncovered an
important and nontrivial fact of numerical analysis: If a function f(t) and
all its derivatives approach zero as t approaches the endpoints of the interval
[a, b] (which condition is certainly satisfied by the Gaussian probability
density function on (−∞,∞)), then calculating the definite integral of f(t)
on [a, b] by means of a simple step-function or trapezoidal approximation
scheme is extraordinarily accurate [12, pg. 280]. This fact, which is a
consequence of the Euler-Maclaurin summation formula, is the basis of
some new robust and high-precision numerical quadrature algorithms. We
shall discuss these schemes, plus the Euler-Maclaurin summation formula,
in Section 7.4 of the second volume.

5.3 A Concrete Approach to Inequalities

Discovering and establishing inequalities underpins much of mathematics.
It has been claimed that most of analytic number theory is the Cauchy-
Schwarz inequality in various disguises. Its ubiquitous extension is Hölder’s
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Figure 5.1. Experimental Q-minimizing function and matching Gaussian.
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Figure 5.2. Difference between Q-minimizing function and matching Gaussian.
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inequality. For 1 ≤ p, q ≤ ∞, we define the p−norm of a sequence in Rn

‖x‖p = p

√√√√ n∑
k=1

|xk|p.

For p = ∞, the norm is ‖x‖∞ = maxn
k=1 |xk|, which coincides with

limp→∞ ‖x‖p. We use 〈x, y〉 for the dot-product.

Theorem 5.8. If 1/p+ 1/q = 1 then

〈x, y〉 ≤ ‖x‖p ‖y‖q, (5.31)

with equality only if xk and yk are “aligned” (i.e., x = cy for some scalar c).

Proof. We may assume x and y are nonzero. We proceed in several steps.
First, we establish the Fenchel-Young inequality

1
p
|x|p +

1
q
|y|q ≥ xy

for real x and y. This can be done by observing that it suffices to assume x, y
are positive and to use calculus on the function x �→ (xp)/p+ (yq)/q − xy,
which has a critical point at 0 and is convex. Then we have∑

k

(
1
p
xp

k +
1
q
yq

k

)
≥

∑
k

xkyk,

which is

1
p
‖x‖p

p +
1
q
‖y‖q

q ≥ 〈x, y〉.

In particular if z = x/‖x‖p
p, and w = y/‖y‖q

q, we deduce that 〈z, w〉 ≤ 1 as
each of w, z are unit length and 1/p+ 1/q = 1. This establishes (5.31).

We leave the proof of the equality statement to the reader. They emerge
on analyzing when the Fenchel-Young inequality is an equality. �

The corresponding integral inequality∫
R

x(t)y(t) dt ≤
[∫

R

|x(t)|p dt
]1/p [∫

R

|y(t)|q dt
]1/q

(5.32)

is proven in the same way.
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When p = q = 2, we recover the Cauchy-Schwarz inequality. In general
for a function f : Rn �→ R ∪ ∞, we may define the (Fenchel-Legendre)
conjugate by

f∗(y) = sup
x
〈x, y〉 − f(x).

The conjugate is always convex and lower semicontinuous. First used, less
explicitly, by Legendre in the study of adjoint systems of ODE’s, f∗ plays
a role like the Fourier conjugate in that for convex (lower-semi) contin-
uous functions f = f∗∗, [78]. For example, f = x → x log(x) − x has
f∗ = exp and f∗∗ = f . Hence, symbolically performing the code be-
low actually proves that f is convex. Moreover, the definitional inequality
f(x) + f∗(y) ≥ 〈x, y〉 is what we used in the proof. As we observed in Sec-
tion 5.1.2, computer algebra systems struggle with branches (i.e., multiple
inverses).

Thus, the following Maple code

conj:=proc(f,y) local x,g:g:=y*x-f(x);

simplify(subs(x=solve(diff(g,x),x)[1],g),symbolic);end;

has to be massaged to deal with xp/p, but is fine with x4/4. We have
illustrated that convexity is in some sense easy to handle computationally.
A much more sophisticated version of the above is detailed next.

Example 5.9. A symmetric pair of functions [78].

(a) Given real γ1, γ2, · · · , γn > 0, define h : Rn → (−∞,+∞] by

h(x) =
{∏n

i=1 x
−γi

i if x ∈ Rn
++

+∞ otherwise.

By writing g(x) = exp(log g(x)) and using a composition formula,
one can prove that

h∗(y) =

⎧⎪⎨⎪⎩−(γ + 1)
n∏

i=1

(−yi

γi

)γi/(γ+1)

if − y ∈ Rn
+

+∞ otherwise,

where γ =
∑

i γi.

(b) Given real α1, α2, · · · , αn > 0, define α =
∑

i αi and suppose a real
μ satisfies μ > α+1. Now define a function f : Rn ×R → (−∞,+∞]
by

f(x, s) =
{
μ−1sμ

∏
i x

−αi

i if x ∈ Rn
++, s ∈ R+

+∞ otherwise.
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Using part (a) one may then prove that

f∗(y, t) =
{
ρν−1tν

∏
i(−yi)−βi if − y ∈ Rn

++, t ∈ R+

+∞ otherwise

for constants

ν =
μ

μ− (α+ 1)
, βi =

αi

μ− (α+ 1)
, ρ =

∏
i

(αi

μ

)βi

.

The punch line is that on deducing f = f∗∗, we explicitly represent
f as a convex function. Indeed, one can now show that f is strictly
convex, since f∗ is differentiable.

�

5.4 The Gamma Function

The Gamma function naturally extends the factorial and appears through-
out this chapter. We begin with a characterization that again exploits
convexity. The Γ-function is usually defined as an integral

Γ(x) =
∫ ∞

0

exp(−t)tx−1 dt (5.33)

for Re(x) > 0.

Theorem 5.10 (Bohr-Mollerup). The Γ−function is the unique func-
tion f : (0,∞) → (0,∞) with the following three properties:

1. f(1) = 1;

2. f(x+ 1) = xf(x);

3. f is log-convex (i.e., x→ log(f(x)) is convex).

Proof. We sketch the proof. First we show the integral in (5.33) does
indeed have the requisite three properties. The first two are easy integration
exercises (which can be automated in Maple or Mathematica). For the key
property 3, we use the integral version of Hölder’s inequality (5.32) to show
that √

Γ(x) Γ(y) ≥ Γ
(
x+ y

2

)
.
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Conversely, we set g(x) = log(f(x)), we observe that g(n + 1) = log(n!),
and use the convexity estimate

x log(n) ≤ g(n+ 1 + x) − g(n+ 1) ≤ x log(n+ 1) (5.34)

for 0 < x ≤ 1.
Hence, for 0 < x ≤ 1,

0 ≤ g(x) − log
n!nx

x(x+ 1) · · · (x+ n)
≤ x log

(
x+

1
n

)
. (5.35)

It follows using f(x+ 1) = xf(x), that for all x > 0

f(x) = lim
n→∞

n!nx

x(x + 1) · · · (x+ n)
= Γ(x). (5.36)

�

Equation (5.36) often proves useful in its own right, as we shall see in
(5.37) and in (5.44).

Another nice characterization of the Gamma function, which in practice
often seems more difficult to apply, is:

Theorem 5.11. If f is a complex valued function on (a,∞] such that
f(x+ 1) = xf(x) for all x > a and

lim
n→∞

f (t+ n+ 1)
n!nt

= 1 (5.37)

for 0 ≤ t < 1, then f = Γ on (a,∞].

Proof. The fact that Γ satisfies (5.37) is (5.36). Conversely, if f and g
satisfy (5.37), then consider h = f/g which satisfies limn→∞ h(t+n+1) = 1.
Since h(x) = h(t+ n+ 1), the two solutions must both coincide with Γ, on
(a,∞]. �

We illustrate the use of the Bohr-Mollerup Theorem as follows:

Example 5.12. The β−function.

The β−function is defined by the integral

β(x, y) =
∫ 1

0

tx−1(1 − t)y−1 dt (5.38)
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for Re(x),Re(y) > 0. It has the following striking evaluation, often estab-
lished by using polar coordinates and double integrals (we shall see a third
approach in the next section):

β(x, y) =
Γ(x) Γ(y)
Γ(x+ y)

. (5.39)

This we shall now deduce from the Bohr-Mollerup result. We define f =
x→ β(x, y) Γ(x+y)/Γ(y) and proceed to verify the three properties. Point
one is an easy integration exercise. For point two, we need to show (1 +
t/s)β(s+ 1, t) = β(s, t). We observe that β(s, t+ 1) = β(s, t) − β(s+ 1, t)
which we combine with β(s+1, t) = (s/t)β(s, t+1). It remains to show f is
log-convex as again follows by an application of Hölder’s inequality. Thus
f = Γ as required. In particular, we now obtain the famous evaluation

Γ
(

1
2

)
=

√
β

(
1
2
,
1
2

)
=

√
π, (5.40)

as follows on making the change of variables t = cos(s)2 in the definition
of the β−function. In the next subsection we shall link this formula to the
volumes of p−balls in Rn. �

The power of this approach is that it provides a generally applicable
paradigm and that all or most can be automated or checked computation-
ally —even when the general case may prove too hard to program, special
cases can be checked symbolically or numerically, and add security! A
second illustration is:
Example 5.13. The Γ−duplication formula.

Γ(2s) = 22s−1 Γ(s) Γ(s+ 1/2)/
√
π.

This is established in the same way by considering

f(s) =
√
π Γ(2s)/(22s−1 Γ(s+ 1/2)).

In this case log-convexity has already been established and the other steps
are easy in light of (5.40).

To complete this section, we derive the classical product for the sine
function and relate it to the Γ−function. �

Example 5.14. The sin-product formula.

sin(π x) = π x
∞∏

n=1

(
1 − x2

n2

)
(5.41)
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and
π

sin(πx)
= Γ(x)Γ(1 − x). (5.42)

Now (5.42) follows directly from (5.41) and (5.36). We outline a proof of
(5.41) whose full details are in [269]. We examine the polynomial

Pm(x) =
1
2i

[(
1 + π i

x

m

)m

−
(
1 − π i

x

m

)m]
→m sin(πx),

and check that the roots of P2m are 0,±(2k/π) tan(jπ/(2k)) for 0 < j < k.
As the coefficient of x in P2m is π, we may write

P2m(x) = x

k−1∏
j=1

(
1 − π2x2

4k2 tan2(jπ/(2k))

)
. (5.43)

Finally, one must take care to legitimate the passage to the limit in (5.43),
using the fact that tan(x)/x→ 1 as x→ 0. �

One may heuristically derive (5.41) as Euler did by considering sin(πx)
as an “infinite” polynomial and rewriting it as a product in terms of the
roots 0, {1/n2}. It is thus plausible that

sin(π x)
x

= c

∞∏
n=1

(
1 − x2

n2

)
, (5.44)

and Euler argues that as with a polynomial, c should be the value at zero
and the coefficient of the linear term (in x2) should be the sum of the
roots:

∑
n n

−2 = π2/6. The argument above made this both less obvious
and more rigorous. Also, we emphasize that each step may be checked or
discovered formally in many computer algebra packages.

5.4.1 Volumes of Balls

The volume of the unit ball in the ‖ · ‖p-norm, Vn(p), was first determined
by Dirichlet by explicitly evaluating the iterated integrals. He obtained

Vn(p) = 2n
Γ(1 + 1

p )n

Γ(1 + n
p )

, (5.45)

( [6, Section 1.8]). We note that the Γ-function again proves invaluable,
and that even the special case when p = 2,

Vn = 2n Γ(3
2 )n

Γ(1 + n
2 )

=
Γ(1

2 )n

Γ(1 + n
2 )
,
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gives a formula more concise than that recorded in most analysis books.
One can try graphing this as a function of p for n = 2, 3, · · · , and observing
the limiting cases p = 1,∞.

The following Maple code derives this formula as an iterated integral for
arbitrary p and fixed n. The intermediate steps again give beta function
values. The code can easily be converted into a human proof valid for
arbitrary n.

vol := proc(n)

local f,x,i,ul,u,j,t; global p;

p := evaln(p);

if n=1 then 2 else

f := (1-add(x[i]^p,i=1..n-1))^(1/p);

for i from n-1 by -1 to 1 do

f := subs(x[i]=t,f); f := int(f,t);

ul := 1-add(x[j]^p,j=1..i-1); u := ul^(1/p);

f := subs(t^p=ul,f); f := subs(t=u,f);

f := map(normal,f); f := simplify(f);

od;

2^n*f;

fi; end:

It is also fun to determine in which dimension the volume of the Euclidean
ball is maximized.

Let us recall the Laplace transform of a function f defined by

L(z) = L(f)(z) =
∫ ∞

0

e−ztf(t) dt

for Re(z) > 0. We finish the section with another, induction-free, Laplace
transform-based, proof of (5.45). We shall evaluate

vp(y) = Voln({x : ‖x‖p
p ≤ y}),

for y > 0 as follows. First, observe that

vp(y) = vp(1) yn/p.

We now compute

L(vp)(1) = vp(1)L(y �→ yn/p)(1) = vp(1) Γ
(

1 +
n

p

)
. (5.46)
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To evaluate the left-hand side we write

L(vp)(1) =
∫ ∞

0

e−t

(∫
‖x‖p

p≤t

dx

)
dt

=
∫

R

(∫ ∞

‖x‖p
p

e−t dt

)
dx =

∫
Rn

e−‖x‖p
p dx

=
n∏

k=1

∫
R

e−|xk|p dxk = 2n Γ
(

1 +
1
p

)n

. (5.47)

Now comparing (5.46) and (5.47) recovers

vp(1) = 2n
Γ(1 + 1

p )n

Γ(1 + n
p )

as claimed. Moreover, most if not all of this can be performed by a good
computer algebra integral transform package.

5.5 Stirling’s Formula

One of the most fundamental asymptotic formula in analysis is the so-called
Stirling’s formula (actually due to De Moivre) for the factorial, and more
generally, for the Γ function.

Theorem 5.15.

lim
n→∞

n!√
2πn (n/e)n

= 1 (5.48)

and moreover, for n > 1

1 +
1

12n+ 12
<

n!√
2πn (n/e)n

< 1 +
1

12n− 24
. (5.49)

While (5.48) yields an excellent relative error formula, (5.49) shows that
the absolute error will be large. For example, with n = 100, the ratio is
approximately 0.9997, but the absolute error of the order of 10155. With
more work, (5.49) can be made significantly more precise, but the version
given is often more than sufficient.
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Proof. To deduce the estimate we consider log n! and argue as follows.
By the trapezoidal formula (see Section 7.4 of the second volume), we have

n log(n) − n+ 1 =
n−1∑
k=1

∫ k+1

k

log (x) dx

=
1
2

n−1∑
k=1

[log (k) + log (k + 1)]

+
1
12

n∑
k=1

ek
−2, (5.50)

where ek lies in [k, k + 1]. If we denote this last series by Rn, it is easy to
see by the comparison test that it converges to a finite number R. We may
rewrite (5.50) as (n+ 1/2) log (n) − n − log (n!) → R − 1, or equivalently
that rn = n−n−1/2 exp(n)n! converges to a limit r, and so also

r = lim
n→∞

r2n
r2n

= lim
n→∞

Γ (n+ 1)2 4n
√

2
Γ (2n+ 1)

√
n
. (5.51)

Squaring, and taking the limit, we obtain

r2 = 4
∞∏

k=1

4k2

4k2 − 1
= 2π, (5.52)

where this last identity is one of Wallis’ famous formulae. It may be derived
from Euler’s product formula for π (5.41) with x = 1/2, or by repeatedly
integrating

∫ π/2

0 sin2n(t) dt by parts. This establishes (5.48).
Now with a little more care, one can obtain (5.49) by estimating that

1/12(n+ 1) < R − Rn ≤ 1/12(n− 1), and considering the first few terms
of the Taylor series for exp. �

A very important consequence, derived along the way, is that the central
binomial coefficient

(
2n
n

) ∼ 4n/
√
πn, and you may equally easily estimate

other binomial coefficients such as
(
3n
n

)
, of the form examined elsewhere in

this book.
It is interesting to consider how to be led to the correct result. First, to

see that (n/e)n√n is the right estimate and then to discover that r =
√

2π,
especially given that the convergence is only O(1/n).
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5.6 Derivative Methods of Evaluation

Another potent and concrete way of establishing an identity is by obtaining
an appropriate differential equation. For example consider

f(x) =
(∫ x

0

e−s2
ds

)2

g(x) =
∫ 1

0

exp(−x2(1 + t2))
1 + t2

dt.

The derivative of f + g is zero: In Maple,

f:=x->Int(exp(-s^2),s=0..x)^2;

g:=x->Int(exp(-x^2*(1+t^2))/(1+t^2),t=0..1);

with(student):d:=changevar(s=x*t,diff(f(x),x),t)+diff(g(x),x);

d:=expand(d);

shows this. Hence, f(s) + g(s) is constant for 0 ≤ s ≤ ∞ and so, on
justifying the limit at ∞,(∫ ∞

0

exp(−t2) dt
)2

= f(∞) = g(0) = arctan(1) =
π

4
.

The change of variables t2 = x shows that this evaluation of the normal
distribution agrees with Γ(1/2) =

√
π.

In similar fashion, we may evaluate

F (y) =
∫ ∞

0

exp(−x2) cos(2xy) dx

by checking that it satisfies the differential equation F ′(y) + 2y F (y) = 0.
We obtain

F (y) =
√
π

2
exp(−y2),

since we have just evaluated F (0) =
√
π/2, and again this is all easily

implementable.

5.6.1 Legendre’s Relation and Applications

We now turn to a study of the complete elliptic integral of the first and
second kinds
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K(k) =
∫ π/2

0

1√
1 − k2 sin2(s)

ds

E(k) =
∫ π/2

0

√
1 − k2 sin2(s) ds (5.53)

for k in [0, 1].
We denote the complementary integrals by K ′(k) = K(k′), E′(k) =

E(k′) with k′ =
√

1 − k2. A beautiful and important relationship follows:

Theorem 5.16 (Legendre’s Relation). For all 0 < k < 1,

E(k)K(k′) +K(k)E′(k) −K(k)K ′(k) =
π

2
.

Proof. It is easy to check that K and E satisfy the coupled second order
differential equation:

dK(k)
dk

=
E(k) − (1 − k2)K(k)

k(1 − k2)
dE(k)
dk

=
E(k) −K(k)

k
.

These allow us to check, by hand or computer, that

f(k) = E(k)K ′(k) +K(k)E′(k) −K(k)K ′(k)

has derivative zero. It remains to determine the constant. The easiest way
is to evaluate limt→0 f(t). We observe that K(0) = E(0) = π/2 with error
of order k, and that E′(0) = 1; since K ′(k) ∼ log(4/k), we determine that

lim
t→0

f(t) =
π

2
+ lim

t→0
(K(t) − E(t))K ′(t) =

π

2
.

�

Legendre, in a tour de force, actually determined the constant by eval-
uating the four quantities at the third singular value k3 = (

√
3 − 1)/

√
8.

This is discussed in detail in [74].
In a similar manner, we next evaluate K(1/

√
2) and E(1/

√
2).

alias(K=EllipticK,E=EllipticE):k0:=1/sqrt(2);

K_0:=Int(1/sqrt(1-k0^2*sin(s)^2),s=0..Pi/2);

K1:=changevar(t=sin(s),K_0,t);assume(x>0,x<1):

K1:=simplify(changevar(x^2=t^2/(2-t^2),K1,x),symbolic);

K1:=simplify(changevar(u=x^4,K1,u));
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The changes of variables (s → t→ x→ u) given in this Maple code reduces
to

K

(
1√
2

)
=

1
2
√

2
β

(
1
2
,
1
4

)
=

√
πΓ(1

4 )√
8Γ(3

4 )
=

Γ2(1
4 )

4
√
π
,

on using (5.39), (5.40) and (5.42). By combining similar computations
with (5.53), we may deduce that

E

(
1√
2

)
=

4Γ2(3
4 ) + Γ2(1

4 )
8
√
π

.

5.6.2 The AGM Iteration

The arithmetic-mean of Gauss and Legendre has already been introduced
in previous chapters. Our goal in this section is to establish the basic
properties of the iteration. As we noted, Gauss’s specific discovery was
that the reciprocal of the integral

2
π

∫ 1

0

dt√
1 − t4

(5.54)

agreed numerically with the limit of the rapidly convergent arithmetic-mean
iteration given by a0 = 1, b0 =

√
2 and computing

an+1 =
an + bn

2
, bn+1 =

√
anbn. (5.55)

Indeed, the sequences an, bn have a common limit 1.1981402347355922074 . . .
It is a nice exercise to show that for all positive initial values, the

iteration converges quadratically to a shared limit which we denoteM(a, b),
see [74]. It was the genius of Gauss that saw the limit. The next result
gives a proof especially suited to computer verification or discovery.

Theorem 5.17.

π/2
M(a, b)

=
∫ π/2

0

dt√
a2 cos2(t) + b2 sin2(t)

. (5.56)

Proof. We first show that

I(a, b) =
π/2

M(a, b)
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satisfies

I(a, b) = I(A(a, b), G(a, b)), (5.57)

where A(a, b) = (a+ b)/2 and G(a, b) =
√
ab. Once this is shown, we have

I(a, b) = I(an, bn) = · · · = I(M(a, b),M(a, b)) =
π/2

M(a, b)
,

as required since I(c, c) = π/(2c), as it is easy to justify exchanging the
limit and the integral.

To establish (5.57), consider the following Maple code.

assume(a>0,b>0):

J:=simplify(changevar(s=b*tan(t),I(a,b),s),symbolic);

J1:=changevar(u=(s-a*b/s)/2,J,u); lprint(%);

j:=4/(a^2+(u-(u^2+a*b)^(1/2))^2)^(1/2)/

((u-(u^2+a*b)^(1/2))^2+b^2)^(1/2)

*(u-(u^2+a*b)^(1/2))^2/((u-(u^2+a*b)^(1/2))^2+a*b);

j0:=1/sqrt((A(a,b)^2+u^2)*(G(a,b)^2+u^2));

The code implements the change of variables s = b tan(t) and u = (s −
ab/s)/2. The most problematic step is the verification that the consequent
integrand, j0/j, simplifies as required. This is achieved by a resultant
computation:

S:=simplify((j0/j)^2,radical);

p1 := R^2 - (u^2+a*b);

p2 := subs((u^2+a*b)^(1/2) = R, Zero - (numer(S) - denom(S)));

resultant( p1,p2,R); simplify(series(j/j0,u,8));

and for peace of mind, the series of j/j0 can be computed! �

Placing together (5.54) and (5.56), we have succeeded in establishing
the discovery of Gauss in the form

M(
√

2, 1) =

√
2
π

Γ2

(
3
4

)
= 1.1981402347355922074399224922803238 . . . ,

using five steps of the iteration.
It is also possible to discover the form of the substitution u = (s −

ab/s)/2, by taking a general quadratic form and solving for the parameters.
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5.6.3 Other Mean Iterations

Finally, the more general study of means [74] also provides many opportu-
nities for experimentation and computation. Consider a mean iteration, in
which we start with a0 > 0 and b0 > 0 and iterate the discrete dynamical
system

an+1 = M(an, bn), bn+1 = N(an bn)

for two strict means, that is a > b implies a > M(a, b) > b. This is a Gaus-
sian iteration. The limit exists and is denoted (M

⊗
N)(a, b), and exhibits

quadratic convergence when the means are symmetric. The triumph of the
AGM is that we identify quadratic convergence to an important nonele-
mentary function.

As a second example, consider

an+1 =
an +

√
an bn

2
, bn+1 =

bn +
√
an bn

2
.

While it is hard to guess the (linearly convergent) limit, once told that it
is the logarithmic mean

L(a, b) =
a− b

log(a) − log(b)
,

proof of this fact reduces to showing the identity

L(a, b) = L
(
a+

√
ab

2
,
b+

√
ab

2

)
. (5.58)

The following Maple code implements the iteration:

L:=proc(a,b,n) local k,c,d; c:=a;d:=b; for k to n

do(c,d):=(M(c,d),M(d,c)) od;c;end;

Thus, a hundred iterates yields

L(2., 1., 100.) = 1.4426950408889634073599246810014976 . . . ,

while

L(2, 1) = 1.4426950408889634073599246810018921 . . . ,

which agree to 30 places.
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This illustrates the invariance principle asserting that limit is the unique
mean f with f(an, bn) = f(an+1, bn+1). In this case the means are not
symmetric and convergence is only linear.

Similarly, we met the Archimedian iteration in Chapter 3. In this lan-
guage, it is due to Gauss, Pfaff, Schwab, and Borchardt in the 19th century
and establishes that

an+1 =
2anbn
an + bn

, bn+1 =
√
an+1 bn

converges to

B(a, b) =
√
b2 − a2

arccos(a/b)

for 0 < a < b, and to

B(a, b) =
√
a2 − b2

arccosh(a/b)

for 0 < b < a. Armed with the invariance principle, the reader or her
computer should be able to prove this assertion, and to determine the
(linear) rate of convergence.

5.6.4 Gregory and Euler

We conclude this section by providing computer-verifiable proofs of

π

4
=

∞∑
k=1

(−1)k−1

2k − 1
(5.59)

and

π2

6
=

∞∑
k=1

1
k2
. (5.60)

For the former, consider

cot(x) =
cot(x/2) − cot(π/2 − x/2)

2
(5.61)

and then observe that a telescoping identity yields

2−n
2n−1∑
k=1

(−1)k cot
(

(2k + 1)π
4

2n

)
= 1.
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Recall that 2n tan(a/2n) → a, as n→ ∞.
As always, we need to justify taking limits. The justification follows

from Tannery’s theorem (a form of dominated convergence) and we have
proven Gregory’s formula (5.59).

Similarly, check that

csc2(x) =
csc2(x/2) + csc2(π/2 + x/2)

4
, (5.62)

and that a telescoping sum yields

2 4−n
2n−1−1∑

k=1

csc2

(
(2k + 1)π

2n+1

)
= 1.

Again, taking limits carefully establishes

π2

8
=

∞∑
k=1

1
(2k − 1)2

,

which is equivalent to (5.60), on separating odd and even terms.
While the technical details are important, from our perspective it is

more interesting that we can perform all the steps experimentally, and
worry about their legitimacy at the end, once we “know the truth!”

5.7 Commentary and Additional Examples

1. A 3-D maximum problem. Determine the maximum of

f : (x, y, z) �→ sin (x)2

x
+

sin (y)2

y
+

sin (z)2

z

for nonnegative x+ y + z = π. [Taken from [158].]

Solution: The unique maximum can be seen numerically to be x =
y = z = 1.047197551196597 . . ., which is clearly π/3, and by symme-
try one does expect that x = y = z. Then observe that for all vari-
ables in [0, π/2], f is strictly concave and so the critical point is a strict
maximum value of 27/(4/π). Otherwise we may assume x > π/2 and
0 < y, z ≤ π/2. Let g denote x �→ sin (x)2 /x. Hence, by monotonicity
and concavity f(x, y, z) ≤ g(π/2) + f(0, y, z) < g(π/2) + 2g(π/4) =
6/π < 27/(4/π).
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2. An infinite product formula for the Gamma function. Show
that

Γ(x) =
e−γx

x

∞∏
n=1

[
ex/n

1 + x
n

]
,

for x > 0. Hint: Use the definition of γ and the product obtained in
the conclusion of the Bohr-Mollerup Theorem.

3. A radially invariant generalization of arctan(1). For each pos-
itive integer n,∫

[0,1]n

dx1 · · · dxn

(1 + x2
1 + · · · + x2

n)(n+1)/2
=

π(n+1)/2

(n+ 1)2nΓ(n+1
2 )

.

Reason: Let

A =
∫

[0,1]n

dx1 · · · dxn

(1 + x2
1 + · · · + x2

n)(n+1)/2

J =
∫

[0,∞)n

dx1 · · · dxn

(1 + x2
1 + · · · + x2

n)(n+1)/2
.

Each variable is maximal in one nth of the n-dimensional hypercube.
So symmetry and setting yn = 1/xn, yj = xjyn for 1 ≤ j ≤ n − 1
gives

J = n

∫ ∞

0

∫
[0,yn]n−1

dy1 · · · dyn

(1 + y2
1 + · · · + y2

n)(n+1)/2

= n

∫ ∞

0

∫
[0,1]n−1

dx1 · · · dxn

(1 + x2
1 + · · · + x2

n)(n+1)/2

= n

∫ 1

0

∫
[0,1]n−1

dx1 · · ·dxn

(1 + x2
1 + · · · + x2

n)(n+1)/2

+ n

∫ ∞

1

∫
[0,1]n−1

dx1 · · · dxn

(1 + x2
1 + · · · + x2

n)(n+1)/2

= nA+ n

∫ 1

0

∫
[0,yn]n−1

dy1 · · · dyn

(1 + y2
1 + · · · + y2

n)(n+1)/2

= (n+ 1)A.

Thus

A =
J

n+ 1
=

1
(n+ 1)2n

∫ ∞

−∞
· · ·

∫ ∞

−∞

dy1 · · · dyn

(1 + y2
1 + · · · + y2

n)(n+1)/2
.
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We may now apply a standard result for radially invariant integrals
over Rn, in which we denote the surface measure of the unit n-sphere
by σ(Sn−1) = 2πn/2/Γ(n/2). We have∫ ∞

−∞
· · ·

∫ ∞

−∞

dy1 · · · dyn

(1 + y2
1 + · · · + y2

n)(n+1)/2

= σ(Sn−1)
∫ ∞

0

rn−1

(1 + r2)(n+1)/2
dr,

=
πn/2

Γ(n/2)

∫ ∞

0

un/2−1

(1 + u)(n+1)/2
du

=
π(n+1)/2

Γ((n+ 1)/2)
,

via the beta integral, and the result follows.

4. The Psi function. Many sums can be expressed in terms of the
Ψ function and its derivatives, also known as polygamma functions.
This is because

Ψ (z) =
Γ′ (z)
Γ (z)

=
∞∑

n=1

z

n(z + n)
− 1
z
− γ,

where the first equality is definitional.

(a) Show that Ψ(1 + z) = Ψ(z) + 1/z, that Ψ(1) = −γ, Ψ(1/2) =
−γ−2 log 2, and Ψ(n) =

∑n
k=1 1/k−γ. Obtain a similar formula

for Ψ (n+ 1/2), for n ∈ N.

(b) Prove that
Ψ(z) − Ψ(1 − z) = π cot (πz) .

(c) Obtain a duplication formula for Ψ from that of Γ.

(d) Show that

Ψ(z) =
∫ ∞

0

e−t − e−zt

1 − e−t
dt− γ

and that for n = 1, 2, 3, · · ·

Ψ(n)(z) = (−1)n+1
∫ ∞

0

tne−zt

1 − e−t
dt

for Rez > 0.
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5. Derangements. A derangement is a permutation of n symbols that
leaves no symbol in the same place. (a) Show that the number of
derangements of n symbols, dn, satisfies the recursion

dn = (n− 1)dn−1 + (n− 1)dn−2

and has d1 = 0, d2 = 1. Hence, find (b) an exponential generating
function E , and (c) a closed form for dn.

Answer: (b)
exp(−x)

1 − x
=

∞∑
k=1

dk

k!
.

(c) Hence,

dn = n!
n∑

k=0

(−1)k

k!
.

Hint: (a) Consider whether two objects are interchanged or not. (b)
The differential equation satisfied by E is (1−x)E ′ = xE ; now deduce
(c). Alternatively, write dn = n! bn so that bn − bn−1 = −(bn−1 −
bn−2)/n and solve directly.

6. An ODE pair. Find a first order system of differential equations
satisfied by

a(x) =
∫ ∞

0

e−t sin (x t)√
t

dt (5.63)

b(x) =
∫ ∞

0

e−t cos (x t)√
t

dt (5.64)

for x > 0 and so, or otherwise, solve for a and b explicitly. Answer:√
π
(√

1 + x2 ± 1
)

2(1 + x2)
,

are the two functions.

7. Maximum volume of unit ball. Find the integer dimension N
where the volume of the unit ball is maximized. For what real di-
mension is the volume maximized?

8. A simple recursion. Consider the recursion with a0 = e, a1 = 2e
and

nan = 2(an−1 + an−2).
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Show that the ordinary generating function satisfies O′ = 2(1 + x)O,
and thus O(x) = exp((1 + x)2). Hence, show

a2n =
∑
m≥0

1
(n+m)!

(
2n+ 2m

2n

)
,

and find a similar formula for the odd terms.

9. Base-four sequences. There are 4n base-four sequence of length n?
How many are there with an odd number of zeroes? Answer: There
are 2n−1(2n − 1) such sequences. Hint: The number is

∑
π

1
m0!m1!m2!m3!

summed over all partitions of n = m0 +m1 +m2 +m3 with m0 odd.
The exponential generating function is E(x) = sinh(x)(exp(x))3.

10. Putnam problem 1997–B5. Let τ0 = 1 and τn = 2τn−1 , for n ≥ 1.
Show that τn ≡ τn−1 mod n. Hint: First, try some examples using
Maple or Mathematica. Then use Fermat’s little theorem to show
inductively the stronger claim that τm ≡ τn−1 mod n for m ≥ n−1.

11. An integral identity. Show that under very general conditions on
f , the identity ∫ ∞

−∞
f(x)dx =

∫ ∞

−∞
f(x− 1/x)dx

holds. Use this to prove∫ ∞

−∞
e−x2−1/x2

dx =
√
π

e2
.

12. Berkeley problem 3.2.3. Solve the differential equation

d2

dx2
y (x) − 2

d

dx
y (x) + y (x) = sin (x)

with initial conditions y(0) = 1 and y′(0) = 0. Hint: Both Maple
and Mathematica can solve this directly. Answer: y (x) = (1/2) ex −
(1/2)x ex + (1/2) cos (x).
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13. A dilogarithm identity. The dilogarithm is a natural extension of
− log(1 − x) defined by

Li2(x) =
∞∑

n=1

xn

n2
.

Prove, by differentiation, the functional equation

Li2(x) + Li2(1 − x) − log(x) log(1 − x) =
π2

6
.

Hence, show

Li2

(
1
2

)
=

∞∑
n=1

1
2n n2

=
π2

12
− 1

2
log2(2).

There is a corresponding functional equation for the trilogarithm
Li3(x) =

∑∞
n=1 x

n/n3. The functional equation developed by Lan-
den around 1760 is

Li3 (x) + Li3 (1 − x) + Li3

(
x

−1 + x

)

= ζ (3) + ζ(2) log (1 − x) − 1
2

log2 (1 − x) log (x) +
1
6

log3 (1 − x) ,

from which one can obtain closed forms at x = 1/2 and also at
x = (

√
3 − 5)/2 (see (5.65)).

14. Forensic mathematics. Lewin [202, 6.3.3] gives as (6.13) the iden-
tity

Li3

(
3 −√

5
2

)
=

4
5
Li3(1) +

π2

15
log

(
3 −√

5
2

)
− 1

12
log3

(
3
√

5
2

)
(5.65)

due to Landen (1780), and then writes

These calculations are given in Edward’s Treatise on the Integral
Calculus, Vol. 2, and there is quoted from Landen’s memoirs
the equation

1

13
+

1

23
+

1

33
+· · · =

θ2

13
+
θ4

23
+
θ6

33
+· · · , where θ = 2 sin(π/10).

This result is obviously incorrect, since the terms on the right
are all less than the corresponding terms on the left, but a search



�

�

�

�

�

�

�

�

5.7. Commentary and Additional Examples 211

through the memoirs has failed to reveal any relation of the
above type apart from the trivial one in which θ = 2 sin(π/6),
though it is difficult to believe this is the result which was in-
tended. It might be pointed out that since θ2 = (3 − √

5)/2,
such a relation between Li3(1) and Li3[(3−

√
5)/2], if one should

exist, would enable each to be isolated with the aid of (6.13),
and there is no reason to expect that Li3(1) can in fact be cal-
culated in this way. Edward’s publishers have not succeeded in
throwing any further light on the subject, and it looks as if this
little mystery may have to remain unsolved.

The mystery remains. Can integer relation methods shed any new
light?

15. Berkeley problem 6.10.7. Let R be a commutative ring with a
unit. Show that for all positive integers and all ring elements, the
ideal generated by an − 1 and am − 1 is the same as that generated
by a[n,m] − 1. (Here [n,m] denotes the gcd of n and m). Hint: Let
n = sd and consider the factorization of xsd − 1. Conversely, write
d = xn− ym and consider ad − 1 = (axn − 1) − ad(aym − 1).

16. Berkeley problem 7.1.28. Let P denote all polynomials over R.
Show that p �→ p+p′ is an invertible map on P . Hint: Try low-degree
polynomial examples.

17. Berkeley problem 7.5.23. Let M1
n be the n×n tridiagonal matrix

with ajj = 2, aij = −1 if |i − j| = 1 and all other entries zero. (a)
Find the determinant of M1

n and (b) show that all eigenvalues are
positive. Hint: Use Maple or Mathematica to find this determinant.
Answer: (a) det(M1

n) = n+ 1. (b) M1
n is positive definite.

18. Fibonacci and Lucas numbers in terms of hyperbolic func-
tions. Show that Fn is a constant times i−n sinh(ns) and Ln =
2 i−n cosh(ns). Several formulas are then easy to obtain from the
addition formulas for sinh and cosh.

19. Berkeley problem 7.6.13. Is there a real square matrix with A2 +
2A+ 5I = 0? Hint: Try some 2 × 2 examples. Answer: Yes.

20. Generalized arithmetic-geometric mean inequality. Show that
the complex extension of the arithmetic-geometric mean inequality,∣∣∣∣a+ b

2

∣∣∣∣ ≥ √
|ab|,
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holds for complex a, b whose ratio a/b lies “outside” a certain cardiod
in the complex plane. What can be found as a complex extension of
(a1 + a2 + · · · + an) /n ≥ (a1a2 · · ·an)1/n for positive a1, a2, · · · an?

21. Viéte’s product.

√
2

2

√
2 +

√
2

2

√
2 +

√
2 +

√
2

2
· · · =

2
π

is considered to be the first truly infinite formula [49].

(a) Consider the following analogue of Viéte’s formula:

P =
√

2√
1 +

√
2
√

1 +
√

2√
1+

√
2

√
1 +

√
2√

1+
√

2√
1+

√
2

· · · .

By writing a recursion forP , determine the limit to high-precision
and attempt to identify it. Then prove the conjectured result.

(b) Apply the same method to Viéte’s product.

(c) Consider t0 = 0 and t �→ (1 +
√

3 − 2 t)/2.

Hint: (a) Consider the mapping t0 = 1/
√

2 and t �→ √
2/(1 + t). (c)

This should lead to a similar looking formula involving roots of two
for 2

√
3/π. Answer: (a) K

(
1/

√
2
)
/4.

22. Berkeley problem 7.6.14. Show that a square Hermitian solution
to A5 + A3 + A = 3I must be the identity. Hint: The minimal
polynomial for A must have only real roots and divide t5 + t3 + t− 3
which has one real root at 1.

23. Berkeley problem 7.9.16. Let

A =

⎡⎢⎢⎣
2 −1 0

−1 2 −1

0 −1 2

⎤⎥⎥⎦ .
Show that any matrix B that commutes with A must be a quadratic
polynomial in A. Hint: Consider the explicit form of a quadratic in
A and the information implicit in AB−BA = 0. This yields a set of
linear equations that can be solved using Maple or Mathematica.
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24. Two proofs without words. Show that

∞∑
n=1

2n [1 − cos (x/2n)]2

sin (x/2n−1)
= tan

(x
2

)
− x

2
, |x| < π

and

2
∞∑

n=1

1 − cos (x/2n)
sin (x/2n−1)

= tan
(x

2

)
, |x| < π.

These arose from dissecting a kite (recursively) into a circular sector
and triangles [102].

25. From Ramanujan’s lost notebook. The following examples ap-
peared in Ramanujan’s lost notebook [50]:

(a) For t ≥ 0 and a > 0, evaluate

I(a, t) =
∫ ∞

−t

ax

Γ (x+ 1)
dx

+
∫ ∞

0

e−axxt−1

π2 + log2 (x)

(
cos (π t) − sin (π t)

π
log (x)

)
dx.

(b) Hence, for s ≥ 0, evaluate

J (s) =
∫ ∞

0

sx

Γ (x+ 1)
dx +

∫ ∞

0

e−s x

x
(
π2 + log2 (x)

)dx = I(s, 0).

(c) For t ≥ 0 and a > 0, evaluate

K(a, t) =
∫ ∞

−t

ax

Γ (x+ 1)
dx

+
π

2

∫ ∞

0

(
eiπ (t+ix)

at+ix
Γ (t+ ix) +

e−iπ(t−ix)

at−ix
Γ (t− ix)

)
dx.

(d) For a ≥ 0 and 0 ≤ λ < 1 evaluate

lim
ε→0

ε
∞∑

n=0

a(λ+n)ε

Γ (1 + (λ+ n)ε)
.

Hint: (a) by differentiating I with respect to t, show I(a, t) is a
function of a alone. By differentiating I with respect to a, identify
the function up to a multiplicative constant. Evaluate I(0, 0) to
obtain the constant.
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(c) More elaborately, show K(t, a) satisfies the same differential equa-
tion and finally, identify the constant by showing K(1, 0) = J (1).

For (d), identify the limit as a Riemann integral.

Parts (a), (c) and (d) originate on pages 226 and 227 of the Lost
Notebook, which was uncovered in Trinity College, Cambridge by
George Andrews in 1976. Part (d) is a true part of a false “identity”
in the notebook.

In a lecture entitled “25 years with Ramanujan’s Lost Note-
book: Some General Observations” at the New York Academy
of Sciences, Andrews, an Evan Pugh Professor of Mathematics
at Pennsylvania State University, recalled the “heart-pounding
excitement” of the moment when he realized he had come across
a notebook detailing more than 135 pages of work from the last
year in the life of the self-educated mathematical genius Ra-
manujan, the son of an accountant, who died at age 33 in 1920.

“That’s a moment that’s hard to beat,” Andrews said. “It was
one of those great moments in life when for completely unde-
served reasons you realize that you have stumbled across some-
thing that is extremely important.” In a talk that mixed Ra-
manujan’s biographical details with his mathematical theories,
Andrews stressed the “surprise” that characterized the work of
Ramanujan, a national hero in India. “Not many mathemati-
cians are on postage stamps,” [Figure 3.2] he noted.

See http://members.nyas.org/events/conference/mtg 02 1205.html.
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Far better an approximate answer to the right question, which is
often vague, than the exact answer to the wrong question, which can
always be made precise.

– J. W. Tukey, “The Future of Data Analysis,” Annals of
Mathematical Statistics, 1962 [278]

So far, we have focused on case studies of experimental mathematics in
action. In this chapter, we will examine in more detail some of the under-
lying computational techniques that are used in this type of research. We
will also mention a number of widely available tools for implementing these
techniques, either commercially or freely via the Internet.

We shall discuss computational techniques such as high-precision arith-
metic and integer relation detection, in part because these techniques are
significantly more accessible than other aspects of experimental mathemat-
ics, such as symbolic computation. Further, the algorithms we describe here
can be implemented in ordinary Java, C, C++, or Fortran-90 code. Such
code can be enhanced for particular applications, potentially resulting in
computer programs that out-perform commercial software for certain tasks.
In contrast, symbolic computation requires some rather sophisticated tech-
niques and data structures, and is thus not easily implemented by non-
specialists. What’s more, advanced concepts, such as Groebner bases, are
involved, which likely are unfamiliar to the majority of readers. As a re-
sult, we will, for the most part, not deal with symbolic computation here.
Interested readers are referred to Joel Cohen’s newly published books on
the topic [108,109].

We focus here on practical algorithms and techniques. In some cases,
there are known techniques that have superior efficiencies or other charac-
teristics, but for various reasons are not considered suitable for practical
implementation. We acknowledge the existence of such algorithms but do
not, in most cases, devote space to them in these books.

215



�

�

�

�

�

�

�

�

216 6. Numerical Techniques

6.1 Convolutions and Fourier Transforms

Convolution computations frequently arise in experimental mathematics, in
applications ranging from polynomial multiplication, which we will address
in Chapter 14 of the second volume, to high-precision multiplication, which
we will address in Section 6.2.4, and even the computation of the Riemann
zeta function. The “acyclic” or “linear” convolution Ak(x, y) of two n-long
vectors x = (xn) and y = (yn) is defined as the 2n-long vector

Ak(x, y) =
∑

i+j=k

xiyj 0 ≤ k < 2n. (6.1)

The cyclic convolution of x and y is defined as n-long vector

Ck(x, y) =
∑

i+j=k

xiyj 0 ≤ k < n (6.2)

=
n−1∑
j=0

xjyk−j , (6.3)

where in this case the indices i+j and k−j are interpreted modulo n—i.e.,
k − j is read as k − j + n if k − j < 0.

For small values of n, these convolutions can be calculated explicitly as
shown. For larger n (typically n ≥ 64 or so), significantly faster results
can be obtained by employing fast Fourier transforms (FFTs). The FFT
is merely an efficient means of computing the discrete Fourier transform
(DFT) and the inverse discrete Fourier transform, which are defined for a
complex sequence z = (z0, z1, z2, · · · , zn−1) as follows:

Fk(z) =
n−1∑
j=0

zje
−2πijk/n 0 ≤ k < n

F−1
k (z) =

1
n

n−1∑
j=0

zje
2πijk/n 0 ≤ k < n. (6.4)

An acyclic convolution can be reduced to a cyclic convolution simply by
extending the n-long input vectors x and y to length 2n with zeroes. When
this is done, we can write
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Ak(x, y) =
2n−1∑
j=0

xjxk−j , 0 ≤ k < 2n, (6.5)

where the subscript k−j is interpreted as k−j+2n when k−j < 0. Cyclic
convolutions of size 2n can in turn be calculated using the DFT as

ck = F−1
k [Fj(a)Fj(b)], 0 ≤ k < 2n. (6.6)

The three DFTs indicated in the above formula, in turn, can be effi-
ciently calculated by employing the FFT. The cost of an n-point FFT is
roughly 5n log2 n operations, so the cost of three 2n-point FFTs is roughly
30n log2 n. But in this case, where the input data vectors x and y are real,
special variants of the FFT are widely known that reduce the computa-
tional cost to approximately half this figure, or roughly 15n log2 n. These
operation counts assume that n is a power of two, since the FFT algorithm
is most efficient when n is a power of two.

We should note here that very efficient FFT library routines (even vari-
ants for real data input) are usually supplied by computer vendors as part of
their scientific software libraries. There is also some excellent FFT software
available from community software libraries, notably the FFTW software
at http://www.fftw.org. Thus it is usually not necessary for researchers
to write their own FFT computation code. For those who do need to
investigate further into FFT computation techniques, these are discussed
in [14, 283].

The DFT, as well as associated FFT computational techniques, are de-
fined for finite-length sequences. As we have seen in Section 5.2, experimen-
tal mathematicians frequently encounter the continuous Fourier transform,
which is defined for a real function f(t) on (−∞,∞) as

f̂(x) =
∫ ∞

−∞
f(t)e−itx dx (6.7)

(see also Section 2.2 of the second volume). Discrete approximations to
f̂(x) can be found using the DFT and FFTs, as follows. Assume that f(t)
is zero (or sufficiently small) outside the interval [−a/2, a/2], and assume
its Fourier transform f̂(x) is zero (or sufficiently small) outside [−b/2, b/2].
Select an even integer n so that ab = 2πn. The integer n is usually chosen
to be a power of two, since this choice facilitates the usage of FFTs. A
large value of n is often required to produce sufficient accuracy in the
approximations below, so the parameters a and b may need to be increased
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to match the size of n. Given values of a, b, and n, we can write

f̂

(
bk

n

)
=

∫ ∞

−∞
f(t)e−itbk/n dt

≈ a

n

n
2 +1∑

j=−n
2 +1

f

(
aj

n

)
e−i(aj/n)(bk/n) (6.8)

=
a

n

n
2 +1∑

j=−n
2 +1

f

(
aj

n

)
e−2πijk/n, (6.9)

for −n/2 + 1 ≤ k ≤ n/2. If we adopt the convention that f(t) = f(t− a)
for t > a/2, and f̂(x) = f̂(x− b) for x > b/2, then we can write

f̂

(
bk

n

)
=

a

n

n−1∑
j=0

f

(
aj

n

)
e−2πijk/n, (6.10)

for 0 ≤ k ≤ n − 1, which is now in a form suitable for the application of
FFTs.

An example of using this method to compute several Fourier transforms
is given in Section 5.2.

6.2 High-Precision Arithmetic

We have already seen numerous examples of high-precision numerical calcu-
lations. Indeed, such computations frequently arise in experimental math-
ematics. We shall focus here on high-precision floating-point computa-
tion. High-precision integer computation is also required in some aspects
of mathematical computation, particularly in prime number computations
and symbolic manipulations, but as we shall see, many of the algorithms
described below are equally applicable to both types of arithmetic. An
excellent presentation of high-precision integer arithmetic is given in [118].

At this point in time, almost all computer systems support the IEEE-
754 standard for floating-point arithmetic. The IEEE “single” (32-bit)
format features roughly seven decimal digit accuracy and a dynamic range
of 10±38. The IEEE “double” (64-bit) format features roughly 16 deci-
mal digit accuracy and a dynamic range of 10±308. On many Intel and
Intel-compatible processors, an additional “extended” (80-bit) format with
roughly 19 digits is available. An IEEE “quad” (128-bit) format with
roughly 33 decimal digits has been defined, but it is not yet implemented
on any of the widely used microprocessors.
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When higher precision arithmetic is required in experimental math-
ematics, many researchers employ the high-precision arithmetic facilities
built into commercial software packages such as Maple and Mathematica.
In both of these products, almost all defined functions can be numerically
evaluated to arbitrarily high precision. One weakness of these products is
that performance is significantly slower compared to what can be achieved
using custom programs and libraries. However, intelligent usage of these
custom libraries requires correspondingly greater understanding of the un-
derlying nature of high-precision computation. Either way, some familiarity
with this type of computation is essential.

6.2.1 Double-Double and Quad-Double Arithmetic

The most frequently needed form of high-precision arithmetic is twice that
of the IEEE 64-bit format. As mentioned above, this level of precision is not
yet widely available in hardware. However, it can be achieved by utilizing
a pair of IEEE 64-bit “double” words, where the first word is the closest
64-bit word to the full value, and the second word is the difference (positive
or negative) between the full value and the first word. Fortunately, this
“double-double” arithmetic (with 106 mantissa bits or roughly 32 decimal
digits) is both fast and easy to implement. This is due mainly to the
thoughtful design of the IEEE floating-point standard, wherein the results
of all arithmetic operations are guaranteed to be the closest possible value
to the exact result for the given operands.

We briefly state here some key algorithms used in double-double arith-
metic. Here ⊕,� and ⊗ denote the result of IEEE 64-bit arithmetic oper-
ations.

Algorithm 6.1. Double + double.

This computes the high- and low-order words of the sum of two IEEE 64-bit
values a and b.
1. s := a⊕ b;
2. v := s� a;
3. e := (a� (s� v)) ⊕ (b� v);
4. Return (s, e). �

Algorithm 6.2. Split.

This splits an IEEE 64-bit value a into ahi and alo, each with 26 bits of
significance and one hidden bit, such that a = ahi + alo.
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1. t := (227 + 1) ⊗ a;
2. ahi := t� (t� a);
3. alo := a� ahi;
4. Return (ahi, alo). �

Algorithm 6.3. Double × double.

This computes the high- and low-order words of the product of two IEEE
64-bit values a and b.
1. p := a⊗ b;
2. (ahi, alo) := split(a);
3. (bhi, blo) := split(b);
4. e := ((ahi ⊗ bhi � p) ⊕ ahi ⊗ blo ⊕ alo ⊗ bhi) ⊕ alo ⊗ blo;
5. Return (p, e). �

With regards to Algorithm 6.3, we should note that some processors,
notably IBM PowerPC and RS6000 processors and Intel IA-64 processors,
have a “fused multiply-add” instruction that greatly simplifies double ×
double operations. In this case, one can simply write p := a ⊗ b and
e := a⊗ b− p. Note, however, that it is often necessary to specify a special
compiler option (such as -qstrict on IBM systems) to insure that this code
is performed as written.

From these basic building blocks, one can construct a complete library
of double-double arithmetic operations. For example, to add (a1, a2) to
(b1, b2), it suffices to use Algorithm 6.1 to add a1 and b1, yielding high-
and low-order results, then adding a2 + b2 to the low-order result. This
scheme gives a double-double sum accurate to within two bits in the low-
order word. A fully accurate result can be obtained with somewhat more
effort. Double-double multiplication and division can be performed us-
ing straightforward adaptations of the classic multiplication and division
schemes for decimal arithmetic. Full details are given in [171].

With somewhat more effort, “quad-double” arithmetic can be performed
using these same methods. This features 212 mantissa bits or roughly 64
decimal digits. Note however that this arithmetic, like double-double arith-
metic, does not extend the dynamic range, which remains roughly 10±308.

A software library implementing the above schemes is available on the
Internet. This library, which is written in C, includes not only double-
double but also quad-double routines. In addition to the basic arithmetic
operations, many transcendental functions are also supported. Included
in this package are C++ and Fortran-90 translation modules, which per-
mit the library routines to be called from ordinary C++ and Fortran-90
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programs with only minor modifications to the source code, by utilizing
operator overloading. Programs that use double-double arithmetic typi-
cally run five times slower than the equivalent 64-bit versions, and quad-
double versions typically run 20 times slower. This software is available at
http://www.experimentalmath.info.

6.2.2 Arbitrary Precision Arithmetic

By “arbitrary precision” we mean a software facility that permits one to
adjust the level of numeric precision over a wide range, typically extending
to the equivalent of thousands or possibly even millions of decimal digits.
An extended dynamic range is almost always included as well, since such
computations often require a larger range than the 10±308 range available
with the IEEE double format.

For these levels of precision, the best approach is as follows. Define an
arbitrary precision datum to be an (n+4)-long string of words. The sign of
the first word is the sign ± of the datum, and the absolute value of the first
word is n, the number of mantissa words used. The second word contains an
exponent p. Words three through n+2 are the nmantissa wordsmi, each of
which has an integer value between 0 and 2b−1, or in other words b bits of
the mantissa. Finally, words n+3 and n+4 are reserved as “scratch” words
for various arithmetic routines. One can optionally designate an additional
word, placed at the start of the data structure, to specify the amount of
memory available for this datum, so as to avoid memory overwrite errors
during execution. The value A represented by this datum is

A = ±(2pbm1 + 2(p−1)bm2 + 2(p−2)bm3 + · · · + 2(p−n+1)bmn),

where it is assumed that m1 �= 0 and mn �= 0 for nonzero A. Zero is
represented by a string consisting of a sign word and an exponent word,
both of which are zero.

There are several variations possible with this general design. One ap-
proach is to utilize 64-bit IEEE floating-point words, with b = 48 mantissa
bits per word. Addition operations can easily be performed by adding the
two vectors of mantissas (suitably shifted to adjust for differences in ex-
ponent), and then releasing carries beginning from the last mantissa word
back to the first. Multiplication and division can be performed by straight-
forward adaptations of the long multiplication and long division schemes
taught in grammar school, performed modulo 248 instead of modulo 10.
The multiplication of two individual 48-bit entities can be performed by
48-bit variations of Algorithms 6.2 and 6.3. In fact (and this is a key point
for high performance), up to 25 = 32 such products can be accumulated
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before needing to release carries, since 5 + 48 = 53, and integers as large
as 253 can be accommodated exactly in a 64-bit IEEE word.

This approach was taken in the software package described in [38]. Like
the double-double and quad-double libraries mentioned above, this software
includes C++ and Fortran-90 translation modules, so that these functions
can be invoked from ordinary programs with only minor modifications to
the source code. The resulting software is available at the URL http://
www.experimentalmath.info.

Another approach is to utilize arrays of integer data, with integer arith-
metic operations, since all values in the data structure above are whole
numbers. The disadvantage of this approach is that integer arithmetic is
not as well standardized in microprocessors as floating-point arithmetic.
Also, 64-bit integer multiplication is not yet universally supported in hard-
ware. Thus it is hard to write programs that are both fast and easily
portable to different systems. Nonetheless, some integer-based implemen-
tations have been successful, notably the GNU package, available at the
URL http://www.gnu.org/software/gmp/gmp.html.

6.2.3 Karatsuba Multiplication

One of the simplest schemes to accelerate multiprecision multiplication, and
also one of the most widely used, was originally discovered by the Russian
mathematician Karatsuba in 1962 [183]. It is based on the observation
that if a high-precision number is split in two, then the full product can be
obtained with only three half-sized times half-sized multiplications, instead
of four as with conventional multiplication.

In particular, let x be a number with 2b-bit precision. We can write
x = x0 + Bx1, where B = 2−b and x0 and x1 are binary fractions of
comparable precision. Let y similarly be represented as y0 +By1. Then we
can compute as follows [118]:

t = (x0 + x1) · (y0 + y1) (6.11)
u = (x0 − x1) · (y0 − y1) (6.12)
v = x1y1 (6.13)

xy =
1
2
(t+ u) − v +

B

2
(t− u) + vB2 (6.14)

Note that multiplications by 1/2 and by B are merely binary shifts of the
“decimal” point. Thus the only expensive computations required here are
the three multiplications involved in computing t, u, and v.

What’s more, this scheme can be applied recursively to perform the
three indicated multiplications, until the multiplication problems are re-
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duced to a size that ordinary grammar-school multiplication is preferred.
It can be shown that the total number of operations in the recursive Karat-
suba scheme is on the order of (logn)log 3/ log 2, compared with log2 n for
classical schemes [118].

In practical implementations, the Karatsuba scheme is typically more
economical than efficient conventional schemes beginning at roughly 400
decimal digit precision. It is not as efficient as FFT-based multiplication,
which we will address in the next subsection (above roughly 1,000 decimal
digit precision), but it is much easier to implement than a full-fledged FFT-
based scheme. What’s more, it requires significantly less memory than a
FFT-based scheme, for a given precision level. It is interesting to note that
in several of Kanadas recent record-breaking computations of π, he used a
Karatsuba scheme at the highest precision levels, and applied FFT-based
schemes only when the Karatsuba recursion reached a certain precision
level, where there was sufficient memory to use FFTs. For reasons such
as these, the Karatsuba scheme is likely to remain a common fixture in
high-precision computation packages.

6.2.4 FFT-Based Multiplication

The conventional and Karatsuba multiplication schemes are suitable for
up to roughly 1000 decimal digit precision. For even higher levels of pre-
cision, significantly faster performance can be achieved by employing a
convolution-FFT approach. Suppose we wish to multiply two n-precision
values whose mantissa words (assuming a fixed number of bits per word)
are given by a = (a0, a1, a2, · · · , an−1) and b = (b0, b1, b2, · · · , bn−1). It is
easy to see that the desired result, except for releasing carries, is simply the
acyclic convolution of the a and b vectors, which can in turn be reduced to
cyclic convolutions and then rapidly evaluated using FFTs.

This can be done as follows. First, extend the two vectors to length 2n
by appending n zeroes to each. Then the 2n-long product c of a and b is
the cyclic convolution of a and b:

ck =
2n−1∑
j=0

ajbk−j , 0 ≤ k < 2n, (6.15)

where by bk−j we mean bk−j+2n when k− j is negative. This cyclic convo-
lution is evaluated using FFTs as described earlier in the chapter. The ck
results from the FFT process are floating-point numbers. Rounding these
values to the nearest integer, and then releasing carries beginning at c2n−1

gives the desired multiplication result.
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One important issue here is that the FFT-based computation of the ck
must be accurate enough to reliably recover their integer-valued results. For
example, in a one million by one million decimal digit multiplication, the
ck results are typically as large as 2113, and these must be reliably rounded
to the correct integer values even in the presence of some floating-point
roundoff error. A common solution is to split each input word containing
48 mantissa bits into 4 words, each containing 12 mantissa bits, and employ
conventional 64-bit IEEE arithmetic in the FFT. The computational cost
of this strategy is roughly 60n log2 n operations, where n is the number of
input words, but this is still much faster than conventional multiplication
(roughly 30n2 operations, assuming Algorithms 6.1, 6.2, and 6.3) for higher
levels of precision.

This scheme is suitable for precision levels up to approximately
10,000,000 decimal digits. As a precaution for computations above approx-
imately 1,000,000 digits, it is wise to perform the following validity check:
After rounding the results of the final inverse FFT to the nearest integer,
also determine the largest difference between these results and the nearest
integer. If this maximum difference is larger than, say, 3/8, then the user
should be alerted that the results can no longer be certified. To use the
FFT-based approach for even higher levels of precision, it is necessary to
divide the input data further, say to only 6 mantissa bits per 64-bit word,
or to employ double-double arithmetic for the FFT. We might add that the
test we describe above has also proven to be an effective computer system
integrity test—one of the present authors has uncovered several flaws in
computer hardware and software using this test.

Another detail worth mentioning here is that efficient FFTs are most
commonly targeted to power-of-two data sizes. If your desired level of
precision (measured in 64-bit words) is not a power of two, it is often
possible to employ FFTs in the computation, yet avoid having to increase
the precision level to the next highest power of two, which would double
both the memory requirement and the computational cost. This can best
be illustrated by example.

Consider the case n = p + 2, where p = 2r (so that xp, xp+1, yp and
yp+1 are potentially nonzero). First, extend the sequences x and y with
zeroes to length 2p = 2r+1 (instead of length 2r+2 as in the conventional
FFT procedure). Then apply forward and inverse FFTs to the extended
sequences x and y to produce the circular convolution of these extended
sequences, which is:

z0 = x0y0 + xp−1yp+1 + xpyp + xp+1yp−1

z1 = x0y1 + x1y0 + xpyp+1 + xp+1yp
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z2 = x0y2 + x1y1 + x2y0 + xp+1yp+1

z3 = x0y3 + x1y2 + x2y1 + x3y0

· · · = · · ·
zp = x0yp + x1yp−1 + · · · + xpy0

· · · = · · ·
z2p−1 = xp−2yp+1 + xp−1yp + xpyp−1 + xp+1yp−2 (6.16)

This result differs from the desired 2n-long linear convolution of x and y
in two respects: (1) the initial three values (z0, z1 and z2) are “corrupted”
with some additional terms, and (2) the final four members of the sequence
are missing. These four missing values are

z2n−4 = z2p = xp−1yp+1 + xpyp + xp+1yp−1

z2n−3 = z2p+1 = xpyp+1 + xp+1yp

z2n−2 = z2p+2 = xp+1yp+1

z2n−1 = z2p+3 = 0 (6.17)

Ignoring the last zero value, these three expressions are exactly the values
that have “corrupted” the first three elements of the desired z sequence.
Thus by separately computing these three expressions, one can correct the
z sequence to the desired 2n-point linear convolution result. Note that
these three values can be obtained by computing a linear convolution on
the sequences x̄ = {xp−1, xp, xp+1} and ȳ = {yp−1, yp, yp+1} and discarding
the first two elements of the six-long result. It is clear from this example
that this technique can be extended to evaluate the linear convolution of
sequences of size n = p+m for any m < p = 2r, although it is not efficient
once m is larger than about 2r−1. The scheme can be applied recursively.

As it turns out, if one plots the computational cost (the number of
arithmetic operations versus problem size) required for this scheme, the re-
sult is an intriguing fractal structure that is sometimes called the “devil’s
staircase” (see Figure 6.1). For this reason, the above technique is some-
times referred to as the “devil’s convolution.” Additional details of this
scheme are given in [17, 119].

Additional results and techniques for using various types of FFTs for
high-precision arithmetic can be found in Crandall’s books on mathematical
computation [118,119].

6.2.5 Algebraic and Transcendental Functions

So far we have focused on multiplication. In this section, we will describe
some schemes for high-precision computation of several additional opera-
tions, including division and common transcendental functions. We present
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Figure 6.1. Computational cost for the devil’s convolution.

here only an informal sketch of these methods. See [15, 38] for additional
details.

We start with a scheme for extra-high precision division. As we men-
tioned earlier, for moderate precision levels an adaptation of the conven-
tional grammar school division is adequate. Beyond several hundred digit
precision, it is faster to use a Newton iteration scheme, which involves only
multiplications, and a few other relatively inexpensive operations. Square
roots, cube roots and n-th roots for integers n > 3 can be found using
similar Newton iteration schemes.

Algorithm 6.4. Extra-high precision division.

To perform a/b, first set x0 to the 64-bit approximation of 1/b, and then
employ a Newton iteration scheme to obtain 1/b to full precision:

xk+1 = xk + xk(1 − bxk). (6.18)
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Multiplying the final approximation to 1/b by a gives the desired quo-
tient. These iterations can be accelerated by utilizing a working precision
level that approximately doubles with each iteration. Note that the above
scheme involves only addition/subtraction operations and multiplies (which
can be done using FFTs). If done carefully, the total computation cost is
only slightly more than three times the cost of the final multiplication.

Algorithm 6.5. Square roots.

Square roots can be computed in a similar manner, using the Newton
iteration for 1/

√
a:

xk+1 = xk +
xk

2
(1 − ax2

k). (6.19)

Multiplying the final approximation to 1/
√
a by a gives the square root of

a. Some additional details are given in [38].

Algorithm 6.6. Pi.

The constant π, which is needed for trigonometric functions, among other
things, may be efficiently calculated using the Salamin-Brent algorithm:
Set a0 = 1, b0 = 1/

√
2, and d0 =

√
2 − 1/2. Then iterate the following

arithmetic-geometric mean (AGM) operations beginning with k = 1:

ak = (ak−1 + bk−1)/2

bk =
√
ak−1bk−1

dk = dk−1 − 2k(ak − bk)2. (6.20)

Then pk = (ak + bk)2/dk converges quadratically to π—each iteration ap-
proximately doubles the number of correct digits. Unfortunately this al-
gorithm is not self-correcting like algorithms based on Newton iterations.
Thus all iterations must be done with at least the precision level desired
for the final result.

The value of π can also be calculated quite rapidly using some of the
infinite series presented in Chapter 3, for example Formulas (3.13), (3.14),
or (3.19).

Algorithm 6.7. Exp.

For moderate levels of precision (up to roughly 1,000 decimal digits), et may
be calculated using the following modification of the Taylor’s series for et:

et =
(

1 + r +
r2

2!
+
r3

3!
+
r4

4!
· · ·

)256

2n, (6.21)
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where r = t′/256, t′ = t − n log 2 and where n is chosen to minimize
the absolute value of t′. The exponentiation by 256 in this formula is
performed by repeated squaring. Reducing t in this manner significantly
accelerates convergence in the above series. On some systems, reducing by
1,024 instead of 256 is even faster.

Algorithm 6.8. Log.

Given this scheme for et, moderate-precision natural logarithms of an ar-
gument a may then be calculated using the Newton iteration

xk+1 = xk +
a− ex

ex
, (6.22)

using a doubling level of precision as before.

Algorithm 6.9. Extra-high precision exp and log.

For very high precision (beyond several hundred decimal digits), it is better
to calculate logarithms by means of a quadratically convergent algorithm
originally due to Salamin, as described by Brent in [86]. Inputs t that are
extremely close to 1 are handled using a Taylor series. Otherwise, let n be
the number of bits of precision required in the result. If t is exactly two,
select m > n/2. Then the following formula gives log 2 to the required
precision:

log 2 =
π

2mA(1, 4/2m)
. (6.23)

Here A(a, b) is the limit of the AGM: Let a0 = a and b0 = b, and iterate

ak+1 = (ak + bk)/2 bk+1 =
√
akbk (6.24)

until convergence. For other t, select m such that s = t2m > 2n/2. Then
the following formula gives log t to the required precision:

log t =
π

2A(1, 4/s)
−m log 2. (6.25)

Given this scheme for logarithms, very high-precision exponentials can
be calculated using Newton iterations, using a doubling level of precision
as before.
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Algorithm 6.10. Sin and cos.

For modest precision, one can calculate sin t via the Taylor’s series

sin s = s− s3

3!
+
s5

5!
− s7

7!
· · · , (6.26)

where s = t − aπ/256, and where the integer a is chosen to minimize the
absolute value of s. Then one calculates

sin t = sin(s+ aπ/256)
cos t = cos(s+ aπ/256),

by applying elementary trigonometric identities for sums. The required val-
ues sin(aπ/256) and cos(aπ/256) can be precalculated—they involve com-
pound square roots of 2. Reducing t in this manner significantly accelerates
convergence in the above series for sin s. On some systems, using 1,024 sub-
divisions instead of 256 is even faster. Inverse cosine and sine can then be
calculated using Newton iterations.

Algorithm 6.11. Extra-high precision sin and cos.

For very high precision (above roughly 1,000 decimal digits), sines and
cosines, as well as the inverse functions, can be calculated using complex
arithmetic versions of the advanced algorithms described above for exp and
log (recall that eix = cosx+ i sinx). See [38] for full details. �

An arbitrary precision software package implementing the above algo-
rithms, including both basic arithmetic functions (with FFT-based schemes
for very high precision) and numerous transcendental functions, is available
from the URL http://www.experimentalmath.info.

6.3 Constant Recognition

Mathematicians have long dreamed of a facility that would recognize a
computed numerical constant in an analytic formula in terms of known
mathematical functions and constants. With some recent discoveries and
algorithmic improvements, that day has arrived. Indeed, we have already
seen numerous examples of this methodology in action. We describe here
some of the algorithmic and numerical techniques involved.

Let x = (x1, x2, · · · , xn) be a vector of real numbers. x is said to
possess an integer relation if there exist integers ai, not all zero, such that
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a1x1 + a2x2 + · · · + anxn = 0. By an integer relation algorithm, we mean
a practical computational scheme that can recover the integers ai, if they
exist, or can produce bounds within which no integer relation exists.

Although the integer relation problem is often regarded to be a relatively
“new” problem, it is really a rather old problem. The earliest reference is
in the works of Euclid, whose Euclidean algorithm solves this problem
in the case n = 2. A solution for n > 2 was attempted by numerous
mathematicians in the 18th, 19th, and 20th centuries. The first general n
integer relation algorithm was discovered in 1977 by Ferguson and Forcade
[141].

One approach to integer relation detection is to apply the Lenstra-
Lenstra-Lovasz (LLL) lattice reduction algorithm. However, there are diffi-
culties with this approach, notably the selection of a required multiplier—if
it is too small, or too large, the LLL solution will not be the desired in-
teger relation. Some of these difficulties were addressed in the “HJLS”
algorithm [164], but this scheme suffers from numerical instability.

6.3.1 PSLQ

At the present time, the best integer relation algorithms are variants of the
“PSLQ” algorithm [140], which was discovered in 1993 by Helaman Fergu-
son. PSLQ originally came to prominence with its role in the discovery of
the BBP formula for π. In addition to possessing good numerical stability,
PSLQ is guaranteed to find a relation in a polynomially bounded number
of iterations. The name “PSLQ” derives from its usage of a partial sum of
squares vector and a LQ (lower-diagonal-orthogonal) matrix factorization.

We present here a statement of the standard PSLQ algorithm. For addi-
tional details, see [18, 35, 140], from which this material has been adapted.
Here x is the n-long input real vector, and “nint” is the nearest integer
function (for half-integer values, select the integer with greater absolute
value). One selects the parameter γ ≥ √

4/3 (in our implementations, we
select γ =

√
4/3).

Algorithm 6.12. Standard PSLQ.

Initialize:
1. Set the n× n matrices A and B to the identity.
2. For k := 1 to n do: set sk :=

√∑n
j=k x

2
j ; enddo; set t = 1/s1; for k := 1

to n do: set yk := txk; sk := tsk; enddo.
3. Compute the initial n × (n − 1) matrix H as Hij = 0 if i < j, Hjj :=
sj+1/sj, and Hij := −yiyj/(sjsj+1) if i > j.
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4. Reduce H : for i := 2 to n do: for j := i − 1 to 1 step −1 do: set t :=
nint(Hij/Hjj); and yj := yj +tyi; for k := 1 to j do: set Hik := Hik−tHjk;
enddo; for k := 1 to n do: set Aik := Aik − tAjk and Bkj := Bkj + tBki;
enddo; enddo; enddo.

Iterate the following until an entry of y is within a reasonable tolerance of
zero, or precision has been exhausted:
1. Select m such that γi|Hii| is maximal when i = m.
2. Exchange the entries of y indexed m and m+1, the corresponding rows
of A and H , and the corresponding columns of B.
3. Remove the corner on H diagonal: If m ≤ n − 2 then set t0 :=√
H2

mm +H2
m,m+1, t1 := Hmm/t0 and t2 := Hm,m+1/t0; for i := m to n do:

set t3 := Him, t4 := Hi,m+1, Him := t1t3 + t2t4 and Hi,m+1 := −t2t3 + t1t4;
enddo; endif.
4. Reduce H : for i := m+ 1 to n do: for j := min(i− 1,m+ 1) to 1 step
−1 do: set t := nint(Hij/Hjj) and yj := yj + tyi; for k := 1 to j do: set
Hik := Hik − tHjk; enddo; for k := 1 to n do: set Aik := Aik − tAjk and
Bkj := Bkj + tBki; enddo; enddo; enddo.
5. Norm bound: Compute M := 1/maxj |Hjj |. Then there can exist no
relation vector whose Euclidean norm is less than M .
Upon completion, the desired relation is found in the column of B corre-
sponding to the zero entry of y. �

High-precision arithmetic must be used for almost all applications of
PSLQ. In general, if one wishes to recover a relation of length n, with coef-
ficients of maximum size d digits, then the input vector x must be specified
to at least nd digits, and one must employ floating-point arithmetic ac-
curate to at least nd digits. PSLQ typically recovers relations when the
working precision is only 10 to 15 percent higher than this minimum value.

In the course of the operation of the PSLQ algorithm on a real computer
system, the entries of the y vector gradually decrease in size, with the
largest and smallest entries usually differing by no more than two or three
orders of magnitude. When a relation is detected by the algorithm, the
smallest entry of the y vector abruptly decreases to roughly the “epsilon”
of the working precision (i.e., 10−p, where p is the precision level in digits).
The detection threshold in the termination test (iteration Step 6) above
is typically set to be a few orders of magnitude greater than the epsilon
value, in order to allow for reliable relation detection in the presence of some
numerical roundoff error. The ratio between the smallest and the largest y
entry when a relation is detected can be taken as a “confidence level” that
the relation is a true relation and not an artifact of insufficient numeric
precision. Very small ratios at detection, such as 10−100, almost certainly
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denote a true relation (although, of course, such results are experimental
only, and do not constitute rigorous proof).

PSLQ runs reasonably fast for many problems, but in other cases large
amounts of computer time are required. For these problems, one can utilize
a two-level scheme, wherein most PSLQ iterations are performed using
ordinary 64-bit IEEE double arithmetic, with the arbitrary-precision arrays
updated as needed. This “two-level” scheme runs as much as 65 times
faster on some problems. For very large problems, a three-level scheme
yields further acceleration. Details of these methods are given in [35].

6.3.2 Multipair PSLQ

Even with the improvements mentioned above, PSLQ runtimes are painfully
long for some very large problems of current interest. Thus one is led to
consider employing modern parallel computer systems, which have the po-
tential of many times faster performance than single-processor scientific
workstations or personal computers.

Unfortunately, PSLQ, unlike most other algorithms used in experimen-
tal mathematics, is singularly unsuited for parallel computation. Large
PSLQ calculations often require millions of iterations, each of which must
be completed before the next begins. Furthermore, within an individual
iteration, the key reduction operation (iteration Step 4) has a recursion
that inhibits parallel execution, except at the innermost loop level. Thus
there is virtually no concurrency to exploit in a parallel implementation.

Recently, a variant of the PSLQ algorithm, known as the “multipair”
PSLQ algorithm, was discovered that dramatically reduces the number of
sequential iterations, while at the same time exhibiting moderately high
concurrency in the major steps of individual iterations. What’s more, it
runs somewhat faster than the standard PSLQ even on single-processor
systems.

Here γ ≥ √
4/3 and β < 1/2 are adjustable parameters (in our imple-

mentations, we set γ =
√

4/3 and β = 2/5).

Algorithm 6.13. Multipair PSLQ.

Initialize:
1. For j := 1 to n do: for i := 1 to n do: if i = j then set Aij := 1 and
Bij := 1 else set Aij := 0 and Bij := 0; enddo; enddo.

2. For k := 1 to n do: set sk :=
√∑n

j=k x
2
j ; enddo; set t = 1/s1; for k := 1

to n do: set yk := txk; sk := tsk; enddo.
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3. Initial H : For j := 1 to n − 1 do: for i := 1 to j − 1 do: set Hij := 0;
enddo; set Hjj := sj+1/sj; for i := j+1 to n do: set Hij := −yiyj/(sjsj+1);
enddo; enddo.

Iterate the following until an entry of y is within a reasonable tolerance of
zero, or precision has been exhausted:
1. Sort the entries of the (n− 1)-long vector {γi|Hii|} in decreasing order,
producing the sort indices.
2. Beginning at the sort index m1 corresponding to the largest γi|Hii|, se-
lect pairs of indices (mi,mi + 1), where mi is the sort index. If at any step
either mi or mi +1 has already been selected, pass to the next index in the
list. Continue until either βn pairs have been selected, or the list is ex-
hausted. Let p denote the number of pairs actually selected in this manner.
3. For i := 1 to p do: exchange the entries of y indexed mi and mi + 1,
and the corresponding rows of A, B and H ; enddo.
4. Remove corners on H diagonal: For i := 1 to p do: if mi ≤ n− 2 then
set t0 :=

√
H2

mi,mi
+H2

mi,mi+1, t1 := Hmi,mi/t0 and t2 := Hmi,mi+1/t0;
for i := mi to n do: set t3 := Hi,mi ; t4 := Hi,mi+1; Hi,mi := t1t3 + t2t4;
and Hi,mi+1 := −t2t3 + t1t4; enddo; endif; enddo.
5. Reduce H : For i := 2 to n do: for j := 1 to n − i + 1 do: set l :=
i + j − 1; for k := j + 1 to l − 1 do: set Hlj := Hlj − TlkHkj ; enddo; set
Tlj := nint(Hlj/Hjj) and Hlj := Hlj − TljHjj ; enddo; enddo.
6. Update y: For j := 1 to n−1 do: for i := j+1 to n: set yj := yj +Tijyi;
enddo; enddo.
9. Update A and B: For k := 1 to n do: for j := 1 to n− 1: for i := j + 1
to n do: set Aik := Aik − TijAjk and Bjk := Bjk + TijBik; enddo; enddo;
enddo.
8. Norm bound: Compute M := 1/maxj |Hjj |. Then there can exist no
relation vector whose Euclidean norm is less than M .
9. Termination test: If the largest entry of A exceeds the level of numeric
precision used, then precision is exhausted. If the smallest entry of the y
vector is less than the detection threshold, a relation has been detected and
is given in the corresponding row of B. �

There are several differences between this algorithm and the standard
one-level PSLQ algorithm: (1) there is no reduction step in the initializa-
tion; (2) the B matrix is transposed from the standard PSLQ algorithm;
(3) up to βn disjoint pairs (not just a single pair) of adjacent indices are
selected in each iteration; (4) the H reduction loop proceeds along succes-
sive lower diagonals of the H matrix; (5) a T matrix is employed, which
contains the t multipliers of the standard PSLQ; and (6) the y, A, and B
arrays are not updated with H , but in separate loops.
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Unlike standard PSLQ, there is no proof that the multipair PSLQ
scheme is guaranteed to find a relation within a polynomially bounded
number of iterations. On the other hand, we have found, based on expe-
rience with a variety of sample problems, that the norm bound increases
much more rapidly than in the standard PSLQ. Indeed, it appears that the
selection of up to βn disjoint pairs of indices in Step 2 above has the effect
of reducing the iteration count by nearly the factor βn. This results in a
significant saving in the number of expensive reduction and update steps.

The bottom line is that even on single processor systems, the multi-
pair PSLQ algorithm appears to be significantly faster than the standard
PSLQ [35]. Both the standard PSLQ and the multipair PSLQ schemes,
including two-level and even three-level variants, have been programmed
in C++ and Fortran-90, targeted to the arbitrary precision package men-
tioned earlier in the chapter. This software is available from the URL
http://www.experimentalmath.info.

6.3.3 Practical Constant Recognition

Practical constant recognition facilities require more than efficient integer
relation detection schemes. Usually a sequence of methods are used. An
approach that is used in some software is the following (here α is the input
numerical constant) [40].

1. Table look-up. An indexed table of well-known numerical constants
is checked to see if it contains α, to within some tolerance.

2. Algebraic check. The vector (1, α, α2, · · · , αn) is computed and then
input to an integer relation finding routine, to see if α is an algebraic
number of degree n or less. The integer n is chosen so that the
runtime is reasonable for the numeric precision being used.

3. Strided algebraic check. The vector (1, αk, α2k, · · · , αnk) is computed
and then input to an integer relation finding routine, for integers k
up to some maximum level m. As before, the parameters m and n
are selected to make runtimes reasonable.

4. Multiplicative check. log |α| is computed, and then an integer relation
check is done with the natural logarithms of the first few primes, as
well as several other well-known constants, such as π, e, log 2, log 3, G
and γ (hereG is Catalan’s constant and γ is Euler’s gamma constant).
If a relation is found in this set of numbers, then this means α is given
by a one-term formula of the form

α = ±2a3b5c7d11e13f17g19hπkel(log 2)m(log 3)nGoγp
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for rationals a, b, c, · · · , p. The number of primes and the set of other
constants used here are quite arbitrary. They are typically chosen for
effective constant discovery in a particular environment, under the
constraint of reasonable run times.

5. Multiterm constant check. In this test, which is typically done with
just double-double or with double precision, numerous integer rela-
tion tests are made for sample formulas that involve, for example,
up to four terms, each of which has some combination of well-known
mathematical constants. Thousands of such searches can be done in
a few seconds. Such searches often turn up formulas that are not
found using the above searches.

An online tool that employs this search strategy is available at the URL
http://ddrive.cs.dal.ca/∼isc. Software that performs this type of search
strategy is also available as part of the Experimental Mathematician’s
Toolkit: http://www.experimentalmath.info. Another interesting resource
in this regard is Finch’s recently published Mathematical Constants [142].

Maple 9, released in summer 2003, incorporates a quite functional con-
stant recognition tool. Typing identify(3.146264370) returns 31/2 + 21/2.
One can expect such features with refinements in future releases of Maple
and Mathematica.

6.4 Commentary and Additional Examples

1. Continued fractions. We should emphasize how continued frac-
tions expose different structure: The golden mean is the simplest
irrational, e shows great structure, [1, 2, 3, 4, · · · ] is a ratio of Bessel
functions, and π remains a complete mystery. Thus, a good rule in
constant recognition is to always convert a decimal expansion to a
simple continued fraction or to another base (say, binary), to see if
this alternate representation is helpful.

2. A new formula for Khintchine’s constant. Let {ai} be the
continued fraction expansion of a random real number. The Gauss-
Kuz’min distribution states that

Prob(an = k) = − log2

[
1 − 1

(k + 1)2

]
.
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Khintchine showed that, limk(a1a2 · · · ak)1/k, the limiting geometric
mean, exists a.e. and equals

K0 =
∞∏

k=1

[
1 +

1
k(k + 2)

]log2 k

=
∞∏

k=1

k[log2(1+ 1
k(k+2) )]

= 2.68545200106530644530971483548179569382038229399446 . . .

Little is known about K0. Is it rational, algebraic, or related to π or
e? The formula is very slowly convergent.

For any positive integer N , we may, however, derive a quite effective
identity

log(K0) log(2) =
∞∑

s=1

ζ(2s,N)
As

s
−

N∑
k=2

log
(

1 − 1
k

)
log

(
1 +

1
k

)
,

where the Hurwicz zeta function is defined as

ζ(s,N) =
∞∑

n=1

1
(n+N)s

= ζ(s) −
N∑

n=1

n−s,

while As =
∑2s−1

k=1 (−1)k−1/k and N is a free parameter that can be
varied for optimization and as an error check. The method has been
used to compute K0 to 7,350 digits—from which it seems to obey the
Gauss-Kuz’min distribution [26].

3. Putnam problem 1998–B5. Let N be the “rep-one” integer con-
sisting of 1, 998 ones. Find the thousandth digit after the decimal
point in

√
N . Answer: The digit is a “1.” Hint: This can easily be

verified by employing high-precision arithmetic. Once verified, this
can be established by writing

101000
√
N =

√
103998 − 102000

3
,

and so
101999 − 6

3
< 101000

√
N <

101999 − 4
3

.

4. Dynamical systems, numerical analysis, and formal power
series. We present here a brief overview of a surprising connection
between numerical analysis of dynamical systems and formal power
series [77]. We begin with a simple question: What, exactly, does the
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fixed time step forward Euler numerical method do to the solution
of the simple initial value problem

dy

dt
= y2, (6.27)

with y(0) = y0? The numerical procedure is just

yn+1 = yn + hy′n (6.28)

for integer n ≥ 0, where y′n = y2
n and h > 0 is the chosen time step.

It turns out to be useful to rescale y and t so that v = hy and τ = ht,
giving

dv

dτ
= v2 , (6.29)

and (6.28) becomes
vn+1 = vn + v2

n . (6.30)

We may then rephrase our question to ask instead what the relation-
ship between vn and v(τ) is.

The point of view taken in [111] is that of backward error analysis.
That is, instead of asking for the difference between v(n) and vn, we
ask instead if there is another differential equation, say

dw

dτ
= B(w)w2 , (6.31)

whose solution interpolates vn. That is, we impose the conditions
w(0) = v0 and w(τ + 1) = w(τ) +w(τ)2 (see Formula (6.30), and see
if we can find such a function B(w).

It turns out that we can use the method of modified equations [157] to
find as many terms of the Taylor series for B(w) as we desire. When
we compute the modified equation for (6.27) to (say) fifth order, we
get

dw

dt
=
(

1 − w +
3
2!
w2 − 16

3!
w3 +

124
4!
w4 − 1256

5!
w5

)
w2 . (6.32)

Now we see the sequence 1, −1, 3, −16, 124, −1256 appearing. This is
sequence M3024 in Sloane’s dictionary [263], which points us directly
to the very beautiful and useful paper [197]. It tells us that if

B(w) =
∑
n≥0

cnw
n , (6.33)
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then

cn =
1

n− 1

n−1∑
i=1

(
n− i+ 1
i+ 1

)
cn−i ,

and this, combined with the functional equation

B(w) =
(1 + w)2

1 + 2w
B(w + w2)

(which can be iterated to give us two converging infinite products for
B), allows us to write an efficient program to evaluate B(w). We can
show that B(w) has a pole at w = −1/2; by mapping backwards,
solving w+w2 = −1/2, we find two more (complex) poles. Iterating
this process finds an infinite number of complex poles, approaching
the Julia set for the map v → v+v2 arbitrarily closely; see Figure 6.2.

The Julia set itself approaches the origin arbitrarily closely. That
is, there are poles arbitrarily close to the point of expansion of the
series given for B. Thus the series (6.33) diverges—but, nonetheless,
it can be used to evaluate B(w) for w close enough to zero, using the
built-in sequence acceleration techniques of Maple. This is precisely
where the convergent infinite products are slow, and hence, the series
is useful. See [111] for details.

5. Accelerations for Catalan’s constant. (This material is con-
densed from [85].) Acceleration formulas for slowly convergent series

Figure 6.2. The first 16,000 poles of B(v), approaching the Julia set of v → v+v2.
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such as Catalan’s constant may be based on transformations of the
log tangent integral. The simplest acceleration formula of its type is

G =
π

8
log(2 +

√
3) +

3
8

∞∑
k=0

1
(2k + 1)2

(
2k
k

) , (6.34)

due to Ramanujan. This is the first of an infinite family of formulae
for G, each of which includes an infinite series whose general term
consists of a linear recurrence damped by the summand in (6.34).
Each series evaluates to a rational linear combination of G and π
times the logarithm of an algebraic unit (i.e., an invertible algebraic
integer). The most striking example is

G =
π

8
log

(
10 +

√
50 − 22

√
5

10 −
√

50 − 22
√

5

)
+

5
8

∞∑
k=0

L2k+1

(2k + 1)2
(
2k
k

) ,
(6.35)

where L1 = 1, L2 = 3, and Ln are the Lucas numbers (M0155 in
Sloane’s Encyclopedia).

The series acceleration results (6.34) and (6.35) appear as natural
consequences of transformation formulae for the log tangent integral,
although Ramanujan apparently derived his result (6.34) by quite
different methods. The connection with log tangent integrals is best
explained by the equation

G = −
∫ π/4

0

log(tan θ) dθ, (6.36)

obtained by expanding the integrand into its Fourier cosine series and
integrating term by term. Ramanujan’s result (6.34) arises from the
transformation

2
∫ π/4

0

log(tan θ) dθ = 3
∫ π/12

0

log(tan θ) dθ. (6.37)

Formula (6.35) arises similarly from the transformation

2
∫ π/4

0

log(tan θ) dθ

= 5
∫ 3π/20

0

log(tan θ) dθ − 5
∫ π/20

0

log(tan θ) dθ. (6.38)

A great virtue of such log tangent identities is that they can be effi-
ciently hunted for by integer relation methods.
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6. More Catalan formulas. Evaluate

(a) ∑
n≥1

n

16n
ζ(2n+ 1),

due to Glaisher (1913), and

(b) ∑
n≥1

(n+ 1)
3n − 1

4n
ζ(n+ 2),

due to Flajolet and Vardi (1996) in terms of Catalan’s constant.

7. Continued fraction for Euler’s constant. Compute the simple
continued fraction for Euler’s constant and see if it appears to satisfy
the Gauss-Kuz’min distribution.

8. The perceptual dipper effect. Over the past decade, the JPEG
image compression standard (see http://www.jpeg.org), originally
named for the Joint Photographic Experts Group, has become the
benchmark for compressing natural still images for use on the inter-
net. This standard has been extremely successful in maintaining a
balance between low file size and high subjective image quality.

However, JPEG-encoded images can exhibit unexpected objection-
able artifacts. For example, for images already encoded using com-
pression methods based around the discrete cosine transform (DCT),
further compression by requantization can create objectionable visual
artifacts. This phenomenon, called the JPEG perceptual dipper ef-
fect, is an example of the more general concept of a visual threshold,
wherein two approximations of the same original image, which differ
little from each other in terms of some given numerical measure, dif-
fer dramatically in the “quality” of their visual fidelity to the original
image.

The dipper effect is illustrated in Figure 6.3. The mandrill image in
the center is more compressed than the leftmost, yet appears better
than the one on the left, and compares quite favorably to the much
less compressed image on the right. The effect can be easily avoided
by simple calculations in the process of designing the quantization
matrices used to re-quantize the given image. This is of practical
consequence for delivery of images where bandwidth or storage is an
issue (such as in delivery of data to cell phones, PDAs and other
wireless devices), since it is possible to assess and exploit the dipper
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Figure 6.3. Three images quantized at quality 50 (L), 48 (C) and 75 (R). Courtesy
of Mason Macklem.

effect in software ( [45] and [210]). Needless to say, such effects must
be seen to be discovered.

9. The Universal Computer: The road from Leibniz to Turing.
This is an engaging account by Martin Davis of the history of logic
and the birth of the modern computer [124]. In his story—chock full
of colorful detail, such as Frege’s extreme antisemitism and Gödel’s
conversion to full-blooded Platonism—one reads

(a) “For it is unworthy of excellent men to lose hours like slaves
in the labor of calculation which could be safely relegated to
anyone else if the machine were used.” (Leibniz)

(b) That Poincaré is reputed to have said Cantor’s set theory “would
be regarded as a disease from which one had recovered.” and
that he did write of Russell, “It is difficult to see that the word
if acquires when written ⊃, a virtue it did not possess when
written if.”

(c) “To exist in mathematics means to be constructed by intuition;
and the question whether a certain language is consistent, is not
only unimportant in itself, it is also not a test for mathematical
existence.” (Brouwer)

(d) That Hardy, of Hilbert’s Entscheidungsproblem (decision prob-
lem), said correctly, “There is of course no such Theorem and
this is very fortunate, . . .”

(e) When Turing, after showing the unsolvability of the halting
problem, went to Princeton to work with Church and others in
1936, von Neumann wrote him a letter of reference that made
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no mention of his work on computability (von Neumann report-
edly said that after what Gödel did he would never read another
paper in logic). But by the beginning of World War Two, von
Neumann was openly using Turing’s ideas and goals of building
practical computing machines. By the end of Turing’s wartime
stay at Bletchley Park, he had played a key role in breaking the
German codes and was in possession of “a working knowledge
of vacuum electronics.”

The last chapters of [124] tell of the development of Turing’s com-
puter science influenced Automatic Computing Machine (ACE) and
von Neumann and others’ more engineering influenced ENIAC, about
which Turing may have been thinking when he wrote of “the Amer-
ican tradition of solving one’s difficulties by much equipment rather
than by thought.” By the end of the last century, Turing was rec-
ognized along with von Neumann as the intellectual progenitors of
modern computing. Davis summarized his account with these words:

“This story underscores the power of ideas and the futility of predict-
ing where they will lead.” (Martin Davis)
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We [Kaplansky and Halmos] share a philosophy about linear algebra:
we think basis-free, we write basis-free, but when the chips are down
we close the office door and compute with matrices like fury.

– Irving Kaplansky, 1917–2006. Quoted in Paul Halmos’ Cele-
brating 50 Years of Mathematics.

We take the opportunity in this chapter to describe three pieces of exper-
imental mathematics and related research that have been performed since
our earlier publications [25,72] and the earlier edition of this book [71]. In
addition, from discussions with colleagues and lectures to various groups,
our own thoughts have been refined and revised. In consequence, we have
added some more discursive sections as bookends. We have also aggregated
a mélange of examples and exercises—some generated by the sections and
some totally unrelated.

7.1 Doing What Is Easy

We start this chapter with a section that re-explores “easy” tools available
in almost any symbolic computation system—or other high-level language—
and their powerful consequences. The theme of this section might well be
“It’s a computer, stupid!” So let us recall some of the things computers do
better than humans. These include

1. High precision arithmetic—the mathematical electron microscope
(Sections 7.1, 7.4, and 7.5);

2. Formal power-series manipulation, e.g., summing squares and cubes
(Sections 7.1, 7.2, and Exercise 33);

3. Changing representations, e.g., continued fraction expansions (Sec-
tion 7.1, Exercises 20, and 21);

243
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4. Changing representations, e.g., partial fractions expansions (Exer-
cises 16, 23, and 33);

5. Changing representations, e.g., Padé approximations (Section 7.1,
Exercises 20, 21, and 22);

6. Recursion solving, e.g., by using Rsolve in Mathematica or rsolve and
gfun in Maple (Section 7.1, 7.2, Exercises 9, and 44);

7. Integer relation algorithms, e.g. by using identify and MinimalPoly-
nomial (or minpoly) in Maple or RootApproximant in Mathematica
(Section 7.1, 7.3, Exercises 9, and 42);

8. Creative telescoping, e.g., the Gosper and Wilf-Zeilberger methods
(Section 7.1, 7.2, and Exercise 9);

9. Pictures, pictures, pictures: intuition, simulation and more (Exercises
24, 29, and 31).

All of these have been described in this volume and others [25,71], and
all bear re-examination. The parenthetic numbers above refer to exemplary
sections or exercises in this chapter that explore the given topic. Before we
launch into the matter, we repeat some mantras.

• Always be suspicious; try to numerically confirm any symbolic dis-
covery.

• As in any other experimental subject, one cannot prove anything.
One can, however, be led to a proof (human or computer generated).

• Moreover, one can “falsify” (which in Karl Popper’s accounting is
central to the scientific method); but even negative results should be
replicated.

We should add that most of the topics of the first two sections of this
chapter are also well covered in a new book by Villegas [284] , which works
in PARI/GP.

7.1.1 Hunting a Rational Sequence

For reasons that will be explained in Section 7.1.4, suppose we wish to
determine a closed form for the sequence that starts with the following
dozen terms:

1,−1
3
,

1
25
,− 1

147
,

1
1089

,− 3
20449

,
1

48841
,− 1

312987
,

25
55190041

,

− 1
14322675

,
1

100100025
,− 49

32065374675
.
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We can easily supply at least 20 more values, the next six being

1
4546130625

,− 1
29873533563

,
9

1859904071089
,− 3

4089135109921
,

1
9399479144449

,− 363
22568149425822049

.

What should we do?

• Factorization often helps. In this case, the first eight values after the
initial 1 yield

−1
(3)

,
1

(5)2
,

−1
(3) (7)2

,
1

(3)2 (11)2
,

(−3)
(11)2 (13)2

,
1

(13)2 (17)2
,

−1
(3) (17)2 (19)2

,
(5)2

(17)2 (19)2 (23)2
.

• The alternating signs and the signal role of 3 suggest separating the
even and odd cases and taking square roots. The even terms then
start

1,
1

(5)
,

1
(3) (11)

,
1

(13) (17)
,

(5)
(17) (19) (23)

,
1

(3) (5) (23) (29)
,

1

(3) (5)2 (29) (31)
,

(3)
(29) (31) (37) (41)

, · · · .

After multiplication by −3 and taking square roots, the odd terms
start

1,
1

(7)
,

(3)
(11) (13)

,
1

(17) (19)
,

1
(5) (19) (23)

,
(7)

(5) (23) (29) (31)
,

1
(3) (29) (31) (37)

,
(3)

(31) (37) (41) (43)
, · · · .

• It is now apparent that both sequences have structure modulo 6.
Indeed the largest value is of the form 6n ∓ 1 except in the even
case of 35 and the odd case of 25, which are not prime. Were the
modular pattern not so clear, we could have produced more cases and
“reshaped” as in the next section.

• The engagement of (6n± 1)! is now highly likely. Consider the even
terms. When we multiply by (6n)! we rapidly get enormous integers.
If we try multiplying by the central binomial coefficient

(
6n
3n

)
, we ob-

tain ι := 1, 4, 28, 220, 1820, 15504, 134596, 1184040, . . .. Entering this
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into Sloane’s Encyclopedia (which will be illustrated in some detail in
Section 7.1.3) uniquely returns sequence A005810 and the closed form(
4n
n

)
—or we might proceed as above with ι. Thus the even terms of

our original sequence appear to satisfy s2n =
((

4n
n

)
/
(
6n
3n

))2
with many

alternate expressions. The odd terms are likewise discoverable; see
Exercise 2.

We return to this discovery and its proof in Section 7.1.4.

7.1.2 Sums of Squares, Cubes, and So On

The ability to rapidly compute fundamental generating functions for quan-
tities such as sums of squares [72, Chapter 4] is a tremendous source of
insight for both research or pedagogical reasons. For example, the Jaco-
bian theta function

θ3(q) = 1 + 2
∞∑

n=1

qn2

is easy to manipulate symbolically or numerically. It is immediate that for
N = 2, 3, 4 . . .,

θN
3 (q) = 1 +

∞∑
n=1

rN (n)qn,

where rN (n) counts the number of representations of n as a sum of N
squares, counting sign and order. Let us examine the first three cases.

First, recall that if Pa :=
∑∞

n=0 q
an is the generating function for a

sequence a = {an}, then Pa(q)Pb(q) counts the representations of numbers
of the form n = aj + bk:

Sums of two squares. The ordinary generating function to order 49 is

θ23(q) = 1 + 4 q + 4 q2 + 4 q4 + 8 q5 + 4 q8 + 4 q9 + 8 q10 + 8 q13 + 4 q16

+ 8 q17 + 4 q18 + 8 q20 + 12 q25 + 8 q26 + 8 q29 + 4 q32 + 8 q34

+ 4 q36 + 8 q37 + 8 q40 + 8 q41 + 8 q45 + · · · , (7.1)

from which it quickly becomes apparent that numbers of the form 4m +
3 are missing and that r2(2n) = r2(n). Both Maple and Mathematica
have implementations of the θ-functions, and θ3(q) implemented directly is
lacunary, so we could equally well have generated several hundred or even
several thousand terms. In particular, we should quickly observe Fermat’s
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result that an odd prime p is representable as a sum of two squares if and
only if it is of the form p = 4m + 1. As discussed elsewhere [72, Chapter
4], the actual number of representations is r2(n) = 4(d1(n)− d3(n)), where
dk counts the number of divisors congruent to k modulo four.

Sums of three squares. The ordinary generating function to order 49 is
now

θ33(q) = 1 + 6 q + 12 q2 + 8 q3 + 6 q4 + 24 q5 + 24 q6 + 12 q8 + 30 q9 + 24 q10

+ 24 q11 + 8 q12 + 24 q13 + 48 q14 + 6 q16 + 48 q17 + 36 q18 + 24 q19

+ 24 q20 + 48 q21 + 24 q22 + 24 q24 + 30 q25 + 72 q26 + 32 q27

+ 72 q29 + 48 q30 + 12 q32 + 48 q33 + 48 q34 + 48 q35 + 30 q36

+ 24 q37 + 72 q38 + 24 q40 + 96 q41 + 48 q42 + 24 q43 + 24 q44

+ 72 q45 + 48 q46 + 8 q48 + 54 q49 +O
(
q50

)
. (7.2)

One thing is immediately clear: Most but not all numbers are a sum of
three squares. This is easier to see if we look at the coefficients as a list:

[6, 12, 8, 6, 24, 24, 0, 12, 30, 24, 24, 8, 24, 48, 0, 6, 48, 36, 24, 24, 48, 24, 0, 24, 30,
72, 32, 0, 72, 48, 0, 12, 48, 48, 48, 30, 24, 72, 0, 24, 96, 48, 24, 24, 72, 48, 0, 8, 54].

Much more becomes apparent if we reshape the list into a matrix of appro-
priate dimensions. The Maple instruction

reshape:=(m,n,L)-> linalg[matrix](m,n,[seq(L[k],k=1..m*n)]);

will do this for a list L with at least m× n members. For example, a 7× 7
reshaping of the first 49 elements produces⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 12 8 6 24 24 0

12 30 24 24 8 24 48

0 6 48 36 24 24 48

24 0 24 30 72 32 0

72 48 0 12 48 48 48

30 24 72 0 24 96 48

24 24 72 48 0 8 54

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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whereas a 6 × 8 reshaping provides⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 12 8 6 24 24 0 12

30 24 24 8 24 48 0 6

48 36 24 24 48 24 0 24

30 72 32 0 72 48 0 12

48 48 48 30 24 72 0 24

96 48 24 24 72 48 0 8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and we see that no number of the form 8m+ 7 is a sum of three squares.
The “rogue” zero is in the 28th place and is a first hint that the general
result is that r3(n) = 0 exactly for numbers of the form 4k(8m+ 7). The
exact form of r3(n) is quite complex.

Sums of four squares. A similar process of reshaping the coefficients of
the first 96 values of r4(n)/8 produces⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3 4 3 6 12 8 3

13 18 12 12 14 24 24 3

18 39 20 18 32 36 24 12

31 42 40 24 30 72 32 3

48 54 48 39 38 60 56 18

42 96 44 36 78 72 48 12

57 93 72 42 54 120 72 24

80 90 60 72 62 96 104 3

84 144 68 54 96 144 72 39

74 114 124 60 96 168 80 18

121 126 84 96 108 132 120 36

90 234 112 72 128 144 120 12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

This strongly suggests Lagrange’s famous four squares theorem that every
integer is the sum of four squares, for example, 7 = 4 + 1 + 1 + 1 (see also
Exercise 17). The exact form is also a divisor function [72, Chapter 4].

In general, a simple reshaping function is a remarkably useful tool for
unearthing modular patterns in sequences; see also Exercise 49.
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7.1.3 Hunting an integer sequence

Given an integer sequence, one should always recall the existence of Sloane’s
On-Line Encyclopedia of Integer Sequences (herein called Sloane’s Ency-
clopedia). The MathPortal website at http://ddrive.cs.dal.ca/∼isc/portal
collects this tool as well as others in one place.

Suppose we are presented with

1, 1, 4, 9, 25, 64, 169, 441, 1156, 3025,

which you may well recognize right away. But whether you do or not, let
us see what happens.

Using Sloane’s Encyclopedia. Figure 7.1 illustrates the richness of the
information available in Sloane’s Encyclopedia. Indeed, 1, 1, 4, 9, 25, 64, 169
suffices to identify the sequence uniquely among the roughly 133,000 se-
quences in the data base. The references, formulas, and recursions are
substantial and reliable. The link to P. Stanica, for example, leads to a
detailed paper on the ArXiv. Further on, there often is code in one or
more packages. This time it is

(PARI) a(n)=fibonacci(n)^2

The most satisfactory strategy, if one has access to many terms of a
sequence, is to use only as many terms as are necessary to produce a very
few matches (ideally one) and then to experimentally confirm by matching
your remaining terms to those listed in the database. For example, consider

1, 2, 4, 16, 31, 61, 120, 236, 464.

The terms up to 31 provided 22 matches, adding 61 reduced this to four,
and adding 120 uniquely returns the Pentanacci numbers : a(n + 1) =
a(n) + ... + a(n − 4), which also agrees with the remaining terms and is
preceded by a number of zeros and ones. Had we instead entered the
sequence

1, 2, 4, 8, 16, 31, 61, 119, 232, 453,

the same process would recover “the number of compositions of n with
parts in N which avoid the pattern 123,” preceded by another number of
zeros and ones. (As with the Fibonacci numbers it is not always clear how
a sequence is indexed.) Of course, even when not uniquely isolated, our
research will often prefer one answer over another depending on how it
arose in our work.
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Figure 7.1. A sample of Sloane’s information on 1, 1, 4, 9, 25, 64, 169, . . ..
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In a computer algebra package. Alternatively, the following sample
Maple session, after loading the gfun package, illustrates that—in a very
few lines—we can start with the sequence, guess its generating function,
find its predicted recursion, explicitly develop its closed form and confirm
the pattern with a few more terms.

> s:=[seq(fibonacci(n)^2,n=1..10)];

s := [1, 1, 4, 9, 25, 64, 169, 441, 1156, 3025]

> g:=guessgf(s,x)[1];

g := − 1 − x

2 x2 − 1 + 2 x− x3

> r:=listtorec(s,u(n))[1];
r := {−u(n+3)+2 u(n+2)+2 u(n+1)−u(n), u(0) = 1, u(1) = 1, u(2) = 4}

> r:=rsolve(%,u(n));

r :=
2 (−1)n

5
−

2

(
3
2
−

√
5

2

)n (
−3

4
+

√
5

4

)
5

−
2

(
3
2

+
√

5
2

)n (
−3

4
−

√
5

4

)
5

> seq(expand(r(n)),n=1..13);

1, 4, 9, 25, 64, 169, 441, 1156, 3025, 7921, 20736, 54289, 142129

> [seq(fibonacci(n)^2,n=2..14)];

[1, 4, 9, 25, 64, 169, 441, 1156, 3025, 7921, 20736, 54289, 142129]

7.1.4 Some Generalized Hypergeometric Values

A hypergeometric evaluation. In our book Experimental Mathematics
in Action, we described the discovery and proof of a generating function
for the even ζ-values [25, Section 3.6]. The discovery relied heavily both
on integer detection methods and on computing Padé approximants. The
general result that we found is given as Theorem 7.1.

Theorem 7.1. Let x be a complex number not equal to a nonzero integer.
Then

∞∑
k=1

1
k2 − x2

= 3
∞∑

k=1

1
k2

(
2k
k

) (
1 − x2

k2

) k−1∏
m=1

(
1 − 4 x2

m2

1 − x2

m2

)
. (7.3)
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Note that the left-hand side of (7.3) is equal to

∞∑
n=0

ζ(2n+ 2)x2n =
1 − πx cot(πx)

2x2
.

Thus, (7.3) generates Apéry-like formulae for ζ(2n) for every positive in-
teger n. The first few specific instances are

ζ(2) = 3
∞∑

k=1

1(
2k
k

)
k2
,

ζ(4) = 3
∞∑

k=1

1(
2k
k

)
k4

− 9
∞∑

k=1

∑k−1
j=1 j

−2(
2k
k

)
k2

,

ζ(6) = 3
∞∑

k=1

1(
2k
k

)
k6

− 9
∞∑

k=1

∑k−1
j=1 j

−2(
2k
k

)
k4

− 45
2

∞∑
k=1

∑k−1
j=1 j

−4(
2k
k

)
k2

+
27
2

∞∑
k=1

k−1∑
j=1

∑k−1
i=1 i

−2

j2
(
2k
k

)
k2

.

We also showed, equivalently, for each positive integer k

3F2

(
3k,−k, k + 1
2k + 1, k + 1

2

∣∣∣∣14
)

=

(
2k
k

)(
3k
k

) . (7.4)

The proof we gave of (7.4) was via the Wilf-Zeilberger algorithm, and
we requested (other) proofs in the Monthly problem section. An attrac-
tive one by Larry Glasser was published recently [147]. It relies on the
elegant representation below in which P

(k)
k denotes the ultra-spherical or

Gegenbauer polynomial [1]:

3F2

(
3k,−k, k + 1
2k + 1, k + 1

2

∣∣∣∣x2

)
=

Γ(2k)Γ(2k + 1)
Γ(k)Γ(3k)

∫ 1

0

tk(1 − t)k−1P
(k)
k (1 − 2x2t) dt (7.5)

(see Exercise 44). Another solution mathematically performed the Wilf-
Zeilberger algorithm.

Here we describe a second “classic” solution of (7.4) by Richard Grivaux
that relies on less knowledge of special functions. He starts with a funda-
mental cubic transformation—due to an earlier one by Bailey
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[6, p. 185], which is

3F2

(
a, 2b− a− 1, a− 2b+ 2

b, a− b+ 3
2

∣∣∣∣x4
)

(7.6)

= (1 − x)−a
3F2

(
a
3 ,

a+1
3 , a+2

3
b, a− b+ 3

2

∣∣∣∣ −27x
4(1 − x)3

)
,

where one sets a = 3n, b = 2n+ 1. Calling the right-hand hypergeometric
Δn(x), we must evaluate Ln := limx→1(1 − x)−3n Δn(x). We do this by
using the standard representation of 3F2 as an integral involving 2F1, given,
for example, in well-known references ( [6, Formula 2.2.2] or [1]). This leads
to

Δn(x) =
Γ(n+ 1

2 )
Γ(n+ 2

3 )Γ(− 1
6 )

(7.7)

×
∫ 1

0

tn−1/3(1 − t)7/6
2F1

(
n, n+ 1

3
2n+ 1

∣∣∣∣ −27xt
4(1 − x)3

)
dt.

Moreover, for each n we have

2F1

(
n, n+ 1

3
2n+ 1

∣∣∣∣ −27xt
4(1 − x)3

)
∼x→1

( −27xt
4(1 − x)3

)−n Γ(2n+ 1)Γ(1
3 )

Γ(n+ 1)Γ(n+ 1
3 )

(7.8)

(see, for example, [6, p. 79]).
Putting (7.8) and (7.7) together leads to expressing Ln as a ratio of Γ-

functions multiplied by (4/27)n
∫ 1

0 t
−1/3(1− t)−7/6 dt = (4/27)nβ(2/3, 1/6)

(see Section 5.4). The final resolution to Ln =
(
2n
n

)
/
(
3n
n

)
, as in (7.4), is left

as Exercise 45.

A further caveat. The following phenomenon is worth mentioning here.
Computer packages may be able to sum one expression, but then not an-
other transparently equivalent one. For example, with various specifica-
tions of am, the series

n∑
m=0

am

(
n

m

)N

and
∞∑

m=0

am

(
n

m

)N

,

for various powers N may well not return the same answer. In part because
the implicit boundary condition on the right-hand expression may be han-
dled quite differently than that on the left, the two may return different
equivalent expressions—easily seen or not—or one may fail when the other
works. The first two cases are illustrated by the Maple session below.



�

�

�

�

�

�

�

�

254 7. Recent Experiences

Square:=Sum(binomial(n,m)^2,m=0..n) = Sum(binomial(n,m)^2,

m=0..infinity); value(Square);

Square :=
n∑

m=0

binomial(n, m)2 =
∞∑

m=0

binomial(n, m)2

returns
4n Γ

(
n+ 1

2

)
√
π Γ(n+ 1)

=
Γ(2n+ 1)
Γ(n+ 1)2

,

whereas

Se:=Sum(binomial(n,2*m),m=0..trunc(n/2))=Sum(binomial(n,2*m),

m=0..infinity): simplify(value(Se));

returns Maple’s syntax for

2n−1 −
(

n

2 + 2 	n
2 

)

× 3F2

(
1, 1 − n

2 + 	n
2 
, 3

2 − n
2 + 	n

2 

2 + 	n

2 
, 3
2 + 	n

2 
)
∣∣∣∣1) = 2n−1,

and fails to notice the binomial coefficient is zero. They may indeed some-
times return different answers; see Exercise 10.

Another hypergeometric evaluation. In the spring of 2007, Neil Calkin
observed that the 3F2 of (7.5) in the previous subsection appeared to have
structure at 1. For k = 1, 2, . . . the values start

−1
3
,

1
25
,− 1

147
,

1
1089

,− 3
20449

,
1

48841
,− 1

312987
,

25
55190041

,

− 1
14322675

,
1

100100025
.

This is exactly the sequence studied in Section 7.1.1. It is quite remarkable
that we have discovered:

3F2

(
6k,−2k, 2k+ 1
4k + 1, 2k + 1

2

∣∣∣∣1) =
(

(4k)!(3k)!
(6k)!(k)!

)2

(7.9)

and

3F2

(
6k + 3,−2k − 1, 2k + 2

4k + 3, 2k + 3
2

∣∣∣∣1) = −1
3

(
(4k + 1)!(3k)!
(6k + 1)!(k)!

)2

, (7.10)

both essentially squares of binomial ratios. Each can be proven with a little
nursing by Zeilberger’s algorithm. Here is the Maple code for the even case:
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with(SumTools[Hypergeometric]): rf:=proc(a,b):(a+b-1)!/(a-1)!:end:

F:=rf(-m,k)*rf(3*m,k)*rf(m+1,k)/rf(2*m+1,k)/rf(m+1/2,k)/k!:

F:=subs(m=2*m,F): a:=1/(6*m)!/m!*(4*m)!*(3*m)!;F:=F/a^2:

ts:=time();jb:=Zeilberger(F,m,k,M): ope:=jb[1]: print(‘The operator

annihilating the left normalized by dividing by the right is‘):

print(ope): print(‘The proof (certificate) can be found by doing

jb[2]; (but I spare you)‘): print(‘The constant sequence is

annihilated by the above-mentioned operator since‘):

print(‘plugging-in M=1, gives 0, indeed doing it ‘):

print(subs(M=1,jb[1])): print(‘and the statement follows by

induction by checking it for m=0, m=1 ‘): print(‘QED‘): print(‘This

took‘, time()-ts, ‘seconds of CPU time ‘):

The odd case may be similarly established.
Mizan Rahman has provided a very clean conventional proof, the dis-

covery of which requires significant familiarity with generalized hyperge-
ometric series. We sketch the even case of (7.9). We start by using two
transformation formulas for 3F2:

3F2

(
3n,−n, n+ 1
2n+ 1, n+ 1

2

∣∣∣∣1) = (−1)n
3F2

(
3n,−n, n

2n+ 1, n+ 1
2

∣∣∣∣1)
(7.11)

(see [144, (3.1.1)]), and

3F2

(
3n,−n, n

2n+ 1, n+ 1
2

∣∣∣∣1) =
(n+ 1)n

(2n+ 1)n
3F2

( −n, 1
2 − 2n, n

−2n, n+ 1
2

∣∣∣∣1)
(7.12)

(see [6, p. 142]). Here (a)n := a(a + 1) · · · (a + n − 1) = Γ(a + n)/Γ(a)
denotes the rising factorial.

We also invoke a special case of Whipple’s formula (see [262, 2.4.2.3]),
which yields a seemingly more complicated 4F3

3F2

( −n, 1
2 − 2n, n

−2n+ 1, n+ 1
2

∣∣∣∣1) =
(−3n)n

(−2n)n
4F3

(
n+ 1,−n

2 , n,
3n
2

n+ 1, n+ 1
2 , n+ 1

2

∣∣∣∣1)
(7.13)

The (n + 1) terms cancel, however, and leave a so-called balanced 3F2, to
which the Pfaff-Saalschútz identity (see [6, Theorem 2.2.6]) applies, since
n = 2k is even:

3F2

( −k, a, b
c, 1 + a+ b− c− k

∣∣∣∣1) =
(c− a)k(c− b)k

(c)k(c− a− b)k
. (7.14)
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We leave it as Exercise 46 to confirm that this results in

3F2

(
3n,−n, n+ 1
2n+ 1, n+ 1

2

∣∣∣∣1) =

( (
1
2

)
n/2(

1
2 + n

)
n/2

)2

, (7.15)

for even n and that this is equivalent to (7.9).

7.1.5 Changing Representations

Suppose we are presented with a sequence of power series whose first three
elements are:

S1 := 1 − x3 + 2 x4 − 2 x7 + 4 x8 − 4 x11 + 8 x12 − 8 x15 + 16 x16

−16 x19 + 32 x20 − 32 x23 + 64 x24 − 64 x27 + 128 x28 − 128 x31

+256 x32 − 256 x35 + 512 x36 − 512 x39 + 1024 x40 − 1024 x43

+2048 x44 − 2048 x47 + 4096 x48 − 4096 x51 + 18192 x52

−8192 x55 + 16384 x56 − 16384 x59 + 32768 x60 +O
(
x63

)
(7.16)

S2 := 1 − x3 + 2 x4 − x6 + 4 x8 + x9 − 4 x10 + 8 x12 − 4 x14 + 18 x16

− 4 x17 − 8 x18 + 32 x20 − 16 x22 + 4 x23 + 56 x24 − 32 x26

+ 128 x28 − 56 x30 − 16 x31 + 256 x32 − 128 x34 + 512 x36 + 16 x37

− 288 x38 + 1024 x40 − 512 x42 + 2080 x44 − 64 x45 − 1024 x46

+ 4096 x48 − 2048 x50 + 64 x51 + 8064 x52 + 4096 x54

+ 16384 x56 − 8064 x58 − 256 x59 + 32768 x60 +O
(
x61

)
(7.17)

S3 := 1 − x3 + 2 x4 − x6 + 4 x8 − 2 x10 + 9 x12 − 4 x13 + x15 + 16 x16

− 8 x17 − x18 + 4 x19 + 28 x20 − 8 x21 + 2 x22 + 56 x24 − 16 x25

+ 4 x26 − 8 x27 + 126 x28 − 24 x29 − 16 x31 + 256 x32 − 56 x33

− 16 x34 + 520 x36 − 128 x37 − 36 x38 + 8 x39 + 1040 x40 − 288 x41

+ 16 x43 + 2048 x44 − 576 x45 + 32 x47 + 4024 x48 − 1008 x49

+ 32 x50 + 8064 x52 − 2048 x53 + 64 x54 − 128 x55 + 16384 x56

− 4032 x57 − 16 x58 − 224 x59 + 32768 x60 +O
(
x61

)
. (7.18)

We may or may not have a closed form for the series coefficients, but in
any event no pattern is clear or even appetizing. If, however, we define p
in Maple as follows, and run the subsequent three lines of code:

> p:=numapprox[pade];

> factor(numapprox[pade](S[1],x,[10,10]));
(x− 1) (x2 + x+ 1)

2 x4 − 1
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> factor(numapprox[pade](S[2],x,[20,20]));
(x2 − x+ 1) (x+ 1) (x− 1)2 (x2 + x+ 1)2

(2 x4 − 1) (2 x7 − 1)
> factor(numapprox[pade](S[3],x,[30,30]));;

(x+ 1) (x2 − x+ 1) (x6 + x3 + 1) (x− 1)3 (x2 + x+ 1)3

(2 x10 − 1) (2 x4 − 1) (2 x7 − 1)
.

This will certainly spot the pattern

SN =
∏N

k=1

(
1 − x3 k

)∏N
k=1 (1 − 2 x3 k+1)

.

In fact the original sequence was generated from the Maple code

R:=N->product(1-x^(3*k),k=1..N)/product(1-2*x^(3*k+1),

k=1..N): for j to 5 do S[j]:=series(R(j),x,61) od:

Other such modalities. Other useful representation changes include con-
tinued fractions, base change, partial fractions, matrix decompositions, and
many more. In each case, the computer has revolutionized our ability to
exploit them. And with each problem, the key first question is: what other
representation might expose more structure?

We illustrate the first two of these here and leave the others as Exercises.
In the following examples, we start each time with a decimal expansion and
ask what it is. Of course, we might also use the inverse calculator or identify
utility, but let us initially eschew its use.

• Continued fractions. The unmemorable

α := 1.4331274267223117583171834557759918204315127679060 . . .

when converted to a simple continued fraction reveals

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]

Now one certainly can ask a better question: what numbers have
such arithmetic continued fractions? The answer will be found in all
good books on the subject. Alternatively, searching for arithmetic,
progression, continued fraction, in Google returned

http://mathworld.wolfram.com/ContinuedFractionConstant.html

which tells us, among many other salient things, that

[A+D,A+ 2D,A+ 3D, . . .] =
IA/D

(
2
D

)
I1+A/D

(
2
D

)
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for real A and nonzero D. Here, Is is the modified Bessel function of
the first kind. In particular, we have discovered I0(2)/I1(2).

This is also achieved if we enter the sequence 1, 4, 3, 3, 1, 2, 7, 4, 2, 6, 7, 2
into Sloane’s Encyclopedia. We recover, in sequence A060997, the
continued fraction, its Bessel representation (and series definition),
along with the following Mathematica code.

RealDigits[ FromContinuedFraction[ Range[ 44]], 10, 110] [[1]]

(*Or*) RealDigits[ BesselI[0, 2] / BesselI[1, 2], 10, 110] [[1]]

(*Or*) RealDigits[ Sum[1/(n!n!), {n, 0, Infinity}]

/ Sum[n/(n!n!), {n, 0, Infinity}], 10, 110] [[1]]

Similarly

β := 12.7671453348037046617109520097808923473823637803012588

yields

[12, 1, 3, 3, 2, 1, 1, 7, 1, 11, 1, 7, 1, 1, 2, 3, 3, 1, 24, 1, 3, 3, 2, 1, 1, 7, 1, 11,
1, 7, 1, 1, 2, 3, 3, 1, 24, 1, 3, 3, 2, 1, 1, 7, 1, 11, 1, 7, 1, 1, 2, 3, 3, 1, 24, · · · ]

which appears to be periodic albeit with a long period. Another
famous result of Lagrange says eventually periodic continued fractions
correspond to real quadratic irrationalities. So we square and obtain

162.99999999999999999999999999999999999999999999999.

This last step would be slightly more challenging if we had started
with β − 12. Now Maple via identify (β − 12); returns

√
163 − 12,

whereas with(PolynomialTools):MinimalPolynomial (β − 12,2);
returns the corresponding quadratic equation. We leave identifica-
tion of

δ := 1.4102787972078658917940430244710631444834239245953

as Exercise 21.

Figure 7.2 shows 4350 terms of the simple continued fractions for e
and π (truncated at 12) as matrix plots. Correspondingly, Figure
7.3 shows 10,000 terms of the decimal expansions for e, π and 22/7.
The goal is not to show fine structure, but rather how qualitative
differences jump out at one visually. For an up-to-date philosophical
and cognitive accounting of the role and nature of visual thinking
in mathematics, we point the reader to Giaquinto [146] for whom
“discovering a truth is coming to believe it in an independent, reliable,
and rational way.” (This definition encompasses rediscovery [146, p.
50].)
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Figure 7.2. Matrix plots of the continued fractions for e (left) and π (right).
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Figure 7.3. Matrix plots of the decimal expansions for e (left), π (center), and
22/7 (right).

• Base Change. Consider the numbing binary integer

μ := 11111001010100011010100111111101001111000001010110
00101011111101111111110000100010101011100011100000

In decimal form, it becomes memorable:

1234567891011121314151617181920.

Now consider the related Champernowne number

λ := 0.123456789101112131415161718192021 . . .

which is provably normal in base ten. Its continued fraction begins
with the sequence [0, 8, 9, 1, 149083, 1, 1, 1, 4 and continues

1, 1, 1, 3, 4, 1, 1, 1, 15, 453468466936480404493872507340520808, 2].

This is explored further in Exercises 34 and 48.

In his recent book Mathematics and Common Sense [125], Philip Davis
deals explicitly and engagingly with many of the same themes as we tackle
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here. In particular, his essays on the nature of mathematical intuition,
proof, visualization and much more make an excellent counterpoint to the
current, more technical discussion. Equally, Terence Tao’s brief book Solv-
ing Mathematical Problems [275] is a fine addition to the corpus.

7.2 Recursions for Ising Integrals

The main aim of this section, which follows that given by Borwein and
Salvy [79] closely, is twofold. First, we shall prove a conjecture concerning
the existence of a recurrence in k ≥ 0 satisfied by the integrals

Cn :=
4
n!

∫ ∞

0

· · ·
∫ ∞

0

1(∑n
j=1(uj + 1/uj)

)k+1

du1

u1
· · · dun

un

=
1
n!

∫ ∞

0

. . .

∫ ∞

0

dx1dx2 · · · dxn

(coshx1 + · · · + coshxn)k+1
,

for n = 1, 2, . . . (see [22, 28]). These integrals naturally arose during the
analysis of parts of the Ising theory of solid-state physics [28]. In a previous
discussion [22], only the first four cases of Theorem 7.2 were proven, and
the proofs relied on the ability to express the corresponding integrals in
(7.21) as Meijer G-functions, something that fails for n > 4.

A second aim is to advertise the power of current symbolic computa-
tional tools and related algorithmic developments to settle such questions.
For this reason, we offer a quite detailed exposition of the methods entailed.

Our main result (Theorem 7.2) is better phrased in terms of

cn,k :=
n!Γ(k + 1)

2n
Cn,k. (7.19)

Theorem 7.2 (Linear Recursion). For any fixed n ∈ N, the sequence cn,k

possesses a linear recurrence with polynomial coefficients of the form

(k + 1)n+1cn,k +
∑

2≤j<n
j even

Pn,j(k)cn,k+j = 0, (7.20)

with degPn,j ≤ n+ 1 − j.

Substituting (7.19) and simplifying by n!Γ(k + 1)/2n yields

(k + 1)n+1Cn,k +
∑

2≤j<n
j even

Pn,j(k)(k + j)(k + j − 1) · · · (k + 1)Cn,k+j = 0,
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which is Conjecture 1 of an earlier publication of ours [22], with extra
information added on the origin of the linear factors for the recurrence
in Cn,k.

The starting point of our proof is the integral representation [22, Equa-
tion (8)]

cn,k =
∫ +∞

0

tkK0(t)n dt, (7.21)

where K0 is the modified Bessel function on which much information is
offered elsewhere [1, Chapter 9]. The key properties of K0 that we use here
are as follows. First,

K0(t) =
∫ ∞

0

e−t cosh(x) dx,

which explains how the integrals in (7.21) arise. Moreover, we have

– a linear differential equation: (θ2 − t2)K0(t) = 0 with θ := td/dt;

– the behavior at the origin: K0(t) ∼ − ln t, t→ 0;

– and the behavior at infinity: K0(t) ∼
√
π/2te−t, t→ +∞.

These last two properties show that the integral (7.21) converges for any
complex k subject to Re(k) > −1 where it defines an analytic function
of k. The recurrence of Theorem 7.2 then gives the integral a meromorphic
continuation to the whole complex plane with poles at the negative integers.

7.2.1 Existence of a Recurrence

The theory of D-finite series leads to a direct proof of existence of a recur-
rence such as (7.20) in a very general setting, together with an algorithm.

Recall that a power series is called D-finite when it satisfies a linear
differential equation with polynomial coefficients. Stanley offers a good
introduction to the basic properties of these series [265]. What makes
these series appealing from the algorithmic point of view is that they exist
in finite-dimensional vector spaces, and thus many of their properties can be
explicitly computed by linear algebra in finite dimensions. In this setting,
Proposition N (7.3) is easily obtained. It is a generalization of our main
Theorem 7.2, except for the absence of degree bounds.

Proposition 7.3. Assume that f(t) obeys a homogeneous linear differen-
tial equation

ar(t)f (r)(t) + · · · + a0(t)f(t) = 0,
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with polynomial coefficients ai(t) in C[t]. For a fixed n ∈ N \ {0}, let Γ be
a path in C such that for any k ∈ N, the integrals

Ik :=
∫

Γ

tkf(t)n dt

converge and the limits of the integrand at both endpoints coincide. Then
the sequence {Ik} obeys a linear recurrence with coefficients that are poly-
nomial in n and k and that can be computed given the coefficients ai.

We give the proof in two steps. The first one is classic [265, Theorem 6.4.9].

Lemma 7.4. D-finite series form an algebra over the rational functions.

This means that any polynomial in D-finite series with rational function
coefficients defines a series that is itself D-finite. In particular, Kn

0 satisfies
a linear differential equation.

Proof. The proof is effective. The difficult part is the product. The
derivatives of two D-finite functions f and g exist in finite-dimensional
vector spaces generated by f, . . . , f (r−1) and g, . . . , g(s−1). Therefore, by
repeated differentiation, the derivatives of a product h := fg can be rewrit-
ten as linear combinations of the terms f (i)g(j), 0 ≤ i < r, 0 ≤ j < s,
which generate a vector space of dimension at most rs. It follows that
the rs + 1 successive h(k), k = 0, . . . , rs, are linearly dependent. A lin-
ear dependency between them can be found as the kernel of the linear
map (λ0, . . . , λrs) �→ λ0h+ · · ·+ λrsh

(rs). Any such linear dependency is a
linear differential operator annihilating fg. �

The corresponding algorithm is implemented, among other places, in
the Maple package gfun [253].

Example 7.5. Here is how the function gfun[poltodiffeq] is invoked to
compute a differential equation for K4

0 :

> eqK0:=t*diff(t*diff(y(t),t),t)-t^2*y(t);

eqK0 := t(t
d2

dt2
y(t) +

d

dt
y(t)) − t2y(t)

> gfun[poltodiffeq](y(t)^4,[eqK0],[y(t)],y(t))=0;

t4
d5

dt5
y(t) + 10t3

d4

dt4
y(t) − (20t4 − 25t2)

d3

dt3
y(t)

−(120t3 − 15t)
d2

dt2
y(t) + (64t4 − 152t2 + 1)

d

dt
y(t) + (128t3 − 32t)y(t) = 0
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Example 7.6. The corresponding steps of the calculation for the smaller
example K2

0 are presented here:

h = K2
0 ,

h′ = 2K0K
′
0,

h′′ = 2K ′2
0 − 2t−1K0K

′
0 + 2K2

0 ,

h(3) = −6t−1K ′2
0 + 4(2 + t−2)K0K

′
0 − 2t−1K2

0 ,

where, whenever possible, we have replaced K ′′
0 by K0 − t−1K ′

0. Then we
find the vector (−4t, 1 − 4t2, 3t, t2) in the kernel of

1 0 2 −2t−1

0 2 −2t−1 4(2 + t−2)
0 0 2 −6t−1

. (7.22)

This vector then produces a differential equation satisfied by K2
0 :

t2y(3) + 3ty′′ + (1 − 4t2)y′ − 4ty = 0.

Proof (continued). The second step of the proof of Proposition 7.3 starts
by expanding the differential equation for h := fn as∑

i,j

di,jt
ih(j) = 0,

for scalars di,j . This is then multiplied by tk and integrated along Γ. Use
of the convergence hypotheses then allows us to deduce that∑

i,j

di,j

∫
Γ

tk+ih(j) dt = 0. (7.23)

Integration by parts now yields∫
Γ

tk+ih(j) dt = tk+ih(j−1)
∣∣∣
Γ︸ ︷︷ ︸

0

−(k + i)
∫

Γ

tk+i−1h(j−1) dt,

= (−k − i)(−k − i+ 1) · · · (−k − i+ j − 1)Ik+i−j ,

the last equality following by induction. Adding the contributions of all
the terms in (7.23) finally yields the desired recurrence over Ik. �
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Example 7.7. For h := K2
0 , the computation gives∫ +∞

0

tk+2h(3) + 3tk+1h′′ + (tk − 4tk+2)h′ − 4tk+1h dt = 0,

from which we obtain

(−k − 2)(−k − 1)(−k)c2,k−1 + 3(−k − 1)(−k)c2,k−1

+(−k)c2,k−1 − 4(−k − 2)c2,k+1 − 4c2,k+1 = 0.

Once simplified, this reduces to

4(k + 1)c2,k+1 = k3c2,k−1. (7.24)

Mellin transform. As the proof indicates, Proposition 7.3 is not re-
stricted to integer values of k. In particular, the method gives a difference
equation for the Mellin transform

h�(s) :=
∫ +∞

0

ts−1h(t) dt,

provided the appropriate convergence properties are satisfied. This differ-
ence equation then gives a meromorphic continuation in the whole complex
plane. The most basic example is Γ(s): starting from the elementary differ-
ential equation y′ + y = 0 for h(t) = exp(−t) leads to the classic functional
equation Γ(s+ 1) = sΓ(s).

Coefficients. The path Γ can also be a closed contour. For instance, if h
is analytic at the origin, then the kth coefficient of its Taylor series at the
origin is given by the Cauchy integral

1
2πi

∮
h(t)
tk+1

dt,

where the contour encloses the origin and no other singularity of h. The
algebraic manipulations are the same as in the previous case, followed by
replacing k by −k − 1 and the sequence ck by the sequence u−k−1.

For instance, if we apply this transform to the functional equation for Γ,
we first get c−s = −sc−s−1 and then us−1 = −sus, which is the expected
recurrence for the sequence of coefficients us = (−1)s/s! of exp(−t).

Similarly, starting from (7.24), we obtain the mirror recurrence

4kc̃k−1 = (k + 1)3c̃k+1.
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Observe that this is obeyed by the coefficients of ln2(t) in the series expan-
sion

K2
0 (t) = ln2(t)

(
1 +

1
2
t2 +

3
32
t4 +

5
576

t6 + . . .

)
+ ln(t)

(
2γ − 2 ln 2 +

(
γ − ln 2 − 1

2

)
t2 + . . .

)
+
(
(ln 2 − γ)2 + . . .

)
, t→ 0+.

The Frobenius computation of expansions of solutions of linear differential
equations at regular singular points (see, e.g., [175]) explains why this is
so.

In sum, all these algorithms succeed in making effective and efficient the
familiar method of differentiation under the integral sign and integration
by parts. Further discussion can be found in Exercises 11 and 12.

7.2.2 Proof of the Main Result on Recursions

If A is a linear differential operator, the operator of minimal order that
annihilates the nth power of every solution of A is called its nth symmetric
power. Because of its role in algorithms for differential Galois theory [282]
there has been interest in efficient algorithms computing symmetric powers.
In the case of second-order operators, such an algorithm has been found
[98]. We state it in terms of the derivation θ := td/dt to get better control
over the coefficients of the resulting recurrence—but the statement and
proof hold for any derivation.

Lemma 7.8 (Linear Differential Equation, [98]). Let A = θ2+a(t)θ+
b(t) be a linear differential operator with rational function coefficients a(t)
and b(t). Let L0 = 1, L1 = θ, and define the operator Lk+1 for k =
1, 2, . . . , n by

Lk+1 := (θ + ka)Lk + bk(n− k + 1)Lk−1. (7.25)

Then, for k = 0, . . . , n+ 1, and for an arbitrary solution y of Ay = 0,

Lky
n = n(n− 1) · · · (n− k + 1)yn−k(θy)k,

and in particular Ln+1y
n = 0.

(This recursion can be viewed as an efficient computation of the kernel
which was described in the previous section, taking advantage of the special
structure of the current matrix.)
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Proof. The proof is a direct verification by induction. For k = 0 and
k = 1, the identity reduces, respectively, to yn = yn and θyn = nyn−1θ(y),
which are obviously true for any function y. Assuming the identity to hold
up to k ≥ 1, the heart of the induction is the rule for differentiation of a
product θ(uv) = θ(u)v + uθ(v):

θ(yn−k(θy)k) = θ(yn−k)(θy)k + yn−kθ((θy)k)
= (n− k)yn−k−1(θy)k+1 + kyn−k(θy)k−1(θ2y)
= (n− k)yn−k−1(θy)k+1 + kyn−k(θy)k−1(aθy + by).

Reorganizing terms concludes the induction. �

Example 7.9. In the case of K0, we have a = 0 and b = −t2. For n = 4,
starting with L0 = 1 and L1 = θ, the recurrence of Lemma 7.8 gives

L2 = θ2 − 4t2,
L3 = θ3 − 10t2θ − 8t2,
L4 = θ4 − 16t2θ2 − 28t2θ + 8t2(3t2 − 2),
L5 = θ5 − 20t2θ3 − 60t2θ2 + 8t2(8t2 − 9)θ + 32t2(4t2 − 1).

The operator L5 annihilates K4
0 . It is a rewriting in terms of θ of the

equation of Example 7.5.

Some of the patterns that emerge on this example can be proven in the
general case.

Lemma 7.10 (Closed Form). With the same notation as in Lemma 7.8,
when A = θ2 − t2, Lk may be written as

Lk = θk +
k−2∑
j=0

a
(k)
j (t)θj ,

where each a(k)
j is a polynomial in t2, divisible by t2 and deg a(k)

j ≤ k − j.

Proof. Again, the proof is by induction. For k = 0 and k = 1, we recover
the definition of L0 and L1. For larger k, the recurrence (7.25) simplifies
to

Lk+1 := θLk − k(n− k + 1)t2Lk−1.

If the property holds up to k ≥ 1, then this shows that the degree of Lk+1

in θ is k + 1, with leading coefficient 1, and also that the coefficient of θk
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in Lk+1 is 0. Extracting the coefficient of θj then gives

a
(k+1)
j =

{
a
(k)
j−1 + θ(a(k)

j ) − k(n− k + 1)t2a(k−1)
j , 0 ≤ j ≤ k − 2,

−k(n− k + 1)t2, j = k − 1.

These last two identities give the desired degree bound and divisibility
property for the coefficients a(k+1)

j , 0 ≤ j ≤ k − 1. �

We may now complete the proof of the main result.

Proof of Theorem 7.2. Lemma 7.10 shows that the coefficients of Ln+1

can be rewritten as

Ln+1 = θn+1 +
∑

2≤j<n
j even

tjQj(θ), (7.26)

where the polynomials Qj satisfy degQj ≤ n+ 1 − j.
Thanks to the properties of K0 recalled earlier in this section, an inte-

gration by parts yields∫ +∞

0

tk+jθm(Kn
0 (t)) dt = (−1 − k − j)mcn,k+j , (7.27)

for each m. Now we multiply Ln+1K
n
0 from (7.26) by tk and integrate

from 0 to infinity:

∫ ∞

0

⎧⎪⎪⎨⎪⎪⎩tkθn+1Kn
0 (t) +

∑
2≤j<n
j even

tk+jQj(θ)Kn
0 (t)

⎫⎪⎪⎬⎪⎪⎭ dt = 0.

Integrating term by term and using (7.27) finally gives the recurrence

(−k − 1)n+1cn,k +
∑

2≤j<n
j even

Qj(−1 − k − j)cn,k+j = 0,

which is the desired one, up to renaming and sign changes. �

7.2.3 Algorithm for Recursions

In summary, we have a relatively straightforward algorithm to compute the
linear recurrences for the cn,k or Cn,k for given n. First, the operators Lk
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can be computed as commutative polynomials L̃k as follows:

L̃k+1 := t
∂L̃k

∂t
+ θL̃k − k(n− k + 1)t2L̃k−1, 1 ≤ k ≤ n, (7.28)

with initial values L̃0 := 1 and L̃1 := θ. These polynomials L̃k coincide
with the operators Lk when the powers of θ are written on the right of the
monomials in t and θ.

By collecting coefficients of t in L̃n+1, we recover (7.26). Substituting
−1−k− j for θ in the coefficient of tj then produces the desired recurrence
for cn,k, and replacing cn,k+j by (k+ 1) · · · (k+ j)Cn,k+j for all j produces
the desired recurrence for Cn,k.

Example 7.11. We illustrate the process for n = 4. The last operator in
Example 7.9 may be rewritten as

L5 = θ5 − 4t2(5θ3 + 15θ2 + 18θ + 8) + 64t4(θ + 2)

and annihilates K4
0 (t). Substituting −1− k− j for θ in the coefficient of tj

for j = 0, 2, 4 gives

−(k + 1)5c4,k + 4(k + 2)(5k2 + 20k + 23)c4,k+2 − 64(k + 3)c4,k+4 = 0.

Since c4,k = 3
2Γ(k + 1)C4,k, this is equivalent to

−3
2
(k + 1)4C4,k + 6(k + 2)2(5k2 + 20k + 23)C4,k+2

−96(k + 4)(k + 3)2(k + 2)C4,k+4 = 0,

which has been proven by different methods elsewhere [22].

Here is the corresponding Mathematica code, courtesy of Manuel Kauers
and Veronika Pillwein [184]:

ComputeQ[n_, theta_, t_] := Module[{k, L},

L[0] = 1; L[1] = theta;

Do[

L[k + 1] =

Expand[t*D[L[k], t] + L[k] theta - k (n-k+1) t^2 L[k - 1]]

, {k, 1, n}];

L[n + 1]

];

recc[c_, n_Integer, k_] := Module[{Q, theta, t, j},

Q = ComputeQ[n, theta, t];

Sum[Factor[Coefficient[Q, t, j] /. theta -> -1 - k - j]
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c[n, k + j], {j, 0, n + 1}]]

recC[c_, n_Integer, k_] := Module[{Q, theta, t, j, ell},

Q = ComputeQ[n, theta, t];

(-1)^(n + 1) (k + 1)^n c[n, k] +

Sum[Factor[Coefficient[Q, t, j] /. theta -> -1 - k - j]

Pochhammer[k + 2, j - 1] c[n, k + j], {j, 1, n + 1}]]

On a 2007-era personal computer, all recurrences for n up to 100 can
be obtained in a few minutes. Further time could be saved by not factoring
the coefficients. Using the Mathematica code given above, the recursions
for c4,k and C4,k may be determined by the commands recc[c,4,k] and
recC[c,4,k], respectively, which yield

−(k + 1)5c4,k + 4(k + 2)(5k2 + 20k + 23)c4,k+2 − (64k + 192)c4,k+4 = 0
−(k + 1)4C4,k + 4(k + 2)2(5k2 + 20k + 23)C4,k+2

−64(k + 4)(k + 3)2(k + 2)C4,k+4 = 0,

respectively. The first six cases for Cn,k are

0 = (k + 1)C1,k − (k + 2)C1,k+2 (7.29)

0 = (k + 1)2C2,k − 4(k + 2)2C2,k+2 (7.30)

0 = (k + 1)3C3,k − 2(k + 2)
(
5(k + 2)2 + 1

)
C3,k+2

+ 9(k + 2)(k + 3)(k + 4)C3,k+4 (7.31)

0 = (k + 1)4C4,k − 4(k + 2)2(5(k + 2)2 + 3)C4,k+2

+ 64(k + 2)(k + 3)2(k + 4)C4,k+4 (7.32)

0=(k + 1)5C5,k − (k + 2)
(
35k4 + 280k3 + 882k2 + 1288k+ 731

)
C5,k+2

+ (k + 2)(k + 3)(k + 4)
(
259k2 + 1554k+ 2435

)
C5,k+4

− 225(k + 2)(k + 3)(k + 4)(k + 5)(k + 6)C5,k+6 (7.33)

0=(k + 1)6C6,k − 8(k + 2)2
(
7k4 + 56k3 + 182k2 + 280k + 171

)
C6,k+2

+ 16(k + 2)(k + 3)2(k + 4)
(
49k2 + 294k + 500

)
C6,k+4

− 2304(k + 2)(k + 3)(k + 4)2(k + 5)(k + 6)C6,k+6. (7.34)

as given by Bailey, Borwein, Borwein, and Crandall [22], but in which
only the first four were proven. Many more recursions were determined
empirically, by using integer relation methods—this relied on being able
to compute the integrals in (7.21) to very high precision—and led to the
now-proven conjecture.

Implicit in this algorithm is an explicit recursion for the polynomial
coefficients of each recursion. In the case of (7.31) and (7.32), these recur-
sions led to new continued fractions for L−3(2) and ζ(3), respectively [22,
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28]. These rely additionally on the facts that C3,1 = L−3(2), C3,3 =
2L−3(2)/9 − 4/27 and C4,1 = 7 ζ(3)/12, C4,3 = 7 ζ(3)/288− 1/48, [22].

7.2.4 Another Example

In a paper with Crandall [27] (to which we refer for motivation and refer-
ences), we considered the following “box integrals”:

Bn(s) =
∫ 1

0

. . .

∫ 1

0

(r21 + · · · + r2n)s/2 dr1 · · ·drn,

Δn(s) =
∫ 1

0

. . .

∫ 1

0

((r1 − q1)2 + · · · + (rn − qn)2)s/2

dr1 · · · drndq1 · · · dqn.
As in the case of the Cn,k considered here, a good starting point is provided
by alternative integral representations for Rs > 0:

Bn(−s) =
2

Γ(s/2)

∫ ∞

0

us−1b(u)n du, b(u) =
√
πerf(u)
2u

Δn(−s) =
2

Γ(s/2)

∫ ∞

0

u−s−1d(u)n du, d(u) =
e−u2 − 1 +

√
πuerf(u)

u2
.

The first representation is given explicitly (see [27, equation (33)]), and
the second one can be derived similarly. From the classic properties of the
error functions, the functions b(u) and d(u) satisfy the linear differential
equations

ub′′(u) + 2(1 + u2)b′(u) + 2ub(u) = 0,
2u2d′′′(u) + 4u(3 + u2)d′′(u) + 4(3 + 4u2)d′(u) + 8ud(u) = 0.

This is exactly the set-up of our Proposition 7.3. We thus deduce the
existence of linear difference equations (with respect to s) for both Bn and
Δn. The fast computation of the difference equation for Bn follows directly
from the algorithm of the previous section, and, for instance, we get

(s+ 9)(s+ 10)(s+ 11)(s+ 12)B4(s+ 8)
−10(s+ 8)2(s+ 9)(s+ 10)B4(s+ 6)

+(s+ 6)(s+ 8)(35s2 + 500s+ 1792)B4(s+ 4)
−2(25s+ 148)(s+ 4)(s+ 6)2B4(s+ 2)

+24(s+ 2)(s+ 4)2(s+ 6)B4(s) = 0.

The recurrence holds for all s by meromorphic continuation. A result on
the shape of this recurrence for arbitrary n could be obtained along the
lines of Lemma 7.10.
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7.3 Euler and Boole Summation Revisited

We explore a class of polynomials investigated recently by Borwein, Calkin
and Manna [70]. The classic Euler-Maclaurin summation formula (see [1,
entry 23.1.30] and [223, entry 2.11.1])

n−1∑
j=a

f(j) =
∫ n

a

f(x) dx+
m∑

k=1

Bk

k!

(
f (k−1)(n) − f (k−1)(a)

)
+

(−1)m+1

m!

∫ n

a

B̃m(y) f (m)(y) dy, (7.35)

connects the finite sum of values of a function f , whose first m derivatives
are absolutely integrable on [a, n], and its integral, for a,m, n ∈ N, a <
n. Often it appears in introductory texts [6, 276], usually with mention
to a particular application—Stirling’s asymptotic formula. In (7.35), the
Bl are the Bernoulli numbers and the B̃l(x) are the periodic Bernoulli
polynomials. The Bernoulli polynomials are most succinctly characterized
by a generating function [1, entry 23.1.1]:

text

et − 1
=

∞∑
n=0

Bn(x)
tn

n!
. (7.36)

The periodic Bernoulli polynomials are defined by taking the fractional
part of x: B̃n(x) := Bn({x}) [223, entries 24.2.11–12]. Evaluation at the
point x = 0 gives the Bernoulli numbers [1, entry 23.1.2]: Bl := Bl(0).

A similar formula starts with a different set of polynomials. The Euler
polynomials En(x) are given by the generating function [1, entry 23.1.1]

2ext

et + 1
=

∞∑
n=0

En(x)
tn

n!
. (7.37)

Let the periodic Euler polynomials Ẽn(x) be defined by Ẽn(x + 1) =
−Ẽn(x) and Ẽn(x) = En(x) for 0 ≤ x < 1 [223, entries 24.2.11-12].
Now , define the Euler numbers by En := 2nEn(1/2) (see [1, entry 23.1.2]
and [223, entry 24.2.6])

2et

e2t + 1
=

∞∑
n=0

En
tn

n!
.

The alternating version of (7.35), using Euler polynomials, is the Boole
summation formula [223, entries 24.17.1–2]: Let a,m, n ∈ N, a < n. If
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f(t) is a function on t ∈ [a, n] with m continuous absolutely integrable
derivatives, then for 0 < h < 1,

n−1∑
j=a

(−1)jf(j + h) =
1
2

m−1∑
k=0

Ek(h)
k!

(
(−1)n−1f (k)(n) + (−1)af (k)(a)

)
+

1
2(m− 1)!

∫ n

a

f (m)(x)Ẽm−1(h− x) dx. (7.38)

The first appearance is due to Boole [56]; but a similar formula is believed
to have been known to Euler ( [221]). Mention of this elegant formula
in the literature is regrettably scarce, although in Borwein, Borwein, and
Dilcher [69, Section 2.2] it is used to explain a curious property of truncated
alternating series for π and log 2—for which Boole summation is better
suited than Euler-Maclaurin.

In a 1960 note, Strodt [268] indicated a unified operator-theoretic ap-
proach to proving both of these formulae, but with very few of the details
given. We aim, by following Borwein, Calkin, and Manna’s work [70], to
look at some of the details and the power of the approach.

7.3.1 Strodt’s Operators and Polynomials

We introduce a class of operators on functions of a finite real interval. Let
C[R] denote the continuous functions on the real line, in the supremum
norm. Define, for n ∈ N, the uniform interpolation Strodt operators Sn:
C[R] �→ C[R] by

Sn(f)(x) :=
n∑

j=0

1
n− 1

· f
(
x+

j

n− 1

)
. (7.39)

Since the operators defined by (7.39) are positive, they are necessarily
bounded linear operators. We will show that an operator in this class
sends a polynomial in x to another of the same degree. Furthermore, we
obtain automorphisms on the ring of degree-k polynomials.

Proposition 7.12. For each k ∈ N, let Pk := {∑k
i=0 aix

i : ai ∈ R} ∼=
Rk+1. For all n ∈ N, and A ∈ Pk there is a unique B ∈ Pk, such that
Sn(B) = A.

More broadly, define the generalized Strodt operators

Sμ(f)(x) :=
∫
f(x+ u) dμ, (7.40)
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where the integral is Lebesgue on R and μ is a Borel probability measure.
We can identify Sμ and Sg(f) with the Lebesgue-Stieltjes integral

∫
f(x+

u) dG where dG = g(u) du (see [270, pp. 282–284]). Thus, the original
class {Sn, n ∈ N} is covered by this definition. We continue to denote this
class as Sg. Now suppose f ∈ Pk; that is, f :=

∑k
n=0 fnx

n, for fn ∈ R.
Then,

h(x) := Sg(f) =
∫ k∑

n=0

fn(x+ u)ng(u) du.

The binomial theorem shows h(x) is again a polynomial of degree k:

h(x) =
k∑

j=0

hjx
j , (7.41)

where hj =
∑k

n=j fn

(
n
j

)
Mn−j and

Ml :=
∫
ul dG(u). (7.42)

We view the restriction of the operator Sg to Pk
∼= Rk+1 as a (k + 1)2

matrix. The coefficients of this matrix are

Sg

∣∣∣
Pk

[i, j] :=
{ (

j−1
i−1

)
Mj−i for 1 ≤ i ≤ j ≤ k + 1,

0 otherwise.
(7.43)

Proposition 7.13. Let g be a probability density function whose absolute
moments exist. For all h ∈ Pk, there is a unique f ∈ Pk so that Sg(f) = h.

Proof. From (7.43), Sg

∣∣∣
Pk

is an upper-triangular matrix with determinant

det
(
Sg

∣∣∣
Pk

)
=

k∏
t=0

(
t

t

)
Xt,t = 1,

and thus h(x) is the unique solution of a linear system: h = S(−1)
g f. �

Note that Proposition 7.12 follows as a special case. We recover both
the Euler and Bernoulli polynomials by using different weight functions.
Define the Euler operator as

SE(f)(x) :=
f(x) + f(x+ 1)

2
; (7.44)
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i.e., g(u) := δ0(u)/2 + δ1(u)/2; and define the Bernoulli operator by

SB(f)(x) :=
∫ 1

0

f(x+ u) du; (7.45)

i.e., g(u) := χ[0,1]. The Euler polynomials En(x) form the unique solutions
to

SE(En(x)) = xn for all n ∈ N0, (7.46)

and the Bernoulli polynomials are the unique solutions to

SB(Bn(x)) = xn for all n ∈ N0. (7.47)

Remark. This motivates introducing Sn in (7.39). The Euler operator is
S2. The Bernoulli operator corresponds via a Riemann sum to the limit
of Sn as n → ∞. Hence, we provide an “interpolation” between these two
developments.

We shall prove that the generating functions of the Bernoulli and Euler
polynomials follow from (7.46) and (7.47). This suggests a natural general-
ization which we will call Strodt polynomials, denoted as P g

n ≡ Pn, n ∈ N0

(we typically suppress the g).

Theorem 7.14. For each n in N0, let P g
n(x) be the Strodt polynomials

associated with a given density g(x); thus, P g
n (x) is defined by

Sg(P g
n (x)) = xn for all n ∈ N0, (7.48)

where Sg is a Strodt operator. Then

d

dx
P g

n(x) = nP g
n−1(x) for all n ∈ N. (7.49)

Proof. By the Lebesgue Dominated Convergence Theorem [249], we have
that

d

dx

∫
Pn(x+ u)g(u)du = lim

ν→∞

∫
ν

(
Pn(x+ 1/ν + u) − Pn(x+ u)

)
dG(u)

=
∫

lim
ν→∞ ν

(
Pn(x+ 1/ν + u) − Pn(x+ u)

)
dG(u)

=
∫

d

dx
Pn(x+ u) dG(u).

Therefore, in view of (7.48), we have that

Sg

(
d

dx
Pn − nPn−1

)
=

d

dx
(xn) − nxn−1 = 0.
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But Sg is one-to-one on polynomials by Proposition 7.13, hence the desired
conclusion. �

The Strodt polynomials comprise a subset of Appell sequences [247],
polynomial sequences given by generating functions of the form

∞∑
n=0

An(x)
xn

n!
=

ext

G(t)
.

Here G(t) is defined formally by the coefficients of its series in t, where the
leading term must not be zero. This is equivalent to (7.49) [247]. We next
clarify the relation between Strodt and Appell.

Theorem 7.15. Suppose a class of polynomials {Cn(x)}n≥0 with real co-
efficients has an exponential generating function

∞∑
n=0

Cn(x)
tn

n!
= extR(t), (7.50)

with R(t) continuous on the line. Then the exponential generating function
of the image of the Cn under t, Sg, is given by

∞∑
n=0

Sg(Cn(x))
tn

n!
= extR(t)Qg(t), (7.51)

where

Qg(t) :=
∫
eut dG(u). (7.52)

Proof. Assume t is within the radius of uniform convergence of (7.50) for
an arbitrary value of x. Then we integrate (7.50) termwise to produce:

∞∑
n=0

∫
Cn(x+ u) g(u) du

tn

n!
=

∫
e(x+u)tR(t) g(u) du.

This is equivalent to (7.51). �

As with P g
n(x) = Pn(x), the functions Qg(t) = Q(t) implicitly depend

on the weight function g(u).
Expanding the exponential integrand of (7.52) in a Taylor series, and

then integrating termwise, we see that

Q(t) =
∞∑

n=0

Mn
tn

n
,
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where Mn is, as in (7.42), the nth moment of the cumulative distribution
function of the density g(u). ThereforeQ(t) is the moment generating func-
tion of g. Theorem 7.15 has the following consequence for the generating
function of Strodt polynomials:

∞∑
n=0

Pn(x)
tn

n!
=

ext

Q(t)
.

To see why, apply (7.51) with Cn(x) = Pn(x), and conclude that R(t) must
equal 1/Q(t).

Now we see a precise connection: the Appell sequence whose generat-
ing function comes in the form ext/Q(t) is a Strodt polynomial sequence
exactly when Q(t) is the moment generating function of some cumulative
distribution function.

Corollary 7.16. Formulae (7.46) and (7.47) are sufficient definitions of
the classic Euler and Bernoulli polynomials, respectively.

Proof. We show that the conditions (7.46) and (7.47) imply the generating
function characterization of the two classes of polynomials. Start with the
Euler polynomials, whose generating function is given by [223, entry 24.2.8]

∞∑
n=0

En(x)
tn

n!
=

2ext

et + 1
. (7.53)

The Euler polynomials satisfy

∞∑
n=0

SE(En(x))
tn

n!
=

2ext

et + 1
·QE(t) (7.54)

by Theorem 7.15. We verify that

QE(t) =
∫
eut

(
δ0(u)

2
+
δ1(u)

2

)
du =

et + 1
2

, (7.55)

and thus
∞∑

n=0

SE(En(x))
tn

n!
= ext =

∞∑
n=0

xn t
n

n!
. (7.56)

Therefore, by uniqueness of power series coefficients, we have that for each
integer n ≥ 0, En(x) is a polynomial of degree n that satisfies (7.46); that
is,

SE(En(x)) = xn for all n ∈ N0. (7.57)
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Proposition 7.13 assures us that the En(x) are completely determined by
this property, so it can be used as a definition. The case for Bernoulli
polynomials is similar; see Exercise 53. �

7.3.2 A Few Consequences

Next, we explore some interesting special cases of Strodt polynomials and
add to the list of properties that are directly implied by Theorems 7.14 and
7.15 (see [70] and Exercise 55 for much more on this issue).

We first construct a binomial recurrence formula for Strodt polynomials
that generalizes entry 23.1.7 in the Handbook of Mathematical Functions
[1], which states that

Bn(x+ h) =
n∑

k=0

(
n

k

)
Bk(x)hn−k (7.58)

and

En(x+ h) =
n∑

k=0

(
n

k

)
Ek(x)hn−k. (7.59)

This property is another equivalent definition of Appell sequences [247].

Corollary 7.17. For n ∈ N0, let Pn(x) be a Strodt polynomial for a given
weight function g(u). Then

Pn(x+ h) =
n∑

k=0

(
n

k

)
Pk(x)hn−k. (7.60)

Proof. Since Sg(Pn(x)) = xn, it is not hard to show using the definition
of Sg that

Sg(Pn(x + h)) = (x+ h)n. (7.61)

Use the binomial theorem to expand the right-hand side. Then each power
xk is equal to Sg(Pk(x)), by definition. Thus, we have

Sg(Pn(x+ h)) = Sg

(
n∑

k=0

(
n

k

)
Pk(x)hn−k

)

by the linearity of Sg. Now apply S(−1)
g , invoking Proposition 7.13, to

arrive at (7.60). �

The known recurrence formulae for Bernoulli and Euler polynomials
can be derived directly from here; see Exercise 54.
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7.3.3 Summation Formulae

Strodt’s brief note [268] was intended to compare the summation formulae
of Euler-Maclaurin and of Boole. We now explore a general formula and
show how it can be specified to obtain both. We begin for a general density
function. Let z = a + h for 0 < h < 1. For a fixed integer m ≥ 0, define
the remainder as

Rm(z) := f(z) −
m∑

k=0

Sg(f (k)(a))
k!

Pk(h),

for a sufficiently smooth f . The process of deriving a summation formula in
general effectively reduces to finding an expression for Rm(z) as an integral
involving the Strodt polynomials corresponding to the operator Sg.

Start with m = 0. Since P0(z) = 1 and
∫
g(u) du = 1, we have

R0(z) = f(a+ h) −
∫
f(a+ u) g(u) du

=
∫

[f(a+ h) − f(a+ u)] g(u) du .

We rewrite the integrand in the right-hand side as

f(a+ h) − f(a+ u) =
∫ h

u

f ′(a+ s) ds,

assuming f has a continuous derivative. By Fubini’s theorem, we switch
the order of integration, which yields

R0(z) =
∫ ∫ h

u

f ′(a+ s) ds g(u) du =
∫
V (s, h) f ′(a+ s) ds,

where we define the piecewise function

V (s, h) :=
{ ∫ s

−∞ g(u) du for s < h,∫ s

−∞ g(u) du − 1 for s ≥ h.
.

We now separate the Euler-Maclaurin and Boole cases.

(a) Boole summation. Pn(x) = En(x) and g(u) = (δ(u) + δ(u + 1))/2.
We calculate that

2 · V (s, h) =

⎧⎨⎩
1 for 0 ≤ s < h,
−1 for h ≤ s ≤ 1,
0 otherwise,

= Ẽ0(h− s)χ[0,1](s),
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where Ẽ0(x) is the periodic Euler polynomial on [0, 1]. Thus, we have

f(a+ h) = SE(f(a)) +
1
2

∫ 1

0

f ′(a+ s)Ẽ0(h− s) ds, (7.62)

which corresponds to (7.38) in the special case m = 1 and n = a+ 1.

We view this as the core formula in Boole summation; the rest of
(7.38) is elaborated by summing and integrating by parts. We begin
by rewriting (7.62) by using the change of variables x := a+ s in the
integrand. Since a ∈ N, Ẽ0(a+ h− s) = (−1)aẼ0(h− s) and

f(a+ h) =
1
2
(f(a) + f(a+ 1)) +

(−1)a

2

∫ a+1

a

f ′(x)Ẽ0(h− x) dx.

Now take the alternating sum of both sides as j ranges from a to n−1.
This telescopes, and we combine the intervals of integration to obtain
a single integral on [a, n]. Hence,

n−1∑
j=a

(−1)jf(j + h) =
1
2
((−1)af(a) + (−1)n−1f(n))

+
1
2

∫ n

a

f ′(x)Ẽ0(h− x) dx.

This is exactly (7.38) with m = 1.

To complete (7.38) for a general m ≥ 1 requires induction. Integration
by parts confirms that∫ n

a

f (k)(x)Ẽk−1(h− x) ds =
Ẽk(h)
k

((−1)n−1f (k)(n) + (−1)af (k)(a))

+
1
k

∫ n

a

f (k+1)Ẽk+1(h− x)f (k+1)(x) dx

for k ≥ 0, which supplies the induction step.

(b) Euler-Maclaurin summation (see [268]). If we instead take g(u) =
χ[0,1](u), then we write

V (s, h) =

⎧⎨⎩
s for 0 ≤ s < h,
s− 1 for h ≤ s ≤ 1,
0 otherwise.

.
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Therefore,

R1(z) =
∫ 1

0

V (s, h)f ′(a+ s) ds−
∫ 1

0

f ′(a+ s) ds
(
h− 1

2

)
=

∫ 1

0

B̃1(s− h) f ′(a+ s) ds.

This needs the observation V (s, h)−(h−1/2) = B̃1(s−h) g(s). Hence,

f(a+ h) =
∫ 1

0

f(s+ a+ h) ds+B1(h)(f(a+ 1) − f(a))

+
∫ 1

0

f ′(a+ s)B̃1(s− h) ds.

As for Boole, we are now essentially done. To recover (7.35), we simply
integrate by parts and sum over consecutive integers. Summing over
the integers within the interval [a, n− 1] yields

n−1∑
j=a

f(j + h) =
∫ n

a

f(x+ h) dx+B1(h)(f(n) − f(a))

+
∫ n

a

f ′(x)B̃1(x− h) dx.

Here we have also shifted both interval integrations via x := a + s,
giving the initial case for induction. Also,

∞∑
n=0

Bn(1 − x)
tn

n!
=

te(1−x)t

et − 1
=

te−xt

1 − e−t
=

∞∑
n=0

Bn(x)
(−t)n

n!
,

from which we derive by analytic continuation the well-known fact
B̃n(−h) = Bn(1 − h) = (−1)nBn(h) for all n ≥ 0 [1, entry 23.1.8].
Now integration by parts yields∫ a

n

f (k)(x)B̃k(x− h) dx =
(−1)k+1Bk+1(h)

k + 1

(
f (k)(n) − f (k)(a)

)
− 1
k + 1

∫ a

n

f (k+1)(x)B̃k+1(x) dx

for all k ≥ 1, giving the induction step. The result is
n−1∑
j=a

f(j + h) =
∫ n

a

f(x+ h) dx+
m∑

k=1

Bk(h)
k!

(f (k−1)(n) − f (k−1)(a))

+
(−1)m+1

m!

∫ n

a

f (m)(x)B̃m(x− h) dx.
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This is a generalized version of (7.35), as one can see as h→ 0.

(c) Taylor series approximation can be viewed as another case of this
general approach. Let g(u) = δ(u), so that Sg(xn) = xn. This means
that Pn(x) = xn. We call this operator S1, to compare to (7.39) as
well as to indicate that it is the identity operator. Now

V (s, h) :=
{

1 for 0 < s < h,
0 otherwise. .

Thus,

f(a+ h) = f(a) +
∫ a+h

a

f ′(x) dx.

Again, use integration by parts to verify that∫ a+h

a

(x− a− h)k−1f (k)(x) dx = − (−h)k

k
f (k)(a)

−
∫ a+h

a

(x − a− h)kf (k+1)(x) dx

for all k ≥ 1. Therefore, by induction, for all m ≥ 0,

f(a+ h) =
m∑

k=0

f (k)(a)
hk

k!
+

(−1)m

m!

∫ a+h

a

(x− a− h)mf (m+1)(x) dx.

These derivations of Euler-Maclaurin and Boole summation formulae
thus appear fully analogous to that of the Taylor series approximation.
Lampret [201] has made this comparison in the Euler-Maclaurin and Taylor
cases.

7.3.4 Asymptotic Properties

The NIST Digital Library of Mathematical Functions [223] presents asymp-
totic formulae for Bernoulli and Euler polynomials as n → ∞. Specifi-
cally, [223, entries 24.11.5–6] give

(−1)
n/2�−1 (2π)n

2(n!)
Bn(x) →

{
cos(2πx), n even,
sin(2πx), n odd, (7.63)

and

(−1)
(n+1)/2� π
n+1

4(n!)
En(x) →

{
sin(πx), n even,
cos(πx), n odd.
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Figure 7.4. Graph of cos(4π/3)x versus (−1)�n/2�−122nπn+1/(n!3n+3/2)Pn(x −
1/4) for n = 20 (light grey) and n = 40 (dark grey).

Convergence is uniform on compact subsets of C.
Experimenting with plots for real x as n becomes increasingly large

suggests that a similar asymptotic property is true for any Strodt uniform
interpolation polynomial Pn(x).

As an example of our experimental results, Figure 7.4 displays the
Strodt polynomials Pn(x) for g(u) = (δ(u) + δ(u− 1/2) + δ(u− 1)) /3,
which is the 3-point mean. We have displayed n = 20 and n = 40 for the
Strodt polynomials, multiplied by a factor (−1)
n/2�−122nπn+1/(n!3n+3/2)
and horizontally offset by 1/4. They clearly appear to be converging to
cos(4πx/3).

The general situation is this: uniform Strodt polynomials Pm
n (x) on m

points have the generating function∑
n≥0

Pm
n (x)

tn

n!
=

mext∑m−1
j=0 exp jt

m−1

. (7.64)

For m = 2, this generates the Euler polynomials. We used experimental
evidence to formulate a conjecture for m-point asymptotics. Note that the
the piecewise formulation above is unnecessary; for example, (7.63) could
instead be written as

(2π)n

2(n!)
Bn(x) ∼ cos

(
2πx+

nπ

2
+ π

)
.

This is the notation that we use here. It was quite easy to discover the
offset, the period, the factorial, and the geometric terms in (7.66). Deter-
mining the constants Cm was more difficult. We set x = 0 and n even in
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(7.66) and hunted for the minimal polynomial satisfied by Cm. We found
values for 2 ≤ m ≤ 16, and they appeared algebraic and to be simpler for
m even. The first few polynomials—and associated radicals—plus some
further numerical values suggested that the constants were trigonometric
in origin. We then conjectured that Cm → 1/(2π) and that Cm was given
by (7.65). Theorem 7.18 then followed with some work by using Darboux’s
method [228] to obtain the needed information from (7.64).

Theorem 7.18. [70] For all m ≥ 2, there are algebraic constants

Cm =
csc( π

m )
2m

. (7.65)

such that, as n→ ∞, we have uniformly in m and bounded x

Cm
π(n+1)

n!

(
2m− 2
m

)n

Pm
n (x) ∼ cos

(
2m− 2
m

πx+
nπ

2

)
. (7.66)

For m = 2 and in the limit as m → ∞ we recover known asymptotics
for Euler and Bernoulli polynomials, respectively. The error in (7.66) is
uniform; that is, it does not depend on m or x. This justifies our letting
m→ ∞ to recover the asymptotic formulae for Bernoulli polynomials.

The reader is encouraged to plot various other cases of Theorem 7.18.
There is not yet a conjecture for the precise asymptotic formula for general
Strodt polynomials. Preliminary experiments suggest there will be simi-
larly interesting and accessible results for continuous probability densities.

7.4 The QRS Oscillator Constant

The Winfree model of nonlinear physics describes a set of globally coupled
phase oscillators (each individually exhibiting harmonics) with randomly
distributed natural frequencies. The phenomenon of moving out of syn-
chronization is called the unlocking transition. The oscillators described
in this theory are quite general; they might even be bacteria. If there is
sufficient interaction, the oscillators will tend to align. One of the many
intriguing examples of coupled harmonic oscillation in nature is the fact,
noted first on college campuses [216], that women living in close proximity
tend to have synchronized menstrual cycles.

Quinn, Rand, and Strogatz, in a 2007 paper on coupled harmonics [238],
utilized a summation describing a nonlinear Winfree-oscillator mean-field
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system, namely

0 =
N∑

i−1

⎛⎜⎜⎝2

√
1 − s2N

(
1 − 2

i− 1
N − 1

)2

− 1√
1 − s2N

(
1 − 2 i−1

N−1

)2

⎞⎟⎟⎠ ,

(7.67)

where N represents the population size being considered in the model. In
equation (7.67), sN is an N -dependent variable that describes how far in
or out of synchronization a group is, also called the phase offset. It can be
written sN = sin[φ∗0(1)], implicitly defining the angle φ∗0(1), which measures
how synchronized a group is in harmonic oscillation. For example, if we
were to consider a system of two pendulums, φ∗0(1) would represent how
closely their swing patterns were aligned.

After computing values of sN for various N , Quinn, Rand, and Strogatz
[238] observed that

sN ∼ 1 − c1N
−1

for some constant c1 = 0.605443657 . . . (which we have now named as the
QRS constant).

These authors wondered if this constant might be given in terms of
some compact analytic formula, so they contacted the present authors and
Richard Crandall. We did some additional analysis, leading to a resolution
of this and some other constants. Portions of this section have been adapted
from the resulting papers [29] and [133], which present full details.

We first attempted to compute this constant to higher numerical pre-
cision. Our computational approach was as follows. Hoping to obtain a
numeric value accurate to at least 40 decimal digits, we employed the QD
software, available from http://www.experimentalmath.info, which permits
one to perform computations in a Fortran or C++ program to approxi-
mately 64-digit precision.

We rewrote the right-hand side of (7.67) by substituting x = N(1− s),
so that the roots of the resulting function FN (x) directly correspond to
approximations to c1. Given a particular value of N , we found the root
of FN (x) by using iterative linear interpolation, in the spirit of Newton-
Raphson iterations, until two successive values differed by no more than
10−52. In this manner, we found a sequence of roots xm for N = 4m, where
m ranged from 1 to 15. These successive roots were then extrapolated to
the limit as m → ∞ (or, in other words, as N → ∞) by using Richardson
extrapolation [259, p. 21–41], in the following form:
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For each m ≥ 1, set Am,1 = xm. Then for k = 2 to k = m, successively
set

Am,k =
2kAm,k−1 −Am−1,k−1

2k − 1
. (7.68)

This recursive scheme generates a triangular matrix A. The best estimates
for the limit of xm are the diagonal values Am,m. Indeed, we found to our
delight that for each successive m, the value Am,m agreed with Am−1,m−1

to an additional three to four digits, which indicates that this extrapolation
scheme is very effective for this problem.

In general, Richardson extrapolation employs a multiplier r where we
have used 2 in the numerator and denominator of (7.68); the multiplier
r depends on the nature of the sequence being extrapolated. We found
that 2 is the optimal value to use here quite by accident—what we actually
discovered is that

√
2 is the optimal multiplier when N = 2m, which implies

that 2 is optimal when N = 4m. The resulting final extrapolated value
A15,15 obtained for m = 15 (corresponding to N = 415 = 1073741824) is

c1 ≈ 0.6054436571967327494789228424472074752208996.

Since this and A14,14 differed by only 10−38, and successive values of Am,m

had been agreeing to roughly four additional digits with each increase of
m, we inferred that this numerical value was most likely good to 10−42, or
in other words to the precision shown, except possibly for the final digit.

We then attempted to recognize this numeric value by using the online
Inverse Symbolic Calculator tool (ISC2.0 ) at http://ddrive.cs.dal.ca/∼isc.
Unfortunately, this tool was unable to determine any likely closed form.

So we explored other avenues. We began by defining, for M = N − 1,

PN (s) :=
M∑

k=0

(
2
√

1 − s2(1 − 2k/M)2 − 1√
1 − s2(1 − 2k/M)2

)
.
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We then applied the Poisson summation formula [72, pp. 80–83], which
for Lebesgue integrable functions f(x) says that

∞∑
k=−∞

f(k) =
∞∑

n=−∞

∫ ∞

−∞
f(x)e2πinx dx.

When the summation is truncated at finite limits, a related form is
M∑

k=0

f(k) =
∞∑

n=−∞

∫ M+η

−η

f(x)e2πinx dx,

provided η ∈ (0, 1). By setting x = (M/2)(1− (1/s) cos t), we then derived

PN (s) =
∞∑

n=−∞

M

s
eiπnM

∫ π

0

dt
(
1 − 2 sin2 t

)
e−iπnM(cos t)/s

=
M

s

∞∑
n=−∞

eiπnM

∫ π

0

cos (2t) e−iπnM(cos t)/s dt

=
πM

s

∞∑
n=1

(−1)nMJ2

(
πnM

s

)
,

where J2 is the standard Bessel function of order two.
This suggested to us that the sought-after zero sN for the QRS problem

is a solution to

0 =
∞∑

n=1

J2

(
πnM

sN

)
(−1)nM .

This we confirmed numerically for many small N . We noted that J2(z) can
be written [1, p. 364] asymptotically as

J2(z) =

√
2
πz

(
cos

(
z − 5π

4

)
− 15

8z
sin

(
z − 5π

4

))
+O

(
z−5/2

)
.

This suggests that the Bessel function here is very close to a difference of
the trigonometric functions shown (see Figure 7.5).

We then defined

Qs(z) =
∞∑

n=1

cos(πnz − 5π/4)
ns

= − 1√
2

{ ∞∑
n=1

cos(πnz)
ns

+
∞∑

n=1

sin(πnz)
ns

}

= − 1√
2

(
Re Lis

(
eiπz

)
+ Im Lis

(
eiπz

))
.
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Figure 7.5. The offset-periodic and Hurwitz zetas Q1/2(z) and −ζ(1/2, z/2)/√2,
respectively (vertical) vs. z (horizontal) on (0, 4). The Q1/2 function has a
discontinuity at z = 2, to the left of which the two functions precisely coincide,
are strictly monotone, and exhibit a zero z0 ≈ 0.6.

Here Lis(z) :=
∑∞

n=1 z
n/ns (or its analytic continuation) is the polyloga-

rithm we explored at length in Experimentation in Mathematics [72]. After
significant additional manipulation, we were able to show that

Q1/2(z) = − 1√
2
ζ(1/2, z/2),

where ζ(·, ·) is the Hurwitz zeta function: ζ(s, a) =
∑

n≥0(n + a)−s. In
summary, we concluded that c1 is the unique zero in (0, 2) of the function
ζ(1/2, z/2).

We emphasize, however, that the above derivation, which we have only
briefly sketched here, when we first carried it out, was entirely conjectural
and heuristic in nature. Indeed, a rigorous treatment (which was produced
after the fact) occupies eight pages in the resulting paper [29]. But the fact
that the end product of this derivation agreed to 42-digit accuracy with
the numerical value we had earlier computed was compelling evidence that
we were on the right track.

We continued this analysis, noting that most likely c1 was merely the
first coefficient of an asymptotic expansion

sN = 1 − c1
N

+
c2
N2

− c3
N3

· · · .
After a similar process of computation and analysis, we found c2 to be

c2 = c1 − c21 − 30
ζ(− 1

2 ,
1
2c1)

ζ(3
2 ,

1
2c1)

.
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Carrying this line of research further, Natalie Durgin (a student at
Harvey Mudd College), Sofia Garcia (a student at Tulane University), and
Tamara Flournoy (a student at the University of Michigan), together with
one of the present authors (Bailey) wrote separate computer programs that,
first of all, reproduced the numerical values c1 and c2 exactly (to the pre-
cision shown above), and then were able to calculate [133]

c3 = 0.12631433612303666530616702052847758228073642787157869896
c4 = −0.015937625178713939538299708463506509021108497772210531402.

The identity of these and higher-indexed constants is not known at this
time, although it is conjectured that they have a flavor similar to c2.

7.5 Proof Versus Trust

... that, in a few years, all great physical constants will have
been approximately estimated, and that the only occupation
which will be left to men of science will be to carry these mea-
surements to another place of decimals.

– James Clerk Maxwell (1831-1879). Maxwell, who disagreed
strongly with these views, was mocking them in his Scien-
tific Papers 2, 244, October 1871.

In Section 1.3 of this book, we discussed the emerging experimental
paradigm as it pertains to the acquisition of secure mathematical knowl-
edge. This is an important enough question to merit some additional dis-
cussion. As before, we wish to emphasize that we are not suggesting that
the traditional methods of formal proof be discarded. Nor do we offer any
support to postmodern detractors who argue that mathematics and science
are merely social constructs, with no claim to fundamental truth. Instead,
we are more modestly asserting that the rapidly advancing computer tech-
nology of our era can be applied to a surprisingly wide range of modern
mathematical problems, and that in some instances, at least, the impres-
sive weight of empirical evidence must be taken seriously in support of key
conjectures.

As one recent example of a proof in the classical sense, Benjamin Green
and Terence Tao (the 2006 Fields Medalist) have just proved [156] that
there are arbitrarily long arithmetic progressions of prime numbers (this
was still a conjecture when the first edition of this book went to print). In
other words, Green and Tao established that for every n > 0, there is a



�

�

�

�

�

�

�

�

7.5. Proof Versus Trust 289

sequence of prime numbers (p, p + d, p+ 2d, · · · , p + nd), for some integer
d [156]. Their result is a tour de force of analytic number theory and other
fields. But even here, it is interesting to note that the authors cite, as
experimental evidence supporting this conjecture, a series of calculations
searching for long arithmetic sequences of primes. The longest of these
computer-discovered sequences, of length 25, due to Raanan Chermoni and
Jaroslaw Wroblewski, is (6171054912832631+ 366384 · 223092870 · n, n =
0, 1, · · · , 24) [292] (see also [72, Exercise 5, p. 254]).

Along this same line line, in his broad-ranging new book The Proof Is
in the Pudding1 Steven Krantz [192] writes

So what will be considered a “proof” in the next century? There
is every reason to believe that the traditional concept of pure
mathematical proof will live on, and will be designated as such.
But there will also be computer proofs, and proofs by way of
physical experiment, and proofs by way of numerical calcula-
tion.

One real-world instance of this can be seen in the arena of primality
testing, which we have discussed in some detail [72, Section 7.2]. If an inte-
ger of size at least 500 bits (roughly 167 digits) passes a single iteration of a
well-known probabilistic primality test, then it is prime with “probability”
at least 1 − 1/428 ≈ 1 − 7.2 × 10−16. If an integer of this size passes six
iterations, then the “probability” of false declaration is roughly one part in
a googol. On the other hand, with the recently discovered Agrawal-Kayal-
Saxena (AKS) primality test, one can formally certify primality without
probabilistic testing [72, Section 7.2].

At the present time, the AKS-based tests have prohibitively high com-
putational costs compared with the probabilistic tests. But even if these
costs are greatly reduced through algorithmic improvements, one can still
ask what is the AKS test’s fundamental advantage, given that any real-
world computer implementation of either of these schemes is subject to
vagaries such as transcription errors, program bugs, system software errors
and system hardware errors. The rate of hardware data integrity errors
alone cannot be reduced much below about 10−18 in current computer
technology. At this level (not to mention other more tangible sources of
error), we submit that the distinction between a probabilistic test and a
formal or “provable” test is moot.

1In particular, we recommend [192, Chapter 8] with its substantial and up-to-date
discussion of Perelman’s work and Hales’s recent results among other things. Contrary
to what was anticipated in Exercise 7 of Chapter 1 of the first edition of this book,
Hales’s proof was ultimately published without an explicit disclaimer.
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True, the notion of “probability” in the above reckoning is a rather
loose one; as a result, probability calculations of this sort can legitimately
be questioned. But in spite of this and other issues that one might raise,
banks, brokerages, and other large organizations have already voted with
their pocketbooks—they use the probabilistic schemes, not the provable
schemes, when generating large primes for secure communication, even for
transactions involving millions of dollars (or pounds, euros or yen).

Along these same lines, whenever an experimental mathematician dis-
covers a new mathematical identity (e.g., by using PSLQ) and verifies that
it holds to very high precision, say 100 or more digits beyond the level that
could reasonably be ascribed to round-off error (see Section 6.3), he or she
must take such results very seriously.

The instructive examples that follow are but two of many that we could
cite. Consider first this conjectured integral identity [25, Section 3.4]:

24
7
√

7

∫ π/2

π/3

ln

∣∣∣∣∣ tan t+
√

7
tan t−√

7

∣∣∣∣∣ dt ?= L−7(2)

=
∞∑

n=0

[
1

(7n+ 1)2
+

1
(7n+ 2)2

− 1
(7n+ 3)2

+
1

(7n+ 4)2

− 1
(7n+ 5)2

− 1
(7n+ 6)2

]
. (7.69)

This result was found by one of the present authors (Borwein) and British
physicist David Broadhurst. It arose from some studies in quantum field
theory analyzing the volume of ideal tetrahedra in hyperbolic space, and
is the simplest of 998 empirically determined cases in which the volume of
a hyperbolic knot complement is expressible in terms of an L-series. The
present authors tested this conjectured identity by computing the definite
integral on the left-hand side to 20,000-digit precision by using a highly
parallel implementation of the tanh-sinh quadrature algorithm (see [72,
Section 7.4.3]; [25, Section 3.4.1]). Note that the integrand function has a
nasty singularity within the interval of integration (see Figure 7.6). The
right-hand side was evaluated to the same precision by using Mathematica.
The results were identical, except for the final handful of digits.

For the second example, consider the following class of integrals that
arise in the Ising theory of mathematical physics [28]:

En := 2
∫ 1

0

· · ·
∫ 1

0

⎛⎝ ∏
n≥k>j≥1

uk

uj
− 1

uk

uj
+ 1

⎞⎠2

dt2 dt3 · · ·dtn.
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Figure 7.6. Singularity in the integrand function.

where uk :=
∏k

i=1 ti. Along with Richard Crandall, we conjectured that

E5
?= 42 − 1984 Li4

(
1
2

)
+

189π4

10
− 74ζ(3) − 1272ζ(3) log 2 + 40π2 log2 2

− 62π2

3
+

40π2 log 2
3

+ 88 log4 2 + 464 log2 2 − 40 log 2. (7.70)

This evaluation was the end-product of a long series of difficult manipu-
lations and high-precision quadrature. These manipulations reduced the
above four-dimensional integral to the stultifying three-dimensional inte-
gral shown in Figure 7.7.

After this integral was evaluated numerically to 240-digit precision,
PSLQ was employed to discover the evaluation given in (7.70). This evalua-
tion is at least 190 digits beyond the level that could reasonably be ascribed
to numerical round-off error. However, no formal proof is known.

Are such numerical discoveries, confirmed to hundreds or thousands of
digits, merely chance? As with probabilistic primality tests, “probability”
has at best a loose meaning in this context—we cannot define, in a rigorous
manner, a measure space on a set such as the set of all computable reals
because that set is only countably infinite, and in any event there are finite
limits of the real computations we can perform given current technology.
Also, we must acknowledge that in some exceptional cases, a high-level of
numerical agreement does not certify that an apparent relation precisely
holds [72, Section 1.4]. Perhaps the most remarkable example here is a
class of sinc sums and integrals as described in Exercise 38. Some other
examples are given in Exercises 51 and 66. But even in these cases, it
is important to note that a reasonable rationale has been found for such
behavior—it is not merely by capricious chance.

It is instructive to consider the reaction of the field of physics and
cosmology to a similar coincidence, a paradox that has recently risen to a
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E5 =

∫ 1

0

∫ 1

0

∫ 1

0

[
2(1 − x)2(1 − y)2(1 − xy)2(1 − z)2(1 − yz)2(1 − xyz)2(

−
[
4(x + 1)(xy + 1) log(2)

(
y
5
z
3
x
7 − y

4
z
2
(4(y + 1)z + 3)x

6 − y
3
z
((

y
2

+ 1
)

z
2

+ 4(y+

1)z + 5) x5 + y2
(
4y(y + 1)z3 + 3

(
y2 + 1

)
z2 + 4(y + 1)z − 1

)
x4 + y

(
z
(

z2 + 4z

+5) y2 + 4
(

z2 + 1
)

y + 5z + 4
)

x3 +
((

−3z2 − 4z + 1
)

y2 − 4zy + 1
)

x2 − (y(5z + 4)

+4)x − 1)] /
[
(x − 1)3(xy − 1)3(xyz − 1)3

]
+
[
3(y − 1)2y4(z − 1)2z2(yz

−1)2x6 + 2y3z
(
3(z − 1)2z3y5 + z2

(
5z3 + 3z2 + 3z + 5

)
y4 + (z − 1)2z(

5z2 + 16z + 5
)

y3 +
(
3z5 + 3z4 − 22z3 − 22z2 + 3z + 3

)
y2 + 3

(
−2z4 + z3 + 2

z2 + z − 2
)

y + 3z3 + 5z2 + 5z + 3
)

x5 + y2
(
7(z − 1)2z4y6 − 2z3

(
z3 + 15z2

+15z + 1) y5 + 2z2
(
−21z4 + 6z3 + 14z2 + 6z − 21

)
y4 − 2z

(
z5 − 6z4 − 27z3

−27z2 − 6z + 1
)

y3 +
(
7z6 − 30z5 + 28z4 + 54z3 + 28z2 − 30z + 7

)
y2 − 2

(
7z5

+15z4 − 6z3 − 6z2 + 15z + 7
)

y + 7z4 − 2z3 − 42z2 − 2z + 7
)

x4 − 2y
(

z3
(

z3

−9z
2 − 9z + 1

)
y
6

+ z
2
(
7z

4 − 14z
3 − 18z

2 − 14z + 7
)

y
5

+ z
(
7z

5
+ 14z

4
+ 3

z
3

+ 3z
2

+ 14z + 7
)

y
4

+
(

z
6 − 14z

5
+ 3z

4
+ 84z

3
+ 3z

2 − 14z + 1
)

y
3 − 3

(
3z

5

+6z4 − z3 − z2 + 6z + 3
)

y2 −
(
9z4 + 14z3 − 14z2 + 14z + 9

)
y + z3 + 7z2 + 7z

+1) x3 +
(

z2
(
11z4 + 6z3 − 66z2 + 6z + 11

)
y6 + 2z

(
5z5 + 13z4 − 2z3 − 2z2

+13z + 5) y5 +
(
11z6 + 26z5 + 44z4 − 66z3 + 44z2 + 26z + 11

)
y4 +

(
6z5 − 4

z4 − 66z3 − 66z2 − 4z + 6
)

y3 − 2
(
33z4 + 2z3 − 22z2 + 2z + 33

)
y2 +

(
6z3 + 26

z2 + 26z + 6
)

y + 11z2 + 10z + 11
)

x2 − 2
(

z2
(
5z3 + 3z2 + 3z + 5

)
y5 + z

(
22z4

+5z3 − 22z2 + 5z + 22
)

y4 +
(
5z5 + 5z4 − 26z3 − 26z2 + 5z + 5

)
y3 +

(
3z4−

22z3 − 26z2 − 22z + 3
)

y2 +
(
3z3 + 5z2 + 5z + 3

)
y + 5z2 + 22z + 5

)
x + 15z2 + 2z

+2y(z − 1)2(z + 1) + 2y3(z − 1)2z(z + 1) + y4z2
(
15z2 + 2z + 15

)
+ y2

(
15z4

−2z3 − 90z2 − 2z + 15
)

+ 15
]

/
[
(x − 1)2(y − 1)2(xy − 1)2(z − 1)2(yz − 1)2

(xyz − 1)
2
]
−
[
4(x + 1)(y + 1)(yz + 1)

(
−z

2
y
4

+ 4z(z + 1)y
3

+
(

z
2

+ 1
)

y
2

−4(z + 1)y + 4x
(

y
2 − 1

) (
y
2
z
2 − 1

)
+ x

2
(

z
2
y
4 − 4z(z + 1)y

3 −
(

z
2

+ 1
)

y
2

+4(z + 1)y + 1) − 1) log(x + 1)] /
[
(x − 1)3x(y − 1)3(yz − 1)3

]
− [4(y + 1)(xy

+1)(z + 1)
(

x2
(

z2 − 4z − 1
)

y4 + 4x(x + 1)
(

z2 − 1
)

y3 −
(

x2 + 1
) (

z2 − 4z − 1
)

y2 − 4(x + 1)
(

z2 − 1
)

y + z2 − 4z − 1
)

log(xy + 1)
]

/
[
x(y − 1)3y(xy − 1)3(z−

1)3
]
−
[
4(z + 1)(yz + 1)

(
x3y5z7 + x2y4(4x(y + 1) + 5)z6 − xy3

((
y2+

1) x2 − 4(y + 1)x − 3
)

z5 − y2
(
4y(y + 1)x3 + 5

(
y2 + 1

)
x2 + 4(y + 1)x + 1

)
z4+

y
(

y2x3 − 4y(y + 1)x2 − 3
(

y2 + 1
)

x − 4(y + 1)
)

z3 +
(
5x2y2 + y2 + 4x(y + 1)

y + 1) z2 + ((3x + 4)y + 4)z − 1
)

log(xyz + 1)
]

/
[
xy(z − 1)3z(yz − 1)3(xyz − 1)3

])]
/
[
(x + 1)2(y + 1)2(xy + 1)2(z + 1)2(yz + 1)2(xyz + 1)2

]
dx dy dz

Figure 7.7. Equivalent E5 triple integral used for computer evaluation.
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crisis level. The paradox derives from the fact that when one calculates,
based on known principles of quantum mechanics, the “zero-point mass
density” or the “vacuum energy density” of the universe, focusing for the
time being on the electromagnetic force, one obtains the incredible result
that empty space “weighs” 1093 grams per cc (the actual average mass
density of the universe is 10−28 grams per cc) [271, p. 70–78]. Stephen
Hawking once quipped that this is the most spectacular failure of a physical
theory in history [123, p. 147].

The “cosmological constant” of Einstein’s general relativity equations is
linearly related to the zero-point mass density. Einstein originally posited
a nonzero value for the cosmological constant, but after the expansion of
the universe was discovered, he lamented that this was his greatest blunder
and set the constant to zero.

Physicists, who have fretted over the zero-point mass density para-
dox for decades, have noted that calculations such as the above involve
only the electromagnetic force, and so perhaps when the contributions of
the other known forces are included (bosons give rise to positive terms,
whereas fermions give rise to negative terms), all terms will cancel out to
exactly zero as a consequence of some unknown fundamental principle of
physics. When “supersymmetry” was theorized in the 1970s, it was thought
that it would meet this requirement, but when it was later discovered that
our universe is not supersymmetric, this explanation was abandoned. In
any event, until recently physicists remained hopeful that some yet-to-be-
discovered principle would imply that the positive and negative terms of
the zero-point mass density (and of the cosmological constant) precisely
cancel out to zero.

These hopes were shattered with the recent discovery that the expansion
of the universe is accelerating [289], which implies that the cosmological
constant must be slightly positive. This “dark energy” also appears to be
just what is needed to fill the 70% “missing mass” of the universe, which
is needed to explain the observed fact that space is very nearly flat (i.e.,
Euclidean).

But this means that physicists are left to explain the startling fact that
the positive and negative contributions to the cosmological constant cancel
to 120-digit accuracy, yet fail to cancel beginning at the 121st digit. Cu-
riously, this observation is in accord with a prediction made by physicist
Steven Weinberg in 1987, who argued from basic principles that the cosmo-
logical constant must be zero to within one part in 10120 or so, or else the
universe either would have dispersed too fast for stars and galaxies to have
formed, or would have recollapsed upon itself long ago [271, p. 80–82].

At the same time, string theorists, who for 20 years have been earnestly
seeking a complete and unique “theory of everything” that encompasses all
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known physical interactions, have instead deduced the existence of an enor-
mous ensemble of possible universal laws, numbering (by one reckoning)
more than 10500. The vast majority of these universes are utterly hostile
to any conceivable form of long-lived information-rich structure, much less
life, and thus, if they truly exist somewhere, must be completely devoid of
observers. But with so many universes to choose from, some physicists now
theorize, inevitably one (ours) beats the 1-in-10120 odds and is life-friendly.
Needless to say, such “anthropic” reasoning constitutes a dramatic depar-
ture in philosophy from the traditional program of physics (and science in
general), and many physicists are dead set against it.

In short, the recent discovery of the accelerating expansion of the uni-
verse and the implied slightly positive value of the cosmological constant
constitutes, in the words of physicist Leonard Susskind, a “cataclysm,” a
“stunning reversal of fortunes” [271, p. 22, 154]. Some string theorists still
hope that continuing work will lead to a resolution. David Gross, para-
phrasing Winston Churchill, urges fellow theorists to “never, never, never
give up” [271, p. 241]. But Lee Smolin, among others, argues that the
discovery of the nonzero yet breathtakingly small cosmological constant,
together with the derivation of 10500 universes when a single unique sys-
tem was sought, constitutes a reductio ad absurdum of the entire string
theory approach to modern physics, and we may need to start anew to
formulate a coherent theory [264, p. 159].

However this debate turns out, it is worth emphasizing that everyone
agrees that the cosmological constant coincidence, namely the fact that the
component terms cancel to 120-digit accuracy, cannot merely be dismissed
as a numerical curiosity. Indeed, the intensity of the current hand-wringing
in the field is testament to the importance ascribed to this observation.

Similarly, we argue that results such as the two integral evaluations
mentioned here, namely (7.69) and (7.70), even though they do not consti-
tute rigorous proof, must be accepted as very compelling empirical evidence
for these conjectured identities. Indeed, one can ask which is more firmly
established: (1) a theorem proven at the end of a difficult 100+ page pa-
per, which only a handful of colleagues other than the author has read, and
which relies on dozens of other results by numerous other mathematicians
spanning different fields of research; or (2) a conjectured identity, such as
(7.69) above, for which no rigorous proof is known but which has been
numerically verified to 20,000-digit accuracy?

More broadly, we observe from our experience working in this field
that there appears to be little, if any, correlation between the difficulty of
discovering a new relation or other fact and the difficulty of subsequently
proving it. Indeed, there is no a priori reason why there should be any
correlation.
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Along this line, we should mention a recent result. Gregory Chaitin pre-
viously conjectured a “heuristic principle” that the theorems of a finitely
specified theory cannot be significantly more complex than the theory it-
self, for a certain measure of complexity invariant under change of Gödel
numbering. Recently, Calude and Jürgenson [100] succeeded in proving a
fairly strong form of this conjecture. In particular, they demonstrated that
the theorems of a consistent and finitely specified theory that is arithmeti-
cally sound (e.g., Peano Arithmetic or ZFC) have bounded complexity (not
the standard program-size complexity of Chaitin and Kolmogorov, but a
computable variation of it). As a result, the fraction of true sentences of
length n that are provable in the theory tends to zero when n tends to
infinity [100].

Thus we are left to speculate whether the empirical methods for math-
ematical research that have been discussed in this volume and elsewhere
might be seen as a tool to explore this realm of true but unprovable re-
sults, or even the realm of true but very-difficult-to-prove results. See,
for instance, Exercise 68. At the least, such questions need some careful
thought in a field that is destined, due to the unstoppable march of Moore’s
Law, to become ever more dependent on computational exploration. There
is still time to probe these important questions.

7.6 Commentary and Additional Examples

1. Radicals. Find the minimal polynomials of

√
1 +

√
2,

√
1 +

√
2 +

√
3,

√√√√√
1 +

√
2 +

√
3 +

√
4

by algebraic and by numeric methods. Conjecture a general form and
verify it empirically.

Hint : compute the radicals to high precision and use MinimalPoly-
nomial or RootApproximant. The following is an algebraic method
in Maple that takes the radical as input:

r2p:=proc (A) global _X;
sqrfree(evala(Norm(convert(_X-A,RootOf))),_X)[2][1][1] end;

What is this code doing?

2. Find the closed form of the odd terms in Section 7.1.1.
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3. Changing bases. For an integer k, characterize all pairs x = a/(k−
1), y = b/(k−1) such that {kx} = y and {ky} = x. (Here {z} denotes
the fractional part of z.)
Hint : look at the base-k representations of the (a, b) pairs.

4. An integral of Oloa and Glasser [287]. Determine the constants
in

4
π

∫ π

0

y2 dy

y2 + 4 ln2(2 cos(y
2 ))

= a1 + a2γ + a3 ln(2π). (7.71)

This integral evaluation, now proven, was discovered empirically.
5. Another example of emerging tools for

mathematical experimentation is the Bel-
gian project GraPHedron at http://www
.graphedron.net, which offers “Auto-
mated and computer assisted conjectures
in graph theory.” The resource is easy to
access and quite self-explanatory.
Abstract [217]. We present a new computer system, called GraPHe-
dron, which uses a polyhedral approach to help the user to discover
optimal conjectures in graph theory. We define what should be opti-
mal conjectures and propose a formal framework allowing to identify
them. Here, graphs with n nodes are viewed as points in the Euclidian
space, whose coordinates are the values of a set of graph invariants.
To the convex hull of these points corresponds a finite set of linear
inequalities. These inequalities computed for a few values of n can
be possibly generalized automatically or interactively. They serve
as conjectures which can be considered as optimal by geometrical
arguments. We describe how the system works, and all optimal re-
lations between the diameter and the number of edges of connected
graphs are given, as an illustration. Other applications and results
are mentioned, and the forms of the conjectures that can be currently
obtained with GraPHedron are characterized.

6. Identify

K :=
∫ 1

0

(−1 + 2 t+ t2
)
ln (1 − t)

1 + 2 t+ 2 t2 − 2 t3 + t4
dt

and hence develop a BBP formula (see Section 3.4]) for Catalan’s
constant.
Hint : You may find Prop. 3 in http://www.pi314.net/hypergse6.php
helpful.
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7. A volume sum [165]. Let Vn denote the volume of the unit Eu-
clidean ball in n-dimensions, discussed in Section 5.4.1. Evaluate∑∞

n=1 V2n and
∑∞

n=1 V2n−1.
Hint :

∑∞
n=1 Vn = eπ

(
1 + erfc(π1/2)

)
) − 1.

8. A binomial identity. Show, by two different methods, that for all
positive integers n

n∑
k=0

(
n

k

)(
2 k
k

)
=

n∑
k=0

(
n

2 k

)(
2 k
k

)
3n−2 k.

Compare
∑∞

k=0

(
n
k

)(
2 k
k

)
in Maple and in Mathematica.

9. A problematic binomial identity. In the Monthly Problem #11274
of February 2007, one is asked to show that

m∑
k=0

2k

(
2m− k

m+ n

)
= 4m −

n∑
j=1

(
2m+ 1
m+ j

)
(7.72)

for n,m ≥ 0. This problem is machine-solvable in both Maple and
Mathematica. How easily, or even correctly, depends on who or what
you know and which release you are using.

(a) Folkmar Bornemann [62], working in Maple 9.5, provided

> assume(n::natural,m::natural):
t1:=(m,n)->2^k*binomial(2*m-k,m+n):
t2:=(m,j)->binomial(2*m+1,m+j):
S:=(m,n)->sum(t1(m,n),k=0..m)+sum(t2(m,j),j=1..n):

We first show S(m,n) independent of n. Indeed,

> simplify(sum(t1(m,n+1)-t1(m,n),k=0..m)+t2(m,n+1),
GAMMA);

returns 0. We then evaluate S(m,m) via

> simplify(S(m,m));

which produces S(m,m) = 4m and completes the proof. As
Doron Zeilberger points out, this works because Maple knows
Gosper’s telescoping algorithm.

(b) Try to derive identity (7.72) directly from Zeilberger’s algorithm
and to obtain the same recurrence for both sides.
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(c) In early enough versions of Maple, using EKHAD (downloadable
from http://www.math.temple.edu/∼zeilberg/programs.html,
with “rf” defined to be the rising factorial, you get

> zeil((2*m-k+1)*rf(1,r)*rf(-k,r)/rf(-2*m,r)/r!*2^r,

r,m,M)[1];

-2 (k - 2 m - 2) (k - 2 m - 3) + (m + 1) (2 m + 1) M

> zeil((2*m+1)*rf(1,r)*rf(-k,r)/rf(2*m-k+2,r)/r!*(-1)^r,

r,m,M)[1];

-2 (k - 2 m - 2) (k - 2 m - 3) + (m + 1) (2 m + 1) M

Since the two expressions—equivalent to those in (7.72)—satisfy
the same recurrence and initial conditions, they are equal.

(d) The same problem can be solved rather simply in Mathemat-
ica after loading the “fastZeil” package, which, along with nu-
merous other useful software tools, is available from the web-
site http://www.risc.uni-linz.ac.at/research/combinat/software.
If you enter

Zb[2^k Binomial[2 m - k, m + n], {k, 0, m}, n]

Zb[Binomial[2 m + 1, m + j], {j, 1, n}, n]

and then perform FullSimplify on the difference of the two re-
sulting expressions, the result is

21−mΓ(1 +m)
Γ(−n)Γ(2 +m+ n)

,

which, since n is a nonnegative integer (and thus Γ(−n) is a
pole), is always zero.

10. When limits matter. Actually in Exercise 9, both Maple10 and
Maple11 return S(m,m) = 3 · 4m. Indeed, even

> S(1,1)=simplify((subs(m=1,S(m,m))),GAMMA);

tells one that 4 = 12. So our advice in Section 7.1.4 and the mantra
of the second subsection (“A further caveat”) to case-check was not
made flippantly. The unsimplified command returns

22 m+1 +

(
2 m+1
m+1

)
Γ (2 +m)

√
π

2 Γ
(
m+ 3

2

) , (7.73)

which hints at the cause of the difficulty—the package called some
subroutines that converted combinatorics into analysis without taking
proper care.
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11. Further moment recursions. The sequence {tk} in the integral of
Proposition 7.3 can be replaced by more general sequences of func-
tions that satisfy both a linear recurrence in k and a linear differential
equation in t. Provided that proper analytic conditions are satisfied
at the endpoints of the path, the same result will hold. This makes it
possible to compute, for instance, recurrences for the Fourier coeffi-
cients with respect to various bases such as orthogonal polynomials,
Bessel functions, etc.
The algorithm that applies in this case is called creative telescop-
ing discovered by Zeilberger [294] and further automated by Chyzak
[105, 106]. Again, the computation boils down to linear algebra in a
suitably constructed finite-dimensional vector space.

12. Vacuum-diagram integrals. British quantum field theorist David
Broadhurst [92] has recently studied the vacuum-diagram integrals
for n ≥ 0:

V (n, a, b) :=
∫ ∞

0

x2n+1+bKa
0 (x)K

′b
0 (x) dx

and provides the recursion

2(n+ 1)V (n, a, b) + a V (n, a− 1, b+ 1) + b V (n+ 1, a+ 1, b− 1) = 0

which preserves N := a + b > 0 and allows one to reduce to V
values with ab = 0. Note that K

′
0 = −K1. For N = 5 we have

presumably three independent terms which he takes to be V (0, 1, 4) =
−1/5 and the two values c5,1 = V (0, 5, 0) and c5,3 = V (1, 5, 0)—which
the current authors came upon for entirely mathematical reasons.
Proposition 7.3 applies to n �→ V (n, a, b) for each a and b and as in
Section 7.2.3 leads to very efficient code for the recursion.

13. Realistic snowfakes.
Recent work on snowflake growth by
Gravner and Griffeath is visible at http:
//psoup.math.wisc.edu/Snowfakes.htm. Pa-
pers, code and movies are offered. They are
able to use appropriate automata (involv-
ing ‘coupled lattice maps’) to provide a tax-
onomy for increasingly realistic snowflakes
whose formation pattern is also increasingly
realistic, see figure to the right.

14. Two recent Monthly integrals. Identify the values of the two inte-
grals from numerical calculation and then try to symbolically obtain
the result.
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(a) (#11277, March 2007)

I1 :=
∫ π2

0

∫ π2

0

ln (2 − sin s cos t) sin s
2 − 2 sin s cos t+ sin2 s cos2 t

ds dt.

(b) (#11275, February 2007)

I2 :=
∫ ∞

0

∫ ∞

y

(x− y)2 ln [(x+ y)/(x− y)]
xy sinh (x+ y)

dx dy.

Hint : I1 � .42756802899107, and I2 � 1.153265989080473 re-
duces to a one dimensional integral on substituting t = y/x.

15. A Fibonacci sum [236]. Evaluate
∑n−1

k=0 Fn−k10k, where Fj is the
j-th Fibonacci number.

16. Correct the errors? The following two rational pairs differ in only
one coefficient. Which of

R1 :=
26 + 5 x9 + 6 x7 + x16 + 7 x5 + x14 + x12

24 + 6 x9 + 8 x7 + 2 x16 + 12 x5 + 3 x14 + 4 x12 + x21

or

R2 :=
26 + 5 x9 + 6 x7 + x16 + 7 x5 + x14 + x12

24 + 6 x9 + 8 x7 + 2 x16 + 16 x5 + 3 x14 + 4 x12 + x21
.

is probably correct and why? Similarly, which of

R3 :=

12 x2 + 7 x9 + 5 x11 + x18 + 8 x3 + 4 x8 + 2 x12 + x17 + x16 + 6 x4

24 + 6 x9 + 8 x7 + 2 x16 + 12 x5 + 3 x14 + 4 x12 + x21

or
R4 :=

12 x2 + 7 x9 + 5 x11 + x18 + 12 x3 + 4 x8 + 2 x12 + x17 + x16 + 6 x4

24 + 6 x9 + 8 x7 + 2 x16 + 12 x5 + 3 x14 + 4 x12 + x21

is in error?

Hint : the coefficient 16 in R2 is a typo.

17. Four squares. Prove that

(a2 + b2 + c2 + d2) × (A2 +B2 + C2 +D2) =
(aA+ bB + cC + dD)2 + (aB − bA+ cD − dC)2

+ (aC − bD − cA+ dB)2 + (aD − dA+ bC − cB)2.

This quaternion identity, which is easy to check symbolically, shows
that it suffices to show every prime is the sum of four squares.
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18. π to thousands of digits from Vieta’s formula. Experiments
led Rick Kreminski [194] to the following formula generalizing that
of Vieta (see Exercise 21 of Chapter 5) for n = 1, 2, . . .

π

2
= 2n sin

( π

2n+1

)
+

∞∑
m=1

km

4nm

where km := (−1)m+1(π/2)2m+1/(2m+ 1)!. Confirm and then prove
this formula.

Now define V0,n := 2n sin
(
π/2n+1

)
and recursively accelerate by

Vk,n =
4kVk−1,n+1 − Vk−1,n

4k − 1
.

Show that

|π − 2Vk,n| ≤ 2Ck 10−6n(k+1)

with

Ck :=
k∏

j=1

1
4j − 1

(
π
2

)2k+3

(2k + 3)!
,

which decays very rapidly.

19. A recreational Fibonacci continued fraction. Posamentier and
Lehmann [236] record the following continued fraction introduced by
J. S. Madachy

μ := 1 +
1

2 + 3
5+ 8

13+ 21
34+ 55

89+...

= 1.394186550228... (7.74)

Compute substantially more digits of μ and attempt to discover a
closed form for it. None is known.

20. Changing representations. Compare e and π as decimals (they
both appear normal) and as continued fractions (See Figures 7.2 and
7.3).

(a) Does π appear to obey the Gauss-Kuz’min distribution: almost
all real numbers satisfy Prob(an = k) = − log2

(
1 − 1/(k + 1)2

)
?

Here an is an entry in the simple continued fraction (see also Ex-
ercise 1 of Chapter 6).
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(b) Attempt to discover the distribution experimentally by generat-
ing random continued fractions.

21. A serious Fibonacci continued fraction [281]. The rational num-
ber
19466773073171157536814300577691783136973102374888299968371004889104385

13803492693581127574869511724554050904902217944340773110325048447598592

is not remarkable but, in light of Exercise 20 above and Exercise 1 of
Chapter 6, the fact that the first 40 terms of its continued fraction
are⎡⎢⎢⎢⎢⎢⎣

0 1 10 6 1 6 2 14 4 124

2 1 2 2039 1 9 1 1 1 262111

2 8 1 1 1 3 1 536870655 4 16

3 1 3 7 1 140737488347135 8 128 2 1

⎤⎥⎥⎥⎥⎥⎦
(read row by row) certainly is remarkable.

(a) Factoring the rational number above reveals the denominator is
2233 and the numerator has a 41-digit prime factor. Note that
233 is the 13th Fibonacci number. Confirm that the fraction is∑13

n=1 2−Fn with F1 = 1, F2 = 2 and Fn+1 = Fn + Fn−1 again
being the Fibonacci numbers.

(b) Compute the continued fraction of
∑∞

n=1X
−Fn for a formal vari-

able X . As pointed out by van der Poorten in [281], a generic
continued fraction in Q(1/x) has mostly degree one entries and
looks nothing like this.

(c) Experiment with other two-term recursions, starting with the
Lucas numbers (Exercise 5 of Chapter 6).

This and much more is explained by van der Poorten in [281].

22. Holte’s amazing matrix. For integer b > 1, Holte [173] studies the
m×m matrix Πb(m) with (i, j) entry given by

(i, j,m, b) �→ b−m

j∑
r=0

(−1)r

(
m+ 1
r

)(
m− 1 − i+ (j + 1 − r) b

m

)
He shows that for a given b and m, this gives the transition proba-
bilities Π := Πm

b = {πi,j} for 0 ≤ i, j ≤ m− 1 of a finite (acyclic and
irreducible) Markov chain for the probability of a “carry” in base-b
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addition of m random n-digit random numbers. Thus, the proba-
bility of the (k + 1)-carry being i given that the kth carry was i is
independent of k and n. The core discoveries were made in Mathe-
matica.

(a) Show by induction, or otherwise, that the maximum carry is
(m− 1) − 	(m− 1)b−k


(b) Symbolically, discover and prove the closed form for the binary
case:

1
2

[
1+b

b
−1+b

b

−1+b
b

1+b
b

]
.

(c) Determine that the eigenvalues of Πb
m are (1, 1/b, · · ·1/bm) and

the left eigenvectors of Πm
b are independent of b.

23. Unmasking a matrix. In each of the following cases try to dis-
cover the structure of the given matrices. A fine source for matrix
information is [52].

(a)

[
2 3

−1 −2

] ⎡⎢⎢⎣
2 1 −2

−1 1 6

0 −1 −3

⎤⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

2 1 1 5

−1 1 0 −10

0 −1 1 10

0 0 −1 −4

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1 1 1 −4

−1 1 0 0 15

0 −1 1 0 −20

0 0 −1 1 15

0 0 0 −1 −5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1 1 1 1 7

−1 1 0 0 0 −21

0 −1 1 0 0 35

0 0 −1 1 0 −35

0 0 0 −1 1 21

0 0 0 0 −1 −6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(b) The matrix of left eigenvectors of Π = Πm

b of the previous exer-
cise [173].

(c) The diagonalizing matrix in the representation Π = V −1DV .

24. Art, science and the circle problem. Section 1.7 discusses Hela-
man Ferguson’s mathematically inspired sculpture (see also [280]).
Borwein, Bailey and Girgensohn explored Madelung’s constant at
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Figure 7.8. Madelung’s constant in a Ferguson bronze

some length—along with its relation to sums of squares—in [72, Sec-
tion 5.3]. The two have now been meshed in the sculpture shown
in Figure 7.8 which is awarded bi-annually as the David Borwein
Distinguished Career Prize of the Canadian Mathematical Society.

This polished solid silicon bronze sculpture (2006) is in-
spired by the work of David Borwein, his sons and col-
leagues, on the conditional series for salt, Madelung’s con-
stant. This series can be summed to uncountably many
constants; one is Madelung’s constant for electro-chemical
stability of sodium chloride.” (Convexity is hidden here
too!)

This constant is a period of an elliptic curve, a real sur-
face in four dimensions. There are uncountably many ways
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to imagine that surface in three dimensions; one has neg-
ative gaussian curvature and is the tangible form of this
sculpture. (As described by the artist.)

The sum in question is

M3 =

′∑
n,m,p

(−1)n+m+p√
n2 +m2 + p2

where the sum is taken over all nonzero integer triples.

Recent work on r2(n) [101] purports to show the spectacular resolu-
tion of the circle problem—the error in the average behavior of r2(n).

25. Stirling’s formula via the Poisson distribution. In Section 5.5
we give an elementary proof of Stirling’s approximation to n!. An
attractive probabilistic approach is due to Mark Pinsky [231]. Via
the Poisson distribution (see also Exercise 55b), Pinsky obtains

Ik :=
kk

k!
e−k =

1
2π

∫ π

−π

ek(eiθ−1−iθ) dθ, (7.75)

which can be symbolically evaluated (see also Exercise 26). Recall
the Gaussian integral

Jk :=
1√
2πk

=
1
2π

∫ ∞

−∞
e−k θ2/2 dθ (7.76)

which is equivalent to Γ(1/2) =
√
π. To compare Ik and Jk write

Ik =
1
2π

(∫
|θ|≤1

+
∫

π≥|θ|≥1

)
ek(eiθ−1−iθ) dθ = I

(1)
k + I

(2)
k

Jk =
1
2π

(∫
|θ|≤1

+
∫
|θ|≥1

)
e−kθ2/2 dθ = J

(1)
k + J

(2)
k .

(a) Estimate that I(2)
k ≤ exp(k(cos 1 − 1)) and

2π J (2)
k ≤

∫
|θ|≥1

|θ|e−kθ2/2dθ =
2
k
e−k/2.

Both tend to zero exponentially.
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(b) Now estimate that

∣∣∣I(1)
k − J

(1)
k

∣∣∣ ≤ k

∫ 1

−1

|θ|3
3!
e−kθ2/3 dθ = O

(
1
k

)
, k → ∞.

Hence Ik − Jk = O(1/k), k → ∞. But Jk = 1/
√

2πk, from
which we reobtain Stirling’s formula in the form

lim
k→∞

√
2πk

kk

k!
e−k = 1

As discovered and proved in Experimentation in Mathematics [72,
Section 1.5], we have

∑∞
k=1{Jk − Ik} = 2/3 + ζ(1/2)/

√
2π. The

proof relied on Lambert’s W function; indeed, the nub of Pinsky’s
argument is variously in that literature.

26. Evaluating the Poisson integral. Evaluate the integral in (7.75).
Hint : Make a change of variable u := eix and compute the residue of
ekuu−m−1 at zero.

27. Dynamics of a sequence of digit sums [236]. Consider the map-
ping σ2(m), which sends a positive integerm to the sum of the squares
of its decimal digits:

m =
n∑

k=0

dk10k �→
n∑

k=0

d2
k.

Show that in finitely many steps this dynamical system reaches the
unique fixed point (one) or a unique period-eight cycle including the
number four.

Consider σp(m), which takes the pth power (p = 2, 3, . . .). Show that
each such dynamical system in finitely many steps becomes periodic.
What is the period structure?
Hint : for sufficiently large n > np, one has n > σp(n). Estimate np

and then computationally prove the assertion for p = 2.

28. Dynamics of the mean-median map. Starting with a finite set
Sn = {x1, . . . , xn} ⊂ R, generate the unique number xn+1 which
satisfies the mean-median equation:

x1 + · · · + xn + xn+1

n+ 1
= median(Sn). (7.77)
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As usual, we define the median of the set Sn = {x1, . . . , xn}, where
x1 ≤ · · · ≤ xn, as

median(Sn) :=
{

x(n+1)/2, n odd,
xn/2+xn/2+1

2 , n even.
(7.78)

The set Sn is augmented to Sn+1 := Sn ∪ {xn+1}. By applying
the mean-median equation repeatedly to a set Sn, one generates an
infinite sequence {xk}∞k=n+1. One may show that the limit of the
medians of these sets is always monotone. Schultz and Shiflett [255]
claim:

Strong Terminating Conjecture. For every finite non-empty set
S ⊂ R, there exists an integer k such that the associated infinite
sequence satisfies xj = xk for all j > k. In other words, the sequence
of new terms settles permanently to the median after a finite number
of mean-median iterations.

Chamberland and Martelli [104] made numerical investigations with
Maple which suggest that the number of steps needed to settle down
is unbounded. This leads to the weak terminating conjecture.

Weak Terminating Conjecture. For every finite non-empty set
S ⊂ R, the limit of the medians is finite.

Figure 7.9. The function m on [1/2, 2/3].
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The analysis with three initial points may be reduced to the canonical
values 1/2 < x < 2/3. Let m : [0, 1] → R represent the limit of
the medians starting with {0, x, 1}, if the limit exists. Computer
experimentation produces Figure 7.9. It is conjectured that m is
continuous and affine almost everywhere.

Finally, can one determine the number of steps necessary to settle
down corresponding to the affine segment connecting to (1/2, 1/2)?

29. Random projections with noise. The method of random projec-
tions [46] is a fundamental process in approximation and reconstruc-
tion problems. We consider a finite number n of closed convex sets
Ck in Euclidean space (dimension more than one). We pick a starting
point and take the Euclidean projection on one of the sets, say Ck1 ,
to be the next approximation:

x1 �→ PCk1
(x1) =: x2 �→ PCk2

(x2) := x3 �→ · · · (7.79)

Each set must be visited infinitely often. The method’s behavior is
not well understood if one has three or more sets whose intersection⋂n

k=1 Ck is empty. This can happen in an iteration as numerical
error and noise aggregate even if the sets ostensibly do intersect.
We illustrate this in Figure 7.10 and note that we are recapturing a
random Sierpinski triangle (see Section 2.1 as well as our chaos games
in [25, §8.5]), where we have under-relaxed by moving only halfway
to the set.

Figure 7.10. Sierpinski triangles
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(a) Examine the algorithm in (7.79) when Ck is the kth side of a
regular k-gon.

(b) Show that for two convex sets the method converges if and only
if the minimal distance between the sets is attained; otherwise
the iterates go to infinity.

30. Generalized harmonic binomial sums. Let Ha(n) = 1 + 2−a +
· · · + n−a. Kalmykov, Ward, and Yost’s Theorem A [181] states the
following. For integer c the multiple (inverse) binomial sums

∞∑
j=1

1(
2j
j

)±1

zj

jc
Ha1(j − 1) · · ·Hap(j − 1)

are expressible in terms of Remiddi-Vermaseren functions, otherwise
known as harmonic polylogarithms, which are special cases of certain
multiple polylogarithms [25, p. 172].

Figure 7.11. Nineteenth-century and twenty-first century representations of the
Dini surface.
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31. Desktop 3D. Section 1.6 sketches the history of mathematical mod-
els. In late 2004, the New York Times printed a series of ten pictures
of 19th century models photographed by Hiroshi Sugimoto to appear
like monumental objects. In Figure 7.11 we juxtapose a plaster of
Paris Dini surface beside a digital image reconstructed from the for-
mula and used for manipulating and viewing in three dimensions on
a stereo PC with polarized glasses. The photographer does not al-
low his images to be reproduced except in art books, but they may be
viewed online at http://www.nytimes.com/slideshow/2004/12/02/
magazine/20041205\ PORTFOLIO\ SLIDESHOW\ 1.html. Note that
we now actually have a surface not a solid—the virtual trumps the
physical. Such a PC, as shown, costs only a few thousand dollars.

32. The error in ζ(2). It is easy to show via summation by parts that

ζ(2) =
∞∑

n=1

Hn

n(n+ 1)
, (7.80)

where Hn =
∑n

k=1 1/k is the nth harmonic number. Show that for
each positive integer p we have

ζ(2) −
p−1∑
n=1

1
n2

= p!
∞∑

n=1

Hn

n(n+ 1) · · · (n+ p)
. (7.81)

We note that

∞∑
n=0

1(
n+p+1

p+1

) =
∞∑

n=0

n!
(p+ 2) · · · (n+ p+ 1)

= 2F1

(
1, 1
p+ 2

∣∣∣∣1) =
p+ 1
p

by Gauss’s evaluation of a hypergeometric function at one (see [6,
p. 66] and Exercise 47).

33. Changing representations. Let

a(q) :=
∑
m,n

qm2+nm+n2
, b(q) :=

∑
m,n

(ω)n−mqm2+nm+n2
,

and
c(q) :=

∑
m,n

q(m+1/3)2+(n+1/3)(m+1/3)+(n+1/3)2 ,
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where ω = e2iπ/3. Then convince your self computationally that for
|q| < 1 the functions a, b and c solve Fermat’s equation [72, Exercise
14 of Chapter 4]: a3 = b3 + c3. The neatest proof relies on expressing
b and c as q-products. For example, b(q) starts

(1 − q)3
(
1 − q2

)3 (
1 − q3

)2 (
1 − q4

)3 (
1 − q5

)3 (
1 − q6

)2
× (

1 − q7
)3 (

1 − q8
)3 (

1 − q9
)2
,

which tells us the closed form, whereas

a(q) =

(
1 − q2

)21 (1 − q4
)345 (1 − q6

)8906 (1 − q8
)250257

(1 − q)6 (1 − q3)76 (1 − q5)1734 (1 − q7)46662 (1 − q9)1365388

clearly has no such nice product. As sums, they look quite similar:

a(q) = 1 + 6 q + 6 q3 + 6 q4 + 12 q7 + 6 q9 + 6 q12 + 12 q13 + 6 q16

+ 12 q19 +O
(
q21

)
and

b(q) = 1 − 3 q + 6 q3 − 3 q4 − 6 q7 + 6 q9 + 6 q12 − 6 q13 − 3 q16

− 6 q19 +O
(
q21

)
.

Write code to replicate these results and to explore c.

34. Khintchine’s constant. More than 10 years ago, in a paper on
Khintchine’s constant [26], we speculated that a certain explicitly
defined constant satisfies the Khintchine property, namely that the
geometric mean of the continued fraction terms converges to Khint-
chine’s constant 2.68545... (see Exercise 2 of Chapter 6). It is known
that “almost all” real numbers have this property, but it has been
difficult to prove this property for any explicit real numbers.

Our constant was defined as follows. First, any for nonnegative in-
teger n, we defined the van der Corput sequence to be the base-2
numbers dn = 0.b0b1b2 . . . , where the bi are the binary bits of n, with
b0 being least significant. The first few terms of the sequence dn are(

1
2

)
,

(
1
4
,
3
4

)
,

(
1
8
,
5
8
,
3
8
,
7
8

)
,(

1
16
,

9
16
,

5
16
,
13
16
,

3
16
,
11
16
,

7
16
,
15
16

)
, · · ·
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Next, we defined the sequence (an) as a0 := 0, and

an :=
⌊

1
2dn − 1

⌋
.

We then defined Z2 to be the real number whose continued fraction
terms are an, that is

Z2 = [0; 2, 5, 1, 11, 1, 3, 1, 22, 2, 4, 1, 7, 1, 2, 1, 45, 2, 4, 1, 8, 1, 3, · · · ].

Our conjecture was that the geometric mean of the continued fraction
expansion of Z2 (i.e., the sequence (an)), is in fact the Khintchine con-
stant K0. We are pleased to report that this conjecture has now been
proven by Thomas Wieting [288], thus providing a Champernowne-
type continued fraction.

Across
1 Enlighten
6 A couple CBS

spinoffs
10 1972 Broadway

musical
14 Metal giant
15 Evict
16 Area
17 Surface again,

as a road
18 Pirate or Padre,

briefly
19 Camera feature
20 Barracks

artwork,
perhaps

22 River to the
Ligurian Sea

23 Keg necessity
24 “… ___ he

drove out of
sight”

25 ___ St. Louis,
Ill.

27 Preen
29 Greek peak

33 Vice president
after Hubert

36 Patient wife of
Sir Geraint

38 Action to an
ante

39 Gain ___

40 French artist
Odilon ___

42 Grape for
winemaking

43 Single-dish meal

45 Broad valley

46 See 21-Down

47 Artery inserts

49 Offspring

51 Mexican mouse
catcher

53 Medical
procedure, in
brief

54 “Wheel of
Fortune” option

57 Animal with
striped legs

60 Editorial

63 It gets bigger at
night

64 “Hold your
horses!”

65 Idiots
66 Europe/Asia

border river
67 Suffix with

launder
68 Leaning
69 Brownback and

Obama, e.g.:
Abbr.

70 Rick with the
1976 #1 hit
“Disco Duck”

71 Yegg’s targets

Down
1 Mastodon trap
2 “Mefistofele”

soprano
3 Misbehave
4 Pen
5 More pleased
6 Treated with

disdain
7 Enterprise

crewman
8 Rhone feeder
9 Many a webcast
10 Mushroom, for

one
11 Unfortunate
12 Nevada’s state

tree
13 Disney fish
21 Colonial figure

with 46-Across
26 Poker champion

Ungar
27 Self-medicating

excessively
28 March 14, to

mathematicians

30 Book part

31 Powder, e.g.

32 007 and others:
Abbr.

33 Drains

34 Stove feature

35 Feet per
second, e.g.

37 Italian range

41 Prefix with
surgery

44 Captain’s
announcement,
for short

48 Tucked away
50 Stealthy fighters
52 Sedative
54 Letter feature
55 Jam

56 Settles in
57 Symphony or

sonata
58 Japanese city

bombed in W.W.
II

59 Beelike
61 Evening, in ads
62 Religious

artwork

Puzzle by Peter A. Collins

For answers, call 1-900-285-5656, $1.20 a minute; or, with a
credit card, 1-800-814-5554.
Annual subscriptions are available for the best of Sunday
crosswords from the last 50 years: 1-888-7-ACROSS.
Online subscriptions: Today's puzzle and more than 2,000
past puzzles, nytimes.com/crosswords ($34.95 a year).
Share tips: nytimes.com/puzzleforum. Crosswords for young
solvers: nytimes.com/learning/xwords.

ANSWER TO PREVIOUS PUZZLE

Edited by Will Shortz No. 0314
1 2 3 4 5 6 7 8 9 10 11 12 13

14 15 16

17 18 19

20 21 22

23 24 25 26

27 28 29 30 31 32

33 34 35 36 37 38

39 40 41 42

43 44 45 46

47 48 49 50

51 52 53 54 55 56

57 58 59 60 61 62

63 64 65

66 67 68

69 70 71

A R F S A C H E O R G A N
C O R K T R E X K E R R Y
O D A Y L A I T S T A T S
L E N R A N D O M I P S E
D O C T O R K I L D A R E

R A G S I E S T A
T Y R O N E P O W E R O H M
R U E D A L I I D E S
I M P H O L D T H E M A Y O
B A A B A A O R E

I R I S H C O U N T I E S
P E R I T I R A D E D X C
A R M E D T A T I Y I P E
C L A R E I T E N D O W N

Figure 7.12. A PiDay crossword. (Crossword and solution published by permis-
sion of the NYT.)
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35. Crossword pi. On March 14, 2007, the New York Times ran a cross-
word puzzle with a π theme (see Figure 7.12). To solve the puzzle,
first note that the clue for 28 down is “March 14, to Mathemati-
cians,” to which the answer is piday. Moreover, roughly a dozen
other characters in the puzzle are pi—for example, the clue for 5
down was “More pleased” with the six character answer hapπer.
We include the completed puzzle here (Figure 7.13).

ANSWER TO PREVIOUS PUZZLE

T E A C H C S I S π P π N
A L C O A O U S T Z O N E
R E T O P N L E R Z O O M
π N U P π C T U R E A R N O
T A P E R E E A S T

P R I M P M T O S S A
S π R O E N I D U P π N G
A L A P R E D O N π N O T
P O T π E D A L E N E W S
S T E N T S Y O U N G

G A T O M R I S π N
O K A π O π N I O N π E C E
P U π L W A I T J E R K S
U R A L E T T E A T I L T
S E N S D E E S S A F E S

Figure 7.13. Solution to the PiDay crossword. (Crossword and solution published
by permission of the NYT.)

36. Integral proofs that 355/113 > π. We mention two recent in-
tegrals from [206] motivated by a discussion in Experimentation in
Mathematics [72, Section 1.1], which showed

0 <
∫ 1

0

x4(1 − x)4

1 + x2
dx =

22
7

− π.

Indeed, the integral is an area and can be evaluated in closed form by
most symbolic computation packages. The fact that 22/7 is a conver-
gent in the continued fraction for π seems largely be a coincidence;
hence the growing complexity of the integrals below.

(a) Verify, and then prove, that

1
3164

∫ 1

0

x8 (1 − x)8
(
25 + 816 x2

)
1 + x2

dx =
355
113

− π,
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and use this to prove that 355/113−(7/2)·10−7 < π < 355/113−
(5/3 · 10−7).

(b) Similarly, confirm

∫ 1

0

{
x10 (1 − x)8

4 (1 + x2)
+

5
138450312

}
dx =

355
113

− π.

Hint : replace the upper limit in the integrals by t > 0.

37. Geocaching and pi. Geocaching is the name for a rapidly growing
sport wherein participants armed with handheld Global Positioning
System (GPS) receivers hunt for some of the 400,000 “geocaches”
(typically small containers) hidden at latitude/longitude positions
given on the website http://www.geocaching.com. Some of these re-
quire that a puzzle first be solved to obtain the geocache coordinates,
and a suprising number of these puzzles involve computational math-
ematics. One example is the “Digits of Pi” geocache, located in
vicinity of Berkeley, California, which presents this problem:

The actual coordinates of the geocache are: North 37 + X degrees,
West 122 + Y degrees, where X and Y are fractions between 0 and
1 defined as follows: Let M = 8, 468, 347, and let N = 8, 399, 285.
Consider π expressed in hexadecimal (base-16) digits. Then X is the
fraction after the “decimal” point has been shifted to the right by M
places, and Y is the fraction after the “decimal” point has been shifted
to the right byN places. Mathematically speaking, X = {16Mπ} and
Y = {16Nπ}, where {·} is fractional part.

Can you solve this to find the geocache coordinates? You need to
calculate X and Y to at least five-digit accuracy to locate the cache.
As a check, the first two digits of X and Y (in decimal notation) are:
X = 0.88 . . . , Y = 0.24 . . ..

Hint: use the BBP algorithm for π (see Section 3.4 and [20]).

38. Some sinc sums. Recall that sinc(x) := sin(x)/x. Motivated by the
discussion of sinc integrals in Experimentation in Mathematics [72,
Section 2.5], Robert Baillie was led to reexamine some earlier results
on sinc sums [43]. Two of the most striking consequences follow.
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(a) Consider the following sum and integral involving a := 1 and
the reciprocals of odd primes.

1
2

+
∞∑

n=1

sinc
(n

2

)
sinc

(n
3

)
sinc

(n
5

)
· · · sinc

( n
23

)
sinc

( n
29

)
=

∫ ∞

0

sinc
(x

2

)
sinc

(x
3

)
sinc

(x
5

)
· · · sinc

( x
23

)
sinc

( x
29

)
dx

= π

(
1
2
−Q

)
∼ .499999990899 π,

where Q is the rational number

3959735161333055430365082511104170654915014306538069299939389760351849

435103498335938196749586813353939508898115607445847937714032094343748498175000
,

as Baillie’s conditions [43, Theorem 2] are satisfied. Similar in-
tegrals and sums stopping at primes before 29 equal π/2.

(b) Similarly, if we tweak the sequence very slightly by taking a = 2,
giving the reciprocals of all the primes {pk}N

k=0 up to N , then
we have the “sum plus 1/2”and the integral equaling π only for
the first two cases. For N = 2, Baillie’s Theorem 2 [43] tells
us each equals π(1 − 1/240). However, the first equality in part
(a) above (with the first term replacing 1 by 1/2) holds until∑N

k=0 1/pk exceeds 2π [43, Theorem 1].

(c) We now estimate the N for which this occurs. The sum of the
reciprocals of the primes diverges slowly. In fact,

∑{1/p : p ≤
x, p prime} is roughly log(log(x)) +B, where B ∼ 0.26149 . . . is
the Mertens constant (see, e.g., [118, pp. 35, 79, 80]). In order
for this sum to exceed 2 π, x must be about y = exp(exp(2π −
B)) ∼ 10179.Thus, by the Prime Number Theorem,N ∼ y/ log(y),
which is about 10176.

Thus, anyone who merely tested examples using these ak would
almost certainly never find an integer N for which the first
equality above failed. Indeed, Crandall [120] proves the con-
sequent error to be less than 10−10165

. Moreover, assuming
the Riemann hypothesis, this upper bound reduces to 10−10178

,
much less than one part in a googolplex. What is the metaphys-
ical meaning of an error that small?
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39. More similar sinc sums. Show for N = 0, 1, 2, 3, as observed by
Baillie, that

∞∑
n=1

sin(3n)
3n

=
∞∑

n=1

(
sin(n)
n

)N sin(3n)
3n

.

Hint : all four sums are π/6 − 1/2 [43, Theorem 1].

40. Fun with Fourier series. [42]. Show that

(a)
π

4
=

∞∑
k=1

(−1)k−1

2k − 1
=

∞∑
k=1

(−1)k−1

2k − 1
sinc(2k − 1),

(b)
π − 1

2
=

∞∑
k=1

sin(k)
k

=
∞∑

k=1

sin2(k)
k2

,

(c)
π

4
=

∞∑
k=1

sin3(k)
k

=
∞∑

k=1

sin4(k)
k2

,

(d)
3π
16

=
∞∑

k=1

sin5(k)
k

=
∞∑

k=1

sin6(k)
k2

.

(e) For m = 0, 1, 2, 3 but not for m = 4

π − 3
6

=
∞∑

k=1

sinc(3k) sincm(k).

(f) For m = 1, 2, 3 but not for m = 4

π − 2
4

=
∞∑

k=1

cos(k) sincm(k).

41. Extensions of the Gauss-Wilson Theorem. One of the most
remarkable results in elementary number theory is Wilson’s theorem
and its converse by Lagrange, stating that p is a prime if and only if

(p− 1)! ≡ −1 (mod p).
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Less well known is a generalization due to Gauss, first mentioned in
his Disquisitiones, §78. For the statement of this and related results
it is convenient to let Nn! denote the product of all integers up to N
that are relatively prime to n, where N and n are positive integers.
The theorem of Gauss can then be stated as follows:

(n− 1)n! ≡
{
−1 (mod n) for n = 2, 4, pα, or 2pα,

1 (mod n) otherwise,
(7.82)

for integers n ≥ 2, where p is an odd prime and α is a positive integer.
The first case of (7.82) indicates exactly those n that have primitive
roots.

(a) A simple symmetry argument and Wilson’s theorem yield

(
p−1
2

)
!2 ≡ (−1)

p+1
2 (mod p),

an observation due to Lagrange (1773). This implies that the
multiplicative order of (p−1

2 )! modulo p is 4 when p ≡ 1 (mod 4),
and is 1 or 2 otherwise; these last two cases were later completely
determined by Mordell in 1961 by use of a class number condi-
tion.

(b) The question now arises whether there is a composite analogue
to this characterization. This and related questions provide ex-
cellent examples for the power of the experimental approach.
Based on numerous computations with Maple, Cosgrave and
Dilcher [117] conjectured and then proved that, as before, only
the orders 1, 2, and 4 can occur, and gave a complete character-
ization of all cases. The first and most important of these cases
is actually true in a more general setting:
Let M ≥ 2 and n = pα1

1 . . . pαt
t , t ≥ 3, with arbitrary positive

exponents αj . If n ≡ 1 (mod M) and pj ≡ 1 (mod M) for at
least three prime factors, then(

n−1
M

)
n
! ≡ 1 (mod n). (7.83)

For all odd n with at least three distinct prime divisors we then
have (

n−1
2

)
n
! ≡ 1 (mod n).

(c) Among the remaining few cases, the following is worth men-
tioning as fairly representative: Let n = pαqβ , where p and q



�

�

�

�

�

�

�

�

318 7. Recent Experiences

are distinct odd primes with p ≡ q ≡ 1 (mod 4), and α, β are
positive integers. Then(

n− 1
2

)
n

! ≡
(
p

q

)
(mod n),

where (p
q ) is the Legendre symbol which is 1 when p is a quadratic

residue modulo q, and is −1 otherwise.
(d) The general result (7.83) indicates that one need not stop at the

case of denominator M = 2. Indeed, some fascinating experi-
mental results were obtained especially for M = 3, 4 and also
for other M , partly proven, and partly only conjectured at this
time [116]. Returning to the prime case, it was found experi-
mentally, and subsequently proven, that p−1

4 ! ≡ 1 (mod p) only
for p = 5, while (p−1

4 !)k ≡ −1 (mod p) for k = 1, 2, or 4 is
impossible. However, the congruence(

p− 1
4

!
)8

≡ −1 (mod p) (7.84)

does hold for p = 17, 241, 3361, 46817, 652081, . . . It turns out
that (7.84) holds if and only if p = a2 + b2, where a, b > 0 and
furthermore p− 1 = 4ab. This can be rewritten in terms of the
Pell equation (a − 2b)2 − 3b2 = 1, and by the theory of Pell
equations this sequence of primes can be obtained as follows:
Define the sequences {xk}, {yk} by x1 = 4, y1 = 1, and

xk = 4xk−1 − yk−1, yk = xk−1.

If pk = x2
k + y2

k is a prime, then (and only then) it is a solution
of (7.84). pk is indeed prime for k ≤ 5, but is composite for
6 ≤ k ≤ 1000 except for seven primes corresponding to k = 131,
200, 296, 350, 519, 704 and 950 (verified by Francois Morain);
p950 has 1087 decimal digits.
Cosgrove and Dilcher [116] have experimentally obtained (and
partially proven) similar results for other powers and for com-
posite moduli.

42. Symbolic residue computation. Evaluate

I :=
∫ ∞

0

sech(t) tanh(t)
t

dt.

Hint : attempt symbolic residue computation in Mathematica or Maple.
Try to identify I or I/π first.
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43. A more general ζ-formula. For appropriate x and y,

∞∑
k=1

k

k4 − x2k2 − y4
=

1

2

∞∑
k=1

(−1)k+1

k
(
2k
k

) 5k2 − x2

k4 − x2k2 − y4

k−1∏
m=1

(m2 − x2)2 + 4y4

m4 − x2m2 − y4
.

This bivariate generating function identity for odd ζ-values was em-
pirically conjectured by Henri Cohen and proved independently by
Rivoal [245] and Bradley [24]. Is there a corresponding even ζ-
formula?

44. Discover the closed form for∫ 1

0

tn(1 − t)n−1P (n)
n

(
1 − t

2

)
dt

and so obtain the value of (7.5) when x = 1/2.
Hint : the following Maple code may help:

with(orthopoly):

T:=(a,n)->int(t^(n)*(1-t)^(n-1)*GegenbauerC(n,n,1-2*t*a^2),

t=0..1);

45. Use the Bohr-Mollerup theorem of Section 5.4 to prove the triplication
formula for Γ(x), namely that

2π Γ(3x) = 33x−1/2 Γ(x) Γ
(
x+

1
3

)
Γ
(
x+

2
3

)
.

This and the duplication theorem Example 13 of Chapter 5 to estab-
lish (7.4) and complete Grivaux’s proof in Section 7.1.4.

46. Provide details for the proof of (7.9). Find the corresponding proof
for (7.10).

47. Use (7.14) to deduce Gauss’s evaluation

2F1

(
a, b
c, k

∣∣∣∣1) =
Γ(c− a)Γ(c− b)

Γ(c)
. (7.85)

48. Find a closed form for the Champernowne number λ discussed in
Section 7.1.5 and Exercise 5 of Chapter 4. Do this correspondingly
for each base b. Explore the continued fraction of the resulting λb.
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49. Recall that the additive partition function is generated by the func-
tion 1/

∏∞
k=1(1 − qk) (see [72, Chapter 4] and [284, Section 5.2]).

Reshape the first hundred coefficients modulo 5, 7, and 11 to high-
light Ramanujan’s congruences [25, 72]. For example. for modulo 7
we have the 9 × 7 matrix⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 5 0 4 1

1 2 0 0 0 3 2

1 0 3 0 0 4 1

1 2 0 5 0 0 1

1 4 3 5 0 4 1

1 0 3 0 0 0 2

2 2 3 5 0 0 2

1 4 0 0 0 0 3

2 2 3 5 0 4 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

50. The Prouhet-Tarry-Escott problem, [82, Chapter 11], [72, Ex-
ercise 16 of Chapter 5]. Given positive integers n and k, one form
of this problem is cast as a Diophantine equation seeking nontrivial
solutions to

α1 + α2 · · · + αn = β1 + β2 + · · ·βn

α2
1 + α2

2 + · · · + α2
n = β2

1 + β2
2 + · · ·β2

n

· · ·
αk

1 + αk
2 + · · · + αk

n = βk
1 + βk

2 + · · ·βk
n.

A solution is abbreviated as [α] =k [β]. For example,

[−2,−1, 3] =2 [2, 1,−3], [−5,−1, 2, 6] =3 [−4,−2, 4, 5]

[−8,−7, 1, 5, 9] =4 [8, 7,−1,−5,−9],

and such ideal solutions with k = n− 1 are known for n ≤ 12, except
for n = 11.

David Broadhurst [92] has recently found a second inequivalent so-
lution for n = 12, using the Chinese remainder theorem modulo 141
and 53 along with intensive and clever programming. It is

[±472,±639,±1294 ± 1514,±1947,±2037] =11 [±257,±891,±1109,
±1618,±1896,±2058]
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since

4722k + 6392k + 12942k + 15142k + 19472k + 20372k

= 2572k + 8912k + 11092k + 16182k + 18962k + 20582k

for k = 1, 2, . . . , 5. Until then only

[±151,±140,±127,±86,±61,±22] =11 [±148,±146,±1271,±94,
±47,±35]

discovered by Chen Shuwen in 1999 had been known. (Note that in
Experimentation in Mathematics [72], the element ±86 was mistran-
scribed as ±186.)

51. Some recent partition congruences. Mahlburg [212] proved inter
alia that for every prime p > 3 there are infinitely many pairs (A,B)
such that M(r, p, An+ B) = 0 (mod p) for r = 0, 1, . . . , p− 1. The
result is entirely existential. Actually, Mahlburg proved the result for
prime powers. Here M(r, p, n) is the number of partitions of n with
crank congruent to r mod p. The crank [8] of a partition is the largest
part if the partition has no ones, otherwise it is the difference between
the number of parts larger than the number of ones and the number of
ones. Bringmann [89] has proved the rank-analog N(r, p, An+B) ≡
0 (mod p). Bringmann’s result is also purely existential but also
handled the case of prime powers. Earlier, Bringmann and Ono [91]
proved the analogous result N(r, p1, An+ B) ≡ 0 (mod p2) when p1

and p2 are relatively prime. Here N(r, p, n) is number of partitions of
n with rank congruent to r mod p. Dyson [134] defined the rank of
a partition as the largest part minus the number of parts. Recently,
Garvan [143] found a different proof of the rank-analog N(r, p, An+
B) ≡ 0 (mod p) as well as some nontrivial examples. For example,
for r = 0, 1, . . . , 10,

N(r, 11, 54 · 11 · 194 · n+ 4322599) ≡ 0 (mod 11) (1)

and
N(r, 11, 112 · 194 · n+ 172904) ≡ 0 (mod 11). (2)

So far, Garvan has verified only (2) for n = 0 using Fortran (Maple
has no hope of doing such a computation). For details, see Garvan’s
work [90, 143].

We mention this result, in part, as another example of a highly tech-
nical proof of an existential result which, while easy to understand,
is very hard to verify.



�

�

�

�

�

�

�

�

322 7. Recent Experiences

–40000

–20000

20000

–3 –2 –1 1 2 3
x

–3e+06

–2e+06

–1e+06

0

1e+06

2e+06

3e+06

–2 –1 1 2

x

Figure 7.14. The Hermite polynomials for n = 8 (left) and n = 11 (right).
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Figure 7.15. The Hermite polynomial for n = 5 (left) and the derivative for n = 6
(right).

52. Pictures of Strodt polynomials. The easy accessibility of plotting
routines—now excellent, for example, in Maple, Mathematica, and
Matlab—should make graphing a ubiquitous part of mathematical
life. It also partially explains why there relatively few pictures in the
main text.

Thus, as we saw in Section 7.3, plotting plays a key part of both the
research and preparation process. Figure 7.14 draws small values of
Hermite polynomials. In deciding the domain and degrees one learns
a great deal quickly. Also, as normalizations of orthogonal polyno-
mials differ, it is a very good sanity check. Note that in each case we
have trapped all the—necessarily real—roots and so the pictures are
reliable. We also confirm the odd/even properties of the sequence.

53. Provide the proof of Corollary 7.16 for Bernoulli polynomials.

54. Use Corollary 7.17 to establish (7.59) and (7.58).
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55. Strodt polynomials of probability densities. We consider three
key examples here. In each case, we suggest making plots of the same
character as in Exercise 7.14.

(a) Gaussian density function. We take g(u) := 1√
π
e−u2/2. The

moment generating function is

Q(t) =
1√
π

∫ ∞

−∞
eut e−u2/2 du = et2/4. (7.86)

The generating function for the Strodt polynomials is thus

∞∑
n=0

Pn(x)
tn

n!
=

ext

Q(t)
= ext−t2/4. (7.87)

Similarity to the Hermite polynomials is evident; their gener-
ating function is e2xt−t2 [1, entry 22.9.17]. Thus, the Strodt
polynomials are scalings of the Hermite polynomials, as

2nPn(x) = Hn(x) for all n ≥ 0.

We have an immediate consequence to Theorem 7.15 and 7.14.

Proposition 7.19. The Hermite polynomials Hn(x) are scaled
Strodt polynomials for the Gaussian density. They satisfy

1√
2π

∫ ∞

−∞
Hn(x+ u) e−u2/2 du = (2x)n, (7.88)

and

d

dx
Hn(x) = 2nHn−1(x). (7.89)

Hermite polynomials form the only orthogonal Appell sequence
[257], and so are the only orthogonal Strodt polynomials.

(b) Poisson distribution. The Poisson distribution X for a real
parameter λ is given by the probability function

P (X = j) = e−λλ
j

j!
for j ∈ N0 . (7.90)

This corresponds to the weight function

g(u) :=
∞∑

j=0

δj(u)e−λ λu

Γ(u+ 1)
. (7.91)
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We construct the Strodt polynomials for this distribution, using
Theorem 7.15. Since the moment generating function is

Q(t) = e−λ
∞∑

j=0

ejt λ
j

j!
= eλ(et−1), (7.92)

the generating function is given by
∞∑

n=0

Pn,λ(x)
tn

n!
= exte−λ(et−1), (7.93)

where the polynomials also depend on λ. This leads to

exte−λ(et−1) =
∞∑

n=0

tn

n!
eλ

∞∑
j=0

(j + x)n(−λ)j

j!
.

Now the binomial theorem produces

exte−λ(et−1) =
∞∑

n=0

tn

n!

n∑
m=0

(
n

m

)
xn−me−λ

∞∑
j=0

jm(−λ)j

j!
.

Replacing jm [1, entry 24.1.4B] by

jm =
m∑

k=0

S(m, k)(j)m =
m∑

k=0

S(m, k)j(j − 1) · · · (j −m+ 1),

where the S(m, k) are Stirling numbers of the second kind [244],
yields

eλ
∞∑

j=0

jm(−λ)j

j!
= eλ

m∑
k=0

S(m, k)(−λ)m
∞∑

j=m

(−λ)j−m

(j −m)!

=
m∑

j=0

S(m, j)(−λ)j .

The polynomial on the right-hand side is the mth Bell polyno-
mial Bm(−λ) [244]. Thus, we have a closed form for the Strodt
polynomials:

Pn,λ(x) =
n∑

m=0

(
n

m

) m∑
j=0

S(m, j)(−λ)j xn−m. (7.94)

When λ = −1 and 1, the inner sum reduces to themth Bell num-
ber and complementary Bell number [244], respectively. Again,
we recover a corollary:
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Proposition 7.20. Let Pn,λ(x) be defined by (7.94). Then

e−λ
∞∑

j=0

Pn,λ(x+ j)
λj

j!
= xn (7.95)

and

d

dx
Pn,λ(x) = nPn−1,λ(x). (7.96)

(c) Exponential distribution. For λ > 0, we take the associated
density function to be

g(u) :=
{

λe−λu for u > 0
0 u ≤ 0 , (7.97)

and calculate the moment generating function

Q(t) = λ

∫ ∞

0

eut−λu du =
λ

λ− t
(7.98)

for real t < λ. The generating function given by Sg(xn), via
Theorem 7.15, equals extλ/(λ− t). Therefore, by Theorem 7.15,

∞∑
n=0

Sg(xn)
tn

n!
=

ext

1 − t/λ
. (7.99)

We thus have the following property of the images of xn under
the Strodt operator for the exponential distribution.

Proposition 7.21. When g(u) is the exponential density (7.97),
the Strodt operator Sg applied to the monomial xn gives a scaled
Taylor series truncation of the exponential function:

Sg(xn) = n!λ−n
n∑

m=0

(λx)m

m!
, for all n ∈ N0, λ > 0. (7.100)

Proof. On the right-hand side of (7.99), expand ext in a Taylor
series and (1 − t/λ)−1 in a geometric series. Then match tn

coefficients. �

We claim that the Strodt polynomials for the exponential dis-
tribution are given by

P0,λ(x) = 1, Pn,λ(x) = xn − nxn−1/λ for n ∈ N. (7.101)
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Indeed,

Sg

(
xn − nxn−1/λ

)
= Sg(xn) − nSg(xn−1)/λ (7.102)

= n!λ−n
n∑

m=0

(λx)m

m!
− n!λ−n

n−1∑
m=0

(λx)m

m!
(7.103)

= xn (7.104)

for n ≥ 1, and Sg(1) = 1. The justification for (7.102) is the
linearity of the Strodt operator, and (7.103) follows from (7.100).

56. In each case in the development in Section 7.3.3, the proof relies on
the fact that the function V (s, h) can be related back to a polynomial
from the original sequence. Is it possible to extend this process to a
more general Strodt polynomials?

57. Limits of Hermite polynomials. Determine the asymptotic be-
havior of Hn/Hn(1) whereHn denotes the n−th Hermite polynomial.

58. Two iterations for π. In a recent manuscript [159], Guillera pro-
duces a most concise accounting of the quartic algorithm for Pi given
as [71, (3.1.8)] and of its quadratic counterpart. While the develop-
ment is almost exactly what specialization of the general algorithms
in [74, §5.5] yields, the reader is largely spared the need to digest the
elliptic integral theory behind the general algorithm(s).

59. Some test sums. The goal is to succeed in evaluating the follow-
ing sums with “generic” high-precision methods and as little special
knowledge as possible.

(a) Catalan constant.

G :=
∞∑

n=0

(−1)n

(2n+ 1)2
.

(b) Gregory constant.

π = 4
∞∑

n=0

(−1)n

2n+ 1
.

(c) Napier constant.

log(2) =
∞∑

n=0

(−1)n

n+ 1
.
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and, putting the three above equations together:

∞∑
n=1

(−1)n
∑n

k=1
1
k

2n+ 1
= G− 1

2
π ln (2) .

(d) Euler constant.

γ = 1 +
∞∑

k=2

{
1
k

+ ln
(

1 − 1
k

)}
.

(e) Slow sum.

∞∑
n=2

(−1)n

n log(n)
.

(f) Abel sum.

∞∑
n=2

1
n log2(n)

.

(g) Slow trigonometric series.

∞∑
n=1

sin(nx)√
n

and, for 0 < x < π,

∞∑
n=1

cos(nx)√
n

.

(h) Hardy-Littlewood sum.

∞∑
n=1

sin (x/n)
n

.

(i) Euler sum.

ζ(3) = ζ(2, 1) = 8 ζ(−2, 1).

(j) Euler-Zagier sum [72, Chapter 3].

ζ(3, 1, 3, 1) =
2

10!
π8.

(k) Knuth sum.

∞∑
k=1

{
kk

k!ek
− 1√

2πk

}
= −2

3
− ζ

(
1
2

)
√

2π
.
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(l) Madelung constant in two dimensions [72, Section 4.3.2.].

4 ζ
(

1
2

)
β

(
1
2

)
= M2 =

∞∑
n=1

r2(n)
n1/2

,

where β = L−4 is the Catalan zeta function. Moreover,

β

(
1
2

)
=

∞∑
n=0

(−1)n

√
2n+ 1

and

ζ

(
1
2

)
= (

√
2 + 1)

∞∑
n=1

(−1)n

√
n
.

(m) A slow e.

e− 2 =
∞∑

n=1

(
n2 + 2n

)n+1 − n (n+ 1)2 n+1

(n2 + n)n+1

(n) A subtle sinc sum.

1
2

+
∞∑

n=1

7∏
k=0

sinc
(

n

2k + 1

)
=

∫ ∞

0

7∏
k=0

sinc
(

x

2k + 1

)
dx.

60. Normal (or not)? In Section 4.3, we showed that the “hot-spot”
lemma could be used to prove that the constant

α = α2,3 =
∞∑

n=1

1
3n23n .

is 2-normal (see [39] for additional background and details). One
question that can be raised here is whether this constant is b-normal
(or not) for other bases b.

To that end, it is illuminating to explicitly calculate the first few
hundred base-b digits of α for various bases b. This can be done
easily in Mathematica or Maple, or by using one’s own computer code
coupled with high-precision arithmetic software such as the ARPREC
software available at http://www.experimentalmath.info. When this
is done, it is clear that the base-b digits of this constant are not
random for certain bases, beginning, for instance, with base 6.
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This question can be explored analytically as follows. Let the no-
tation {·} denote fractional part. Note that the base-6 digits im-
mediately following position n in the base-6 expansion of α can be
obtained by computing {6nα}, which can be written as follows:

{6nα} =

⎧⎨⎩

log3 n�∑

m=1

3n−m2n−3m

⎫⎬⎭+

⎧⎨⎩
∞∑

m=
log3 n�+1

3n−m2n−3m

⎫⎬⎭ .

Now note that the first portion of this expression is zero, since all
terms of the summation are integers. In the case when n = 3M ,
where M ≥ 1 is an integer, we see that the first term of the second
expression is

33M−(M+1)23M−3M+1
= 33M−M−12−2·3M

=

(
3
4

)3M

3M+1
.

We can bound the sum of all terms of the second summation by (1+ε)
times this amount, for all sufficiently large M . Thus, we can write

{63m

α} ≈
(

3
4

)3m

3m+1
,

and this approximation is as accurate as one wishes (in ratio) for all
sufficiently large m.

Given the very small size of the expression (3/4)3
m

/3m+1 for even
moderate-sized m, it is clear the base-6 expansion will have very long
stretches of zeroes beginning at positions 3m + 1. This reckoning can
be made rigorous by noting that for any ε > 0, there is some M such
that for all m > M we have

3m

[
log6

(
3
4

)
− ε

]
< Zm < 3m

[
log6

(
3
4

)
+ ε

]
where Zm is the length of this segment of zeroes beginning at position
3m+1. By estimating the sum of Zm up to someM , one can conclude
that the fraction of zeroes in the first n base-6 digits of α2,3 must,
infinitely often, exceed

4
3
· log6

(
3
4

)
1 + log6

(
3
4

) ≈ 0.18446111 . . . ,

which is clearly greater than 1/6. This means that α is not 6-normal.
Complete details are given by Bailey [21].

Can you identify other bases b for which α is not b-normal?
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61. For n = 1, 2, · · · , 30, in each case, recover the minimal polynomial
of αn := (2n + 1)1/n from a sufficiently precise numerical value for
αn. Then perform the same task for βn := (21/n + 1)n. Compute
the Euclidean norm of the consequent polynomials and observe that
for βn this gives a very misleading indicator of the complexity of the
number.

62. More on Bessel moments. Larry Glasser has observed that

c4,0 =
∫ ∞

0

K4
0(t) dt = π

∫ 1

0

K2(k)
k′

dk

(a) Hence, derive that

c4,0 = π

∫ π/2

0

K2 (cos(t)) dt =
π4

4 4F3

(
1
2 ,

1
2 ,

1
2 ,

1
2

1, 1, 1

∣∣∣∣1)
=

π4

4

∞∑
n=0

(
2 n
n

)4
44 n

.

(b) Conjecture that c4,2m can be expressed as

c4,2m
?=

π4

4

∞∑
n=0

pm

(
1

n+ 1

) (
2 n
n

)4
44 n

,

for polynomials of some fixed degree. Explore the sequence pm

by using PSLQ and the recursion

4(5k3 + 3k) c4,k+2 − (k − 1)5 c4,k = 64(k + 1)c4,k+2

of Section 7.2.3.
(c) A corresponding derivation gives

c3,0 =
∫ ∞

0

K3
0(t) dt = π

∫ 1

0

K(k)
k′
√

1 + 3k2
dk.

Hence confirm—or indeed deduce—that

c3,0 =
√

3π3

8 3F2

(
1
2 ,

1
2 ,

1
2

1, 1

∣∣∣∣14
)

=
√

3π
2

K2(k3)

where k3 = sin(π/12) is the third singular value (see [25, pp.
238–247] for details).
Hint: the required identity reduces to

∞∑
n=0

(
2 n
n

)3
43n 2F1

(
1
2 ,

1
2

n+ 1

∣∣∣∣34
)

=
√

3 3F2

(
1
2 ,

1
2 ,

1
2

1, 1

∣∣∣∣14
)
.
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One can also establish that

c3,2 =
1
9
c3,0 − π4

24
c−1
3,0,

and so via the recursion of Section 7.2.3 obtain all even c3,2m.

(d) For completeness, we record [74]∫ 1

0

K(k)
k′

dk = K2

(
1√
2

)
.

(e) Broadhurst has shown that

c5,1 =
∫ 1

3

0

4xK (y)

×
(

π2

12 − Li2
(

1
2 −

√
1−4 x2

2

)
+ 1

2 ln2
(

1
2 −

√
1−4 x2

2

)
− ln2 (x)

)
√

(1 + 3 x) (1 − x)3 (1 − 4 x2)
dx,

where y :=
√

(1−3 x)(1+x)3

(1+3 x)(1−x)3
. Can this representation be further

reduced? There is a corresponding more complicated integral
for c5,3 and c5,5.

(f) The corresponding closed form, for a so-called sunrise integral
(see also Exercise 12), is known empirically thanks to the re-
markable insight of David Broadhurs [92]:∫ ∞

0

x I0 (x) K4
0 (x) dx =

π

2
√

15

×K

(√
2

16

(
2 −

√
3
)(√

5 +
√

3
)(

3 +
√

5
))

×K

(√
2

16

(
2 −√

3
)(√

5 −√
3
)(

3 −√
5
))

.

63. Prove for |z| < 1/
√

2, as suggested by Larry Glasser [147], that

z arcsin (z)
(1 − 2 z2)

√
1 − z2

=
∞∑

n=1

(
n∑

k=1

2k+n−1

k
(
2 k
k

) )
z2 n.
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64. The p-adic Gamma function [284, Section 6.2]. The function Γp

is defined for a prime p as the unique continuous extension to Zp of

Γp(n) := (−1)n
n∏

k=1,p�k

k,

defined on N.

(a) For odd n, we have

(−1)(n−1)/2
n∏

k=1

Γp

(
k

n

)
=

( p
n

)
(7.105)

if p does not divide n, as discovered experimentally and proven
by Villegas [284, Proposition 6.3]. For n even, there is a corre-
sponding formula, but it adds a factor Γp(1/2)n−1 on the right.

(b) However, even though

Γp

(
1
2

)2

= −
(−4
p

)
for all odd primes, the sign of Γp(1/2) appears very random.
Using code for Γp (see [284, Section 6.2]) along with code such
as

with(numtheory)::L:=[seq(-jacobi(-4,ithprime(n)),
n=2..100)];

in Maple, can one find any structure therein?

65. Two harmonic sums. Identify and prove the values of∑
n>0 2−nHn/n and

∑
n>0[1+2(−1)n]Hn/n

4, where Hn = 1+1/2+
· · · + 1/n is the sum of the harmonic numbers.
Hint: both are combinations of ζ-function values.

66. Some cautions from Villegas. In Exercise 38 and elsewhere in
[25, 71, 72] we have shown some cautionary examples regarding “the
law of small numbers.” Here are some fine additions [284]:

(a) Euler’s Exemplum Memorabile Inductionis Fallacis [284,
p. 121]. Define trinomial numbers as tn := [x0] (x+ 1 + 1/x)n,
where the [xj ] notation denotes the coefficient of that power.
Find a closed form, the generating function, and a three-term
recursion for {tn}. Generate sufficient trinomial numbers to
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identify the sequence in Sloane. Confirm Euler’s observation
that for n = 0, 1, . . . , 8 that 3tn+1 − tn+2 = Fn(Fn + 1), where
Fn is the nth Fibonacci number, but fails subsequently.

(b) Consider the sequence un defined by un+2 := 	1/2 + u2
n+1/un


with u0 := 3, u1 := 10. Show that∑
n≥0

unx
n+1 =

1
1 − x(3 + x)

.

(c) By contrast, consider {un} defined by un+2 := 	1 + u2
n+1/un


with u0 := 8, u1 := 55. Consider also the rational function

R(x) :=
8 + 7 x− 7 x2 − 7 x3

1 − 6 x− 7 x2 + 5 x3 + 6 x4

= 8 + 55x+ 379x2 + 2612x3 + · · ·

and determine that the first time [xn]R(x) and un differ is for
n = 11056. How far can you confirm the equality?

(d) Consult Sloane’s recursively defined sequences A006722 (6-Somos)
and A003502 (Göbel). The first of the two sequences

an := (an−1an−5 + an−2an−4 + a2
n−3)/an−6

for n > 5 with the first five values unity, provably takes only
integer values, whereas the second one

an+1 := (
n∑

k=0

a2
k)/n and a0 := 1

appears to only for n up to 43 (that is, the sequence is integral for
n < 44 and the rest are not). As a44 = 5.4093 . . .×10178485291567,
it is impossible to deduce this via direct computation.

67. Another matrix class. Determine the probable closed form of the
matrix sequence that begins

[1] ,

[
1 2

2 5

]
,

⎡⎢⎢⎣
1 2 3

2 5 9

3 9 19

⎤⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎢⎣
1 2 3 4

2 5 9 14

3 9 19 34

4 14 34 69

⎤⎥⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 4 5

2 5 9 14 20

3 9 19 34 55

4 14 34 69 125

5 20 55 125 251

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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Figure 7.16. Riemann Hypothesis as a random walk on Liouville’s function.

68. The Riemann hypothesis as a random walk [80]. Recall the
Liouville lambda function (λ(s) :=

∑
n>0(−1)r(n)/n−s, where r(n)

counts the number of prime factors in n). Figure 7.16 shows λ plotted
as a two-dimensional “random walk,” by walking (±1,±1) through
pairs of points of the sequence, {λ(2k), λ(2k+1)}n

k=1. The fact that n
steps of the walk stay in a box with side of length roughly

√
n implies

the Riemann hypothesis : that all nonreal zeros of the ζ-function have
a real part equal to one half (the critical line). The first few are plot-

0

0.5

1

1.5

2

2.5

3

10 15 20 25 30 35 40

t

Figure 7.17. The first few zeros of ζ on the critical line.
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ted in Figure 7.17. See Figure 2.20 for another graphical equivalent.
Show (see, for example [74, p. 300]) that

∞∑
n=1

λ(n)
ns

=
ζ(2s)
ζ(s)

.

69. Gordon’s identity. Confirm Gordon’s identity∑∞
m=−∞ (6m+ 1) q(6 m+1)2∑∞

m=−∞ (−1)m
q(6 m+1)2

= θ24(q
24) (7.106)

and so derive a recursion for r2(n) (see [74, Section 9.4]). Find prod-
uct forms for all three series in the identity (7.106).

70. A partial fraction due to Euler. Discover and prove the closed
form of the partial fraction decomposition for x−s(1+x)−t with non-
negative integers s ≥ 0, t ≥ 0, s+ t ≥ 1 (see [72, Lemma 3.6]).

71. The logistic curve. We briefly discussed the bifurcations of the
logistic curve [130] in Section 2.3 and in [25, Section 8.3]. For the
limiting case, this yields the dynamical system

xn+1 := 4xn(1 − xn) (7.107)

on the interval [0, 1].

(a) Show that a closed form for f (n)(x) with initial value x is

x �→ 1
2
{1 − cos(2n arccos(1 − 2x))} .

Indeed, the specific map in (7.107) is one of the easiest to show
chaotic (see [130] and [25, p. 288]). The core task is to deter-
mine that the Lyapunov exponent, which in good cases given by
λf (x) := limn→∞

df(n)(x)
dx , is strictly positive except countably

as orbits then disperse.
Hint : consider the substitution sin(θn) = xn and note that a
chain rule argument shows the exponent is usually unchanged
by smooth conjugacy: g = φ(−1)fφ.

(b) Empirically determine the value(s) of λf (1).
Hint : 1/2−1/(2

√
2) iterates to 1/2 and then to 1. The Lyapunov

exponent appears to be 2 log 2.
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Figure 7.18. Scatter from 150 iterates of x0 + .114 and x0 := (1 − cos 1)/2, and
Lyapunov exponent plotted from 104 iterations.

(c) Deduce that

lim
n→∞

log | sin(2n)|
n

= 0

if and only if λf ((1 − cos 1)/2) = log 2. Thus, as observed by
Stan Wagon, we connect a nontrivial number theory result to
information about the bit string of 1/π, without needing an
irrationality estimate for π [74].
Hint : for x = (1− cos 1)/2 we conjugate to 1/π. See also Figure
7.18.

72. Irrationality estimates can apparently not prove the prior result
easily. The best one can obtain directly appears to be an order esti-
mate:

Proposition 7.22. For each δ > 0,

lim
n→∞

log(| sin 2n|)
n1+δ

= 0,

while for δ = 0, the lim sup and lim inf of the expression lie between
−9 log 2 and 0. For δ < 0, the limit is ∞.

Proof. Given any positive integer n, choose an integer q such that
|qπ − 2n| < π/2. Then, by Hatta’s improvement [74, Section 11.2] of
Mahler’s theorem,

| sin 2n| = sin(|qπ − 2n|) > 2
π

(|qπ − 2n|) > 2
πq9

.
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Hence 0 > log(| sin 2n|) > log(2/π)−9 log q > log(2/π)−9 log 2n+π/2
π .

Since

lim
n→∞

1
n

log
2n + π

2

π
= log 2,

the proposition follows.

73. Spin integrals—theory. Correlation integrals for a spin-1/2 anti-
ferromagnet have received much recent attention. As given by Boos
and Korepin, for a length-n spin chain, we consider [58, equation 2.2]

P (n) :=
1

(2πi)n

∫
Cn

UnTn D�λ, (7.108)

where

Un := πn(n+1)/2

∏
j<k sinhπ(λk − λj)∏

j sinhn πλj
(7.109)

and

Tn :=

∏
j λ

j−1
j (λj + i)n−j∏

j<k(λk − λj − i)
. (7.110)

The nomenclature is as follows. Lone indices such as j run over [1, n].
The constraint j < k means 1 ≤ j < k ≤ n. The “curly-D” notation
is simply, for an arbitrary vector r, D�r := dr1 · · · drn. The integration
domain Cn denotes that each λj runs eastward along the horizontal
contour C := {x− i/2 : x ∈ (−∞,∞)}.
The general closed form for P (n) is still open. Currently, all P (n) for
n ≤ 6 have been found [58–61, 190]. Each such evaluation involves
rational-weighted sums of products of odd-argument η (or alternating
ζ) functions, where

η(s) :=
(
1 − 21−s

)
ζ(s),

with ζ denoting the Riemann zeta function. Note that η(−1) =
1/4, η(1) = log 2. It is known, for example, that

P (3) = η(−1) − η(1) +
1
2
η(3) =

1
4
− log 2 +

3
8
ζ(3),

while the most advanced known case as of this writing is [61, equation
4.3]

P (6) =
∑

a≤b≤c

a,b,c ∈ (−1,1,3,5,7,9)

qa,b,c η(a) η(b) η(c),
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where the qa,b,c are all rational.2 Note that we are exploiting the
fact of η(−1) being rational to effect an η-sum that is perhaps more
symmetrical than those in the literature. Indeed, the rational leading
term here for P (6) is q−1,−1,−1η(−1)3.

The original Boos–Korepin conjecture [59] states that P (n) is always a
combination of η evaluations as above. This conjecture has since been
interpreted in a “strong” form, postulating the algebraic character of
the η combinations entering into P (n) [61, equations 4.5, 4.6] and is
settled by Boos and colleagues in [57]. However, that resolution can
be considered nonconstructive: there is still no effective form for the
general coefficients, and certain asymptotic properties of P (n) remain
elusive. For example, it is suggested in [60] that

P (n) ∼ a−n2
,

with a estimated from what are known as DMRG computations as
a ≈ 1.6719± 0.0005. Using quasi-Monte Carlo (qMC) methods as in
[22] on the relatively stable integrands given in Exercise 74, a ≈ 1.67
has been verified. Computation of the integrals to extreme precision
(100 or more digits) can resolve the values of the rational coefficients
via integer relation detection algorithms such as PSLQ.

74. Spin integrals—numerics. One difficulty for the numerical quadra-
ture of (7.108) is the complex character of the variables; another is
the infinite domain of integration. The substitutions

λj = xj − i/2, xj =
1
π
aj , aj =:

1
2

log
1 + vj

1 − vj

handle both and yield an integral over vectors �v in the cube [−1, 1]n:

P (n) =
(−1)


n
2 �

(2π)n

∫
[−1,1]n

D�v
∏
j

(
1 − v2

j

)n/2−1
(
aj − iπ

2

)j−1

×
(
aj +

iπ

2

)n−j ∏
1≤k<h≤n

sinh(ah − ak)
ah − ak − iπ

. (7.111)

The natural quadrature setup, then, is to assume each variable vj of
integration will lie in (−1, 1), and when evaluating the integrand, to
create the aj from the vj via the logarithmic formula above. Note

2And yet, as one of the many open mysteries in regard to the P (n), the coefficients
q1,5,7 and q1,3,3 vanish in the P (6) evaluation, whereas q3,3,3, historically expected to
vanish, does not [61].
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that if �v is on any face of the cube—i.e., some vj = ±1, the logarithm
is singular, but one may take the integrand to be 0 at such points.
Note that P (n) is always real—from symmetry arguments—so one
may either use complex arithmetic for the integrand and keep only
the real part, or prereduce this integrand symbolically. There are
various speedups for the integral (7.111), such as table lookup for
pairs (k, h > k) and some reductions, such as

sinh(ah − ak) =
vh − vk√

1 − v2
h

√
1 − v2

k

,

which avoids some of the transcendental arithmetic. Indeed, the
square root terms largely cancel, leaving us with

P (n) =
(−1)


n
2 �

(2π)n

∫
−1,1]n

D�v
∏
j

(
1 − v2

j

)−1/2
(
aj − iπ

2

)j−1

×
(
aj +

iπ

2

)n−j ∏
1≤k<h≤n

vh − vk

ah − ak − iπ
. (7.112)

If one desires some singularity removal for reasons of numerical sta-
bility, the substitutions vj := sinφj yield

P (n) =
(−1)


n
2 �

(2π)n

∫ π/2

−π/2

· · ·
∫ π/2

−π/2

D�φ (7.113)

×
∏
j

(
aj − iπ

2

)j−1 (
aj +

iπ

2

)n−j ∏
1≤k<h≤n

sinφh − sinφk

ah − ak − iπ
,

where now

aj =
1
2

log
1 + sinφj

1 − sinφj
.

The formulation (7.113) is well suited for high-precision quadrature:
it is free from singularities (provided one stays away from certain ra-
tional values with removable singularities), and is defined on a finite
multidimensional cube. Since the integrand is regular (free from sin-
gularities and vertical derivatives), we found ordinary multidimen-
sional Gaussian quadrature is the best quadrature scheme to use.
However, run time very rapidly increases with increasing dimension,
due to the need for roughly Nm evaluations of the integrand function,
where N is the number of one-dimensional evaluations and m is the
dimension.
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In order to keep calculations to a minimum, we employed a number
of techniques. It was particularly helpful to precompute each part of
the expression in (7.113), including the (aj − iπ/2)j−1 terms, the sin
terms and even the denominator of the right-most term (stored as a
two-dimensional array). We also employed a binary search technique
to quickly retrieve the requisite value from our tables. Even with
these changes, these computations are extremely expensive. We were
able to compute P (n) to at least modest precision for n up to 6;
beyond this level seems impractical using our current methods. The
run times and processors used shown in Table 7.1 underscore the
rapidly escalating difficulty of these computations.

n Digits Processors Run Time

2 120 1 10 sec
3 120 8 55 min
4 60 64 27 min
5 30 256 39 min
6 6 256 59 hrs

Table 7.1. Run times for computing multidimensional spin integrals.

75. An AGM binary operation [274]. Define a binary operation on
the positive real numbers as follows: for a, b > 0 there is a unique q in
(−1, 1) such that M(a, b) = 1/θ23(q), where M(a, b) is the arithmetic-
geometric mean limit of Gauss discussed in Section 5.6.2 as well as by
Borwein and Borwein [74, Section 2.1]. Define ∗ by a∗b = θ24(q)/θ23(q).
Show that

(a) 1 ∗ a = a (∗ is unital); a ∗ a = b ∗ b implies a = b and a ∗ b =
M(a, b) ∗M(a ∗ b) = b ∗ a (commutation).

(b) a ∗ c = a ∗ c implies b = c (cancellation); (a ∗ b) ∗ (a ∗ c) =
a ∗ (a(b ∗ c)) (distribution).

(c) If c := a ∗ b then c = b
(
b−1 ∗ (b−1a)

)
. Therefore, the ∗-inverse

of a is a
(
a−1 ∗ a−1

)
.

(d) Show that ∗ is not associative.

(e) Show that (2n + 1) ∗ (2 ∗ n2 + 2 ∗ n + 1) = (2 ∗ n + 1)2 is not
associative.

(f) Define ∗ in terms of elliptic integrals.
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76. An open question about the Lambert function [114]. The
function u(w) that solves

w2 = −2u− 2 log(1 − u)

and has u(0) = 0 is analytic at 0 and of independent interest be-
cause it arises in one approach to large-scale computation of zeros of
Riemann’s ζ. First, note the function

f(u) :=
−2u− 2 log(1 − u)

u2
− 1 =

∞∑
n=1

2un

n+ 2

is analytic at the origin, while f(0) = 0, and

|f(u)| < f

(
1
2

)
< 1 for |u| < 1

2
.

Hence, w(u) := u
(
1 + f(u)

)1/2 is analytic at u = 0, since z �→ (1 +
z)1/2 is analytic at z = 0. The discussion by Ahlfors on [3, p. 75]
along with his Corollary 2 [3, p. 132], implies that g(w) = u−1(w)
is analytic at zero because w is analytic while w′(0) = 1. Indeed a
continuous selection is LambertW

(
−e−1/2 w2−1

)
+1. Thus, the series

for u(w) converges in some complex neighborhood of zero and so has
a positive radius of convergence. Moreover, the series of u begins

w − 1
3
w2 +

1
36
w3 +

1
270

w4 +O
(
w5

)
,

and the coefficients are generated by a1 := 1 and

(j + 1)aj = −aj−1 +
j−1∑
k=2

k akaj−k+1.

Experiments suggest ρ, the radius of convergence is in [3, 4]. The
discussion by Corless, Jeffrey, and Knuth [114, Section 3.1] mistakenly
asserts that the radius is infinite. A recent conjecture of those authors
is ρ = 2

√
π = 3.544907702 . . .. This is consistent with our numerical

estimate of 3.531. Can one corroborate this to reasonable precision
or, ideally, prove it is correct with an effective estimate of the error?

77. The proof of a longstanding MZV conjecture [295]. In 1996,
Borwein and Broadhurst discovered, using PSLQ, the conjectured
identity

8N ζ ({−2, 1}N) ?= ζ ({2, 1}N) . (7.114)
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for N = 1, 2, 3, · · · . The notation should be clear: curly brackets
denote repetition and negative denote entries alternating signs. Such
alternating sums are called multivariate zeta values (MZVs), while
sums with all-positive terms are named Euler sums, after Euler who
first studied them in detail. The first two cases are

8
∑

n>m>0

(−1)n

n2m
=

∑
n>m>0

1
n2m

=
∑
n>0

1
n3

and

64
∑

n>m>o>p>0

(−1)n(−1)o

n2mo2p
=

∑
n>m>o>p>0

1
n2mo2p

=
∑

n>m>0

1
n3m3

.

The problem lies in the left-hand identities. We discussed this conjec-
ture in detail in Experimental Mathematics in Action [25, Example
1.5], where we showed that, proof or no proof, the experimental evi-
dence in favor of this conjecture is overwhelming.

In this guided exercise, graciously provided by David Bradley, we
outline a subtle recent proof by Zhao [295]. Set

a =
dt

t
, b =

dt

1 − t
, c =

−dt
1 + t

.

For every positive integer n, define

βn = an−1b and γn = an−1c.

Set A0 = {1} to be the set of empty word. Define A = Q〈A〉 to
be the graded noncommutative polynomial Q-algebra generated by
the letters a, b, and c, where A is a locally finite set of generators
whose degree n part An consists of words (i.e., a monomial in the
letters) of length n. Let A0 be the subalgebra of A generated by
words not beginning with b and not ending with a. The words in
A0 are called admissible words. Every Euler sum is expressible as
an iterated integral over [0, 1] of a unique admissible word w in A0,
denoted Z(w).

(a) Show that

ζ(s1, . . . , sl) = Z(βs1 · · ·βsl
).

For example, show that

ζ({3}n) = Z
(
(a2b)n

)
.
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(b) If some si are replaced by s̄i in part (a), then we need to change
some β’s to γ’s. Find the rule of this correspondence. Then use
this rule to verify that for any positive integer n,

ζ({2̄, 1}n) = (ac2ab2)[n/2](ac2)2{n/2}.

Here, for a positive real number x, [x] and {x} are the integral
part and the fractional part of x, respectively.

(c) (A distribution relation.) Show that

Z
(
(a2(b+ c))n

)
=

1
4n
ζ({3}n).

Denote by A1 the subalgebra of A generated by words βk and γk with
k ≥ 1. In other words, A1 is the subalgebra of A generated by words
not ending with a. For any word w ∈ A1 and positive integer n, define
the toggling operator τβn(w) = w, and τγn(w) to be the word with β
and γ toggled. For example τγ1(γ2β4) = β2γ4. We then define a new
multiplication ∗ on A1 by requiring that ∗ distribute over addition,
that 1∗w = w∗1 = w for any word w; and that, for any words w1, w2

and special words x and y equaling either βn or γm (for some n, m),

xw1 ∗ yw2 = x
(
τx
(
τx(w1) ∗ yw2

))
+ y

(
τy
(
xw1 ∗ τy(w2)

))
+ [x, y]

(
τ[x,y]

(
τx(w1) ∗ τy(w2)

))
,

where

[βm, βn] = [γm, γn] = βm+n, and [γm, βn] = [βm, γn] = γm+n.

We call this multiplication the stuffle product.

(d) Show that for any two words w1, w2 ∈ A0,

Z(w1)Z(w2) = Z(w1 ∗ w2).

For any letters x and y and words w,w1, and w2, define recursively:
wx1 = 1xw = w and

(xw1)x(yw2) = x
(
w1x(yw2)

)
+ y

(
(xw1)xw2

)
.

(e) Show that for any two words w1, w2 ∈ A0,

Z(w1)Z(w2) = Z(w1xw2).
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For any two words w1, w2 ∈ A1, set

x[w1, w2] = w1xw2, and ∗ [w1, w2] = w1 ∗ w2.

For any positive integer i, define the ith cut of a word l1 . . . lm (where
li are letters) to be a pair of words given by

Cuti[l1l2, . . . lm] =

{[
(l1, l2, . . . , li), (li+1, . . . , lm)

]
if i is odd,[

(li, . . . , l2, l1), (li+1, . . . , lm)
]

if i is even,

for i = 0, · · · ,m. Here by convention for empty word 1, we have
[w,1] = [1, w] = w. Then we can define the composites xi = x◦Cuti,
∗i = ∗ ◦ Cuti, and the difference Δi = xi − ∗i. For any two words l1
and l2, define the �-concatenation by setting l1 � l2 = l1l2 except that

b � b = bc, and c � c = cb.

(f) Prove by induction that for every positive integer n,

2n∑
i=0

(−1)i ∗i

(
(cd)�n) = (−1)n(a2(b+ c))n.

Here d = a(b+ c) is regarded as one letter when we do the cuts
first, retaining the �-concatenation. Note that d � b = d � c =
a(cb+ bc).

(g) Prove by induction that for every positive integer n,

2n∑
i=0

(−1)ixi

(
(cd)�n) = (−2)n(ac2ab2)[n/2](ac2)2{n/2}

and

2n∑
i=0

(−1)ixi

(
(bd)�n) = (−2)n(ab2ac2)[n/2](ab2)2{n/2}.

(h) Finally, prove that for every positive integer n,

ζ({3}n) = 8nζ({2, 1}n).

78. Continued fractions with n limit points. When a continued
fraction diverges, it may diverge with surprising structure and regu-
larity, as in the case of the Stern-Stolz Theorem [178], which states
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that if {bn} is a sequence of numbers whose sum converges absolutely,
then the convergents Pn/Qn of the continued fraction

b0 + 1
b1 +

1
b2 +

1
b3 + · · ·

converge to two different limits, depending on the parity of n. More
precisely, there are constants A0, A1, B0, B1 with A1B0 − A0B1 = 1
such that for k ∈ {0, 1},

lim
n→∞P2n+k = Ak, lim

n→∞Q2n+k = Bk.

(a) The Stern-Stolz Theorem does not apply to the continued frac-
tion

F := −1
1+q +

−1
1+q2 +

−1
1+q3 + · · · ,

with |q| < 1, given in compact form and found in Ramanu-
jan’s Lost Notebook [240, p. 45]. Ramanujan gave a closed form
for the limit points of F , which was first proven by Andrews,
Berndt, Sohn, Yee, and Zaharescu [7]. Explore the convergence
properties of F . Is it possible to experimentally recover Ra-
manujan’s evaluation? What happens when q is replaced by
1/q?

(b) Bowman and McLaughlin [84] generalized Ramanujan’s contin-
ued fraction and used infinite products of matrices to construct
a class of continued fractions with n limit points, for arbitrary
n. A special case of their theorem is the fraction

−ab
a+b+p1 +

−ab
a+b+p2 +

−ab
a+b+p3 + · · ·

where a = e2πix/n and b = e2πiy/n with 0 ≤ x < y < n and
gcd(y − x, n) = 1. Verify that if

∑
k |pk| < ∞, then for each

0 ≤ i < n there exists complex constants Ai and Bi such that

lim
k→∞

Pnk+i = Ai, lim
k→∞

Qnk+i = Bi,

and evaluate, for each pair (i, j), the difference

AiBj −BiAj

in terms of a and b.
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79. A dense continued fraction. Consider the continued fraction

c := 4
3 −

1
4/3 −

1
4/3 − · · ·

and let {xn} be its sequence of convergents. Let S denote the set
{xn : 1 ≤ n < ∞}. Plot the points of S on the real line. Prove that
c does not converge and that in fact S is dense in R [83].

80. Counting. For a compelling general essay on the difficulty of apply-
ing advanced mathematical propositions to everyday life, we recom-
mend “Why counting is impossible” [125, Chapter 7]. We add that
according to Today (October 17, 2006), “The [U.S.] nation’s popula-
tion officially hit 300 million at 7:46 a.m. EDT.” The source article
at http://www.msnbc.msn.com/id/15298443 concludes:

“The census clearly misses people,” said Passel, a former
Census Bureau employee who used to help estimate the un-
dercount. “Having said that, when they crossed 200 mil-
lion, they were missing about 5 million people. We think
the 2000 census missed a lot less than 5 million people.”

81. Intuition on the extremes. Two very different recent books make
the same point; as humans, we are very poor at making estimates of
or preparations for highly unlikely events—be it the crash of 1929,
9/11, or two Katrina-like storms in one season—or of finding common
sense on scales we have not evolved (á la Dawkins) to encompass—
whether subatomic or astronomic. In Faust in Copenhagen [256, p.
152], Segré writes of the history of the Copenhagen interpretation of
quantum mechanics:

Because atomic behavior is so unlike ordinary experience,
it is very difficult to get used to and appears peculiar and
mysterious to everyone, both to the novice and to the ex-
perienced physicist. Even the experts do not understand it
the way they would like to, and it is perfectly reasonable
that they should not, because all of direct, human experi-
ence applies to large objects. We know how large objects
will act, but things on a small scale just do not act that
way. So we have to learn about them in a sort of abstract or
imaginative fashion and not by connection with our direct
human experience.

Of course, “large” for someone like Richard Feynman means a boul-
der, not the whole universe. Likewise, Taleb, in the Black Swan: The
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Impact of the Highly Improbable [273] couches much of his argument
around the difference between life in “Mediocristan” (Gaussian and
predictable) and “Extremistan” (in which overgeneralization is es-
chewed, the counterfactual and the Mandelbrotian is celebrated, and
his book sells orders of magnitude more than ours). Taleb argues
that much decision making is consequently overquantified, irrelevant,
and quite fatuous. On his web page http://www.fooledbyrandomness.
com, he says, “My major hobby is teasing people who take themselves
& the quality of their knowledge too seriously & those who don’t have
the guts to sometimes say: I don’t know... .” Before the discovery of
New Holland and Van Diemen’s Land, a black swan was a European
metaphor for the impossible.

Our methodology tries to mediate Popper and Taleb, Gauss and Man-
delbrot.

82. Kurt Gödel and the origins of computer science. In a fasci-
nating 2006 address sponsored by the Kurt Gödel Society, John W.
Dawson [126] traces Gödel’s views of and impact on computer sci-
ence. Dawson makes reference to Gödel’s 1951 Gibbs Lectures from
which the quote on page 1 of this book is taken, and shows—along
with much else—an unpublished 1956 letter to von Neumann. He
finishes with the following questions:

• If Gödel were alive today, what would he think of the role of
computers in mathematics?

• Would he approve of their use in providing numerical evidence
for conjectures?

• What would he think of computer-assisted proofs?

• Would he maintain his belief in the mind’s superiority?

83. Five myths about artistic genius. In Exercise 18 of Chapter 1,
we discussed the nature of mathematical and scientific genius at some
length. In the Washington Post article “Five Myths about Artistic
Genius” (November 11, 2007), David Galenson, author of Old Mas-
ters and Young Geniuses, distinguishes between “precocious young
geniuses” who “make bold and dramatic innovations” and “old mas-
ters” who “are experimental thinkers who proceed by trial and error.”
The article concludes “He is 56 years old and expects to do his best
work in the future.” So do we.
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[193] Charles Krauthammer. Paul Erdős, Sweet Genius. Washington Post, page
A25, Sept. 27, 1996.

[194] Rick Kreminski. π to Thousands of Digits from Vieta’s Formula. Mathe-
matics Magazine, to appear, 2008.

[195] Thomas S. Kuhn. The Structure of Scientific Revolutions. University of
Chicago Press, Chicago, 1970.

[196] L. Kuipers and H. Niederreiter. Uniform Distribution of Sequences. Wiley-
Interscience, Boston, 1974.

[197] Gilbert Labelle. Sur l’Inversion et l’Itération Continue des Séries Formelles.
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Color Plate I. Pascal triangles modulo two? (See Figure 2.1).

Color Plate II. Root two is irrational (See Figure 2.11).
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Color Plate III. Projection of 4-D polyhedron (See Figure 2.16).

Color Plate IV. Ferguson’s “Eight-Fold Way” and “Figure-Eight Knot Comple-

ment” (See Figures 2.4 and 2.5).



�

�

�

�

�

�

�

�

Color Plate V. Ferguson’s “Invisible Handshake” (See Figure 2.17).

Color Plate VI. The “Firmament” by John Robinson (See Figure 2.15).
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Color Plate VII. Coxeter’s own kaleidoscope model (See Figure 2.14).

Color Plate VIII. A random walk based on one million digits of π (See Figure 4.1).
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BBP sequence, 150
normal numbers, 148–152

A Beautiful Mind, 116
Bell

number, 324
polynomial, 324

Bellard, Fabrice, 124, 127
Benford, Frank, 148

Benford’s principle, 148
Berlinski, David, 1†
Berndt, Bruce, 345
Bernoulli

number, 271
operator, 274
polynomial, 271, 322

asymptotic formula, 282–283
Berry, Michael, 74†
Bert, Paul, 19

geometry text, pg. 66–67, 20‡
geometry text, pg. 68–69, 20‡

Besicovitch, Abram S., 83
Bessel functions, 258, 261, 286

Euler’s constant, 138
moments, 261, 330
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beta function, 193
normal numbers, 167

Bianchii group, 89
binomial sum, 297, 309
biology, 2
black swan, 347
Bohr, Harald, 98†

Bohr-Mollerup theorem, 192, 206
Bohr-Mollerup Theorem, 319
Bollobás, Béla, x, 82, 98
Bolzano, Bernhard, 9
Boole summation, 271–283
Boos-Korepin conjecture, 338
Borel, Emile

Borel-Cantelli lemma, 152, 164
normal number theorem, 164

Bornemann, Folkmar, 297
Borrell, Lee, 30
Borwein cubic/quartic iteration, see π,

algorithms for computing
Borwein, David, 108, 132, 304
Borwein, Jonathan, 271, 290, 341
Borwein, Peter, ix, 110, 119, 120
Bouyer, Martine, 114, 135
Bowman, Douglas, 345
box integral, 270–271
Bradley, David, ix, 319, 342
Brahmagupta, 113
Brent, Richard, 109, 136, 227

Brent–MacMillan algorithm, 138
Briggs, Henry, 76†
Bringmann, Kathrin, 321
Broadhurst, David, 8–9, 56, 60, 290,

299, 331, 341
Brouwer, Luitzen Egbertus Jan, 111,

241†
Browning, William J., 23
Buffon’s needle, 139

Calkin, Neil, 254, 271
Calude, Cris, 295
Cantor, Georg, 241
Carathéodory, Constantin, 182†
Cardano, Girolamo, 182
Catalan’s constant, 326

BBP formula, 296

Catalan, Eugène

Catalan numbers, 22

Catalan’s constant, 63, 127, 144,
238, 240

Cauchy, Augustin-Louis, 10

Cauchy-Goursat theorem, 177

Cauchy-Schwarz inequality, 188,
190, 191

Cayley, Arthur

counting rooted trees, 22

cellular automata, 49

Césaro average, 80

Chaitin, Gregory, ix, 30

Chaitin’s constant, 144, 164, 170

heuristic principle, 295

Chamberland, Marc, 307

Champernowne number, 147, 166–167,
259

continued fraction, 319

Champernowne-type continued
fraction, 312

Chang Hong, 113

Chang, Jen, x

Chang, Sun-Yung Alice, 40†
changing representations, 256–260, 310

base change, 259, 296

continued fraction, 257, 301

chaos theory, see dynamical systems

Chretien, Jean, 175†
Chu Shih-Chieh, 47

Chudnovsky, David and Gregory, ix,
x, 108–109, 114, 144

Churchill, Winston, 294

circle problem, 303

civilization, 40†
Clarke, Arthur C., 38†
Clausen, Thomas, 113

Clausen functions, 90

Clay Mathematics Institute, 39, 58, 74

Cohen, Henri, 319

Cohen, Joel, 215

computer algebra systems, 2, 62

failures of, 179–183

proofs using, 3
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constant recognition, 62, 65, 229
HJLS algorithm, 230
practical extensions, 234
PSLQ algorithm, 230–232
PSLQ, multipair, 232–234

constructivism, 76
Contact, 116
continued fractions, 235, 257, 301, 302

n limit points, 344
Champernowne number, 319
Champernowne-type, 312
convergent, 313, 346
Euler’s constant, 240

convolutions, 216–218
cyclic convolution, 216
devil’s convolution, 225, 226‡
linear convolution, 216

Copeland-Erdős constant, 171
Copenhagen interpretation of

quantum mechanics, 346
Corless, Robert, ix, 179, 182
cosmological constant, 293
cosmology, 2
Costa, Celso

Costa surface, 88, 100
counting, 346
Coxeter, H. S. M. (Donald), 18, 84,

86†
4-D polytope, 87‡
kaleidoscope, 85‡

Cramer, Harald, 70
Crandall, Richard, ix, 7, 29, 66, 79, 84,

149, 152, 156, 167, 184, 284,
291, 315

creative telescoping, 299
critical line, 334
cryptography, 34
Csicsery, George Paul, x

D-finite series, 261–264
Darboux’s method, 283
Darwin, Charles, 11†
Dase, Johan Zacharias, 113

calculation of π, 106
Davis, Martin, 241, 242†
Davis, Philip, 259

Dawkins, Richard, 346
De Doelder, 59
de la Vallée Poussin, 13
De Lagny, Thomas, 113
de Morgan, Augustus, 16†, 44
de Smit, Bart, 30, 38
Dedekind, Richard, 9, 33†
derangement, 208
Desmic configuration, 19
Devlin, Keith, 2
Dickson, Stewart, 30
digit sum, 306
dilogarithm, 210
Dini surface, 309, 310
Dirac, Paul, 18
Dirichlet, Lejeune, 195
discrete cosine transform (DCT), 240
discrete Fourier transform (DFT),

216–218
Duijvestijn’s dissection, 82‡, 83
dynamical system, 306, 335
dynamical systems, 52, 236–238
Dyson, Freeman, 72–74

e, 258, 328
continued fraction, 301

economics, 2, 43
Edison, Thomas, 45
Einstein’s brain, 86
Einstein, Albert, 293
Eisenstein integers, 90
EKHAD, 298
elliptic integrals, 340

complementary integrals, 200
complete, 117, 199
decimal expansion, 144

Embree, Mark, 30
ENIAC, 108, 134

photo, 134‡
entanglement, 42
Epstein, David, viii†, 99
equidistributed sequence, 150, 160
Erdős, Paul, 6, 18, 34, 71†, 80,

171–173
Erdős Number Project, 173
photo, 173‡
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error function, 270
Escher, Maurits C., 38, 86
Euclid

Elements, 19, 33
Euclidean algorithm, 230
prime numbers, 65

Euler, Leonhard, 43, 105, 138
Euler numbers, 51–52, 271
Euler sums, 58–60, 327, 341–344

quantum field theory, 60
Euler’s constant, 138, 144, 240,

327
Euler-Maclaurin summation, 59,

188
Euler-Zagier sums, see Euler

sums, 327
gamma function, 195
operator, 274
partial fraction, 335
polynomial, 271

asymptotic formula, 282–283
Riemann zeta function, 100–102
summation, 271–283

Experimental Mathematics (journal),
2, 27, 100

experimental mathematics, 2

factorization, 5, 42, 245, 302
false proofs, 99
Faraday, Michael, 38
fast Fourier transform (FFT), 108,

115, 186–188, 216–218
high-precision arithmetic,

223–225
Fateman, Richard, ix
Fee, Greg, ix
Feigenbaum, Mitchell, 55

Feigenbaum’s constant, 55, 144
Fenchel, Werner

Fenchel-Legendre conjugate, 191
Fenchel-Young inequality, 190

Ferguson, Claire, 55
Ferguson, D. F., 107, 114
Ferguson, Helaman, ix, x, 30, 37,

54–58, 88, 230, 303
“Eight-Fold Way”, 57‡

“Figure-Eight Knot
Complement”, 57‡

“Invisible Handshake”, 88‡
sculptures, 30, 55–58, 88–94

Ferguson, Samuel, 37
Fermat’s equation, 311
Fermat’s Last Theorem, 9, 99
Fermat, Pierre de, 246
Feynman, Richard, 44, 45, 346

Feynman diagrams, 60
Fibonacci number, 249, 300, 333

continued fraction, 301, 302
Fibonacci, Leonardo, 113
Finch, Steven, ix, 30
finite attractor, 150, 160, 162
fluid dynamics, 2
Four Color Theorem, 7, 41, 99
four-squares theorem, 248
fractal cards, 96
Frege, Gottlob, 10, 241
Frobenius, 265
Fundamental Theorem of Algebra,

175–177

Galenson, David, 347
Galois, Evariste, 172
Galway, William, x, 132
Gamma function, 192, 192–195, 264

p-adic, 332
triplication, 319
formulas, 194, 206
Psi function, 207
volumes of balls, 195

Garvan, Frank, 321
Gauss, Carl Friedrich, 12†, 12–13, 43,

45, 66†, 97, 97†, 115, 347
arithmetic-geometric mean

(AGM), 13
experimental Gaussian, 189‡
Gauss-Kuz’min distribution, 235,

240
Gaussian distribution, 185
on the AGM, 15‡
on the leminscate, 14‡
Prime Number Theorem, 65–66
prime number theorem, 13
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Gauss, Eugene, 102

Gauss-Kuz’min distribution, 301

Gauss-Wilson theorem, 316

Gegenbauer polynomial, 252, 319

Gelfond-Schneider theorem, 76, 84

general relativity, 293

generating functions, 21

genius, 347

geocaching, 314

Gerrietts, Marty, 115†
gfun, 251, 262

Giaquinto, Marius, 258

Girgensohn, Roland, x, 173

Glasser, Larry, 252, 296, 331

Gödel, Kurt, 1†, 241

and Computer Science, 347

Gödel statements, 35

Gödel’s theorem, 7, 35, 36

Golay, Marcel, 6

Goldbach, Christian, 59, 100

Goldston, Daniel, 71

Goodstein, Reuben

Goodstein sequences, 35

Goodstein’s theorem, 36

Gordon’s identity, 335

Gosper’s telescoping algorithm, 297

Gosper, William, 108, 111, 114

Gourdon, Xavier, 31

Grabiner, Judith, 10

Graham, Ronald, ix, 64

Granville, Andrew, ix, 31

GraPHedron, 296

gravitational boosting, 38

Gravner, J., 299

Gray, Alfred, 89

Green, Benjamin, 288

Gregory constant, 326

Gregory, James

Gregory’s series, 50, 52, 105

Gregory–Leibniz formula, 105,
139, 205

Griffeath, David, 31, 96†, 299

Grivaux, Richard, 252, 319

Gross, David, 294

Grossman, Jerry, 31, 173
Guilloud, Jean, 114, 135

Hadamard, Jacques, 10†, 13
prime number theorem, 10

Haenel, Christoph, ix, 143†
Hales, Thomas, 31, 36
Halmos, Paul, 243
Hamming, Richard, 47†
happy end problem, 80
Hardy, G. H., 11†, 33†, 43†, 98, 241
Hardy-Littlewood sum, 327
harmonic number, 310, 332
Hatta, 336
Hawking, Stephen, 293
Hayes, Brian, 41†
Hepting, Darrell, 48
Hermite polynomial, 322, 323
Hersh, Reuben, 41
Herzberg, Gerhard, 97
Heyting, Arend, 111
Hida, Yozo, x
high-precision arithmetic, 218–229

advanced operations, 225–229
arbitrary precision, 221–222
double-double, 219–221
fast Fourier transform (FFT),

223–225
IEEE-754 standard, 218
Karatsuba Multiplication,

222–223
quad-double, 219–221

Hilbert, David, 36
Hitchhiker’s Guide to the Galaxy, 117
HJLS algorithm, see constant

recognition
Hoffman, David, 100
Hohmann transfer ellipses, 38
Hölder’s inequality, 190, 192, 194
Holte’s matrix, 302
hot spot lemma, 155, 166
Hurwitz ζ-function, 287
hyperbolic knot complement, 290
hypergeometric function

3F2 transformation, 255
Bailey’s transformation, 252
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balanced 3F2, 255
calculation of π, 122
evaluation, 251–256
Gauss’ evaluation, 310, 319
normal numbers, 167
Pfaff-Saalschútz identity, 255
Whipple’s formula, 255

hypocycloid, 84

identify, 258, 318
Indo-Arabic number system, 104
integer relation algorithm, 53–54,

63–64, 230
calculation of π, 123
LLL, 54
polynomials, 53
PSLQ, 54

integer relation methods, 269
integer sequence, see sequence
intuitionism, 76
Inverse Symbolic Calculator, 285
irrationality estimate, 336
Ising integral, 260–271, 290

linear differential equation,
261–267, 299

linear differential operator
nth symmetric power, 265

linear recurrence, 260–270, 299
Mellin transform, 264
recursion algorithm, 267–270

Jeffrey, David, ix, 179, 182, 183†
Joint Photographic Experts Group

(JPEG), 240
quantized images, 241‡

The Joy of Pi, 116
Joyce, David, 31, 33
Joyce, Jeff, ix
JPEG, see Joint Photographics

Experts Group
Julia sets, viii, 33, 238

16,000 Poles of B(v), 238‡

Kakeya’s hypocycloid, 83‡
Kakeya’s problem, 83
Kamata, Yoshikiyo, 113

Kanada, Yasumasa, 7–8, 31, 64,
110–112, 114, 115

frequency of digits of π, 144
Kaplansky, Irving, 243
Kauers, Manuel, 268
Kelly, L. M. , 18

proof illustration, 19‡
Kepler, Johanes, 36
Keynes, John Maynard, 39†, 44†, 102†
Khintchine’s constant, 144, 235, 311
Klein, Ester, 80
Klein, Felix, 16, 17
knots, 94
Knuth sum, 327
Knuth, Donald, 121
Korepin, see Boos-Korepin conjecture
Krantz, Steven, 289
Kreminski, Rick, 301
Kuhn, Thomas, 12†

L-series, 290
Lagrange, 248, 258

four-squares theorem, see
four-squares theorem

Lakatos, Imre, 41, 42†
Lam, Clement, 4
Lambert’s W function, 306, 341
Lambert, Johann Heinrich, 107
Land, Edwin, 45
Landen, John, 210
Laplace transform, 196
Law and Order, 117
law of small numbers, 332
Legendre, Adrien-Marie, 107, 200

Legendre’s relation, 117, 200
Lehmann, W., 113
Lehmer’s polynomial, 8
Lehrer, Tom, 38†
Leibniz, Gottfried Wilhelm, 104, 241†
Lenstra, Hendrik, 30, 38
Lenstra-Lenstra-Lovasz algorithm, see

LLL
Levy, Silvio, viii†
Lewin, Leonard, 90, 91, 210, 211†
Lewis, Adrian, ix
Li, Xiaoye, x
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Life of Pi, 116, 142†
Liljedahl, Peter, 42
Lindemann, Ferdinand von, 107
Liouville’s function, 334
Liouville, Joseph

Liouville numbers, 165
Liouville’s theorem, 171, 177

Lisonek, Petr, ix
Littlewood, John Edensor, 6, 67,

82–83, 84†, 98
Liu Hui, 113
LLL, 54, 230
log sine integral, 90
logistic curve

bifurcation, 335
logistic iteration, 52, 52–55

Bifurcation plot, 53‡
Lucas numbers, 239, 302
Luke, Russell, ix
Lyapunov exponent, 335, 336
Lykken, David, 44

Machin, John, 105, 113
Machin formula, 105, 135

Macklem, Mason, x
Madachy, J.S., 301
Madelung’s constant, 144, 303, 328
Madhava of Sangamagramma, 107,

113
Mahlburg, Karl, 321
Mahler’s theorem

Hatta’s improvement, 336
Mandelbrot, Benoit, 48, 144, 347

Mandelbrot set, 33
Mann iteration, 80
Manna, Dante, 271
Markov chain, 302
Martel, Yann, see Life of Pi
Martelli, Mario, 307
mathematics

humanist philosophy of, 41
standards of rigor in, 41

matrix
Holte, 302
reshaping, see reshaping matrix
sequence, see sequence

Matrix Reloaded, 116
Matsunaga, Yoshisuke, 113
Maxwell, James Clerk, 288
Mayer, Ernst, 7
McLaughlin, James, 345
mean iteration, 203

Archimedian iteration, 204
Gaussian iteration, 203
logarithmic mean, 203

mean-median equation, 306
Meijer G-function, 260
Mellin transform, 264
Merit Factor problem, 6
Mersenne primes, 4
Mertens constant, 315
meterology, 43
method of random projections, 308
Millennium Prize, 4, 39
Milnor, John, 11†
MinimalPolynomial, 295
Minovitch, Michael, 38
moment generating function, 276, 323
Monte Carlo simulation, 141
Montgomery, Hugh

Riemann zeta function, 71–74
zero spacing plot, 73‡

Monthly problem, 297, 299
Moody, Robert, 86†
Moore’s Law, 295
Moore, Gordon, 3

Moore’s Law, vii, 2, 4
Morin, Mathew, ix
Mueller, Julia, 71
multidimensional Gaussian

quadrature, 339
multivalued function, 182
Mumford, David, ix, 87†

Napier constant, 326
Napier, John, 76
Nemeth, Tomas, 89
New York Times, 310, 313
Newcomb, Simon, 148
Newton, Isaac, 43–45, 103†, 104, 113

calculation of π, 106‡, 105–106
Newton’s method, 176, 226–229
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Niven, Ivan, 139
normal number, 143, 143–163

absolutely normal, 143
addition, 166
multiplication, 165
topological properties, 165

North, Joseph Roy, 50

O’Donnell, James, 98†
Odlyzko, Andrew, ix, x, 72
Oloa, Olivier, 296
Ono, Ken, 321
Otho, Valentius, 113

P versus NP problem, 4–5
Padé approximant, 251, 257
Papadopoulos, Jason, 7
parallel computer platforms, 4
Paris-Harrington theorem, 35
Parseval’s equation, 58
partial fraction, 335
partition function, 320

crank congruences, 321
rank congruences, 321

Pascal, Blaise
Pascal’s triangle, 47–49

binomial coefficients, 47–48
triangles mod 2, 49‡

Pell’s equation, 318
Penrose, Roger, 111
Pentanacci number, 249
perceptual dipper effect, 240
Percival, Colin, 7, 124, 127
Perelman, Grigori, 39
periodic attractor, 160, 162
Peters, Klaus, x, 100
Pfaff-Saalschútz identity, see

hypergeometric function
physics, 2
Pi (movie), 116
π, 258

algorithms for calculating, 103
BBP algorithm, 119–125
Borwein quartic algorithm,

110, 117–118
early algorithms, 104–107

Salamin–Brent algorithm,
109–110, 227

algorithms for computing
spigot algorithm, 140

BBP formula, 314
Biblical references, 103, 136
calculations of, 8

continued fraction, 108, 301, 313
crossword, 313
early estimates, 103

formulas for calculating, 107–109,
111, 115, 119, 122, 126, 134,
135

frequency of digits, 144
irrationality, 107, 139
popular media, 116–117, 142

quartic algorithm, 326
random walk, 147‡
strings of digits, 110

transcendental, 107
Vieta’s formula, 301

Pick’s theorem, 17–18
Pinsky, Mark, 305
Planck, Max, 12†
platonism, 241
Plouffe, Simon, 51, 119, 120
Pochhammer symbol, 255

Poincaré, Henri, 241†
Poincaré Conjecture, 39, 99

Poisson distribution, 305

Poisson summation formula, 286
Pollak, Henry, 64
Polya, George, vii†

change illustration, 21‡
pictorial representations, 21–22

polygamma function, see Psi function

polylogarithms, 287, 309
Euler sums, 60

Pomerance, Carl, 66, 156, 167

Pope John-Paul II, 99
Popper, Karl, 347

power series sequence, see sequence
primality checking, 6
primality testing, 289

prime counting function π(x), 66, 71
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prime number theorem, 13, 65–66, 315
primes

in arithmetic progression, 288
primitive prime factor, 132
principal-valued function, 182
probability, 43
projective plane, 4
proper power, 132
Prouhet-Tarry-Escott problem, 320

Broadhurst solution, 320
pseudorandom generators, 141, 154
Psi function, 207
PSLQ, 54, 55, 123, 127, 130, 230–232,

290, 291, 338, 341
calculation of π, 122
Feynman diagrams, 60, 61
multipair, 232–234
statement of algorithm, 230

psychology, 2
Ptolemy, 113

Q-linear Machin-type BBP arctangent
formula, 132

QD software, 284
QRS constant, 283–288
quadratic irrationalities, 258
quantum computing, 5, 6, 42
quantum physics, 2, 12, 43, 74
quasi-Monte Carlo methods, 338
qubit, 42
Quinn, D., see QRS constant

Rademacher, Hans, 99
radical, 295
Rahman, Mizan, 255
Ramanujan’s Lost Notebook, 345
Ramanujan’s partition congruences,

320
Ramanujan, Srinivasa, 43, 108, 115,

172
75th birthday stamp, 109‡
calculation of π, 108–109
Catalan’s constant, 238
lost notebook, 213

Ramsey’s theorem, 34–35
Rand, R., see QRS constant

random walk, 334
rational sequence, see sequence
Record, Robert, 12†
Reese, George, 32
Remiddi-Vermaseren function, 309
reshaping matrix, 247, 320
Richardson extrapolation, 285
Riemann hypothesis, 315, 334
Riemann zeta function, 58

Euler sums, 60
Feynman diagrams, 61
Hurwicz zeta function, 236
modulus, 97
Modulus plot, 97†
normal numbers, 167
normality of, 144
prime numbers, 70–71
zero spacing plot, 72‡

Riemann, Georg Bernhard, 10, 100
manuscript, pg. 1, 68‡
manuscript, pg. 2, 69‡
Prime Number Theorem, 67–70
Riemann Hypothesis, 6, 70, 72,

74, 98, 99, 117
rising factorial, 255
Rivoal, Tanguy, 319
Robinson, John

Firmament sculpture, 85‡
Romanus, Adrianus, 113
RootApproximant, 295
Roth’s theorem, 153
Rudolph, Daniel, ix
Russell, Bertrand, 10, 33, 86, 86†, 241
Rutherford, W., 113

Salamin, Eugene, 109, 136, 227
Santayana, George, 102†
Sarnak, Peter, 40†
Scharein, Rob, x, 17
Schultz, Harris, 307
Schwalbe, Dan, 89
Schwarz inequality, 184, 185
Sebah, Pascal, 31
Segré, Gino, 346
Seki Kowa, 113
Sendov, Hristo, ix
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sequence

Appell, 275, 277
integer, 249
matrix, 333
power series, 256

rational, 244–246
van der Corput, 311

Serrano, Luis, ix

Shanks, Daniel, 110, 114
Shanks, William, 105, 107, 113
Sharp, Abraham, 113

Shiflett, Ray, 307
Shor, Peter, 5, 42
Siddhanta, 113
Siegel, Carl Ludwig, 70

Sierpinski triangle, 308
Sierpinski, Waclaw, 164

paper triangle, 96‡
random triangle, 50‡
Sierpinski cube, 32, 32‡
Sierpinski triangle, 48–50, 96

Sierpinski’s number, 169
simple connectedness, 39
The Simpsons, 116
sinc sum, 314, 316, 328

singular value, 117
Skewes number, 67
Sloane’s Encyclopedia, 246, 249–250,

258, 333
Sloane, Neil, ix, 29, 51
Smolin, Lee, 294

snowfake, 299
sociology, 2
Sohn, Jaebum, 345

spin integral, 337–340
Square Root Bug, 180
Star Trek, 116
Stephanos, 19

Stern-Stolz theorem, 344
Stirling, James, 13

Stirling number, 324

Stirling’s formula, 197, 197–198,
305

Stoicheff, Boris, 97

Stoneham, R. G., 156

Störmer, F.C.W., 111
Strodt, W.

operator, 272–277
polynomial, 274–283, 322

exponential distribution, 325
Gaussian asymptotic, 326
Gaussian density, 323
Poisson distribution, 323

Strogatz, S. H., see QRS constant
strong law of large numbers, 164
Strong Terminating Conjecture, 307
stuffle product, 343
Sugimoto, Hiroshi, 310
sums of squares, 246–248

sums of 2 squares, 246
sums of 3 squares, 247
sums of 4 squares, 248, 300

sunrise integral, 331
supernovas, 2
Susskind, Leonard, 294
Swan, John W., 347
Sylvester, James, 18–19

Sylvester’s theorem, 17–18
Szekeres, George, 80

Takano, K., 111
Takebe, Katahiro, 113
Taleb, Nassim N., 346
tangent numbers, 51–52
tanh-sinh quadrature, 290
Tao, Terence, 260, 288
Tartaglia, Niccolo Fontana, 182
Taylor series, 281
theta function, 246, 335, 340
Thurston, Bill, 100†
topology, experimental, 94
Torus and 2-sphere, 40‡
trapezoidal formula, 198
Trefethen, Nick, x, 22, 30
trigonometric series, 327
trilogarithm, 210
trinomial number, 332
triplication formula for Γ, 319
Tsu Chung-Chih, 104, 107, 113
Tukey, J. W., 215†
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Turing, Alan, 1, 241, 242
Turing machines

halting problem for Turing
machines, 170

Ulam, Stanislaw, 141
ultra-spherical polynomial, 252
uncertainty principle, 183–188

vacuum energy density, 293
vacuum-diagram integral, 299
Van Ceulen, Ludolph, 113
van der Corput sequence, see sequence
Vertesi, Janet, x
Vierling, Angela, 16, 32
Viéte, Francois, 113, see π

Viéte’s product, 212
Villegas, Fernando, 244, 332
von Neumann, John, 1, 43, 241, 242

calculation of π, 108
Von Vega, Georg F., 113

Wagon, Stan, 89, 141, 336
Wang Fau, 113
Weak Terminating Conjecture, 307
Weeks, Jeff, 32, 94†

2-bridge discovery, 95‡
Weinberg, Steven, 293
Weiss, Asia, ix, x, 88†
Weisstein, Eric, 28
Whipple’s formula, see

hypergeometric function

Wieting, Thomas, 312
Wiles, Andrew, 9
Wilf-Zeilberger algorithm, see WZ

method
Winfree model, 283
Witten, Edward, 99
Wolfram, Stephen, 49
Wrench, John W., 114
Wright, Tim, 30
WZ method, 252

Yee, Ae Ja, 345

Z-linear Machin-type BBP arctangent
formula, 132

Zagier, Don, 66†
Zaharescu, Alexandru, 345
Zeilberger’s algorithm, 254, 297
Zeilberger, Doron, 299
zero-point mass density, 293
ζ-function

alternating ζ, 337
computation of zeros, 341
error of ζ(2), 310
even values

Apéry formula, 252
generating function, 251

Hurwitz ζ, 287
multivariate zeta value, 341–344
odd-values

generating function, 319
Zucker, John, ix
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