Experimental Mathematics in Action
Rough Schedule

 Five morning lectures (2 hrs with break in middle). They
will more-or-less correspond as follows:
— L1-L2: Chapter 1
— L2-L3: Chapters 2 and 3
— L4: Chapters 5 and 7
— L5: Chapter 8

 Four hands on afternoons. (Maple, Mma or web-based)
e Allresources are at http://ddrive.cs.dal.ca/~isc/portal
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“Experimental mathematics has not only come of age but is quickly maturing, as this book shows so
clearly. The authors display a vast range of mathematical understanding and connection while at the same
time delineating various ways in which experimental mathematics is and can be undertaken, with startling
effect.”

—~Prof. John Mason, Open University and University of Oxford
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The last twenty years have been witness to a fundamental shift in the way mathematics is
practiced. With the continued advance of computing power and accessibility, the view that “real
mathematicians don't compute” no longer has any traction for a newer generation of
mathematicians that can really take advantage of computer-aided research, especially given the
scope and availability of modern computational packages such as Maple, Mathematica, and
MATLAB. The authors provide a coherent variety of accessible examples of modern
mathematics subjects in which intelligent computing plays a significant role.

“Computing is to mathematics as telescope is to astronomy: it might not explain things,
but it certainly shows ‘what's out there.” The authors are expert in the discovery of new
mathematical ‘planets,” and this book is a beautifully written exposé of their values,
their methods, their subject, and their enthusiasm about it. A must read.”

—FProf. Herbert S. Wilf, author of generatingfunctionology
“From within the ideological blizzard of the young field of Experimental Mathematics
comes this tremendous, clarifying book. The authors—all experts—convey this
complex new subject in the best way possible; namely, by fine example. Let me put it
this way: Discovering this book is akin to finding an emerald in a snowdrift.”

—Richard E. Crandall, Apple Distinguished Scientist, Apple, Inc.
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Things Computer are Good For

*High Precision Arithmetic: the microscope

*Formal Power-Series manipulations: 6, 652
Continued Fractions: changing representations
Partial Fractions : changing representations
Pade’ Approximations: changing representations
*Recursion Solving: ‘rsolve’ and ‘gfun’

sInteger Relation Algorithms: ‘identify’

Creative Telescoping: Wilf-Zeilberger

e Pictures, Pictures, Pictures



Ten Things to Try Them On, |

1. ldentify
1.4331274267223117583171834557759918204315127679060

2. Compute the following to 50 digits for N=1,2,3,4,5 and explain the
answer 5.10Y (—1)"

4
nz::O 2n+ 1

3. Find the first three numbers expressible as the sum of two cubes Iin
exactly two ways. The firstis 1729=123+1=103+93,

4. Evaluate 12401 — )%
/O dx

1 4 22
5. Evaluate for sinc(x) =sin(x)/x

+ yj sinc(n) sinc(n/3) sinc(n/5) - - - sinc(n/23) sinc(n/29)

n=1

0
= / sinc(x) sinc(x/3) sinc(x/!

N | =



Ten Things to Try Them On, |

9. Determine the behaviour of the dynamical system

2 2
P P

1<) Ag Y ranaes over
'y / A NS / 1 A vvu N N ¥

10. Minimize
exp(sin(50x))+-sin(60eY)4sin(70sinx)+ sin(sin(80y))—

sin(10(z 4+ v)) + (2 +y2)/4
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