
APPENDIX II: INTEGER RELATIONS

The USES of LLL and PSLQ

I A vector (x1, x2, · · · , xn) of reals possesses an in-

teger relation if there are integers ai not all zero

with

0 = a1x1 + a2x2 + · · ·+ anxn.

PROBLEM: Find ai if such exist. If not, obtain

lower bounds on the size of possible ai.

• (n = 2) Euclid’s algorithm gives solution.

• (n ≥ 3) Euler, Jacobi, Poincare, Minkowski, Per-

ron, others sought method.

• First general algorithm in 1977 by Ferguson &

Forcade. Since ’77: LLL (in Maple), HJLS,

PSOS, PSLQ (’91, parallel ’99).
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I Integer Relation Detection was recently ranked

among “the 10 algorithms with the greatest influ-

ence on the development and practice of science

and engineering in the 20th century.” J. Dongarra,

F. Sullivan, Computing in Science & Engineering 2

(2000), 22–23.

Also: Monte Carlo, Simplex, Krylov Subspace, QR

Decomposition, Quicksort, ..., FFT, Fast Multipole

Method.

A. ALGEBRAIC NUMBERS

Compute α to sufficiently high precision (O(n2))

and apply LLL to the vector

(1, α, α2, · · · , αn−1).

• Solution integers ai are coefficients of a polyno-

mial likely satisfied by α.

• If no relation is found, exclusion bounds are ob-

tained.
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B. FINALIZING FORMULAE

I If we suspect an identity PSLQ is powerful.

• (Machin’s Formula) We try PSLQ on

[arctan(1),arctan(
1

5
),arctan(

1

239
)]

and recover [1, -4, 1]. That is,

π

4
= 4arctan(

1

5
)− arctan(

1

239
).

[Used on all serious computations of π from

1706 (100 digits) to 1973 (1 million).]

• (Dase’s ‘mental‘ Formula) We try PSLQ on

[arctan(1),arctan(
1

2
),arctan(

1

5
),arctan(

1

8
)]

and recover [-1, 1, 1, 1]. That is,

π

4
= arctan(

1

2
) + arctan(

1

5
) + arctan(

1

8
).

[Used by Dase for 200 digits in 1844.]
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C. ZETA FUNCTIONS

I The zeta function is defined, for s > 1, by

ζ(s) =
∞∑

n=1

1

ns
.

• Thanks to Apéry (1976) it is well known that

S2 := ζ(2) = 3
∞∑

k=1

1

k2
(
2k
k

)

A3 := ζ(3) =
5

2

∞∑

k=1

(−1)k−1

k3
(
2k
k

)

S4 := ζ(4) =
36

17

∞∑

k=1

1

k4
(
2k
k

)

I These results strongly suggest that

ℵ5 := ζ(5)/
∞∑

k=1

(−1)k−1

k5
(
2k
k

)

is a simple rational or algebraic number. Yet, PSLQ

shows: if ℵ5 satisfies a polynomial of degree ≤ 25

the Euclidean norm of coefficients exceeds 2×1037.
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D. ZAGIER’S CONJECTURE

For r ≥ 1 and n1, . . . , nr ≥ 1, consider:

L(n1, . . . , nr;x) :=
∑

0<mr<...<m1

xm1

m
n1
1 . . . mnr

r
.

Thus

L(n;x) =
x

1n
+

x2

2n
+

x3

3n
+ · · ·

is the classical polylogarithm, while

L(n, m;x) =
1

1m

x2

2n
+ (

1

1m
+

1

2m
)

x3

3n
+ (

1

1m
+

1

2m
+

1

3m
)

x4

4n

+ · · · ,

L(n, m, l;x) =
1

1l

1

2m

x3

3n
+ (

1

1l

1

2m
+

1

1l

1

3m
+

1

2l

1

3m
)

x4

4n
+ · · · .

• The series converge absolutely for |x| < 1 and

conditionally on |x| = 1 unless n1 = x = 1.
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These polylogarithms

L(nr, . . . , n1;x) =
∑

0<m1<...<mr

xmr

mnr
r . . . m

n1
1

,

are determined uniquely by the differential equations

d

dx
L(nr, . . . , n1;x) =

1

x
L(nr − 1, . . . , n2, n1;x)

if nr ≥ 2 and

d

dx
L(nr, . . . , n2, n1;x) =

1

1− x
L(nr−1, . . . , n1;x)

if nr = 1 with the initial conditions

L(nr, . . . , n1; 0) = 0

for r ≥ 1 and

L(∅;x) ≡ 1.
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Set s := (s1, s2, . . . , sN). Let {s}n denotes concate-

nation, and w :=
∑

si.

Then every periodic polylogarithm leads to a func-

tion

Ls(x, t) :=
∑
n

L({s}n;x)twn

which solves an algebraic ordinary differential equa-

tion in x, and leads to nice recurrences.

A. In the simplest case, with N = 1, the ODE is

DsF = tsF where

Ds :=
(
(1− x)

d

dx

)1 (
x

d

dx

)s−1

and the solution (by series) is a generalized hyper-

geometric function:

Ls(x, t) = 1 +
∑

n≥1

xn ts

ns

n−1∏

k=1

(
1 +

ts

ks

)
,

as follows from considering Ds(xn).
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B. Similarly, for N = 1 and negative integers

L−s(x, t) := 1 +
∑

n≥1

(−x)n ts

ns

n−1∏

k=1

(
1 + (−1)k ts

ks

)
,

and L−1(2x− 1, t) solves a hypergeometric ODE.

I Indeed

L−1(1, t) =
1

β(1 + t
2, 1

2 − t
2)

.

C. We may obtain ODEs for eventually periodic

Euler sums. Thus, L−2,1(x, t) is a solution of

t6 F = x2(x− 1)2(x + 1)2 D6F

+ x(x− 1)(x + 1)(15x2 − 6x− 7)D5F

+ (x− 1)(65x3 + 14x2 − 41x− 8)D4F

+ (x− 1)(90x2 − 11x− 27)D3F

+ (x− 1)(31x− 10)D2F + (x− 1)DF.
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• This leads to a four-term recursion for F =∑
cn(t)xn with initial values c0 = 1, c1 = 0, c2 =

t3/4, c3 = −t3/6, and the ODE can be simpli-

fied.

We are now ready to prove Zagier’s conjecture.

Let F (a, b; c;x) denote the hypergeometric function.

Then:

Theorem 2 (BBGL) For |x|, |t| < 1 and integer

n ≥ 1

∞∑

n=0

L(3,1,3,1, . . . ,3,1︸ ︷︷ ︸
n−fold

;x) t4n

= F

(
t(1 + i)

2
,
−t(1 + i)

2
; 1;x

)
(9)

× F

(
t(1− i)

2
,
−t(1− i)

2
; 1;x

)
.

70



Proof. Both sides of the putative identity start

1 +
t4

8
x2 +

t4

18
x3 +

t8 + 44t4

1536
x4 + · · ·

and are annihilated by the differential operator

D31 :=
(
(1− x)

d

dx

)2 (
x

d

dx

)2
− t4 .

QED

• Once discovered — and it was discovered af-

ter much computational evidence — this can

be checked variously in Mathematica or Maple

(e.g., in the package gfun)!

Corollary 3 (Zagier Conjecture)

ζ(3,1,3,1, . . . ,3,1︸ ︷︷ ︸
n−fold

) =
2π4n

(4n + 2)!
(10)
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Proof. We have

F (a,−a; 1; 1) =
1

Γ(1− a)Γ(1 + a)
=

sinπa

πa

where the first equality comes from Gauss’s evalu-

ation of F (a, b; c; 1).

Hence, setting x = 1, in (9) produces

F

(
t(1 + i)

2
,
−t(1 + i)

2
; 1; 1

)
F

(
t(1− i)

2
,
−t(1− i)

2
; 1; 1

)

=
2

π2t2
sin

(
1 + i

2
πt

)
sin

(
1− i

2
πt

)

=
coshπt− cosπt

π2t2
=

∞∑

n=0

2π4nt4n

(4n + 2)!

on using the Taylor series of cos and cosh. Com-

paring coefficients in (9) ends the proof. QED
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