APPENDIX II: INTEGER RELATIONS'
The USES of LLL and PSLQ'

» A vector (x1,xo, -+ ,xn) Of reals possesses an in-
teger relation if there are integers a; not all zero
with

O=ajx1+arxo+ -+ anxn.

PROBLEM: Find a; if such exist. If not, obtain
lower bounds on the size of possible a;.

e (n=2) Euclid’s algorithm gives solution.

e (n > 3) Euler, Jacobi, Poincare, Minkowski, Per-
ron, others sought method.

e First general algorithm in 1977 by Ferguson &
Forcade. Since '77: LLL (in Maple), HJLS,
PSOS, PSLQ ('91, parallel '99).



» Integer Relation Detection was recently ranked
among ‘the 10 algorithms with the greatest influ-
ence on the development and practice of science
and engineering in the 20th century.” J. Dongarra,
F. Sullivan, Computing in Science & Engineering 2
(2000), 22—23.

Also: Monte Carlo, Simplex, Krylov Subspace, QR
Decomposition, Quicksort, ..., FFT, Fast Multipole
Method.

A. ALGEBRAIC NUMBERS I

Compute « to sufficiently high precision (O(n?))
and apply LLL to the vector

(17 Q) C¥2, T 7an_1)‘

e Solution integers a; are coefficients of a polyno-
mial likely satisfied by o.

e If no relation is found, exclusion bounds are ob-
tained.



B. FINALIZING FORMULAE I

» If we suspect an identity PSLQ is powerful.

e (Machin’s Formula) We try PSLQ on

1 1
arctan(1l),arctan(—), arctan(——
[arctan(1) () (555

and recover [1, -4, 1]. That is,
1 1
L= 4 arctan(=) — arctan(—).
4 5 239

[Used on all serious computations of « from
1706 (100 digits) to 1973 (1 million).]

e (Dase'’s ‘mental’ Formula) We try PSLQ on

1 1 1
[arctan(l),arctan(E),arctan(g),arctan(g)]
and recover [-1, 1, 1, 1]. That is,
7 1 1 1
— = arctan(— arctan(— arctan(—).
. (5) +arctan(;) + arctan(2)

[Used by Dase for 200 digits in 1844.]



C. ZETA FUNCTIONSI

» [ he zeta function is defined, for s > 1, by
< 1
¢(s) = Z "
n=1 n

e Thanks to Apéry (1976) it is well known that

e 1
SQ::C(Q) — 32 5 (2k
k=1 k ( k )
5 X (_1)k—1
A3 L= C(3) — = ok
2= K3 (%)
36 X 1
Sq:=¢4) = — — BN
17 =1 k4<k)
» [ hese results strongly suggest that
00 (_1)k—1
Ng = C(S)/ Z 5 (2k
k=1 k (k)

IS a simple rational or algebraic number. Yet, PSLQ
shows: if Ng satisfies a polynomial of degree < 25
the Euclidean norm of coefficients exceeds 2 x 1037 .



D. ZAGIER’S CONJECTUREI

For»>1 and ny,...,n, > 1, Cconsider:
I ) 3 e
Niy...,Ny, L) .= n1 ot
O<m,r<...<m1 ml e My
Thus
2 3
Xr Xr xr
IS the classical polylogarithm, while
1 z2 1 1 23 1 1 1zt
L(n,m;z) = 1_m§+(1m+2m)3n+(1_m+2_m+3_m)ﬂ
_|_ cee
11 23 1 1 1 1 1 1 2%
L(n,m,l;x) = ——x——l—(—_-|—___|___)w__|_..._

1l2m 3n 1l om 1l 3m 2l 3m’ 4n

e The series converge absolutely for || < 1 and
conditionally on |z| = 1 unless ny =z = 1.



T hese polylogarithms

my

i
L(’I’Lr,...,’l’bl;aﬁ): Z Ny n1 o
O<mqi<...<myp my ... MY

are determined uniquely by the differential equations

d 1
— L(ny,...,n1;z) = —L(ny—1,...,no,n1;,x)
dx x
if n, > 2 and
d 1
— L(ny,...,no,ny1;2) = —— L(np_q,...,n1,T)
dx l—=x

If n, = 1 with the initial conditions
L(nr,...,nl;O) — O
for r > 1 and

L(0;x) = 1.



Set 5:= (s1,8p,...,8N). Let {s}, denotes concate-
nation, and w =) s;.

Then every periodic polylogarithm leads to a func-
tion

Lg(z,t) := ) L({s}n; z)t""

which solves an algebraic ordinary differential equa-
tion in x, and leads to nice recurrences.

A. In the simplest case, with N = 1, the ODE is
DsF = t5F where

o= (00 d) (o)

and the solution (by series) is a generalized hyper-
geometric function:

s n—1 s
Lg(a:,t)=1—|—Za:nt—8 H (1—|—t ),

1.5
n>1 v k=1 k

as follows from considering Dg(z™).



B. Similarly, for N = 1 and negative integers

s n—1 s
L) =14 X o ST (14 0P )

n>1 k 1
and L_—l(Qa: — 1,t) solves a hypergeometric ODE.

» Indeed

1
L—(1,t) = TR
2’2 2

C. We may obtain ODEs for eventually periodic
Euler sums. Thus, L_5 1(z,t) is a solution of

22 (xz — 1)%(z + 1)2 D°F

v(z — 1)(z + 1)(152°2 — 62 — 7) D°F
(z — 1)(65z3 4+ 142° — 41x — 8) D*F
(z — 1)(90z° — 11z — 27) D3F

(z —1)(31z — 10) D°F 4+ (z — 1) DF.

o

+ + + +



e This leads to a four-term recursion for F =
Sen(t)x™ with initial values ¢cg = 1,¢1 = 0,¢p =
t3/4,c3 = —t3/6, and the ODE can be simpli-
fied.

We are now ready to prove Zagier's conjecture.
Let F'(a,b; c;, x) denote the hypergeometric function.
Then:

Theorem 2 (BBGL) For |x|,|t| < 1 and integer

n>1
0. @)
3 L(3,1,3,1,...,3,1;2) t*"
n=0 n—?}gold
t(1+i) —t(1+i
— F<( ;_Z), (2+Z>;1;x> (9)

. F (t(l —z’)’—t(l —7;); 1;.51;).
2 2



Proof. Both sides of the putative identity start

th 5 th 5 8444t
14 2 -
T T1g” T 1536 °

and are annihilated by the differential operator

D31 1= ((1 — ) i)Q (xi)Q — %,

dx dx
QED
e Once discovered — and it was discovered af-
ter much computational evidence — this can

be checked variously in Mathematica or Maple
(e.g., in the package gfun)!

Corollary 3 (Zagier Conjecture)

27.‘.471
C(§7173717"'737 ];) — 4 )1 (10)
n—?old ( n T )




Proof. We have

1 __Sinma
rM(1—a)f(1+a)  7a
where the first equality comes from Gauss's evalu-
ation of F(a,b;c;1).

F(a,—a;1;1) =

Hence, setting x = 1, in (9) produces

. (t(l—l—i)’—t(l—l—i);1;1> P (t(l —i),—t(l—i);1;1>
2 2 2 2

2 . 142 . 1 —1
= — sm( 7rt> sm( 7Tt>
2t2 2 2

o0 27T4nt4n

coshrt — cosnt

- T2t2 = 2 (4n 4+ 2)!

n=0

on using the Taylor series of cos and cosh. Com-
paring coefficients in (9) ends the proof. QED





