APPENDIX II: INTEGER RELATIONS

The USES of LLL and PSLQ

- A vector $\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ of reals possesses an integer relation if there are integers a_{i} not all zero with

$$
0=a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n} .
$$

PROBLEM: Find a_{i} if such exist. If not, obtain lower bounds on the size of possible a_{i}.

- ($n=2$) Euclid's algorithm gives solution.
- ($n \geq 3$) Euler, Jacobi, Poincare, Minkowski, Perron, others sought method.
- First general algorithm in 1977 by Ferguson \& Forcade. Since '77: LLL (in Maple), HJLS, PSOS, PSLQ ('91, parallel '99).
- Integer Relation Detection was recently ranked among "the 10 algorithms with the greatest influence on the development and practice of science and engineering in the 20th century." J. Dongarra, F. Sullivan, Computing in Science \& Engineering 2 (2000), 22-23.

Also: Monte Carlo, Simplex, Krylov Subspace, QR Decomposition, Quicksort, ..., FFT, Fast Multipole Method.

A. ALGEBRAIC NUMBERS

Compute α to sufficiently high precision $\left(O\left(n^{2}\right)\right.$) and apply LLL to the vector

$$
\left(1, \alpha, \alpha^{2}, \cdots, \alpha^{n-1}\right)
$$

- Solution integers a_{i} are coefficients of a polynomial likely satisfied by α.
- If no relation is found, exclusion bounds are obtained.

B. FINALIZING FORMULAE

If we suspect an identity PSLQ is powerful.

- (Machin's Formula) We try PSLQ on

$$
\left[\arctan (1), \arctan \left(\frac{1}{5}\right), \arctan \left(\frac{1}{239}\right)\right]
$$

and recover [1, -4, 1]. That is,

$$
\frac{\pi}{4}=4 \arctan \left(\frac{1}{5}\right)-\arctan \left(\frac{1}{239}\right)
$$

[Used on all serious computations of π from 1706 (100 digits) to 1973 (1 million).]

- (Dase's ‘mental‘ Formula) We try PSLQ on $\left[\arctan (1), \arctan \left(\frac{1}{2}\right), \arctan \left(\frac{1}{5}\right), \arctan \left(\frac{1}{8}\right)\right]$ and recover $[-1,1,1,1]$. That is,

$$
\frac{\pi}{4}=\arctan \left(\frac{1}{2}\right)+\arctan \left(\frac{1}{5}\right)+\arctan \left(\frac{1}{8}\right)
$$

[Used by Dase for 200 digits in 1844.]

C. ZETA FUNCTIONS

- The zeta function is defined, for $s>1$, by

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}} .
$$

- Thanks to Apéry (1976) it is well known that

$$
\begin{aligned}
& S_{2}:=\zeta(2)=3 \sum_{k=1}^{\infty} \frac{1}{k^{2}\binom{2 k}{k}} \\
& A_{3}:=\zeta(3)=\frac{5}{2} \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k^{3}\binom{2 k}{k}} \\
& S_{4}:=\zeta(4)=\frac{36}{17} \sum_{k=1}^{\infty} \frac{1}{k^{4}\binom{2 k}{k}}
\end{aligned}
$$

- These results strongly suggest that

$$
\aleph_{5}:=\zeta(5) / \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k^{5}\binom{2 k}{k}}
$$

is a simple rational or algebraic number. Yet, PSLQ shows: if \aleph_{5} satisfies a polynomial of degree ≤ 25 the Euclidean norm of coefficients exceeds 2×10^{37}.

D. ZAGIER'S CONJECTURE

For $r \geq 1$ and $n_{1}, \ldots, n_{r} \geq 1$, consider:

$$
L\left(n_{1}, \ldots, n_{r} ; x\right):=\sum_{0<m_{r}<\ldots<m_{1}} \frac{x^{m_{1}}}{m_{1}^{n_{1}} \ldots m_{r}^{n_{r}}}
$$

Thus

$$
L(n ; x)=\frac{x}{1^{n}}+\frac{x^{2}}{2^{n}}+\frac{x^{3}}{3^{n}}+\cdots
$$

is the classical polylogarithm, while

$$
\begin{aligned}
L(n, m ; x) & =\frac{1}{1^{m}} \frac{x^{2}}{2^{n}}+\left(\frac{1}{1^{m}}+\frac{1}{2^{m}}\right) \frac{x^{3}}{3^{n}}+\left(\frac{1}{1^{m}}+\frac{1}{2^{m}}+\frac{1}{3^{m}}\right) \frac{x^{4}}{4^{n}} \\
& +\cdots, \\
L(n, m, l ; x) & =\frac{1}{1^{l}} \frac{1}{2^{m}} \frac{x^{3}}{3^{n}}+\left(\frac{1}{1^{l}} \frac{1}{2^{m}}+\frac{1}{1^{l}} \frac{1}{3^{m}}+\frac{1}{2^{l}} \frac{1}{3^{m}}\right) \frac{x^{4}}{4^{n}}+\cdots .
\end{aligned}
$$

- The series converge absolutely for $|x|<1$ and conditionally on $|x|=1$ unless $n_{1}=x=1$.

These polylogarithms

$$
L\left(n_{r}, \ldots, n_{1} ; x\right)=\sum_{0<m_{1}<\ldots<m_{r}} \frac{x^{m_{r}}}{m_{r}^{n_{r}} \ldots m_{1}^{n_{1}}},
$$

are determined uniquely by the differential equations

$$
\frac{d}{d x} L\left(\mathrm{n}_{\mathrm{r}}, \ldots, n_{1} ; x\right)=\frac{1}{x} L\left(\mathrm{n}_{\mathrm{r}}-1, \ldots, n_{2}, n_{1} ; x\right)
$$

if $n_{r} \geq 2$ and

$$
\frac{d}{d x} L\left(\mathrm{n}_{\mathrm{r}}, \ldots, n_{2}, n_{1} ; x\right)=\frac{1}{1-x} L\left(\mathrm{n}_{\mathrm{r}-1}, \ldots, n_{1} ; x\right)
$$

if $n_{r}=1$ with the initial conditions

$$
L\left(n_{r}, \ldots, n_{1} ; 0\right)=0
$$

for $r \geq 1$ and

$$
L(\emptyset ; x) \equiv 1
$$

Set $\bar{s}:=\left(s_{1}, s_{2}, \ldots, s_{N}\right)$. Let $\{\bar{s}\}_{n}$ denotes concatenation, and $w:=\sum s_{i}$.

Then every periodic polylogarithm leads to a function

$$
L_{\bar{s}}(x, t):=\sum_{n} L\left(\{\bar{s}\}_{n} ; x\right) t^{w n}
$$

which solves an algebraic ordinary differential equation in x, and leads to nice recurrences.
A. In the simplest case, with $N=1$, the ODE is $D_{\mathrm{s}} \mathrm{F}=\mathrm{t}^{\mathrm{s}} \mathrm{F}$ where

$$
D_{s}:=\left((1-x) \frac{d}{d x}\right)^{1}\left(x \frac{d}{d x}\right)^{s-1}
$$

and the solution (by series) is a generalized hypergeometric function:

$$
L_{\bar{s}}(x, t)=1+\sum_{n \geq 1} x^{n} \frac{t^{s}}{n^{s}} \prod_{k=1}^{n-1}\left(1+\frac{t^{s}}{k^{s}}\right)
$$

as follows from considering $D_{s}\left(x^{n}\right)$.
B. Similarly, for $N=1$ and negative integers

$$
L_{-\bar{s}}(x, t):=1+\sum_{n \geq 1}(-x)^{n} \frac{t^{s}}{n^{s}} \prod_{k=1}^{n-1}\left(1+(-1)^{k} \frac{t^{s}}{k^{s}}\right),
$$

and $L_{-1}(2 x-1, t)$ solves a hypergeometric ODE.

- Indeed

$$
L_{-\overline{-1}}(1, t)=\frac{1}{\beta\left(1+\frac{t}{2}, \frac{1}{2}-\frac{t}{2}\right)} .
$$

C. We may obtain ODEs for eventually periodic Euler sums. Thus, $L_{-2,1}(x, t)$ is a solution of

$$
\begin{aligned}
t^{6} F & =x^{2}(x-1)^{2}(x+1)^{2} D^{6} F \\
& +x(x-1)(x+1)\left(15 x^{2}-6 x-7\right) D^{5} F \\
& +(x-1)\left(65 x^{3}+14 x^{2}-41 x-8\right) D^{4} F \\
& +(x-1)\left(90 x^{2}-11 x-27\right) D^{3} F \\
& +(x-1)(31 x-10) D^{2} F+(x-1) D F
\end{aligned}
$$

- This leads to a four-term recursion for $F=$ $\sum c_{n}(t) x^{n}$ with initial values $c_{0}=1, c_{1}=0, c_{2}=$ $t^{3} / 4, c_{3}=-t^{3} / 6$, and the ODE can be simplifeed.

We are now ready to prove Zagier's conjecture. Let $F(a, b ; c ; x)$ denote the hypergeometric function. Then:

Theorem 2 (BBGL) For $|x|,|t|<1$ and integer $n \geq 1$

$$
\begin{align*}
\sum_{n=0}^{\infty} & L(\underbrace{3,1,3,1, \ldots, 3,1}_{n-\text { fold }} ; x) t^{4 n} \\
= & F\left(\frac{t(1+i)}{2}, \frac{-t(1+i)}{2} ; 1 ; x\right) \tag{9}\\
\times & F\left(\frac{t(1-i)}{2}, \frac{-t(1-i)}{2} ; 1 ; x\right) .
\end{align*}
$$

Proof. Both sides of the putative identity start

$$
1+\frac{t^{4}}{8} x^{2}+\frac{t^{4}}{18} x^{3}+\frac{t^{8}+44 t^{4}}{1536} x^{4}+\cdots
$$

and are annihilated by the differential operator

$$
D_{31}:=\left((1-x) \frac{d}{d x}\right)^{2}\left(x \frac{d}{d x}\right)^{2}-t^{4}
$$

QED

- Once discovered - and it was discovered after much computational evidence - this can be checked variously in Mathematica or Maple (e.g., in the package fun)!

Corollary 3 (Zanier Conjecture)

$$
\begin{equation*}
\zeta(\underbrace{3,1,3,1, \ldots, 3,1}_{n-\text { fold }})=\frac{2 \pi^{4 n}}{(4 n+2)!} \tag{10}
\end{equation*}
$$

Proof. We have

$$
F(a,-a ; 1 ; 1)=\frac{1}{\Gamma(1-a) \Gamma(1+a)}=\frac{\sin \pi a}{\pi a}
$$

where the first equality comes from Gauss's evaluation of $F(a, b ; c ; 1)$.

Hence, setting $x=1$, in (9) produces

$$
\begin{gathered}
F\left(\frac{t(1+i)}{2}, \frac{-t(1+i)}{2} ; 1 ; 1\right) F\left(\frac{t(1-i)}{2}, \frac{-t(1-i)}{2} ; 1 ; 1\right) \\
=\frac{2}{\pi^{2} t^{2}} \sin \left(\frac{1+i}{2} \pi t\right) \sin \left(\frac{1-i}{2} \pi t\right) \\
=\frac{\cosh \pi t-\cos \pi t}{\pi^{2} t^{2}}=\sum_{n=0}^{\infty} \frac{2 \pi^{4 n} t^{4 n}}{(4 n+2)!}
\end{gathered}
$$

on using the Taylor series of cos and cosh. Comparing coefficients in (9) ends the proof.

