EXxploring strange functions

on the computer



Continuous, nowhere differentiable functions
WeierstraB3, 1872:

Cop(z) = ) a"cos(b" brz) (la|<1,b>1)

n=0

iscnd  if be€2N+41, ab> 1+ 27
Hardy, 1916: Capr Sap cnd if beR, b>1, ab> 1.
Simpler proof? (Freud, Kahane, Hata, Baouche/Dubuc,. . .)

Consider only b ¢ N, in fact b =2, and
Sap(x) = Z a” sin(2" trz)  (la| < 1)
n=0

on [0, 1].



Figure 5.2. The Weierstrass functions Sy,  (top) and S3 4 » (bottom).



Functional equations

For S = S, »:
S (g) = aS(x)+ sin(rx),
1
s(:’j;r ) — aS(z) —sin(rz).
In general: System (F) consisting of
X
7(5) = aof@ +g0) (Fo)
r+1
(F5) = ar@ + @ (FD)
on [0, 1], for given |ao|,|a1| < 1, go,91 : [0,1] — R and unknown f: [0, 1] — R.
Examples: 1) S,» with ap = a1 = a and go(z) = —g1(x) = sin(nx).
2) Cy2 With ag = a1 = a and go(z) = —g1(z) = cos(nx).

3) To(z) == > a™d(2"x), d(x) = dist(x,Z),
n=0
1 —
with ag = a1 = a and go(x) = g, gi1(x) = 5 T




Unique solutions?

! (g> = aof(x) + go(x), f (w _; 1) = a1f(z) + g1(z). (F)
fsolves (F) == f(0) = g90(0) 1) = 91(1)
1 —ao l—a;

= f(3) =aof(1) + go(1) = a1f(0) 4 g1(0).
Thus: If a solution exists, then necessarily
g0(0)

1
ag 91(1) + g0(1) = a1
1—a; 1 —ap

~+ ¢1(0). (*)

Moreover,
fG)=af(3)+9(3), FZ)=af(z)+a3)
fg)=aof(G)+aG), FE = @)= fE=af@+a(),
f(”itl%
f(557)



Schauder basis

aiyj(:zz)
l
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Schauder coefficients

Theorem (Schauder, 1930, and Faber, 1908).
Every f € C[0, 1] has a unique expansion of the form

00 2n—1_1

F@) = v0.0(f)ooo(@) +110(f)oro@) + Y > vin(f)oin(),

n=1 =0
where the coefficients ~;,(f) are given by

v0,0(f) = f(0), mo(f)=f(1), and
o /2i41\ 1.,[ it
vl = 1 (221 =37 (5) -3/ (551)

Theorem (Faber, 1910).
Assume that f € C[0, 1] has a finite derivative at some point zg. Then

lim 2" - min {|vin(f)|:i=0,...,2" 1 -1} =

n—oo




Recursion formula for solutions of (F)

Theorem.
Assume that (%) holds and that go, g1 are continuous.

Let f be the continuous solution of the system (F).

Then

() v0.0(f) = F(0) =29 and  y10(f) = f(1) = 2L,

(i) v0,1(f) = (a1 — 3) £(0) — 2£(1) 4+ g1(0) = (a0 — %) (1) — 2(0) + go(1),
(i) Yina1(f) ao¥in(f) + vin(g0) fori=0,...,2""1 — 1,

Yint+1(f) a1¥i—orn(f) + Vico1n(g1)  fori=2n-1 .. 27— 1.



Results and questions

Let 6,(f) :=2" - min{|yin(f)|:i=0,...,2"71 — 1}

Theorem. §,(S.2) /0 (n — oo) for 1 >a > 1.

N~

This proves that S,» is cnd for 1 > a >

Open questions.

1) Show that, for a =%, lim §,(S.2) exists, and find its value.

n—aoo

2) Show, more generally, that lim 6,(S.2)/(2|a|)™ exists, and determine the
function a — lim §,(S.2)/(2]al)".



A functional equation with discontinuous solution

Consider the system, for given 0 < g < 1,

S (g) = gs(x)—1,

()
S

2
‘This system has a unique bounded solution s,, which is discontinuous precisely

at the dyadic rationals.
Let F,(t) ;= m{x € [0,1] | s4(x) < t}, the distribution function of s,.

gs(x) + 1.

It can be shown that Fj is the unique function satisfying the functional equa-
tion
1 t—1 t+1
0 = 3r(5H) 3 ()
2 q q
with Fy(t) =0 fort < —-1/(1—¢q) and F,(t) =1 fort>1/(1 —q).

Theorem (Jessen/Wintner 1935).
Fy is either absolutely continuous or singular.

Question: For which q is F; absolutely continuous, for which q is it singular?
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Figure 5.7. Cantor dust (the case g =2/3).



Some answers

Theorem (Kershner/Wintner 1935).
For 0 <qg< % F, is singular (in fact, a Cantor function).

Theorem (Wintner 1935).

(0, t< =2 )
t+4+ 2
For g = % Fy(t) = < %, —2 <t <23, which is absolutely continuous.
|1, t>2 )

In fact, for each g = 2-1/p, F, is absolutely continuous.

Theorem (Erdds 1939).
If q >% and 1/q is a Pisot number, then Fj is singular!

E.g., F, is singular for ¢ = (v/5 —1)/2 ~ 0.618033989.
(Proof: via the Fourier-Stieltjes transform of F,.)

Theorem (Garsia 1962).
Some explicit algebraic numbers g (besides 2-1/P) for which F, is absolutely
continuous.

Theorem (Solomyak 1995).
F;, is absolutely continuous for a.e. g € (%, 1)!
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Open questions and experimental approach

Open: 1) Is the set of exceptional values g > % (with Fj singular) countable?
2) Is there a rational ¢ > % with F, singular?

Is there a rational ¢ > % with F, absolutely continuous?
3) What about ¢ = 27 What about other specific values?

Experimental approach: Visualize the density f, = F, a.e.
In fact, if F, is absolutely continuous, then f, is a non-trivial Li-solution of
the functional equation

) = Qi(f (—t_1)+f<—t+1)), (S)
q q q
on R.

Vice versa, if a non-trivial Li-solution f, of (S;) exists, then it is the density
of an absolutely continuous Fj.
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How to visualize f;?
o = 5,57+ (%) s

It can be shown: If a non-trivial Li-solution f, of (S,) exists, then it:

e iS unique up to a multiplicative constant,

1 1],

e satisfies supp f, = [—1—_q, T4

e and is either positive or negative a.e. on its support.

This implies: Define an operator B, on L1 by

a0 = 4((5) 0o (5)

and consider the iteration f( := B,f("~1) with some f(® ¢ L;. Then:
If (f(™), converges in Li, then the limit is an Li-solution of (S,).

If (S,) has a non-trivial Li-solution, then (f(™), converges in the mean in L;.
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A final remark about ¢ =2/3

Rescale F, resp. f, such that the support is [0, 1] instead of [_%—q’%—q]'

Then for ¢ = 2/3, the functional equation (S,) is equivalent to the system

1G) = 21
(5 = 2O+ ()

f(az—l—l

~s
N
8
W+
N
N———
I
DlWw

2

SN—— -bl(})

on [0, 1].
Does this system have a non-trivial Li-solution?

If so, is the solution continuous?
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