Exploring strange functions

on the computer

Continuous, nowhere differentiable functions Weierstraß, 1872:

$$C_{a,b}(x) := \sum_{n=0}^{\infty} a^n \cos(b^n \cdot b\pi x) \quad (|a| < 1, b > 1)$$
$$b \in 2\mathbb{N} + 1 \quad ab > 1 + \frac{3}{2}\pi$$

is cnd if $b \in 2\mathbb{N} + 1$, $ab > 1 + \frac{3}{2}\pi$.

Hardy, 1916: $C_{a,b}$, $S_{a,b}$ cnd if $b \in \mathbb{R}$, b > 1, $ab \ge 1$.

Simpler proof? (Freud, Kahane, Hata, Baouche/Dubuc,...)

Consider only $b \in \mathbb{N}$, in fact b = 2, and

$$S_{a,2}(x) = \sum_{n=0}^{\infty} a^n \sin(2^{n+1}\pi x) \quad (|a| < 1)$$

on [0, 1].

Figure 5.2. The Weierstrass functions $S_{1/2,2}$ (top) and $S_{3/4,2}$ (bottom).

Functional equations

For $S = S_{a,2}$:

$$S\left(\frac{x}{2}\right) = aS(x) + \sin(\pi x),$$
$$S\left(\frac{x+1}{2}\right) = aS(x) - \sin(\pi x).$$

In general: System (F) consisting of

$$f\left(\frac{x}{2}\right) = a_0 f(x) + g_0(x) \tag{F}_0$$

$$f\left(\frac{x+1}{2}\right) = a_1 f(x) + g_1(x) \tag{F}_1$$

on [0,1], for given $|a_0|, |a_1| < 1$, $g_0, g_1 : [0,1] \rightarrow \mathbb{R}$ and unknown $f : [0,1] \rightarrow \mathbb{R}$.

Examples: 1) $S_{a,2}$ with $a_0 = a_1 = a$ and $g_0(x) = -g_1(x) = \sin(\pi x)$. 2) $C_{a,2}$ with $a_0 = a_1 = a$ and $g_0(x) = -g_1(x) = \cos(\pi x)$. 3) $T_a(x) := \sum_{n=0}^{\infty} a^n d(2^n x), \ d(x) = \operatorname{dist}(x, \mathbb{Z}),$ with $a_0 = a_1 = a$ and $g_0(x) = \frac{x}{2}, \ g_1(x) = \frac{1-x}{2}$.

Unique solutions?

$$f\left(\frac{x}{2}\right) = a_0 f(x) + g_0(x), \qquad f\left(\frac{x+1}{2}\right) = a_1 f(x) + g_1(x).$$
 (F)

$$f \text{ solves (F)} \implies f(0) = \frac{g_0(0)}{1 - a_0}, \ f(1) = \frac{g_1(1)}{1 - a_1}$$
$$\implies f\left(\frac{1}{2}\right) = a_0 f(1) + g_0(1) = a_1 f(0) + g_1(0).$$

Thus: If a solution exists, then necessarily

$$a_0 \frac{g_1(1)}{1-a_1} + g_0(1) = a_1 \frac{g_0(0)}{1-a_0} + g_1(0).$$
 (*)

Moreover,

$$f\left(\frac{1}{4}\right) = a_0 f\left(\frac{1}{2}\right) + g_0\left(\frac{1}{2}\right), \ f\left(\frac{3}{4}\right) = a_1 f\left(\frac{1}{2}\right) + g_1\left(\frac{1}{2}\right),$$
$$f\left(\frac{1}{8}\right) = a_0 f\left(\frac{1}{4}\right) + g_0\left(\frac{1}{4}\right), \ f\left(\frac{3}{8}\right) = \dots, \ f\left(\frac{5}{8}\right) = \dots, \ f\left(\frac{7}{8}\right) = a_1 f\left(\frac{3}{4}\right) + g_1\left(\frac{3}{4}\right),$$
$$f\left(\frac{2i+1}{16}\right),$$

. . .

Schauder coefficients

Theorem (Schauder, 1930, and Faber, 1908). Every $f \in C[0, 1]$ has a unique expansion of the form

$$f(x) = \gamma_{0,0}(f) \,\sigma_{0,0}(x) + \gamma_{1,0}(f) \,\sigma_{1,0}(x) + \sum_{n=1}^{\infty} \sum_{i=0}^{2^{n-1}-1} \gamma_{i,n}(f) \,\sigma_{i,n}(x),$$

where the coefficients $\gamma_{i,n}(f)$ are given by

$$\gamma_{0,0}(f) = f(0), \quad \gamma_{1,0}(f) = f(1), \text{ and}$$

 $\gamma_{i,n}(f) = f\left(\frac{2i+1}{2^n}\right) - \frac{1}{2}f\left(\frac{i}{2^{n-1}}\right) - \frac{1}{2}f\left(\frac{i+1}{2^{n-1}}\right)$

Theorem (Faber, 1910). Assume that $f \in C[0, 1]$ has a finite derivative at some point x_0 . Then

$$\lim_{n \to \infty} 2^n \cdot \min \{ |\gamma_{i,n}(f)| : i = 0, \dots, 2^{n-1} - 1 \} = 0$$

Recursion formula for solutions of (F)

Theorem.

Assume that (*) holds and that g_0, g_1 are continuous.

Let f be the continuous solution of the system (F).

Then

(i)
$$\gamma_{0,0}(f) = f(0) = \frac{g_0(0)}{1-a_0}$$
 and $\gamma_{1,0}(f) = f(1) = \frac{g_1(1)}{1-a_1}$,
(ii) $\gamma_{0,1}(f) = (a_1 - \frac{1}{2}) f(0) - \frac{1}{2} f(1) + g_1(0) = (a_0 - \frac{1}{2}) f(1) - \frac{1}{2} f(0) + g_0(1)$,
(iii) $\gamma_{i,n+1}(f) = a_0 \gamma_{i,n}(f) + \gamma_{i,n}(g_0)$ for $i = 0, \dots, 2^{n-1} - 1$,
 $\gamma_{i,n+1}(f) = a_1 \gamma_{i-2^{n-1},n}(f) + \gamma_{i-2^{n-1},n}(g_1)$ for $i = 2^{n-1}, \dots, 2^n - 1$.

Results and questions

Let
$$\underline{\delta}_n(f) := 2^n \cdot \min\left\{ |\gamma_{i,n}(f)| : i = 0, \dots, 2^{n-1} - 1 \right\}.$$

Theorem. $\underline{\delta}_n(S_{a,2}) \not\rightarrow 0 \ (n \rightarrow \infty) \text{ for } 1 > a \geq \frac{1}{2}.$

This proves that $S_{a,2}$ is cnd for $1 > a \ge \frac{1}{2}$.

Open questions.

1) Show that, for $a = \frac{1}{2}$, $\lim_{n \to \infty} \underline{\delta}_n(S_{a,2})$ exists, and find its value.

2) Show, more generally, that $\lim_{n\to\infty} \underline{\delta}_n(S_{a,2})/(2|a|)^n$ exists, and determine the function $a\mapsto \lim_{n\to\infty} \underline{\delta}_n(S_{a,2})/(2|a|)^n$.

A functional equation with discontinuous solution

Consider the system, for given 0 < q < 1,

$$s\left(\frac{x}{2}\right) = q s(x) - 1,$$

$$s\left(\frac{x+1}{2}\right) = q s(x) + 1.$$

This system has a unique bounded solution s_q , which is discontinuous precisely at the dyadic rationals.

Let $F_q(t) := m\{x \in [0,1] \mid s_q(x) \leq t\}$, the distribution function of s_q .

It can be shown that F_q is the unique function satisfying the functional equation

$$F(t) = \frac{1}{2}F\left(\frac{t-1}{q}\right) + \frac{1}{2}F\left(\frac{t+1}{q}\right)$$

with $F_q(t) = 0$ for t < -1/(1-q) and $F_q(t) = 1$ for t > 1/(1-q).

Theorem (Jessen/Wintner 1935). F_q is either absolutely continuous or singular.

Question: For which q is F_q absolutely continuous, for which q is it singular?

Figure 5.7. Cantor dust (the case q = 2/3).

Some answers

Theorem (Kershner/Wintner 1935). For $0 < q < \frac{1}{2}$, F_q is singular (in fact, a Cantor function).

Theorem (Wintner 1935).

For
$$q = \frac{1}{2}$$
, $F_q(t) = \begin{cases} 0, & t < -2\\ \frac{t+2}{4}, & -2 \le t \le 2\\ 1, & t > 2 \end{cases}$, which is absolutely continuous.

In fact, for each $q = 2^{-1/p}$, F_q is absolutely continuous.

Theorem (Erdős 1939).

If $q > \frac{1}{2}$ and 1/q is a Pisot number, then F_q is singular! E.g., F_q is singular for $q = (\sqrt{5} - 1)/2 \approx 0.618033989$. (Proof: via the Fourier-Stieltjes transform of F_q .)

Theorem (Garsia 1962).

Some explicit algebraic numbers q (besides $2^{-1/p}$) for which F_q is absolutely continuous.

Theorem (Solomyak 1995).

 F_q is absolutely continuous for a.e. $q \in (\frac{1}{2}, 1)!$

Open questions and experimental approach

Open: 1) Is the set of exceptional values $q > \frac{1}{2}$ (with F_q singular) countable? 2) Is there a rational $q > \frac{1}{2}$ with F_q singular?

Is there a rational $q > \frac{1}{2}$ with F_q absolutely continuous?

3) What about $q = \frac{2}{3}$? What about other specific values?

Experimental approach: Visualize the density $f_q = F'_q$ a.e.

In fact, if F_q is absolutely continuous, then f_q is a non-trivial L_1 -solution of the functional equation

$$f(t) = \frac{1}{2q} \left(f\left(\frac{t-1}{q}\right) + f\left(\frac{t+1}{q}\right) \right), \qquad (S_q)$$

on \mathbb{R} .

Vice versa, if a non-trivial L_1 -solution f_q of (S_q) exists, then it is the density of an absolutely continuous F_q .

How to visualize f_q ? $f(t) = \frac{1}{2a} \left(f\left(\frac{t-1}{a}\right) + f\left(\frac{t+1}{a}\right) \right)$ (S_q)

It can be shown: If a non-trivial L_1 -solution f_q of (S_q) exists, then it:

- is unique up to a multiplicative constant,
- satisfies supp $f_q = \left[-\frac{1}{1-q}, \frac{1}{1-q}\right]$,
- and is either positive or negative a.e. on its support.

This implies: Define an operator B_q on L_1 by

$$(B_q f)(t) = \frac{1}{2q} \left(f\left(\frac{t-1}{q}\right) + f\left(\frac{t+1}{q}\right) \right)$$

and consider the iteration $f^{(n)} := B_q f^{(n-1)}$ with some $f^{(0)} \in L_1$. Then: If $(f^{(n)})_n$ converges in L_1 , then the limit is an L_1 -solution of (S_q) . If (S_q) has a non-trivial L_1 -solution, then $(f^{(n)})_n$ converges in the mean in L_1 .

A final remark about q = 2/3

Rescale F_q resp. f_q such that the support is [0, 1] instead of $\left[-\frac{1}{1-q}, \frac{1}{1-q}\right]$. Then for q = 2/3, the functional equation (S_q) is equivalent to the system

$$f\left(\frac{x}{3}\right) = \frac{3}{4}f\left(\frac{x}{2}\right),$$

$$f\left(\frac{x+1}{3}\right) = \frac{3}{4}f\left(\frac{x}{2}\right) + \frac{3}{4}f\left(\frac{x+1}{2}\right),$$

$$f\left(\frac{x+2}{3}\right) = \frac{3}{4}f\left(\frac{x+1}{2}\right)$$

on [0, 1].

Does this system have a non-trivial L_1 -solution?

If so, is the solution continuous?