
Exploring strange functions

on the computer
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Continuous, nowhere differentiable functions

Weierstraß, 1872:

Ca,b(x) :=
∞∑

n=0

an cos(bn · bπx) (|a| < 1, b > 1)

is cnd if b ∈ 2N + 1, ab > 1 + 3
2
π.

Hardy, 1916: Ca,b, Sa,b cnd if b ∈ R, b > 1, ab ≥ 1.

Simpler proof? (Freud, Kahane, Hata, Baouche/Dubuc,. . . )

Consider only b ∈ N, in fact b = 2, and

Sa,2(x) =
∞∑

n=0

an sin(2n+1πx) (|a| < 1)

on [0,1].
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5.2. Nowhere Differentiable Functions 115

for which Ca,b is nowhere differentiable. It is clear that Ca,b is continuously dif-
ferentiable when |a|b < 1. But what happens for 1≤ |a|b ≤ 1+ 3

2π? Or for even
integers or reals b? Despite much effort, no real progress on this question was
made in the years after Weierstrass. In fact, it took more than forty years until
finally, in 1916, G. H. Hardy [158] proved the strongest possible result: BothCa,b

and the corresponding sine series

Sa,b(x) :=
∞

∑
n=0

an sin(bn ·2πx)

have no finite derivative anywhere whenever b is a real greater than 1 and
ab ≥ 1. (Hardy also proved that, for small values of ab ≥ 1, the functions can
have infinite derivatives.) This settled the most important questions. However,
Hardy’s methods are not easy. They use results that lie a good deal deeper than
the simple question: Is this function, given by a uniformly convergent series, dif-
ferentiable somewhere?

Therefore, and because of the fascination many mathematicians feel for such
pathological but beautiful objects, research into the Weierstrass functions and
into cnd functions in general has continued and continues until today. Several
approaches to the Weierstrass functions have been proposed: putting them, for
example, into the context of lacunary Fourier series [139, 174], almost periodic
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Figure 5.2. The Weierstrass functions S1/2,2 (top) and S3/4,2 (bottom).



Functional equations

For S = Sa,2:

S
(x

2

)
= a S(x) + sin(πx),

S

(
x + 1

2

)
= a S(x)− sin(πx).

In general: System (F) consisting of

f
(x

2

)
= a0f(x) + g0(x) (F0)

f

(
x + 1

2

)
= a1f(x) + g1(x) (F1)

on [0,1], for given |a0|, |a1| < 1, g0, g1 : [0,1] → R and unknown f : [0,1] → R.

Examples: 1) Sa,2 with a0 = a1 = a and g0(x) = −g1(x) = sin(πx).

2) Ca,2 with a0 = a1 = a and g0(x) = −g1(x) = cos(πx).

3) Ta(x) :=
∞∑

n=0
an d(2nx), d(x) = dist(x, Z),

with a0 = a1 = a and g0(x) =
x

2
, g1(x) =

1− x

2
.
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Unique solutions?

f
(x

2

)
= a0f(x) + g0(x), f

(
x + 1

2

)
= a1f(x) + g1(x). (F)

f solves (F) =⇒ f(0) =
g0(0)

1− a0
, f(1) =

g1(1)

1− a1

=⇒ f
(
1
2

)
= a0f(1) + g0(1) = a1f(0) + g1(0).

Thus: If a solution exists, then necessarily

a0
g1(1)

1− a1
+ g0(1) = a1

g0(0)

1− a0
+ g1(0). (∗)

Moreover,

f
(
1
4

)
= a0f

(
1
2

)
+ g0

(
1
2

)
, f

(
3
4

)
= a1f

(
1
2

)
+ g1

(
1
2

)
,

f
(
1
8

)
= a0f

(
1
4

)
+ g0

(
1
4

)
, f

(
3
8

)
= . . . , f

(
5
8

)
= . . . , f

(
7
8

)
= a1f

(
3
4

)
+ g1

(
3
4

)
,

f
(
2i+1
16

)
,

. . .

f
(
2i+1
2n

)
.
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Schauder basis
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Schauder coefficients

Theorem (Schauder, 1930, and Faber, 1908).
Every f ∈ C[0,1] has a unique expansion of the form

f(x) = γ0,0(f)σ0,0(x) + γ1,0(f)σ1,0(x) +
∞∑

n=1

2n−1−1∑
i=0

γi,n(f)σi,n(x),

where the coefficients γi,n(f) are given by

γ0,0(f) = f(0), γ1,0(f) = f(1), and

γi,n(f) = f

(
2i + 1

2n

)
−

1

2
f

(
i

2n−1

)
−

1

2
f

(
i + 1

2n−1

)
.

Theorem (Faber, 1910).
Assume that f ∈ C[0,1] has a finite derivative at some point x0. Then

lim
n→∞

2n ·min
{
|γi,n(f)| : i = 0, . . . ,2n−1 − 1

}
= 0.
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Recursion formula for solutions of (F)

Theorem.

Assume that (∗) holds and that g0, g1 are continuous.

Let f be the continuous solution of the system (F).

Then

(i) γ0,0(f) = f(0) = g0(0)
1−a0

and γ1,0(f) = f(1) = g1(1)
1−a1

,

(ii) γ0,1(f) =
(
a1 − 1

2

)
f(0)− 1

2
f(1) + g1(0) =

(
a0 − 1

2

)
f(1)− 1

2
f(0) + g0(1),

(iii) γi,n+1(f) = a0γi,n(f) + γi,n(g0) for i = 0, . . . ,2n−1 − 1,
γi,n+1(f) = a1γi−2n−1,n(f) + γi−2n−1,n(g1) for i = 2n−1, . . . ,2n − 1.
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Results and questions

Let δn(f) := 2n ·min
{
|γi,n(f)| : i = 0, . . . ,2n−1 − 1

}
.

Theorem. δn(Sa,2) 6→ 0 (n →∞) for 1 > a ≥ 1
2
.

This proves that Sa,2 is cnd for 1 > a ≥ 1
2
.

Open questions.

1) Show that, for a = 1
2
, lim

n→∞
δn(Sa,2) exists, and find its value.

2) Show, more generally, that lim
n→∞

δn(Sa,2)/(2|a|)n exists, and determine the

function a 7→ lim
n→∞

δn(Sa,2)/(2|a|)n.
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A functional equation with discontinuous solution

Consider the system, for given 0 < q < 1,

s
(x

2

)
= q s(x)− 1,

s

(
x + 1

2

)
= q s(x) + 1.

This system has a unique bounded solution sq, which is discontinuous precisely
at the dyadic rationals.

Let Fq(t) := m{x ∈ [0,1] | sq(x) ≤ t}, the distribution function of sq.

It can be shown that Fq is the unique function satisfying the functional equa-
tion

F (t) =
1

2
F

(
t− 1

q

)
+

1

2
F

(
t + 1

q

)
with Fq(t) = 0 for t < −1/(1− q) and Fq(t) = 1 for t > 1/(1− q).

Theorem (Jessen/Wintner 1935).
Fq is either absolutely continuous or singular.

Question: For which q is Fq absolutely continuous, for which q is it singular?
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Figure 5.7. Cantor dust (the case q = 2/3).

system, for given 0< q < 1,

s
( x
2

)
= qs(x)−1, for x ∈ [0,1);

s

(
x+1
2

)
= qs(x)+1, for x ∈ [0,1].

By Banach’s fixed point theorem, this system has a unique bounded solution
sq, which moreover can be shown to be discontinuous precisely at the dyadic
rationals (it is sometimes called Cantor dust; Figure 5.7 shows the case q = 2/3).

Then, Fq is the distribution function of sq, i.e.,

Fq(t) = m{x ∈ [0,1] | sq(x) ≤ t},

where m stands for Lebesgue measure.

Approaching the question of singularity vs. absolute continuity experimen-
tally, the probem we set ourselves here is to draw these functions or their deriva-
tives for some well-chosen values of q. However, there is no easy way of com-
puting (let alone graphing) the distribution function or density of a probability
measure. One possibility that has been proposed is to generate random numbers
which follow this distribution (or an approximation thereof) and count how often
these numbers fall into each interval of a partition of R. This method, however, is
relatively slow and imprecise.



Some answers

Theorem (Kershner/Wintner 1935).
For 0 < q < 1

2
, Fq is singular (in fact, a Cantor function).

Theorem (Wintner 1935).

For q = 1
2
, Fq(t) =


0, t < −2

t + 2

4
, −2 ≤ t ≤ 2

1, t > 2

, which is absolutely continuous.

In fact, for each q = 2−1/p, Fq is absolutely continuous.

Theorem (Erdős 1939).
If q > 1

2
and 1/q is a Pisot number, then Fq is singular!

E.g., Fq is singular for q = (
√

5− 1)/2 ≈ 0.618033989.
(Proof: via the Fourier-Stieltjes transform of Fq.)

Theorem (Garsia 1962).
Some explicit algebraic numbers q (besides 2−1/p) for which Fq is absolutely
continuous.

Theorem (Solomyak 1995).
Fq is absolutely continuous for a.e. q ∈ (1

2
,1)!
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Open questions and experimental approach

Open: 1) Is the set of exceptional values q > 1
2

(with Fq singular) countable?

2) Is there a rational q > 1
2

with Fq singular?

Is there a rational q > 1
2

with Fq absolutely continuous?

3) What about q = 2
3
? What about other specific values?

Experimental approach: Visualize the density fq = F ′
q a.e.

In fact, if Fq is absolutely continuous, then fq is a non-trivial L1-solution of
the functional equation

f(t) =
1

2q

(
f

(
t− 1

q

)
+ f

(
t + 1

q

))
, (Sq)

on R.
Vice versa, if a non-trivial L1-solution fq of (Sq) exists, then it is the density
of an absolutely continuous Fq.
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How to visualize fq?

f(t) =
1

2q

(
f

(
t− 1

q

)
+ f

(
t + 1

q

))
(Sq)

It can be shown: If a non-trivial L1-solution fq of (Sq) exists, then it:

• is unique up to a multiplicative constant,

• satisfies supp fq = [− 1
1−q

, 1
1−q

],

• and is either positive or negative a.e. on its support.

This implies: Define an operator Bq on L1 by

(Bqf)(t) =
1

2q

(
f

(
t− 1

q

)
+ f

(
t + 1

q

))
and consider the iteration f (n) := Bqf (n−1) with some f (0) ∈ L1. Then:

If (f (n))n converges in L1, then the limit is an L1-solution of (Sq).

If (Sq) has a non-trivial L1-solution, then (f (n))n converges in the mean in L1.
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A final remark about q = 2/3

Rescale Fq resp. fq such that the support is [0,1] instead of [− 1
1−q

, 1
1−q

].

Then for q = 2/3, the functional equation (Sq) is equivalent to the system

f
(x

3

)
=

3

4
f

(x

2

)
,

f

(
x + 1

3

)
=

3

4
f

(x

2

)
+

3

4
f

(
x + 1

2

)
,

f

(
x + 2

3

)
=

3

4
f

(
x + 1

2

)
on [0,1].

Does this system have a non-trivial L1-solution?

If so, is the solution continuous?
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