Exploring strange functions

on the computer

Continuous, nowhere differentiable functions

Weierstraß, 1872:

$$
C_{a, b}(x):=\sum_{n=0}^{\infty} a^{n} \cos \left(b^{n} \cdot b \pi x\right) \quad(|a|<1, b>1)
$$

is cnd \quad if $\quad b \in 2 \mathbb{N}+1, a b>1+\frac{3}{2} \pi$.

Hardy, 1916: $\quad C_{a, b}, S_{a, b}$ cnd if $\quad b \in \mathbb{R}, b>1, a b \geq 1$.

Simpler proof? (Freud, Kahane, Hata, Baouche/Dubuc,...)

Consider only $b \in \mathbb{N}$, in fact $b=2$, and

$$
S_{a, 2}(x)=\sum_{n=0}^{\infty} a^{n} \sin \left(2^{n+1} \pi x\right) \quad(|a|<1)
$$

on $[0,1]$.

Figure 5.2. The Weierstrass functions $S_{1 / 2,2}$ (top) and $S_{3 / 4,2}$ (bottom).

Functional equations

For $S=S_{a, 2}$:

$$
\begin{aligned}
S\left(\frac{x}{2}\right) & =a S(x)+\sin (\pi x) \\
S\left(\frac{x+1}{2}\right) & =a S(x)-\sin (\pi x)
\end{aligned}
$$

In general: System (F) consisting of

$$
\begin{align*}
f\left(\frac{x}{2}\right) & =a_{0} f(x)+g_{0}(x) \tag{0}\\
f\left(\frac{x+1}{2}\right) & =a_{1} f(x)+g_{1}(x) \tag{1}
\end{align*}
$$

on $[0,1]$, for given $\left|a_{0}\right|,\left|a_{1}\right|<1, g_{0}, g_{1}:[0,1] \rightarrow \mathbb{R}$ and unknown $f:[0,1] \rightarrow \mathbb{R}$.
Examples: 1) $S_{a, 2}$ with $a_{0}=a_{1}=a$ and $g_{0}(x)=-g_{1}(x)=\sin (\pi x)$.
2) $C_{a, 2}$ with $a_{0}=a_{1}=a$ and $g_{0}(x)=-g_{1}(x)=\cos (\pi x)$.
3) $T_{a}(x):=\sum_{n=0}^{\infty} a^{n} d\left(2^{n} x\right), d(x)=\operatorname{dist}(x, \mathbb{Z})$,
with $a_{0}=a_{1}=a$ and $g_{0}(x)=\frac{x}{2}, g_{1}(x)=\frac{1-x}{2}$.

Unique solutions?

$$
\begin{align*}
f\left(\frac{x}{2}\right) & =a_{0} f(x)+g_{0}(x), \quad f\left(\frac{x+1}{2}\right)=a_{1} f(x)+g_{1}(x) \tag{F}\\
f & \text { solves }(\mathrm{F}) \quad \Longrightarrow \quad f(0)=\frac{g_{0}(0)}{1-a_{0}}, f(1)=\frac{g_{1}(1)}{1-a_{1}} \\
& \Longrightarrow f\left(\frac{1}{2}\right)=a_{0} f(1)+g_{0}(1)=a_{1} f(0)+g_{1}(0)
\end{align*}
$$

Thus: If a solution exists, then necessarily

$$
\begin{equation*}
a_{0} \frac{g_{1}(1)}{1-a_{1}}+g_{0}(1)=a_{1} \frac{g_{0}(0)}{1-a_{0}}+g_{1}(0) \tag{*}
\end{equation*}
$$

Moreover,

$$
\begin{gathered}
f\left(\frac{1}{4}\right)=a_{0} f\left(\frac{1}{2}\right)+g_{0}\left(\frac{1}{2}\right), f\left(\frac{3}{4}\right)=a_{1} f\left(\frac{1}{2}\right)+g_{1}\left(\frac{1}{2}\right), \\
f\left(\frac{1}{8}\right)=a_{0} f\left(\frac{1}{4}\right)+g_{0}\left(\frac{1}{4}\right), f\left(\frac{3}{8}\right)=\ldots, f\left(\frac{5}{8}\right)=\ldots, f\left(\frac{7}{8}\right)=a_{1} f\left(\frac{3}{4}\right)+g_{1}\left(\frac{3}{4}\right), \\
f\left(\frac{2 i+1}{16}\right), \\
\ldots \\
f\left(\frac{2 i+1}{2^{n}}\right) .
\end{gathered}
$$

Schauder basis

Schauder coefficients

Theorem (Schauder, 1930, and Faber, 1908).
Every $f \in C[0,1]$ has a unique expansion of the form

$$
f(x)=\gamma_{0,0}(f) \sigma_{0,0}(x)+\gamma_{1,0}(f) \sigma_{1,0}(x)+\sum_{n=1}^{\infty} \sum_{i=0}^{2^{n-1}-1} \gamma_{i, n}(f) \sigma_{i, n}(x),
$$

where the coefficients $\gamma_{i, n}(f)$ are given by

$$
\begin{gathered}
\gamma_{0,0}(f)=f(0), \quad \gamma_{1,0}(f)=f(1), \quad \text { and } \\
\gamma_{i, n}(f)=f\left(\frac{2 i+1}{2^{n}}\right)-\frac{1}{2} f\left(\frac{i}{2^{n-1}}\right)-\frac{1}{2} f\left(\frac{i+1}{2^{n-1}}\right) .
\end{gathered}
$$

Theorem (Faber, 1910).
Assume that $f \in C[0,1]$ has a finite derivative at some point x_{0}. Then

$$
\lim _{n \rightarrow \infty} 2^{n} \cdot \min \left\{\left|\gamma_{i, n}(f)\right|: i=0, \ldots, 2^{n-1}-1\right\}=0
$$

Recursion formula for solutions of (F)

Theorem.

Assume that (*) holds and that g_{0}, g_{1} are continuous.
Let f be the continuous solution of the system (F).
Then
(i) $\gamma_{0,0}(f)=f(0)=\frac{g_{0}(0)}{1-a_{0}} \quad$ and $\quad \gamma_{1,0}(f)=f(1)=\frac{g_{1}(1)}{1-a_{1}}$,
(ii) $\gamma_{0,1}(f)=\left(a_{1}-\frac{1}{2}\right) f(0)-\frac{1}{2} f(1)+g_{1}(0)=\left(a_{0}-\frac{1}{2}\right) f(1)-\frac{1}{2} f(0)+g_{0}(1)$,
(iii) $\gamma_{i, n+1}(f)=a_{0} \gamma_{i, n}(f)+\gamma_{i, n}\left(g_{0}\right) \quad$ for $i=0, \ldots, 2^{n-1}-1$, $\gamma_{i, n+1}(f)=a_{1} \gamma_{i-2^{n-1}, n}(f)+\gamma_{i-2^{n-1}, n}\left(g_{1}\right) \quad$ for $i=2^{n-1}, \ldots, 2^{n}-1$.

Results and questions

Let $\underline{\delta}_{n}(f):=2^{n} \cdot \min \left\{\left|\gamma_{i, n}(f)\right|: i=0, \ldots, 2^{n-1}-1\right\}$.
Theorem. $\underline{\delta}_{n}\left(S_{a, 2}\right) \nrightarrow 0(n \rightarrow \infty)$ for $1>a \geq \frac{1}{2}$.
This proves that $S_{a, 2}$ is cnd for $1>a \geq \frac{1}{2}$.

Open questions.

1) Show that, for $a=\frac{1}{2}, \lim _{n \rightarrow \infty} \underline{\delta}_{n}\left(S_{a, 2}\right)$ exists, and find its value.
2) Show, more generally, that $\lim _{n \rightarrow \infty} \underline{\delta}_{n}\left(S_{a, 2}\right) /(2|a|)^{n}$ exists, and determine the function $a \mapsto \lim _{n \rightarrow \infty} \underline{\delta}_{n}\left(S_{a, 2}\right) /(2|a|)^{n}$.

A functional equation with discontinuous solution

Consider the system, for given $0<q<1$,

$$
\begin{aligned}
s\left(\frac{x}{2}\right) & =q s(x)-1 \\
s\left(\frac{x+1}{2}\right) & =q s(x)+1
\end{aligned}
$$

This system has a unique bounded solution s_{q}, which is discontinuous precisely at the dyadic rationals.

Let $F_{q}(t):=m\left\{x \in[0,1] \mid s_{q}(x) \leq t\right\}$, the distribution function of s_{q}.
It can be shown that F_{q} is the unique function satisfying the functional equation

$$
F(t)=\frac{1}{2} F\left(\frac{t-1}{q}\right)+\frac{1}{2} F\left(\frac{t+1}{q}\right)
$$

with $F_{q}(t)=0$ for $t<-1 /(1-q)$ and $F_{q}(t)=1$ for $t>1 /(1-q)$.

Theorem (Jessen/Wintner 1935).
F_{q} is either absolutely continuous or singular.

Question: For which q is F_{q} absolutely continuous, for which q is it singular?

Figure 5.7. Cantor dust (the case $q=2 / 3$).

Some answers

Theorem (Kershner/Wintner 1935).
For $0<q<\frac{1}{2}, F_{q}$ is singular (in fact, a Cantor function).
Theorem (Wintner 1935).
For $q=\frac{1}{2}, F_{q}(t)=\left\{\begin{array}{cl}0, & t<-2 \\ \frac{t+2}{4}, & -2 \leq t \leq 2 \\ 1, & t>2\end{array}\right\}$, which is absolutely continuous.
In fact, for each $q=2^{-1 / p}, F_{q}$ is absolutely continuous.
Theorem (Erdös 1939).
If $q>\frac{1}{2}$ and $1 / q$ is a Pisot number, then F_{q} is singular!
E.g., F_{q} is singular for $q=(\sqrt{5}-1) / 2 \approx 0.618033989$.
(Proof: via the Fourier-Stieltjes transform of F_{q}.)
Theorem (Garsia 1962).
Some explicit algebraic numbers q (besides $2^{-1 / p}$) for which F_{q} is absolutely continuous.

Theorem (Solomyak 1995).
F_{q} is absolutely continuous for a.e. $q \in\left(\frac{1}{2}, 1\right)$!

Open questions and experimental approach

Open: 1) Is the set of exceptional values $q>\frac{1}{2}$ (with F_{q} singular) countable?
2) Is there a rational $q>\frac{1}{2}$ with F_{q} singular?

Is there a rational $q>\frac{1}{2}$ with F_{q} absolutely continuous?
3) What about $q=\frac{2}{3}$? What about other specific values?

Experimental approach: Visualize the density $f_{q}=F_{q}^{\prime}$ a.e.
In fact, if F_{q} is absolutely continuous, then f_{q} is a non-trivial L_{1}-solution of the functional equation

$$
\begin{equation*}
f(t)=\frac{1}{2 q}\left(f\left(\frac{t-1}{q}\right)+f\left(\frac{t+1}{q}\right)\right) \tag{q}
\end{equation*}
$$

on \mathbb{R}.
Vice versa, if a non-trivial L_{1}-solution f_{q} of $\left(S_{q}\right)$ exists, then it is the density of an absolutely continuous F_{q}.

How to visualize f_{q} ?

$$
\begin{equation*}
f(t)=\frac{1}{2 q}\left(f\left(\frac{t-1}{q}\right)+f\left(\frac{t+1}{q}\right)\right) \tag{q}
\end{equation*}
$$

It can be shown: If a non-trivial L_{1}-solution f_{q} of $\left(S_{q}\right)$ exists, then it:

- is unique up to a multiplicative constant,
- satisfies supp $f_{q}=\left[-\frac{1}{1-q}, \frac{1}{1-q}\right]$,
- and is either positive or negative a.e. on its support.

This implies: Define an operator B_{q} on L_{1} by

$$
\left(B_{q} f\right)(t)=\frac{1}{2 q}\left(f\left(\frac{t-1}{q}\right)+f\left(\frac{t+1}{q}\right)\right)
$$

and consider the iteration $f^{(n)}:=B_{q} f^{(n-1)}$ with some $f^{(0)} \in L_{1}$. Then: If $\left(f^{(n)}\right)_{n}$ converges in L_{1}, then the limit is an L_{1}-solution of $\left(S_{q}\right)$.

If $\left(S_{q}\right)$ has a non-trivial L_{1}-solution, then $\left(f^{(n)}\right)_{n}$ converges in the mean in L_{1}.

A final remark about $q=2 / 3$

Rescale F_{q} resp. f_{q} such that the support is $[0,1]$ instead of $\left[-\frac{1}{1-q}, \frac{1}{1-q}\right]$.
Then for $q=2 / 3$, the functional equation $\left(S_{q}\right)$ is equivalent to the system

$$
\begin{aligned}
f\left(\frac{x}{3}\right) & =\frac{3}{4} f\left(\frac{x}{2}\right) \\
f\left(\frac{x+1}{3}\right) & =\frac{3}{4} f\left(\frac{x}{2}\right)+\frac{3}{4} f\left(\frac{x+1}{2}\right) \\
f\left(\frac{x+2}{3}\right) & =\frac{3}{4} f\left(\frac{x+1}{2}\right)
\end{aligned}
$$

on $[0,1]$.
Does this system have a non-trivial L_{1}-solution?
If so, is the solution continuous?

