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Abstract

We consider conditions ensuring the monotonicity of right
and left Riemann sums of a function f : [0, 1] → R with re-
spect to uniform partitions. Experimentation suggests that
symmetrization may be important and leads us to results such



as: if f is decreasing on [0, 1] and its symmetrization, F (x) :=
1
2 (f(x) + f(1− x)) is concave then its right Riemann sums in-
crease monotonically with partition size. Applying our results
to functions such as f(x) = 1/

(
1 + x2

)
also leads to a nice

application of Descartes’ rule of signs.

1 Introduction

For a bounded function f : [0, 1] → R the left and right Riemann
sums of f with respect to the uniform partition Un of [0, 1] into n equal



intervals are,

σn := σn(f) =
1

n

n−1∑
k=0

f

(
k

n

)
, and τn := τn(f) =

1

n

n∑
k=1

f

(
k

n

)
.

(1)

So, σn(f) − τn(f) =
1

n
(f(0) − f(1)), and both σn and τn are linear

functionals with σn(1) = τn(1) = 1. If f is decreasing (increasing) on
[0, 1] then σn is the upper (lower), and τn the lower (upper), Riemann
sum of f with respect Un. If f is symmetric about the midpoint of
[0, 1]; that is, f(x) = f(1− x), then τn(f) = σn(f) for all n.



And, of course, if f is Riemann integrable (as it is if f is monotonic,

concave, or continuous) then both σn and τn converge to
∫ 1

0
f . (See,

for example [1].) Further, if for example f is decreasing then τ2n ≥ τn,

so τ2n increases monotonically to
∫ 1

0
f , but how does τn+1 compare to

τn?

We are thus led to seek conditions which will ensure (σn) and (τn) or
other Riemann sums form decreasing/imcreasing sequences.

In the process of producing [2] one of the current authors gave the
following example.

Example 1 (Digital assistance, arctan(1) and a black-box). Consider



for integer n > 0 the sum

σn :=
n−1∑
k=0

n

n2 + k2
.

The definition of the Riemann sum means that

lim
n→∞

σn = lim
n→∞

n−1∑
k=0

1

1 + (k/n)2

1

n

=

∫ 1

0

1

1 + x2
dx

= arctan(1). (2)

Even without being able to do this Maple will quickly tell you that

σ1014 = 0.78539816339746 . . .



Now if you ask for 100 billion terms of most slowly convergent series,
a computer will take a long time.



So this is only possible because Maple knows

σN = − i
2

Ψ (N − iN) +
i

2
Ψ (N + iN) +

i

2
Ψ (−iN)− i

2
Ψ (iN)

using the imaginary i, and it has a fast algorithm for our new friend
the psi function. Now identify(0.78539816339746) yields π

4
.

We can also note that

τn :=
n∑
k=1

n

n2 + k2

is another Riemann sum converging to
∫ 1

0
1

1+x2
dx. Indeed, σn − τn =

1
2n
> 0. Moreover, experimentation suggests that σn decreases, and τn

increases, to π/4. ♦



If we enter “monotonicity of Riemann sums” into Google, one of the
first entries is http://elib.mi.sanu.ac.rs/files/journals/tm/29/
tm1523.pdf which is a 2012 article [4] that purports to show the mono-
tonicity of the two sums for the function

f(x) =:
1

1 + x2
. (3)

The paper goes on to prove that if f : [0, 1]→ R is continuous, concave,
or convex, and decreasing then τn := 1

n

∑n
k=1 f( k

n
) increases and σn :=

1
n

∑n−1
k=0 f( k

n
) decreases to

∫ 1

0
f(x) dx, as n → ∞. Related results for

a continuous concave, or convex, and increasing function follow by
applying these results to −f .

http://elib.mi.sanu.ac.rs/files/journals/tm/29/tm1523.pdf
http://elib.mi.sanu.ac.rs/files/journals/tm/29/tm1523.pdf


That a condition such as concavity (or convexity) is necessary is readily
seen by considering a function such as χ[0, 1

2
],the characteristic function

for the interval [0, 1
2
], for which τ2m−1 + 1

2(m−1)
= τ2m = τ2m+1 + 1

2m
.

All proofs in [4] are based on looking at the rectangles which comprise
the difference between τn+1 and τn as in Figure ?? (or the corresponding
sums for σn). This is

n∑
k=1

{
(n+ 1− k)

n+ 1
f

(
k

n+ 1

)
+

k

n+ 1
f

(
k + 1

n+ 1

)
− f

(
k

n

)}
. (4)



In the easiest case, each bracketed term

δn(k) :=
(n+ 1− k)

n+ 1
f

(
k

n+ 1

)
+

k

n+ 1
f

(
k + 1

n+ 1

)
− f

(
k

n

)
has the same sign for all n and 1 ≤ k ≤ n as happens for a function
which is concave, or convex, and decreasing.

But in [4] the author mistakenly asserts this applies for 1/(1+x2) which
has an inflection point at 1/

√
3. Indeed, the proffered proof flounders

at the inequality in the last line of page 115 which fails for instance
when n = 5 and k = 1.

It appears, however, on checking in a computer algebra system (CAS),
that δn(k) + δn(n − k) ≥ 0 which if established would repair the hole
in the proof, it also suggests that symmetry may have a role to play.



Accordingly, we define the symmetrization of f : [0, 1] → R about
x = 1

2
to be

F (x) := Ff (x) =
1

2
(f(x) + f(1− x)) . (5)

We will make use of Ff throughout the rest of this note and start
by observing that such a symmetrization never destroys convexity or
concavity and often improves it.

For example, for f(x) = 1/(1 + x2) we have

Ff (x) =
x2 − x+ 3/2

(x2 + 1) (x2 − 2x+ 2)
.

That Ff is concave on [0, 1] can be checked by computing F ′′(x). (See
theorem 2 for more details.) Graphs of f and Ff are shown in in Figure
1, together with the graph of a symmetric concave function. ♦



Figure 1: 1
1+x2

(L), its symmetrization around 1
2

(M), and 1
1−x+x2

(R)

Another example of functions with a concave symmetrization is x 7→
e−ax

2
, for a > 0.

What a fine instance of digital assistance in action all this provides.



2 Monotonicity and symmetrization

Numerical experiments suggest it is very common for f to be such
that τn and σn exhibit monotonicity but it is harder to find applicable
conditions that assure this. Thus, we seek verifiable conditions that in
particular will apply to (3). Motivated by example 1 and the preceding
discussion, we exploit symmetry around 1/2. This is a very simple
case of Schwartz or Steiner symmetrization [3, §3.4.3] used in some
proofs of the isoperimetric problem. As will soon become apparent,
calculations involving symmetric (concave) functions lead us naturally
to the introduction of the following symmetric Riemann sum.



For f : [0, 1]→ R we define:

λn := λn(f) =
1

n

(
n∑
k=0

f

(
k

n

))
− 1

n
f

(
1

2

)
. (6)

For all n ∈ N, λn(f) is linear and symmetric in that λn(f) = λn(f(1−·))
and so λn(f) = λn(F ) where F is the symmetrization of f ; namely,
F (x) := 1

2
(f(x) + f(1− x)). The term involving f

(
1
2

)
ensures that

λn(1) = 1 by making a correction to the central term(s) of 1
n

∑n
k=0 f

(
k
n

)
;

if n is even we simply omit the central term, 1
n
f(1/2), while if n is odd

we replace the two central terms by 1
n
(f(1/2 − 1/(2n)) − f(1/2) +

f(1/2 + 1/(2n))).



Further,

λn(f) =
τn + σn

2
+

1

2n

(
f(0) + f(1)− 2f

(
1

2

))
(7)

= τn +
1

n

(
f(0)− f

(
1

2

))
(8)

= σn +
1

n

(
f(1)− f

(
1

2

))
(9)



Theorem 1 (Monotonicity for symmetric concave function). If the
function f : [0, 1]→ R is concave on the interval [0, 1] and is symmetric
about its midpoint, then the sequence {λn} is increasing with n.

Note that a concave function on [0, 1] symmetric around 1/2 takes its
maximum there and is necessarily decreasing on (1/2, 1)—and increas-
ing on (0, 1/2).

Corollary 1. If the function f : [0, 1] → R is convex on the interval
[0, 1], and is symmetric about its midpoint, then the sequence {λn} is
decreasing with n.

Proof of Corollary 1. This follows since Theorem 1 applies to −f .

Before proceeding to a proof of Theorem 1 we first give a lemma.



Lemma 1. If f : [0, 1] → R is concave and decreasing on the interval
[1/2, 1] and

k

n
≥ 1

2
, (10)

then

f

(
k + 1

n+ 1

)
≥ n− k

n
f

(
k + 1

n

)
+
k

n
f

(
k

n

)
. (11)

Proof. Since f is concave on [1/2, 1] and (10) holds we have

n− k
n

f

(
k + 1

n

)
+
k

n
f

(
k

n

)
≤ f

(
n− k
n
· k + 1

n+ 1
+
k

n
· k
n

)
= f

(
nk + n− k

n2

)
. (12)



Due to the monotonicity of f on [1/2, 1] and the inequalities

nk + n− k
n2

≥ k + 1

n+ 1
>
k

n
≥ 1

2
, (13)

we have

f

(
k + 1

n+ 1

)
≥ f

(
nk + n− k

n2

)
. (14)

Together, inequalities (12) and (14) imply inequality (11). This com-
pletes the proof of the lemma.



Since for any constant K we have λn(f + K) = λn(f) + K (and the
same for τn and σn), we may suppose without loss in generality that
f(0) = f(1) = 0 . Observe that inequality (11) is equivalent to

1

n+ 1
f

(
k + 1

n+ 1

)
≥ 1

n
f

(
k + 1

n

)
+

1

n(n+ 1)

(
kf

(
k

n

)
− (k + 1)f

(
k + 1

n

))
,

(15)
from which it follows that

1

n+ 1

n−1∑
k=m

f

(
k + 1

n+ 1

)
≥ 1

n

n−1∑
k=m

f

(
k + 1

n

)
+

m

n(n+ 1)
f
(m
n

)
,

or equivalently

1

n+ 1

n+1∑
k=m+1

f

(
k

n+ 1

)
≥ 1

n

n∑
k=m+1

f

(
k

n

)
+

m

n(n+ 1)
f
(m
n

)
. (16)



Because of the symmetry of f we deduce from (16) that

1

n+ 1

n−m∑
k=0

f

(
k

n+ 1

)
≥ 1

n

n−m−1∑
k=0

f

(
k

n

)
+

m

n(n+ 1)
f
(m
n

)
. (17)

We consider the cases n odd and n even separately.
Case i: n = 2m− 1. Adding the inequalities (16) and (17) we get

1

n+ 1

n+1∑
k=0

f

(
k

n+ 1

)
≥ 1

n

n∑
k=0

f

(
k

n

)
+

2m

n(n+ 1)
f
(m
n

)
+

1

n+ 1
f

(
m

n+ 1

)
(18)

− 1

n
f

(
m− 1

n

)
− 1

n
f
(m
n

)
. (19)



Since
m− 1

n
=

1

2
− 1

2n
,

m

n
=

1

2
+

1

2n
,

m

n+ 1
=

1

2
,

it follows from (18) that

τn+1 − τn ≥
1

n
f

(
1

2
+

1

2n

)
+

1

n+ 1
f

(
1

2

)
− 1

n
f

(
1

2
− 1

2n

)
− 1

n
f

(
1

2
+

1

2n

)
(20)

=
1

n+ 1
f

(
1

2

)
− 1

n
f

(
1

2
− 1

2n

)
≥ 1

n+ 1
f

(
1

2

)
− 1

n
f

(
1

2

)
(21)



and

λn+1 = τn+1 −
1

n+ 1
f

(
1

2

)
≥ τn −

1

n
f

(
1

2

)
= λn. (22)

Case ii: n = 2m. In this case adding the inequalities (16) and (17) we
get

1

n+ 1

n+1∑
k=0

f

(
k

n+ 1

)
≥ 1

n

n∑
k=0

f

(
k

n

)
+

1

n
f
(m
n

)
+

2m

n(n+ 1)
f
(m
n

)
=

1

n

n∑
k=0

f

(
k

n

)
− 1

n
f

(
1

2

)
+

1

n+ 1
f

(
1

2

)
.

(23)



It follows from (23) that

λn+1 = τn+1 −
1

n+ 1
f

(
1

2

)
≥ τn −

1

n
f

(
1

2

)
= λn. (24)

It now follows from (20) and (24) that {λn} is increasing with n.



Corollary 2. If the function f : [0, 1]→ R has a concave symmetriza-
tion and f(0) > f(1/2) then τn increases with n.

Proof. Theorem 1 applies to Ff to show that λn(f) = λn(Ff ) is in-
creasing and the conclusion follows from (8).

In particular we have,

Corollary 3 (Monotonicity for decreasing functions with a concave
symmetrization). If the function f : [0, 1] → R is decreasing on the
interval [0, 1] and its symmetrization; Ff (x) = 1

2
(f(x) + f(1− x)), is

concave, then τn increases with n, necessarily to
∫ 1

0
f .



Example 2 (Monotonicity of τn for 1/(1+x2)). Consider the function
f(x) =: 1/(1 + x2) for which

τn :=
n∑
k=1

n

n2 + k2
.

Clearly f is decreasing on [0, 1] and we already observed in example
1 that its symmetrization Ff (x) := 1

2
(f(x) + f(1− x)) is concave, so

corollary 3 applies to show that τn is increasing. ♦

Similarly, for a > 0 and fa(x) := e−ax
2
, we see by calculating f ′a and

F ′′fa that τn(fa) increases with n.



Remark 1 (Variations on the theme). Let f : [0, 1]→ R. Noting from
their linearity that τn(−f) = −τ(f) and similarly for σn, and also
observing that σn(f(x)) = τn(f(1 − x)), we can deduce the following
variants of the results above.

(i) If f is is decreasing, symmetric and convex, then λn is decreasing.
[Apply Theorem 1 to −f .]

(ii) If f(0) < f(1/2) (in particular, if f is increasing) and has a
convex symmetrization, then τn is decreasing. [Apply Corollary
2 to −f .]

(iii) If f(1/2) < f(1) (in particular, if f increasing) and has a concave
symmetrization, then σn is increasing. [Apply Corollary 2 to
f(1− x).]



(iv) If f(1/2) > f(1) (in particular if f is decreasing) and has a
convex symmetrization, then σn is decreasing. [Apply Corollary
2 to −f(1− x).]

Since the symmetrization of f is concave (convex) if f is concave (con-
vex) we observe that Corollary 2 and (iv) extend the final two theorems
in [4]. ♦



3 The function 1
1−bx+x2

As a way of highlighting the subtleties in a seemingly innocent question,
we finish by analyzing a one-parameter class of functions to which our
results sometimes apply.

We consider the the family of functions

fb : [0, 1]→ R, where fb(x) :=
1

x2 − bx+ 1
(25)

in the parameter range |b| < 2 so that each fb assumes only positive
values.



The symmetrization of fb about 1/2 is

Fb(x) =
x2 − x+ (3− b)/2

(x2 − bx+ 1) (x2 − (2− b)x+ (2− b))
. (26)

Then f0(x) = 1/(1 + x2) while f1(x) = F1(x) = 1/(x2 − x + 1). Now
F0, F1 and F3/2 are concave on [0, 1], while F−1 is convex and

F2(x) =
(1− x)x+ 1/2

(1− x)2 x2

is convex as an extended value function from [0, 1] into (−∞,∞]. By
contrast F5/4, F7/4 are neither convex nor concave on the unit interval
(for more details see remark 2 below).



In passing we compute for |b| < 2 that∫ 1

0

dx

x2 − bx+ 1
=

2√
4− b2

(
arctan

(
b√

4− b2

)
+ arctan

(
2− b√
4− b2

))
.

When b→ −2 we arrive at
∫ 1

0
dx

x2+2x+1
= 1

2
.

With a view to applying Corollaries 3 or 2 we begin by noting that
fb(x) is decreasing on [0, 1] for b ≤ 0 and increasing only for b ≥ 2,
however fb(0) > fb(1/2) whenever b < 1/2.

We next prove that Fb is concave for 0 ≤ b ≤ 1. We will em-
ploy Descartes’ rule of signs, see http://mathworld.wolfram.com/

DescartesSignRule.html, which says that for a polynomial p, the
number n(p) of zeros on the positive axis does not exceed the num-
ber of sign changes s(p) in the nonzero coefficients (in order) and that

http://mathworld.wolfram.com/DescartesSignRule.html
http://mathworld.wolfram.com/DescartesSignRule.html


2|(n(p)− s(p)).

Theorem 2 (Concavity of Fb). The function given by (26) is concave
on [0, 1] for 0 ≤ b ≤ 1.

Proof. To establish concavity of Fb we show that F ′′b is negative on
[0, 1], see figure ?? and to do this we need only show its the numerator
polynomial, nb, is negative, as the denominator is always positive.

Further, since Fb and hence F ′′b are symmetric about 1
2

we need only
show this on [1/2, 1]. Moreover, using the change of variable x :=
(y + 1)/2 allows us to use Descartes’ rule of signs to detect roots of
nb(x) for x ≥ 1/2 (that is, y ≥ 0).



Figure 2: The second derivative of Fb for 0 ≤ b, x ≤ 1.. Note the
advantage of plotting the plane.



Now, the numerator of F ′′b ((y + 1)/2) is

nb(y) := 24 y8 + 32
(
b2 − 6 b+ 11

)
y6 + 48 (2 b− 5)

(
6 b2 − 10 b+ 1

)
y4

− 96 (2 b− 5)
(
4 b2 − 2 b− 11

)
(b− 1)2 y2 − 8

(
4 b2 − 6 b− 1

)
(2 b− 5)3 .
(27)

For 0 < b < 1 the first two terms in (27) are always positive and the
final two are negative, so irrespective of the sign of the coefficient of
y4 (it in fact has three zeroes—at 5/2, (5±

√
19)/6) Descartes’ rule of

signs applies to show the numerator has one positive real zero (including
multiplicity). This zero must lie to the right of 1 except for b = 1 when
it equals 1, as illustrated in Figure 3. (Note how close to one the
inflection point is for b = 5/4.)



For 0 ≤ b < 1 we have

nb(0) = 8
(
4 b2 − 6 b− 1

)
(5− 2 b)3 < 0

and
nb(1) = −1024 (b− 2) (b− 1)

(
b3 − 3 b2 + 3

)
< 0.

Thus, when 0 ≤ b ≤ 1 the numerator is non-positive for y ∈ [−1, 1)
and so Fb(x) is concave on [0, 1].

This proof of concavity for Fb was discovered by examining animations
of the behaviour of nb and then getting a CAS to provide the requisite
expressions after shifting the symmetry to zero so that Descartes’ rule
was applicable. some snapshots of the animation are illustrated in
Figure 3.



Figure 3: Graph of nb(y) on [0, 3/2] for b = 3/4 (L), b = 1 (M), and
b = 5/4 (R)

Remark 2 (Convexity properties throughout the range |b| < 2). In this
range the function provides further interesting applications of Descartes’
rule of signs.



A careful analysis of the coefficients ak of y2k for k = 0, 1, 2, 3 in (27)
and the signs of nb(0) and nb(1) [see Figure 3 where we plot nb(0)
and nb(1) with n0(b) a dashed line], coupled with reasoning similar to
that in the proof of Theorem 2 allows us to extend the results of that
theorem to the whole parameter range |b| < 2.

The analysis and conclusions are summarized in Table 1, where



α− = the negative root of b4 − 3b2 + 3 ≈ −0.8794

α = the smallest positive root of b4 − 3b2 + 3

=1 +
√

3 sin(2π/9) ≈ 1.3473

α+ = the largest root of b4 − 3b2 + 3 ≈ 2.5231

β−, β+ = the roots of 4b2 − 6b− 1 = (3±
√

13)/3 ≈ −0.1539, 1.6514

γ−, γ+ = the roots of 6b2 − 10b+ 1 = (5±
√

19)/6 ≈ −0.1069, 1.5598

δ−, δ+ = the roots of 4b2 − 2b− 11 = (1±
√

45)/4 ≈ −1.4271, 1.9271

and

# = the number of positive roots of nb((y + 1)/2)



Table 1: Table of Signs
b [−2, δ−] [δ−, α−] [α−, β−] [β−, γ−] [γ−, 1] [1, α] [α, γ+] [γ+, β+] [β+, δ+] [δ+, 2)

a4 + + + + + + + + + +
a3 + + + + + + + + + +
a2 - - - - + + + - - -
a1 + - - - - - - - - +
a0 + + + - - - - - + +

nb(0) + + + - - - - - + +
nb(1) + + - - - + - - - -

# 2 2 2 1 1 1 1 1 2 2
Fb(x) conv conv infl conc conc infl conc conc infl infl

The conclusion that Fb is convex for −2 < b ≤ α− follows from the
observation that in this range nb(x) is negative for values of x > 1, so
neither positive root can lie within the interval [0, 1].



Putting all this together we are able to conclude that τn(fb) is increasing
for b ∈ [β−, 1/2] and σn(fb) is decreasing for b ∈ [−2, α−].

A similar analysis in the cases |b| > 2 is left to the interested reader. ♦

4 Concluding Remarks

The story we have told highlights the many accessible ways that the
computer and the internet can enrich mathematical research and in-
struction. The story would be even more complete if we could also
deduce that σn(1/(1 + x2)) was decreasing.
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