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Preface

Minor Errata: The following is a pointer to some minor
errata. Details can be found in the Errata file on the book’s
website at
www.carma.newcastle.edu.au/jon/ToVA/addenda.html.

Results Corrections

Lemma 5.1.11 a compactness assumption is needed

Lemma 5.5.4 Theorem 5.5.2 in the proof should be replaced by Theorem 2.7 in [174]

Theorem 3.3.8 should be a corollary to a stronger version of Theorem 3.3.7

Theorem 2.1.1 Condition (iii)is inaccurate

Theorem 2.1.4 add “for all x ∈ X\{y}” to the conclusion.

Theorem 3.7.2 s1(x) > 0 in the proof need a justification.

Exercise 4.3.11. minor correction needed.

Exercise 3.4.11. minor correction needed.

Section 4.7.3. minor correction to the definition of doubly stochastic pattern.

www.carma.newcastle.edu.au/jon/ToVA/addenda.html


iv Preface

Variational arguments are classical techniques whose use
can be traced back to the early development of the calculus
of variations and further. Rooted in the physical principle
of least action they have wide applications in diverse fields.
The discovery of modern variational principles and nons-
mooth analysis further expand the range of applications of
these techniques. The motivation to write this book came
from a desire to share our pleasure in applying such varia-
tional techniques and promoting these powerful tools. Po-
tential readers of this book will be researchers and graduate
students who might benefit from using variational methods.



Preface v

The only broad prerequisite we anticipate is a working
knowledge of undergraduate analysis and of the basic prin-
ciples of functional analysis (e.g., those encountered in a
typical introductory functional analysis course). We hope to
attract researchers from diverse areas – who may fruitfully
use variational techniques – by providing them with a rel-
atively systematical account of the principles of variational
analysis. We also hope to give further insight to graduate
students whose research already concentrates on variational
analysis. Keeping these two different reader groups in mind
we arrange the material into relatively independent blocks.



vi Preface

We discuss various forms of variational principles early in
Chapter 2. We then discuss applications of variational tech-
niques in different areas in Chapters 3–7. These applications
can be read relatively independently. We also try to put gen-
eral principles and their applications together.



Preface vii

The recent monograph “Variational Analysis” by Rockafel-
lar and Wets [237] has already provided an authoritative and
systematical account of variational analysis in finite dimen-
sional spaces. We hope to supplement this with a concise ac-
count of the essential tools of infinite-dimensional first-order
variational analysis; these tools are presently scattered in
the literature. We also aim to illustrate applications in many
different parts of analysis, optimization and approximation,
dynamical systems, mathematical economics and elsewhere.



viii Preface

Much of the material we present grows out of talks and
short lecture series we have given in the past several years.
Thus, chapters in this book can easily be arranged to form
material for a graduate level topics course. A fair collection
of suitable exercises is provided for this purpose. For many
reasons, we avoid pursuing maximum generality in the main
corpus. We do, however, aim at selecting proofs of results
that best represent the general technique.



Preface ix

In addition, in order to make this book a useful reference
for researchers who use variational techniques, or think they
might, we have included many more extended guided exer-
cises (with corresponding references) that either give useful
generalizations of the main text or illustrate significant re-
lationships with other results. Harder problems are marked
by a ∗. The (forthcoming) book “Variational Analysis and
Generalized Differentiation” by Boris Mordukhovich [204],
to our great pleasure, is a comprehensive complement to the
present work.



x Preface

We are indebted to many of our colleagues and students
who read various versions of our manuscript and provided
us with valuable suggestions. Particularly, we thank Heinz
Bauschke, Kirsty Eisenhart, Ovidiu Furdui, Warren Hare,
Marc Lassonde, Yuri Ledyaev, Boris Mordukhovich, Jean
Paul Penot, Jay Treiman, Xianfu Wang, Jack Warga, and
Herre Wiersma. We also thank Jiongmin Yong for organiz-
ing a short lecture series in 2002 at Fudan university which
provided an excellent environment for the second author to
test preliminary materials for this book.
We hope our readers get as much pleasure from reading

this material as we have had during its writing. The website
www.cs.dal.ca/˜borwein/ToVA will record additional in-
formation and addenda for the book, and we invite feedback.



Preface xi
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December 31, 2004
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1

Introduction and Notation

1.1 Introduction

In this book, variational techniques refer to proofs by way
of establishing that an appropriate auxiliary function attains
a minimum. This can be viewed as a mathematical form of
the principle of least action in physics. Since so many impor-
tant results in mathematics, in particular, in analysis have
their origins in the physical sciences, it is entirely natural
that they can be related in one way or another to varia-
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tional techniques. The purpose of this book is to provide an
introduction to this powerful method, and its applications,
to researchers who are interested in using this method. The
use of variational arguments in mathematical proofs has a
long history. This can be traced back to Johann Bernoulli’s
problem of the Brachistochrone and its solutions leading to
the development of the calculus of variations. Since then the
method has found numerous applications in various branches
of mathematics. A simple illustration of the variational ar-
gument is the following example.
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Example 1.1.1. (Surjectivity of Derivatives) Suppose that
f : R → R is differentiable everywhere and suppose that

lim
|x|→∞

f (x)/|x| = +∞.

Then {f ′(x) | x ∈ R} = R.

Proof. Let r be an arbitrary real number. Define g(x) :=
f (x) − rx. We easily check that g is coercive, i.e., g(x) →
+∞ as |x| → ∞ and therefore attains a (global) minimum
at, say, x̄. Then 0 = g′(x̄) = f ′(x̄)− r. •

Two conditions are essential in this variational argument.
The first is compactness (to ensure the existence of the min-
imum) and the second is differentiability of the auxiliary
function (so that the differential characterization of the re-



4 1 Introduction

sults is possible). Two important discoveries in the 1970’s led
to significant useful relaxation on both conditions. First, the
discovery of general variational principles led to the relax-
ation of the compactness assumptions. Such principles typ-
ically assert that any lower semicontinuous (lsc) function,
bounded from below, may be perturbed slightly to ensure
the existence of the minimum. Second, the development of
the nonsmooth analysis made possible the use of nonsmooth
auxiliary functions.
The emphasis in this book is on the new developments

and applications of variational techniques in the past sev-
eral decades. Besides the use of variational principles and
concepts that generalize that of a derivative for smooth func-
tions, one often needs to combine a variational principle



1.1 Introduction 5

with other suitable tools. For example, a decoupling method
that mimics in nonconvex settings the role of Fenchel du-
ality or the Hahn–Banach theorem is an essential element
in deriving many calculus rules for subdifferentials; mini-
max theorems play a crucial role alongside the variational
principle in several important results in nonlinear functional
analysis; and the analysis of spectral functions is a combina-
tion of the variational principles with the symmetric prop-
erty of these functions with respect to certain groups. This
is reflected in our arrangement of the chapters. An impor-
tant feature of the new variational techniques is that they
can handle nonsmooth functions, sets and multifunctions
equally well. In this book we emphasize the role of nons-
mooth, most of the time extended valued lower semicontin-
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uous functions and their subdifferential. We illustrate that
sets and multifunctions can be handled by using related non-
smooth functions. Other approaches are possible. For exam-
ple Mordukhovich [204] starts with variational geometry on
closed sets and deals with functions and multifunctions by
examining their epigraphs and graphs.
Our intention in this book is to provide a concise introduc-

tion to the essential tools of infinite-dimensional first-order
variational analysis, tools that are presently scattered in the
literature. We also aim to illustrate applications in many
different parts of analysis, optimization and approximation,
dynamic systems and mathematical economics. To make the
book more appealing to readers who are not experts in the
area of variational analysis we arrange the applications right
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after general principles wherever possible. Materials here can
be used flexibly for a short lecture series or a topics course
for graduate students. They can also serve as a reference for
researchers who are interested in the theory or applications
of the variational analysis methods.

1.2 Notation

We introduce some common notations in this section.
Let (X, d) be a metric space. We denote the closed ball

centered at x with radius r by Br(x). We will often work in
a real Banach space. When X is a Banach space we use X∗

and 〈 · , · 〉 to denote its (topological) dual and the duality
pairing, respectively. The closed unit ball of a Banach space
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X is often denoted by BX or B when the space is clear from
the context.
Let R be the real numbers. Consider an extended-real-

valued function f : X → R ∪ {+∞} . The domain of f is
the set where it is finite and is denoted by dom f := {x |
f (x) < +∞}. The range of f is the set of all the values of
f and is denoted by range f := {f (x) | x ∈ dom f}. We
call an extended-valued function f proper provided that its
domain is nonempty. We say f : X → R ∪ {+∞} is lower
semicontinuous (lsc) at x provided that lim infy→x f (y) ≥
f (x). We say that f is lsc if it is lsc everywhere in its domain.
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A subset S of a metric space (X, d) can often be better
studied by using related functions. The extended-valued in-
dicator function of S,

ιS(x) = ι(S; x) :=

{
0 x ∈ S,

+∞ otherwise,

characterizes S. We also use the distance function

dS(x) = d(S; x) := inf{d(x, y) | y ∈ S}.
The distance function determines closed sets as shown in
Exercises 1.3.1 and 1.3.2. On the other hand, to study a
function f : X → R ∪ {+∞} it is often equally helpful
to examine its epigraph and graph, related sets in X × R,
defined by

epi f := {(x, r) ∈ X × R | f (x) ≤ r}
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and

graph f := {(x, f (x)) ∈ X × R | x ∈ dom f}.
We denote the preimage of f : X → R∪{+∞} of a subset
S in R by

f−1(S) := {x ∈ X | f (x) ∈ S}.

Two special cases which will be used often are f−1((−∞, a]),
the sublevel set, and f−1(a), the level set, of f at a ∈ R.
For a set S in a Banach space X , we denote by intS, S,
bdS, convS, convS its interior, closure, boundary, con-
vex hull, closed convex hull, respectively, and we denote by
diam(S) := sup{‖x − y‖ | x, y ∈ S} its diameter and by
Br(S) := {x ∈ X | d(S; x) ≤ r} its r-enlargement. Closed
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sets and lsc functions are closely related as illustrated in
Exercises 1.3.3, 1.3.4 and 1.3.5.
Another valuable tool in studying lsc functions is the inf-

convolution of two functions f and g on a Banach space X
defined by (f�g)(x) := infy∈X [f (y) + g(x − y)]. Exercise
1.3.7 shows how this operation generates nice functions.
Multifunctions (set-valued functions) are equally inter-

esting and useful. Denote by 2Y the collection of all subsets
of Y . A multifunction F : X → 2Y maps each x ∈ X to a
subset F (x) of Y . It is completely determined by its graph,

graph F := {(x, y) ∈ X × Y | y ∈ F (x)},
a subset of the product space X × Y and, hence, by the
indicator function ιgraphF . The domain of a multifunction
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F is defined by domF := {x ∈ X | F (x) = ∅}. The inverse
of a multifunction F : X → 2Y is defined by

F−1(y) = {x ∈ X | y ∈ F (x)}.
Note that F−1 is a multifunction from Y to X . We say
a multifunction F is closed-valued provided that for every
x ∈ domF , F (x) is a closed set. We say the multifunction
is closed if indeed the graph is a closed set in the product
space. These two concepts are different (Exercise 1.3.8).
The ability to use extended-valued functions to relate sets,

functions and multifunctions is one of the great advantages
of the variational technique which is designed to deal flu-
ently with such functions. In this book, for the most part,
we shall focus on the theory for extended-valued functions.
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Corresponding results for sets and multifunctions are most
often derivable by reducing them to appropriate function
formulations.

1.3 Exercises

Exercise 1.3.1. Show that x ∈ S if and only if dS(x) = 0.

Exercise 1.3.2. Suppose that S1 and S2 are two subsets
of X . Show that dS1 = dS2 if and only if S1 = S2.

Exercise 1.3.3. Prove that S is a closed set if and only if
ιS is lsc.

Exercise 1.3.4. Prove that f is lsc if and only if epi f is
closed.

Exercise 1.3.5.Prove that f is lsc if and only if its sublevel
set at a, f−1((−∞, a]), is closed for all a ∈ R.
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These results can be used to show the supremum of lsc
functions is lsc.

Exercise 1.3.6. Let {fa}a∈A be a family of lsc functions.
Prove that f := sup{fa, a ∈ A} is lsc. Hint: epi f =⋂
a∈A epi fa.

Exercise 1.3.7. Let f be a lsc function bounded from be-
low. Prove that if g is Lipschitz with rank L, then so is f�g.

Exercise 1.3.8.Let F : X → 2Y be a multifunction. Show
that if F has a closed graph then F is closed-valued, but the
converse is not true.
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Variational Principles

A lsc function on a noncompact set may well not attain its
minimum. Roughly speaking, a variational principle asserts
that, for any extended-valued lsc function which is bounded
below, one can add a small perturbation to make it attain a
minimum. Variational principles allow us to apply the vari-
ational technique to extended-valued lsc functions system-
atically, and therefore significantly extend the power of the
variational technique. Usually, in a variational principle the



16 2 Variational Principles

better the geometric (smoothness) property of the under-
lying space the nicer the perturbation function. There are
many possible settings. In this chapter, we focus on two of
them: the Ekeland variational principle which holds in any
complete metric space and the Borwein–Preiss smooth vari-
ational principle which ensures a smooth perturbation suf-
fices in any Banach space with a smooth norm. We will also
present a variant of the Borwein–Preiss variational princi-
ple derived by Deville, Godefroy and Zizler with an elegant
category proof.
These variational principles provide powerful tools in mod-

ern variational analysis. Their applications cover numerous
areas in both theory and applications of analysis including
optimization, Banach space geometry, nonsmooth analysis,
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economics, control theory and game theory, to name a few.
As a first taste we discuss some of their applications; these
require minimum prerequisites in Banach space geometry,
fixed point theory, an analytic proof of the Gordan theorem
of the alternative, a characterization of the level sets associ-
ated with majorization and a variational proof of Birkhoff’s
theorem on the doubly stochastic matrices. Many other ap-
plications will be discussed in subsequent chapters.

2.1 Ekeland Variational Principles

2.1.1 The Geometric Picture

Consider a lsc function f bounded below on a Banach space
(X, ‖ · ‖). Clearly f may not attain its minimum or, to put
it geometrically, f may not have a supporting hyperplane.
Ekeland’s variational principle provides a kind of approxi-
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mate substitute for the attainment of a minimum by assert-
ing that, for any ε > 0, f must have a supporting cone of
the form f (y)− ε‖x−y‖. One way to see how this happens
geometrically is illustrated by Figure 2.1. We start with a
point z0 with f (z0) < infX f + ε and consider the cone
f (z0) − ε‖x − z0‖. If this cone does not support f then
one can always find a point z1 ∈ S0 := {x ∈ X | f (x) ≤
f (z)− ε‖x− z‖)} such that

f (z1) < inf
S0
f +

1

2
[f (z0)− inf

S0
f ].

If f (z1)− ε‖x− z1‖ still does not support f then we repeat
the above process. Such a procedure either finds the desired
supporting cone or generates a sequence of nested closed
sets (Si) whose diameters shrink to 0. In the latter case,
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Fig. 2.1. Ekeland variational principle. Top cone: f(x0)− ε|x− x0|; Middle cone: f(x1)− ε|x− x1|; Lower cone: f(y)− ε|x− y|.

f (y) − ε‖x − y‖ is a supporting cone of f , where {y} =⋂∞
i=1 Si. This line of reasoning works similarly in a complete

metric space. Moreover, it also provides a useful estimate on
the distance between y and the initial ε-minimum z0.
2.1.2 The Basic Form

We now turn to the analytic form of the geometric picture
described above – the Ekeland variational principle and its
proof.
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Theorem 2.1.1. (Ekeland Variational Principle) Let (X, d)
be a complete metric space and let f : X → R ∪ {+∞}
be a lsc function bounded from below. Suppose that ε > 0
and z ∈ X satisfy

f (z) < inf
X
f + ε.

Then there exists y ∈ X such that

(i) d(z, y) ≤ 1,
(ii) f (y) + εd(z, y) ≤ f (z), and
(iii) f (x) + εd(x, y) ≥ f (y), for all x ∈ X.

Proof. Define a sequence (zi) by induction starting with
z0 := z. Suppose that we have defined zi. Set

Si := {x ∈ X | f (x) + εd(x, zi) ≤ f (zi)}
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and consider two possible cases: (a) infSi f = f (zi). Then we
define zi+1 := zi. (b) infSi f < f (zi). We choose zi+1 ∈ Si
such that

f (zi+1) < inf
Si
f +

1

2
[f (zi)− inf

Si
f ] =

1

2
[f (zi) + inf

Si
f ] < f (zi).

(2.1.1)

We show that (zi) is a Cauchy sequence. In fact, if (a) ever
happens then zi is stationary for i large. Otherwise,

εd(zi, zi+1) ≤ f (zi)− f (zi+1). (2.1.2)

Adding (2.1.2) up from i to j − 1 > i we have

εd(zi, zj) ≤ f (zi)− f (zj). (2.1.3)

Observe that the sequence (f (zi)) is decreasing and bounded
from below by infX f , and therefore convergent. We con-
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clude from (2.1.3) that (zi) is Cauchy. Let y := limi→∞ zi.
We show that y satisfies the conclusions of the theorem.
Setting i = 0 in (2.1.3) we have

εd(z, zj) + f (zj) ≤ f (z). (2.1.4)

Taking limits as j → ∞ yields (ii). Since f (z) − f (y) ≤
f (z)− infX f < ε, (i) follows from (ii). It remains to show
that y satisfies (iii). Fixing i in (2.1.3) and taking limits as
j → ∞ yields y ∈ Si. That is to say

y ∈
∞⋂
i=1

Si.

On the other hand, if x ∈
⋂∞
i=1 Si then, for all i = 1, 2, . . . ,

εd(x, zi+1) ≤ f (zi+1)− f (x) ≤ f (zi+1)− inf
Si
f.(2.1.5)
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It follows from (2.1.1) that f (zi+1) − infSi f ≤ f (zi) −
f (zi+1), and therefore limi[f (zi+1) − infSi f ] = 0. Taking
limits in (2.1.5) as i → ∞ we have εd(x, y) = 0. It follows
that

∞⋂
i=1

Si = {y}. (2.1.6)

Notice that the sequence of sets (Si) is nested, i.e., for any i,
Si+1 ⊂ Si. In fact, for any x ∈ Si+1, f (x) + εd(x, zi+1) ≤
f (zi+1) and zi+1 ∈ Si yields

f (x) + εd(x, zi)≤f (x) + εd(x, zi+1) + εd(zi, zi+1)

≤f (zi+1) + εd(zi, zi+1) ≤ f (zi)

(2.1.7)
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which implies that x ∈ Si. Now, for any x = y, it follows
from (2.1.6) that when i sufficiently large x ∈ Si. Thus,
f (x) + εd(x, zi) ≥ f (zi). Taking limits as i→ ∞ we arrive
at (iii). •

2.1.3 Other Forms

Since ε > 0 is arbitrary the supporting cone in the Ekeland’s
variational principle can be made as “flat” as one wishes. It
turns out that in many applications such a flat support-
ing cone is enough to replace the possibly non-existent sup-
port plane. Another useful geometric observation is that one
can trade between a flatter supporting cone and a smaller
distance between the supporting point y and the initial ε-
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minimum z. The following form of this tradeoff can easily
be derived from Theorem 2.1.1 by an analytic argument.

Theorem 2.1.2. Let (X, d) be a complete metric space
and let f : X → R ∪ {+∞} be a lsc function bounded
from below. Suppose that ε > 0 and z ∈ X satisfy

f (z) < inf
X
f + ε.

Then, for any λ > 0 there exists y such that

(i) d(z, y) ≤ λ,
(ii) f (y) + (ε/λ)d(z, y) ≤ f (z), and
(iii) f (x) + (ε/λ)d(x, y) > f (y), for all x ∈ X \ {y}.
Proof. Exercise 2.1.1. •
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The constant λ in Theorem 2.1.2 makes it very flexible.
A frequent choice is to take λ =

√
ε and so to balance the

perturbations in (ii) and (iii).

Theorem 2.1.3. Let (X, d) be a complete metric space
and let f : X → R ∪ {+∞} be a lsc function bounded
from below. Suppose that ε > 0 and z ∈ X satisfy

f (z) < inf
X
f + ε.

Then, there exists y such that

(i) d(z, y) ≤ √
ε,

(ii) f (y) +
√
εd(z, y) ≤ f (z), and

(iii) f (x) +
√
εd(x, y) > f (y), for all x ∈ X \ {y}.

Proof. Set λ =
√
ε in Theorem 2.1.2. •
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When the approximate minimization point z in Theorem
2.1.2 is not explicitly known or is not important the following
weak form of the Ekeland variational principle is useful.

Theorem 2.1.4. Let (X, d) be a complete metric space
and let f : X → R ∪ {+∞} be a lsc function bounded
from below. Then, for any ε > 0, there exists y such that

f (x) +
√
εd(x, y) > f (y).

Proof. Exercise 2.1.6. •

2.1.4 Commentary and Exercises

Ekeland’s variational principle, appeared in [106], is inspired
by the Bishop–Phelps Theorem [24, 25] (see the next sec-
tion). The original proof of the Ekeland variational principle
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in [106] is similar to that of the Bishop–Phelps Theorem us-
ing Zorn’s lemma. J. Lasry pointed out transfinite induction
is not needed and the proof given here is taken from the
survey paper [107] and was credited to M. Crandall. As an
immediate application we can derive a version of the results
in Example 1.1.1 in infinite dimensional spaces (Exercises
2.1.2).
The lsc condition on f in the Ekeland variational principle

can be relaxed somewhat. We leave the details in Exercises
2.1.4 and 2.1.5.

Exercise 2.1.1. Prove Theorem 2.1.2. Hint: Apply Theo-
rem 2.1.1 with the metric d(·, ·)/λ.
Exercise 2.1.2. LetX be a Banach space and let f : X →
R be a Fréchet differentiable function (see Section 3.1.1).
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Suppose that f is bounded from below on any bounded set
and satisfies

lim
‖x‖→∞

f (x)

‖x‖ = +∞.

Then the range of f ′, {f ′(x) | x ∈ X}, is dense in X∗.
Exercise 2.1.3. As a comparison, show that in Exercise
2.1.2, if X is a finite dimensional Banach space, then f ′

is onto. (Note also the assumption that f bounded from
below on bounded sets is not necessary in finite dimensional
spaces).

Exercise 2.1.4.We say a function f is partially lower semi-
continuous (plsc) at x provided that, for any xi → x with
f (xi) monotone decreasing, one has f (x) ≤ lim f (xi). Prove
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that in Theorems 2.1.1 and 2.1.2, the assumption that f is
lsc can be replaced by the weaker condition that f is plsc.

Exercise 2.1.5. Construct a class of plsc functions that
are not lsc.

Exercise 2.1.6. Prove Theorem 2.1.4.

One of the most important—though simple—applications
of the Ekeland variational principle is given in the following
exercise:

Exercise 2.1.7. (Existence of Approximate Critical Points)
Let U ⊂ X be an open subset of a Banach space and let
f : U → R be a Gâteaux differentiable function. Suppose
that for some ε > 0 we have infX f > f (x̄)− ε. Prove that,
for any λ > 0, there exists a point x ∈ Bλ(x̄) where the
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Gâteaux derivative f ′(x) satisfies ‖f ′(x)‖ ≤ ε/λ. Such a
point is an approximate critical point.

2.2 Geometric Forms Of the Variational Principle

In this section we discuss the Bishop–Phelps Theorem, the
flower-petal theorem and the drop theorem. They capture
the essence of the Ekeland variational principle from a geo-
metric perspective.
2.2.1 The Bishop–Phelps Theorem

Among the three, the Bishop–Phelps Theorem [24, 25] is the
closest to the Ekeland variational principle in its geometric
explanation.
Let X be a Banach space. For any x∗ ∈ X∗\{0} and any
ε > 0 we say that
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K(x∗, ε) := {x ∈ X | ε‖x∗‖‖x‖ ≤ 〈x∗, x〉}
is a Bishop–Phelps cone associated with x∗ and ε. We il-
lustrate this in Figure 2.2 with the classic “ice cream cone”
in three dimensions.

Theorem 2.2.1. (Bishop–Phelps Theorem) Let X be a
Banach space and let S be a closed subset of X. Suppose
that x∗ ∈ X∗ is bounded on S. Then, for every ε > 0, S
has a K(x∗, ε) support point y, i.e.,

{y} = S ∩ [K(x∗, ε) + y].

Proof. Apply the Ekeland variational principle of Theorem
2.1.1 to the lsc function f := −x∗/‖x∗‖+ ιS. We leave the
details as an exercise. •
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Fig. 2.2. A Bishop–Phelps cone.

The geometric picture of the Bishop–Phelps Theorem and
that of the Ekeland variational principle are almost the same:
the Bishop–Phelps coneK(x∗, ε)+y in Theorem 2.2.1 plays
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a role similar to that of f (y) − εd(x, y) in Theorem 2.1.1.
One can easily derive a Banach space version of the Ekeland
variational principle by applying the Bishop–Phelps Theo-
rem to the epigraph of a lsc function bounded from below
(Exercise 2.2.2).
If we have additional information, e.g., known points inside

and/or outside the given set, then the supporting cone can
be replaced by more delicately constructed bounded sets.
The flower-petal theorem and the drop theorem discussed in
the sequel are of this nature.
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2.2.2 The Flower-Petal Theorem

Let X be a Banach space and let a, b ∈ X . We say that

Pγ(a, b) := {x ∈ X | γ‖a− x‖ + ‖x− b‖ ≤ ‖b− a‖}
is a flower petal associated with γ ∈ (0,+∞) and a, b ∈ X .
A flower petal is always convex, and interesting flower petals
are formed when γ ∈ (0, 1) (see Exercises 2.2.3 and 2.2.4).
Figure 2.3 draws the petals Pγ((0, 0), (1, 0)) for γ = 1/3,

and γ = 1/2.
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Fig. 2.3. Two flower petals.
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Theorem 2.2.2. (Flower Petal Theorem) Let X be a Ba-
nach space and let S be a closed subset of X. Sup-
pose that a ∈ S and b ∈ X\S with r ∈ (0, d(S; b))
and t = ‖b − a‖. Then, for any γ > 0, there exists
y ∈ S ∩ Pγ(a, b) satisfying ‖y − a‖ ≤ (t − r)/γ such
that Pγ(y, b) ∩ S = {y}.
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Proof. Define f (x) := ‖x− b‖ + ιS(x). Then

f (a) < inf
X
f + (t− r).

Applying the Ekeland variational principle of Theorem 2.1.2
to the function f (x) with and ε = t−r and λ = (t−r)/γ, we
have that there exists y ∈ S such that ‖y− a‖ < (t− r)/γ
satisfying

‖y − b‖ + γ‖a− y‖ ≤ ‖a− b‖
and

‖x− b‖ + γ‖x− y‖ > ‖y − b‖, for all x ∈ S\{y}.
The first inequality says y ∈ Pγ(a, b) while the second im-
plies that Pγ(y, b) ∩ S = {y}. •
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2.2.3 The Drop Theorem

Let X be a Banach space, let C be a convex subset of X
and let a ∈ X . We say that

[a, C] := conv({a} ∪ C) = {a + t(c− a) | c ∈ C}
is the drop associated with a and C.
The following lemma provides useful information on the

relationship between drops and flower petals. This is illus-
trated in Figure 2.4 and the easy proof is left as an exercise.

Lemma 2.2.3. (Drop and Flower Petal) Let X be a Ba-
nach space, let a, b ∈ X and let γ ∈ (0, 1). Then

B‖a−b‖(1−γ)/(1+γ)(b) ⊂ Pγ(a, b),

so that

[a,B‖a−b‖(1−γ)/(1+γ)(b)] ⊂ Pγ(a, b).
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Fig. 2.4. A petal capturing a ball.
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Proof. Exercise 2.2.5. •

Now we can deduce the drop theorem from the flower petal
theorem.

Theorem 2.2.4. (The Drop Theorem) Let X be a Banach
space and let S be a closed subset of X. Suppose that
b ∈ X\S and r ∈ (0, d(S; b)). Then, for any ε > 0, there
exists y ∈ bd(S) satisfying ‖y − b‖ ≤ d(S; b) + ε such
that [y,Br(b)] ∩ S = {y}.
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Proof. Choose a ∈ S satisfying ‖a− b‖ < d(S; b)+ ε and
choose

γ =
‖a− b‖ − r

‖a− b‖ + r
∈ (0, 1).

It follows from Theorem 2.2.2 that there exists y ∈ S ∩
Pγ(a, b) such that Pγ(y, b) ∩ S = {y}. Clearly, y ∈ bd(S).
Moreover, y ∈ Pγ(a, b) implies that ‖y − b‖ < ‖a − b‖ <
d(S; y) + ε. Finally, it follows from Lemma 2.2.3 and r =
1−γ
1+γ‖a− b‖ that [y,Br(b)] ∩ S = {y}. •
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2.2.4 The Equivalence with Completeness

Actually, all the results discussed in this section and the
Ekeland variational principle are equivalent provided that
one states them in sufficiently general form (see e.g. [135]).
In the setting of a general metric space, the Ekeland varia-
tional principle is more flexible in various applications. More
importantly it shows that completeness, rather than the lin-
ear structure of the underlying space, is the essential feature.
In fact, the Ekeland variational principle characterizes the
completeness of a metric space.



44 2 Variational Principles

Theorem 2.2.5. (Ekeland Variational Principle and Com-
pleteness) Let (X, d) be a metric space. Then X is com-
plete if and only if for every lsc function f : X →
R ∪ {+∞} bounded from below and for every ε > 0
there exists a point y ∈ X satisfying

f (y) ≤ inf
X
f + ε,

and
f (x) + εd(x, y) ≥ f (y), for all x ∈ X.



2.2 Geometric Forms 45

Proof. The “if” part follows from Theorem 2.1.4. We prove
the “only if” part. Let (xi) be a Cauchy sequence. Then,
the function f (x) := limi→∞ d(xi, x) is well-defined and
nonnegative. Since the distance function is Lipschitz with
respect to x we see that f is continuous. Moreover, since
(xi) is a Cauchy sequence we have f (xi) → 0 as i → ∞ so
that infX f = 0. For ε ∈ (0, 1) choose y such that f (y) ≤ ε
and

f (y) ≤ f (x) + εd(x, y), for all x ∈ X (2.2.1)

Letting x = xi in (2.2.1) and taking limits as i → ∞ we
obtain f (y) ≤ εf (y) so that f (y) = 0. That is to say
limi→∞ xi = y. •
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2.2.5 Commentary and Exercises

The Bishop–Phelps theorem is the earliest of this type
[24, 25]. In fact, this important result in Banach space geom-
etry is the main inspiration for Ekeland’s variational princi-
ple (see [107]). The drop theorem was discovered by Danes
[95]. The flower-petal theorem was derived by Penot in [217].
The relationship among the Ekeland variational principle,
the drop theorem and the flower-petal theorem were dis-
cussed in Penot [217] and Rolewicz [238]. The book [141] by
Hyers, Isac and Rassias is a nice reference containing many
other variations and applications of the Ekeland variational
principle.

Exercise 2.2.1. Provide details for the proof of Theorem
2.2.1.
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Exercise 2.2.2.Deduce the Ekeland variational principle
in a Banach space by applying the Bishop–Phelps Theorem
to the epigraph of a lsc function.

Exercise 2.2.3. Show that, for γ > 1, Pγ(a, b) = {a} and
P1(a, b) = {λa + (1− λ)b | λ ∈ [0, 1]}.
Exercise 2.2.4. Prove that Pγ(a, b) is convex.

Exercise 2.2.5. Prove Lemma 2.2.3.

2.3 Applications to Fixed Point Theorems

Let X be a set and let f be a map from X to itself. We
say x is a fixed point of f if f (x) = x. Fixed points of a
mapping often represent equilibrium states of some underly-
ing system, and they are consequently of great importance.
Therefore, conditions ensuring the existence and uniqueness
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of fixed point(s) are the subject of extensive study in anal-
ysis. We now use Ekeland’s variational principle to deduce
several fixed point theorems.
2.3.1 The Banach Fixed Point Theorem

Let (X, d) be a complete metric space and let φ be a map
from X to itself. We say that φ is a contraction provided
that there exists k ∈ (0, 1) such that

d(φ(x), φ(y)) ≤ kd(x, y), for all x, y ∈ X.
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Theorem 2.3.1. (Banach Fixed Point Theorem) Let (X, d)
be a complete metric space. Suppose that φ : X → X is
a contraction. Then φ has a unique fixed point.

Proof. Define f (x) := d(x, φ(x)). Applying Theorem 2.1.1
to f with ε ∈ (0, 1− k), we have y ∈ X such that

f (x) + εd(x, y) ≥ f (y), for all x ∈ X.

In particular, setting x = φ(y) we have

d(y, φ(y)) ≤ d(φ(y), φ2(y))+εd(y, φ(y)) ≤ (k+ε)d(y, φ(y)).

Thus, y must be a fixed point. The uniqueness follows di-
rectly from the fact that φ is a contraction and is left as an
exercise. •
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2.3.2 Clarke’s Refinement

Clarke observed that the argument in the proof of the Ba-
nach fixed point theorem works under weaker conditions. Let
(X, d) be a complete metric space. For x, y ∈ X we define
the segment between x and y by

[x, y] := {z ∈ X | d(x, z) + d(z, y) = d(x, y)}.(2.3.1)

Definition 2.3.2. (Directional Contraction) Let (X, d) be
a complete metric space and let φ be a map from X to
itself. We say that φ is a directional contraction provided
that

(i) φ is continuous, and
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(ii) there exists k ∈ (0, 1) such that, for any x ∈ X with
φ(x) = x there exists z ∈ [x, φ(x)]\{x} such that

d(φ(x), φ(z)) ≤ kd(x, z).

Theorem 2.3.3. Let (X, d) be a complete metric space.
Suppose that φ : X → X is a directional contraction. Then
φ admits a fixed point.
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Proof. Define

f (x) := d(x, φ(x)).

Then f is continuous and bounded from below (by 0). Ap-
plying the Ekeland variational principle of Theorem 2.1.1 to
f with ε ∈ (0, 1 − k) we conclude that there exists y ∈ X
such that

f (y) ≤ f (x) + εd(x, y), for all x ∈ X. (2.3.2)

If φ(y) = y, we are done. Otherwise, since φ is a directional
contraction there exists a point z = y with z ∈ [y, φ(y)],
i.e.,

d(y, z) + d(z, φ(y)) = d(y, φ(y)) = f (y) (2.3.3)

satisfying

d(φ(z), φ(y)) ≤ kd(z, y). (2.3.4)
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Letting x = z in (2.3.2) and using (2.3.3) we have

d(y, z) + d(z, y) ≤ d(z, φ(z)) + εd(z, y)

or

d(y, z) ≤ d(z, φ(z))− d(z, φ(y)) + εd(z, y) (2.3.5)

By the triangle inequality and (2.3.4) we have

d(z, φ(z))− d(z, φ(y)) ≤ d(φ(y), φ(z)) ≤ kd(y, z).

(2.3.6)

Combining (2.3.5) and (2.3.6) we have

d(y, z) ≤ (k + ε)d(y, z),

a contradiction. •
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Clearly any contraction is a directional contraction. There-
fore, Theorem 2.3.3 generalizes the Banach fixed point the-
orem. The following is an example where Theorem 2.3.3 ap-
plies when the Banach contraction theorem does not.
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Example 2.3.4. Consider X = R
2 with a metric induced

by the norm ‖x‖ = ‖(x1, x2)‖ = |x1|+ |x2|. A segment be-
tween two points (a1, a2) and (b1, b2) consists of the closed
rectangle having the two points as diagonally opposite cor-
ners. Define

φ(x1, x2) =
(3x1

2
− x2

3
, x1 +

x2
3

)
.

Then φ is a directional contraction. Indeed, if y = φ(x) = x.
Then y2 = x2 (for otherwise we will also have y1 = x1).
Now the set [x, y] contains points of the form (x1, t) with t
arbitrarily close to x2 but not equal to x2. For such points
we have

d(φ(x1, t), φ(x1, x2)) =
2

3
d((x1, t), (x1, x2)),
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so that φ is a directional contraction. We can directly check
that the fixed points of φ are all points of the form (x, 3x/2).
Since φ has more than one fixed point clearly the Banach
fixed point theorem does not apply to this mapping.
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2.3.3 The Caristi–Kirk Fixed Point Theorem

A similar argument can be used to prove the Caristi–Kirk
fixed point theorem for multifunctions. For a multifunction
F : X → 2X , we say that x is a fixed point for F provided
that x ∈ F (x).

Theorem 2.3.5. (Caristi–Kirk Fixed Point Theorem) Let
(X, d) be a complete metric space and let f : X →
R∪ {+∞} be a proper lsc function bounded below. Sup-
pose F : X → 2X is a multifunction with a closed graph
satisfying

f (y) ≤ f (x)− d(x, y), for all (x, y) ∈ graphF.

(2.3.7)

Then F has a fixed point.
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Proof. Define a metric ρ onX×X by ρ((x1, y1), (x2, y2)) :=
d(x1, x2)+d(y1, y2) for any (x1, y1), (x2, y2) ∈ X×X . Then
(X × X, ρ) is a complete metric space. Let ε ∈ (0, 1/2)
and define g : X × X → R ∪ {+∞} by g(x, y) := f (x) −
(1 − ε)d(x, y) + ιgraphF (x, y). Then g is a lsc function
bounded below (exercise). Applying the Ekeland variational
principle of Theorem 2.1.1 to g we see that there exists
(x∗, y∗) ∈ graphF such that

g(x∗, y∗) ≤ g(x, y)+ερ((x, y), (x∗, y∗)), for all (x, y) ∈ X×X.
So for all (x, y) ∈ graphF,

f (x∗)− (1− ε)d(x∗, y∗)
≤ f (x)− (1− ε)d(x, y) + ε(d(x, x∗) + d(y, y∗)).

(2.3.8)
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Suppose z∗ ∈ F (y∗). Letting (x, y) = (y∗, z∗) in (2.3.8) we
have

f (x∗)− (1− ε)d(x∗, y∗) ≤ f (y∗)− (1− ε)d(y∗, z∗) + ε(d(y∗, x∗)
+d(z∗, y∗)).

It follows that

0 ≤ f (x∗)− f (y∗)− d(x∗, y∗) ≤ −(1− 2ε)d(y∗, z∗),

so we must have y∗ = z∗. That is to say y∗ is a fixed point
of F . •

We observe that it follows from the above proof that
F (y∗) = {y∗}.
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2.3.4 Commentary and Exercises

The variational proof of the Banach fixed point theorem ap-
peared in [107]. While the variational argument provides an
elegant confirmation of the existence of the fixed point it
does not, however, provide an algorithm for finding such a
fixed point as Banach’s original proof does. For compari-
son, a proof using an interactive algorithm is outlined in the
guided exercises below. Clarke’s refinement is taken from
[84]. Theorem 2.3.5 is due to Caristi and Kirk [160] and ap-
plications of this theorem can be found in [105]. A very nice
general reference book for the metric fixed point theory is
[127].

Exercise 2.3.1. Let X be a Banach space and let x, y ∈
X . Show that the segment between x and y defined in (2.3.1)
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has the following representation:

[x, y] = {λx + (1− λ)y | λ ∈ [0, 1]}.
Exercise 2.3.2. Prove the uniqueness of the fixed point in
Theorem 2.3.1.

Exercise 2.3.3. Let f : RN → R
N be a C1 mapping.

Show that f is a contraction if and only if sup{‖f ′(x)‖ :
x ∈ R

N} < 1.

Exercise 2.3.4. Prove that Kepler’s equation

x = a + b sin(x), b ∈ (0, 1)

has a unique solution.

Exercise 2.3.5. (Iteration Method) Let (X, d) be a com-
plete metric space and let φ : X → X be a contraction. De-
fine for an arbitrarily fixed x0 ∈ X , x1 = φ(x0), . . . , xi =
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φ(xi−1). Show that (xi) is a Cauchy sequence and x =
limi→∞ xi is a fixed point for φ.

Exercise 2.3.6. (Error Estimate) Let (X, d) be a complete
metric space and let φ : X → X be a contraction with con-
traction constant k ∈ (0, 1). Establish the following error
estimate for the iteration method in Exercise 2.3.5.

‖xi − x‖ ≤ ki

1− k
‖x1 − x0‖.

Exercise 2.3.7. Deduce the Banach fixed point theorem
from the Caristi–Kirk fixed point theorem. Hint: Define
f (x) = d(x, φ(x))/(1− k).
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2.4 Variational Principles in Finite Dimensional Spaces

One drawback of the Ekeland variational principle is that
the perturbation involved therein is intrinsically nonsmooth.
This is largely overcome in the smooth variational principle
due to Borwein and Preiss. We discuss a Euclidean space
version in this section to illustrate the nature of this result.
The general version will be discussed in the next section.
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2.4.1 Smooth Variational Principles in Euclidean Spaces

Theorem 2.4.1. (Smooth Variational Principle in a Eu-
clidean Space) Let f : RN → R∪{+∞} be a lsc function
bounded from below, let λ > 0 and let p ≥ 1. Suppose
that ε > 0 and z ∈ X satisfy

f (z) ≤ inf
X
f + ε.

Then, there exists y ∈ X such that

(i) ‖z − y‖ ≤ λ,
(ii) f (y) + ε

λp‖y − z‖p ≤ f (z), and
(iii) f (x)+ ε

λp‖x−z‖
p ≥ f (y)+ ε

λp‖y−z‖
p, for all x ∈ X.
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Proof. Observing that the function x→ f (x)+ ε
λp‖x−z‖

p

approaches +∞ as ‖x‖ → ∞, it must attain its minimum
at some y ∈ X . It is an easy matter to check that y satisfies
the conclusion of the theorem. •

This very explicit formulation which is illustrated in Fig-
ure 2.5 – for f (x) = 1/x, z = 1, ε = 1, λ = 1/2, with
p = 3/2 and p = 2 – can be mimicked in Hilbert space
and many other classical reflexive Banach spaces [58]. It is
interesting to compare this result with the Ekeland varia-
tional principle geometrically. The Ekeland variational prin-
ciple says that one can support a lsc function f near its ap-
proximate minimum point by a cone with small slope while
the Borwein–Preiss variational principle asserts that under
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stronger conditions this cone can be replaced by a parabolic
function with a small derivative at the supporting point. We
must caution the readers that although this picture is help-
ful in understanding the naturalness of the Borwein–Preiss
variational principle it is not entirely accurate in the general
case, as the support function is usually the sum of an infinite
sequence of parabolic functions.
This result can also be stated in the form of an approximate

Fermat principle in the Euclidean space RN .

Lemma 2.4.2. (Approximate Fermat Principle for Smooth
Functions) Let f : RN → R be a smooth function bounded
from below. Then there exists a sequence xi ∈ R

N such
that f (xi) → inf

RN
f and f ′(xi) → 0.

Proof. Exercise 2.4.3. •
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Fig. 2.5. Smooth attained perturbations of 1/x
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We delay the discussion of the general form of the Borwein–
Preiss variational principle until the next section and digress
to some applications.
2.4.2 Gordan Alternatives

We start with an analytical proof of the Gordan alternative.

Theorem 2.4.3. (Gordan Alternative) Let a1, . . . , aM ∈
R
N . Then, exactly one of the following systems has a

solution:
M∑
m=1

λmam = 0,

M∑
m=1

λm = 1, 0 ≤ λm, m = 1, . . . ,M,

(2.4.1)

〈am, x〉 < 0 for m = 1, . . . ,M, x ∈ R
N. (2.4.2)
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Proof. We need only prove the following statements are
equivalent:

(i) The function

f (x) := ln
( M∑
m=1

exp 〈am, x〉
)

is bounded below.
(ii) System (2.4.1) is solvable.
(iii) System (2.4.2) is unsolvable.

The implications (ii)⇒ (iii) ⇒ (i) are easy and left as exer-
cises. It remains to show (i) ⇒ (ii). Applying the approxi-
mate Fermat principle of Lemma 2.4.2 we deduce that there
is a sequence (xi) in R

N satisfying
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‖f ′(xi)‖ =
∥∥∥ M∑
m=1

λimam

∥∥∥ → 0, (2.4.3)

where the scalars

λim =
exp 〈am, xi〉∑M
l=0 exp 〈al, xi〉

> 0, m = 1, . . . ,M

satisfy
∑M
m=1 λ

i
m = 1. Without loss of generality we may

assume that λim → λm, m = 1, . . . ,M . Taking limits in
(2.4.3) we see that λm, m = 1, . . . ,M is a set of solutions
of (2.4.1). •
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2.4.3 Majorization

For a vector x = (x1, . . . , xN ) ∈ R
N , we use x↓ to de-

note the vector derived from x by rearranging its com-
ponents in nonincreasing order. For x, y ∈ R

N , we say
that x is majorized by y, denoted by x ≺ y, provided

that
∑N
n=1 xn =

∑N
n=1 yn and

∑k
n=1 x

↓
n ≤

∑k
n=1 y

↓
n for

k = 1, . . . , N .

Example 2.4.4. Let x ∈ R
N be a vector with nonnegative

components satisfying
∑N
n=1 xn = 1. Then

(1/N, 1/N, . . . , 1/N ) ≺ x ≺ (1, 0, . . . , 0).

The concept of majorization arises naturally in physics and
economics. For example, if we use x ∈ R

N
+ (the nonnegative

orthant ofRN ) to represent the distribution of wealth within
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an economic system, then x ≺ y means the distribution
represented by x is more even than that of y. Example 2.4.4
then describes the two extremal cases of wealth distribution.
Given a vector y ∈ R

N the level set of y with respect to
the majorization defined by l(y) := {x ∈ R

N | x ≺ y} is
often of interest. It turns out that this level set is the convex
hull of all the possible vectors derived from permuting the
components of y. We will give a variational proof of this fact
using a method similar to that of the variational proof of
the Gordon alternatives. To do so we will need the following
characterization of majorization.

Lemma 2.4.5. Let x, y ∈ R
N . Then x ≺ y if and only

if, for any z ∈ R
N , 〈z↓, x↓〉 ≤ 〈z↓, y↓〉.

Proof. Using Abel’s formula we can write
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〈z↓, y↓〉 − 〈z↓, x↓〉= 〈z↓, y↓ − x↓〉

=

N−1∑
k=1

(
(z

↓
k − z

↓
k+1)×

k∑
n=1

(y
↓
n − x

↓
n)

)
+z

↓
N

N∑
n=1

(y
↓
n − x

↓
n).

Now to see the necessity we observe that x ≺ y implies∑k
n=1(y

↓
n− x

↓
n) ≥ 0 for k = 1, . . . , N − 1 and

∑N
n=1(y

↓
n−

x
↓
n) = 0. Thus, the last term in the right hand side of the

previous equality is 0. Moreover, in the remaining sum each
term is the product of two nonnegative factors, and therefore
it is nonnegative. We now prove sufficiency. Suppose that,
for any z ∈ R

N ,
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0 ≤ 〈z↓, y↓〉 − 〈z↓, x↓〉=
N−1∑
k=1

(
(z

↓
k − z

↓
k+1)×

k∑
n=1

(y
↓
n − x

↓
n)

)
+z

↓
N

N∑
n=1

(y
↓
n − x

↓
n).

Setting z =
∑k
n=1 en for k = 1, . . . , N−1 (where {en : n =

1, . . . , N} is the standard basis of RN ) we have
∑k
n=1 y

↓
n ≥∑k

n=1 x
↓
n, and setting z = ±

∑N
n=1 en we have

∑N
n=1 yn =∑N

n=1 xn. •

Let us denote by P (N ) the set of N × N permutation
matrices (those matrices derived by permuting the rows or
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the columns of the identity matrix). Then we can state the
characterization of the level set of a vector with respect to
majorization as follows.

Theorem 2.4.6. (Representation of Level Sets of the Ma-
jorization) Let y ∈ R

N . Then

l(y) = conv{Py : P ∈ P (N )}.
Proof. It is not hard to check that l(y) is convex and, for
any P ∈ P (N ), Py ∈ l(y). Thus, conv{Py : P ∈ P (N )} ⊂
l(y) (Exercise 2.4.8).
We now prove the reversed inclusion. For any x ≺ y, by

Lemma 2.4.5 there exists P = P (z) ∈ P (N ) satisfies

〈z, Py〉= 〈z↓, y↓〉 ≥ 〈z↓, x↓〉 ≥ 〈z, x〉. (2.4.4)
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Observe that P (N ) is a finite set (with N ! elements to be
precise). Thus, the function

f (z) := ln
( ∑
P∈P (N)

exp〈z, Py − x〉
)
.

is defined for all z ∈ R
N , is differentiable, and is bounded

from below by 0. By the approximate Fermat principle of
Lemma 2.4.2 we can select a sequence (zi) in R

N such that

0 = lim
i→∞

f ′(zi) =
∑

P∈P (N)

λiP (Py − x) (2.4.5)

where

λiP =
exp〈zi, Py − x〉∑

P∈P (N) exp〈zi, Py − x〉.
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Clearly, λiP > 0 and
∑
P∈P (N) λ

i
P = 1. Thus, taking a

subsequence if necessary we may assume that, for each P ∈
P (N ), limi→∞ λiP = λP ≥ 0 and

∑
P∈P (N) λP = 1. Now

taking limits as i→ ∞ in (2.4.5) we have∑
P∈P (N)

λP (Py − x) = 0.

Thus, x =
∑
P∈P (N) λPPy, as was to be shown. •

2.4.4 Doubly Stochastic Matrices

We use E(N ) to denote the Euclidean space of all real N
by N square matrices with inner product
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〈A,B〉 = tr(B�A) =
N∑

n,m=1

anmbnm, A,B ∈ E(N ).

A matrix A = (anm) ∈ E(N ) is doubly stochastic provided

that the entries of A are all nonnegative,
∑N
n=1 anm = 1

for m = 1, . . . , N and
∑N
m=1 anm = 1 for n = 1, . . . , N .

Clearly every P ∈ P (N ) is doubly stochastic and they pro-
vide the simplest examples of doubly stochastic matrices.
Birkhoff’s theorem asserts that any doubly stochastic matrix
can be represented as a convex combination of permutation
matrices. We now apply the method in the previous section
to give a variational proof of Birkhoff’s theorem.
For A = (anm) ∈ E(N ), we denote rn(A) = {m | anm =

0}, the set of indices of columns containing nonzero elements
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of the nth row of A and we use #(S) to signal the number
of elements in set S. Then a doubly stochastic matrix has
the following interesting property.

Lemma 2.4.7. Let A ∈ E(N ) be a doubly stochastic
matrix. Then, for any 1 ≤ n1 < n2 < · · · < nK ≤ N ,

#
( K⋃
k=1

rnk(A)
)
≥ K. (2.4.6)

Proof. We prove by contradiction. Suppose (2.4.6) is vio-
lated for some K. Permuting the rows of A if necessary we
may assume that

#
( K⋃
k=1

rk(A)
)
< K. (2.4.7)
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Rearranging the order of the columns of A if needed we may
assume

A =
(OB
CD

)
,

where O is aK by L submatrix of A with all entries equal to
0. By (2.4.7) we have L > N −K. On the other hand, since
A is doubly stochastic, every column of C and every row of
B add up to 1. That leads to L +K ≤ N , a contradiction.

•

Condition (2.4.6) actually ensures a matrix has a diagonal
with all elements nonzero which is made precise in the next
lemma.
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Lemma 2.4.8. Let A ∈ E(N ). Suppose that A satisfies
condition (2.4.6). Then for some P ∈ P (N ), the entries
in A corresponding to the 1’s in P are all nonzero. In
particular, any doubly stochastic matrix has the above
property.

Proof. We use induction on N . The lemma holds trivially
when N = 1. Now suppose that the lemma holds for any
integer less than N . We prove it is true for N . First suppose
that, for any 1 ≤ n1 < n2 < · · · < nK ≤ N , K < N

#
( K⋃
k=1

rnk(A)
)
≥ K + 1. (2.4.8)

Then pick a nonzero element of A, say aNN and consider
the submatrix A′ of A derived by eliminating the Nth row
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and Nth column of A. Then A′ satisfies condition (2.4.6),
and therefore there exists P ′ ∈ P (N − 1) such that the
entries in A′ corresponding to the 1’s in P ′ are all nonzero.
It remains to define P ∈ P (N ) as

P =
(P ′ 0
0 1

)
.

Now consider the case when (2.4.8) fails so that there exist
1 ≤ n1 < n2 < · · · < nK ≤ N , K < N satisfying

#
( K⋃
k=1

rnk(A)
)
= K. (2.4.9)

By rearranging the rows and columns of A we may assume
that nk = k, k = 1, . . . ,K and

⋃K
k=1 rk(A) = {1, . . . ,K}.

Then
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A =
(BO
CD

)
,

where B ∈ E(K), D ∈ E(N −K) and O is a K by N −K
submatrix with all entries equal to 0. Observe that for any
1 ≤ n1 < · · · < nL ≤ K,

L⋃
l=1

rnl(B) =

L⋃
l=1

rnl(A).

Thus,

#
( L⋃
l=1

rnl(B)
)
≥ L,

and thereforeB satisfies condition (2.4.6). On the other hand
for any K + 1 ≤ n1 < · · · < nL ≤ N ,
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k=1

rk(A)
]
∪

[ L⋃
l=1

rnl(A)
]
= {1, . . . ,K} ∪

[ L⋃
l=1

rnl(D)
]
.

Thus, D also satisfies condition (2.4.6). By the induction
hypothesis we have P1 ∈ P (K) and P2 ∈ P (N −K) such
that the elements in B and D corresponding to the 1’s in
P1 and P2, respectively, are all nonzero. It follows that

P =
(P1 O
O P2

)
∈ P (N ),

and the elements in A corresponding to the 1’s in P are all
nonzero. •

We now establish the following analogue of (2.4.4).
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Lemma 2.4.9. Let A ∈ E(N ) be a doubly stochastic
matrix. Then for any B ∈ E(N ) there exists P ∈ P (N )
such that

〈B,A− P 〉 ≥ 0.

Proof. We use an induction argument on the number of
nonzero elements of A. Since every row and column of A
sums to 1, A has at least N nonzero elements. If A has
exactly N nonzero elements then they must all be 1, so
that A itself is a permutation matrix and the lemma holds
trivially. Suppose now that A has more than N nonzero
elements. By Lemma 2.4.8 there exists P ∈ P (N ) such
that the entries in A corresponding to the 1’s in P are all
nonzero. Let t ∈ (0, 1) be the minimum of these N positive
elements. Then we can verify that A1 = (A−tP )/(1−t) is a
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doubly stochastic matrix and has at least one fewer nonzero
elements than A. Thus, by the induction hypothesis there
exists Q ∈ P (N ) such that

〈B,A1 −Q〉 ≥ 0.

Multiplying the above inequality by 1− t we have 〈B,A−
tP −(1−t)Q〉 ≥ 0, and therefore at least one of 〈B,A−P 〉
or 〈B,A−Q〉 is nonnegative. •

Now we are ready to present a variational proof for the
Birkhoff theorem.

Theorem 2.4.10. (Birkhoff) Let A(N ) be the set of all
N ×N doubly stochastic matrices. Then

A(N ) = conv{P | P ∈ P (N )}.
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Proof. It is an easy matter to verify that A(N ) is convex
and P (N ) ⊂ A(N ). Thus, convP (N ) ⊂ A(N ).
To prove the reversed inclusion, define a function f on
E(N ) by

f (B) := ln

( ∑
P∈P (N)

exp〈B,A− P 〉
)
.

Then f is defined for all B ∈ E(N ), is differentiable and
is bounded from below by 0. By the approximate Fermat
principle of Theorem 2.4.2 we can select a sequence (Bi) in
E(N ) such that

0 = lim
i→∞

f ′(Bi) = lim
i→∞

∑
P∈P (N)

λiP (A− P ) (2.4.10)

where
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λiP =
exp〈Bi,A− P 〉∑

P∈P (N) exp〈Bi,A− P 〉.

Clearly, λiP > 0 and
∑
P∈P (N) λ

i
P = 1. Thus, taking a

subsequence if necessary we may assume that for each P ∈
P (N ), limi→∞ λiP = λP ≥ 0 and

∑
P∈P (N) λP = 1. Now

taking limits as i→ ∞ in (2.4.10) we have∑
P∈P (N)

λP (A− P ) = 0.

It follows that A =
∑
P∈P (N) λPP , as was to be shown. •

Majorization and doubly stochastic matrices are closely
related. Their relationship is described in the next theorem.
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Theorem 2.4.11. (Doubly Stochastic Matrices and Ma-
jorization) A nonnegative matrix A is doubly stochastic
if and only if Ax ≺ x for any vector x ∈ R

N .

Proof. We use en, n = 1, . . . , N , to denote the standard
basis of RN .
Let Ax ≺ x for all x ∈ R

N . Choosing x to be en, n =
1, . . . , N we can deduce that the sum of elements of each
column of A is 1. Next let x =

∑N
n=1 en; we can conclude

that the sum of elements of each row of A is 1. Thus, A is
doubly stochastic.
Conversely, let A be doubly stochastic and let y = Ax. To

prove y ≺ x we may assume, without loss of generality, that
the coordinates of both x and y are in nonincreasing order.
Now note that for any k, 1 ≤ k ≤ N , we have



90 2 Variational Principles

k∑
m=1

ym =

k∑
m=1

N∑
n=1

amnxn.

If we put tn =
∑k
m=1 amn, then tn ∈ [0, 1] and

∑N
n=1 tn =

k. We have
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k∑
m=1

ym −
k∑

m=1

xm=

N∑
n=1

tnxn −
k∑

m=1

xm

=

N∑
n=1

tnxn −
k∑

m=1

xm + (k −
N∑
n=1

tn)xk

=

k∑
n=1

(tn − 1)(xn − xk) +
N∑

n=k+1

tn(xn − xk)

≤0.

Further, when k = N we must have equality here simply
because A is doubly stochastic. Thus, y ≺ x. •

Combining Theorems 2.4.6, 2.4.11 and 2.4.10 we have
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Corollary 2.4.12. Let y ∈ R
N . Then l(y) = {Ay | A ∈

A(N )}.
2.4.5 Commentary and Exercises

Theorem 2.4.1 is a finite dimensional form of the Borwein–
Preiss variational principle [58]. The approximate Fermat
principle of Lemma 2.4.2 was suggested by [137]. The varia-
tional proof of Gordan’s alternative is taken from [56] which
can also be used in other related problems (Exercises 2.4.4
and 2.4.5).
Geometrically, Gordan’s alternative [129] is clearly a con-

sequence of the separation theorem: it says either 0 is con-
tained in the convex hull of a0, . . . , aM or it can be strictly
separated from this convex hull. Thus, the proof of Theo-
rem 2.4.3 shows that with an appropriate auxiliary function
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variational method can be used in the place of a separation
theorem – a fundamental result in analysis.
Majorization and doubly stochastic matrices are import

concepts in matrix theory with many applications in physics
and economics. Ando [3], Bhatia [22] and Horn and Johnson
[138, 139] are excellent sources for the background and pre-
liminaries for these concepts and related topics. Birkhoff’s
theorem appeared in [23]. Lemma 2.4.8 is a matrix form
of Hall’s matching condition [134]. Lemma 2.4.7 was estab-
lished in König [163]. The variational proofs for the repre-
sentation of the level sets with respect to the majorization
and Birkhoff’s theorem given here follow [279].

Exercise 2.4.1. Supply the details for the proof of Theo-
rem 2.4.1.
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Exercise 2.4.2. Prove the implications (ii) ⇒ (iii) ⇒ (i)
in the proof of the Gordan Alternative of Theorem 2.4.3.

Exercise 2.4.3. Prove Lemma 2.4.2.

∗Exercise 2.4.4. (Ville’s Theorem) Let a1, . . . , aM ∈ R
N

and define f : RN → R by

f (x) := ln
( M∑
m=1

exp 〈am, x〉
)
.

Consider the optimization problem

inf{f (x) | x ≥ 0} (2.4.11)

and its relationship with the two systems
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M∑
m=1

λmam = 0,
M∑
m=1

λm = 1, 0 ≤ λm, m = 1, . . . ,M,

(2.4.12)

〈am, x〉 < 0 for m = 1, . . . ,M, x ∈ R
N
+ . (2.4.13)

Imitate the proof of Gordan’s alternatives to prove the fol-
lowing are equivalent:

(i) Problem (2.4.11) is bounded below.
(ii) System (2.4.12) is solvable.
(iii) System (2.4.13) is unsolvable.

Generalize by considering the problem inf{f (x) | xm ≥
0,m ∈ K}, where K is a subset of {1, . . . ,M}.
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∗Exercise 2.4.5. (Stiemke’s Theorem) Let a1, . . . , aM ∈
R
N and define f : RN → R by

f (x) := ln
( M∑
m=1

exp 〈am, x〉
)
.

Consider the optimization problem

inf{f (x) | x ∈ R
N} (2.4.14)

and its relationship with the two systems

M∑
m=1

λmam = 0, 0 < λm, m = 1, . . . ,M, (2.4.15)

and
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〈am, x〉 ≤ 0 for m = 1, . . . ,M, not all 0, x ∈ R
N.

(2.4.16)

Prove the following are equivalent:

(i) Problem (2.4.14) has an optimal solution.
(ii) System (2.4.15) is solvable.
(iii) System (2.4.16) is unsolvable.

Hint: To prove (iii) implies (i), show that if problem (2.4.14)
has no optimal solution then neither does the problem

inf
{ M∑
m=1

exp ym | y ∈ K
}
, (2.4.17)
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where K is the subspace {(〈a1, x〉, . . . , 〈aM, x〉) | x ∈
R
N} ⊂ R

M . Hence, by considering a minimizing sequence
for (2.4.17), deduce system (2.4.16) is solvable.

∗Exercise 2.4.6. Prove the following

Lemma 2.4.13. (Farkas Lemma) Let a1, . . . , aM and let
b = 0 in R

N . Then exactly one of the following systems
has a solution:

M∑
m=1

λmam = b, 0 ≤ λm, m = 1, . . . ,M, (2.4.18)

〈am, x〉 ≤ 0 for m = 1, . . . ,M, 〈b, x〉 > 0, x ∈ R
N

(2.4.19)

Hint: Use the Gordan alternatives and induction.
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Exercise 2.4.7.Verify Example 2.4.4.

Exercise 2.4.8. Let y ∈ R
N . Verify that l(y) is a convex

set and, for any P ∈ P (N ), Py ∈ l(y).

Exercise 2.4.9.Give an alternative proof of Birkhoff’s the-
orem by going through the following steps.

(i) Prove P (N ) = {(amn) ∈ A(N ) | amn = 0 or 1 for all
m,n}.

(ii) Prove P (N ) ⊂ ext(A(N )), where ext(S) signifies ex-
treme points of set S.

(iii) Suppose (amn) ∈ A(N )\P (N ). Prove there exist se-
quences of distinct indicesm1,m2, . . . ,mk and n1, n2, . . . , nk
such that

0 < amrnr, amr+1nr < 1(r = 1, . . . , k)
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(where mk+1 = m1). For these sequences, show the
matrix (a′mn) defined by

a′mn−amn =

⎧⎪⎨⎪⎩
ε if (m,n) = (mr, nr) for some r,

−ε if (m,n) = (mr+1, nr) for some r,

0 otherwise,

is doubly stochastic for all small real ε. Deduce (amn) ∈
ext(A(N )).

(iv) Deduce ext(A(N )) = P (N ). Hence prove Birkhoff’s
theorem.

(v) Use Carathéodory’s theorem [77] to bound the number
of permutation matrices needed to represent a doubly
stochastic matrix in Birkhoff’s theorem.
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2.5 Borwein–Preiss Variational Principles

Now we turn to a general form of the Borwein–Preiss smooth
variational principle and a variation thereof derived by Dev-
ille, Godefroy and Zizler with a category proof.
2.5.1 The Borwein–Preiss Principle

Definition 2.5.1. Let (X, d) be a metric space. We say
that a continuous function ρ : X×X → [0,∞] is a gauge-
type function on a complete metric space (X, d) provided
that

(i) ρ(x, x) = 0, for all x ∈ X,
(ii) for any ε > 0 there exists δ > 0 such that for all

y, z ∈ X we have ρ(y, z) ≤ δ implies that d(y, z) < ε.

Theorem 2.5.2. (Borwein–Preiss Variational Principle)
Let (X, d) be a complete metric space and let f : X →
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R∪{+∞} be a lsc function bounded from below. Suppose
that ρ is a gauge-type function and (δi)

∞
i=0 is a sequence

of positive numbers, and suppose that ε > 0 and z ∈ X
satisfy

f (z) ≤ inf
X
f + ε.

Then there exist y and a sequence {xi} ⊂ X such that

(i) ρ(z, y) ≤ ε/δ0, ρ(xi, y) ≤ ε/(2iδ0),
(ii) f (y) +

∑∞
i=0 δiρ(y, xi) ≤ f (z), and

(iii) f (x)+
∑∞
i=0 δiρ(x, xi) > f (y)+

∑∞
i=0 δiρ(y, xi), for all x ∈

X\{y}.
Proof. Define sequences (xi) and (Si) inductively starting
with x0 := z and

S0 := {x ∈ X | f (x) + δ0ρ(x, x0) ≤ f (x0)}. (2.5.1)
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Since x0 ∈ S0, S0 is nonempty. Moreover it is closed because
both f and ρ(·, x0) are lsc functions. We also have that, for
all x ∈ S0,

δ0ρ(x, x0) ≤ f (x0)− f (x) ≤ f (z)− inf
X
f ≤ ε.(2.5.2)

Take x1 ∈ S0 such that

f (x1) + δ0ρ(x1, x0) ≤ inf
x∈S0

[f (x) + δ0ρ(x, x0)] +
δ1ε

2δ0
,

(2.5.3)

and define similarly

S1 :=
{
x ∈ S0

∣∣∣ f (x) + 1∑
k=0

δkρ(x, xk) ≤ f (x1) + δ0ρ(x1, x0)
}
.

(2.5.4)
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In general, suppose that we have defined xj, Sj for j =
0, 1, . . . , i− 1 satisfying

f (xj) +

j−1∑
k=0

δkρ(xj, xk)≤ inf
x∈Sj−1

[
f (x) +

j−1∑
k=0

δkρ(x, xk)
]

+
εδj

2jδ0
(2.5.5)

and

Sj :=
{
x ∈ Sj−1

∣∣∣ f (x)+ j∑
k=0

δkρ(x, xk) ≤ f (xj)

+

j−1∑
k=0

δkρ(xj, xk)
}
. (2.5.6)
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We choose xi ∈ Si−1 such that

f (xi) +
i−1∑
k=0

δkρ(xi, xk)≤ inf
x∈Si−1

[
f (x) +

i−1∑
k=0

δkρ(x, xk)
]

+
εδi
2iδ0

(2.5.7)

and we define

Si :=
{
x ∈ Si−1

∣∣∣ f (x) + i∑
k=0

δkρ(x, xk)≤f (xi)

+

i−1∑
k=0

δkρ(xi, xk)
}

. (2.5.8)
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We can see that for every i = 1, 2, . . . , Si is a closed and
nonempty set. It follows from (2.5.7) and (2.5.8) that, for all
x ∈ Si,

δiρ(x, xi)≤
[
f (xi) +

i−1∑
k=0

δkρ(xi, xk)
]
−

[
f (x) +

i−1∑
k=0

δkρ(x, xk)
]

≤
[
f (xi) +

i−1∑
k=0

δkρ(xi, xk)
]

− inf
x∈Si−1

[
f (x) +

i−1∑
k=0

δkρ(x, xk)
]

≤ εδi
2iδ0

,
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which implies that

ρ(x, xi) ≤
ε

2iδ0
, for all x ∈ Si. (2.5.9)

Since ρ is a gauge-type function, inequality (2.5.9) implies
that d(x, xi) → 0 uniformly, and therefore diam(Si) → 0.
Since X is complete, by Cantor’s intersection theorem there
exists a unique y ∈

⋂∞
i=0 Si, which satisfies (i) by (2.5.2)

and (2.5.9). Obviously, we have xi → y. For any x = y, we
have that x ∈

⋂∞
i=0 Si, and therefore for some j,
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f (x) +
∞∑
k=0

δkρ(x, xk)≥f (x) +
j∑
k=0

δkρ(x, xk)

>f (xj) +

j−1∑
k=0

δkρ(xj, xk).

(2.5.10)

On the other hand, it follows from (2.5.1), (2.5.8) and y ∈⋂∞
i=0 Si that, for any q ≥ j,
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f (x0)≥f (xj) +
j−1∑
k=0

δkρ(xj, xk)

≥f (xq) +
q−1∑
k=0

δkρ(xq, xk)

≥f (y) +
q∑
k=0

δkρ(y, xk). (2.5.11)

Taking limits in (2.5.11) as q → ∞ we have
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f (z) = f (x0)≥f (xj) +
j−1∑
k=0

δkρ(xj, xk)

≥f (y) +
∞∑
k=0

δkρ(y, xk), (2.5.12)

which verifies (ii). Combining (2.5.10) and (2.5.12) yields
(iii). •

We shall frequently use the following normed space form of
the Borwein–Preiss variational principle, especially in spaces
with a Fréchet smooth renorm, in which case we may deduce
first-order (sub)differential information from the conclusion.
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Theorem 2.5.3. Let X be a Banach space with norm
‖·‖ and let f : X → R∪{+∞} be a lsc function bounded
from below, let λ > 0 and let p ≥ 1. Suppose that ε > 0
and z ∈ X satisfy

f (z) < inf
X
f + ε.

Then there exist y and a sequence (xi) in X with x1 = z
and a function ϕp : X → R of the form

ϕp(x) :=

∞∑
i=1

μi‖x− xi‖p,

where μi > 0 for all i = 1, 2, . . . and
∑∞
i=1 μi = 1 such

that

(i) ‖xi − y‖ ≤ λ, n = 1, 2, . . . ,
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(ii) f (y) + (ε/λp)ϕp(y) ≤ f (z), and
(iii) f (x)+(ε/λp)ϕp(x) > f (y)+(ε/λp)ϕp(y), for all x ∈

X \ {y}.
Proof. Exercise 2.5.1. •

Note that when ‖ · ‖ is Fréchet smooth so is ϕp for p > 1.
2.5.2 The Deville–Godefroy–Zizler Principle

An important counterpart of the Borwein–Preiss variational
principle subsequently found by Deville, Godefroy and Zi-
zler [98] is given below. It is interesting to see how the Baire
category theorem is used in the proof. Recall that the Baire
category theorem states that in a complete metric space ev-
ery countable intersection of dense open sets is dense: a set
containing such a dense Gδ set is called generic or resid-



2.5 Borwein–Preiss 113

ual and the complement of such a set is meager. We say a
function f : X → R ∪ {+∞} attains a strong minimum
at x ∈ X if f (x) = infX f and ‖xi − x‖ → 0 whenever
xi ∈ X and f (xi) → f (x). If f is bounded on X , we define
‖f‖∞ := sup{|f (x)| | x ∈ X}. We say that φ : X → R is a
bump function if φ is bounded and has bounded nonempty
support supp(φ) := {x ∈ X | φ(x) = 0}.
Theorem 2.5.4. (The Deville–Godefroy–Zizler Variational
Principle) Let X be a Banach space and Y a Banach
space of continuous bounded functions g on X such that

(i) ‖g‖∞ ≤ ‖g‖Y for all g ∈ Y .
(ii) For each g ∈ Y and z ∈ X, the function x →

gz(x) = g(x + z) is in Y and ‖gz‖Y = ‖g‖Y .
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(iii) For each g ∈ Y and a ∈ R, the function x → g(ax)
is in Y .

(iv) There exists a bump function in Y .

If f : X → R ∪ {+∞} is a proper lsc function and
bounded below, then the set G of all g ∈ Y such that
f + g attains a strong minimum on X is residual (in
fact a dense Gδ set).

Proof. Given g ∈ Y , define S(g; a) := {x ∈ X | g(x) ≤
infX g + a} and Ui := {g ∈ Y | diamS(f + g; a) <
1/i, for some a > 0}. We show that each of the sets Ui
is dense and open in Y and that their intersection is the
desired set G.
To see that Ui is open, suppose that g ∈ Ui with a

corresponding a > 0. Then, for any h ∈ Y such that
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‖g − h‖Y < a/3, we have ‖g − h‖∞ < a/3. Now, for
any x ∈ S(f + h; a/3),

(f + h)(x) ≤ inf
X
(f + h) +

a

3
.

It is an easy matter to estimate

(f + g)(x)≤ (f + h)(x) + ‖g − h‖∞ ≤ inf
X
(f + h) +

a

3
+‖g − h‖∞
≤ inf

X
(f + g) +

a

3
+ 2‖g − h‖∞ ≤ inf

X
(f + g) + a.

This shows that S(f +h; a/3) ⊂ S(f + g; a). Thus, h ∈ Ui.
To see that each Ui is dense in Y , suppose that g ∈ Y and
ε > 0; it suffices to produce h ∈ Y such that ‖h‖Y < ε
and for some a > 0 diamS(f + g + h; a) < 1/i. By hy-
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pothesis (iv), Y contains a bump function φ. Without loss
of generality we may assume that ‖φ‖Y < ε. By hypoth-
esis (ii) we can assume that φ(0) = 0, and therefore that
φ(0) > 0. Moreover, by hypothesis (iii) we can assume that
supp(φ) ⊂ B(0, 1/2i). Let a = φ(0)/2 and choose x̄ ∈ X
such that

(f + g)(x̄) < inf
X
(f + g) + φ(0)/2.

Define h by h(x) := −φ(x − x̄); by hypothesis (ii), h ∈ Y
and ‖h‖Y = ‖φ‖Y < ε and h(x̄) = −φ(0). To show that
diamS(f+g+h; a) < 1/i, it suffices to show that this set is
contained in the ball B(x̄, 1/2i); that is, if ‖x− x̄‖ > 1/2i,
then x ∈ S(f + g + h; a), the latter being equivalent to
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(f + g + h)(x) > inf
X
(f + g + h) + a.

Now, supp(h) ⊂ B(x̄, 1/2i), so h(x) = 0 if ‖x− x̄‖ > 1/2i
hence

(f + g + h)(x)= (f + g)(x) ≥ inf
X
(f + g) > (f + g)(x̄)− a

=(f + g + h)(x̄) + φ(0)− φ(0)/2

≥ inf
X
(f + g + h) + a.

as was to be shown.
Finally we show

⋂∞
i=1Ui = G. The easy part of G ⊂⋂∞

i=1Ui is left as an exercise. Let g ∈
⋂∞
i=1Ui. We will show

that g ∈ G; that is, f + g attains a strong minimum on X .
First, for all i there exists ai > 0 such that diamS(f +
g; ai) < 1/i and hence there exists a unique point x̄ ∈
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i=1 S(f + g; ai). Suppose that xk ∈ X and that (f +

g)(xk) → infX(f +g). Given i > 0 there exists i0 such that
(f + g)(xk) ≤ infX(f + g) + ai for all i ≥ i0, therefore
xk ∈ S(f + g; ai) for all i ≥ i0 and hence ‖xk − x̄‖ ≤
diamS(f + g; ai) < 1/i if k ≥ i0. Thus, xk → x̄, and
therefore g ∈ G. •

2.5.3 Commentary and Exercises

The Borwein–Preiss smooth variational principle appeared
in [58]. The proof here is adapted from Li and Shi [182].
Their original proof leads to a clean generalization of both
the Ekeland and Borwein–Preiss variational principle (see
Exercises 2.5.2 and 2.5.3). The Deville–Godefroy–Zizler vari-
ational principle and its category proof is from [98]. Another
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very useful variational principle due to Stegall, is given in
Section 6.3.

Exercise 2.5.1. Deduce Theorem 2.5.3 from Theorem
2.5.2.
Hint: Set ρ(x, y) = ‖x− y‖p.
Exercise 2.5.2. Check that, with δ0 := 1, δi := 0, i =
1, 2, . . . and ρ := εd, the procedure in the proof of Theorem
2.5.2 reduces to a proof of the Ekeland variational principle.

If one works harder, the two variational principles can be
unified.

∗Exercise 2.5.3. Adapt the proof of Theorem 2.5.2 for a
nonnegative sequence (δi)

∞
i=0, δ0 > 0 to derive the following
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generalization for both the Ekeland and the Borwein–Preiss
variational principles.

Theorem 2.5.5. Let (X, d) be a complete metric space
and let f : X → R ∪ {+∞} be a lsc function bounded
from below. Suppose that ρ is a gauge-type function and
(δi)

∞
i=0 is a sequence of nonnegative numbers with δ0 > 0.

Then, for every ε > 0 and z ∈ X satisfying

f (z) ≤ inf
X
f + ε,

there exists a sequence {xi} ⊂ X converging to some
y ∈ X such that

(i) ρ(z, y) ≤ ε/δ0,
(ii) f (y) +

∑∞
i=0 δiρ(y, xi) ≤ f (z), and
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(iii) f (x)+
∑∞
i=0 δiρ(x, xi) > f (y)+

∑∞
i=0 δiρ(y, xi), for all x ∈

X \ {y}.
Moreover, if δk > 0 and δl = 0 for all l > k ≥ 0, then
(iii) may be replaced by

(iii′) for all x ∈ X \ {y}, there exists j ≥ k such that

f (x)+
k−1∑
i=0

δiρ(x, xi) + δkρ(x, xj) > f (y)

+

k−1∑
i=0

δiρ(y, xi) + δkρ(y, xj).

The Ekeland variational principle, the Borwein–Preiss vari-
ational principle and the Deville–Godefroy–Zizler variational
principle are related in the following exercises.
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Exercise 2.5.4.Deduce the following version of Ekeland’s
variational principle from Theorem 2.5.4.

Theorem 2.5.6. Let X be a Banach space and let
f : X → R∪{+∞} be a proper lsc function and bounded
below. Then for all ε > 0 there exists x̄ ∈ X such that

f (x̄) ≤ inf
X
f + 2ε

and the perturbed function x→ f (x) + ε‖x− x̄‖ attains
a strong minimum at x̄.

Hint: Let Y be the space of all bounded Lipschitz contin-
uous functions g on X with norm

‖g‖Y := ‖g‖∞ + sup
{|g(x)− g(y)|

‖x− y‖

∣∣∣ x, y ∈ X, x = y
}
.
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Exercise 2.5.5.Deduce the following version of the smooth
variational principle from Theorem 2.5.4.

Theorem 2.5.7. Let X be a Banach space with a Lip-
schitz Fréchet smooth bump function and let f : X →
R ∪ {+∞} be a proper lsc function and bounded below.
Then there exists a constant a > 0 (depending only on
X) such that for all ε ∈ (0, 1) and for any y ∈ X satis-
fying f (y) < infX f +aε2, there exist a Lipschitz Fréchet
differentiable function g and x ∈ X such that

(i) f + g has a strong minimum at x,
(ii) ‖g‖∞ < ε and ‖g′‖∞ < ε,
(iii) ‖x− y‖ < ε.
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∗Exercise 2.5.6. (Range of Bump Functions) Let b : RN →
R be a C1 bump function.

(i) Show that 0 ∈ int range(b′) by applying the smooth vari-
ational principle.

(ii) Find an example where range(b′) is not simply con-
nected.

Reference: [37].
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Variational Techniques in Subdifferential Theory

For problems of smooth variation we can usually apply ar-
guments based on Fermat’s principle – that a differentiable
function has a vanishing derivative at its minima (maxima).
However, nonsmooth functions and mappings arise intrinsi-
cally in many applications. The following are several such
examples of intrinsic nonsmoothness.

Example 3.0.1. (Max Function) Let fn : X → R ∪
{+∞} , n = 1, . . . , N be lsc functions. Then so is
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f = max(f1, . . . , fN ).

However, this maximum is often nonsmooth even if all
fn, n = 1, . . . , N are smooth functions. For example,

|x| = max(x,−x).
is nonsmooth at x = 0.

Example 3.0.2. (Optimal Value Functions) Consider the
simple constrained minimization problem of minimizing f (x)
subject to g(x) = a, x ∈ R. Here a ∈ R is a parameter al-
lowing for perturbation of the constraint. In practice it is
often important to know how the model responds to the
perturbation a. For this we need to consider, for example,
the optimal value

v(a) := inf{f (x) : g(x) = a}
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as a function of a. Consider a concrete example, illustrated
in Figure 3.1, of the two smooth functions f (x) := 1 −
cosx and g(x) := sin(6x)− 3x, and a ∈ [−π/2, π/2] which
corresponds to x ∈ [−π/6, π/6]. It is easy to show that the
optimal value function v is not smooth, in fact, not even
continuous.

Example 3.0.3. (Penalization Functions) Constrained op-
timization problems occur naturally in many applications.
A simplified form of such a problem is

P minimize f (x)

subject to x ∈ S,

where S is a closed subset of X often referred to as the
feasible set. One often wishes to convert such a problem
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Fig. 3.1. Smooth becomes nonsmooth: g (vertical) plotted against f .

to a simpler one without constraint. The use of nonsmooth
functions makes this conversion easier. For example, if f is
Lipschitz with a Lipschitz constant L then, for any μ > L,
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problem P is equivalent to

minimize f + μdS.

This is often referred to as exact penalization. If f is lsc
then P is equivalent to

minimize f + ιS.

Example 3.0.4. (Spectral Functions) The maximum eigen-
value of a matrix often plays an important role in problems
related to a matrix. When the matrix contains one or more
parameters, the maximum eigenvalue then becomes a func-
tion of those parameters. This maximum eigenvalue function
is often intrinsically nonsmooth. For example, consider the
2 by 2 matrix with a parameter x,
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1 x
x 1

]
.

Then the maximum eigenvalue is 1+ |x|, a nonsmooth func-
tion.

This intrinsic nonsmoothness motivated the development
of nonsmooth analysis. Concepts generalizing that of the
derivative for smooth functions have been introduced which
enable us to apply the variational technique to nonsmooth
functions. There are many competing concepts of subdiffer-
entials; we mainly focus on the Fréchet subdifferential which
is a natural fit for the variational technique.
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3.1 The Fréchet Subdifferential and Normal Cones

3.1.1 The Fréchet Subdifferential

To generate the Fréchet subdifferential at a nondifferen-
tiable point of a lsc function, we use the collection of all
the (Fréchet) derivatives of smooth “osculating” functions
(functions lying below and touching at the point in ques-
tion), if they exist, to replace the missing derivative. More
often than not, this simple contrivance is sufficient. More-
over, in the language of analysis, we are led to study a local
minimum of the difference of two functions which fits very
well with techniques of variational analysis. The geometric
concept of the Fréchet normal cone to a closed set is then
introduced through the subdifferential of the indicator func-
tion of the set – an extended-valued lsc function.
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Let X be a Banach space. We say a function f on X is
Fréchet differentiable at x and f ′(x) ∈ X∗ is the Fréchet
derivative of f at x provided that

lim
‖h‖→0

|f (x + h)− f (x)− 〈f ′(x), h〉|
‖h‖ = 0.

We say f is C1 at x if f ′ : X → X∗ is norm continuous at
x. We say a Banach space is Fréchet smooth provided that
it has an equivalent norm that is differentiable, indeed C1,
for all x = 0.
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Definition 3.1.1. (Fréchet Subdifferential) Let X be a
real Banach space. Let f : X → R ∪ {+∞} be a proper
lsc function. We say f is Fréchet-subdifferentiable and x∗

is a Fréchet-subderivative of f at x if x ∈ domf and

lim inf
‖h‖→0

f (x + h)− f (x)− 〈x∗, h〉
‖h‖ ≥ 0. (3.1.1)

We denote the set of all Fréchet-subderivatives of f at x
by ∂Ff (x) and call this object the Fréchet subdifferential
of f at x. For convenience we define ∂Ff (x) = ∅ if x ∈
domf .
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Definition 3.1.2. (Viscosity Fréchet Subdifferential) Let
X be a real Banach space. Let f : X → R ∪ {+∞}
be a proper lsc function. We say f is viscosity Fréchet-
subdifferentiable and x∗ is a viscosity Fréchet-subderivative
of f at x if x ∈ domf and there exists a C1 function g
such that g′(x) = x∗ and f − g attains a local mini-
mum at x. We denote the set of all viscosity Fréchet-
subderivatives of f at x by ∂V Ff (x) and call this object
the viscosity Fréchet subdifferential of f at x. For conve-
nience we define ∂V Ff (x) = ∅ if x ∈ domf .
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Since shifting g by a constant does not influence its deriva-
tive we can require that f − g attains a local minimum of 0
at x in the above definition.
The following relationship between the Fréchet subdiffer-

ential and the viscosity Fréchet subdifferential is easy and
useful.

Proposition 3.1.3. Let X be a Banach space and let
f : X → R ∪ {+∞} be a lsc function. Then ∂V Ff (x) ⊂
∂Ff (x).

Proof. Exercise 3.1.1. •

In fact, with some additional effort one can show that in
a Fréchet-smooth Banach space ∂V Ff (x) = ∂Ff (x) [99].
Since we work mostly in Fréchet smooth Banach spaces in
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this book, we will use ∂F for both Fréchet and viscosity
Fréchet subdifferentials unless pointed out otherwise.
If f is Fréchet differentiable at x then it is not hard to show

that ∂Ff (x) = {f ′(x)}. The converse is not true (Exercises
3.1.3). In general, ∂Ff (x) may be empty even if x ∈ domf .
An easy example is ∂F (−‖·‖)(0) = ∅. However, a variational
argument leads to the following important result about the
existence of the Fréchet subdifferential.

Theorem 3.1.4. Let X be a Fréchet smooth Banach
space and let f : X → R∪{+∞} be a lsc function. Then
{x ∈ X | ∂Ff (x) = ∅} is dense in domf .

Proof. Let x̄ ∈ domf and let ε be an arbitrary posi-
tive number. We show f is Fréchet subdifferentiable at some
point y ∈ Bε(x̄). Since f is lsc at x̄ there exists δ > 0



3.1 Fréchet Subdifferential 137

such that f (x) > f (x̄) − 1 for all x ∈ Bδ(x̄). Define
f̃ := f + ιBδ(x̄). Then, f̃ is lsc and

f̃(x̄) = f (x̄) < inf
Bδ(x̄)

f + 1 = inf
X
f̃ + 1.

Applying the Borwein–Preiss Variational Principle of The-
orem 2.5.3, using the asserted Fréchet smooth renorm with
λ < min(δ, ε), we conclude that there exists y ∈ Bλ(x̄) ⊂
int(Bδ(x̄) ∩ Bε(x̄)) and ϕ2(x) :=

∑∞
i=1 μi‖x− xi‖2 where

(xi) is a sequence converging to y and (μi) is a sequence
of positive numbers satisfying

∑∞
i=1 μi = 1 such that

f̃ + λ−2ϕ2 attains a minimum at y. Since y is an interior
point of Bδ(x̄), f + λ−2ϕ2 attains a local minimum at y.
After checking that ϕ2 is Fréchet differentiable, we see that
f is Fréchet subdifferentiable at y ∈ Bε(x̄). •
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We put meat on the bones of the last result by recall-
ing that Hilbert space and Lp(1 < p < ∞) are Fréchet
smooth in their original norms while every reflexive space
has a Fréchet smooth renorm [58, 99].
Note that the subdifferential is usually a set. The following

are subdifferentials of several nonsmooth functions at typical
nonsmooth points that can easily be verified.

Example 3.1.5.

∂F | · |(0) = [−1, 1],

∂F
√

| · |(0) = (−∞,∞),

∂F max(·, 0)(0) = [0, 1],

and
∂F ι[0,1](0) = (−∞, 0].
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3.1.2 The Fréchet Normal Cone

The central geometric concept of the normal cone to a closed
set can now be defined through the indicator function of the
set.

Definition 3.1.6. (Fréchet Normal Cone) Let S be a
closed subset of X. We define the Fréchet normal cone
of S at x to be NF (S; x) := ∂F ιS(x).

Some easy facts directly follow from the definition. It is easy
to verify that NF (S; x) is a cone that always contains {0}
and when x ∈ intS, NF (S; x) = {0} (Exercises 3.1.6, 3.1.8
and 3.1.9). Moreover, consider the constrained minimization
problem
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minimize f (x)

subject to x ∈ S ⊂ X.

(3.1.2)

We have an easy and useful necessary optimality condition
in terms of the normal cone of S.

Proposition 3.1.7. Let X be a Fréchet smooth Banach
space, let f be a C1 function on X and let S be a closed
subset of X. Suppose that x̄ is a solution of the con-
strained minimization problem (3.1.2). Then

0 ∈ f ′(x̄) +NF (S; x̄).

Proof. Exercise 3.1.13. •

Recall that for a C1 function f , v = f ′(x) if and only if
(v,−1) is a normal vector for the graph of f at (x, f (x)). Our
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next theorem is a Fréchet subdifferential version of this fact
which characterizes the Fréchet subdifferential of a function
in terms of the normal cone to its epigraph.

Theorem 3.1.8. Let X be a Fréchet smooth Banach
space and let f : X → R∪{+∞} be a lsc function. Then
x∗ ∈ ∂Ff (x) if and only if

(x∗,−1) ∈ NF (epif ; (x, f (x))).

Proof. (a) The “only if” part. Let x∗ ∈ ∂Ff (x). Then
there exists a C1 function g such that g′(x) = x∗ and f − g
attains a minimum at x. Define h(y, r) := g(y)−r. We have
h′(x, f (x)) = (x∗,−1) and

ιepif (y, r)− h(y, r) ≥ ιepif (x, f (x))− h(x, f (x)).(3.1.3)

Thus, (x∗,−1) ∈ NF (epif ; (x, f (x))).
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(b) The “if” part. Let (x∗,−1) ∈ NF (epif ; (x, f (x))).
Then there exists a C1 function h such that h′(x, f (x)) =
(x∗,−1) and h(y, r) ≤ h(x, f (x)) = 0 for any (y, r) ∈ epif .
By the implicit function theorem (see e.g. [271]) there ex-
ists a C1 function g : X → R such that in a neighborhood
of x, h(y, g(y)) = 0, g(x) = f (x) and g′(x) = x∗. Since
h is C1 and the second component of h′(x, f (x)) is nega-
tive there exists a > 0 such that h(y, r) < h(y, r′), for any
y ∈ Ba(x) and f (x)−a < r′ < r < f (x)+a. Take b ∈ (0, a)
such that for any y ∈ Bb(x), g(y) ∈ (f (x) − a, f (x) + a)
and f (y) > f (x) − a. Then, for any y ∈ Bb(x), we have
f (y) − g(y) ≥ 0 = f (x) − g(x). In fact, the inequality is
obvious when f (y) ≥ f (x) + a. If f (y) < f (x) + a then it
follows from h(y, f (y)) ≤ 0 = h(y, g(y)). •
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The normal cone to the epigraph of a function has the
following special properties.

Lemma 3.1.9. Let f be a lsc function. Then

(i) for any (x, r) ∈ epif , NF (epif ; (x, r)) ⊂ NF (epif ; (x, f (x))),
(ii) if (x∗,−λ) ∈ NF (epif ; (x, f (x))) and λ = 0 then λ >

0 and x∗ ∈ λ∂Ff (x).

Proof. Exercise 3.1.10. •
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Thus, Theorem 3.1.8 also characterizes

(x∗, λ) ∈ NF (epif ; (x, f (x)))

when λ = 0 in terms of the subdifferentials of f . The char-
acterization of (x∗, 0) ∈ NF (epif ; (x, f (x))) in terms of the
subdifferentials of f is more delicate and will be discussed
later after we have developed the subdifferential calculus.
3.1.3 The Subdifferential Form of the Variational Principle

We conclude this section with a subdifferential version of
the Borwein–Preiss Variational Principle. This is the form
most frequently used in applications involving subdifferen-
tials. The easy proof is left as an exercise.
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Theorem 3.1.10. Let X be a Banach space with a
Fréchet smooth norm ‖ · ‖ and let f : X → R ∪ {+∞}
be a lsc function bounded from below, λ > 0 and p > 1.
Then, for every ε > 0 and z ∈ X satisfying

f (z) < inf
X
f + ε,

there exists a point y ∈ X such that ‖z − y‖ ≤ λ and
a C1 function ϕ with |ϕ(y)| < ε/λ and ‖ϕ′(y)‖ < pε/λ
such that f + ϕ attains a minimum at y. Consequently,

∂Ff (y) ∩
pε

λ
BX∗ = ∅.

Proof. Exercise 3.1.12. •
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3.1.4 Commentary and Exercises

Although the use of generalized (one-sided) derivatives dates
back explicitly to Dini and before, especially in the con-
text of integration theory, the systematic study of such con-
cepts for variational analysis, especially off the real line, is
quite recent. Consistent theory was developed first for cer-
tain classes of functions, e.g., the convex subdifferential for
convex functions (see [229]) and the quasi-differential for
quasi-differentiable functions (see [223]). Clarke’s pioneering
work [81] on the generalized gradient opened the door to me-
thodical study of general nonsmooth problems. Many com-
peting concepts of generalized derivatives were introduced
in the ensuing past several decades. Several frequently used
concepts are Halkin’s screen [133], the limiting subdifferen-
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tial developed by Mordukhovich [195, 196, 198], Ioffe’s ap-
proximate and G-subdifferential [142, 145, 146], Michel and
Penot’s subdifferential [193], Treiman’s linear subdifferential
[250, 251], Warga’s derivative container [263, 264] and Suss-
mann’s semidifferential [245, 246].
The last decade has witnessed a unification and reconcilia-

tion of much of this work in two directions. One is along the
ideas pioneered by Warga to study abstract subdifferentials
that satisfy a set of axioms so as to provide basic proper-
ties of many different subdifferentials alluded to above with
a unified framework. The other, which is more relevant to
this book, is to turn our attention to the simpler smooth
subdifferentials based on the fact that many of the above
subdifferentials can be represented by such smooth subd-
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ifferentials in spaces with a reasonable geometric property
[48, 85, 146, 185]. In this book we primarily consider the
Fréchet subdifferential in Fréchet smooth Banach spaces. It
was introduced by Bazaraa, Goode and Nashed in finite
dimensions [20] and developed in detail in infinite dimen-
sions by Borwein and Strojwas [61], Kruger [164, 165, 166],
Kruger and Mordukhovich [167] and others. This allows us
to illustrate variational techniques without too many tech-
nical assumptions. Most of the results apply to more general
bornological smooth subdifferentials or s-Hölder subdiffer-
entials [58, 221] with minor changes. Systematic accounts
of nonsmooth analysis and its applications can be found in
[8, 84, 85, 91, 185, 150, 198, 208, 237, 263, 264].
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Unlike derivatives, subdifferentials do not determine func-
tions up to a constant, even on well connected sets. Thus,
we do not have an “integration” theory corresponding to the
subdifferentials (see guided Exercises 3.1.19, 3.1.20, 3.1.21
and 3.1.22 for details).

Exercise 3.1.1. Prove Proposition 3.1.3.

Exercise 3.1.2.Verify the Fréchet subdifferentials in Ex-
ample 3.1.5.

Exercise 3.1.3. Show that

(i) If f is Fréchet differentiable at x then ∂Ff (x) =
{f ′(x)}.

(ii) A function can have a unique Fréchet subdifferential
without being differentiable.



150 3 Subdifferential Theory

(iii) There exists a Lipschitz function having the properties
described in (ii).

Hint: Consider f (x) := |x|(sin(log(|x|)) + 1), x = 0 and
f (0) := 0.

Exercise 3.1.4. (Fréchet Superdifferential) Let f : X →
R ∪ {−∞} be an upper semicontinuous function (i.e., −f
is lsc). We define the Fréchet superdifferential of f at x to
be ∂Ff (x) = −∂F (−f )(x) . Prove that f is Fréchet differ-
entiable at x if and only if ∂Ff (x) = ∂F (f )(x) = {f ′(x)}.
Indeed it suffices that ∂Ff (x) ∩ ∂Ff (x) = ∅.
Exercise 3.1.5. Show that for any λ > 0, ∂F (λf )(x) =
λ∂Ff (x). Care must be taken with zero, when ∂Ff (x) is
empty.
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Exercise 3.1.6.Verify that for any closed set S and x ∈ S,
NF (S; x) is a cone, i.e., for any x∗ ∈ NF (S; x) and any
r ≥ 0, rx∗ ∈ NF (S; x).

Exercise 3.1.7. Show that for any lsc function f : RN →
R ∪ {+∞} and any x ∈ dom f . The set ∂Ff (x) is always
closed. Deduce that, for any closed subset S in R

N and any
x ∈ S, the normal cone NF (S; x) is closed. Reference: See
Theorem 8.6 in [237].

Exercise 3.1.8. Show that if s ∈ intS, then NF (S; s) =
{0}.
Exercise 3.1.9. Let {ei} be the standard orthonormal ba-
sis of �2 and let S := conv{±ei/i}∞i=1. Show that 0 ∈ intS
yet NF (S; 0) = {0}.
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Exercise 3.1.10. Prove Lemma 3.1.9.

Exercise 3.1.11. Show that in Definition 3.1.2 we can re-
quire that f − g attains a local minimum of 0 at x.

Exercise 3.1.12. Suppose that f is a lsc function and that
g is aC1 function. Show that ∂F (f+g)(x) = ∂Ff (x)+g

′(x).
Exercise 3.1.13. Prove Proposition 3.1.13.

Exercise 3.1.14. Prove that if f is a Lipschitz function
with rank L then, for any x, x∗ ∈ ∂Ff (x) implies that
‖x∗‖ ≤ L.

∗Exercise 3.1.15.LetX be a Fréchet smooth Banach space
and let f : X → R∪{+∞} be a lsc function. Prove that f is
Lipschitz with rank L if and only if, for any x, x∗ ∈ ∂Ff (x)
implies that ‖x∗‖ ≤ L.



3.1 Fréchet Subdifferential 153

∗Exercise 3.1.16.LetX be a Fréchet smooth Banach space
and let f : X → R ∪ {+∞} be a lsc function. Prove that
∂V Ff (x) = ∂Ff (x). Reference: [99].

∗Exercise 3.1.17. Let X be a Banach space with a Fréchet
smooth equivalent norm and let f : X → R ∪ {+∞} be a
lsc function. Prove that x∗ ∈ ∂Ff (x) if and only if there
exists a concave C1 function g such that g′(x) = x∗ and
f − g attains a local minimum at x, as drawn in Figure 3.2.
Reference: [71, Remark 1.4].

Exercise 3.1.18. Prove Theorem 3.1.10.

Exercise 3.1.19. Construct two lsc functions on R with
the identical Fréchet subdifferential yet their difference is not
a constant. Hint: Consider f = 1− χ[0,1] and 2f where χS
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Fig. 3.2. Every Fréchet subdifferential is a “viscosity” subdifferential.
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is the characteristic function of set S defined by χS(x) = 1
for x ∈ S and χS(x) = 0 for x ∈ S.

Exercise 3.1.20.Construct two continuous functions onR
with the identical Fréchet subdifferential yet their difference
is not a constant. Hint: Consider the Cantor function f and
2f (see [71] and also Exercise 3.5.5).

Exercise 3.1.21. Prove that if two Lipschitz functions on
R have the identical Fréchet subdifferential then they differ
only by a constant.

∗Exercise 3.1.22.The conclusion in Exercise 3.1.21 fails if
the Fréchet subdifferential is replaced by the proximal sub-
differential. Recall the proximal subdifferential is defined as
follows.
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Definition 3.1.11. (Proximal Subdifferential) Let X be a
real Hilbert space. Let f : X → R ∪ {+∞} be a proper
lsc function. We say f is a proximal subdifferentiable and
x∗ is a proximal subderivative of f at x if x ∈ domf and
there exists a constant c ≥ 0 such that

f (y)− 〈x∗, y〉 − c‖y − x‖2

attains a local minimum at x. We denote the set of all
proximal-subderivatives of f at x by ∂Pf (x) and call this
object the proximal subdifferential of f at x. For conve-
nience we define ∂Pf (x) = ∅ if x ∈ domf .
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Precisely prove the following theorem.

Theorem 3.1.12. There exists uncountably many dif-
ferent Lipschitz function f : R → R with f (0) = 0 such
that ∂Pf (x) = (−1, 1) when x is a dyadic rational, and
∂Pf (x) = ∅ when x is not a dyadic rational.

One can start with the construction in the following propo-
sition for a function on [0, 1] and then extend it periodically
to R.



158 3 Subdifferential Theory

Proposition 3.1.13. Let (ai) be a sequence satisfying
0 < a1 < a2 < · · · < 1, ai → 1 and 2i(1 − ai) →
∞. Then there exists a Lipschitz function f : [0, 1] → R

with Lipschitz constant 1 satisfying f (0) = f (1) = 0 and
f (1/2) = a1/2 such that ∂Pf (x) = (−1, 1) when x ∈ (0, 1)
is a dyadic rational, and ∂Pf (x) = ∅ when x ∈ (0, 1) is
not a dyadic rational.

Hint: Define f = limi fi where fi are affine on the intervals
[n/2i, (n + 1)/2i] for n = 0, 1, . . . , 2i − 1. Denote the slope
of fi on this interval by sn,i and define fi(0) = 0 and

s2n,i := ai, s2n+1,i := 2sn,i−1 − ai, if sn,i−1 ≥ 0,

s2n,i := 2sn,i−1 + ai, s2n+1,i := −ai, if sn,i−1 ≤ 0.

Then show that
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(i) For all i = 1, 2, . . . , fi is defined and Lipschitz on [0, 1]
and fi(2n/2

i) = fi−1(n/2
i−1) for n = 0, . . . , 2i−1 and

i = 2, 3, . . . .
(ii) sn,i ∈ [−ai, ai] for all n = 0, . . . , 2i−1 and i = 1, 2, . . . .
(iii) The sequence (fi) uniformly converges to a Lipschitz

function f with a Lipschitz constant 1.
(iv) ∂Pf (x) = (−1, 1) when x ∈ (0, 1) is a dyadic rational.
(v) ∂Pf (x) = ∅ when x ∈ (0, 1) is not a dyadic rational.
(vi) Verify that f (0) = f (1) = 0 and f (1/2) = a1/2.
(vii) Extend f periodically toR and check ∂Pf (x) = (−1, 1)

when x is an integer.

Reference: see [46] for details and check [21, 66, 92] for related
earlier examples.
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3.2 Nonlocal Approximate Sum Rule and Viscosity Solutions

To effectively use the Fréchet subdifferential one often needs
to decouple subdifferential information in various different
settings. Here we discuss a result that combines a varia-
tional principle and a decoupling mechanism. It is flexible
enough that one can conveniently use it to derive several
other results on the calculus of subdifferentials of a similar
nature.
3.2.1 The Decoupled Infimum

We start by introducing the concept of a decoupled infimum.
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Definition 3.2.1. (Decoupled Infimum) Let X be a Ba-
nach space, fn : X → R∪{+∞} , n = 1, . . . , N extended-
value functions and S a subset of X. We define the de-
coupled infimum of f1, . . . , fN over S by∧

[f1, . . . , fN ](S) := lim
η→0

inf
{
ιS(x0) +

N∑
n=1

fn(xn) :

diam(x0, x1, . . . , xN ) ≤ η
}

. (3.2.1)

Some useful elementary properties of the decoupled infi-
mum are discussed in Exercises 3.2.1, 3.2.2 and 3.2.3.
The following lemma is often useful.
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Lemma 3.2.2.Let sp(y1, . . . , yN ) :=
∑N
n,m=1 ‖yn−ym‖p

with p ≥ 1. Suppose that

(x∗1, . . . , x
∗
N ) ∈ ∂Fsp(x1, . . . , xN ).

Then
N∑
n=1

x∗n = 0. (3.2.2)

Moreover, if p = 1 and s1(x1, . . . , xN ) > 0, then

max{‖x∗n‖ | n = 1, . . . , N} ≥ 1. (3.2.3)
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Proof. Conclusion (3.2.2) is easy and left as an exercise.
To prove (3.2.3) we observe that s1 is homogeneous. By
Proposition 3.1.3 we have

N∑
n=1

〈x∗n,−xn〉≤ lim inf
t→0+

s1(x1 − tx1, . . . , xN − txN )− s1(x1, . . . , xN )

t
=−s1(x1, . . . , xN ). (3.2.4)

Combining (3.2.2) and (3.2.4) we have
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s1(x1, . . . , xN )≤
N∑
n=1

〈x∗n, xn〉 =
N−1∑
n=1

〈x∗n, xn − xN〉

≤max{‖x∗n‖ | n ≤ N − 1}
N−1∑
n=1

‖xn − xN‖

≤max{‖x∗n‖ | n}s1(x1, . . . , xN ), (3.2.5)

which implies (3.2.3) when s1(x1, . . . , xN ) > 0. •

3.2.2 Nonlocal Approximate Sum Rules

Now we can prove the main result of this section.
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Theorem 3.2.3. (Nonlocal Approximate Sum Rule) Let
X be a Fréchet smooth Banach space and let f1, . . . , fN : X →
R∪ {+∞} be lsc functions bounded below. Suppose that∧
[f1, . . . , fN ](X) < +∞. Then, for any ε > 0, there

exist xn and x∗n ∈ ∂Ffn(xn), n = 1, . . . , N satisfying

diam(x1, . . . , xN )×max(1, ‖x∗1‖, . . . , ‖x∗N‖) < ε,

(3.2.6)

and
N∑
n=1

fn(xn) <
∧

[f1, . . . , fN ](X) + ε (3.2.7)

such that
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n=1

x∗n
∥∥∥ < ε. (3.2.8)

Proof. Without loss of generality, we may assume that
‖ · ‖ is C1 away from 0. Define, for any real number r > 0
and s2 as in Lemma 3.2.2,

wr(y1, . . . , yN ) :=

N∑
n=1

fn(yn) + rs2(y1, . . . , yN )

and Mr := inf wr. Then Mr is an increasing function of r
and is bounded above by

∧
[f1, . . . , fN ](X) (Exercise 3.2.4).

LetM := limr→∞Mr. Observe that the product spaceX
N

of N copies of the Fréchet smooth Banach space X (with
the Euclidean product norm) is also Fréchet smooth. For
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each r, applying the Borwein–Preiss Variational Principle of
Theorem 3.1.10 to the function wr, we obtain a C1 function
φr and xn,r, n = 1, . . . , N such that

N∑
n=1

fn(xn,r) ≤ wr(x1,r, . . . , xN,r) < inf wr +
1

r
≤M +

1

r
,

(3.2.9)

‖φ′r(x1,r, . . . , xN,r)‖ < ε/N , and

N∑
n=1

fn(yn) + rs2(y1, . . . , yN ) + φr(y1, . . . , yN )

attains a local minimum at (x1,r, . . . , xN,r). Thus,



168 3 Subdifferential Theory

(x∗1,r, . . . , x
∗
N,r) :=−φ′r(x1,r, . . . , xN,r)− rs′2(x1,r, . . . , xN,r)

∈ ∂Ff1(x1,r)× · · · × ∂FfN(xN,r).

Summing the N components of the above inclusion and us-
ing Lemma 3.2.2 we obtain (3.2.8). By the definition of Mr

we have

Mr/2≤wr/2(x1,r, . . . , xN,r)
=wr(x1,r, . . . , xN,r)−

r

2
s2(x1,r, . . . , xN,r)

≤Mr +
1

r
− r

2
s2(x1,r, . . . , xN,r). (3.2.10)

Rewriting (3.2.10) as rs2(x1,r, . . . , xN,r) ≤ 2(Mr−Mr/2+
1
r) yields

lim
r→∞ rs2(x1,r, . . . , xN,r) = 0. (3.2.11)
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Therefore,

lim
r→∞ diam(x1,r, . . . , xN,r) = 0. (3.2.12)

Moreover,

lim
r→∞ diam(x1,r, . . . , xN,r)×max(‖x∗1,r‖, . . . , ‖x∗N,r‖) = 0.

(3.2.13)

Also,

M≤
∧

[f1, . . . , fN ](X)

≤ lim inf
r→∞

N∑
n=1

fn(xn,r) = lim inf
r→∞ wr(x1,r, . . . , xN,r) ≤M

which yields

M =
∧

[f1, . . . , fN ](X). (3.2.14)
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For r sufficiently large, set xn := xn,r and x
∗
n := x∗n,r, n =

1, . . . , N . Then (3.2.6) follows from (3.2.12) and (3.2.13) and
(3.2.7) follows from (3.2.9) and (3.2.14). •

Theorem 3.2.3 is a powerful result. The guided Exercise
3.2.7 illustrates how to use it to deduce Theorem 3.1.4. The
conditions in the nonlocal approximate sum rule are mini-
mum in a certain sense (see examples in Exercises 3.2.5 and
3.2.6).
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3.2.3 The Uniqueness of Viscosity Solutions

We now use the nonlocal approximate sum rule to prove a
uniqueness theorem for the viscosity solution of the following
Hamilton–Jacobi equation

u +H(x, u′) = 0. (3.2.15)

This equation is closely related to the optimal value function
of certain optimal control problems.
Consider the value function u of the optimal control prob-

lem
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u(x) := inf

{∫ ∞

0
e−tf (x(t), c(t)) dt : x′(t) = g(x(t), c(t)),

c(t) ∈ C, x(0) = x

}
(3.2.16)

where f and g are Lipschitz functions, c is a measurable
function modeling the control and C is a compact set mod-
eling the admissible range of the control function. We assume
that for any given x, an optimal control for the above prob-
lem exists. When u is smooth it satisfies equation (3.2.15)
with

H(x, p) := sup{〈−g(x, c), p〉 − f (x, c) : c ∈ C}
(3.2.17)
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The proof is outlined in the guided exercises 3.2.11 and
3.2.12.
In general such a value function is not necessarily smooth

and (3.2.15) does not necessarily have a classical solution.
Viscosity solutions were introduced to replace classical so-
lutions. We recall the definition below. First, let f : X →
R∪{−∞} be an upper semicontinuous function. We define
the Fréchet superdifferential of f at x, ∂Ff (x), by

∂Ff (x) := −∂F (−f )(x).
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Definition 3.2.4. (Viscosity Solutions) A function u : X →
R is a viscosity supersolution (viscosity subsolution) of
(3.2.15) if u is lower (upper) semicontinuous and, for
every x ∈ X and every x∗ ∈ ∂F (u)(x) (x

∗ ∈ ∂F (u)(x)),

u(x) +H(x, x∗) ≥ 0 (u(x) +H(x, x∗) ≤ 0).

A continuous function u is called a viscosity solution if u
is both a viscosity subsolution and a viscosity supersolu-
tion.

One can using an argument similar to that in Exercises
3.2.11 and 3.2.12 to show that when u is continuous it is
a viscosity solution of (3.2.15). The uniqueness of viscosity
solutions to the Hamilton–Jacobi equation follows readily
from the following comparison theorem.
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Theorem 3.2.5. (Comparison Theorem) Let u be an up-
per semicontinuous function bounded above and v be a
lower semicontinuous function bounded below. Suppose
H : X ×X∗ → R satisfies the following assumption:

(A) for any x1, x2 ∈ X and x∗1, x
∗
2 ∈ X∗,

|H(x1, x
∗
1)−H(x2, x

∗
2)|≤ω(x1 − x2, x

∗
1 − x∗2)

+M max(||x∗1||, ||x∗2||)||x1 − x2||
where M > 0 is a constant and ω : X ×X∗ → R is
a continuous function with ω(0, 0) = 0.

Suppose furthermore that u is a viscosity subsolution of
(3.2.15) and v is a viscosity supersolution of (3.2.15).
Then u ≤ v.
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Proof. Let ε be an arbitrary positive number. Applying
the nonlocal approximate sum rule of Theorem 3.2.3 with
f1 = v and f2 = −u, there exist x1, x2 ∈ X , x∗1 ∈ ∂Fv(x1)

and x∗2 ∈ ∂Fu(x2) satisfying

•‖x1−x2‖ < ε, ||x∗1||||x1−x2|| < ε and ||x∗2||||x1−x2|| <
ε;

•v(x1)− u(x2) < infX(v − u) + ε; and
•‖x∗1 − x∗2‖ ≤ ε.

Since the function v is a viscosity supersolution of (3.2.15)
we have

v(x1) +H(x1, x
∗
1) ≥ 0.

Similarly
u(x2) +H(x2, x

∗
2) ≤ 0.
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Therefore,

inf
X
(v − u)>v(x1)− u(x2)− ε

≥ [H(x2, x
∗
2)−H(x1, x

∗
1)]− ε

≥−[ω(x2 − x1, x
∗
2 − x∗1)

+M max(||x∗1||, ||x∗2||)||x2 − x1||]− ε.

As ε → 0 the right hand side converges to 0 which yields
infX(v − u) ≥ 0. •



178 3 Subdifferential Theory

Corollary 3.2.6. (Uniqueness of Viscosity Solutions) Un-
der the assumptions of Theorem 3.2.5 any continuous
bounded viscosity solution to (3.2.15) is unique.

We note that the function H defined in (3.2.17) satisfies
condition (A) in Theorem 3.2.5 (Exercise 3.2.13).
3.2.4 Commentary and Exercises

The nonlocal approximate sum rule was derived by Zhu in
[272]. In essence, it is a combination of the Borwein-Preiss
smooth variational principle and a decoupling method. De-
coupling techniques are important parts of calculus of vari-
ations and are behind many important results in functional,
convex and nonsmooth analysis. The decoupling method we
use here with a smooth symmetric penalty function was in-
spired by the proof of uniqueness of the viscosity solution in
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[93]. Many other calculus results for subdifferentials in this
chapter, such as approximate local sum rules, mean value
theorems, multidirectional mean value inequalities and ex-
tremal principles, are also of this nature and can be deduced
from the nonlocal approximate sum rule. Actually they are
equivalent (see [273] and Section 6.1). We note that approx-
imate local sum rules, mean value theorems and extremal
principles are local in nature, and therefore also accompa-
nied with corresponding limiting forms under suitable condi-
tions for the limiting process to be justified. We will discuss
these limiting forms in Chapter 5 after giving the defini-
tion of limiting subdifferentials and their associated normal
cones. The importance of the decoupled infimum is empha-
sized by Lassonde in [170], where it is called a uniform in-
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fimum. He points out that many conditions associated with
decoupling methods (see [48, 68, 88, 148, 272, 273]) involve
this quantity. The assumptions in Theorem 3.2.3 cannot be
dispensed with as shown by examples in Exercises 3.2.5 and
3.2.6. The name arises since, in contrast to earlier more con-
ventional (local) rules, one cannot guarantee the placement
of the approximate minimizers. Nonetheless, Exercise 3.2.7
shows that conclusion (3.2.7) in Theorem 3.2.3 can often pro-
vide information on the location of points xn, n = 1, . . . , N ,
indirectly. The fact that a smooth value function of the op-
timal control problem (3.2.16) satisfies the Hamilton–Jacobi
equation (3.2.15) is a classical result in dynamic program-
ming theory (see e.g., [122]). That a continuous value func-
tion satisfies the same equation in the sense of viscosity so-
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lutions is the seminal work of Crandall and Lions [94]. Early
forms of the uniqueness theorem of the viscosity solution are
discussed in [94, 93]. The relationship between the unique-
ness of viscosity solutions and the Fréchet subdifferential
calculus is discussed by Deville and Haddad in [108]. How-
ever, the condition in [108] is stronger and does not apply to
the control problem (3.2.16). Theorem 3.2.5 with the more
realistic condition (A) is derived in [68, 71]. The improve-
ment is achieved through better estimates on the size of the
subderivative in the subdifferential calculus such as (3.2.6)
in Theorem 3.2.3.

Exercise 3.2.1. Show that f (x) :=
∧
[f ]({x}) is the lsc

closure of f (x), i.e., the largest lsc function dominated by
f .
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Exercise 3.2.2.Verify that∧
[f1, . . . , fN ](S) =

∧
[f1, . . . , fN ](S̄) =

∧
[f1, . . . , fN, ιS](X)

Exercise 3.2.3. Prove the following.

(i) If S ⊂ T then
∧
[f1, . . . , fN ](S) ≥

∧
[f1, . . . , fN ](T ).

(ii)
∧
[f1, . . . , fN ](S) ≤ infx∈S

∧
[f1, . . . , fN ]({x}) and

equality holds when S is compact.
(iii) infx∈S

∧
[f1, . . . , fN ]({x}) ≤ infx∈S

∑N
n=1 fn(x).

(iv) Show that the inequality in (iii) can be strict. Can you
do it for N = 1?

Exercise 3.2.4. Show thatMr defined in the proof of The-
orem 3.2.3 is an increasing function of r and is bounded
above by

∧
[f1, . . . , fN ](X).
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Exercise 3.2.5. Show that functions f1(x) = x and
f2(x) = 0 defined on R do not satisfy the nonlocal approxi-
mate sum rule and explain why.

Exercise 3.2.6. Show that functions f1(x) = ι{0}(x) and
f2(x) = ι{1}(x) defined on R do not satisfy the nonlocal
approximate sum rule and explain why.

Exercise 3.2.7. Deduce Theorem 3.1.4 from Theorem
3.2.3. Hint: Let f be a lsc function bounded below. For any
x ∈ domf , define f1 := f and f2 := ι{x} and apply The-
orem 3.2.3 to f1 and f2 to conclude that there exist x1, x2
with ∂Ffn(xn) = ∅, n = 1, 2, satisfying ‖x1 − x2‖ < ε.
Note that we must have x2 = x. Thus, x1 ∈ Bε(x) and
∂Ff (x1) = ∅.
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Exercise 3.2.8. Prove (3.2.2) in Lemma 3.2.2.

Exercise 3.2.9. Show that if all but one of f1, . . . , fN are
uniformly continuous around S then

∧
[f1, . . . , fN ](S) =∧

[
∑N
n=1 fn](S).

Exercise 3.2.10. Let x̄ minimize f over a closed set S.
Prove that if f is C1 then −f ′(x̄) ∈ NF (S; x̄).

∗Exercise 3.2.11.Consider the optimal value function v of
the following optimal control problem

v(t, x) := inf

{∫ ∞

t
f (s, x(s), c(s)) ds : x′(s) = g(s, x(s), c(s)),

c(s) ∈ C, x(t) = x

}
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where f and g are Lipschitz functions, c is a measurable
function and C is a compact set. We assume that for any
given (t, x), an optimal control for the above problem always
exists.

(i) Prove the optimal principle: for any solution pair (x, c)
of the control system x′(s) = g(s, x(s), c(s)), c(s) ∈
C, x(t) = x, we have

v(t, x) ≤
∫ r

t
f (s, x(s), c(s)) ds + v(r, x(r))

and equality holds when (x, c) is an optimal control pair.
(ii) If in addition v is a C1 function then it satisfies the

following Hamilton–Jacobi equation

vt(t, x) = Ĥ(t, x, vx(t, x)),
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where Ĥ(t, x, p) := sup{〈−g(t, x, c), p〉−f (t, x, c) : c ∈
C}.

∗Exercise 3.2.12. Show that if the optimal value function
u defined in (3.2.16) is C1 then it satisfies the Hamilton–
Jacobi equation (3.2.15).

Exercise 3.2.13. Show that the function H defined in
(3.2.17) satisfies condition (A) in Theorem 3.2.5.

3.3 Local Approximate Sum Rules and Constrained Minimization

Local approximate sum rules are generalizations of the sum
rule for derivatives of smooth functions. They are important
in studying constrained optimization problems and other
problems involving local properties of subdifferentials.
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Consider lsc functions f1 and f2 such that f1 + f2 attains
a minimum at x. Then 0 ∈ ∂F (f1 + f2)(x). We would hope
that we could conclude that

0 ∈ ∂Ff1(x) + ∂Ff2(x) (3.3.1)

as is the case when both f1 and f2 are differentiable or con-
vex continuous functions. Unfortunately, (3.3.1) is false in
general. For example, if f1(x) := −f2(x) := |x| : R → R

then f1 + f2 attains a minimum at 0. Yet ∂Ff2(0) = ∅ so
that 0 ∈ ∂Ff1(0) + ∂Ff2(0) = ∅. Thus, one has to settle
for an approximate form of (3.3.1) in terms of subdifferen-
tials at points near x. Such a result is referred to as a local
approximate sum rule.
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In infinite dimensional Banach spaces there are two ba-
sic types of local approximate sum rules: strong and weak,
corresponding to the approximation’s accuracy up to an ar-
bitrary strong- or weak-star neighborhood, respectively.
3.3.1 Strong Approximate Sum Rules

Theorem 3.3.1. (Strong Local Approximate Sum Rule)
Let X be a Fréchet smooth Banach space and let
f1, . . . , fN : X → R ∪ {+∞} be lsc functions. Suppose

that x̄ ∈
⋂N
n=1 domfn and there exists an h > 0 such

that
N∑
n=1

fn(x̄) ≤
∧

[f1, . . . , fN ](Bh(x̄)).

(3.3.2)
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Then, for any ε > 0, there exist xn and x∗n ∈ ∂Ffn(xn),
n = 1, . . . , N satisfying

diam(x1, . . . , xN )×max(1, ‖x∗1‖, . . . , ‖x∗N‖) < ε,

(3.3.3)

and

(xn, fn(xn)) ∈ Bε((x̄, fn(x̄))) (3.3.4)

such that

0 ∈
N∑
n=1

x∗n + εBX∗. (3.3.5)
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Proof. Since fn, n = 1, . . . , N are lsc and since (3.3.2)
implies that for any 0 < h′ < h,

N∑
n=1

fn(x̄)≤
∧

[f1, . . . , fN ](Bh(x̄))

≤
∧

[f1, . . . , fN ](Bh′(x̄)) ≤
N∑
n=1

fn(x̄),

(3.3.6)

decreasing h if necessary we may assume that h ∈ (0,min(1, ε))
and that for any x ∈ Bh(x̄),

fn(x) > fn(x̄)− ε/N, n = 1, . . . , N. (3.3.7)

Moreover, it follows from condition (3.3.2) that for ε1 =
h2/32N2, we can choose η ∈ (0, h) satisfying
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N∑
n=1

fn(x̄) ≤ inf
{ N∑
n=1

fn(yn)+ιBh(x̄)(y0)
∣∣∣ ‖yn−ym‖ ≤ η,

n,m = 0, 1, . . . , N
}
+ ε1. (3.3.8)

Define, for n = 1, . . . , N ,

gn := fn + ‖ · −x̄‖2 + ιBh(x̄).

Then gn are lsc and bounded from below with∧
[g1, . . . , gN ](X) ≤

N∑
n=1

fn(x̄) <∞.

Applying the nonlocal approximate sum rule of Theorem
3.2.3 to gn, n = 1, . . . , N with ε2 ∈ (0,min(η, ε1)) yields
xn and y∗n ∈ ∂Fgn(xn), n = 1, . . . , N satisfying
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diam(x1, . . . , xN )×max(1, ‖y∗1‖, . . . , ‖y∗N‖) < ε2,

(3.3.9)

and
N∑
n=1

gn(xn) <
∧

[g1, . . . , gN ](X) + ε2 (3.3.10)

such that ∥∥∥ N∑
n=1

y∗n
∥∥∥ < ε2. (3.3.11)

It follows from (3.3.10) that xn ∈ Bh(x̄), n = 1, . . . , N and
from (3.3.8) and (3.3.9) that
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N∑
n=1

[fn(x̄) + ‖xn − x̄‖2]− ε1 ≤
N∑
n=1

gn(xn) <
∧

[g1, . . . , gN ](X)

+ ε2

≤
N∑
n=1

gn(x̄) + ε2 =
N∑
n=1

fn(x̄)

+ ε2. (3.3.12)

Thus,
N∑
n=1

‖xn − x̄‖2 ≤ ε1 + ε2 < 2ε1 (3.3.13)

which implies that xn ∈ intBh(x̄), and each (‖·‖2)′(xn−x̄),
n = 1, . . . , N is bounded by ε/2N . We can check that
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x∗n := y∗n − (‖ · ‖2)′(xn − x̄) ∈ ∂Ffn(xn), (3.3.14)

and from (3.3.9) and (3.3.11) that xn and x∗n satisfy (3.3.3)
and (3.3.5). It remains to verify (3.3.4) which follows from
(3.3.13), (3.3.7) and the following estimate:

fn(xn)≤fn(x̄) +
∑
m=n

[fm(x̄)− fm(xm)] + ε2

<fn(x̄) +
(N − 1)ε

N
+ ε2 < fn(x̄) + ε.(3.3.15)

•

Condition (3.3.2) in the strong approximate sum rule can-
not be replaced by a usual infimum in general. Examples
are discussed in [100, 255]. The following proposition pro-
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vides two useful sufficient conditions for (3.3.2). The proof
is elementary and is left as an exercise.

Proposition 3.3.2. Let fn : X → R ∪ {+∞} , n =

1, . . . , N be lsc functions and let x̄ ∈
⋂N
n=1 domfn. Then

there exists a number h > 0 such that
N∑
n=1

fn(x̄) ≤
∧

[f1, . . . , fN ](Bh(x̄))

if x̄ is a local minimum of
∑N
n=1 fn and either

(i) all but one of fn are uniformly continuous in a neigh-
borhood of x̄, or

(ii) at least one of fn has compact lower level sets in a
neighborhood of x̄.
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Proof. Exercise 3.3.2. •

3.3.2 Weak Approximate Sum Rules

If we are willing to weaken the conclusion of Theorem 3.3.1
in replacing εBX∗ in (3.3.5) by an arbitrary weak-star neigh-
borhood, then condition (3.3.2) can be eliminated. Such a
result is often called a weak local approximate sum rule.

Theorem 3.3.3. (Weak Local Approximate Sum Rule)
Let X be a Fréchet smooth Banach space and let
f1, . . . , fN : X → R ∪ {+∞} be lsc functions. Suppose

that x̄ ∈
⋂N
n=1 domfn and x∗ ∈ ∂F (

∑N
n=1 fn)(x̄). Then,

for any ε > 0 and any weak-star neighborhood V of 0
in X∗, there exist xn and x∗n ∈ ∂Ffn(xn), n = 1, . . . , N
satisfying
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diam(x1, . . . , xN )×max(1, ‖x∗1‖, . . . , ‖x∗N‖) < ε,

(3.3.16)

and

(xn, fn(xn)) ∈ Bε((x̄, fn(x̄))) (3.3.17)

such that

x∗ ∈
N∑
n=1

x∗n + V. (3.3.18)

Proof. Let ε > 0 be a positive number and let V be a
weak-star neighborhood of 0 in X∗. Fix r > 0 and a finite
dimensional subspace L of X such that L⊥ + 2rBX∗ ⊂ V .

Since x∗ ∈ ∂F (
∑N
n=1 fn)(x̄) there exists a C1 function

g such that g′(x̄) = x∗ and
∑N
n=1 fn − g attains a lo-



198 3 Subdifferential Theory

cal minimum at x̄. Choose 0 < η < min(ε, r) such that
‖y − x̄‖ < η < ε implies that ‖g′(x) − g(x̄)‖ < r. Then∑N
n=1 fn − g + ιx̄+L attains a local minimum at x̄. Since

ιx̄+L has locally compact sublevel sets, by Proposition 3.3.2,
the functions f1, . . . , fN,−g, ιx̄+L satisfy the condition of
Theorem 3.3.1.
Applying the strong local approximate sum rule of The-

orem 3.3.1 yields the existence of xn, n = 1, . . . , N + 2
such that ‖xn − x̄‖ < η < ε, n = 1, . . . , N + 2, x∗n ∈
∂Ff (xn), n = 1, . . . , N , x∗N+1 = −g′(xN+1) and x

∗
N+2 ∈

∂F ιx̄+L(xN+2) satisfying the conclusion of Theorem 3.3.1.
That is, for n = 1, . . . , N ,

|fn(xn)− fn(x̄)| < η < ε,
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‖x∗n‖×diam({x1, . . . , xN}) ≤ ‖x∗n‖×diam({x1, . . . , xN+2}) < η < ε

and
|ιx̄+L(xN+2)− ιx̄+L(x̄)| < η.

Thus xN+2 ∈ x̄ + L, and∥∥∥ N∑
n=1

x∗n − g′(xN+1) + x∗N+2

∥∥∥ < r.

Note that ∂F ιx̄+L(xN+2) = L⊥ and ‖x∗− g′(xN+1)‖ < r.
Therefore,

x∗ ∈
N∑
n=1

x∗n + L⊥ + 2rBX∗ ⊂
N∑
n=1

x∗n + V.

•
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Note that in finite dimensional Banach spaces the strong
and weak(star) topologies coincide, and therefore the strong
approximate sum rule holds in finite dimensional Banach
spaces without condition (3.3.2).

3.3.3 Normal Vectors to (Sub)Level Sets

When f is a C1 function it is well known that if f ′(x̄) = 0
then it generates the normal cone of f−1((−∞, f (x̄)]) at x̄.
We now discuss nonsmooth versions of this fact as an appli-
cation of the approximate local sum rules. They are closely
related to the approximation of the singular normal vectors
to the epigraph and graph of functions and are important
in studying necessary optimality conditions for constrained
optimization problems.
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Theorem 3.3.4. (Representation of Normal Vectors of
Sublevel Sets) Let X be a Fréchet smooth Banach space
and let f : X → R ∪ {+∞} be a lsc function. Suppose
that lim infx→x̄ d(∂Ff (x) ; 0) > 0 and ξ ∈ NF (f

−1((−∞, a]); x̄).
Then, for any ε > 0, there exist λ > 0, (x, f (x)) ∈
Bε((x̄, f (x̄))) and x

∗ ∈ ∂Ff (x) such that

‖λx∗ − ξ‖ < ε.

Proof. Assume that

lim inf
x→x̄

d(∂Ff (x), 0) > c > 0. (3.3.19)

We consider the nontrivial case when ξ = 0. Moreover, since
for any (x̄, a) ∈ epif ,

NF (f
−1((−∞, a]); x̄) ⊂ NF (f

−1((−∞, f (x̄)]); x̄)

we may assume that a = f (x̄). Choose η ∈ (0, ε) satisfying
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2η‖ξ‖ + 2η‖ξ‖(1 + 2η)

c
< ε/2. (3.3.20)

and choose δ ∈ (0, ε) such that

〈ξ, h〉 < η‖ξ‖‖h‖, for all x̄ + h

∈ f−1((−∞, a]) ∩ Bδ(x̄), h = 0, (3.3.21)

f is bounded below on Bδ(x̄) and

inf
x∈Bδ(x̄)

d(∂Ff (x) ; 0) > c.

Then

[x̄ +K(ξ, η)] ∩ f−1((−∞, a]) ∩ Bδ(x̄) = {x̄},
(3.3.22)

where K(ξ, η) is the Bishop–Phelps cone. Define, for each
natural number i,
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gi := f − a + idx̄+K(ξ,2η).

Then (gi) is bounded below on Bδ(x̄) and gi(x̄) = 0. We
consider two possible cases: (A) infBδ(x̄) gi < 0 and (B)

infBδ(x̄) gi = 0. For case (A), by the Ekeland variational

principle of Theorem 2.1.1 there exists yi ∈ Bδ(x̄) such that
gi(yi) < 0 and

gi +
1

i
‖ · −yi‖

attains a (local) minimum at yi over Bδ(x̄). We must have
yi ∈ x̄ + K(ξ, η) for otherwise (3.3.22) implies that yi ∈
f−1((−∞, a]) and gi(yi) ≥ 0, a contradiction. We claim
that

dx̄+K(ξ,2η)(yi) ≥
η

(2η + 1)
‖yi − x̄‖. (3.3.23)
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Indeed, if

‖h‖ < η

(2η + 1)
‖yi − x̄‖

or
‖h‖ < η‖yi − x̄‖ − 2η‖h‖,

then

〈ξ, yi − x̄ + h〉= 〈ξ, yi − x̄〉 + 〈ξ, h〉
<η‖ξ‖‖yi − x̄‖ + ‖ξ‖‖h‖
<2η‖ξ‖[‖yi − x̄‖ − ‖h‖]
≤2η‖ξ‖‖yi − x̄ + h‖.

That is to say yi−x̄+h ∈ K(ξ, 2η). Since (f (yi)) is bounded
from below we have

lim
i→∞

dx̄+K(ξ,2η)(yi) = 0. (3.3.24)
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Combining (3.3.23) and (3.3.24) we have yi → x̄ as i→ ∞.
Therefore, for i sufficiently large we have yi ∈ int Bδ(x̄). In
case (B) we set yi = x̄. Thus, in both cases (A) and (B),

gi +
1

i
‖ · −yi‖

attains a local minimum at yi when i is sufficiently large.
By the strong approximate sum rule of Theorem 3.3.1
there exists xi, zi ∈ int Bδ(x̄), x

∗
i ∈ ∂Ff (xi) and z∗i ∈

∂Fdx̄+K(ξ,2η)(zi) such that

‖x∗i + iz∗i ‖ < η + 1/i. (3.3.25)

Since K(ξ, 2η) is convex, so is the function dx̄+K(ξ,2η).
Moreover, this function is a Lipschitz function with Lips-
chitz constant 1. Using the convex separation theorem as an
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exercise (see Exercises 4.2.8 and 4.3.13) we can show that

∂Fdx̄+K(ξ,2η)(·) ⊂ {α(−ξ + 2η‖ξ‖BX∗) | α > 0} ∩BX∗

(3.3.26)

Let z∗i = αi(−ξ + 2η‖ξ‖b∗) for some b∗ ∈ BX∗. It follows
from (3.3.25) that

‖x∗i − iαiξ‖ < 2iαi‖ξ‖η + η + 1/i. (3.3.27)

We must have iαi > c/2‖ξ‖(1+2η) for otherwise we would
have ‖x∗i ‖ < c, a contradiction. Now letting λi = 1/iαi and
multiplying (3.3.27) by λi we have

‖λix∗i − ξ‖ < 2η‖ξ‖ + 2η‖ξ‖(1 + 2η)

c
+
2‖ξ‖(1 + 2η)

ic
.

For
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i >
4‖ξ‖(1 + 2η)

cε
,

setting λ = λi, x = xi and x
∗ = x∗i we have

‖λx∗ − ξ‖ < ε.

•

A corresponding approximation can be derived for the nor-
mal cone of f−1(a) when f is a continuous function.
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Theorem 3.3.5. (Representation of Normal Vectors to the
Level Sets) Let X be a Fréchet smooth Banach space
and let f : X → R be a continuous function. Suppose
that lim infx→x̄ d(∂Ff (x) ∪ ∂F (−f )(x), 0) > 0 and ξ ∈
NF (f

−1(a); x̄). Then, for any ε > 0, there exists λ > 0,
(x, f (x)) ∈ Bε((x̄, f (x̄))) and x

∗ ∈ ∂Ff (x) ∪ ∂F (−f )(x)
such that

‖λx∗ − ξ‖ < ε.

Proof. We give a sketch of the proof here and the details
are left as an exercise. As in the proof of Theorem 3.3.4 we
may assume that

lim inf
x→x̄

d(∂Ff (x) ∪ ∂F (−f )(x), 0) > c > 0 (3.3.28)
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and ξ = 0. Note that we must have a = f (x̄). As in the
proof of Theorem 3.3.4, choose η, δ ∈ (0, ε) small enough so
that

〈ξ, h〉 < η‖ξ‖‖h‖, for all x̄ + h ∈ f−1(a) ∩ Bδ(x̄), h = 0,

(3.3.29)

and
inf

x∈Bδ(x̄)
d(∂Ff (x), 0) > c.

Then

[x̄ +K(ξ, η)] ∩ f−1(a) ∩ Bδ(x̄) = {x̄}, (3.3.30)

where K(ξ, η) is the Bishop–Phelps cone defined in Section
2.2.1. We have that either

(a) f (x) ≥ a for all x ∈ [x̄ +K(ξ, η)] ∩Bδ(x̄), or
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(b) f (x) ≤ a for all x ∈ [x̄ +K(ξ, η)] ∩Bδ(x̄).
In fact, suppose on the contrary that there exist x1, x2 ∈
[x̄ +K(ξ, η)] ∩ Bδ(x̄) such that f (x1) > a and f (x2) < a.
Then x1, x2 = x̄. Since f is continuous there exists r ∈ (0, 1)
such that z := rx1 + (1 − r)x2 satisfies f (z) = a. Clearly
z ∈ [x̄+K(ξ, η)] ∩Bδ(x̄), and therefore z = x̄ by (3.3.30).
However, this leads to 0 = r(x1 − x̄) + (1 − r)(x2 − x̄) or
r(x1−x̄) = −(1−r)(x2−x̄) ∈ K(ξ, η)∩ [−K(ξ, η)] = {0},
a contradiction. Define

gi :=

{
f − a + idx̄+K(ξ,2η) in case (a)

−f + a + idx̄+K(ξ,2η) in case (b).

The rest of the proof is similar to that of Theorem 3.3.4. •
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Using Theorems 3.3.4 and 3.3.5 we can also easily derive
the following subdifferential characterizations for the singu-
lar normal vectors of the epigraph or the graph of a function.

Theorem 3.3.6. (Subdifferential Approximation of the
Singular Normal Cone to the Epigraph and Graph of a
Function) Let X be a Fréchet smooth Banach space
and let f : X → R ∪ {+∞} be a lower semicontinu-
ous (resp. continuous) function. Suppose that (x̄∗, 0) ∈
NF (epif ; (x̄, a)) (resp. (x̄∗, 0) ∈ NF (graphf ; (x̄, f (x̄)))).
Then, for any ε > 0, there exist x, x∗ and λ ∈ (0, ε),
such that x∗ ∈ ∂Ff (x) (resp. x

∗ ∈ ∂Ff (x)∪∂F (−f )(x)),
(x, f (x)) ∈ Bε(x̄, f (x̄)) and

‖λx∗ − x̄∗‖ < ε.
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Proof. We sketch the proof for the case of epigraph and
leave the details as an exercise. Without loss of generality,
we may assume that a = f (x̄). Set F (x, t) = f (x) − t.
Then epif = F−1((−∞, 0]). Applying Theorem 3.3.4 to
the function F yields the conclusion. •

3.3.4 Constrained Minimization Problems

Constrained optimization problems provide important mod-
els in many different applications. Finding good first order
necessary conditions for solutions to such problems is a pre-
requisite. For smooth finite dimensional problems the La-
grange multiplier theorem and Karush–Kuhn–Tucker con-
ditions are the canonical results. There is a vast literature
on the generalizations of these “critical point” conditions
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to nonsmooth and infinite dimensional settings. We now
present a form of such necessary conditions in terms of
Fréchet subdifferentials as an application of the local ap-
proximate sum rule which enables us to impose minimal
assumptions on the data: lower semicontinuity for the in-
equality constraints, continuity for the equality constraints
and closedness for the feasible set. We consider the following
minimization problem:

P minimize f0(x)

subject to fn(x) ≤ 0, n = 1, . . . , N,

fn(x) = 0, n = N + 1, . . . ,M,

x ∈ S ⊂ X.
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HereX is a Fréchet smooth Banach space, fn, n = 0, 1, . . . , N
are lsc functions, fn, n = N+1, . . . ,M are continuous func-
tions and S is a closed subset of X .
We will derive necessary optimality conditions for P . Ob-

serve that if x̄ is a solution to the constrained optimization
problem P then it is a local minimum of the following func-
tion

f0 +
N∑
n=1

ι
f−1
n ((−∞,0])

+

M∑
n=N+1

ι
f−1
n (0)

+ ιS.



3.3 Local Sum Rules 215

Applying the weak approximate sum rule of Theorem 3.3.3
yields a necessary condition in terms of the subdifferential
of f0 and the normal cones to the level sets of the fn and
S. Then we relate the normal cones to the level sets of the
functions fn to their subdifferentials by Theorems 3.3.4 and
3.3.5.
To simplify notation we introduce τn = 1 for n = 0, 1, . . . , N

and τn ∈ {−1, 1} for n = N + 1, . . . ,M corresponding, re-
spectively, to inequality and equality constraints.
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Theorem 3.3.7. (Approximate Multiplier Rule) Let X be
a Fréchet smooth Banach space, let S be a closed subset
of X, let fn be lsc for n = 0, 1, . . . , N and fn be contin-
uous for n = N + 1, . . . ,M and let x̄ be a local solution
of P.
Suppose that lim infx→x̄ d(∂Ffn(x), 0) > 0, for n =

1, . . . , N and lim infx→x̄ d(∂Ffn(x)∪ ∂F (−fn)(x), 0) > 0,
for n = N + 1, . . . ,M .
Then, for any positive number ε > 0 and any weak-star

neighborhood U of 0 in X∗, there exist (xn, fn(xn)) ∈
(x̄, fn(x̄))+εBX×R, n = 0, 1, . . . ,M and xM+1 ∈ x̄+εBX
such that for some μn > 0, n = 1, . . . ,M
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0 ∈ ∂Ff0(x0) +
M∑
n=1

μn∂F (τnfn)(xn) +NF (S, xM+1) + U.

Proof. Let V be a weak-star neighborhood of 0 in X∗ and
assume that (M + 1)V ⊂ U . Decreasing ε if necessary we
may assume that for any y ∈ Bε(x̄),

lim inf
x→y

d(∂Ffn(x), 0) > 0,

for n = 1, . . . , N and

lim inf
x→y

d(∂Ffn(x) ∪ ∂F (−fn)(x), 0) > 0,

for n ≥ N + 1.
Observe that x̄ is a local minimum of the following function
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f0 +
N∑
n=1

ι
f−1
n ((−∞,0])

+

M∑
n=N+1

ι
f−1
n (0)

+ ιS.

Since fn, n = 1, . . . , N are lower semicontinuous and fn,
n = N+1, . . . ,M are continuous we can choose η ∈ (0, ε/2)
such that y ∈ Bη(x̄) implies fn(y) > fn(x̄) − ε/2 for
n = 1, . . . , N and fn(y) ∈ (fn(x̄) − ε/2, fn(x̄) + ε/2) for
n = N + 1, . . . ,M . By the weak approximate sum rule
of Theorem 3.3.3 there exist (x0, f0(x0)) ∈ Bη((x̄, f0(x̄))),
xM+1 ∈ Bη(x̄) ∩ S, yn ∈ Bη(x̄), n = 1, . . . ,M with
|ι
f−1
n ((−∞,fn(x̄)])

(yn)−ιf−1
n ((−∞,fn(x̄)])

(x̄)| < η, n = 1, . . . ,M

and |ι
f−1
n (0)

(yn)− ιf−1
n (0)

(x̄)| < η, n = N +1, . . . ,M , (and

therefore (yn, fn(yn)) ∈ Bε/2((x̄, fn(x̄))) ), x
∗
0 ∈ ∂Ff (x0),
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x∗M+1 ∈ NF (C; xM+1), y
∗
n ∈ NF (f

−1
n ((−∞, fn(x̄)]); yn)

for n = 1, . . . , N and y∗n ∈ NF (f
−1
n (0); yn) for n =

N + 1, . . . ,M such that

0 ∈ x∗0 +
M∑
n=1

y∗n + x∗M+1 + V. (3.3.31)

Theorems 3.3.4 and 3.3.5 imply that there exist

(xn, fn(xn)) ∈ Bε/2((yn, fn(yn))) ⊂ Bε((x̄, fn(x̄))),

μn > 0 and x∗n ∈ ∂Ffn(xn) (x
∗
n ∈ ∂Ffn(xn)∪∂F (−fn)(xn))

for n = 1, . . . , N (n = N + 1, . . . ,M ) such that

y∗n ∈ μnx
∗
n + V. (3.3.32)

Combining (3.3.31) and (3.3.32) completes the proof. •
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Conditions lim infx→x̄ d(∂Ffn(x), 0) > 0, for n = 1, . . . , N
and

lim inf
x→x̄

d(∂Ffn(x) ∪ ∂F (−fn)(x), 0) > 0,

for n = N +1, . . . ,M serve as “constraint qualifications” to
force the coefficient μ0 of ∂Ff0 to be one. However, since our
necessary conditions are in an approximate form they are less
stringent than the usual constraint qualifications such as the
Mangasarian–Fromovitz condition. These conditions are not
necessary if we do not insist μ0 to be nonzero. Indeed, if the
above condition fails for one of the fn’s then we can assign
the multiplier corresponding to that fn to be 1 and the rest
of the multipliers to be 0. Thus, the following form of the
multiplier rule holds without any constraint qualification.
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Theorem 3.3.8. (Weak Approximate Multiplier Rule) Let
X be a Fréchet smooth Banach space, let S be a closed
subset of X, let fn be lsc for n = 0, 1, . . . , N and let fn
be continuous for n = N +1, . . . ,M . Assume that x̄ is a
local solution of P. Then, for any positive number ε > 0
and any weak-star neighborhood U of 0 in X∗, there exist
(xn, fn(xn)) ∈ (x̄, fn(x̄)) + εBX×R, n = 0, 1, . . . ,M and
xM+1 ∈ x̄ + εBX such that

0 ∈
M∑
n=0

μn∂F (τnfn)(xn) +NF (S, xM+1) + U

where μn ≥ 0, n = 0, 1, . . . ,M and
∑M
n=0 μn = 1.

Proof. Exercise 3.3.16. •
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WhenX is a finite dimensional space and fn, n = 0, . . . ,M
are C1 functions and S = X we can recover the Fritz John
condition from the weak approximate multiplier rule by tak-
ing limits.

Theorem 3.3.9. (Fritz John Condition) Let X be a fi-
nite dimensional Banach space, let S = X, let fn be C1

functions for n = 0, 1, . . . ,M . Assume that x̄ is a local
solution of P. Then,

0 ∈
M∑
n=0

μnτnf
′
n(x̄).

where μn ≥ 0, n = 0, 1, . . . ,M and
∑M
n=0 μn = 1. More-

over, μnfn(x̄) = 0 for n = 1, . . . , N .
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Proof. Exercise 3.3.17 •

3.3.5 Sensitivity Analysis

In almost all practical problems, inaccuracies occur in both
the modeling of a problem and collecting data for a given
mathematical model. Thus, it is important to be able to
gauge the influence of such inaccuracies on the outcome of
the underlying mathematical model. This is often referred to
as sensitivity analysis. The basic pattern is well illustrated
by the following example.
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Example 3.3.10. Consider the optimization problem Pa
of minimizing f (x) subject to h(x) = a and define the
optimal value or marginal function v(a) := inf{f (x) :
h(x) = a}. Then it is not hard to see that, for any x,
v(h(x)) ≤ f (x). On the other hand, if x̄ is a solution to
P0 then v(h(x̄)) = f (x̄). Thus, x̄ is a minimum point for
the function,

x→ f (x)− v(h(x)).

Assuming all the functions involved are smooth then

f ′(x̄)− v′(0)h′(x̄) = 0.

In other words, −v′(0) is a Lagrange multiplier (shadow
price) of the problem P0.
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We have seen that v is rarely a smooth function. There-
fore, the above argument will not apply in general. Never-
theless the general pattern does persist and it turns out that
the Fréchet subdifferential provides a convenient language
to describe it.
Consider the following family of constrained minimization

problems without the set constraint.

Pa minimize f0(x)

subject to fn(x) ≤ an, n = 1, . . . ,M,

fn(x) = an, n =M + 1, . . . , N.

We denote a = (a1, . . . , aN ) and the infimum of f0 over the
feasible set of Pa by v(a).
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Motivated by Theorem 3.3.7 we define the multiplier set
of problem Pa as follows.
Definition 3.3.11. Let ε be a positive number and let
U be a weak-star neighborhood of 0 in X∗. We say ν =
(ν1, . . . , νN ) is a multiplier of problem Pb corresponding
to (x̄, ε, U) if νn, n = 1, . . . , N are not all 0, τnνn ≥ 0
and there exist (xn, fn(xn)) ∈ (x̄, fn(x̄)) + εBX×R, n =
0, 1, . . . , N such that

0 ∈ ∂Ff0(x0) +
N∑
n=1

τnνn∂F (τnfn)(xn) + U.

We denote the set of all such multipliers by Mε,U(x̄).
Here τn are as in Theorem 3.3.7.
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Theorem 3.3.12. (Sensitivity) Let xa be a solution to
problem Pa. Then, for any ε > 0 and any weak-star
neighborhood U of 0 in X∗,

−∂Fv(a) ⊂Mε,U (xa) + εB
RN
.

Proof. There is nothing to prove if ∂Fv(a) = ∅. Let λ ∈
−∂Fv(a) = ∅. Then there exists a Fréchet smooth function g
such that v + g attains a local minimum 0 at a and g′(a) =
λ. Note that for any x satisfying the constraint, fn(x) ≤
bn, n = 1, . . . ,M and fn(x) = bn, n = M + 1, . . . , N , we
have f0(x) ≥ v(b) so that

f0(x) + g(b) ≥ v(b) + g(b) ≥ v(a) + g(a) = f0(xa) + g(a).

Thus, (xa, a) is a solution to the minimization problem
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minimize f0(x) + g(b)

subject to fn(x)− bn ≤ 0, n = 1, . . . ,M,

fn(x)− bn = 0, n =M + 1, . . . , N.

Choose ε′ > 0 smaller than ε/2 such that a′ ∈ ε′B
RN

implies that ‖g′(a′)− g′(a)‖ < ε/2. Note that U × ε′B
RN

is a weak-star neighborhood inX∗×R
N . By Theorem 3.3.7,

there exists xn ∈ xa+ε
′BX ⊂ xa+εBX and a′ ∈ a+ε′B

RN

such that

0 ∈ ∂Ff0(x0)× {g′(a′)} +
N∑
n=1

νn[∂F (τnfn)(xn)× (−τnen)]

+ U × ε′B
RN
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where {en, n = 1, . . . , N} is the standard basis of RN . We
can rewrite this relation as

0 ∈ ∂Ff0(x0) +

N∑
n=1

νn∂F (τnfn)(xn) + U

and
0 ∈ g′(a′)− ν + ε′BRN.

That is λ ∈Mε,U(xa) + εBRN . •

3.3.6 Constraint Qualifications

If in a multiplier μ = (μ0, . . . , μN ) for the necessary condi-
tions of Theorem 3.3.8, μ0 is zero or can be arbitrarily close
to zero, then this multiplier is detached from the cost func-
tion f0, and therefore does not provide useful information.
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We call such multipliers degenerate. Thus, it is important
to find conditions ensuring the existence of nondegenerate
multipliers in the necessary conditions. These conditions are
called constraint qualifications. We will illustrate the ideas
in finite dimensional spaces.
In general, there are two different types of constraint qual-

ifications. The first makes μ0 near 0 impossible in Theorem
3.3.8; or all μn’s uniformly bounded in Theorem 3.3.7.
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The following is a natural qualification.

(CQ1) There exist constants η, c > 0 such that, for any
ε ∈ (0, η) and

(xn, fn(xn)) ∈ (x̄, fn(x̄))+εBX×R, n = 0, 1, . . . , N

and xN+1 ∈ Bε(x̄) such that

d
(
0,

N∑
n=1

μn∂F (τnfn)(xn) +NF (S, xN+1)
)
≥ c

where τn = 1 for n = 1, . . . ,M and τn ∈ {−1, 1}
for n = M + 1, . . . , N , μn ≥ 0, n = 1, . . . , N and∑N
n=1 μn = 1.
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With this constraint qualification we have the following
generalization of the Karush–Kuhn–Tucker necessary condi-
tions.

Theorem 3.3.13.Let X be a finite dimensional Banach
space, let S be a closed subset of X, let fn be lsc for
n = 0, 1, . . . ,M and let fn be continuous for n = M +
1, . . . , N . Assume that x̄ is a local solution of P and
suppose (CQ1) holds. Then, for any positive number ε >
0, there exist (xn, fn(xn)) ∈ (x̄, fn(x̄)) + εBX×R, n =
0, 1, . . . , N and xN+1 ∈ x̄+ εBX and a positive constant
K such that for some μn ∈ [0,K]

0 ∈ ∂Ff0(x0)+
N∑
n=1

μn∂F (τnfn)(xn)+NF (S, xN+1)+εBX∗.
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Proof. Without loss of generality we may assume that ε <
c/2. If there exists (x0, f0(x0)) ∈ (x̄, fn(x̄)) + εBX×R such
that d(∂Ff0(x0), 0) < ε then we need only to take μ0 = 1
and μn = 0 for n = 1, . . . , N . Otherwise, applying Theo-
rem 3.3.8 we have (xn, fn(xn)) ∈ (x̄, fn(x̄))+ εBX×R, n =
0, 1, . . . , N and xN+1 ∈ x̄ + εBX such that

0 ∈
N∑
n=0

λn∂F (τnfn)(xn) +NF (S, xN+1) + (ε/2)BX∗,

(3.3.33)

where λn ≥ 0 and
∑N
n=0 λn = 1. We claim that λ0 ≥ 1/2.

In fact, if λ0 < 1/2 then, by (CQ1) we have

λ0ε/2 ≥ λ0d(∂Ff0(x0), 0) = d(λ0∂Ff0(x0), 0) ≥ (1−λ0)c−ε/2
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This exceeds ε/2, a contradiction. It remains to multiply
(3.3.33) by 1/λ0 and let μn = λn/λ0, n = 1, . . . , N and
K = 2. •

For problems with smooth data and without the set con-
straint, the constraint qualification (CQ1) becomes the fol-
lowing Mangasarian–Fromovitz condition.

(MF) The derivatives f ′n(x̄), n = 1, . . . , N are linearly inde-
pendent.
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Theorem 3.3.14. (Karush–Kuhn–Tucker Conditions) Let
X be a finite dimensional Banach space, let S = X and
let fn be C1 functions for n = 0, . . . , N . Assume that
x̄ is a local solution of P and suppose the constraint
qualification condition (MF) holds at x̄. Then,

0 ∈ f ′0(x̄) +
N∑
n=1

μnτnf
′
n(x̄),

where μn ≥ 0 are not all zero and τn are as in (CQ1).

Proof. Exercise 3.3.19. •
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In Theorem 3.3.14, the assumption that fn, n = 0, . . . , N
are C1 cannot be replaced by the assumption that they are
Fréchet differentiable at x̄. A counterexample is given in
Exercise 3.3.20.
The second type of constraint qualification condition di-

rectly ensures the existence of a multiplier such that μ0 is
bounded away from 0 for Theorem 3.3.8, or the μn’s are all
bounded for Theorem 3.3.7. To state such a condition let
us consider the following perturbation of problem P where
a = (a1, . . . , aN ).
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Pa minimize f0(x)

subject to fn(x) ≤ an, n = 1, . . . ,M,

fn(x) = an, n =M + 1, . . . , N,

x ∈ S ⊂ X.

We denote the infimum of f0 over the feasible set of Pa by
v(a). Now we can state our second constraint qualification
condition, which is often referred to as the calmness condi-
tion.

(CQ2) ∂Fv(0) = ∅.
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Theorem 3.3.15.Let X be a finite dimensional Banach
space, let S be a closed subset of X, let fn be lsc for
n = 0, 1, . . . ,M and let fn be continuous for n = M +
1, . . . , N . Assume that x̄ is a local solution of P and
suppose (CQ2) holds. Then, for any positive number ε >
0, there exist (xn, fn(xn)) ∈ (x̄, fn(x̄)) + εBX×R, n =
0, 1, . . . , N and xN+1 ∈ x̄+ εBX and a positive constant
K such that

0 ∈ ∂Ff0(x0) +
N∑
n=1

μn∂F (τnfn)(xn) +NF (S, xN+1) + εBX∗

where μn ∈ [0,K].

Proof. Suppose that p ∈ ∂Fv(0) = ∅. Then there exists a
C1 function g on RN with g′(0) = p such that v−g attains
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a local minimum at a = 0. It follows that (x̄, 0) is a solution
of the following minimization problem on space X × R

N

minimize f0(x)− g(a)

subject to fn(x)− an ≤ 0, n = 1, . . . ,M,

fn(x)− an = 0, n =M + 1, . . . , N,

(x, a) ∈ S × R
N.

Choose η < min(1, ε/2) such that ‖a′‖ < η implies
that ‖g′(a′) − p‖ < 1. Applying Theorem 3.3.7 we have
a0 ∈ ηB

RN
, (xn, fn(xn)) ∈ (x̄, fn(x̄)) + ηBX×R, n =

0, 1, . . . , N , xN+1 ∈ x̄ + ηBX and μn ≥ 0, n = 1, . . . , N
such that
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0 ∈ (∂Ff0(x0), g
′(a0)) +

N∑
n=1

μn(∂F (τnfn)(xn),−en)

+NF (S, xN+1)× {0
RN

} + ηBX∗×RN
, (3.3.34)

Now the first component of (3.3.34) provides the necessary
condition and the second component of (3.3.34) shows that
μn ≤ K := ‖p‖ + 1. •

3.3.7 Constrained Optimization and Inequalities

Necessary optimality conditions for constrained optimiza-
tion problems are often effective tools for discovering and
proving inequalities. We illustrate by proving the following
inequality.
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Theorem 3.3.16. Let xn ∈ R, n = 1, . . . , N satisfy∑N
n=1 xn ≥ 0. Then

N∑
n=1

xne
xn ≥ 2

N

N∑
n=1

x2n.

Proof. The strategy is to consider the constrained mini-
mization problem of minimizing

∑N
n=1 xne

xn− 2
N

∑N
n=1 x

2
n,

subject to the constraint
∑N
n=1 xn ≥ 0 and show that the

minimum is nonnegative.
First we show that the minimum is attained. For x =

(x1, . . . , xN ) ∈ R
N we denote the p norm of x by

‖x‖p :=
( N∑
n=1

|xn|p
)1/p

.
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We will also use the notation x+ := (x+1 , . . . , x
+
N ) and

x− := (x−1 , . . . , x
−
N ) where, for any t ∈ R, t+ := max(0, t)

and t− := max(0,−t). It is not hard to check ‖x‖2 ≤
‖x‖1, for any x ∈ R

N . Moreover, for x ∈ R
N satisfying∑N

n=1 xn ≥ 0 we have ‖x‖1 ≤ 2‖x+‖1 (Exercise 3.3.25).

For x = (x1, . . . , xN ) ∈ R
N , define

f (x) :=
N∑
n=1

xne
xn − 2

N

N∑
n=1

x2n.

Since ψ(t) = tet is convex on [0,∞) and te−t ≤ 1/e for all
t ∈ [0,∞) (Exercise 3.3.26), we have
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f (x)=
N∑
n=1

x+ne
x+n −

N∑
n=1

x−n e
−x−n − 2

N

N∑
n=1

x2n

≥Nψ
( 1

N

N∑
n=1

x+ne
x+n

)
− N

e
− 2

N
‖x‖22

≥Nψ
( 1

N
‖x+‖1

)
− N

e
− 2

N
‖x‖21

≥‖x+‖1 exp
( 1

N
‖x+‖1

)
− N

e
− 8

N
‖x+‖21.

Thus, for x ∈ {x ∈ R
N |

∑N
n=1 xn ≥ 0} as ‖x‖1 → ∞ we

have f (x) → ∞. It follows that the set
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{x ∈ R
N | f (x) ≤ c,

N∑
n=1

xn ≥ 0}

is compact.
Therefore, the constrained minimization problem

minimize f (x)

subject to −
N∑
n=1

xn ≤ 0,

has a solution, say x̄. Applying the Karush–Kuhn–Tucker
necessary optimality condition in Theorem 3.3.14 to the
above minimization problem we have that there exists a
μ ≥ 0 such that, for n = 1, . . . , N ,
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(x̄n + 1)ex̄n − 4

N
x̄n = μ, (3.3.35)

where moreover μ = 0 if
∑N
n=1 x̄n = 0. This condition

is satisfied when x̄ = 0; then f (x̄) = 0. From now on we
assume that x̄ = 0 which implies that x̄ has at least one
strictly positive component.
Consider the function g(t) = (t + 1)et − 4t/N . We can

check that g has a unique critical point t̄ ∈ (−2, 0] and is
strictly decreasing to the left of t̄ and strictly increasing to
the right of t̄ (see Exercise 3.3.27).
Thus, equation (3.3.35) has at most two solutions. There-

fore, the components of x̄ can achieve at most only two
different values. Since x̄ = 0 and

∑N
n=1 x̄n ≥ 0, the compo-

nents of x̄ take exactly two values, one positive and the other
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negative. Now suppose there areM positive components all
equal to a and N −M negative components all equal to b
with 1 ≤M ≤ N−1. Moreover, one can directly check that
forN ≥ 2 and t ≥ 0 we have g(−t) ≤ g(t) (Exercise 3.3.27).
This implies that |b| ≥ a, and so we can write b = −sa with
some s > 1. Also the conditionMa+(N−M )b ≥ 0 implies
(N −M )s ≤M , which in turn implies that s ≤ N − 1.
Thus, we have

f (x̄)=Maea − (N −M )sae−sa − 2

N
(Ma2 + (N −M )s2a2)

≤Maea −Mae−sa − 2

N
(Ma2 +Msa2)

≤Ma2(1 + s)
(ea − e−sa

a(1 + s)
− 2

N

)
≥ 0
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because, for all a > 0 and s ∈ (1, N − 1],

ea − e−sa

a(1 + s)
≥ ea − e−a

a(1 + s)
≥ 2

(1 + s)
≥ 2

N
.

•

Necessary optimality conditions can be used to derive
many other inequalities. Some examples are given in Ex-
ercises 3.3.28, 3.3.29 and 3.3.30.
3.3.8 Commentary and Exercises

The prototype of the local approximate sum rules appeared
in Ioffe [143]. Generalizations and refinements can be found
in [48, 68, 108, 146, 148, 170, 209]. Limiting forms of the
subdifferential sum rule in finite dimensional spaces are dis-
cussed in Section 5.2 along with counterexamples showing
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that they fail in infinite dimensional spaces without addi-
tional assumptions. The two approximate sum rules in this
section are taken from [68]. Theorem 3.3.1 fails without con-
dition (3.3.2) (see examples in Exercises 3.3.11 and 3.3.12).
On the other hand, condition (3.3.2) is not tight either
(study the example in Exercise 3.3.10). A version of The-
orem 3.3.1 with a condition weaker than (3.3.2) is discussed
in [170], where one may also find additional examples. Con-
dition (3.3.2) has the drawback that it is not stable in terms
of adding new “nice” functions. An example is given in Ex-
ercise 3.3.4. In this respect the stronger sequential uniform
lower semicontinuity condition introduced in [48, 148] is
more convenient (see Exercises 3.3.5–3.3.9).
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The approximate sum rule is particularly useful in dis-
cussing necessary optimality conditions for constrained min-
imization problems. It allows us to use penalization functions
involving indicator functions [251] and make the proof of the
necessary condition simple and natural. Theorem 3.3.7 was
proved in Borwein, Treiman and Zhu [63] for problems in
reflexive Banach spaces and generalized in [213, 276]. Lim-
iting forms of these necessary optimality conditions can be
derived by taking limits of the approximate form. An ex-
ample is Theorem 5.2.25 in Section 5.2. This result is quite
general in that it allows lsc inequality constraints and con-
tinuous equality constraints. Some more general constraints
such as general equilibrium constraints [189, 214] and varia-
tional inequality constraints [268] can be conveniently con-
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verted to the equality and inequality constraints in P . Such
conversions are discussed in [276] and the essence is given
in guided Exercises 3.3.24 and 3.3.23. The history of these
kinds of necessary conditions can be traced back to La-
grange, whose original work led to the Fritz John [155] and
the Karush–Kuhn–Tucker [158, 168] conditions for smooth
problems with equality and inequality constraints. General-
izations to nonsmooth problems with set constraints were de-
veloped with the advance of nonsmooth analysis; related lit-
erature can be found in [84, 144, 185, 198, 223, 229, 265, 266].
Research in sensitivity analysis for nonsmooth mathemat-

ical programming problems can be found in [9, 84, 123, 124,
201, 236, 262]. A variational argument naturally reduces
the discussion of the sensitivity to an appropriate necessary
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condition for the corresponding optimization problem. Note
that to calculate the value of v(a) one has to solve an op-
timization problem which usually is costly. By contrast the
multiplier set is defined through the original data and is eas-
ier to get hold of. Hence, Theorem 3.3.12 provides a useful
estimate for the value function v (see Exercise 3.3.18 for an
example).
Constraint qualification condition (CQ1) can be viewed as

a nonsmooth version of the Mangasarian–Fromovitz condi-
tion (MF) [190, 268] while (CQ2) is the calmness condi-
tion [84] stated in terms of the Fréchet subdifferential of the
optimal value function. Note that, unlike (CQ1), condition
(CQ2) does not exclude the possibility of existing degener-
ate multipliers and is therefore more interesting. However,
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this condition is in terms of the optimal value function for
a perturbed problem rather than the data of the original
problem and is harder to verify.
The inequality in Theorem 3.3.16 is from [47] where one

can find the more accurate inequality with the constant 2/N
improved to CN/N where CN = max{2, e(1− 1/N )}.
Exercise 3.3.1. Prove that

N∑
n=1

fn(x̄) ≤
∧

[f1, . . . , fN ](Bh(x̄))

if and only if, for any r ≤ h,

N∑
n=1

fn(x̄) =
∧

[f1, . . . , fN ](Br(x̄))
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Exercise 3.3.2. Prove Proposition 3.3.2 and show that
condition (i) or (ii) in Proposition 3.3.2 cannot be dispensed
with.

Exercise 3.3.3. Show that in Theorem 3.3.1, if any fn is
a C1 function then we can replace x∗n by f ′n(x̄).
Exercise 3.3.4.DefineA := {0}∪{1/i | i = ±1,±2, · · · },
f1(x) := ιA(x) and f2(x) := x. Verify that, for any h > 0,
f1(0) ≤

∧
[f1]([−h, h]) yet

2∑
n=0

fn(0) >
∧

[f1, f2]([−h, h]).

∗Exercise 3.3.5. (Sequential Uniform Lower Semicontinu-
ity Condition)
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Definition 3.3.17. Let X be a Banach space, let
f1, . . . , fN : X → R ∪ {+∞} be lsc functions and let

x̄ ∈
⋂N
n=1 domfn. We say that (f1, . . . , fN ) is sequentially

uniformly lower semicontinuous at x̄ if there exists h > 0
such that for any sequences (xn,i), n = 1, . . . , N belong-
ing to Bh(x̄) and such that limi→∞ diam(x1,i, . . . , xN,i) =
0, there is a sequence (ui) in Bh(x̄) such that, for all
n = 1, . . . , N , limi→∞‖xn,i − ui‖ = 0 and

lim inf
i→∞

N∑
n=1

(fn(xn,i)− fn(ui)) ≥ 0.

(i) Show that if (f1, . . . , fN ) is sequentially uniformly lower

semicontinuous at x̄ and x̄ is a local minimum of
∑N
n=1 fn,

then condition (3.3.2) holds.
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(ii) Construct two functions f1, f2 such that (f1, f2) is not
sequentially uniformly lower semicontinuous at a point
x̄ yet they satisfy condition (3.3.2). Reference: [71, Ex-
ample 2.10].

(iii) Suppose that f0 is uniformly continuous in a neigh-
borhood of x̄. Prove that if (f1, . . . , fN ) is sequen-
tially uniformly lower semicontinuous at x̄ then so is
(f0, f1, . . . , fN ).

Exercise 3.3.6. Prove the following sufficient conditions
for sequential uniform lower semicontinuity.

Proposition 3.3.18. Let fn : X → R ∪ {+∞} , n =

1, . . . , N be lsc functions and let x̄ ∈
⋂N
n=1 domfn. Then
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(f1, . . . , fN ) is sequentially uniformly lower semicontin-

uous at x̄ if x̄ is a local minimum of
∑N
n=1 fn and either

(i) all but one of fn are uniformly continuous in a neigh-
borhood of x̄, or

(ii) at least one of fn has compact lower level sets in a
neighborhood of x̄.

Exercise 3.3.7. (Sequential Weak Lower Semicontinuity)
We say a function f : X → R∪{+∞} is sequentially weak
lower semicontinuous (w-lsc) at x̄ if for any sequence (xi)
weak convergent to x̄, lim infi→∞ f (xi) ≥ f (x̄). Show that
if f is a convex function and is lsc at x̄, then it is w-lsc at x̄.
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Exercise 3.3.8.Prove that if f1, . . . , fN are functions in a
reflexive Banach space and are w-lsc at x̄ then (f1, . . . , fN )
is sequentially uniformly lower semicontinuous at x̄.

Exercise 3.3.9. Prove the following general form of the
strong local approximate sum rule.

Theorem 3.3.19. Let X be a Fréchet smooth Banach
space and let f1, . . . , fN : X → R ∪ {+∞} be lsc func-

tions. Let x̄ ∈
⋂N
n=1 domfn and suppose that (f1, . . . , fN )

is sequentially uniformly lower semicontinuous at x̄ and
x∗ ∈ ∂F (

∑N
n=1 fn)(x̄). Then, for any ε > 0, there exist

xn and x∗n ∈ ∂Ffn(xn), n = 1, . . . , N satisfying

diam(x1, . . . , xN )×max(1, ‖x∗1‖, . . . , ‖x∗N‖) < ε,

(3.3.36)
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and

(xn, fn(xn)) ∈ Bε((x̄, fn(x̄))) (3.3.37)

such that ∥∥∥x∗ − N∑
n=1

x∗n
∥∥∥ < ε. (3.3.38)

Exercise 3.3.10.LetX := �2 and let {ei} be the standard
basis. Define

f1(x) :=

⎧⎪⎨⎪⎩
0 if x = 0,

−1/j if x = ei/j,

∞ otherwise,

and
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f2(x) :=

⎧⎪⎨⎪⎩
0 if x = 0,

−1/j if x = (ei + e1/i)/j,

∞ otherwise,

where i, j = 1, . . . . Verify that for x̄ = 0, fn, n = 1, 2 do
not satisfy condition (3.3.2) yet the conclusion of Theorem
3.3.1 holds. Reference: [274].

∗Exercise 3.3.11.LetX := �2 and let {ei} be the standard
basis. Then x ∈ X can be uniquely represented as x =∑∞
i=1 xiei. Moreover, xi → 0 as i → ∞ and so ‖x‖∞ :=

max{|xi| | 1 ≤ i < ∞} exists. Define Fj := {x | ‖x‖ ≤
3, xi ≥ 0 and xi = 0 if i mod 3 = 0 or i < 3j}. Now we
construct two functions
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f1(x) :=

⎧⎪⎪⎨⎪⎪⎩
0 if x = 0,

− 1√
n
− ‖y‖∞ if x = 1

je3j−1 + y, y ∈ Fj,

+∞ otherwise,

and

f2(x) :=

⎧⎪⎪⎨⎪⎪⎩
0 if x = 0,

− 1√
j
− ‖y‖∞ if x = 1

je3j−2 + y, y ∈ Fj,

+∞ otherwise.

Prove that f1 and f2 are lsc functions and f1 + f2 attains
a minimum at x = 0. Yet, for any ‖xn‖ ≤ 1 and x∗n ∈
∂Ffn(xn), n = 1, 2, ‖x∗1 + x∗2‖ ≥ 1. Reference: [255].

∗Exercise 3.3.12. Let X := �2 and let {ei}, i = 1, 2, . . . ,
be the standard basis. Denote Y := {x ∈ X | 〈e1, x〉 = 0}.
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(i) Construct a sequence of even functions αi : R → R, i =

2, 3, . . . , with support in [−(i− 1)−1/2,−(i+1)−1/2]∪
[(i + 1)−1/2, (i − 1)−1/2] for i ≥ 3 and with support
(−∞,−1] ∪ [1,+∞) for α2 such that, for each t = 0,
there exists i ≥ 2 with αi(t) > 1 and such that for each

t and each n, αi(t) ∈ [0, 2] and αi(i
−1/2) = 2.

(ii) Define

f (x) := −
∞∑
i=2

αi(x1)xi − |x1|,

where xi = 〈x, ei〉. Show that f is continuous.
(iii) Show that f is C1 on X\Y and for any x ∈ X\Y ,

‖f ′(x)‖Y ∗ ≥ 1.
(iv) Show that for any x ∈ Y , ∂Ff (x) = ∅.



262 3 Subdifferential Theory

(v) Verify that the strong fuzzy sum rule fails for f1 := f
and f2 := ιY at any x ∈ Y (reference [100]).

Exercise 3.3.13.Consider the problem of minimizing f (x)
subject to x ∈ C where C is a closed nonempty subset of a
Fréchet smooth Banach space X . Use appropriate subdiffer-
ential sum rules to derive necessary conditions for a solution
x̄ of this problem in terms of the Fréchet subdifferential of
f and the Fréchet normal cone of C for the following three
cases: (i) f is C1, (ii) f is Lipschitz and (iii) f is lsc.

Exercise 3.3.14. Prove inclusion 3.3.26.

Exercise 3.3.15.Provide details for the proof of Theorem
3.3.5.

Exercise 3.3.16. Prove Theorem 3.3.8.
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Exercise 3.3.17. Prove Theorem 3.3.9. Hint: Take limits
in Theorem 3.3.8. The conditions μnfn(x̄) = 0 for n =
1, . . . , N follow from the fact that if fn(x̄) < 0 then the
corresponding constraint is not binding and can be taken
away so that one can let μn = 0.

Exercise 3.3.18. Consider the optimal value

v(a) := inf{f (x) : g(x) = a}
as a function of a, where f (x) := 1 − cosx and g(x) :=
sin(6x) − 3x and a ∈ [−π/2, π/2] which corresponds to
x ∈ [−π/6, π/6].
(i) Use Theorem 3.3.12 to show that

∂Fv(a) ⊂ {λ : f ′(x)− λg′(x) = 0, g(x) = a}.
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(ii) Show that v is a C1 function in the three open intervals
(−π/2, π/6 −

√
3/2), (π/6 −

√
3/2,

√
3/2 − π/6) and

(
√
3/2− π/6, π).

Exercise 3.3.19. Prove Theorem 3.3.14. Hint: Use condi-
tion (MF) to show that μ0 > 0 (and therefore can be scaled
to 1) in Theorem 3.3.9.

Exercise 3.3.20. (Nonexistence of Multipliers [118]) De-
fine the sign function sgn : R → R by

sgn(x) =

⎧⎪⎨⎪⎩
1 if x > 0,

0 if x = 0,

−1 if x < 0.
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Consider functions f (x, y) := x and h(x, y) := y−sgn(y)(x+)2.
Show that h is Fréchet differentiable at (0, 0) with h′(0, 0) =
(0, 1) and (0, 0) is an optimal solution for the problem

minimize f (x, y)

subject to h(x, y) = 0

yet the Karush–Kuhn–Tucker condition is not satisfied at
(0, 0).

Exercise 3.3.21. Find conditions in terms of fn and S
that ensure that the optimal value function v(a) is lsc.

Exercise 3.3.22.Give an example of a minimization prob-
lem that satisfies (CQ2) but not (CQ1).



266 3 Subdifferential Theory

∗Exercise 3.3.23. Derive necessary optimality conditions
for the following optimization problems in finite dimensional
Banach spaces:

(i) (Multifunction Constraint)

minimize f (x)

subject to 0 ∈ F (x).

Here f : X → R∪{+∞} is a lsc function and F : X →
2Y is a closed multifunction.

(ii) (Variational Inequality Constraints)

minimize f (x)

subject to 〈h(x), y − x〉 ≥ 0, for all y ∈ C

x ∈ C.
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Here f : X → R∪{+∞} is a lsc function, h : X → R
N

is a continuous function and C is a closed convex subset
of X .

Hint: Convert the constraint to 0 ∈ h(x) +NF (C; x). Ref-
erence: [276].

∗Exercise 3.3.24.Consider a general model of optimization
problems with equilibrium constraints.

MPEC minimize f0(x)

subject to 0 ∈ h(x) + F (g(x)),

x ∈ S,

where f0 : X → R∪{+∞} is a lower semicontinuous func-
tion, S is a closed subset of X , h : X → R

N−M and
g : X → R

M are continuous functions and F : RM →
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2R
N−M

is a multifunction with a closed graph. Derive a nec-
essary optimality condition by converting problem MPEC
to a problem with the form of P . Hint: Denote the compo-
nents of g and h by g = (f1, . . . , fM ) and h = (fM+1, . . . , fN )
and show that if x̄ is a solution to problem MPEC then
(x̄, g(x̄),−h(x̄)) is a solution to the following optimization
problem.

AP minimize f0(x)

subject to fn(x)− un = 0, n = 1, . . . ,M,

fn(x) + un = 0, n =M + 1, . . . , N,

(x, u) ∈ X × graphF.

Reference: [276].

Exercise 3.3.25. Let x ∈ R
N .
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(i) Show that ‖x‖2 ≤ ‖x‖1.
(ii) Show that if

∑N
n=1 xn ≥ 0, then ‖x‖1 ≤ 2‖x+‖1.

Exercise 3.3.26. Show that

(i) ψ(t) = tet is convex on [0,∞); and
(ii) te−t ≤ 1/e for all t ∈ [0,∞).

Exercise 3.3.27. Let g(t) = (t+1)et− 4t/N , where N ≥
2.

(i) Show that g has a unique critical point t̄ ∈ (−2, 0] and is
strictly decreasing to the left of t̄ and strictly increasing
to the right of t̄.

(ii) Show that for any t ≥ 0, g(−t) ≤ g(t).
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Exercise 3.3.28. (Largest Eigenvalue [56, p. 162]) Let A
be an N × N symmetric matrix. Use the Karush–Kuhn–
Tucker necessary optimality conditions to calculate

max{〈x,Ax〉 | ‖x‖ = 1, x ∈ R
N}.
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∗Exercise 3.3.29. (Largest Eigenvalue [139, p. 135]) Let A
be an M ×N matrix. Consider the optimization problem

α = sup{〈x,Ay〉 | ‖x‖2 = 1, ‖y‖2 = 1, x ∈ R
M, y ∈ R

N}.
(3.3.39)

and the matrix

Ã =

[
0 A

A� 0

]
.

Here A� is the transpose of A.

(i) If μ is an eigenvalue of Ã, prove −μ is also.
(ii) If μ is an eigenvalue of Ã, use a corresponding eigenvec-

tor to construct a feasible solution to problem (3.3.39)
with objective value μ.

(iii) Prove problem (3.3.39) has an optimal solution.
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(iv) Use the Karush–Kuhn–Tucker necessary optimality con-
ditions to prove any optimal solution to problem (3.3.39)
corresponds to an eigenvector of Ã.

(v) (Jordan [156]) Deduce α is the largest eigenvalue of Ã
(This number is called largest singular value of A.)

Exercise 3.3.30. (Hadamard’s Inequality [132]) Let
(x1, . . . , xN ) be an N×N matrix with columns x1, . . . , xN

in R
N . Prove (x̄1, . . . , x̄N ) solves the problem

minimize − det(x1, . . . , xN )

subject to ‖xn‖2 = 1 for xn ∈ R
N, n = 1, . . . , N

if and only if det(x̄1, . . . , x̄N ) = 1 and x̄1, . . . , x̄N forming
an orthonormal basis of RN . Deduce the inequality

det(x1, . . . , xN ) ≤ ΠN
n=1‖xn‖.
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3.4 Approximate Mean Value Theorems and Applications

The mean value theorems are fundamental results in calcu-
lus. They have numerous applications. The proofs of mean
value theorems are classical examples of variational argu-
ments. This section is devoted to the discussion of mean
value theorems, their generalizations to nonsmooth functions
and applications.
3.4.1 Mean Value Theorems

We start with Rolle’s Theorem which illustrates the pattern
and provides a foundation for developing other more general
mean value theorems.
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Theorem 3.4.1. (Rolle’s Mean Value Theorem) Let f : R →
R be a function and let a < b be two real numbers. Sup-
pose that f is continuous on [a, b], differentiable on (a, b)
and f (a) = f (b). Then there exists a point c ∈ (a, b) such
that f ′(c) = 0.

Proof. We consider the nontrivial case when f is not a
constant on [a, b]. Since f is continuous on [a, b], f or −f
attains its minimum at some point c ∈ (a, b). Thus, f ′(c) =
0. •

In applications the following Lagrange mean value theorem
is often more flexible.
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Theorem 3.4.2. (Lagrange Mean Value Theorem) Let
f : R → R be a function and let a < b be two real num-
bers. Suppose that f is continuous on [a, b] and differen-
tiable on (a, b). Then there exists a point c ∈ (a, b) such
that

f (b)− f (a) = f ′(c)(b− a).

Proof. Apply Rolle’s Theorem to

h(x) := f (x)− f (b)− f (a)

b− a
(x− a).

•

A similar trick can be used to derive the even more gen-
eral Cauchy mean value theorem. We leave that as an ex-
ercise (Exercise 3.4.1) and turn to applications of differ-
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ential characterizations of Lipschitz property, monotonicity
and convexity. We say a function f : R → R is Lipschitz
with a Lipschitz constant L provided that for all x, y ∈ R,
|f (y)− f (x)| ≤ L|y − x|.
Theorem 3.4.3. (Characterization of Lipschitz Property)
Let f : R → R be a differentiable function. Then f is
Lipschitz with a Lipschitz constant L if and only if, for
all x ∈ R, |f ′(x)| ≤ L.

Proof. Exercise 3.4.2. •

We say a function f : R → R is (strictly) increasing pro-
vided that for any x < y, (f (x) < f (y)) f (x) ≤ f (y). We
say f is (strictly) decreasing if −f is (strictly) increasing. A
function is (strictly) monotone if it is either (strictly) increas-
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ing or (strictly) decreasing. Monotonicity of a differentiable
function is characterized by the fact that its derivative pre-
serves sign. This can also be proven easily using the mean
value theorem.

Theorem 3.4.4. (Characterization for Monotonicity) Let
f : R → R be a differentiable function. Then f is in-
creasing if and only if for all x ∈ R, f ′(x) ≥ 0.

Proof. Exercise 3.4.3. •

Note that f ′(x) > 0 for all x ∈ R is a sufficient condition
for f to be strictly increasing (Exercise 3.4.4) but is not a
necessary condition (examining f (x) = x3).
Recall that a function f : R → R is convex provided that

for any x, y ∈ R and λ ∈ [0, 1],
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f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y).

For a differentiable function the convex property is charac-
terized by the increasing of its derivative.

Theorem 3.4.5. (Characterization for Convex Property)
Let f : R → R be a differentiable function. Then f is
convex if and only if f ′ is increasing.

Proof. Necessity: Let x < y and let λ ∈ (0, 1). It follows
from

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y)

that
f (y + λ(x− y)− f (y)

λ
≤ f (y)− f (x).
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Taking limits as λ→ 0 we have f ′(y)(x−y) ≤ f (x)−f (y)
or

f ′(y) ≥ f (y)− f (x)

y − x
. (3.4.1)

Switch the position of x and y and λ and 1− λ and taking
limits as λ→ 1 we have

f ′(x) ≤ f (y)− f (x)

y − x
. (3.4.2)

Combining (3.4.1) and (3.4.2) we have f ′(y) ≥ f ′(x).
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Sufficiency: Suppose that f ′ is increasing. Let x < y and
let λ ∈ [0, 1]. Applying the Lagrange mean value theorem
on intervals [x, λx+(1−λ)y] and [λx+(1−λ)y, y], respec-
tively, we have that there exist c1 ∈ (x, λx+ (1− λ)y) and
c2 ∈ (λx+(1−λ)y, y) such that f (x)−f (λx+(1−λ)y) =
f ′(c1)(1 − λ)(x − y) and f (y) − f (λx + (1 − λ)y) =
f ′(c2)λ(y − x). Clearly f (c2) ≥ f (c1). It follows that

λf (x)+ (1− λ)f (y)− f (λx + (1− λ)y)

=λ(f (x)− f (λx + (1− λ)y)) + (1− λ)(f (y)

−f (λx + (1− λ)y))

=λf ′(c1)(1− λ)(x− y) + (1− λ)f ′(c2)λ(y − x)

=λ(1− λ)(f ′(c2)− f ′(c1))(y − x) ≥ 0.

Therefore, f is convex. •
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The above differential characterizations for the Lipschitz
property, the monotonicity and the convexity lead to many
useful inequalities. Some examples are given as exercises in
the end of this section.
3.4.2 Approximate Mean Value Theorems

A closer look at the applications of the mean value theorems
will reveal that (a) only one direction of the inequality is
important, and (b) the variational arguments proving these
mean value theorems are in fact valid for lsc functions. We
now make the above observations precise.
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Theorem 3.4.6. (Limiting Approximate Mean Value The-
orem) Let X be a Fréchet smooth Banach space, let
f : X → R ∪ {+∞} be a lsc function, let a, b ∈ X be
two distinct points with f (a) <∞ and let r ∈ R be such
that r ≤ f (b) − f (a). Then there exist c ∈ [a, b) and a
sequence xi with (xi, f (xi)) → (c, f (c)) and x∗i ∈ ∂Ff (xi)
such that

(i) lim infi→∞〈x∗i , c− xi〉 ≥ 0;
(ii) lim infi→∞〈x∗i , b− a〉 ≥ r;
(iii) f (c) ≤ f (a) + |r|.
Proof. Take v ∈ X∗ such that 〈v, a− b〉 = r. Then

g(x) := f (x) + 〈v, x〉 + ι[a,b](x)
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attains its minimum at some c ∈ [a, b) because g(b) ≥ g(a).
Applying the local approximate sum rule of Theorem 3.3.1,
there exist sequences (xi), (yi), (x

∗
i ) and (y∗i ) satisfying

(xi, f (xi)) → (c, f (c)), x∗i ∈ ∂Ff (xi), [a, b] � yi → c
and y∗i ∈ NF ([a, b], yi) such that ‖x∗i ‖ × ‖xi − yi‖ < 1/i,
‖y∗i ‖ × ‖xi − yi‖ < 1/i and

‖x∗i + y∗i + v‖ < 1/i.

Then (i) can be derived directly via:

lim inf
i→∞

〈x∗i , c− xi〉=lim inf
i→∞

〈x∗i + v, c− xi〉
=lim inf

i→∞
〈−y∗i , c− yi〉 ≥ 0.

To show (ii) note that c ∈ [a, b) implies that yi ∈ [a, b) for
i sufficiently large. Then
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〈x∗i + v, b− a〉 = 〈x∗i + v, b− yi〉
‖b− a‖
‖b− yi‖

.

Taking limits we obtain

lim inf
i→∞

〈x∗i + v, b− a〉=lim inf
i→∞

〈x∗i + v, b− yi〉
‖b− a‖
‖b− yi‖

=lim inf
i→∞

〈−y∗i , b− yi〉
‖b− a‖
‖b− c‖ ≥ 0.

This is (ii) in disguise. Clearly f (c) satisfies (iii). •

By passing to a subsequence one can replace the limit in-
ferior in Theorem 3.4.6 by a limit. One can also write the
theorem in the following approximate form.
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Theorem 3.4.7. (Approximate Mean Value Theorem) Let
X be a Fréchet smooth Banach space; let f : X → R ∪
{+∞} be a lower semicontinuous function; let a, b ∈ X
be two distinct points with f (a) < ∞ and let r ∈ R be
such that r ≤ f (b)−f (a). Then there exist c ∈ [a, b) such
that for any ε > 0, there exist (x, f (x)) ∈ Bε((c, f (c)))
and x∗ ∈ ∂Ff (x) satisfying

(i) 〈x∗, c− x〉 > −ε;
(ii) 〈x∗, b− a〉 > r;
(iii) f (x) ≤ f (a) + |r| + ε.

Proof. Exercises 3.4.10. •

As in calculus we can use this approximate mean value the-
orem to derive subdifferential criteria for various properties
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of functions such as monotonicity, Lipschitzness, convexity,
etc.
3.4.3 A Lipschitz Criterion

Theorem 3.4.8. Let X be a Fréchet smooth Banach
space, let U ⊂ X be an open convex set with U ∩
dom(f ) = ∅ and let L > 0. Then f is Lipschitz with
a Lipschitz constant L on U if and only if for all x ∈ U ,
sup{‖x∗‖ : x∗ ∈ ∂Ff (x)} ≤ L.

Proof. The “only if” part is straightforward. We prove
the “if” part. Let a, b ∈ U with a ∈ dom(f) and a = b,
let r ∈ R such that r ≤ f (b) − f (a), and let ε > 0. It
follows from Theorem 3.4.6 (ii) that there exist x ∈ U and
x∗ ∈ ∂Ff (x) such that
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r ≤ 〈x∗, b− a〉 + ε ≤ L‖b− a‖ + ε.

Since r ≤ f (b)−f (a) and ε > 0 are arbitrary, we derive that
f (b)− f (a) ≤ L‖b− a‖. Therefore, f (b) <∞. Exchanging
the roles of a and b we can conclude that f is Lipschitz of
rank L on U . •

Corollary 3.4.9. Let X be a Fréchet smooth Banach
space, let f : X → R ∪ {+∞} be a lsc function and let
U ⊂ X be a path connected open set with U∩dom(f ) = ∅.
Then f is a constant function on U if and only if for all
x ∈ U , ∂Ff (x) ⊂ {0}.
Note that unlike the smooth counterpart of this result one

needs only check where the subdifferential ∂Ff is nonempty.
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3.4.4 Cone Monotonicity

The next result generalizes the monotonicity criteria in cal-
culus.
Let X be a Banach space, let K be a cone in X . We define

the polar of K by

Ko := {x∗ ∈ X∗ : 〈x∗, x〉 ≤ 0, for all x ∈ K}
Let f be a function onX . We say that f isK-nonincreasing
provided that y ∈ x +K implies f (y) ≤ f (x).

Theorem 3.4.10. Let X be a Fréchet smooth Banach
space, let K be a cone in X and let f : X → R∪ {+∞}
be a lsc function. Suppose that for all x, ∂Ff (x) ⊂ Ko.
Then f is K-nonincreasing.



3.4 Mean Value Theorems 289

Proof. Let x, y ∈ X such that f (x) < f (y). It follows
from the Approximate Mean Value Theorem that there ex-
ist z ∈ dom(f ) and z∗ ∈ ∂Ff (z) with 〈z∗, y − x〉 > 0.
Therefore y − x does not belong to K. •

In particular, we have the following corollary.

Corollary 3.4.11.Let f : R → R∪{+∞} be a lsc func-
tion. Suppose that for all x, ∂Ff (x) ⊂ (−∞, 0]. Then f
is nonincreasing.

Proof. Exercise 3.4.12. •
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3.4.5 Quasi-Convexity

LetX be a Banach space. We recall that a function f : X →
R ∪ {+∞} is called quasi-convex provided, for any x, y ∈
domf and z ∈ [x, y], f (z) ≤ max{f (x), f (y)} and that a
multifunction F : X → X∗ is quasi-monotone if

x∗ ∈ F (x), y∗ ∈ F (y) and 〈x∗, y−x〉 > 0 ⇒ 〈y∗, y−x〉 ≥ 0.

Theorem 3.4.12. Let X be a Fréchet smooth Banach
space and let f : X → R ∪ {+∞} be a lsc function.
Suppose that ∂Ff is quasi-monotone. Then f is quasi-
convex.

Proof. We work by way of contradiction. Assume that
there exist some x, y, z ∈ X such that z ∈ [x, y] and
f (z) > max{f (x), f (y)}. Applying Theorem 3.4.6 with
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a = x and b = z, there exist sequences xi and x
∗
i ∈ ∂Ff (xi)

such that xi → x̄ ∈ [x, z), lim infi→∞〈x∗i , x̄ − xi〉 ≥ 0
and lim infi→∞〈x∗i , z − x〉 > 0. Combining with y − x̄ =
‖y−x̄‖
‖z−x‖(z − x) we have

lim inf
i→∞

〈x∗i , y − xi〉 > 0. (3.4.3)

Let λ ∈ (0, 1) be such that z = x̄ + λ(y − x̄) and set zi :=
xi+λ(y−xi). Then zi → z. Since f is lower semicontinuous,
in considering relation (3.4.3) we can pick an integer i such
that f (zi) > f (y) and

〈x∗i , y − xi〉 > 0. (3.4.4)

Applying Theorem 3.4.6 again with a := y and b := zi,
there exist sequences (yj) and (y∗j ) satisfying y

∗
j ∈ ∂Ff (yj)
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such that yj → ȳ ∈ [y, zi), lim infj→∞〈y∗j , ȳ− yj〉 ≥ 0 and

lim infj→∞〈y∗j , zi − y〉 > 0. Noting that zi − y and xi − ȳ
lie in the same direction, we obtain

lim inf
j→∞

〈y∗j , xi − yj〉 > 0. (3.4.5)

Since ȳ ∈ [xi, y), inequality (3.4.4) yields

lim inf
j→∞

〈x∗i , yj − xi〉 = 〈x∗i , ȳ − xi〉 > 0. (3.4.6)

Inequalities (3.4.5) and (3.4.6) imply that for j sufficiently
large, we have both 〈y∗j , xi− yj〉 > 0 and 〈x∗i , yj−xi〉 > 0,
i.e., ∂Ff is not quasi-monotone, a contradiction. •
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3.4.6 Commentary and Exercises

Mean value theorems for differentiable functions are classical
results in analysis. Their extension to nonsmooth functions
can be traced back to Lebourg [171]. The limiting approx-
imate mean value theorem of Theorems 3.4.6 appeared in
Zagrodny [270] in terms of the Clarke-Rockafellar subdiffer-
ential, see also Penot [218]. The Fréchet subdifferential forms
were given in [186, 208, 220] along with some applications.
The proof given here by using the local approximate sum rule
is taken from [274]. It is worth pointing out that although
Theorems 3.4.6 and 3.4.7 are stated in (possibly) infinite di-
mensional Banach spaces, they are actually restricted to a
line segment. In fact in the guided Exercise 3.4.9 one can
find a Fréchet differentiable function on �2 constructed by
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Ferrer [119] that equals to 0 on the unit sphere yet whose
derivative does not vanish inside the unit ball. Recently, Bor-
wein, Kortezov and Wiersma constructed in [50] a delicate
C1 function on R

2 that is even on the unit circle yet has
no critical points in the unit ball showing that the Rolle’s
theorem is essentially a one dimensional result.
The prototypes of the Lipschitz criterion appeared in Rock-

afellar [231] for functions on finite dimensional spaces and in
Treiman [249] for functions on infinite dimensional spaces.
The proof adopted here is from [248, 186].
Characterization of quasi-convexity for lsc functions was

discussed in [187]. The short proofs here follow a more gen-
eral version in [10]. It is easy to deduce a subdifferential
characterization for convex functions from this result that
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extends Theorem 3.4.5 to nonsmooth functions. We will dis-
cuss it later.

Exercise 3.4.1. Prove the Cauchy mean value theorem:

Theorem 3.4.13. (Cauchy Mean Value Theorem) Let
f, g : R → R be two functions and let a < b be two real
numbers. Suppose that f and g are continuous on [a, b],
differentiable on (a, b) and suppose g is strictly increas-
ing. Then there exists a point c ∈ (a, b) such that

g′(c)(f (b)− f (a)) = f ′(c)(g(b)− g(a)).

Hint: Apply Rolle’s Theorem to

h(x) := f (x)− f (b)− f (a)

g(b)− g(a)
(g(x)− g(a)).
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Exercise 3.4.2. Prove Theorem 3.4.3. Hint: Necessity fol-
lows directly from the definitions of derivative and the Lips-
chitz property. For sufficiency use the Lagrange mean value
theorem and prove by contradiction.

Exercise 3.4.3. Prove Theorem 3.4.4. Hint: Necessity fol-
lows directly from the definitions of derivative. For suffi-
ciency use the Lagrange mean value theorem and prove by
contradiction.

Exercise 3.4.4. Show that if f : R → R is a differentiable
function with f ′(x) > 0 for all x ∈ R then f is strictly
increasing.

Exercise 3.4.5. Prove that for x, y ∈ R, | sin y − sin x| ≤
|y − x|.
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Exercise 3.4.6.Use the trigonometric identity

cos y − cos x = −2 sin
x + y

2
sin

y − x

2
to establish the inequality, for 0 ≤ a < b

cos a− cos b <
b2 − a2

2
.

Then prove that for 0 ≤ a < b and x = 0,

cos ax− cos bx

x2
<
b2 − a2

2
.

Exercise 3.4.7.Prove that for h > 0 and p > 1, (1+h)p >
1 + ph.

Exercise 3.4.8. Let f : R → R be a twice differentiable
function. Show that f is convex if and only if f ′′(x) ≥ 0 for
all x ∈ R.
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∗Exercise 3.4.9. (Ferrer’s Example) In this exercise we
break into several steps Ferrer’s example of a Fréchet dif-
ferentiable function on �2 that vanishes on the unit sphere
yet has no critical point inside the unit ball.
We will denote by {ei} the standard basis of �2. Let
L,R : �2 → �2 be the linear left and right shift operators
on �2 defined by

Lx = (x2, x3, x4, . . . ) Rx = (0, x1, x2, x3, . . . ).

(i) Show that ‖Lx‖ ≤ ‖x‖ and ‖Rx‖ = ‖x‖, and L and
R are adjoint to each other, that is

〈x,Ru〉 = 〈Lx, u〉.
(ii) Define operator T : �2 → �2 by

T (x) = (1/2− ‖x‖2)e1 + Rx.
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Show that T is a continuous operator and Tx = x for
any x ∈ �2.

(iii) Define Ferrer’s function

f (x) =
1− ‖x‖2

‖x− T (x)‖2. (3.4.7)

Verify that f is a Fréchet differentiable function that
vanishes on the unit sphere.

(iv) Use the quotient rule to compute 〈f ′(x), u〉

= −2〈x, u〉‖x− T (x)‖2 + 2〈x− T (x), u− T ′(x)u〉
‖x− T (x)‖4

for any x, u ∈ �2.
(v) Verify that
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f ′(x)=
−2

‖x− T (x)‖4 ×
[
(‖x− T (x)‖2

+(1− ‖x‖2)(1 + 2x1 + 2‖x‖2))x
−(1− ‖x‖2)(Lx + T (x))

]
.

(vi) Prove by contradiction that f ′(x) = 0 in the interior
of the unit ball of �2. Hint: Suppose the contrary; then
f ′(x) = 0 for ‖x‖ < 1. It follows that

Lx + T (x) = sx,

where

s =
‖x− T (x)‖2
1− ‖x‖2 + 1 + 2x1 + 2‖x‖2.

Applying L to both sides gives

L2x− sLx + x = 0,
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so x satisfies the second-order linear recurrence relation

xi+2 − sxi+1 + xi = 0, i ≥ 1,

whose characteristic equation is

t2 − st + 1 = 0.

Discuss case by case the three types of solutions to the
recurrence, depending on the discriminant of the above
characteristic equation.

Reference: [119, 267].

Exercise 3.4.10. Prove Theorem 3.4.7.

Exercise 3.4.11. Deduce the Lipschitz criterion for the
cone monotonicity criterion. Hint: consider the monotonicity
of f (x)± Lx.

Exercise 3.4.12. Prove Corollary 3.4.11.
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3.5 Chain Rules and Lyapunov Functions

3.5.1 Approximate Chain Rules

We now introduce an approximate chain rule for the Fréchet
subdifferential that estimates the subdifferential of f ◦ F .
Observe that if f ◦ F attains its minimum at x̄ then

(z, y) → f (y) + ιgraphF (z, y)

attains a minimum at (x̄, F (x̄)). This suggests that we can
use subdifferential sum rules to deduce chain rules. This is
the method we adopt. Similar to the subdifferential sum
rules there are strong and weak versions of approximate
chain rules. First we discuss a strong approximate chain rule
which needs some qualification conditions on F .
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Let X and Y be Banach spaces. Recall that a map
F : X → Y is locally compact at x provided that there
is a neighborhood U of x such that for any closed subset
S ⊂ U , F (S) is compact.
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Theorem 3.5.1. (Strong Approximate Chain Rule) Let X
and Y be Fréchet smooth Banach spaces, let f : Y → R∪
{+∞} be a lsc function and let F : X → Y be a locally
Lipschitz and locally compact mapping at x̄. Suppose that
x∗ ∈ ∂F (f ◦ F )(x̄).
Then, for any ε > 0, there exist x ∈ Bε(x̄), y ∈
Bε(F (x̄)), y

∗ ∈ ∂Ff (y), ‖λ − y∗‖ < ε and z∗ ∈
∂F 〈λ, F 〉(x) such that |f (y)− f (F (x̄))| < ε,

max(‖λ‖, ‖y∗‖, ‖z∗‖)‖y − F (x)‖ < ε (3.5.1)

and ‖x∗ − z∗‖ < ε.
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Proof. Let g be a C1 function such that f ◦F − g attains
a minimum at x̄ and g′(x̄) = x∗. Then

(z, y) → f (y) + ιgraphF (z, y)− g(z)

attains a minimum at (x̄, F (x̄)). Define f1(z, y) := f (y) −
g(z) and f2(z, y) = ιgraphF (z, y). As an exercise one can
verify that f1, f2 satisfy condition (3.3.2) in the local ap-
proximate sum rule of Theorem 3.3.1. Applying Theorem
3.3.1 we have x ∈ Bε(x̄), z ∈ Bε(x̄) close enough to x̄ so
that ‖g′(z)− x∗‖ < ε/2, y ∈ Bε(F (x̄)), y

∗ ∈ ∂Ff (y) and

(z∗,−λ) ∈ ∂F ιgraphF (x, F (x)) (3.5.2)

satisfying (3.5.1) and

‖(−g′(z), y∗) + (z∗,−λ)‖ < ε

2
. (3.5.3)
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By (3.5.2) and the definition of the Fréchet subdifferen-
tial there exists a C1 function h : X × Y → R such that
h′(x, F (x)) = (z∗,−λ) and, for y in a neighborhood of x,

0 ≥ h(y, F (y))− h(x, F (x))= 〈z∗, y − x〉 − 〈λ, F (y)− F (x)〉
+o(‖y − x‖).

It follows that z∗ ∈ ∂F 〈λ, F 〉(x). The rest of the conclusions
in the theorem follow from (3.5.3). •

The same argument can be used to prove the following
weak approximate chain rule if we replace Theorem 3.3.1 by
Theorem 3.3.3.
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Theorem 3.5.2. (Weak Approximate Chain Rule) Let X
and Y be Fréchet smooth Banach spaces, let f : Y → R∪
{+∞} be a lsc function and let F : X → Y be a locally
Lipschitz mapping at x̄. Suppose that x∗ ∈ ∂F (f ◦F )(x̄).
Then, for any ε > 0 and any weak-star neighborhood
U of 0 in X∗, there exist x ∈ Bε(x̄), y ∈ Bε(F (x̄)),
y∗ ∈ ∂Ff (y), ‖λ − y∗‖ < ε and z∗ ∈ ∂F 〈λ, F 〉(x) such
that |f (y)− f (F (x̄))| < ε,

max(‖λ‖, ‖y∗‖, ‖z∗‖)‖y − F (x)‖ < ε,

and
x∗ ∈ z∗ + U.

Proof. Exercise 3.5.1. •
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3.5.2 Lyapunov Functions and Stability

We now use the subdifferential chain rule derived above to
obtain an interesting generalization of the Lyapunov indirect
method in the stability theory of dynamical systems.
Consider the differential equation

x′ = f (x), (3.5.4)

where f : RN → R
N is a locally Lipschitz mapping, that is,

for any x ∈ R
N , there exists a neighborhood U of x and a

constant L = LU > 0 such that for any y, z ∈ U ,

‖f (y)− f (z)‖ ≤ L‖y − z‖.
It is well known that for any initial condition x(0) = x0, dif-
ferential equation (3.5.4) has a unique solution x(t, x0) de-
fined on t ∈ [0, τ ) for some τ > 0. We further assume that all
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the solutions of (3.5.4) are defined on [0,+∞). A simple suf-
ficient condition ensuring this property is ‖f (x)‖ ≤ a‖x‖+b
for some constants a, b.
The idea of the Lyapunov indirect method is rather simple.

Suppose that f (0) = 0 so that {0} is an equilibrium point
of (3.5.4). This method tells us that if there is a C1 positive
definite function V with V (0) = 0 (a function satisfying
V (x) > 0 for x = 0 and V (x) → 0 if and only if x → 0)
such that for some a ≥ 0,

〈V ′(x), f (x)〉 + aV (x) ≤ 0, (3.5.5)

then the equilibrium solution 0 is stable. Moreover, if a > 0
then it is asymptotically stable.
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In fact, for any trajectory x(·) of (3.5.4), using calculus
rules for derivatives and inequality (3.5.5) we have

d

dt
(eatV (x(t))) ≤ 0,

and therefore the function

t→ eatV (x(t))

is decreasing. The stability and asymptotic stability (in the
case when a > 0) of the equilibrium {0} then follows from
the positive definite property of V .
We show that this line of reasoning essentially remains

valid for the more general stability concept related to sta-
bility sets defined below when the derivatives involved are
replaced by the Fréchet subdifferential for lower semicontin-
uous functions.
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Definition 3.5.3. (Stable and Attractive Sets) Let S be a
closed subset of RN . We say that S is stable with respect
to differential equation (3.5.4) provided that for any
ε > 0, there exists a δ > 0 such that for any x0 ∈ Bδ(S),

x(t, x0) ∈ Bε(S), for all t ∈ [0,+∞).

We say that S is attractive with respect to differential
equation (3.5.4) provided that S is stable and there exists
a δ > 0 such that for any x0 ∈ Bδ(S),

lim
t→+∞

d(x(t, x0);S) = 0.

Note that if S = {s} for an equilibrium solution s of (3.5.4)
then Definition 3.5.3 recovers the classical concepts of Lya-
punov stability and asymptotic stability for equilibrium so-
lutions.
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However Definition 3.5.3 encompasses many useful situa-
tions beyond the stability of equilibriums. For example, con-
sider the simple linear system x′1 = x2, x

′
2 = −x1. It is easy

to see that the phase-portrait of any trajectory of this system
is a stable set. Another example is that the phase-portrait
of any stable limiting circle of a plane autonomous system
is attractive.
Next we define lsc Lyapunov functions and the related crit-

ical sets that model the potential stable and attractive sets.
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Definition 3.5.4.Let V : RN → [0,+∞] be an extended-
valued lsc function. We say that a closed set S ⊂ R

N is
a critical set of V provided that,

(i) S ⊂ {x ∈ R
N : V (x) = 0};

(ii) for any ε > 0 there exists a δ > 0 such that Bδ(S) ⊂
{x ∈ R

N : V (x) < ε}; and
(iii) for any ε > 0 there exist δ, η > 0 such that

{x ∈ R
N : V (x) < δ} ∩ Bε+η(S) ⊂ Bε(S).

Now we can state our generalization of the Lyapunov in-
direct method.
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Theorem 3.5.5. (Stability) Let V : RN → [0,+∞] be a
lsc function and let S be a compact critical set of V .
Suppose that there exists a constant a ≥ 0, for any x∗ ∈
∂FV (x) with V (x) > 0,

〈x∗, f (x)〉 + aV (x) ≤ 0. (3.5.6)

Then S is a stable set of the differential equation (3.5.4).
Moreover, S is attractive when a > 0.

Proof. We need only show that, for any x0 sufficiently
close to S, the function t → eatV (x(t)) is decreasing for
the solution x(t) = x(t, x0) of differential equation (3.5.4).
Indeed to see that S is stable, let ε be an arbitrary positive
number. Since S is a critical set of V by Definition 3.5.4
(iii) there exist ε′, η > 0 such that {x ∈ R

N : V (x) <
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ε′} ∩ Bε+η(S) ⊂ Bε(S) and by (ii) there exists δ > 0
such that Bδ(S) ⊂ {x ∈ Rn : V (x) < ε′}. Now, for any
x0 ∈ Bδ(S) and any t ∈ [0,+∞),

V (x(t, x0)) ≤ e−atV (x0) ≤ ε′ (3.5.7)

so that x(t, x0) ∈ Bε(S).
When a > 0, inequality (3.5.7) implies that limt→+∞ V (x(t, x0)) =

0. Thus we must have limt→+∞ d(S; x(t, x0)) = 0, by prop-
erty (iii) of Definition 3.5.4.
Now we turn to prove that the function t→ eatV (x(t)) is

decreasing. In the above argument we see that only points in
a small neighborhood of S are relevant. So we may consider
such a neighborhood and assume without loss of generality
that on this neighborhood f is Lipschitz with a Lipschitz
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constant L and ‖f‖ is bounded by some constant M . By
virtue of Corollary 3.4.11 we need only show that, for any
ξ ∈ ∂F (e

atV (x(t))), ξ ≤ 0. Define g(x, y) = yV (x) and
G(t) = (x(t), eat). Then ξ ∈ ∂F (g ◦ G)(t). Applying the
approximate chain rule of Theorem 3.5.1 we have that, for
any ε > 0, there exist t′ ∈ (t − ε, t + ε), |x − x(t′)| < ε,

|y − eat
′| < ε, (yx∗, y∗) ∈ ∂Fg(x, y), i.e., y

∗ = V (x),
x∗ ∈ ∂FV (x), ‖(λ, μ)− (yx∗, y∗)‖ < ε and

z∗ ∈ ∂F 〈(λ, μ), (x(·), ea·)〉(t′) = {〈λ, x′(t′)〉 + aμeat
′}

satisfying ‖ξ − z∗‖ < ε and

max(‖λ‖, ‖μ‖, ‖x∗y‖, ‖y∗‖, ‖z∗‖)×(‖x−x(t′)‖+|y−eat′|) < ε.

It follows that
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ξ≤z∗ + ε = 〈λ, x′(t′)〉 + aμeat
′
+ ε = 〈λ, f (x(t′))〉 + aμeat

′
+ ε

≤〈yx∗, f (x(t′))〉 + aV (x)eat
′
+ ε +Mε + εaeat

′

≤〈yx∗, f (x)〉 + aV (x)eat
′
+ ε +Mε + Lε + εaeat

′

≤ [〈x∗, f (x)〉 + aV (x)]eat
′
+ ε +Mε+ Lε + εaeat

′
+
M

y
ε

≤ε
(
1 +M + L + aeat

′
+
M

y

)
.

Letting ε→ 0 we have ξ ≤ 0, as was to be shown. •

3.5.3 Commentary and Exercises

Chain rules are important tools in analyzing subdifferen-
tials and have been discussed in many different settings (see
[71, 84, 91, 198, 209, 237, 264] and the references therein).
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The chain rules discussed here and their applications in the
stability of dynamic systems largely follows [277]. An al-
ternative approach based on the weak invariance-viability
type theorems has been discussed in [6, 169, 256, 257]. The
survey paper [90] provides an excellent account of this ap-
proach and other related issues in dynamic systems. Allow-
ing extended-valued lsc Lyapunov functions provides much
flexibility. Many operations such as truncation, taking max-
imum or absolute value, and using indicator functions be-
come possible. Exercises 3.5.2,3.5.3 and 3.5.4 provide some
examples.

Exercise 3.5.1. Prove Theorem 3.5.2.
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Exercise 3.5.2. Construct a Lyapunov function to show
that for any r > 0, S(r) := {(x1, x2) ∈ R

2 : x21 + x22 = r}
is a stable set of differential equations

x′1 = x2, x
′
2 = −x1. (3.5.8)

Hint: Use the Lyapunov function V (x1, x2) = |x21 + x22 −
r|, r ≥ 0.

Exercise 3.5.3. The following system naturally occurs in
population models.

x′ = f (x) := −x(x + 2)(x− 1). (3.5.9)

Define
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V (x) :=

⎧⎪⎨⎪⎩
(x + 2)2, x ≤ −1/2,

+∞, x ∈ (−1/2, 1/2),

(x− 1)2, x ≥ 1/2.

(i) Check that both S1 = {1} and S2 = {−2} are critical
sets of V .

(ii) Verify that for x < −1/2 or x > 1/2, V is C1 and it
satisfies

V ′(x)f (x) =
{
−2x(x− 1)V (x), x < −1/2

−2x(x + 2)V (x), x > 1/2

}
≤ −3/2V (x)

(iii) Show that at x = −1/2 and 1/2 we have ∂FV (−1/2) =
[2(−1/2+2),+∞) and ∂FV (1/2) = (−∞, 2(1/2− 1)],
respectively.
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(iv) Conclude that both 1 and −2 are asymptotic equilib-
rium points.

Reference: [277].

∗Exercise 3.5.4. Prove that x21 + x22 = 1 is a stable limit
circle of the following system of differential equations.

x′1 = −x2 + x1(1− x21 − x22)

x′2 = x1 + x2(1− x21 − x22).
(3.5.10)

Hint: Construct the function

V (x1, x2) =

{
|1− x21 − x22|, x21 + x22 ≥ 1/2,

+∞, x21 + x22 < 1/2.

(i) Verify that S = {(x1, x2) : x21 +x22 = 1} is a critical set
of V .
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(ii) Check that the function V is C1 at any point (x1, x2) ∈
S and x21+x

2
2 > 1/2 and, for these points V ′ is the only

element in ∂FV which satisfies

〈V ′, f〉 + V ≤ 0.

Here f represent the right hand side of (3.5.10).
(iii) For x21 + x22 < 1/2 we do not need to verify (3.5.6)

because
∂FV (x1, x2) = ∅.

(iv) Show that for points x = (x1, x2) satisfying x
2
1 + x22 =

1/2 we have

∂FV (x) = {kx : k ∈ (−∞,−2]}.
These points also satisfy (3.5.6) with a = 1.

Reference: [277].
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In the above examples the sets of nonsmooth points for the
V functions are all of measure zero. One may wonder then
whether it is necessary to check inequality (3.5.6) for these
points. The following guided exercise shows that the answer
is positive. In other words, handling the nonsmooth points
of lsc Lyapunov functions is a crucial part of this method
that cannot be omitted.

∗Exercise 3.5.5. Let C be the Cantor ternary set on [0, 1]
consisting of every ternary decimal involving only 0 and 2 in
its expression.
Since C is closed, [0, 1]\C is the union of denumerable

disjoint open intervals. We write
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[0, 1]\C :=

∞⋃
k=1

(ak, bk).

Consider the classical Cantor ternary function V : C →
[0, 1] defined as follows:

V (x) :=
∞∑
i=0

xi
2i+1

where xi is the ith digit of the ternary decimal expression
x = 0.x1x2 · · · of x.
As for each k, ak and bk must have “dual” ternary expres-

sions

ak = 0.c1c2 · · · ci0222 · · · and bk = 0.c1c2 · · · ci2000 · · · ,
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we can check that V (ak) = V (bk). Thus, we can extend V
to [0, 1] by defining

V (x) := V (ak) = V (bk), for all x ∈ (ak, bk).

We further extend V to [0,+∞) by setting V (x) := 1, x >
1. It is well known that V is continuous and non-decreasing.
Next we extend V to R as an even function. It is easy to
check that {0} is a critical set of V . Moreover, it follows from
the calculation in Example 9.2 of [71] and the symmetry of
V with respect to 0 that
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∂FV (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∅ x ∈ [C ∪ (−C)]\({−bk} ∪ {bk} ∪ {0}),
[0,∞) x ∈ ({bk}),
(−∞, 0] x ∈ ({−bk}),
0 x ∈ R\[C ∪ (−C)].

Note that the set of nonsmooth points of V is of measure
zero and V has derivative 0 at any of its differentiable points.
Thus, if we use V to determine the stability of {0} by check-
ing only its differentiable points satisfying the inequality
(3.5.6) we would arrive at the conclusion that every differ-
ential equation is stable at {0}, which is absurd.
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The method used in the proof of the chain rules in this
section can also be used to prove other forms of chain rules
that are more closely related to the other calculus rules for
subdifferentials. Guided exercises below will help the readers
to develop these results.

Exercise 3.5.6.Prove the following chain rule in which the
inside function may be continuous or lower semicontinuous.
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Theorem 3.5.6. (Approximate Chain Rule without Lip-
schitz Assumption) Let X be a Fréchet smooth Banach
space. Suppose that f1, . . . , fM : X → R∪{+∞} are lsc
functions, fM+1, . . . , fN are continuous functions and

f : RN → R ∪ {+∞} is a lsc function nondecreasing
for each of its first M variables (M ≤ N). Suppose that
x∗ ∈ ∂Ff (f1, . . . , fN )(x̄).
Then for any positive number ε > 0 and any weak-star

neighborhood U of 0 in X∗, there exist (xn, fn(xn)) ∈
Bε((x̄, fn(x̄))), n = 0, 1, . . . , N , (r, f (r)) ∈ Bε(r̄, f (r̄))
where r̄ = (f1(x̄), . . . , fN (x̄)) and μ = (μ1, . . . , μN ) ∈
∂Ff (r) + εB

RN
such that μn > 0 for n = 1, . . . ,M , and
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x∗ ∈
N∑
n=1

∂F (μnfn)(xn) + U.

Hint: Let g be a C1 function such that g′(x̄) = x∗ and
f (f1, . . . , fN ) − g attains a local minimum at x̄. Denote
r = (r1, . . . , rN ) ∈ R

N . Observing that the function

(x, r) → f (r)+
M∑
n=1

ιepifn(x, rn)+
N∑

n=M+1

ιgraphfn(x, rn)−g(x)

(3.5.11)
attains a local minimum at (x̄, f1(x̄), . . . , fN (x̄)), the con-
clusion follows from the weak local approximate sum rule of
Theorem 3.3.3.
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When f is a smooth function we can sharpen the results
in Theorem 3.5.6.

Exercise 3.5.7. Prove the following refined smooth chain
rule.

Theorem 3.5.7. (Refined Smooth Approximate Chain
Rule) Let X be a Fréchet smooth Banach space. Suppose
that f1, . . . , fN : X → R ∪ {+∞} are lsc functions and
f : RN → R is a C1 function strictly increasing for each
of its variables. Suppose that x∗ ∈ ∂Ff (f1, . . . , fN )(x̄).
Then, for any positive number ε > 0 and any weak-star
neighborhood U of 0 in X∗, there exist (xn, fn(xn)) ∈
Bε((x̄, fn(x̄))), n = 0, 1, . . . , N such that
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x∗ ∈
N∑
n=1

∂F (μnfn)(xn) + U,

where μ = (μ1, . . . , μN ) = f ′(f1(x̄), . . . , fN (x̄)).

Exercise 3.5.8. Deduce the weak local approximate sum
rule of Theorem 3.3.3 from Theorem 3.5.7.

Exercise 3.5.9.Apply the chain rule of Theorem 3.5.6 to
max(f1, . . . , fN ) to deduce the following result.
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Theorem 3.5.8. (Subdifferential of the Max Function) Let
X be a Fréchet smooth Banach space and let fn : X →
R ∪ {+∞} , n = 1, . . . , N be lsc functions. Suppose that
x∗ ∈ ∂F max(f1, . . . , fN )(x̄). Then, for any ε > 0 and
any weak-star neighborhood U of 0 in X∗, there exist
(xn, fn(xn)) ∈ Bε((x̄, fn(x̄))), x

∗
n ∈ ∂Ffn(xn) and λn ≥ 0

with |
∑N
n=1 λn − 1| < ε such that

x∗ ∈
N∑
n=1

λnx
∗
n + U.

Exercise 3.5.10. Show that Theorem 3.5.1 remains valid
if we assume f is w∗-lsc and F is linear. (In particular, this
is valid when f is a convex continuous function.)
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∗Exercise 3.5.11. Show that when Y = R
N and f and

fn, n = 1, . . . , N are Lipschitz functions, Theorem 3.5.1
provides a sharper result than Theorem 3.5.6. Construct an
example (in a finite dimensional space X) to show this re-
finement is impossible if fn, n = 1, . . . , N are merely con-
tinuous. Reference: [274].

3.6 Multidirectional Mean Value Inequalities and Solvability

In this section we discuss a multidirectional generalization
of the approximate mean value theorem of Theorem 3.4.7.
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We replace the endpoint b by a set S and r < f (b) by the
decoupled infimum

∧
[f ](S). Applications of this result to

solvability and representation of superdifferentials are also
discussed.
3.6.1 Multidirectional Mean Value Inequalities

Recall that for a point x and a set S in a Banach space,
[x, S] = conv({x} ∪ S) represents the drop associated with
x and S.
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Theorem 3.6.1. (ApproximateMultidirectional Mean Value
Inequality) Let X be a Fréchet smooth Banach space. Let
S be a nonempty, closed and convex subset of X, let
f : X → R ∪ {+∞} be a lsc function and let x ∈ domf .
Suppose that for some h > 0, f is bounded below on
Bh([x, S]) and ∧

[f ](S)− f (x) > r. (3.6.1)

Then for any ε > 0, there exist z ∈ Bε([x, S]) and z
∗ ∈

∂Ff (z) such that

f (z) <
∧

[f ]([x, S]) + |r| + ε, (3.6.2)

and

r < 〈z∗, y − x〉 + ε‖y − x‖ for all y ∈ S. (3.6.3)
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Proof. We divide the proof into two steps.
(1) The special case in which r = 0. Let f̃ := f + ιBh([x,S]).

Then f̃ is bounded below on X . It follows from (3.6.1) that
we can fix an η ∈ (0, h/2) such that infy∈B2η(S)

f (y) >

f (x). Without loss of generality we may assume that

ε < min
{

inf
y∈B2η(S)

f (y)− f (x), η
}
.

Applying the nonlocal approximate sum rule of Theorem
3.2.3 to f1 := f + ιBh([x,S]) and f2 := ι[x,S] we obtain

that there exist z ∈ domf ∩ Bh([x, S]) and u ∈ [x, S]
with ‖z − u‖ < ε, z∗ ∈ ∂Ff1(z) = ∂Ff (z) and u∗ ∈
∂F ι[x,S](u) = NF ([x, S]; u) satisfying

max(‖z∗‖, ‖u∗‖)× ‖z − u‖ < ε (3.6.4)
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and

f (z) <
∧

[f ]([x, S]) + ε ≤ f (x) + ε (3.6.5)

such that

‖z∗ + u∗‖ < ε. (3.6.6)

Since [x, S] is convex, NF ([x, S]; u) coincides with the nor-
mal cone of [x, S] at u in the sense of convex analysis. Thus,
u∗ ∈ ∂F ι[x,S](u) = NF ([x, S]; u) implies that

〈u∗, w − u〉 ≤ 0, for all w ∈ [x, S]. (3.6.7)

Combining (3.6.6) and (3.6.7) yields

〈z∗, w − u〉= 〈z∗ + u∗, w − u〉 − 〈u∗, w − u〉
≥〈z∗ + u∗, w − u〉
>−ε‖w − u‖, for all w ∈ [x, S]\{u}.
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That is

0 < 〈z∗, w − u〉 + ε‖w − u‖, for all w ∈ [x, S]\{u}.
(3.6.8)

Moreover, we must have d(S; u) ≥ η for otherwise we would
have d(S; z) ≤ 2η and f (z) ≥ infy∈B2η(S)

f (y) > f (x) + ε

which contradicts (3.6.5). Let u := x + t̄(ȳ − x) for some
t̄ ∈ [0, 1] and ȳ ∈ S. Then η ≤ ‖u − ȳ‖ = (1 − t̄)‖x − ȳ‖
implies 1 − t̄ > 0. Clearly x ∈ S. For any y ∈ S setting
w := y + t̄(ȳ − y) = u in (3.6.8) yields

0 < 〈z∗, y − u〉 + ε‖y − u‖, for all y ∈ S. (3.6.9)

(2) The general case. Consider X × R with the Euclidean

product norm ‖(x, γ)‖ :=
√
‖x‖2 + γ2. Take an ε′ ∈

(0, ε/2) small enough so that
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[f ](S)− f (x) > r + ε′

and define

F (z, t) := f (z)− (r + ε′)t. (3.6.10)

Obviously F is lsc on X × R and is bounded below on
Bh([(x, 0), S × {1}]). Moreover,∧

[F ](S × {1}) =
∧

[f ](S)− (r + ε′) > f (x) = F (x, 0).

Applying the special case proved above with f , x and S
replaced by F , (x, 0) and S × {1} we conclude that there
exist (z, s) ∈ Bε([(x, 0), S × {1}]) (so that z ∈ Bε([x, S]) )
and (z∗, s∗) ∈ ∂FF (z, s) ⊂ ∂Ff (z)×{−(r+ε′)} satisfying
f (z)− (r + ε′)s = F (z, s) <

∧
[F ]([(x, 0), S × {1}]) + ε′,

in other words,
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f (z)<
∧

[F ]([(x, 0), S × {1}]) + (r + ε′)s + ε′

≤
∧

[f ]([x, S]) + |r| + ε

such that, for all (y, 1) ∈ S × {1},
0< 〈(z∗, s∗), (y, 1)− (x, 0)〉 + ε′(‖(y − x, 1)‖)
≤〈z∗, y − x〉 − (r + ε′) + ε′(‖y − x‖ + 1)

= 〈z∗, y − x〉 − r + ε′‖y − x‖ ≤ 〈z∗, y − x〉 − r + ε‖y − x‖.
This completes the proof. •

It is clear that when S is bounded the term ε‖y − x‖ in
(3.6.3) can be eliminated. This is not the case in general.
One can convince oneself by examining the simple example
when X = Y = R and f (y) = ey (Exercise 3.6.1). When
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S is a compact subset of X or f is uniformly continuous in
a neighborhood of S we can verify that

∧
[f ](S) = infS f

(Exercise 3.6.2). In general
∧
[f ](S) in Theorem 3.6.1 cannot

be replaced by infS f (Exercises 3.6.5 and 3.6.6). In general,
it is impossible to ensure the mean value z belongs to [x, S]
(Exercise 3.6.3). Yet, this refinement is possible under addi-
tional conditions. One such condition is to assume f to be
convex. This will be discussed later.
The following corollary is often useful in various applica-

tions.
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Theorem 3.6.2. (Decrease Principle) Let X be a Fréchet
smooth Banach space, let f : X → R ∪ {+∞} be a lsc
function bounded from below and let r > 0. Suppose that
for any x ∈ Br(x̄), ξ ∈ ∂Ff (x) implies that ‖ξ‖ > σ > 0.
Then

inf
x∈Br(x̄)

f (x) ≤ f (x̄)− σr.

Proof. Exercise 3.6.9. •

3.6.2 Solvability

Consider a lsc function f : X × Y → R ∪ {+∞} . As an
application of the multidirectional mean value inequality, we
seek infinitesimal conditions in terms of the Fréchet subdif-
ferential for the solvability of inequality f (x, y) ≤ 0 in terms
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of parameter y or the nonemptiness of G(y) := {x ∈ X |
f (x, y) ≤ 0}. We use ∂F,x to signify the Fréchet subdiffer-
ential with respect to x. We will see later that this is closely
related to the more general implicit multifunction theorems.

Theorem 3.6.3. (Solvability) Let X and Y be Fréchet
smooth Banach spaces and let U be an open set in X×Y .
Suppose that f : U → R ∪ {+∞} satisfies the following
conditions:

(i) there exists (x̄, ȳ) ∈ U such that

f (x̄, ȳ) ≤ 0;

(ii) y → f (x̄, y) is upper semicontinuous at ȳ;
(iii) for any fixed y near ȳ, x → f (x, y) is lower semi-

continuous;
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(iv) there exists a σ > 0 such that for any (x, y) ∈ U with
f (x, y) > 0, ξ ∈ ∂F,xf (x, y) implies that ‖ξ‖ ≥ σ.

Then there exist open sets W ⊂ X and V ⊂ Y con-
taining x̄ and ȳ respectively such that

(a) for any y ∈ V , W ∩G(y) = ∅;
(b) for any y ∈ V and x ∈ W ,

d(x,G(y)) ≤ f+(x, y)

σ
,

where f+(x, y) := max{0, f (x, y)}.
Proof. Let r′ be a positive number such that Br′(x̄) ×
Br′(ȳ) ⊂ U and let r = r′/3. Since f (x̄, y) is upper semi-
continuous at ȳ and f (x̄, ȳ) = 0, there exists an open neigh-
borhood V of ȳ such that V ⊂ Br′(ȳ) and y ∈ V implies
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that f (x̄, y) < rσ. We will show that V andW := intBr(x̄)
satisfy the conclusion of the theorem. Let y be an arbitrary
element of V . We show that W ∩ G(y) = ∅. In fact, if this
is not the case, then f (x, y) > 0 for any x ∈ Bτ (x̄), τ < r.
Choose τ close enough to r so that f (x̄, y) < τσ. Invoking
the decrease principle of Theorem 3.6.2 we have

0 ≤ inf
x∈Bτ (x̄)

f (x, y) ≤ f (x̄, y)− τσ < 0,

a contradiction.
To show the estimate (b), consider x ∈ W and y ∈ V . If

B(x, f+(x, y)/σ) ⊂ intB(x̄, r′)
then ‖x− x̄‖ + f+(x, y)/σ ≥ r′ or f+(x, y)/σ ≥ 2r. Since
conclusion (a) implies that d(x,G(y)) < 2r, estimate (b)
holds. Now we turn to the case when B(x, f+(x, y)/σ) ⊂



346 3 Subdifferential Theory

intB(x̄, r′). Take τ > f+(x, y)/σ such that B(x, τ ) ⊂
intB(x̄, r′). Since f (x, y) < τσ an argument similar to the
proof of (a) yields that there exists z ∈ B(x, τ ) such that
f (z, y) ≤ 0. Thus, d(x,G(y)) < τ . Letting τ → f+(x, y)/σ
we arrive at estimate (b). •

3.6.3 Superdifferential and Subdifferential

Recall that if f : X → [−∞,∞) is usc then we define the
Fréchet superdifferential of f at x by ∂Ff (x) = −∂F (−f )(x).
Interestingly, for a continuous function a superderivative
x∗ ∈ ∂Ff (x) can be represented as a convex combination
of subderivatives at points in a neighborhood of x. To prove
this result we need the following nonsymmetrical minimax
theorem.
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Theorem 3.6.4. (Nonsymmetrical Minimax Theorem: A
Banach Space Version) Let S be a closed bounded convex
subset of Banach space X∗ and let T be a convex subset
of X. Suppose that f : S×T → R is a function convex in
s and concave in t and that for each t ∈ T , s → f (s, t)
is weak-star lsc. Then

inf
s∈S

sup
t∈T

f (s, t) = sup
t∈T

inf
s∈S

f (s, t).

Proof. Let α < infs∈S supt∈T f (s, t). Define, for each
t ∈ T , the set St := {s ∈ S | f (s, t) ≤ α}. Then St is
weak-star closed subset of S and⋂

t∈T
St = ∅.
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Since S is weak-star compact, the finite intersection theorem
yields a finite set t1, . . . , tN such that

N⋂
n=1

Stn = ∅.

Now define a set

K := {r ∈ R
N | ∃s ∈ S, rn ≥ f (s, tn), n = 1, . . . , N}.

(3.6.11)

Then (α, . . . , α) ∈ K. We can check that K is a convex set
(Exercise 3.6.11). Applying the finite dimensional separation
theorem (see e.g., [237, Theorem 2.39]) we have that there
exists h := (h1, . . . , hN ) = 0 such that for any k ∈ K,

〈h, k〉 > 〈h, (α, . . . , α)〉. (3.6.12)
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Clearly, hn ≥ 0 (Exercise 3.6.12) and dividing by
∑N
n=1 hn

if necessary, we may assume that
∑N
n=1 hn = 1. Then for

any s ∈ S,

α <
N∑
n=1

hnf (s, tn) ≤ f
(
s,

N∑
n=1

hntn
)
.

It follows that

α ≤ inf
s∈S

f
(
s,

N∑
n=1

hntn
)
≤ sup
t∈T

inf
s∈S

f (s, t).

Letting α → infs∈S supt∈T f (s, t) we have

inf
s∈S

sup
t∈T

f (s, t) ≤ sup
t∈T

inf
s∈S

f (s, t). (3.6.13)

Since the opposite inequality
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inf
s∈S

sup
t∈T

f (s, t) ≥ sup
t∈T

inf
s∈S

f (s, t) (3.6.14)

always holds (Exercise 3.6.13), the proof is complete. •

Now we turn to subderivative representation of a su-
perderivative. We discuss the results in reflexive Banach
spaces which are Fréchet smooth.

Theorem 3.6.5. (Subderivative Representation of Superderiva-
tives) Let X be a reflexive Banach space, let f : X → R̄

be a lsc function and let x∗ ∈ ∂Ff (x). Then for any
ε > 0, one has

x∗ ∈ conv
{ ⋃
w∈Bε(x)

∂Ff (w)
}
+ εBX∗.
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Proof. Let x∗ ∈ ∂Ff (x). Then there exists a δ ∈ (0, ε/2)
and a C1 function g with g′(x) = x∗ such that f−g attains
a maximum at x over Bδ(x). Taking a smaller δ if necessary,
we may assume that y ∈ Bδ(x)\{x} implies that

f (x)− f (y) ≥ g(x)− g(y) > 〈x∗, x− y〉 − ε‖x− y‖.
(3.6.15)

Applying the multidirectional mean value inequality of The-
orem 3.6.1 (see also Exercise 3.6.1 (i)) with r := 〈x∗, x −
y〉−ε‖x−y‖ and the small positive constant δ, there exists
z ∈ Bδ([x, y]) ⊂ Bε(x) and z

∗ ∈ ∂Ff (z) such that

〈z∗, x− y〉 ≥ 〈x∗, x− y〉 − ε‖x− y‖. (3.6.16)

Writing y = x− δv for v ∈ B, we have

〈x∗ − z∗, v〉 ≤ ε. (3.6.17)
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Denote M :=
⋃
w∈Bε(x) ∂Ff (w). It follows that for any

v ∈ B,

inf
ξ∈convM

〈x∗ − ξ, v〉 ≤ inf
ξ∈M

〈x∗ − ξ, v〉 ≤ ε. (3.6.18)

Taking the supremum over v ∈ B we get

sup
v∈B

inf
ξ∈convM

〈x∗ − ξ, v〉 ≤ ε. (3.6.19)

In accordance with Theorem 3.6.4, this implies

inf
ξ∈convM

sup
v∈B

〈x∗ − ξ, v〉 = inf
ξ∈convM

‖x∗ − ξ‖ ≤ ε,

(3.6.20)

which completes the proof. •
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A symmetric result of representing subderivatives in terms
of superderivatives can be deduced from Theorem 3.6.5 by
replacing f with −f .
Theorem 3.6.6. (Superderivative Representation of Sub-
derivatives) Let X be a reflexive Banach space, let f : X →
R∪{−∞} be a usc function and let x∗ ∈ ∂Ff (x). Then,
for any ε > 0, one has

x∗ ∈ conv
{ ⋃
w∈Bε(x)

∂Ff (w)
}
+ εBX∗.

Proof. Exercise 3.6.15. •
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3.6.4 Commentary and Exercises

The multidirectional mean value theorems discussed in this
section were discovered by Clarke and Ledyaev [88]. A sim-
ilar but less general result was derived earlier by Luc [188].
Theorem 3.6.1 generalizes the original results in [88] by al-
lowing S to be unbounded. This theorem and its proof are
taken from [272]. Other generalizations and refinements have
been discussed in [10, 64, 170, 174, 178, 225]. Applications
to various fields can be found in [88, 91].
The solvability theorem first appeared in [82, 83]. Theo-

rem 3.6.3 is a Fréchet subdifferential version of [91, Theo-
rem 3.1] taken from [174]. This result is closely related to the
Graves–Lyusternik Theorem (Exercise 3.6.10) and implicit
multifunction theorems to be discussed later.
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Theorems 3.6.6 and 3.6.5 are reflexive Banach space ver-
sions of similar results in [89, 173] where one can also find fur-
ther generalizations and applications. In finite dimensional
spaces these results were known to Barron and Jensen ear-
lier in a less general form related to applications in viscosity
solutions to partial differential equations [11]. Theorem 3.6.4
is a special case of Borwein and Zhuang’s nonsymmetrical
minimax theorem in [72] (see Exercise 3.6.16).

Exercise 3.6.1. (i) Show that if S is bounded then the
term ε‖y − x‖ in (3.6.3) can be eliminated. (ii) Construct
an example showing that in general this term cannot be
dispensed with.

Exercise 3.6.2. Let f be an extended-valued lsc function
on Banach space X . Prove that

∧
[f ](S) = infS f if S is
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a compact subset of X or if f is uniformly continuous in a
neighborhood of S.

Exercise 3.6.3. Verify that in Theorem 3.6.1 one cannot
ensure z ∈ [x, S] by examining the following example: X =
R, x = 0, S := {1} and f (y) := −

√
|y| for y ≤ 0 and

f (y) := 1 for y > 0.

Exercise 3.6.4. Let f be a C1 function on R
n. Suppose

that, for any x ∈ Br(x̄), ‖f ′(x)‖ ≥ σ > 0. Prove that
supBr(x̄) f − infBr(x̄) f ≥ 2rσ.

∗Exercise 3.6.5.Deduce the approximate local sum rule of
Theorem 3.3.1 from Theorem 3.6.1. Reference: [255].

Exercise 3.6.6. Show that the decoupled infimum
∧
[f ](S)

in Theorem 3.6.1 cannot be replaced by infS f . Hint: Use
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Exercise 3.6.5 and Exercise 3.3.11 or 3.3.12 to get a contra-
diction.

Exercise 3.6.7.Deduce the following unidirectional mean
value inequality from Theorem 3.6.1.

Theorem 3.6.7. Let X be a Fréchet smooth Banach
space and let f : X → R ∪ {+∞} be a lsc function
bounded below. Then, for any r < f (y) − f (x) and any
ε > 0, there exist z ∈ Bε([x, y]) and z∗ ∈ ∂Ff (z) such
that

〈z∗, y − x〉 > r

and
f (z) ≤ min(f (x), f (y)) + |r| + ε.



358 3 Subdifferential Theory

∗Exercise 3.6.8. Prove the following refined multidirec-
tional mean value inequality and deduce from it both The-
orem 3.6.1 and Theorem 3.4.6. Reference: [272].

Theorem 3.6.8. (Refined Multidirectional Mean Value In-
equality) Let X be a Fréchet smooth Banach space. Let
S be a nonempty, closed and convex subset of X, let
f : X → R ∪ {+∞} be a lsc function and let x ∈ domf .
Suppose that for some h > 0, f is bounded below on
Bh([x, S]) and ∧

[f ](S)− f (x) > r.

Then there exists η > 0 such that for any ε > 0, there
exist u ∈ [x, S], d(u, S) > η, z ∈ Bε(u) and z

∗ ∈ ∂Ff (z)
such that
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‖z∗‖ × ‖u− z‖ < ε,

f (z) <
∧

[f ]([x, S]) + |r| + ε,

0 ≤ 〈z∗, w − u〉 + ε‖w − u‖, for all w ∈ [x, S],

and

r < 〈z∗, y − x〉 + ε‖y − x‖ for all y ∈ S.

Exercise 3.6.9. Prove Theorem 3.6.2. Hint: Apply Theo-
rem 3.6.1 with S = Br′(x̄), r

′ < r, x = x̄ and let r′ → r.
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Exercise 3.6.10. Prove the Graves–Lyusternik theorem
below.

Theorem 3.6.9. (Graves–Lyusternik) Let F : X×Y → Y
be a C1 mapping, let U be an open set of X × Y and let
(x̄, ȳ) ∈ U satisfy F (x̄, ȳ) = 0. Suppose that F ′

x(x̄, ȳ) is
onto. Then there exist open sets W ⊂ X and V ⊂ Y
containing x̄ and ȳ respectively, such that for some σ >
0, for any y ∈ V and x ∈ W ,

d(G(y); x) ≤ ‖F (x, y)‖
σ

.

Here G(y) = {x ∈ X | F (x, y) = 0}.
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Hint: Apply the solvability theorem to f (x, y) = ‖F (x, y)‖
and notice that when f (x, y) > 0, the Fréchet subdif-
ferential of f with respect to x at (x, y) contains only
F ′
x(x, y)

∗F (x, y)/‖F (x, y)‖, whose norm is bounded away
from 0 by some σ > 0 when (x, y) is sufficiently close to
(x̄, ȳ).

Exercise 3.6.11.Verify that the set K defined in (3.6.11)
is convex.

Exercise 3.6.12. Show that the vector h in (3.6.12) has
the property that hn ≥ 0, n = 1, . . . , N .
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Exercise 3.6.13. Let S and T be arbitrary sets and let
f : S × T → R. Show that

inf
s∈S

sup
t∈T

f (s, t) ≥ sup
t∈T

inf
s∈S

f (s, t).

Exercise 3.6.14. Let f be a lsc function. Suppose that
∂Ff (x) = ∅.
(i) Show that that f is continuous at x.
(ii) Give an example of such f that is not continuous in any

neighborhood of x.

Exercise 3.6.15. Deduce Theorem 3.6.6 from Theorem
3.6.5

∗Exercise 3.6.16. Prove the following general nonsymmet-
rical minimax theorem.
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Theorem 3.6.10. (Nonsymmetrical Minimax Theorem)
Let X and Y be topological vector spaces, let S be a com-
pact convex subset of X and let T be a convex subset of
Y . Suppose that f : S × T → R is a function convex in
s and concave in t and that for each t ∈ T , s → f (s, t)
is lsc. Then

inf
s∈S

sup
t∈T

f (s, t) = sup
t∈T

inf
s∈S

f (s, t).

3.7 Extremal Principles and Multi-Objective Optimization

An extremal principle of the form we discuss in this section
may be viewed as a local version of the Hahn–Banach sepa-
ration theorem for nonconvex sets. It is a powerful tool for
studying various forms of problems related to optimization.
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3.7.1 Extremal Systems and Examples

We start with the definition of an extremal system.

Definition 3.7.1. (Extremal System) Let X be a Banach
space and let Mn, n = 1, 2, . . . , N be finitely many metric
spaces. Consider closed-valued multifunctions Sn : Mn →
X, n = 1, 2, . . . , N . We say that x̄ is an extremal point of
the extremal system (S1, S2, . . . , SN ) at (m̄1, m̄2, . . . , m̄N )
provided that x̄ ∈ S1(m̄1) ∩ S2(m̄2) ∩ · · · ∩ SN (m̄N ) and
there is a neighborhood U of x̄ such that for any ε > 0,
there exists (m1,m2, . . . ,mN )

∈ Bε((m̄1, m̄2, . . . , m̄N ))\{(m̄1, m̄2, . . . , m̄N )},
with d(Sn(mn); x̄) < ε, n = 1, 2, . . . , N , and

U ∩ S1(m1) ∩ S2(m2) ∩ · · · ∩ SN (mN ) = ∅.
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The concept of an extremal system captures, from a geo-
metric perspective, the essence of many different structures
related to optimization. Exercises 3.7.5 and 3.7.6 provide
some useful examples.
3.7.2 Extremal Principles

The following extremal principle provides a convenient tool
for deriving necessary optimality conditions. A limiting form
of the extremal principle in finite dimensional Banach spaces
can be found in Theorem 5.2.27 in Section 5.2.
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Theorem 3.7.2. (Extremal Principle) Let X be a Fréchet
smooth Banach space and letMn, n = 1, 2, . . . , N be met-
ric spaces. Consider closed-valued multifunctions Sn : Mn →
X, n = 1, 2, . . . , N . Suppose that x̄ is an extremal point
of the extremal system (S1, S2, . . . , SN ) at (m̄1, m̄2, . . . , m̄N ).
Then for any ε > 0, there exist mn ∈ Bε(m̄n), xn ∈
Bε(x̄), n = 1, 2, . . . , N and

x∗n ∈ NF (Sn(mn); xn) + εBX∗, n = 1, 2, . . . , N

such that max{‖x∗n‖ | n = 1, . . . , N} ≥ 1 and

x∗1 + x∗2 + · · · + x∗N = 0.
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Proof. Let U be a neighborhood of x̄ as in the definition of
an extremal point. Without loss of generality we may assume
that U = Br(x̄). Choose ε

′ ∈ (0, ε/2) satisfying (Exercise
3.7.1)

4N2[(4N2 + 1)ε′ +N (ε′)2] < ε2/4

and let m1,m2, . . . ,mN be as in the definition of the ex-
tremal point for ε = ε′. Let s1 be as in Lemma 3.2.2 and
define

f1(y1, y2, . . . , yN ) := s1(y1, y2, . . . , yN ),

f2(y1, y2, . . . , yN ) :=

N∑
n=1

ιSn(mn)(yn) + r(y1, . . . , yN ),

where
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r(y1, . . . , yN ) :=

N∑
n=1

∥∥yn − x̄
∥∥2.

Choose y′n ∈ Sn(mn), n = 1, 2, . . . , N such that ‖y′n−x̄‖ <
d(Sn(mn); x̄) + ε′ < 2ε′. Then∧

[f1, f2](X
N ) ≤ (f1 + f2)(y

′
1, y

′
2, . . . , y

′
N ) < 4N2ε′ +N (ε′)2.

Applying the nonlocal approximate sum rule of Theorem
3.2.3 we have that there exist x = (x1, . . . , xN ), z =
(z1, . . . , zN ), −(x∗1, . . . , x

∗
N ) ∈ ∂Ff1(z) = ∂Fs1(z), and

(z∗1 , . . . , z
∗
N ) ∈ ∂Ff2(x) such that

‖x− z‖ < ε′, (3.7.1)
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f1(z) + f2(x) <
∧

[f1, f2](X
N ) + ε′ < (4N2 + 1)ε′ +N (ε′)2,

(3.7.2)

and

‖(z∗1 , . . . , z∗N )− (x∗1, . . . , x
∗
N )‖ < ε′. (3.7.3)

Note that (3.7.2) implies that xn ∈ Sn(mn) and

r(x) =
N∑
n=1

∥∥xn − x̄
∥∥2 < (4N2 + 1)ε′ +N (ε′)2.(3.7.4)

Consequently,

‖r′(x)‖ < 2N
√
(4N2 + 1)ε′ +N (ε′)2 < ε/2. (3.7.5)

Since

∂Ff2(x) = NF (S1(m1); x1)×· · ·×NF (SN (mN ); xN )+r′(x),
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combining (3.7.3) and (3.7.5) we have

x∗n ∈ NF (Sn(mn); xn) + εBX∗.

Finally, it follows from Lemma 3.2.2 that x∗1+x
∗
2+· · ·+x∗N =

0 and max{‖x∗n‖ | n = 1, . . . , N} ≥ 1, which completes the
proof. •

The following corollary is obvious yet often most conve-
nient in applications.
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Corollary 3.7.3. Let X be a Fréchet smooth Banach
space and let Mn, n = 1, 2, . . . , N be metric spaces. Con-
sider closed-valued multifunctions Sn : Mn → X, n =
1, 2, . . . , N . Suppose that x̄ is an extremal point of the
extremal system (S1, S2, . . . , SN ) at (m̄1, m̄2, . . . , m̄N ).
Then for any ε > 0, there exist mn ∈ Bε(m̄n), xn ∈
Bε(x̄) and x∗n ∈ NF (Sn(mn), xn), n = 1, 2, . . . , N such
that max{‖x∗n‖ | n = 1, . . . , N} ≥ 1− ε and

‖x∗1 + x∗2 + · · · + x∗N‖ < ε.

Proof. Exercise 3.7.4. •
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Fig. 3.3. The extremal principle for two fixed sets.

Figure 3.3 illustrates the geometry of Corollary 3.7.3 in the
case of two fixed sets as described in and below Definition
3.7.5.
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3.7.3 Multi-Objective Optimization

Practical decision problems often involve many factors and
can be described by a vector-valued decision function whose
components describe several competing objectives. The com-
parison between different values of the decision function is
determined by a preference of the decision maker.
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We model such problems by using a Banach space Y with
a nonreflexive preference ≺ to represent the image space of
the objective function. LetX be a Banach space representing
the decision variables, let S be a subset of X representing
the feasible decisions and let f : X → Y be the objective
function. Then a multi-objective optimization problem can
be formulated as:

M minimize f (x)

subject to x ∈ S.

Here minimization is with respect to the preference ≺.
Namely, we say that x̄ is a solution to problem M if there
is no x ∈ S near x̄ such that f (x) ≺ f (x̄).
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We will derive a subdifferential necessary optimality con-
dition for a local solution to problem M. We will denote
the level set at y ∈ Y with respect to the preference ≺ by
l(y) := {z ∈ Y | z ≺ y}.
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Theorem 3.7.4. (Necessary Optimality Condition for Multi-
objective Optimization) Let X and Y be Fréchet smooth
Banach spaces and let f : X → Y be a Lipschitz map-
ping. Suppose that x̄ is a solution of the multi-objective
optimization problem M. Then for any positive num-
ber ε > 0, there exist x0, x1 ∈ Bε(x̄), y0, y1 ∈ Bε(f (x̄)),
y∗ ∈ NF (l(y0), y1) with ‖y∗‖ = 1 and x∗ ∈ NF (S; x1)
such that

0 ∈ x∗ + ∂F 〈y∗, f〉(x0) + εBX∗.
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Proof. Define M1 := l(f (x̄)) ∪ {f (x̄)}, M2 := {0},
S2(0) := {(x′, f (x′)) : x′ ∈ X} and S1(y) := S × l(y)
for any y ∈ M1. Then (x̄, f (x̄)) is an extremal point of
(S1, S2) at (f (x̄), 0) (Exercise 3.7.6). Let ε be an arbi-
trary positive number and choose ε′ < min(2εLf/(1 +
Lf ), ε/2, 1/4), where Lf is the Lipschitz constant of f . By
the approximate extremal principle of Corollary 3.7.3 there
exist y0 ∈ Bε′(f (x̄)), (xi, yi) ∈ Bε′(x̄, f (x̄)), (x

∗
1, y

∗
1) ∈

NF (S1(y0), (x1, y1)) and (x∗2, y
∗
2) ∈ NF (S2(0), (x2, y2))

such that max{‖(x∗1, y∗1)‖, ‖(x∗2, y∗2)‖} > 1 and

‖(x∗1, y∗1) + (x∗2, y
∗
2)‖ < ε′. (3.7.6)

It follows that

‖(x∗1, y∗1)‖, ‖(x∗2, y∗2)‖ > 1− 2ε′ > 1/2. (3.7.7)
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By the definition of a Fréchet normal cone we have that for
(x, y) ∈ S2(0) sufficiently close to (x2, y2),

0 ≥ 〈x∗2, x− x2〉 + 〈y∗2 , y − y2〉 − ε′‖(x− x2, y − y2)‖.
Observing that y2 = f (x2) and y = f (x), we have

x→ −
(
〈x∗2, x−x2〉+〈y∗2 , f (x)−f (x2)〉−ε′‖(x−x2, f (x)−f (x2))

attains a local minimum 0 at x = x2. Combining the local
sum rule of Theorem 3.3.1 and the chain rule of Theorem
3.5.1 there exists x0 ∈ Bε′(x2) ⊂ B2ε′(x̄) such that

0 ∈ −x∗2 − ∂F 〈y∗2 , f〉(x0) + (1 + Lf )ε
′BX∗. (3.7.8)

It follows from (3.7.6) and (3.7.8) that

0 ∈ x∗1 + ∂F 〈y∗1 , f〉(x0) + 2(1 + Lf )ε
′BX∗. (3.7.9)
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It follows from (3.7.7) and (3.7.9) that ‖y∗1‖ > 1/4Lf . Di-
viding (3.7.9) by ‖y∗1‖ and set x∗ := x∗1/‖y∗1‖ ∈ NF (S; x1)

and y∗ := y∗1/‖y∗1‖ ∈ NF (l(y0); y1) we have

0 ∈ x∗ + ∂F 〈y∗, f〉(x0) + εBX∗,

as was to be shown. •

So far we have discussed a multi-objective optimization
problem with only set constraints. This is not a severe re-
striction. In fact, consider a more general problem with in-
equality, equality and set constraints:
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Mg minimize f (x)

subject to fn(x) ≤ 0, n = 1, 2, . . . , N,

fn(x) = 0, n = N + 1, . . . ,M,

x ∈ S.

Here, S is a closed subset of X , fn : X → R ∪ {+∞} , n =
1, 2, . . . , N are lsc functions and fn : X → R, n = N +
1, . . . ,M are continuous functions. Denote the feasible set
by S1. Note that by the definition of the Fréchet normal cone
x∗ ∈ NF (S1; x) implies that 〈x∗, y−x〉− (ε/2)‖y−x‖ ≤ 0
for all y ∈ S1 sufficiently close to x. Then x is a local solution
to the following minimization problem
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minimize − 〈x∗, y − x〉
subject to fn(y) ≤ 0, n = 1, 2, . . . , N,

fn(y) = 0, n = N + 1, . . . ,M,

y ∈ S.

Thus, we can deduce a necessary optimality condition for
problem Mg by combining Theorem 3.7.4 and Theorem
3.3.7. We leave the detail as an exercise.
3.7.4 Commentary and Exercises

The term extremal principle appeared in Mordukhovich
[200] while the essence of this result goes back to Mor-
dukhovich [195] and Kruger–Mordukhovich [167]. Extremal
systems were defined first for fixed sets as follows.
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Definition 3.7.5. (Extremal System of Fixed Sets [167])
Let Sn, n = 1, . . . , N be closed subsets of X. We say
(S1, . . . , SN ) is an extremal system and x̄ is an extremal
point provided that there exists a neighborhood U of x̄
such that for any ε > 0, there exist mn ∈ εBX, n =
1, . . . , N such that

U ∩ (S1 +m1) ∩ · · · ∩ (SN +mN ) = ∅.
In [275], Zhu observed that the variational proof of the ex-

tremal principle actually applied to the separation of sets
formed by more general deformation and used this fact to
discuss necessary optimality conditions for multi-objective
optimal control problems. Later a similar approach was used
to derive necessary optimality conditions for constrained
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multi-objective optimization problems [269]. The general
definition of an extremal system and its applications to
multi-objective optimization problems in this section follow
[210]. This concept of a general extremal system covers a
wide variety of problems related to optimization and game
theory.

Exercise 3.7.1.Find an explicit estimate for ε′ in the proof
of Theorem 3.7.2 in terms of ε and N .

Exercise 3.7.2. Show that the extremal system of fixed
sets defined in Definition 3.7.5 gives rise naturally to an ex-
tremal system.

Exercise 3.7.3.Define S1(s1) := {(x, y) | |x|−2|y| ≥ s1}
and S2(s2) := {(x, y) | |y| − 2|x| ≥ s2}.
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(i) Show that (S1(s1), S2(s2)) is an extremal system at
(0, 0).

(ii) Show that (S1(0), S2(0)) is not an extremal system of
fixed sets.

Exercise 3.7.4. Prove Corollary 3.7.3.

Exercise 3.7.5. (ConstrainedMinimization Problem) Con-
sider the problem of minimizing f (x) subject to x ∈ C
where f is a lsc function and C a closed subset of Ba-
nach space X . Let x̄ be a solution of this problem. Define
S1 = epif and S2 = C × (−∞, f (x̄)]. Show that (x̄, f (x̄))
is an extremal point for the extremal system (S1, S2) in the
sense of Definition 3.7.5.
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Exercise 3.7.6. Suppose that x̄ is a solution to M. Define
M1 := l(f (x̄)) ∪ {f (x̄)}, M2 := {0}, S1(y) := S × l(y)
for y ∈ M1 and S2(0) := {(x′, f (x′)) | x′ ∈ X}. Show
that (x̄, f (x̄)) is an extremal point of the extremal system
(S1, S2) at (f (x̄), 0).

Exercise 3.7.7. (Two Person Game) Consider a two player
game in which the players A and B have strategy sets C
and D which are closed subsets of Banach spaces X and Y ,
respectively. Let f : X × Y → R be the payoff of the game.
The objective of player A is to maximize the payoff while
that of B is to minimize it. In other words, we consider the
game problem of

G max
x∈C

f (x, y) and min
y∈D

f (x, y)
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We say (x̄, ȳ) is a solution to the game or a saddle pair
provided that for all (x, y) ∈ C × D, f (x, ȳ) ≤ f (x̄, ȳ) ≤
f (x̄, y).
Show that (x̄, f (x̄, ȳ), ȳ, f (x̄, ȳ)) is an extremal point for

the extremal system (S1, S2) at (f (x̄, ȳ), f (x̄, ȳ)). (For dis-
cussions of the relevant game theory see the classic book
[261]).

Exercise 3.7.8.Derive necessary optimality conditions for
problem Mg.



4

Variational Techniques in Convex Analysis

Convex analysis is now a rich branch of modern analysis.
The purpose of this chapter is merely to point out the appli-
cations of variational techniques in convex analysis. In most
of the cases direct proofs in the convex case lead to sharper
results.
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4.1 Convex Functions and Sets

4.1.1 Definitions and Basic Properties

Let X be a Banach space. We say that a subset C of X
is convex if, for any x, y ∈ C and any λ ∈ [0, 1], λx +
(1−λ)y ∈ C. We say an extended-valued function f : X →
R ∪ {+∞} is convex if its domain is convex and for any
x, y ∈ dom f and any λ ∈ [0, 1], one has

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y).

We call a function f : X → [−∞,+∞) concave if −f is
convex. In some sense convex functions are the simplest func-
tions next to linear functions.
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Convex functions and convex sets are intrinsically related.
For example, if C is a convex set then ιC and dC are con-
vex functions. On the other hand if f is a convex function
then epi f and f−1((−∞, a]), a ∈ R are convex sets (Exer-
cises 4.1.1, 4.1.2 and 4.1.3). Two other important functions
related to a convex set C are the gauge function defined by

γC(x) := inf{r > 0 | x ∈ rC},
and the support function defined on the dual space X∗ by

σC(x
∗) = σ(C; x∗) := sup{〈x, x∗〉 | x ∈ C}.

Several useful properties of the gauge function and the sup-
port function are discussed in Exercises 4.1.6 and 4.1.10.
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4.1.2 Local Lipschitz Property of Convex Functions

Lower semicontinuous convex functions are actually locally
Lipschitz in the interior of their domains.
This is, in fact, a combination of two facts: (a) a con-

vex function f locally bounded above is locally Lipschitz in
int dom f and (b) a lsc convex function f is locally bounded
above in int dom f . Fact (a) is quite useful itself and we
describe it in two propositions.

Proposition 4.1.1. Let X be a Banach space and let
f : X → R ∪ {+∞} be a convex function. Suppose that
f is locally bounded above at x̄ ∈ D := int(dom f ). Then
f is locally bounded at x̄.
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Proof. Suppose f is bounded above byM , say, inBr(x) ⊂
int(dom f ) for some r > 0, then it is bounded below in
Br(x). Indeed, if y ∈ Br(x) then so is 2x− y and

f (x) ≤ 1

2
[f (y) + f (2x− y)] ≤ 1

2
[f (y) +M ]

so f (y) ≥ 2f (x)−M for all y ∈ Br(x). •

Proposition 4.1.2. Let X be a Banach space and let
f : X → R ∪ {+∞} be a convex function. Suppose that
f is locally bounded at x̄ ∈ D := int(dom f ). Then f is
locally Lipschitz at x̄.
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Proof. Suppose that |f | is bounded by M over B2r(x̄) ⊂
D. Consider distinct points x, y ∈ Br(x̄). Let a = ‖y − x‖
and let z = y + (r/a)(y − x). Then z ∈ B2r(x̄). Since

y =
a

a + r
z +

r

a + r
x

is a convex combination lying in B2r(x̄), we have

f (y) ≤ a

a + r
f (z) +

r

a + r
f (x).

Thus,

f (y)− f (x) ≤ a

a + r
(f (z)− f (x)) ≤ 2Ma

r
=

2M

r
‖y − x‖.

Interchange x and y gives

|f (y)− f (x)| ≤ 2M

r
‖y − x‖.
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•

Theorem 4.1.3. (Lipschitz Property of Convex Functions)
Let X be a Banach space and let f : X → R ∪ {+∞}
be a lsc convex function. Then f is locally Lipschitz on
int(dom f ).

Proof. By Propositions 4.1.1 and 4.1.2 we need only
show f is locally bounded above. For each natural num-
ber i, define Di := {x ∈ X : f (x) ≤ i}. The sets Di
are closed and D ⊂

⋃∞
i=1Di. Since D is an open set, by

Baire’s category theorem, we must have for some i, intDi
is nonempty. Suppose that Bs(x) ⊂ int Di. Then f is
bounded above by i over Bs(x). Also since D is open, if
y ∈ D and y = x, then there exist μ > 1 such that
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z := x + μ(y − x) ∈ D. Let λ = 1/μ ∈ (0, 1). The set
U = {λz + (1− λ)b : b ∈ Bs(x)} is a neighborhood of y in
D. For any point u = λz+(1−λ)b ∈ U (where b ∈ Bs(x))
we have

f (u) ≤ λf (z) + (1− λ)i,

so f is bounded above in U and therefore locally Lipschitz
at y. •

4.1.3 Convex Series Closed Sets

The condition in Theorem 4.1.3 can be weakened. To under-
stand this deeper result we need the following concepts.
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Definition 4.1.4. (Convex Series Closed and Compact)
Let X be a Banach space and let C be a subset of
X. We say that C is convex series closed (cs-closed) if
x̄ =

∑∞
i=1 λixi with λi ≥ 0,

∑∞
i=1 λi = 1 and xi ∈ C

implies x̄ ∈ C. We say that C is convex series compact
(cs-compact) if for any sequence xi ∈ C, i = 1, 2, . . . , and
any sequence λi ≥ 0, i = 1, 2, . . . , with

∑∞
i=1 λi = 1 we

have
∑∞
i=1 λixi converges to a point of C.

Some simple yet useful facts related to the cs-closed and
cs-compact sets are given below.

Lemma 4.1.5.Closed convex sets, open convex sets and
Gδ convex sets in a Banach space are cs-closed.



396 4 Convex Analysis

Proof. We prove the lemma for open convex sets and the
proofs for the other two cases are left as exercises. Let C be
a convex open set in a Banach space and let x̄ =

∑∞
i=1 λixi

with λi ≥ 0,
∑∞
i=1 λi = 1 and xi ∈ C. We show that x̄ ∈ C.

Suppose on the contrary that x̄ ∈ C. Then according to
the Hahn–Banach separation theorem there exists a nonzero
linear functional x∗ ∈ X∗ such that 〈x∗, c〉 > 〈x∗, x̄〉 for all
c ∈ C. In particular, 0 > 〈x∗, x̄ − xi〉 for i = 1, 2, . . . , and
therefore for any λi > 0, 0 > 〈x∗, λi(x̄− xi)〉. This leads to
0 > 〈x∗, x̄−

∑∞
i=1 λixi〉 = 0, a contradiction. •
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Lemma 4.1.6. Let X and Y be two Banach spaces and
let A : X → Y be a continuous linear mapping. Suppose
that C is a cs-compact subset of X. Then A(C) is cs-
closed.

Proof. Exercise 4.1.13. •

An important fact about cs-closed sets is that they share
their interior points with their closure.

Theorem 4.1.7. (OpenMapping Theorem: cs-Closed Sets)
Let S be a cs-closed subset of a Banach space X. Then

int S = int S.

Proof. We consider the nontrivial case when int S = ∅.
Let x ∈ int S. Shifting S and multiplying it by a constant



398 4 Convex Analysis

if necessary we may assume (see Exercise 4.1.16) that

0 = x ∈ BX ⊂ S ⊂ S +
1

2
BX. (4.1.1)

For i = 1, 2, . . . multiplying (4.1.1) by 1/2i we have

1

2i
BX ⊂ 1

2i
S +

1

2i+1
BX. (4.1.2)

It follows from (4.1.2) that for any i = 1, 2, . . . ,

1

2
BX ⊂ 1

2
S +

1

4
S + · · · + 1

2i
S +

1

2i+1
BX. (4.1.3)

That is to say, for any u ∈ BX/2 there exist s1, . . . , si ∈ S
such that

u ∈ 1

2
s1 +

1

4
s2 + · · · + 1

2i
si +

1

2i+1
BX. (4.1.4)
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Taking limits as i→ ∞ in (4.1.4) we have u =
∑∞
i=1 si/2

i ∈
S because S is cs-closed. Thus, 0 ∈ 2−1BX ⊂ S, and there-
fore intS ⊂ intS. Hence int S = int S. •

We now turn to the promised sharper results on the local
Lipschitz property for a convex function. Let S be a subset
of a Banach space X . We say s is in the core of S, denote
s ∈ core(S), provided that

⋃
λ>0 λ(S − s) = X . Clearly,

int(S) ⊂ core(S) and the inclusion could be proper (Exer-
cises 4.1.17 and 4.1.18). Our next result says that if S is the
domain of a lsc convex function then the interior and the
core of S coincide. The importance of this result is due to
the fact that it is much easier to verify that a point belongs
to the core than to the interior.
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Theorem 4.1.8. Let X be a Banach space and let
f : X → R ∪ {+∞} be a lsc convex function. Then

core(dom f ) = int(dom f ).

Proof. We need only show that

core(dom f ) ⊂ int(dom f ).

Suppose that x̄ ∈ core(dom f ). For each natural number i,
define Di := {x ∈ X : f (x) ≤ i}. The sets Di are closed
and

X =

∞⋃
j=1

j(dom f − x̄) =
∞⋃
j,i=1

j(Di − x̄). (4.1.5)

By Baire’s category theorem, int(Di − x̄) (and therefore
int Di) is nonempty for some i. Suppose that Br(x) ⊂
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int Di. Then f is bounded above by i over Br(x). More-
over, by (4.1.5) there exist integers j, k > 0 such that
x̄ − x ∈ j(Dk − x̄). Letting μ = (1 + 1/j), we have
z := x+μ(x̄−x) ∈ Dk. Note thatDk andDi are contained
in the convex set Dmax(i,k). Let λ = 1/μ ∈ (0, 1). The set

U = {λz + (1− λ)b : b ∈ Br(x)} is a neighborhood of x̄ in
Dmax(i,k) ⊂ dom f . •

4.1.4 Commentary and Exercises

Although there is a long history of using the convexity of
both functions and sets in analysis, the systematical study
of convex functions and sets starts in the 1950’s associated
with the names of Fenchel, Moreau, and Rockafellar. A clas-
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sical reference for convex analysis is Rockafellar [229]. For a
nice short introduction that provides details missed in this
chapter we recommend Phelps [221]. More discussion on con-
vex series closed and compact sets can be found in Jameson
[152].

Exercise 4.1.1. Let C be a convex subset of a Banach
space. Show that dC and ιC are convex functions.

Exercise 4.1.2. Let f be a convex function on a Banach
space. Show that for any a ∈ R, f−1((−∞, a]) is a convex
set.

Exercise 4.1.3. LetX be a Banach space and let f : X →
R∪ {+∞} be an extended-valued function. Show that f is
convex if and only if epi f is a convex subset of X × R.
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Exercise 4.1.4. Show that the intersection of a family
of arbitrary convex sets is convex. Conclude that f (x) :=
sup{fα(x) : α ∈ A} is convex (and lsc) when {fα}α∈A is a
collection of convex (and lsc) functions.

Exercise 4.1.5. Calculate the gauge function for C :=
epi 1/x∩R

2
+ and conclude that a gauge function is not nec-

essarily lsc.

Exercise 4.1.6. Let C be a convex subset of a Banach
space X and let γC be the gauge function of C.

(i) Show that γC is convex and when 0 ∈ C it is subaddi-
tive.

(ii) Show that if x ∈ coreC then dom γC−x = X .
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(iii) Suppose 0 ∈ coreC. Prove that clC ⊂ {x ∈ X |
γC(x) ≤ 1}.

Exercise 4.1.7. Let X be a Banach space and let C be a
cs-closed subset of X . Prove that intC = coreC.

Exercise 4.1.8. Let X be a Banach space and let C be
a convex subset of X . Suppose that C is cs-closed and 0 ∈
coreC.

(i) Show that intC = {x ∈ X | γC(x) < 1}.
(ii) Deduce that γC is defined on X and is continuous.

∗Exercise 4.1.9. Construct an example showing that the
conclusion in Exercise 4.1.8 fails when C is not cs-closed.
Hint: Use the existence of a Hamel basis in a vector space to
show that in every infinite dimensional Banach space there is
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a finite linear functional, φ which is (everywhere) discontinu-
ous. Deduce that C := φ−1[−1, 1] is a symmetric convex set
with a nonempty core that contains 0 but an empty interior.
Yet γC(0) = 0 < 1.

Exercise 4.1.10. Let C1 and C2 be closed convex subsets
of a Banach space X . Then C1 ⊂ C2 if and only if, for any
x∗ ∈ X∗, σ(C1; x

∗) ≤ σ(C2; x
∗). Thus, a closed convex set

is characterized by its support function.

Exercise 4.1.11. Prove that if f is a convex lsc function
then ∂f (x) = ∂Ff (x).

Exercise 4.1.12.Prove Lemma 4.1.5 for the cases of closed
convex sets and convex Gδ sets.

Exercise 4.1.13. Prove Lemma 4.1.6.
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Exercise 4.1.14. Let X be a Banach space and let C be
a subset of X . Show that C is cs-compact if and only if C
is cs-closed and bounded. In particular, both the open and
closed unit balls in a Banach space are cs-compact.

Exercise 4.1.15. Let X be a Banach space and let A and
B be subsets of X . Suppose that A is cs-compact and B is
cs-closed. Then A + B and conv(A ∪ B) are cs-closed.

Exercise 4.1.16. Suppose that S is cs-closed and x̄ ∈ S.
Show that for any δ > 0 (S − x̄)/δ is also cs-closed.

Exercise 4.1.17. Let S be a subset of a Banach space.
Show that int(S) ⊂ core(S).

Exercise 4.1.18. (Core Versus Interior) Consider the set
in R

2
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S = {(x, y) | y = 0 or |y| ≥ x2}.
Prove 0 ∈ core(S) \ int(S).
Exercise 4.1.19. Show that in the proof of Theorem 4.1.8
the set U can be expressed explicitly as U = Br(1−λ)(x̄).

4.2 Subdifferential

4.2.1 The Subdifferential and the Normal Cone

LetX be a Banach space. We define the convex subdifferen-
tial of a convex function f : X → R∪{+∞} at x ∈ dom f
by

∂f (x) := {x∗ ∈ X∗ : f (y)− f (x) ≥ 〈x∗, y − x〉, for y ∈ X},
(4.2.1)

and we define its domain
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dom ∂f = {x ∈ X | ∂f (x) = ∅}.
An element of ∂f (x) is called a subgradient of f at x. Al-
though the domain of a convex function is always convex it
is not necessarily so for dom ∂f (see Exercise 4.2.6).
For a closed convex set C ⊂ X , we define the normal cone

of C at x̄ ∈ C by N (C; x̄) = ∂ιC(x̄). Sometimes we will
also use the notation NC(x̄) = N (C; x̄). A useful charac-
terization of the normal cone is x∗ ∈ N (C; x) if and only if,
for all y ∈ C, 〈x∗, y − x〉 ≤ 0 (Exercise 4.2.7). The follow-
ing easy observation suggests the fundamental significance
of subdifferential in optimization.
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Proposition 4.2.1. (Subdifferential at Optimality) Let X
be a Banach space and let f : X → R∪{+∞} be a proper
convex function. Then the point x̄ ∈ X is a (global)
minimizer of f if and only if the condition 0 ∈ ∂f (x̄)
holds.

Proof. Exercise 4.2.9. •

Alternatively put, minimizers of f correspond exactly to
“zeroes” of ∂f . It is obvious that ∂f (x) ⊂ ∂Ff (x) and we
actually have equality (Exercise 4.2.10).
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We have seen that a general lsc function in a Fréchet
smooth Banach space is densely subdifferentiable in its do-
main. For convex functions we have a similar but much
stronger result: the subdifferential of a lsc convex function
is nonempty at every point in core(dom f ). This will be the
focus of the next two subsections.
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4.2.2 Directional Derivatives of Convex Functions

One useful tool in analyzing the convex subdifferential is
the directional derivative. Let f : X → R ∪ {+∞} and let
x ∈ dom f and d ∈ X . The directional derivative of f at x
in the direction of d is defined by

f ′(x; d) := lim
t→0+

f (x + td)− f (x)

t

when this limit exists. It turns out that the directional
derivative of a convex function is again convex. Furthermore,
the directional derivative has an even stronger property of
characterizing subgradients as seen in Proposition 4.2.5.
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If a convex function f satisfies the stronger condition

f (λx + μy) ≤ λf (x) + μf (y) for all x, y ∈ X, λ, μ ≥ 0

we say f is sublinear. If f (λx) = λf (x) for all x in X and
λ ≥ 0 then f is positively homogeneous; in particular this
implies f (0) = 0. (Here we use the convention 0× (+∞) =
0.) If f (x + y) ≤ f (x) + f (y) for all x and y in X then
we say f is subadditive. It is an easy exercise to show that
these two properties characterize a sublinear function.

Proposition 4.2.2. (Sublinearity) Let X be a Banach
space and let f : X → R ∪ {+∞} be an extended-valued
function. Then f is sublinear if and only if it is positively
homogeneous and subadditive.

Proof. Exercise 4.2.11. •
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It is immediate that if the function f is sublinear then
−f (x) ≤ f (−x) for all x in X . The linearity space of a
sublinear function f is the set

lin f = {x ∈ X | −f (x) = f (−x)}.
The following result shows this set is a subspace.

Proposition 4.2.3. (Linearity Space) Let X be a Banach
space and let f : X → R∪{+∞} be a sublinear function.
Then, the linearity space lin f of f is the largest subspace
of X on which f is linear.

Proof. It is clear that if Y is a subspace on which f is
linear then Y ⊂ lin f . We need only show that lin f is a
subspace. Let x ∈ lin f and a ∈ R. Since f is homogeneous
we have
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f (ax) = |a|f
( a

|a|x
)
= −|a|f

(
− a

|a|x
)

= −f
(
|a|

(
− a

|a|x
))

= −f (−ax),

so that ax ∈ lin f . Let x, y ∈ lin f . Since f is subadditive
we have

f (x + y) ≤ f (x) + f (y) = −f (−x)− f (−y)
≤ −f (−x− y) = −f (−(x + y)),

so that x + y ∈ lin f . Thus, lin f is a subspace. •

It is easy to check that if the point x̄ lies in the core of the
domain of a convex function f then the directional derivative
f ′(x̄; ·) is well-defined and positively homogeneous.
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Proposition 4.2.4. (Sublinearity of the Directional Deriva-
tive) Let X be a Banach space and let f : X → R∪{+∞}
be a convex function. Suppose that x̄ ∈ core(dom f ).
Then the directional derivative f ′(x̄; ·) is everywhere fi-
nite and sublinear.

Proof. For d in X and nonzero t in R, define

g(d; t) =
f (x̄ + td)− f (x̄)

t
.

By convexity we deduce (Exercise 4.2.1) for 0 < t ≤ s ∈ R,
the inequality

g(d;−s) ≤ g(d;−t) ≤ g(d; t) ≤ g(d; s).

Since x̄ lies in core(dom f ), for small s > 0 both g(d;−s)
and g(d; s) are finite, so as t ↓ 0 we have
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+∞ > g(d; s) ≥ g(d; t) ↓ f ′(x̄; d) ≥ g(d;−s) > −∞.

(4.2.2)

Again by convexity we have for any directions d and e in X
and real t > 0,

g(d + e; t) ≤ g(d; 2t) + g(e; 2t).

Now letting t ↓ 0 we see that f ′(x̄; ·) is subadditive. The
positive homogeneity is easy to check. •

Next we show that the directional derivative characterizes
subgradients. That explains why it is useful in analyzing the
subdifferential.
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Proposition 4.2.5. (Subgradients and Directional Deriva-
tives) Let X be a Banach space, let f : X → R ∪ {+∞}
be a convex function and let x̄ ∈ dom f . Then x∗ ∈ X∗

is a subgradient of f at x̄ if and only if it satisfies
x∗ ≤ f ′(x̄; ·).
Proof. For the “only if” part, let x∗ ∈ ∂f (x̄). Then, for
any h ∈ X and t > 0,

〈x∗, th〉 ≤ f (x̄ + th)− f (x̄).

Dividing by t and taking limits as t→ 0 we have 〈x∗, h〉 ≤
f ′(x̄;h).
For the reverse direction, it follows from the proof of Propo-

sition 4.2.4 that for any h ∈ X and t > 0,
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〈x∗, h〉 ≤ f ′(x̄;h) ≤ f (x̄ + th)− f (x̄)

t
.

Let x be an arbitrary element of X . Setting h = x− x̄ and
t = 1 in the above inequality we have

〈x∗, x− x̄〉 ≤ f (x)− f (x̄),

that is x∗ ∈ ∂f (x̄). •

4.2.3 Nonemptiness of the Subdifferential

The main result of this section is that the set of subgradients
of a convex function is usually nonempty. We prove this
by actually constructing a subgradient. The idea is rather
simple.
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We recursively construct a decreasing sequence of sublinear
functions which, after translation, minorize f . At each step
we guarantee one extra direction of linearity. The basic step
is summarized in the following lemma.

Lemma 4.2.6.Let X be a Banach space and let p : X →
R ∪ {+∞} be a sublinear function. Suppose that d ∈
core(dom p). Then the function q(·) = p′(d; ·) satisfies the
conditions

(i) q(λd) = λp(d) for all real λ,
(ii) q ≤ p,
(iii) lin q ⊃ lin p + span{d}, and
(iv) p = q on lin p.

Proof. Exercise 4.2.12. •
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With these tools we are now ready for the main result,
which gives conditions guaranteeing the existence of a sub-
gradient of a convex function. Proposition 4.2.5 showed how
to identify subgradients from directional derivatives; this
next result shows how to move in the reverse direction. For
an extended-valued function f we use cont f to denote the
set of all points where f is finite and continuous.
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Theorem 4.2.7. (Max Formula) Let X be a Banach
space, d ∈ X and let f : X → R ∪ {+∞} be a convex
function. Suppose that either

Q1 x̄ ∈ core(dom f ) and f is lsc or
Q2 x̄ ∈ cont f .

Then,

f ′(x̄; d) = max{〈x∗, d〉 : x∗ ∈ ∂f (x̄)}. (4.2.3)

Proof. In view of Proposition 4.2.5, we simply have to
show that for any fixed d in X there is a subgradient x∗

satisfying 〈x∗, d〉 = f ′(x̄; d).
Let p(·) := f ′(x̄; ·). Then p is a sublinear function de-

fined on X . Consider the family S of all sublinear functions
dominated by p and coinciding with p at d, with a partial



422 4 Convex Analysis

order defined by: p2 ≺ p1 if and only if lin p2 ⊂ lin p1 and
p1 ≤ p2 with equality holding on lin p2. We can check that
any chain {pa}a∈A ⊂ S has an upper bound p̄ := infa∈A pa
defined on

⋃
a∈A dom(pa) (Exercise 4.2.13). Thus, by Zorn’s

lemma S has a maximum element x∗. By Lemma 4.2.6
we must have lin x∗ = X . Under the constraint qualifi-
cation condition Q1 or Q2 f is locally Lipschitz at x̄. When
Q1 holds this follows from Theorems 4.1.3 and 4.1.8 and
when Q2 holds this follows directly from Proposition 4.1.2.
Let L be a Lipschitz constant of f in a neighborhood of
x̄. Then |f ′(x̄;h)| ≤ L‖h‖ for all h ∈ X . Since x∗ is
dominated by p(·) = f ′(x̄; ·), we must have x∗ ∈ X∗,
and therefore x∗ ∈ ∂f (x̄). The max formula follows from
〈x∗, d〉 = p(d) = f ′(x̄; d). •
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As an easy corollary of the max formula we have the follow-
ing key result in subdifferential theory due to Fenchel and
Rockafellar.

Theorem 4.2.8. (Nonemptiness of Subdifferential) Let X
be a Banach space and let f : X → R ∪ {+∞} be a
convex function. Suppose that either

Q1 x̄ ∈ core(dom f ) and f is lsc or
Q2 x̄ ∈ cont f .

Then the subdifferential ∂f (x̄) is nonempty.

Proof. Follows directly from Theorem 4.2.7. •

The constraint qualification conditions in Theorems 4.2.7
and 4.2.8 are indispensible in any infinite dimensional spaces
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because in any infinite dimensional normed space there exists
a discontinuous linear functional defined on the whole space
(Exercise 4.2.14).
A differentiability result for convex functions follows im-

mediately. Recall that a function f : X → R is Gâteaux
differentiable at x provided that there exists x∗ ∈ X∗ such
that for any v ∈ X , the directional derivative f ′(x; v) exists
and f ′(x; v) = 〈x∗, v〉.
Corollary 4.2.9. (Differentiability of Convex Functions)
Let X be a Banach space, let f : X → R ∪ {+∞} be
a convex function and let x̄ ∈ core(dom f ). Then f is
Gâteaux differentiable at x̄ exactly when f has a unique
subgradient at x̄ (in which case this subgradient is the
derivative).
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Proof. Exercise 4.2.15 •

The conclusion ∂f (x̄) = ∅ can be stated alternatively as
there exists a linear functional x∗ such that f − x∗ attains
its minimum at x̄. Thus, in a certain sense Theorem 4.2.8
plays a role in the analysis of convex functions similar to
that of a variational principle in the analysis of general lower
semicontinuous functions. Note that due to the nice prop-
erties of convex functions the conclusion here is stronger in
comparison to the variational principles. One can view the
variational principles as approximate versions of Theorem
4.2.8 for (nonconvex) lsc functions.
The condition x̄ ∈ core(dom f ) is crucial in ensuring
∂f (x̄) = ∅. Without this condition the subdifferential may
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be an emptyset. As a simple example one can check that
∂f (0) = ∅ for function f : R → R ∪ {+∞} defined by
f (x) = −√

x, x ≥ 0 and +∞ otherwise. The following is a
systematical scheme for generating such functions in infinite
dimensional spaces.

Example 4.2.10. Let X be an infinite dimensional sepa-
rable Banach space and let C be a symmetric compact con-
vex set whose core is empty but whose span is dense. (The
Hilbert cube in �2 is a typical example of such a set, see Exer-
cise 4.2.18.) Let x̄ ∈ span(C). Define f : X → R ∪ {+∞}
by f (x) := min{λ ∈ R | x + λx̄ ∈ C}, where we use
the convention that min(∅) = +∞. It is easy to check that
f is a convex function and for any s ∈ R and c ∈ C,
f (c + sx̄) = −s (Exercise 4.2.19). It follows that
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f ′(0; y) =

{
−s if y = rc + sx̄ for some c ∈ C and r, s ∈ R,

+∞ otherwise.

Now we show that ∂f (0) = ∅. Suppose on the contrary that
x∗ ∈ ∂f (0). Since span(C) is dense in X , for any s ∈ R we
can find r ∈ R and c ∈ C such that rc + sx̄ is close to a
unit vector so that

−‖x∗‖ − 1 ≤ 〈x∗, rc + sx̄〉 ≤ f ′(0, rc + sx̄) = −s,
which is a contradiction.
4.2.4 Commentary and Exercises

The nonemptiness of subdifferentials and the more delicate
max formula are core results of the convex analysis. Fenchel,
Moreau, Rockafellar, Valadier and many others contributed
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to the current form of these results. Besides providing a con-
vex version of the variational principle, they also character-
ize convexity which leads to a number of important ways of
recognizing convex functions (see Exercise 4.2.16). The al-
gebraic proof of the max formula we follow here is due to
[29]. The convexity of a function is also characterized by the
monotonicity of its subdifferential. Exercise 4.2.21 provides
a taste of the more general results along this line. Exam-
ples of emptiness of the subdifferential in the absence of the
qualification conditions are discussed in [60, 221].

Exercise 4.2.1. LetX be a Banach space and let f : X →
R ∪ {+∞} be a convex function. Suppose that x̄ ∈ core(dom f ).
Show that for any d ∈ X , t→ g(d; t) := (f (x̄+td)−f (x̄))/t
is a nondecreasing function.
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Exercise 4.2.2.Prove the subdifferential of a convex func-
tion at a given point is a closed convex set.

Exercise 4.2.3. Prove the following functions x ∈ R �→
f (x) are convex and calculate ∂f :

(i) |x|;
(ii) ιR+

;

(iii)
{
−√

x if x ≥ 0,
+∞ otherwise;

(iv)
⎧⎨⎩
0 if x < 0,
1 if x = 0,
+∞ otherwise.

Exercise 4.2.4. (Subgradients of Norm) Calculate ∂‖ · ‖.
Generalize your result to an arbitrary sublinear function.
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Exercise 4.2.5. (Subgradients of Maximum Eigenvalue)
Denote the largest eigenvalue of an N by N symmetric ma-
trix by λ1. Prove that ∂λ1(0) is the set of all N by N sym-
metric matrices with trace 1.

Exercise 4.2.6. (Domain of Subdifferential) If the function
f : R2 → R ∪ {+∞} is defined by

f (x1, x2) =

{
max{1−√

x1, |x2|} if x1 ≥ 0,
+∞ otherwise,

prove that f is convex but that dom ∂f is not convex.

Exercise 4.2.7. (Normal Cone’s Characterization) Let C
be a closed convex subset of X . Prove that x∗ ∈ NC(x) if
and only if, for all y ∈ C,

〈x∗, y − x〉 ≤ 0.
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Exercise 4.2.8. Let K ⊂ X be a closed convex cone.
Show that both dK and ιK are convex functions and, for
any x ∈ X ,

∂dK(x) ⊂ ∂ιK(0) ∩ BX∗,

and
∂ιK(x) ⊂ ∂ιK(0).

Exercise 4.2.9. Prove Proposition 4.2.1.

Exercise 4.2.10. (The Fréchet Subdifferential of Convex
Functions) Prove that for a lsc convex function f : X →
R ∪ {+∞} and x ∈ X ,

∂f (x) = ∂Ff (x).

Exercise 4.2.11. Prove Proposition 4.2.2 (Sublinearity).

Exercise 4.2.12. Prove Lemma 4.2.6.
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Exercise 4.2.13. Show that the chain {pa}a∈A ⊂ S de-
fined in the proof of Theorem 4.2.7 has an upper bound
p̄ := infa∈A pa defined on

⋃
a∈A dom(pa).

Exercise 4.2.14. LetX be a normed space. Show that the
following are equivalent

(i) X is finite dimensional.
(ii) Every linear function f is continuous.
(iii) Every absorbing convex set has zero in its interior.

Hint: (iii) ⇒ (ii): f−1(−1, 1) is absorbing and convex and
symmetric. (ii) ⇒ (i): use the existence of an infinite lin-
early independent set {ei} to define a discontinuous ev-
erywhere finite linear functional satisfying f (ei/‖ei‖) = i.
(i) ⇒ (iii) is obvious.
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Exercise 4.2.15. Prove Corollary 4.2.9.

∗Exercise 4.2.16. (Recognizing Convex Functions) Sup-
pose the set C ⊂ R

N is open and convex, and consider a
function f : C → R. For points x ∈ C, define f (x) = +∞.

(i) Prove ∂f (x) is nonempty for all x in C if and only if f
is convex. Hint: For points u and v in C and real λ in
[0, 1], use the subgradient inequality (4.2.1) at the points
x̄ = λu+ (1− λ)v and x = u, v to check the definition
of convexity.

(ii) Prove that if T ⊂ R is an open interval and g : T →
R is differentiable then g is convex if and only if g′

is nondecreasing on T , and g is strictly convex if and
only if g′ is strictly increasing on T . Deduce that if g is
twice differentiable then g is convex if and only if g′′ is
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nonnegative on T and g is strictly convex if g′′ is strictly
positive on T .

(iii) Deduce that if f is twice continuously differentiable on
C then f is convex if and only if its Hessian matrix is
positive semidefinite everywhere on C, and f is strictly
convex if its Hessian matrix is positive definite every-
where on C. Hint: Apply part (ii) to the function g
defined by g(t) = f (x+ td) for small real t, points x in
C, and directions d in X .

(iv) Find a strictly convex function f : (−1, 1) → R with
f ′′(0) = 0.

(v) Prove that a continuous function h : clC → R is convex
if and only if its restriction to C is convex. What about
strictly convex functions?
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Exercise 4.2.17. (DC function) We say that f : X → R∪
{+∞} is a DC function if it can be written as the difference
of two real valued lsc convex functions. Prove that a DC
function is locally Lipschitz and directional differentiable at
any x ∈ core dom f .

Exercise 4.2.18. The Hilbert cube in �2 is defined by

H :=
{
x = (x1, x2, . . . ) ∈ �2

∣∣ |xi| ≤ 1/2i, i = 1, 2, . . .
}
.

Show that the Hilbert cube is a symmetric compact convex
set of �2 satisfying coreH = ∅ and span(H) = �2.

Exercise 4.2.19.Prove that the function f defined in Ex-
ample 4.2.10 is convex and has the property that for any
s ∈ R and c ∈ C, f (c + sx̄) = −s.



436 4 Convex Analysis

∗Exercise 4.2.20.With some additional work we can also
construct a convex function whose subdifferential is empty
on a dense subset of its domain. Let X = �2 and H be the
Hilbert cube defined in Exercise 4.2.18 and define f : X →
R ∪ {+∞} by

f (x) =

{
−

∑∞
i=1

√
2−i + xi if x ∈ H ,

+∞ otherwise.

Show that f is lsc and ∂f (x) = ∅ for any x ∈ H such that
xi > −2−i for infinitely many i. Reference: [221, Example
3.8].

∗Exercise 4.2.21. (Monotonicity of Gradients) Suppose
that the set C ⊂ R

N is open and convex and that the
function f : C → R is differentiable. Prove f is convex if
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and only if

〈f ′(x)− f ′(y), x− y〉 ≥ 0 for all x, y ∈ S,

and f is strictly convex if and only if the above inequal-
ity holds strictly whenever x = y. (You may use Exercise
4.2.16.)

∗Exercise 4.2.22.We consider an objective function pN
involved in the coupon collection problem given by

pN(q) =
∑
σ∈SN

( N∏
i=1

qσ(i)∑N
j=i qσ(j)

)( N∑
i=1

1∑N
j=i qσ(j)

)
,

summed over all N ! permutations; so a typical term is
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i=1

qi∑N
j=i qj

)( N∑
i=1

1∑n
j=i qj

)
.

For example, with N = 3 this is

q1q2q3

( 1

q1 + q2 + q3

)( 1

q2 + q3

)( 1

q3

)( 1

q1 + q2 + q3
+

1

q2 + q3
+
1

q3

)
Show that pN is convex on the positive orthant. Further
more show that 1/pN is concave.
Hint:

(i) Establish

pN (x1, . . . , xN ) =

∫ 1

0

(
1−

N∏
n=1

(1− txn)
)dt
t
.

(4.2.4)
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(ii) Use

1− e−txn = xn

∫ t

0
e−xnyn dyn,

to establish

1−
N∏
n=1

(1− e−txn)=
(∏N

n=1 xn

)( ∫
RN+

e−〈x,y〉 dy

−
∫
SNt
e−〈x,y〉 dy

)
,

where

SNt = {y ∈ R
N
+ | 0 < yn ≤ t for n = 1, . . . , N}.

(iii) Derive
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0

(
1−

N∏
n=1

(1− e−txn)
)
dt

=
( N∏
n=1

xn

)∫ ∞

0
dt

∫
RN+ \SNt

e−〈x,y〉 dy

=
( N∏
n=1

xn

)∫ ∞

0
dt

∫
RN+

e−〈x,y〉χt(y) dy,

where

χt(y) =

{
1 if max(y1, . . . , yN ) > t,

0 otherwise.

(iv) Show that the integral in (iii) can be expressed as the
joint expectation of Poisson distributions. Explicitly, if
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x = (x1, . . . , xN ) is a point in the positive orthant RN+ ,
then ∫ ∞

0

(
1−

N∏
n=1

(1− e−txn)
)
dt

=
( N∏
n=1

xi

)∫
RN+

e−〈x,y〉max(y1, . . . , yN ) dy.

(v) Deduce that

pN (x1, . . . , xN ) =

∫
RN+

e−(y1+···+yN ) max
(y1
x1
, . . . ,

yN
xN

)
dy,

and hence that pN is positive, decreasing and convex,
as is the integrand.

(vi) To derive the stronger result that 1/pN is concave. Let
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h(a, b) =
2ab

a + b
.

Then h is concave and show that the concavity of 1/pN
is equivalent to

pN

(x + x′

2

)
≤ h(pN (x), pN (x′)) for all x, x′ ∈ R

N
+ .

(4.2.5)

Reference: The history of this problem and additional details
can be found in Borwein, Bailey and Girgensohn [35, p. 36].
This book and its sister volume by Borwein and Bailey [34]
also discuss how to use methods of experimental mathemat-
ics to gain insights on this and other related problems.
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4.3 Sandwich Theorems and Calculus

4.3.1 A Decoupling Lemma

As in the case of the Fréchet subdifferential, to apply the
convex subdifferential we need a convenient calculus for it.
It turns out the key for developing such a calculus is again
to combine a decoupling mechanism with the existence of
subgradient that plays a role similar to that of the variational
principles. We summarize this idea in the following lemma.
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Lemma 4.3.1. (Decoupling Lemma) Let X and Y be Ba-
nach spaces, let the functions f : X → R and g : Y → R

be convex and the map A : X → Y be linear and bounded.
Suppose that f , g and A satisfy either the condition

0 ∈ core(dom g − A dom f ) (4.3.1)

and both f and g are lsc, or the condition

A dom f ∩ cont g = ∅. (4.3.2)

Then there is a y∗ ∈ Y ∗ such that for any x ∈ X and
y ∈ Y ,

p ≤ [f (x)− 〈y∗, Ax〉] + [g(y) + 〈y∗, y〉], (4.3.3)

where p = infX{f (x) + g(Ax)}.
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Proof. Define an optimal value function h : Y → [−∞,+∞]
by

h(u) = inf
x∈X

{f (x) + g(Ax + u)}.

It is easy to check h is convex and domh = dom g −
A dom f . We will show that 0 ∈ inth(0) under the con-
straint qualification condition (4.3.1) or (4.3.2).
First assume condition (4.3.1) is satisfied so that f and g

are lsc functions. We may assume f (0) = g(0) = 0, and
define S :=

⋃
x∈BX{u ∈ Y | f (x) + g(Ax + u) ≤ 1}.

Clearly S is a convex set. We check that S is absorbing and
cs-closed.
Let y ∈ Y be an arbitrary element. Since 0 ∈ core(dom g−
A dom f ) there exists t > 0 such that ty ∈ dom g −
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A dom f . Choose an element x ∈ dom f such thatAx+ty ∈
dom g. Then,

f (x) + g(Ax + ty) = k <∞. (4.3.4)

Choose m ≥ max{‖x‖, |k|, 1}. Dividing (4.3.4) by m and
observing f and g are convex and f (0) = g(0) = 0 we have

f
( x
m

)
+ g

(
A
x

m
+
ty

m

)
≤ 1.

Thus, ty/m ∈ S and S is absorbing.
To show S is cs-closed let y =

∑∞
i=1 λiyi where λi ≥ 0,∑∞

i=1 λi = 1 and yi ∈ S. By the definition of S for each i
there exists xi ∈ BX such that

f (xi) + g(Axi + yi) ≤ 1. (4.3.5)
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Since BX is cs-compact (see Exercise 4.1.14),
∑∞
i=1 λixi

converges to a point x ∈ BX . Multiplying (4.3.5) by λi and
sum over all i = 1, 2, . . . we have

∞∑
i=1

f (xi) +
∞∑
i=1

g(Axi + yi) ≤ 1.

Since f and g are convex and lsc and A is continuous we
have

f (x) + g(Ax + y) ≤ 1

or y ∈ S, proving S is cs-closed. It follows from Exercise
4.1.7 that 0 ∈ coreS = intS. Note that h is bounded above
by 1 on S and therefore continuous (actually locally Lips-
chitz) in a neighborhood of 0 by Propositions 4.1.1 and 4.1.2.
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Next assume condition (4.3.2) holds. Choose y ∈ A dom f∩
cont g. Then there exists r > 0 such that for any u ∈ rBY ,
g(y + u) ≤ g(y) + 1. Let x ∈ dom f be an element sat-
isfying y = Ax. It follows that for all u ∈ rBY , h(u) ≤
f (x)+ g(Ax+u) ≤ f (x)+ g(y)+ 1. Again by Propositions
4.1.1 and 4.1.2, 0 ∈ conth.
Now, Theorem 4.2.8 implies that ∂h(0) = ∅. Suppose that

−y∗ ∈ ∂h(0). Then for all u in Y and x in X ,

h(0) = p ≤ h(u) + 〈y∗, u〉
≤ f (x) + g(Ax + u) + 〈y∗, u〉. (4.3.6)

For arbitrary y ∈ Y , set u = y −Ax in (4.3.6) we arrive at
(4.3.3). •
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We can see the two basic variational techniques at work
here. The attainment of a minimum of the perturbed func-
tion takes the form of ∂h(0) = ∅ and the decoupling of vari-
ables is achieved through the perturbation u. In this aspect
this lemma is rather similar to the nonlocal approximate
sum rule of Theorem 3.2.3. Again, due to the nice property
of convex functions the conclusion here is more precise.
4.3.2 Sandwich Theorems

We apply the decoupling lemma of Lemma 4.3.1 to establish
a sandwich theorem.
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Theorem 4.3.2. (Sandwich Theorem) Let X and Y be
Banach spaces, let f : X → R ∪ {+∞} and g : Y →
R ∪ {+∞} be convex functions and let A : X → Y be a
bounded linear map.
Suppose that

f ≥ −g ◦ A
and f , g and A satisfy either condition (4.3.1) or condi-
tion (4.3.2). Then there is an affine function α : X → R
of the form α(x) = 〈A∗y∗, x〉 + r satisfying

f ≥ α ≥ −g ◦ A.
Moreover, for any x̄ satisfying f (x̄) = −g◦A(x̄), we have

−y∗ ∈ ∂g(Ax̄).
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Proof. By Lemma 4.3.1 there exists y∗ ∈ Y ∗ such that
for any x ∈ X and y ∈ Y ,

0 ≤ p ≤ [f (x)− 〈y∗, Ax〉] + [g(y) + 〈y∗, y〉]. (4.3.7)
For any z ∈ X setting y = Az in (4.3.7) we have

f (x)− 〈A∗y∗, x〉 ≥ −g(Az)− 〈A∗y∗, z〉. (4.3.8)

Thus,

a := inf
x∈X

[f (x)− 〈A∗y∗, x〉] ≥ b := sup
z∈X

[−g(Az)− 〈A∗y∗, z〉].

Picking any r ∈ [a, b], α(x) := 〈A∗y∗, x〉 + r is an affine
function that separates f and −g ◦A. Finally, when f (x̄) =
−g ◦ A(x̄), it follows from (4.3.7) that −x∗ ∈ ∂g(Ax̄). •
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4.3.3 Calculus for the Subdifferential

We now use the tools established above to deduce calculus
rules for the convex functions. We start with a sum rule
that can be viewed as a convex function version of the local
approximate sum rule of Theorem 3.3.1.

Theorem 4.3.3. (Convex Subdifferential Sum Rule) Let
X and Y be Banach spaces, let f : X → R∪ {+∞} and
g : Y → R∪{+∞} be convex functions and let A : X →
Y be a bounded linear map. Then at any point x in X,
we have the sum rule

∂(f + g ◦ A)(x) ⊃ ∂f (x) + A∗∂g(Ax), (4.3.9)

with equality if either condition (4.3.1) or (4.3.2) holds.
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Proof. Inclusion (4.3.9) is easy and left as an exercise. We
prove the reverse inclusion under condition (4.3.1) or (4.3.2).
Suppose x∗ ∈ ∂(f + g ◦A)(x̄). Since shifting by a constant
does not change the subdifferential of a convex function, we
may assume without loss of generality that

x→ f (x) + g(Ax)− 〈x∗, x〉
attains its minimum 0 at x = x̄. By the sandwich theorem
there exists an affine function α(x) := 〈A∗y∗, x〉 + r with
−y∗ ∈ ∂g(Ax̄) such that

f (x)− 〈x∗, x〉 ≥ α(x) ≥ −g(Ax).
Clearly equality is attained at x = x̄. It is now an easy
matter to check that x∗ + A∗y∗ ∈ ∂f (x̄). •
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Note that when A is the identity mapping, Theorem 4.3.3
sharpens the Fréchet subdifferential sum rules discussed in
Section 3.3.1. The geometrical interpretation of this is that
one can find a hyperplane in X ×R that separates the epi-
graph of f and hypograph of −g. Also, by applying the
subdifferential sum rule to the indicator functions of two
convex sets we have parallel results for the normal cones to
the intersection of convex sets.

Theorem 4.3.4. (Normals to an Intersection) Let C1 and
C2 be two convex subsets of X and let x ∈ C1 ∩ C2.
Suppose that C1 and C2 are closed 0 ∈ core(C1 − C2) or
C1 ∩ intC2 = ∅. Then

N (C1 ∩ C2; x) = N (C1; x) +N (C2; x).
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Proof. Exercise 4.3.6. •

The condition (4.3.1) or (4.3.2) is often referred to as a con-
straint qualification. Without it the equality in the convex
subdifferential sum rule may not hold (Exercise 4.3.12).
Using the convex subdifferential sum rule we can also get

a version of the multidirectional mean value inequality for
convex functions that refines Theorem 3.6.1.
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Theorem 4.3.5. (Convex Multidirectional Mean Value In-
equality) Let X be a Banach space, let C be a nonempty,
closed and convex subset of X and x ∈ X and let
f : X → R be a continuous convex function. Suppose
that f is bounded below on [x,C] and

inf
y∈C

f (y)− f (x) > r.

Then for any ε > 0, there exist z ∈ [x,C] and z∗ ∈
∂f (z), the convex subdifferential of f at z, such that

f (z) < inf
[x,C]

f + |r| + ε,

and

r < 〈z∗, y − x〉 + ε‖y − x‖ for all y ∈ C.
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Proof. As in the proof of Theorem 3.6.1 we can convert
the general case to the special case when r = 0. So we will
only prove this special case. Let f̃ := f + ι[x,C]. Then f̃ is
bounded below onX . By taking a smaller ε > 0 if necessary,
we may assume that

ε < inf
y∈C

f (y)− f (x).

Applying Ekeland’s variational principle of Theorem 2.1.2
we conclude that there exists z such that

f̃ (z) < inf f̃ + ε (4.3.10)

and

f̃ (z) ≤ f̃(u) + ε‖u− z‖, for all u ∈ X. (4.3.11)

That is to say
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u→ f (u) + ι[x,C](u) + ε‖u− z‖
attains a minimum at z. By (4.3.10) f̃(z) < +∞ hence z ∈
[x,C]. The sum rule for convex subdifferential of Theorem
4.3.3 (with A being the identity mapping) implies that there
exists z∗ ∈ ∂f (z) such that 0 ≤ 〈z∗, w − z〉 + ε‖w −
z‖, for all w ∈ [x,C]. Using a smaller ε to begin with if
necessary, we have for w = z,

0 < 〈z∗, w − z〉 + ε‖w − z‖, for all w ∈ [x,C]\{z}.(4.3.12)

Moreover by inequality (4.3.10) we have f (z) = f̃(z) ≤
f (x)+ε < infC f , so z ∈ C. Thus we can write z = x+t̄(ȳ−
x) where t̄ ∈ [0, 1). For any y ∈ C set w = y+ t̄(ȳ− y) = z
in (4.3.12) yields

0 < 〈z∗, y − x〉 + ε‖y − x‖, for all y ∈ C. (4.3.13)
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•

4.3.4 The Pshenichnii–Rockafellar Conditions

We turn to discuss the simple convex programming problem
of

CP minimize f (x)

subject to x ∈ C ⊂ X,

(4.3.14)

where X is a Banach space, C is a closed convex subset
of X and f : X → R ∪ {+∞} is a convex lsc function.
The convex subdifferential calculus developed in this section
enables us to derive sharp necessary optimality conditions
for CP .
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Theorem 4.3.6. (Pshenichnii–Rockafellar Conditions) Let
X be a Banach space, let C be a closed convex subset of
X and let f : X → R ∪ {+∞} be a convex function.
Suppose that C ∩ cont f = ∅ or intC ∩ dom f = ∅ and f
is bounded below on C. Then there is an affine function
α ≤ f with infC f = infC α. Moreover, x̄ is a solution of
CP if and only if it satisfies

0 ∈ ∂f (x̄) +N (C; x̄).

Proof. Apply the convex subdifferential sum rule of The-
orem 4.3.3 to f + ιC at x̄. •
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4.3.5 The Extension and Separation Theorems

We have seen that the sandwich theorem and the convex sub-
differential calculus are intimately related to the separation
theorem. We now explicitly deduce the separation theorem
and the Hahn–Banach theorem from these results.

Theorem 4.3.7. (Hahn–Banach Extension) Let X be a
Banach space and let f : X → R be a continuous sublin-
ear function with dom f = X. Suppose that L is a linear
subspace of X and the function h : L → R is linear and
dominated by f , that is, f ≥ h on L. Then there exists
x∗ ∈ X∗, dominated by f , such that

h(x) = 〈x∗, x〉, for all x ∈ L.
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Proof. Apply the sandwich theorem of Theorem 4.3.2 to
f and g := −h + ιL. •

Theorem 4.3.8. (Separation Theorem) Let X be a Ba-
nach space and let C1 and C2 be two convex subsets of
X. Suppose that intC1 = ∅ and C2 ∩ intC1 = ∅. Then
there exists an affine function α on X such that

sup
c1∈C1

α(c1) ≤ inf
c2∈C2

α(c2).

Proof. Without loss of generality we may assume that 0 ∈
intC1 and then apply the sandwich theorem with f = ιclC2

,
A the identity mapping of X and g = γC1

− 1. •
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4.3.6 Commentary and Exercises

We can view convex analysis as a natural next step from
linear functional analysis. Thus, it is not surprising to see
fundamental results of linear functional analysis follow from
those of convex analysis. There are different ways of devel-
oping basic results in convex analysis. Here we follow our
short notes [67] using the Decoupling Lemma as a starting
point. This development actually works in a more general
setting (for details see [67]). In particular, the space Y need
not be complete (Exercise 4.3.3). The proof of this result is a
typical variational argument similar to those of the basic re-
sults in the calculus of Fréchet subdifferentials. We illustrate
the potential of this theorem by deducing the sandwich the-
orem, the sum rule for convex subdifferential and a convex
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version of the multidirectional mean value theorem due to
Ledyaev and Zhu [174]. The Pshenichnii–Rockafellar condi-
tion [223, 229] provides a prototype for necessary conditions
for nonsmooth constrained optimization problems. Subsec-
tion 4.3.5 and several exercises below further highlight how
to use the sandwich theorem to deduce other important re-
sults in convex and linear functional analysis.

Exercise 4.3.1.Define

h(u) = inf
x∈X

{f (x) + g(Ax + u)}.

Prove that
domh = dom g − A dom f.

Exercise 4.3.2. Show that condition (4.3.2) implies the
inclusion in (4.3.1).
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∗Exercise 4.3.3. Show in the Decoupling Lemma that it
suffices to assume only that X is a topological vector space
that has a cs-compact absorbing set, A is linear and closed
and that Y is a barrelled topological vector space. Hint:
When condition (4.3.2) is satisfied the proof is the same.
When condition (4.3.1) is satisfied, let C be a cs-compact
absorbing set in X and define S :=

⋃
x∈C{u ∈ Y | f (x) +

g(Ax + u) ≤ 1}. Prove T = S ∩ (−S) is cs-closed and the
closure of T is a barrel in Y . Reference: [67].

Exercise 4.3.4. Supply details for the proof of Theorem
4.3.3 by

(i) Proving (4.3.9).
(ii) Verifying x∗ +A∗y∗ ∈ ∂f (x̄).
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Exercise 4.3.5. Interpret the sandwich theorem geometri-
cally in the case when A is the identity map.

Exercise 4.3.6. Prove Theorem 4.3.4.

Exercise 4.3.7.Give the details of the proof of Theorem
4.3.6.

Exercise 4.3.8.Apply the Pshenichnii–Rockafellar condi-
tions to the following two cases:

(i)C a single point {x0} ⊂ X ,
(ii)C a polyhedron {x | Ax ≤ b}, where b ∈ R

N = Y .

Exercise 4.3.9. Provide details for the proof of Theorem
4.3.7.

Exercise 4.3.10.Provide details for the proof of Theorem
4.3.8.
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Exercise 4.3.11. (Subdifferential of a Max-Function) Sup-
pose that I is a finite set of integers, and gi : X → R ∪
{+∞} , i ∈ I are lower semicontinuous convex functions
with

dom gj ∩
⋂

i∈I\{j}
cont gi = ∅

for some index j in I . Prove

∂(max
i
gi)(x̄) = conv

⋃
i∈I

∂gi(x̄).

∗Exercise 4.3.12. (Failure of Convex Calculus)

(i) Find convex functions f, g : R → R ∪ {+∞} with

∂f (0) + ∂g(0) = ∂(f + g)(0).
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(ii) Find a convex function g : R2 → R∪{+∞} and a linear
map A : R → R

2 with A∗∂g(0) = ∂(g ◦ A)(0).
Exercise 4.3.13. Let K(x∗, ε) = {x ∈ X | ε‖x∗‖‖x‖ ≤
〈x∗, x〉} be a Bishop–Phelps cone. Show that

N (K(x∗, ε); 0) = ∂ιK(x∗,ε)(0) ⊂
⋃
r≥0

rBε‖x∗‖(−x∗).

4.4 Fenchel Conjugate

In this section we give a concise sketch of the Fenchel conju-
gation theory. One can regard it as a natural generalization
of the linear programming duality, or as a form of the Leg-
endre transform in the convex setting. More relevant to the
context of this book is to think of it as an elegant primal-
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dual space representation of the basic variational techniques
for convex functions.
4.4.1 The Fenchel Conjugate

Let X be a Banach space. The Fenchel conjugate of a
function f : X → [−∞,+∞] is the function f∗ : X∗ →
[−∞,+∞] defined by

f∗(x∗) = sup
x∈X

{〈x∗, x〉 − f (x)}.

The function f∗ is convex and if the domain of f is nonempty
then f∗ never takes the value −∞. Clearly the conju-
gacy operation is order-reversing : for functions f, g : X →
[−∞,+∞], the inequality f ≥ g implies f∗ ≤ g∗. We can
consider the conjugate of f∗ called the biconjugate of f and
denoted f∗∗. This is a function on X∗∗.
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4.4.2 The Fenchel–Young Inequality

This is an elementary but important result that relates con-
jugation with the subgradient.

Proposition 4.4.1. (Fenchel–Young Inequality) Let X be
a Banach space and let f : X → R ∪ {+∞} be a convex
function. Suppose that x∗ ∈ X∗ and x ∈ dom f . Then
satisfy the inequality

f (x) + f∗(x∗) ≥ 〈x∗, x〉. (4.4.1)

Equality holds if and only if x∗ ∈ ∂f (x).

Proof. The inequality (4.4.1) follows directly from the
definition. Now we have the equality

f (x) + f∗(x∗) = 〈x∗, x〉,
if and only if, for any y ∈ X ,
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f (x) + 〈x∗, y〉 − f (y) ≤ 〈x∗, x〉.
That is

f (y)− f (x) ≥ 〈x∗, y − x〉,
or x∗ ∈ ∂f (x). •

4.4.3 Weak Duality

Conjugate functions are ubiquitous in optimization. Our
next result is phrased in terms of convex programming prob-
lems. The formulation is in many aspects similar to the du-
ality theory in linear programming.

Theorem 4.4.2. (Fenchel Weak Duality) Let X and Y
be Banach spaces, let f : X → R ∪ {+∞} and g : Y →
R ∪ {+∞} be convex functions and let A : X → Y be a
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bounded linear map. Define the primal and dual values
p, d ∈ [−∞,+∞] by the Fenchel problems

p = inf
x∈X

{f (x) + g(Ax)}

d = sup
x∗∈Y ∗

{−f∗(A∗x∗)− g∗(−x∗)}. (4.4.2)

Then these values satisfy the weak duality inequality p ≥
d.

Proof. Exercise 4.4.1. •

4.4.4 Strong Duality

The Fenchel duality theorem can be viewed as a dual repre-
sentation of the sandwich theorem.
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Theorem 4.4.3. (Fenchel Duality) Let X and Y be Ba-
nach spaces, f : X → R∪{+∞} and g : Y → R∪{+∞}
be convex functions and A : X → Y be a bounded linear
map. Suppose that f , g and A satisfy either condition
(4.3.1) or condition (4.3.2). Then p = d, and the supre-
mum in the dual problem (4.4.2) is attained if finite. Here
p, d ∈ [−∞,+∞] are defined as in Theorem 4.4.2.

Proof. If p is −∞ there is nothing to prove, while if con-
dition (4.3.1) or (4.3.2) holds and p is finite then by Lemma
4.3.1 there is a x∗ ∈ X∗ such that (4.3.3) holds. For any
u ∈ Y , setting y = Ax + u in (4.3.3), we have

p ≤ f (x) + g(Ax + u) + 〈x∗, u〉
= {f (x)− 〈A∗x∗, x〉} + {g(Ax + u)− 〈−x∗, Ax + u〉}.
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Taking the infimum over all points u, and then over all points
x, gives the inequalities

p ≤ −f∗(A∗x∗)− g∗(−x∗) ≤ d ≤ p.

Thus x∗ attains the supremum in problem (4.4.2), and p =
d. •

To relate Fenchel duality and convex programming with
linear constraints, we let g be the indicator function of a
point, which gives the following particularly elegant and use-
ful corollary.
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Corollary 4.4.4. (Fenchel Duality for Linear Constraints)
Given any function f : X → R ∪ {+∞} , any bounded
linear map A : X → Y , and any element b of Y , the
weak duality inequality

inf
x∈X

{f (x) | Ax = b} ≥ sup
x∗∈Y

{〈b, x∗〉 − f∗(A∗x∗)}

holds. If f is lsc and convex and b belongs to core(A dom f )
then equality holds, and the supremum is attained when
finite.

Proof. Exercise 4.4.8. •
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Fenchel duality can be used to conveniently calculate polar
cones. Recall that for a set K in a Banach space X , the
(negative) polar cone of K is the convex cone

Ko = {x∗ ∈ X∗ | 〈x∗, x〉 ≤ 0, for all x ∈ K}.
The coneKoo is called the bipolar – sometimes in the second
dual and sometimes in the predual, X . Here, we take it in
X . An important example of the polar cone is the normal
cone to a convex set C ⊂ X at a point x ∈ C, since

N (C; x) = (C − x)o.
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The following calculus for polar cones is a direct conse-
quence of the Fenchel duality theorem.

Corollary 4.4.5. Let X and Y be Banach spaces, let
K ⊂ X and H ⊂ Y be cones and let A : X → Y be a
bounded linear map. Then

Ko + A∗Ho ⊂ (K ∩A−1H)o.

Equality holds if H and K are closed and convex and
satisfy H − AK = Y .

Proof. Observe that for any cone K, we have Ko =
∂ιK(0). The result follows directly from Theorem 4.4.3. •
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4.4.5 Commentary and Exercises

Fenchel’s original work is [117]. Much of the exposition here
follows the concise book [56] which is also a good source for
additional examples and applications.

Exercise 4.4.1. Prove Theorem 4.4.3. Hint: This follows
immediately from the Fenchel–Young inequality (4.4.1).

Exercise 4.4.2.Many important convex functions f on
a reflexive Banach space equal their biconjugate f∗∗. Such
functions thus occur as natural pairs, f and f∗. Table 4.1
shows some elegant examples on R, and Table 4.2 describes
some simple transformations of these examples. Check the
calculation of f∗ and check f = f∗∗ for functions in Table
4.1. Verify the formulas in Table 4.2.
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f(x) = g∗(x) dom f g(y) = f∗(y) dom g

0 R 0 {0}

0 R+ 0 −R+

0 [−1, 1] |y| R

0 [0, 1] y+ R

|x|p/p, p > 1 R |y|q/q ( 1p + 1
q = 1) R

|x|p/p, p > 1 R+ |y+|q/q ( 1p + 1
q = 1) R

−xp/p, 0<p<1 R+ −(−y)q/q ( 1p + 1
q = 1) − intR+

− logx intR+ −1− log(−y) − intR+

ex R

{
y log y − y (y > 0)
0 (y = 0)

R+

Table 4.1. Conjugate pairs of convex functions on R.

Exercise 4.4.3. Calculate the conjugate and biconjugate
of the function
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f = g∗ g = f∗

f(x) g(y)

h(ax) (a = 0) h∗(y/a)

h(x+ b) h∗(y)− by

ah(x) (a > 0) ah∗(y/a)

Table 4.2. Transformed conjugates.

f (x1, x2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x21
2x2

+ x2 log x2 − x2 if x2 > 0,

0 if x1 = x2 = 0,

+∞ otherwise.

∗Exercise 4.4.4. (Maximum Entropy Example)

(i) Let a0, a1, . . . , aN ∈ X . Prove the function
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g(z) := inf
x∈RN+1

{ N∑
n=0

exp∗(xn)
∣∣∣ N∑
n=0

xn = 1,
N∑
n=0

xna
n = z

}
is convex.

(ii) For any point y in R
N+1, prove

g∗(y) = sup
x∈RN+1

{ N∑
n=0

(xn〈an, y〉−exp∗(xn))
∣∣∣ N∑
n=0

xn = 1
}
.

(iii) Deduce the conjugacy formula

g∗(y) = 1 + ln
( N∑
n=0

exp 〈an, y〉
)
.

(iv) Compute the conjugate of the function of x ∈ R
N+1,
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n=0 exp

∗(xn) if
∑N
n=0 xn = 1,

+∞ otherwise.

Exercise 4.4.5.Give the details for the proof of Theorem
4.4.2 (Fenchel Weak Duality).

Exercise 4.4.6. (Conjugate of Indicator Function) Let X
be a reflexive Banach space and let C be a closed convex
subset of X . Show that ι∗C = σC and ι∗∗C = ιC .

Exercise 4.4.7. Let X be a reflexive Banach space. Sup-
pose that A : X → X∗ is a bounded linear operator, C
a convex subset of X and D a nonempty closed bounded
convex subset of X∗. Show that

inf
x∈C

sup
y∈D

〈y,Ax〉 = max
y∈D

inf
x∈C

〈y,Ax〉.
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Hint: Apply the Fenchel duality theorem to f = ιC and
g = ι∗D.
∗Exercise 4.4.8.Prove Corollary 4.4.4 (Fenchel Duality for
Linear Constraints). Deduce duality theorems for the follow-
ing separable problems.

inf
{ N∑
n=1

p(xn)
∣∣∣ Ax = b

}
,

where the map A : RN → R
M is linear, b ∈ R

M , and the
function p : R → R ∪ {+∞} is convex, defined as follows:

(i) (Nearest Points in Polyhedra) p(t) = t2/2 with domain
R+.

(ii) (Analytic Center) p(t) = − log t with domain intR+.
(iii) (Maximum Entropy) p = exp∗.
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What happens if the objective function is replaced by
N∑
n=1

pn(xn)?

Exercise 4.4.9. (Symmetric Fenchel Duality) Let X be a
Banch space. For functions f, g : X → [−∞,+∞], define
the concave conjugate g∗ : X → [−∞,+∞] by

g∗(x∗) = inf
x∈X

{〈x∗, x〉 − g(x)}.

Prove
inf(f − g) ≥ sup(g∗ − f∗),

with equality if f is lower semicontinuous and convex, g is
upper semicontinuous and concave, and

0 ∈ core(dom f − dom(−g)),
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or f is convex, g is concave and

dom f ∩ cont g = ∅.
Exercise 4.4.10.LetX be a Banach space and letK ⊂ X
be a cone. Show that ιKo = ι∗K , and therefore ιKoo = ι∗∗K .

Exercise 4.4.11. (Sum of Closed Cones) Let X be a finite
dimensional Banach space.

(i) Prove that any cones H,K ⊂ X satisfy (H + K)o =
Ho ∩Ko.

(ii) Deduce that if H and K are closed convex cones then
they satisfy (H ∩K)o = cl (Ho +Ko).

In R
3, define sets

H={x | x21 + x22 ≤ x23, x3 ≤ 0} and

K={x | x2 = −x3}.
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(iii) Prove H and K are closed convex cones.
(iv) Calculate the polar cones Ho, Ko and (H ∩K)o.
(v) Prove (1, 1, 1) ∈ (H∩K)o\(Ho+Ko), and deduce that

the sum of two closed convex cones is not necessarily
closed.

4.5 Convex Feasibility Problems

Let X be a Hilbert space and let Cn, n = 1, . . . , N be
convex closed subsets of X . The convex feasibility problem
is to find some points

x ∈
N⋂
n=1

Cn

when this intersection is nonempty.
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In this section we discuss projection algorithms for finding
such a feasible point. These kinds of algorithms have wide
ranging applications in many different problems, such as so-
lution of convex inequalities, minimization of convex nons-
mooth functions, medical imaging, computerized tomogra-
phy and electron microscopy. Following the theme of this
book we approach this problem by converting it to a convex
optimization problem.
4.5.1 Projection

We start by defining projection to a closed convex set and
its basic properties. This is based on the following theorem.
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Theorem 4.5.1. (Existence and Uniqueness of Nearest
Point) Let X be a Hilbert space and let C be a closed
convex subset of X. Then for any x ∈ X, there exists a
unique element x̄ ∈ C such that

‖x− x̄‖ = d(C; x).
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Proof. If x ∈ C then x̄ = x satisfies the conclusion.
Suppose that x ∈ C. Then there exists a sequence xi ∈ C
such that d(C; x) = limi→∞‖x−xi‖. Clearly, xi is bounded
and therefore has a subsequence weakly converging to some
x̄ ∈ X . Since a closed convex set is weakly closed (Mazur’s
Theorem), we have x̄ ∈ C and d(C; x) = ‖x− x̄‖. We show
such x̄ is unique. Suppose that z ∈ C also has the property
that d(C; x) = ‖x − z‖. Then for any t ∈ [0, 1] we have
tx̄ + (1− t)z ∈ C. It follows that

d(C; x)≤‖x− (tx̄ + (1− t)z)‖ = ‖t(x− x̄) + (1− t)(x− z)‖
≤ t‖x− x̄‖ + (1− t)‖x− z‖ = d(C; x).

That is to say

t→ ‖x−z−t(x̄−z)‖2 = ‖x−z‖2−2t〈x−z, x̄−z〉+t2‖x̄−z‖2
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is a constant mapping, which implies x̄ = z. •

The nearest point can be characterized by the normal cone
as follows.

Theorem 4.5.2. (Normal Cone Characterization of Near-
est Point) Let X be a Hilbert space and let C be a closed
convex subset of X. Then for any x ∈ X, x̄ ∈ C is a
nearest point to x if and only if

x− x̄ ∈ N (C; x̄).

Proof. Noting that the convex function f (y) = ‖y−x‖2/2
attains a minimum at x̄ over set C, this directly follows from
the Pshenichnii–Rockafellar conditions in Theorem 4.3.6. •
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Definition 4.5.3. (Projection) Let X be a Hilbert space
and let C be a closed convex subset of X. For any x ∈ X
the unique nearest point y ∈ C is called the projection
of x on C and we define the projection mapping PC by
PCx = y.

We summarize some useful properties of the projection
mapping in the next proposition whose elementary proof
is left as an exercise.
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Proposition 4.5.4. (Properties of Projection) Let X be
a Hilbert space and let C be a closed convex subset of
X. Then the projection mapping PC has the following
properties.

(i) for any x ∈ C, PCx = x;
(ii) P 2

C = PC;
(iii) for any x, y ∈ X, ‖PCy − PCx‖ ≤ ‖y − x‖.
Proof. Exercise 4.5.3. •

Projection to a convex set can also be represented as the
Fréchet derivative of a convex function and therefore is a
monotone operator.
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Theorem 4.5.5. (Potential Function of Projection) Let X
be a Hilbert space and let C be a closed convex subset of
X. Define

f (x) = sup
{
〈x, y〉 − ‖y‖2

2

∣∣∣ y ∈ C
}
.

Then f is convex, PC(x) = f ′(x), and therefore PC is a
monotone operator.

Proof. It is easy to check (Exercise 4.5.6) that f is convex
and

f (x) =
1

2
(‖x‖2 − ‖x− PC(x)‖2).

We need only show PC(x) = f ′(x). Fix x ∈ X . For any
y ∈ X we have

‖(x + y)− PC(x + y)‖ ≤ ‖(x + y)− PC(x)‖,
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so

‖(x + y)− PC(x + y)‖2≤‖x + y‖2 − 2〈x + y, PC(x)〉 + ‖PC(x
=‖x + y‖2 + ‖x− PC(x)‖2 − ‖x‖2
−2〈y, PC(x)〉,

hence f (x+y)−f (x)−〈PC(x), y〉 ≥ 0. On the other hand,
since ‖x− PC(x)‖ ≤ ‖x− PC(x + y)‖ we get

f (x + y)− f (x)− 〈PC(x), y〉≤〈y, PC(x + y)− PC(x)〉
≤‖y‖ × ‖PC(x + y)− PC(x)‖
≤‖y‖2,

which implies PC(x) = f ′(x). •
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4.5.2 Projection Algorithms as Minimization Problems

We start with the simple case of the intersection of two con-
vex sets. Let X be a Hilbert space and let C and D be two
closed convex subsets of X . Suppose that C∩D = ∅. Define
a function

f (c, d) :=
1

2
‖c− d‖2 + ιC(c) + ιD(d).

We see that f attains a minimum at (c̄, d̄) if and only if
c̄ = d̄ ∈ C ∩ D. Thus, the problem of finding a point in
C ∩D becomes one of minimizing function f .
We consider a natural descending process for f by alter-

nately minimizing f with respect to its two variables. More
concretely, start with any x0 ∈ D. Let x1 be the solution of
minimizing
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x→ f (x, x0).

It follows from Theorem 4.5.2 that

x0 − x1 ∈ N (C; x1).

That is to say x1 = PCx0. We then let x2 be the solution
of minimizing

x→ f (x1, x).

Similarly, x2 = PDx1. In general, we define

xi+1 =

{
PCxi i is even,

PDxi i is odd.
(4.5.1)

This algorithm is a generalization of the classical von Neu-
mann projection algorithm for finding points in the intersec-
tion of two half spaces.
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We will show that in general xi weakly converge to a point
in C ∩D and when int(C ∩D) = ∅ we have norm conver-
gence.
4.5.3 Attracting Mappings and Fejér Sequences

We discuss two useful tools for proving the convergence of
the projection algorithm.

Definition 4.5.6. (Nonexpansive Mapping) Let X be a
Hilbert space, let C be a closed convex nonempty subset
of X and let T : C → X. We say that T is nonexpansive
provided that ‖Tx− Ty‖ ≤ ‖x− y‖.
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Definition 4.5.7. (AttractingMapping) Let X be a Hilbert
space, let C be a closed convex nonempty subset of X and
let T : C → C be a nonexpansive mapping. Suppose that
D is a closed nonempty subset of C. We say that T is
attracting with respect to D if for every x ∈ C\D and
y ∈ D,

‖Tx− y‖ ≤ ‖x− y‖.
We say that T is k-attracting with respect to D if for
every x ∈ C\D and y ∈ D,

k‖x− Tx‖2 ≤ ‖x− y‖2 − ‖Tx− y‖2.
Lemma 4.5.8. (Attractive Property of Projection) Let X
be a Hilbert space and let C be a convex closed subset of
X. Then PC : X → X is 1-attracting with respect to C.
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Proof. Let y ∈ C. We have

‖x− y‖2 − ‖PCx− y‖2 = 〈x− PCx, x + PCx− 2y〉
= 〈x− PCx, x− PCx + 2(PCx− y)〉
= ‖x− PCx‖2 + 2〈x− PCx, PCx− y〉
≥‖x− PCx‖2.

•

Note that if T is attracting (k-attracting) with respect to
a set D, then it is attracting (k-attracting) with respect to
any subset of D.
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We now turn to Fejér monotonicity.

Definition 4.5.9. (Fejér Monotone Sequence) Let X be a
Hilbert space, let C be closed convex set and let (xi) be a
sequence in X. We say that (xi) is Fejér monotone with
respect to C if

‖xi+1 − c‖ ≤ ‖xi − c‖, for all c ∈ C and i = 1, 2, . . .

Our next theorem summarizes important properties of
Fejér monotone sequences.
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Theorem 4.5.10. (Properties of Fejér Monotone Sequences)
Let X be a Hilbert space, let C be a closed convex set and
let (xi) be a Fejér monotone sequence with respect to C.
Then

(i) (xi) is bounded and d(C; xi+1) ≤ d(C; xi).
(ii) (xi) has at most one weak cluster point in C.
(iii) If the interior of C is nonempty then (xi) converges

in norm.
(iv) (PCxi) converges in norm.
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Proof. (i) is obvious.
Observe that, for any c ∈ C the sequence (‖xi − c‖2)

converges and so does

(‖xi‖2 − 2〈xi, c〉). (4.5.2)

Now suppose c1, c2 ∈ C are two weak cluster points of (xi).
Letting c in (4.5.2) be c1 and c2, respectively, and taking
limits of the difference, yields 〈c1, c1− c2〉 = 〈c2, c1− c2〉 so
that c1 = c2, which proves (ii).
To prove (iii) suppose that Br(c) ⊂ C. For any xi+1 = xi,

simplifying

‖xi+1−
(
c−h xi+1 − xi

‖xi+1 − xi‖
)
‖2 ≤ ‖xi−

(
c−h xi+1 − xi

‖xi+1 − xi‖
)
‖2

we have
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2h‖xi+1 − xi‖ ≤ ‖xi − c‖2 − ‖xi+1 − c‖2.
For any j > i, adding the above inequality from i to j − 1
yields

2h‖xj − xi‖ ≤ ‖xi − c‖2 − ‖xj − c‖2.
Since (‖xi− c‖2) is a convergent sequence we conclude that
(xi) is a Cauchy sequence.
Finally, for natural numbers i, j with j > i, apply the

parallelogram law ‖a− b‖2 = 2‖a‖2 + 2‖b‖2 − ‖a+ b‖2 to
a := PCxj − xj and b := PCxi − xj we obtain
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‖PCxj − PCxi‖2 = 2‖PCxj − xj‖2 + 2‖PCxi − xj‖2

− 4
∥∥∥PCxj + PCxi

2
− xj

∥∥∥2
≤ 2‖PCxj − xj‖2 + 2‖PCxi − xj‖2

− 4‖PCxj − xj‖2

≤ 2‖PCxi − xj‖2 − 2‖PCxj − xj‖2

≤ 2‖PCxi − xi‖2 − 2‖PCxj − xj‖2.
We identify (PCxi) as a Cauchy sequence, because
(‖xi − PCxi‖) converges by (i). •



4.5 Feasibility 505

4.5.4 Convergence of Projection Algorithms

Let X be a Hilbert space. We say a sequence (xi) in X is
asymptotically regular if

lim
i→∞

‖xi − xi+1‖ = 0.

Lemma 4.5.11. (Asymptotical Regularity of Projection
Algorithm) Let X be a Hilbert space and let C and D
be closed convex subsets of X. Suppose C ∩D = ∅. Then
the sequence (xi) defined by the projection algorithm

xi+1 =

{
PCxi i is even,

PDxi i is odd.

is asymptotically regular.
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Proof. By Lemma 4.5.8 both PC and PD are 1-attracting
with respect to C ∩D. Let y ∈ C ∩D. Since xi+1 is either
PCxi or PDxi it follows that

‖xi+1 − xi‖2 ≤ ‖xi − y‖2 − ‖xi+1 − y‖2.
Since (‖xi− y‖2) is a monotone decreasing sequence, there-
fore the right-hand side of the inequality converges to 0 and
the result follows. •

Now, we are ready to prove the convergence of the projec-
tion algorithm.
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Theorem 4.5.12. (Convergence of Projection Algorithm
for the Intersection of Two Sets) Let X be a Hilbert space
and let C and D be closed convex subsets of X. Sup-
pose C ∩ D = ∅ (int(C ∩ D) = ∅). Then the projection
algorithm

xi+1 =

{
PCxi i is even,

PDxi i is odd.

converges weakly (in norm) to a point in C ∩D.

Proof. Let y ∈ C ∩ D. Then, for any x ∈ X , we have
‖PCx− y‖ = ‖PCx−PCy‖ ≤ ‖x− y‖ and ‖PDx− y‖ =
‖PDx − PDy‖ ≤ ‖x − y‖. Since xi+1 is either PCxi or
PDxi we have that

‖xi+1 − y‖ ≤ ‖xi − y‖.
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That is to say (xi) is a Fejér monotone sequence with re-
spect to C ∩D. By item (i) of Theorem 4.5.10 the sequence
(xi) is bounded, and therefore has a weakly convergent sub-
sequence. We show that all weak cluster points of (xi) be-
long to C ∩ D. In fact, let (xik) be a subsequence of (xi)
converging to x weakly. Taking a subsequence again if nec-
essary we may assume that (xik) is a subset of either C or
D. For the sake of argument let us assume that it is a sub-
set of C and, thus, the weak limit x is also in C. On the
other hand by the asymptotical regularity of (xi) in Lemma
4.5.11 (PDxik) = (xik+1) also weakly converges to x. Since
(PDxik) is a subset of D we conclude that x ∈ D, and
therefore x ∈ C ∩ D. By item (ii) of Theorem 4.5.10 (xi)
has at most one weak cluster point in C ∩ D, and we con-
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clude that (xi) weakly converges to a point in C ∩D. When
int(C ∩D) = ∅ it follows from item (iii) of Theorem 4.5.10
that (xi) converges in norm. •

Whether the alternating projection algorithm converged
in norm without the assumption that int(C ∩ D) = ∅, or
more generally of metric regularity, was a long-standing open
problem. Recently Hundal constructed an example showing
that the answer is negative [140]. The proof of Hundal’s ex-
ample is self-contained and elementary. However, it is quite
long and delicate, therefore we will be satisfied in stating the
example.



510 4 Convex Analysis

Example 4.5.13. (Hundal) Let X = �2 and let {ei | i =
1, 2, . . . } be the standard basis of X . Define v : [0,+∞) →
X by

v(r) = exp(−100r3)e1+cos
(
(r−[r])π/2

)
e[r]+2+sin

(
(r−[r])π/2

)
where [r] signifies the integer part of r and further define

C = {e1}⊥ and D = conv{v(r) | r ≥ 0}.
Then the hyperplane C and cone D satisfies C ∩D = {0}.
However, Hundal’s sequence of alternating projections xi
given by

xi+1 = PDPCxi
starting from x0 = v(1) (necessarily) converges weakly to 0,
but not in norm.

A related useful example is the moment problem.
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Example 4.5.14. (Moment Problem) Let X be a Hilbert
lattice – a Banach lattice in the Hilbert norm – with lattice
cone D = X+. All Hilbert lattices are realized as L2(Ω,μ)
in the natural ordering for some measure space.
Consider a linear continuous mapping A from X onto

R
N . The moment problem seeks the solution of A(x) =

y ∈ R
N, x ∈ D (see [53] for a recent survey). Define

C = A−1(y). Then the moment problem is feasible if and
only if C∩D = ∅. A natural question is whether the projec-
tion algorithm converges in norm. This problem is answered
affirmatively in [13] for N = 1 yet remains open in general
when N > 1.
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4.5.5 Projection Algorithms for Multiple Sets

We now turn to the general problem of finding some points
in

N⋂
n=1

Cn,

where Cn, n = 1, . . . , N are closed convex sets in a Hilbert
space X .
Let an, n = 1, . . . , N be positive numbers. Denote

XN := {x = (x1, x2, . . . , xN ) | xn ∈ X,n = 1, . . . , N}
the product space of N copies of X with inner product

〈x, y〉 =
N∑
n=1

an〈xn, yn〉.
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Then XN is a Hilbert space. Define C := C1 × C2 × · · · ×
CN and D := {(x1, . . . , xN ) ∈ XN : x1 = x2 = · · · =
xN}. Then C and D are closed convex sets in XN and

x ∈
⋂N
n=1Cn if and only if (x, x, . . . , x) ∈ C ∩D (Exercise

4.5.2).
Applying the projection algorithm (4.5.1) to the convex

sets C and D defined above we have the following general-
ized projection algorithm for finding some points in

N⋂
n=1

Cn.

Denote Pn = PCn. The algorithm can be expressed by
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xi+1 =
( N∑
n=1

λnPn

)
xi, (4.5.3)

where λn = an/
∑N
m=1 am. In other words, each new ap-

proximation is the convex combination of the projections of
the previous step to all the sets Cn, n = 1, . . . , N . It follows
from the convergence theorem in the previous subsection
that the algorithm (4.5.3) converges weakly to some point

in
⋂N
n=1Cn when this intersection is nonempty.
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Theorem 4.5.15. (Weak Convergence of Projection Algo-
rithm for the Intersection of N Sets) Let X be a Hilbert
space and let Cn, n = 1, . . . , N be closed convex subsets
of X. Suppose that

⋂N
n=1Cn = ∅ and λn ≥ 0 satisfies∑N

n=1 λn = 1. Then the projection algorithm

xi+1 =
( N∑
n=1

λnPn

)
xi,

converges weakly to a point in
⋂N
n=1Cn.

Proof. This follows directly from Theorem 4.5.12. •
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When the interior of
⋂N
n=1Cn is nonempty we also have

that the algorithm (4.5.3) converges in norm. However, since
D does not have interior this conclusion cannot be derived
from Theorem 4.5.12. Rather it has to be proved by directly
showing that the approximation sequence is Fejér monotone
with respect to

⋂N
n=1Cn.
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Theorem 4.5.16. (Strong Convergence of Projection Al-
gorithm for the Intersection of N Sets) Let X be a Hilbert
space and let Cn, n = 1, . . . , N be closed convex subsets
of X. Suppose that int

⋂N
n=1Cn = ∅ and λn ≥ 0 satisfies∑N

n=1 λn = 1. Then the projection algorithm

xi+1 =
( N∑
n=1

λnPn

)
xi,

converges to a point in
⋂N
n=1Cn in norm.
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Proof. Let y ∈
⋂N
n=1Cn. Then

‖xi+1 − y‖=
∥∥∥( N∑

n=1

λnPn

)
xi − y

∥∥∥ =
∥∥∥ N∑
n=1

λn(Pnxi − Pny)
∥∥∥

≤
N∑
n=1

λn‖Pnxi − Pny‖ ≤
N∑
n=1

λn‖xi − y‖ = ‖xi − y

That is to say (xi) is a Fejér monotone sequence with respect

to
⋂N
n=1Cn. The norm convergence of (xi) then follows di-

rectly from Theorems 4.5.10 and 4.5.15. •

4.5.6 Commentary and Exercises

The projection algorithm can be traced back to von Neu-
mann [260] and has been studied extensively. Here we em-
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phasize the relationship between the projection algorithm
and variational methods in Hilbert spaces. While projection
operators can be defined outside the setting of a Hilbert
space, they are not necessarily nonexpansive (Exercises 4.5.4
and 4.5.5). Indeed, the nonexpansive property of the projec-
tion operator characterizes Hilbert spaces in two or more
dimensions. Thus, Hilbert space is the natural setting for
the analysis of projection algorithms.
The survey paper [14] and the book [97] discuss many

possible generalizations, provide historical perspective and
are a rich source for additional literature. Many interest-
ing applications are presented in [242]. Hundal’s example
is constructed in [140]. A simplification can be found in
[191]. This example also clarifies many other related prob-
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lems about convergence such as convergence of averages of
projectors, the classical proximal point algorithm and the
string-averaging projection method. Details of these appli-
cations can be found in [19]. Bregman distance (see [74] and
Exercise 4.5.1) provides an alternative perspective into many
of the generalizations of the projection algorithm. We refer
the readers to [17, 18] for details and additional references.

∗Exercise 4.5.1. Let X be a Hilbert space and let f : X →
R∪{+∞} be strictly convex and differentiable on int(dom f ).
Define the Bregman distance df : dom f × int(dom f ) → R

by
df (x, y) = f (x)− f (y)− 〈f ′(y), x− y〉.

(i) Prove df (x, y) ≥ 0 with equality if and only if x = y.
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(ii) Compute df when f (t) = t2/2 and when f is the
Boltzmann–Shannon entropy defined in 4.7.3.

(iii) Suppose f is three times differentiable. Prove df is con-

vex if and only if −1/f ′′ is convex on int(dom f ).
(iv) Extend the results in (ii) and (iii) to the function

Df : (dom f )N×(int(dom f ))N → R defined byDf (x, y) =∑N
n=1 df (xn, yn). (See [16] for the more general case

when Df is not separately defined.)

Exercise 4.5.2. Show that x ∈
⋂N
n=1Cn if and only if

(x, x, . . . , x) ∈ C ∩D.

Exercise 4.5.3. Prove Proposition 4.5.4.

Exercise 4.5.4. Show that Theorem 4.5.1, and therefore
Definition 4.5.3, can be extended to reflexive Banach spaces.
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Exercise 4.5.5. Show that in more than one dimension,
with respect to the ‖ · ‖p, for 1 < p < ∞ and p = 2, the
projection operator is not nonexpansive.

Exercise 4.5.6. Let X be a Hilbert space and let C be a
closed convex subset of X . Show that

f (x) = sup{〈x, y〉 − ‖y‖2
2

| y ∈ C}
is convex and

f (x) =
1

2
(‖x‖2 − ‖x− PC(x)‖2).

∗Exercise 4.5.7. (Infimal Convolution) If the functions
f, g : X → (−∞,+∞] are convex, we define the infimal
convolution f�g : X → [−∞,+∞] by

(f�g)(y) = inf
x
{f (x) + g(y − x)}.
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(i) Prove f�g is convex. (On the other hand, if g is concave
prove so is f�g.)

(ii) Prove (f�g)∗ = f∗ + g∗.
(iii) If dom f ∩ cont g = ∅, prove (f + g)∗ = f∗�g∗.
(iv) Define the Lambert W -function W : R+ → R+ as the

inverse of y ∈ R+ �→ yey. Prove the conjugate of the
function

x ∈ R �→ exp∗(x) +
x2

2
is the function

y ∈ R �→ W (ey) +
(W (ey))2

2
.

∗Exercise 4.5.8.Given a nonempty set C ⊂ X , consider
the distance function
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dC(x) = inf
y∈C

‖x− y‖.

(i) Prove d2C is a difference of convex functions, by observ-
ing

(dC(x))
2 =

‖x‖2
2

−
(‖ · ‖2

2
+ ιC

)∗
(x).

Now suppose C is convex.

(ii) Prove dC is convex and d∗C = ιBX∗ + ι
∗
C = ιBX∗ + σC .

(iii) If C is closed and x ∈ C, prove

d′C(x) = dC(x)
−1(x− PC(x)),

where PC(x) is the nearest point to x in C.
(iv) If C is closed, prove for all points x that(d2C

2

)′
(x) = x− PC(x)
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.

4.6 Duality Inequalities for Sandwiched Functions

We derive duality inequalities that involve a mix of convex
and nonconvex functions. These inequalities can be used to
derive the striking Clarke–Ledyaev two-set multidirectional
mean value theorem [87] and its elegant reformulation by
Lewis and Ralph [180].
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4.6.1 Sandwiched Functions

To avoid technical distraction we establish our fundamental
inequality in R

N and we consider the simple case when the
nonconvex function is smooth.

Theorem 4.6.1. (Sandwiched Functions) Let C be a nonempty
compact convex subset of RN . Suppose that f and h are
proper convex lsc functions with f∗ and h∗ continuously
differentiable and dom(f ) ∩ dom(h) ⊂ C. Then, for any
continuously differentiable function g : C → R, there ex-
ists z ∈ C such that

max
C

(g − f ) + max
C

(−g − h) ≥ f∗(g′(z)) + h∗(−g′(z)).

Proof. Let M := 2 sup{‖c‖ | c ∈ C} and W := {x :
[0, 1] → C | x is Lipschitz with a Lipschitz constant no
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more than M}. Then W is compact in the uniform norm
topology, by the Arzela–Ascoli Theorem [102]. For x ∈ W
define

Tx(t) :=

∫ t

0
(f∗)′ ◦ g′ ◦ x(s) ds +

∫ 1

t
(h∗)′ ◦ (−g′) ◦ x(s) ds.

(4.6.1)

Then T : W → W is continuous (Exercise 4.6.1). Since W
is compact and convex, the Schauder fixed point theorem
[96, p. 60] shows that there is x ∈ W such that x = Tx.
That is

x(t) =

∫ t

0
(f∗)′ ◦ g′ ◦ x(s) ds +

∫ 1

t
(h∗)′ ◦ (−g′) ◦ x(s) ds.
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Thus,

g(x(1))− g(x(0))=

∫ 1

0
〈g′ ◦ x(s), x′(s)〉 ds

=

∫ 1

0
〈g′ ◦ x(s), (f∗)′ ◦ g′ ◦ x(s)

−(h∗)′ ◦ (−g′) ◦ x(s)〉 ds.

=

∫ 1

0
〈g′ ◦ x(s), (f∗)′ ◦ g′ ◦ x(s)〉 ds

+

∫ 1

0
〈−g′ ◦ x(s), (h∗)′ ◦ (−g′) ◦ x(s)〉 ds.



4.6 Sandwiched Functions 529

By Fenchel’s equality of Proposition 4.4.1 we have

g(x(1))− g(x(0))=

∫ 1

0
(f∗ ◦ g′ ◦ x(s) + f ◦ (f∗)′ ◦ g′ ◦ x(s)) ds

+

∫ 1

0
(h∗ ◦ (−g′) ◦ x(s)

+h ◦ (h∗)′ ◦ (−g′) ◦ x(s)) ds.
By the integral form of Jensen’s inequality we have
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g(x(1))− g(x(0)) ≥
∫ 1

0
(f∗ ◦ g′ ◦ x(s) + h∗ ◦ (−g′) ◦ x(s)) ds

+ f
(∫ 1

0
(f∗)′ ◦ g′ ◦ x(s) ds

)
+ h

(∫ 1

0
(h∗)′ ◦ (−g′) ◦ x(s) ds

)
=

∫ 1

0
(f∗ ◦ g′ ◦ x(s) + h∗ ◦ (−g′) ◦ x(s)) ds

+ f (x(1)) + h(x(0)).
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Then, for some z = x(t) ∈ C we have

g(x(1))−g(x(0))−f (x(1))−h(x(0)) ≥ f∗(g′(z))+h∗(−g′(z)).
Thus, x(1) ∈ C and x(0) ∈ C will give the required inequal-
ity. •

4.6.2 Two-Set Mean Value Inequalities

We will deduce the Clarke–Ledyaev two-set multidirectional
mean value inequality and its reformulation due to Lewis
and Ralph from the fundamental inequality in the previous
subsection. The idea is to let f and h be the indicator func-
tions of the sets involved.
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Since such f and h may not have smooth duals we need
to generalize Theorem 4.6.1. For this purpose we need the
following lemma which is a useful tool to smooth the dual
of a convex function.

Lemma 4.6.2. Let f : RN → R ∪ {+∞} be a proper
convex lsc function. Suppose that dom(f ) is a bounded
subset of R

N . Then, for any ε > 0, (f + ε‖ · ‖2)∗ is
continuously differentiable.

Now we have the following generalization of Theorem 4.6.1
whose proof is left as a guided exercise.
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Theorem 4.6.3. Let C be a nonempty compact convex
subset of RN . Suppose that f and h are proper convex lsc
functions with dom(f )∩dom(h) ⊂ C. Then, for any con-
tinuously differentiable function g : C → R, there exists
z ∈ C such that

max
C

(g − f ) + max
C

(−g − h) ≥ f∗(g′(z)) + h∗(−g′(z)).

Proof. Exercise 4.6.3. •

This result remains valid with g assumed only Lipschitz
and with gradients replaced by Clarke subdifferentials (see
[42] for this and other extensions). We illustrate what The-
orem 4.6.3, so generalized, does and does not say in Figure
4.1. Therein, one has a subdifferential which does not sepa-
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rate the convex and concave functions but a lower translate
with the same slope does. However, there are other subgra-
dients that will work. It is not known whether this is always
true.
The following corollary is immediate.

Corollary 4.6.4. (The Lewis–Ralph Sandwich Theorem)
Let C be a nonempty compact convex subset of RN . Sup-
pose that f and h are proper convex lsc functions with
dom(f ) ∩ dom(h) ⊂ C. Then, for any continuously dif-
ferentiable function g : C → R such that f ≥ g ≥ −h,
there exists z ∈ C such that

0 ≥ f∗(g′(z)) + h∗(−g′(z)).
Proof. Exercise 4.6.4. •
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Fig. 4.1. The duality sandwich on a compact interval.
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Now we can deduce a two-set multidirectional mean value
inequality. For two-sets C1, C2 ⊂ X we denote [C1, C2] :=
conv(C1 ∪ C2).

Corollary 4.6.5. (Two-Set Multidirectional Mean Value
Inequality) Let C1 and C2 be nonempty compact convex
subsets of RN . Suppose that

g : [C1, C2] → R

is a continuously differentiable function. Then there ex-
ists z ∈ [C1, C2] such that for any x ∈ C1 and y ∈ C2,

〈x− y, g′(z)〉 ≤ max
C1

g −min
C2

g.
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Proof. In Theorem 4.6.3 we take f := ιC1
and h :=

ιC2
and C = [C1, C2]. Since f

∗(z∗) = maxx∈C1
〈x, z∗〉 and

h∗(z∗) = maxy∈C2
〈y, z∗〉, we get the desired inequality. •

4.6.3 Refinements

Using the same technique of proving the fundamental in-
equality to the situation when one of f or h is removed or
when f = h(−· ) we can substantially improve the conclu-
sions.
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Theorem 4.6.6. Let C be a nonempty compact convex
subset of RN . Suppose that f is a proper convex lsc func-
tions and dom(f ) ⊂ C. Then for any α = 1 and any con-
tinuously differentiable function g : [C,αC] → R, there
are z ∈ [C,αC] and a ∈ C such that

g(αa)− g(a)

α− 1
− f (a) ≥ f∗(g′(z)).

Proof. The method used to deduce Theorem 4.6.3 from
Theorem 4.6.1 allows us to assume without loss of generality
that f∗ is continuously differentiable.
Let M := (1 + |α|) sup{‖c‖ | c ∈ C} and W := {x :

[0, 1] → [C,αC] | x is Lipschitz with a Lipschitz constant
less than M}. Then W is compact in the uniform norm
topology, again by the Arzela–Ascoli Theorem. For x ∈ W
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define

Tx(t) := α

∫ t

0
(f∗)′ ◦ g′ ◦ x(s) ds +

∫ 1

t
(f∗)′ ◦ g′ ◦ x(s) ds.

(4.6.2)

Then T : W → W is continuous (Exercise 4.6.2). Since W
is compact and convex, once more the Schauder fixed point
theorem shows that there is x ∈ W such that x = Tx. That
is

x(t) = α

∫ t

0
(f∗)′ ◦ g′ ◦ x(s) ds +

∫ 1

t
(f∗)′ ◦ g′ ◦ x(s) ds.

Thus

g(x(1))− g(x(0)) = (α− 1)

∫ 1

0
〈g′ ◦ x(s), (f∗)′ ◦ g′ ◦ x(s)〉 ds.
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By Fenchel’s inequality (Proposition 4.4.1) we have

g(x(1))− g(x(0))

= (α− 1)
∫ 1
0 (f

∗ ◦ g′ ◦ x(s) + f ◦ (f∗)′ ◦ g′ ◦ x(s)) ds.
By the integral form of Jensen’s inequality we have

g(x(1))− g(x(0))

α− 1
≥

∫ 1

0
f∗ ◦ g′ ◦ x(s) ds

+ f
(∫ 1

0
(f∗)′ ◦ g′ ◦ x(s) ds

)
=

∫ 1

0
f∗ ◦ g′ ◦ x(s) ds + f (x(0)).

Letting a = x(0) we see that there is some z = x(t) ∈
[C,αC] such that
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g(αa)− g(a)

α− 1
− f (a) ≥ f∗(g′(z))

since x(1) = αx(0) = αa. •

Setting α = −1 and 0 we have two useful corollaries below.

Corollary 4.6.7. Let C be a nonempty compact convex
subset of RN . Suppose that f is a proper convex lsc func-
tion and dom(f ) ⊂ C. Then for any α = 1 and any con-
tinuously differentiable function g : [C,−C] → R, there
are z ∈ [C,−C] and a ∈ C such that

g(a)− g(−a)
2

− f (a) ≥ f∗(g′(z)).

In particular, if f dominates the odd part of g on C then
f∗(g′(z)) ≤ 0.
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Proof. Let α = −1 in Theorem 4.6.6. •

Corollary 4.6.8. Let C be a nonempty compact con-
vex subset of RN . Suppose that f is a proper convex lsc
functions and dom(f ) ⊂ C. Then for any α = 1 and any
continuously differentiable function g : [0, C] → R, there
are z ∈ [0, C] and a ∈ C such that

g(a)− g(0) ≥ f (a) + f∗(g′(z)).

Proof. Let α = 0 in Theorem 4.6.6. •

4.6.4 Commentary and Exercises

Clarke and Ledyaev proved two interesting multidirectional
mean value inequalities: the one-set version presented in



4.6 Sandwiched Functions 543

Theorem 3.6.1 and the two-set version discussed in Corol-
lary 4.6.5. The one-set version is proved by a variational
method. The original proof for the two-set version in [87]
involves flows and a fixed point theorem. Whether one can
find a “pure” variational proof for the two-set version re-
mains an open problem. The general framework of this sec-
tion in terms of sandwiched functions following [42] provides,
in particular, a proof for the two-set multidirectional mean
value inequality that combines a duality inequality (vari-
ational in nature) and topological fixed point theory. The
comparison of f to the odd part of g in Corollary 4.6.7 re-
inforces the suggestion that fixed point theory is central to
these results. The main result on sandwiched functions in
Theorem 4.6.1 also enables us to further refine the two-set



544 4 Convex Analysis

multidirectional mean value inequality (see Theorem 4.6.6
and its corollaries). One can find interesting special cases
when the convex set C is the unit ball (Exercises 4.6.5). The
equivalent sandwich theorem form of the two-set multidirec-
tional mean value inequality in Corollary 4.6.4 is derived in
[180].

Exercise 4.6.1. Show that the operator T defined in
(4.6.1) is a continuous mapping that maps W to itself.

Exercise 4.6.2. Show that the operator T defined in
(4.6.2) is a continuous mapping that maps W to itself.

Exercise 4.6.3. Prove Theorem 4.6.3. Hint: First apply
Theorem 4.6.1 to f + ε‖ · ‖2, h+ ε‖ · ‖2 and g and then take
limits when ε→ 0.
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Exercise 4.6.4. Prove Corollary 4.6.4.

Exercise 4.6.5. Setting C to be the unit ball in Theorem
4.6.6, use Corollaries 4.6.7 and 4.6.8 to deduce the following.

Corollary 4.6.9. Let B be the closed unit ball of RN .
Then for any α = 1 and any continuously differentiable
function g : B → R, there exists z ∈ B such that

max
a∈B

g(αa)− g(a)

α− 1
≥ ‖g′(z)‖.

Corollary 4.6.10. Let B be the closed unit ball of RN .
Then for any continuously differentiable function g : B →
R, there exists z ∈ B such that

max
a∈B

g(a)− g(−a)
2

≥ ‖g′(z)‖.
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Corollary 4.6.11. Let B be the closed unit ball of RN .
Then for any continuously differentiable function g : B →
R, there exists z ∈ B such that

max
a∈B

g(a)− g(0) ≥ ‖g′(z)‖.

Note that Corollary 4.6.11 can also be deduced from
the one-set multidirectional mean value inequality Theo-
rem 3.6.1, and therefore has a variational proof.

Exercise 4.6.6. Deduce Corollary 4.6.11 from Theorem
3.6.1. Hint: Apply Theorem 3.6.1 in the form for bounded
set S = B pointed out in Exercise 3.6.1 (i) to function
f = −g. Reference: See [42] for a direct variational proof.
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4.7 Entropy Maximization

Entropy maximization is a special kind of convex program-
ming problem with a finite number of linear constraints rep-
resenting the condition on moments and a convex cost func-
tion emulating the negative of an entropy. A wide variety of
application problems can be covered by this model due to
its physical background. In this section we discuss the gen-
eral duality theory for entropy maximization problems and
illustrate its applications with a number of examples. The
special structure of finitely many linear constraints in this
problem makes the dual problem easy to solve. This is the
key feature that we are going to explore.
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4.7.1 Duality for Entropy Maximizations

We consider the following general form of the entropy max-
imization problem.

E minimize f (x)

subject to Ax = b,

where f : X → R ∪ {+∞} is a lsc convex function on a
Banach spaceX representing the negative of an entropy like
function and A : X → R

N is a linear operator. Our solution
to this entropy maximization problem in different concrete
forms will be based on the following duality theorem.
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Theorem 4.7.1. (Duality for Entropy Maximization) Let
X be a Banach space, let f : X → R ∪ {+∞} be a lsc
convex function and let A : X → R

N be a continuous
linear operator. Suppose that b ∈ core(A dom f ). Then

inf
x∈X

{f (x) | Ax = b}= max
φ∈RN

{〈φ, b〉 − f∗(A∗φ)}.

(4.7.1)

Proof. Let g = ι{b}. Then g
∗(φ) = 〈φ, b〉 (Exercise 4.7.1).

Thus, it follows directly from the Fenchet duality equality
of Theorem 4.4.3 that
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inf
x∈X

{f (x) | Ax = b}= inf
x∈X

{f (x) + g(Ax)}

= sup
φ∈RN

{−g∗(−φ)− f∗(A∗φ)}

= sup
φ∈RN

{〈φ, b〉 − f∗(A∗φ)}.(4.7.2)

The condition b ∈ core(A dom f ) ensures that the infimum
is finite. We leave the fact that supφ∈RN{〈φ, b〉−f

∗(A∗φ)}
must be attained as Exercise 4.7.2. •

In general the infimum in the equality (4.7.1) may not be
attained. An example is given in Exercise 4.7.3.
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4.7.2 Finite Dimensional Problems

Entropy maximization problems in finite dimensional spaces
for the classical Boltzmann–Shannon entropy illustrate well
the characteristics of such problems. We start with the def-
inition of the Boltzmann–Shannon entropy function. Define

p(t) :=

⎧⎪⎨⎪⎩
t ln t− t if t > 0,

0 if t = 0,

+∞ if t < 0,

(4.7.3)

and f : RN → R ∪ {+∞} by

f (x) :=
N∑
n=1

p(xn). (4.7.4)
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The p and f defined above are Boltzmann–Shannon entropy
functions on R and RN , respectively. We note that the origi-
nal Boltzmann–Shannon entropy functions are the negatives
of p and f and they are maximized. The following propo-
sition summarizes some basic properties of the Boltzmann–
Shannon entropy function whose elementary proof is left as
an exercise.

Proposition 4.7.2. Let f be the Boltzmann–Shannon
entropy function defined in (4.7.4). Then

(i) for any c ∈ R
N , f (x) + 〈c, x〉 is strictly convex on

R
N
+ and has compact sublevel sets;

(ii) for any x̄ ∈ int(RN+ ) and x ∈ bd(RN+ ), f ′(x; x̄− x) =
−∞.
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Proof. Exercise 4.7.4. •

We now consider the finite dimensional entropy maximiza-
tion problem.

FE minimize f (x) + 〈c, x〉
subject to Ax = b,

where f is the Boltzmann–Shannon entropy function defined
in (4.7.4), c ∈ R

N , b ∈ R
M and A : RN → R

M is a linear
mapping.
The general duality theorem in this case can help us con-

veniently derive an explicit formula for the unique solution
of problem FE in terms of the solution to its dual problem.
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Theorem 4.7.3. Suppose that there exists a z ∈ int(RN+ )
such that Az = b. Then problem FE has a unique solu-
tion x̄ = (x̄1, . . . , x̄N ) determined by

x̄n = exp(A�φ̄− c)n, n = 1, . . . , N,

where φ̄ is a solution to the dual problem

max
φ∈RM

{〈φ, b〉 − (f + c)∗(A�φ)}.

Proof. The compactness of the sublevel sets of the ob-
jective function as asserted in Proposition 4.7.2 ensures the
existence of solutions to problem FE . By (ii) of Proposition
4.7.2 the directional derivative of the cost function is −∞
on any boundary point x of RN+ , the domain of the cost
function, in the direction of z−x. Thus, any solution of FE



4.7 Entropy Maximization 555

must be in the interior of RN+ . By (i) of Proposition 4.7.2

the cost function is strictly convex on int(RN+ ), and therefore
the solution is unique. Let us denote this unique solution of
FE by x̄. Then the duality result of Theorem 4.7.1 implies
that

f (x̄) + 〈c, x̄〉 = inf
x∈RN

{f (x) + 〈c, x〉 | Ax = b}

= max
φ∈RM

{〈φ, b〉 − (f + c)∗(A�φ)}.

Now let φ̄ be a solution to the dual problem. We have

f (x̄) + 〈c, x̄〉 + (f + c)∗(A�φ̄) = 〈φ̄, b〉 = 〈φ̄, Ax̄〉 = 〈A�φ̄, x̄〉.
It follows from Proposition 4.4.1 that A�φ̄ ∈ ∂(f + c)(x̄).
Since x̄ ∈ int(RN+ ) where f is differentiable, we have
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A�φ̄ = f ′(x̄) + c. The formula for x̄ now follows from ex-
plicit computation (Exercise 4.7.5). •

We note that φ̄ is a Lagrange multiplier for the constrained
minimization problem FE (Exercise 4.7.6).

4.7.3 The DAD Problem

We now turn to an interesting application in matrix the-
ory. Let A = (anm) be an N by N matrix. We say that
A is doubly stochastic if each entry is nonnegative and∑N
n=1 anm = 1 for m = 1, . . . , N and

∑N
m=1 anm = 1

for n = 1, . . . , N . We say that A has a double stochastic
pattern if there is a doubly stochastic matrix with exactly
the same zero entries as A. Using the result in the previ-
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ous subsection we can prove the following characterization
of matrices that have a doubly stochastic pattern.

Theorem 4.7.4. (Matrices with Doubly Stochastic Pat-
tern) Let A be a square matrix. Then A has a double
stochastic pattern if and only if there are diagonal ma-
trices D1 and D2 with strictly positive diagonal entries
such that D1AD2 is doubly stochastic.

Proof. The sufficiency is easy and is left as an exercise
(Exercise 4.7.7). We prove the necessity. Let A have a doubly
stochastic pattern. Define a set Z = {(n,m)|anm > 0}, and
let RZ denote the set of vectors with components indexed by
Z and R

Z
+ denote those vectors in R

Z with all nonnegative
components. The key is to realize that the desired doubly
stochastic matrix D1AD2 = B is a solution of the following
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entropy maximization problem.

minimize
∑

(n,m)∈Z
(p(xnm)− xnm log anm) x ∈ R

Z

subject to
∑

n:(n,m)∈Z
xnm = 1 for m = 1, . . . , N

∑
m:(n,m)∈Z

xnm = 1 for n = 1, . . . , N.

Here p is the Boltzmann–Shannon entropy function defined
in (4.7.3). That matrixA has a doubly stochastic pattern im-
plies that the constraint is satisfied at an interior point ofRZ+
(Exercise 4.7.8). Thus, by Theorem 4.7.3, the above entropy
maximization problem has a unique solution x̄ = (x̄nm)
whose components are given by x̄nm = exp[(G�φ̄)nm +
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ln(anm)], where G is the matrix in the linear equality con-
straints and φ̄ is a solution of the dual problem. Since
G : RZ → R

2N , we can write φ̄ = (λ1, . . . , λN, μ1, . . . , μN ).
It follows that, for any x = (xnm) ∈ R

Z ,

〈x,G�φ̄〉= 〈Gx, φ̄〉

=

N∑
n=1

λn
∑

m:(n,m)∈Z
xnm +

N∑
m=1

μm
∑

n:(n,m)∈Z
xnm

=
∑

n:(n,m)∈Z
xnm(λn + μm).

Thus,

(G�φ̄)nm = λn + μm.
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Now we have x̄nm = anm exp(λn + μm) = anm exp(λn) ×
exp(μm). Define B = (bnm) by bnm = x̄nm for (n,m) ∈ Z
and bnm = 0 otherwise. Then B is a doubly stochastic
matrix and B = D1AD2 where D1 and D2 are diago-
nal matrices with diagonal entries exp(λ1), . . . , exp(λN ) and
exp(μ1), . . . , exp(μN ), respectively. •

4.7.4 Infinite Dimensional Problems

Maximum entropy methods in image reconstruction and op-
tion pricing problems lead to the following entropy maxi-
mization problem in infinite dimensional space.
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IE minimize f (x) :=

∫
I
p(x(t)) dt x ∈ L1(I)

subject to

∫
I
an(t)x(t) dt = bn, n = 1, . . . , N.

Here again p is the Bolzmann–Shannon entropy defined
in (4.7.3), I is a (possibly infinite) interval, an ∈ L∞(I)
and the integral

∫
I p(x(t)) dt is understood in the follow-

ing sense: If there exists a function α ∈ L1(I) such that
α(t) ≥ p(x(t)) almost everywhere on I , the integral has an
unambiguous classical value (finite or −∞). Otherwise, we
set

∫
I p(x(t)) dt = +∞.
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Although Theorem 4.7.1 holds for problem IE , the con-
straint qualification b ∈ core(A dom f ) is too strong for
most of the applications. Fortunately, this condition has
been weakened in [51] to: b belongs to the relative interior of
A dom f , the interior relative to span(A dom f ) denoted by
ri(A dom f ). We will not get into the full technical details
and will merely state this duality theorem.
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Theorem 4.7.5. (Duality for Entropy Maximization in In-
finite Dimensional Spaces) Let f : L1(I) → R ∪ {+∞} be
the lsc convex function defined in IE , let A : L1(I) →
R
N be the continuous linear operator defined by

Ax =
(∫

I
an(t)x(t) dt, . . . ,

∫
I
an(t)x(t) dt

)
and let b = (b1, . . . , bN ). Suppose that b ∈ ri(A dom f ).
Then

inf
x∈L1(I)

{f (x) | Ax = b} = max
φ∈RN

{〈φ, b〉 − f∗(A∗φ)}.

(4.7.5)

Proof. See [51, 36]. •
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For problem IE we can actually get an explicit represen-
tation of the solution. For this we need a representation of
the dual of the f .

Proposition 4.7.6. (Dual of the Integral of Entropy) For
any x∗ ∈ L∞(I),

f∗(x∗) =
∫
I
p∗(x∗(t)) dt =

∫
I
exp(x∗(t)) dt.

Proof. Let us begin with the case when I is finite. We can
compute that p∗(s) = es (Exercise 4.7.10). Thus, for any
x∗ ∈ L∞(I)
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f∗(x∗)= sup
{∫

I
[〈x∗(t), x(t)〉 − p(x(t))]dt

∣∣∣ x ∈ L1(I)
}

≤
∫
I
sup[〈x∗(t), x〉 − p(x)] dt

=

∫
I
p∗(x∗(t)) dt =

∫
I
exp(x∗(t)) dt.

On the other hand, clearly x̄(t) := exp(x∗(t)) ∈ L1(I) and

sup
{∫

I
[〈x∗(t), x(t)〉 − p(x(t))] dt

∣∣∣ x ∈ L1(I)
}

is attained at x̄.
When I is an infinite interval and exp(x∗( · )) ∈ L1(I) the

result follows from the finite interval case by limiting process.
If exp(x∗( · )) ∈ L1(I) then both sides of the equality are



566 4 Convex Analysis

+∞ according to our convention. We leave the detail as an
exercise (Exercise 4.7.11). •

Combining Theorem 4.7.5 and Proposition 4.7.6 we have
the following corollary that gives an explicit solution to prob-
lem IE .
Corollary 4.7.7. Let f : L1(I) → R ∪ {+∞} be the lsc
convex function defined in IE , let A : L1(I) → R

N be
the continuous linear operator defined by

Ax =
(∫

I
an(t)x(t) dt, . . . ,

∫
I
an(t)x(t) dt

)
and let b = (b1, . . . , bN ). Suppose that b ∈ ri(A dom f ).
Then IE has a unique solution given by
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x̄(t) = exp
( N∑
n=1

φ̄nan(t)
)
,

where φ̄ ∈ R
N is the solution of

max
φ∈RN

{〈φ, b〉 − f∗(A∗φ)}. (4.7.6)

Proof. Exercise 4.7.12. •

4.7.5 Commentary and Exercises

The DAD problem and its infinite dimensional extensions
to probability theory were discussed in [54]. A comprehen-
sive foundation for infinite dimensional entropy maximiza-
tion was established in [51] and other papers by Borwein and
Lewis, especially [52]. The value of such formalism is that
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it naturally allows one to handle non-negativity and similar
constraints with a natural barrier function, and that it cap-
tures much of the power of convex duality theory as shown
in Section 4.7.4. A fleshed out application of the results in
that subsection to option pricing can be found in [36].

Exercise 4.7.1. Let X be a Banach space and let C be
a closed convex subset of X . Show that ι∗C(φ) = σC(φ) :=
supc∈C〈φ, c〉. In particular, ι∗{b} = 〈φ, b〉.
Exercise 4.7.2. Show that the last supremum in (4.7.2)
must be attained.

Exercise 4.7.3. Show that the infimum in the equality
(4.7.1) may not be attained.

Exercise 4.7.4. Prove Proposition 4.7.2.
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Exercise 4.7.5.Let f be the Boltzmann–Shannon entropy
function defined in (4.7.4). Show that f ′(x̄) = A∗φ̄ − c
implies that x̄ = (x̄1, . . . , x̄N ) is determined by

x̄n = exp(A∗φ̄− c)n, n = 1, . . . , N.

Exercise 4.7.6. Verify that φ̄ in Theorem 4.7.3 is a La-
grange multiplier for the constrained minimization problem
FE .
Exercise 4.7.7. Let A be a square matrix. Prove that if
there are diagonal matrices D1 and D2 with strictly positive
diagonal entries such that D1AD2 is doubly stochastic then
A has a double stochastic pattern.
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Exercise 4.7.8. Show that the constraint in the optimiza-
tion problem in the proof of Theorem 4.7.4 is satisfied at an
interior point of RZ+.

Exercise 4.7.9.Construct a square matrix with nonnega-
tive entries that does not have a doubly stochastic pattern.

Exercise 4.7.10. Verify that for the Bolzmann–Shannon
entropy p defined in (4.7.3) we have p∗(s) = es.

Exercise 4.7.11. Supplement the detail for the proof of
Proposition 4.7.6 in the case when I is an infinite interval.

Exercise 4.7.12. Prove Corollary 4.7.7.
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Variational Techniques and Multifunctions

Multifunctions arise naturally in many situations. Some fre-
quently encountered examples are: the level sets and sub-
level sets of a function, various subdifferentials of nonsmooth
functions, the solution sets of an optimization problem de-
pending on some parameters and the vector field of a control
system.
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Here we give a concise discussion on how to apply the
technique of variational analysis to problems involving multi-
functions. We also discuss subdifferentials as multifunctions.

5.1 Multifunctions

5.1.1 Multifunctions and Related Functions

Let X and Y be two sets. A multifunction from X to Y
is a mapping F : X → 2Y , where 2Y represents the col-
lection of all subsets of Y . We define the domain, range
and graph of F by domF := {x ∈ X | F (x) = ∅},
rangeF := {y ∈ Y | y ∈ F (x) for some x ∈ X} and
graphF := {(x, y) ∈ X×Y | y ∈ F (x)}, respectively. The
inverse of a multifunction F : X → 2Y is a multifunction
F−1 : Y → 2X defined by F−1(y) := {x ∈ X | y ∈ F (x)}.
Clearly the domain of F is the range of F−1 and the
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range of F is the domain of F−1. A multifunction is com-
pletely characterized by its graph. Moreover, we have the
following symmetric relationship between F , F−1 and the
graph of F : F (x) = {y ∈ Y | (x, y) ∈ graphF} and
F−1(y) = {x ∈ X | (x, y) ∈ graphF}. The following are
some examples of multifunctions.

Example 5.1.1. Let X be a Fréchet smooth Banach space
and let f : X → R ∪ {+∞} be a lsc function. Then ∂Ff is
a multifunction from X to X∗.
Example 5.1.2. Let X and Y be metric spaces and let
f : X×Y → R ∪ {+∞} be a lsc function. Then the solution
set to the parametric minimization problem of minimizing
x→ f (x, y),
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argmin(y) :=
{
x ∈ X | f (x, y) = inf{f (x′, y) | x′ ∈ X}

}
,

is a multifunction from Y to X .

Example 5.1.3. Let X be a metric space and let f : X →
R ∪ {+∞} be a lsc function. Then the sublevel set

f−1((−∞, r]) = {x ∈ X | f (x) ≤ r}
and the level set

f−1(r) = {x ∈ X | f (x) = r}
are multifunctions from R → X .

Example 5.1.4. Let X be a metric space and let f : X →
R be a lsc function. Then the epigraphical profile mapping

Ef (x) = {r ∈ R | f (x) ≤ r}
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is a multifunction fromX → R. We can see that graphEf =
epi f (Exercise 5.1.3).

One can often study a multifunction F : X → 2Y through
related functions. Clearly, ιgraphF completely characterizes
F . When both X and Y are topological spaces, ιgraphF is a
lsc function onX×Y if and only if graphF is a closed subset
ofX×Y . This is an important condition when we analyze a
multifunction with variational techniques. Thus, we define a
multifunction to be closed if its graph is closed. We say that
multifunction F is closed (open, compact, convex) valued if,
for every x ∈ domF , the set F (x) is closed (open, compact,
convex). Note that a closed multifunction is always closed
valued yet the converse is not true (Exercise 5.1.2). When
Y has additional structure other functions can be used to
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study a multifunction F : X → 2Y . For example when Y is
a metric space we can use (x, y) → d(F (x); y) and when Y
is a Banach space we can use (x, x∗) → σ(F (x); x∗). These
functions are in general nonsmooth. We will emphasize the
use of variational tools in studying multifunctions by their
related nonsmooth functions.
5.1.2 An Example: The Convex Subdifferential

Subdifferentials are multifunctions fromX toX∗. In Section
3.4 we have seen the interplay of properties of a function
and its (Fréchet) subdifferential. Here we further discuss the
subdifferential of a convex function to illustrate various nice
properties of the subdifferential as a multifunction inherited
from the convexity of the underlying function.
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We say a multifunction F : X → 2X
∗
is monotone pro-

vided that for any x, y ∈ X , x∗ ∈ F (x) and y∗ ∈ F (y),

〈y∗ − x∗, y − x〉 ≥ 0.

The convex subdifferential of a convex lsc function is a typ-
ical example of a monotone multifunction.

Theorem 5.1.5. Let X be a Banach space and let
f : X → R ∪ {+∞} be a lsc convex function. Then ∂f
is a monotone multifunction.

Proof. Let x∗ ∈ ∂f (x) and y∗ ∈ ∂f (y). It follows from
the definition of the convex subdifferential that

f (y)− f (x) ≥ 〈x∗, y − x〉 (5.1.1)

and
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f (x)− f (y) ≥ 〈y∗, x− y〉 (5.1.2)

Adding (5.1.1) and (5.1.2) we have

〈y∗ − x∗, y − x〉 ≥ 0.

•

In fact the monotonicity of the subdifferential characterizes
the convexity of the underlying function.

Theorem 5.1.6. (Convexity) Let X be a Fréchet smooth
Banach space and let f : X → R ∪ {+∞} be a lsc func-
tion. Suppose that ∂Ff is monotone. Then f is convex.
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Proof. If ∂Ff is monotone then for each x∗ ∈ X∗ the
operator x → ∂Ff (x) + x∗ = ∂F (f + x∗)(x) is monotone,
hence quasi-monotone. By Theorem 3.4.12, for each x∗ ∈
X∗, the function f + x∗ is quasi-convex. This implies the
convexity of f (Exercise 5.1.4). •

Recall that a monotone multifunction F : X → 2X
∗
is

said to be maximal monotone if graph F is not properly
contained in the graph of any monotone multifunction. It is
not hard to check that a maximal monotone multifunction
is convex valued and closed (Exercise 5.1.5). We can fur-
ther prove the maximal monotonicity of a monotone Fréchet
subdifferential of a lsc function (which must be convex by
Theorem 5.1.6).
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Theorem 5.1.7. (Maximal Monotonicity) Let X be a
Fréchet smooth Banach space and let f : X → R∪{+∞}
be a proper lsc function. Suppose that dom f = ∅ and
∂Ff is monotone. Then ∂Ff is maximal monotone.

Proof. Let b ∈ X and b∗ ∈ X∗ be such that b∗ ∈
∂Ff (b). We need to show that there exists x ∈ X and
x∗ ∈ ∂Ff (x) such that 〈x∗ − b∗, x − b〉 < 0. Observing
that 0 ∈ ∂F (f − b∗)(b), and therefore b is not a minimum of
f−b∗, there exists a ∈ X such that (f−b∗)(a) < (f−b∗)(b).
Then it follows from the approximate mean value theorem of
Theorem 3.4.6 that there exists a sequence (xi) converging
to c ∈ [a, b) and x∗i ∈ ∂Ff (xi) such that y∗i := x∗i − b∗ ∈
∂F (f − b∗)(xi) satisfying lim infi→∞〈y∗i , c − xi〉 ≥ 0 and
lim infi→∞〈y∗i , b− a〉 > 0. It follows that
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lim inf
i→∞

〈x∗i − b∗, b− xi〉 ≥ lim inf
i→∞

〈y∗i , b− c〉

+ lim inf
i→∞

〈y∗i , c− xi〉

≥ ‖b− c‖
‖b− a‖ lim inf

i→∞
〈y∗i , b− a〉

+ lim inf
i→∞

〈y∗i , c− xi〉 > 0

It remains to set x := xi and x
∗ := x∗i for i sufficiently

large. •

We have seen in Proposition 4.1.2 and Theorem 4.1.8 that
a lsc convex function is locally Lipschitz in the core of its do-
main. Consequently the subdifferential of a lsc convex func-
tion is locally bounded in the core of its domain.
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We will show this holds true in general for a maximal mono-
tone multifunction. The proof actually reduces this more
general situation to the continuity of a convex function in
the core of its domain.

Theorem 5.1.8. (Boundedness of Monotone Multifunc-

tions) Let F : X → 2X
∗
be a monotone multifunction.

Suppose that x ∈ core (dom F ). Then F is locally
bounded at x.

Proof. By choosing any x∗ ∈ F (x) and replacing F by
the monotone multifunction y → F (y + x) − x∗, we lose
no generality in assuming that x = 0 and that 0 ∈ F (0).
Define, for x ∈ X ,

f (x) := sup{〈y∗, x−y〉 : y ∈ dom F, ‖y‖ ≤ 1 and y∗ ∈ F (y)}.
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As the supremum of affine continuous functions, f is con-
vex and lower semicontinuous. We show that dom f is an
absorbing set. First, since 0 ∈ F (0), we must have f ≥ 0.
Second, whenever y ∈ dom F and y∗ ∈ F (y), monotonic-
ity implies that 0 ≤ 〈y∗ − 0, y − 0〉, so f (0) ≤ 0. Thus,
f (0) = 0. Suppose x ∈ X . By hypothesis, dom F is absorb-
ing so there exists t > 0 such that F (tx) = ∅. Choose any
element u∗ ∈ F (tx). If y ∈ dom F and y∗ ∈ F (y), then by
monotonicity

〈y∗, tx− y〉 ≤ 〈u∗, tx− y〉.
Consequently,

f (tx) ≤ sup{〈u∗, tx− y〉 : y ∈ dom F, ‖y‖ ≤ 1}
< 〈u∗, tx〉 + ‖u∗‖ < +∞.
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By virtue of Proposition 4.1.2 and Theorem 4.1.8, f is
continuous at 0 and hence there exists η > 0 such that
f (x) < 1 for all x ∈ 2ηBX . Equivalently, if x ∈ 2ηBX ,
then 〈y∗, x〉 ≤ 〈y∗, y〉 + 1 whenever y ∈ dom F , ‖y‖ ≤ 1
and y∗ ∈ F (y). Thus, if y ∈ ηBX ∩ dom F and y∗ ∈ F (y),
then

2η‖y∗‖ = sup{〈y∗, x〉 : x ∈ 2ηBX} ≤ ‖y∗‖‖y‖+1 ≤ η‖y∗‖+1,
so ‖y∗‖ ≤ 1/η. •

Note that Theorem 5.1.8 does not require that the domain
of F be convex.
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5.1.3 Limits of Sequences of Sets

Having defined multifunctions we turn to their limits and
continuity. We will take a sequential approach, and therefore
need to study the limits of sequences of sets.

Definition 5.1.9.Let Y be a Hausdorff topological space
and let (Fi) be a sequence of subsets of Y . The sequential
lower and upper limits of Fi are defined by

lim inf
i→∞

Fi = { lim
i→∞

yi | yi ∈ Fi for all i = 1, 2, . . . }
and

lim sup
i→∞

Fi = { lim
k→∞

yik | yik ∈ Fik for some ik → ∞}.

Clearly lim infi→∞Fi ⊂ lim supi→∞Fi. When they are
equal we define the common set to be the Painlevé–Kuratowski
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limit of the sequence (Fi) and denote it by limi→∞Fi. In a
metric space both the sequential lower and upper limits are
closed. However, this is not true in general (Exercise 5.1.8).
When Y is a metric space the lower and upper limits can

be represented alternatively as

lim inf
i→∞

Fi =
∞⋂
k=1

∞⋃
j=1

∞⋂
i=j

B1
k
(Fi) (5.1.3)

and

lim sup
i→∞

Fi =
∞⋂
k=1

∞⋂
j=1

∞⋃
i=j

B1
k
(Fi). (5.1.4)

We leave the proofs of these alternative representations as
Exercise 5.1.6.
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These lower and upper limits can also be described by using
the distance between a set and a point.

Lemma 5.1.10. Let Y be a metric space and let (Fi) be
a sequence of subsets in Y . Then

lim inf
i→∞

Fi = {y ∈ Y | lim sup
i→∞

d(Fi; y) = 0}

and

lim sup
i→∞

Fi = {y ∈ Y | lim inf
i→∞

d(Fi; y) = 0}.

Proof. Exercise 5.1.7. •

Lemma 5.1.10 is a special case of the following more general
characterization of the upper and lower limits of a sequence
of sets.
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Lemma 5.1.11. Let Y be a metric space, let F be a
closed subset of X and let (Fi) be a sequence of subsets
in Y . Then

F ⊂ lim inf
i→∞

Fi (5.1.5)

if and only if for any y ∈ Y ,

lim sup
i→∞

d(Fi; y) ≤ d(F ; y); (5.1.6)

and

lim sup
i→∞

Fi ⊂ F (5.1.7)

if and only if for any y ∈ Y ,

lim inf
i→∞

d(Fi; y) ≥ d(F ; y). (5.1.8)

Consequently,
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lim
i→∞

Fi = F

if and only if for any y ∈ Y ,

lim
i→∞

d(Fi; y) = d(F ; y).

Proof. We prove the equivalence of (5.1.5) and (5.1.6). It
follows from Lemma 5.1.10 that (5.1.6) implies (5.1.5). Now
suppose (5.1.5) holds and let y ∈ Y be an arbitrary element.
For any ε > 0 choose x ∈ F such that d(F ; y)+ε ≥ d(x, y)
and let (xi) be a sequence converges to x with xi ∈ Fi. Then

d(Fi; y) ≤ d(xi, y).

Taking lim sup as i→ ∞ we have

lim sup
i→∞

d(Fi; y) ≤ d(x, y) ≤ d(F ; y) + ε.
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Since ε is arbitrary we obtain (5.1.6).
The proof of the equivalence of (5.1.7) and (5.1.8) is similar

and left as Exercise 5.1.9. •

Applying the Painlevé–Kuratowski limit to the epigraph
of a sequence of functions leads to the concept of epi-
convergence. This is particularly useful in analyzing approx-
imations of functions when minimizing the function is a pri-
mary concern.
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Definition 5.1.12. (Epi-convergence) Let X be a metric
space and let fi : X → R be a sequence of lsc functions.
The lower epi-limit e-lim infi→∞ fi is the function with

epi(e-lim inf
i→∞

fi) = lim sup
i→∞

epi fi,

and the upper epi-limit e-lim supi→∞ fi is the function
with

epi(e-lim sup
i→∞

fi) = lim inf
i→∞

epi fi.

When these two functions coincide we say that fi epi-
converges to its epi-limit

e-lim
i→∞

fi = e-lim inf
i→∞

fi = e-lim sup
i→∞

fi.
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Note that both lower and upper epi-limits are lsc functions,
and so is the epi-limit when it exists (Exercise 5.1.11). Epi-
limits have the following easy yet useful characterization,
whose proof is left as an exercise.

Lemma 5.1.13.Let X be a metric space and let fi : X →
R be a sequence of lsc functions. Then f = e-limi→∞ fi
if and only if at each point x ∈ X one has

lim inf
i→∞

fi(xi) ≥ f (x) for every sequence xi → x

(5.1.9)

and

lim sup
i→∞

fi(xi) ≤ f (x) for some sequence xi → x

(5.1.10)
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Proof. Exercise 5.1.12. •

We end this subsection with a result that illuminates the
usefulness of epi-convergence in minimization problems.

Theorem 5.1.14. Let X be a metric space and let
fi : X → R be a sequence of lsc functions. Suppose that
f = e-limi→∞ fi and that dom f, dom fi ⊂ E, i = 1, 2, . . .
for some compact subset E of X. Then

lim
i→∞

inf fi = inf f, (5.1.11)

and

lim sup
i→∞

argmin fi ⊂ argmin f. (5.1.12)
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Proof. Let x̄ ∈ argmin f . Then

(x̄, f (x̄)) ∈ epi f ⊂ lim inf
i→∞

epi fi,

so that there exists (xi, ri) ∈ epi fi satisfying limi→∞(xi, ri) =
(x̄, f (x̄)). It follows that

inf f = f (x̄) = lim
i→∞

ri≥ lim supi→∞ fi(xi)

≥ lim supi→∞ inf fi. (5.1.13)

On the other hand, let xi ∈ argmin fi ⊂ E. Since E is com-
pact there exists a subsequence (ik) of the natural numbers
such that for some x ∈ E, x = limk→∞ xik and

lim
k→∞

fik(xik) = lim inf
i→∞

inf fi.

Thus,
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(x, lim inf
i→∞

inf fi) ∈ lim sup
i→∞

epi fi ⊂ epi f,

so that

lim inf
i→∞

inf fi ≥ f (x) ≥ inf f. (5.1.14)

Combining inequalities (5.1.13) and (5.1.14) we have

lim
i→∞

inf fi = inf f.

Finally, let x̄ ∈ lim sup argmin fi so that there exists a sub-
sequence (ik) of the natural numbers and xik ∈ argmin fik
such that x̄ = limk→∞ xik. Since

lim sup
i→∞

epi fi ⊂ epi f

we have (x̄, lim supk→∞ fik(xik)) ∈ epi f so that
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lim sup
k→∞

fik(xik) ≥ f (x̄).

Now consider any x ∈ dom f . Then

(x, f (x)) ∈ epi f ⊂ lim inf
i→∞

epi fi

so that there exists a sequence (yi, ri) ∈ epi fi converging
to (x, f (x)). It follows that

f (x)= lim
i→∞

ri ≥ lim sup
i→∞

fi(yi)

≥ lim sup
k→∞

fik(xik)) ≥ f (x̄).

Since x ∈ dom f is arbitrary, x̄ ∈ argmin f . •
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By carefully examining the proof we can see that the condi-
tion that dom f and dom fi are contained in a compact sub-
set E of X is not needed in establishing inclusion (5.1.12).
However, without this condition, (5.1.11) is false (Exercise
5.1.13).

5.1.4 Continuity of Multifunctions

The basic definition is given below.
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Definition 5.1.15. (Continuity of Multifunction) Let X
and Y be two Hausdorff topological spaces and let F : X →
2Y be a multifunction. We say that F is upper (lower)
semicontinuous at x̄ ∈ X provided that for any open set
U in Y with F (x̄) ⊂ U , (F (x̄) ∩ U = ∅),

{x ∈ X | F (x) ⊂ U} ({x ∈ X | F (x) ∩ U = ∅})
is an open set in X.
We say that F is continuous at x̄ if it is both upper

and lower semicontinuous at x̄. We say that F is upper
(lower) continuous on S ⊂ X if it is upper (lower) con-
tinuous at every x ∈ S. We omit S when it coincides
with the domain of F .
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We will also need a sequential approach to limits and conti-
nuity of multifunctions. This is mainly for applications in the
subdifferential theory because the corresponding topological
approach often yields objects that are too big.

Definition 5.1.16. (Sequential Lower and Upper Limits)
Let X and Y be two Hausdorff topological spaces and let
F : X → 2Y be a multifunction. We define the sequential
lower and upper limit of F at x̄ ∈ X by

s-lim inf
x→x̄

F (x) :=
⋂

{lim inf
i→∞

F (xi) | xi → x̄}

and

s-lim sup
x→x̄

F (x) :=
⋃

{lim sup
i→∞

F (xi) | xi → x̄}.

When
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s-lim inf
x→x̄

F (x) = s-lim sup
x→x̄

F (x)

we call the common set the sequential limit of F at x̄
and denote it by s-limx→x̄ F (x).

Definition 5.1.17. (Semicontinuity and Continuity) Let
X and Y be two Hausdorff topological spaces and let
F : X → 2Y be a multifunction. We say that F is sequen-
tially lower (upper) semicontinuous at x̄ ∈ X provided
that

F (x̄) ⊂ s-lim inf
x→x̄

F (x) (s-lim sup
x→x̄

F (x) ⊂ F (x̄)).

When F is both upper and lower semicontinuous at x̄
we say it is continuous at x̄. In the notation introduced
above,
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F (x̄) = s-lim
x→x̄

F (x).

Clearly, when Y is a metric space the sequential and the
topological (semi) continuity coincide.
The following example illustrates how the semicontinuity

and continuity of multifunctions relate to that of functions.

Example 5.1.18. (Profile Mappings) Let X be a Banach
space and let f : X → R ∪ {+∞} be a function. Then the
epigraphic profile of f , Ef is upper (lower) semicontinuous
at x̄ if and only if f is lower (upper) semicontinuous at
x̄. Consequently, Ef is continuous at x̄ if and only if f is
continuous.

Example 5.1.19. (Sublevel Set Mappings) Let X be a
Banach space and let f : X → R ∪ {+∞} be a lsc function.
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Then the sublevel set mapping S(a) = f−1((−∞, a]) is
upper semicontinuous.

When X and Y are metric spaces we have the following
characterizations of the sequential lower and upper limit.

Theorem 5.1.20. (Continuity and Distance Functions)
Let X and Y be two metric spaces and let F : X → 2Y

be a multifunction. Then F is sequentially lower (up-
per) semicontinuous at x̄ ∈ X if and only if for every
y ∈ Y , the distance function x → d(F (x); y) is upper
(lower) semicontinuous. Consequently, F is continuous
at x̄ if and only if for every y ∈ Y , the distance function
x→ d(F (x); y) is continuous.
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Proof. This follows from Lemma 5.1.11. Details are left as
Exercise 5.1.15. •

5.1.5 Uscos and Cuscos

The acronym usco (cusco) stands for a (convex) upper semi-
continuous non-empty valued compact multifunction. Such
multifunctions are interesting because they describe com-
mon features of the maximal monotone operators, of the
convex subdifferential and of the Clarke generalized gradi-
ent.
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Definition 5.1.21. Let X be a Banach space and let Y
be a Hausdorff topological vector space. We say F : X →
2Y is an usco ( cusco) provided that F is a nonempty
(convex) compact valued upper semicontinuous multi-
function. An usco (cusco) is minimal if it does not prop-
erly contain any other usco (cusco).

A particularly useful case is when Y = X∗ with its weak-
star topology. In this case we use the terminology weak∗-usco
(-cusco).
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Closed multifunctions and uscos have an intimate relation-
ship.

Proposition 5.1.22. Let X and Y be two Hausdorff
topological spaces and let F : X → 2Y be a multifunc-
tion. Suppose that F is an usco. Then it is closed. If in
addition, rangeF is compact, then F is an usco if and
only if F is closed.

Proof. It is easy to check that if F : X → 2Y is an usco,
then its graph is closed (Exercise 5.1.16). Now suppose F is
closed and rangeF is compact. Then clearly F is compact
valued. We show it is upper semicontinuous. Suppose on the
contrary that F is not upper semicontinuous at x̄ ∈ X . Then
there exists an open set U ⊂ Y containing F (x̄) and a net
xα → x̄ and yα ∈ F (xα)\U for each α. Since rangeF is
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compact, we can take subnet (xβ, yβ) of (xα, yα) such that
xβ → x̄ and yβ → ȳ ∈ U . On the other hand it follows
from F is closed that ȳ ∈ F (x̄) ⊂ U , a contradiction. •

An important feature of an usco (cusco) is that it always
contains a minimal one.

Proposition 5.1.23. (Existence of Minimal usco) Let
X and Y be two Hausdorff topological spaces and let
F : X → 2Y be an usco (cusco). Then there exists a
minimal usco (cusco) contained in F .

Proof. By virtue of of Zorn’s lemma we need only show
that any decreasing chain (Fα) of usco (cusco) maps con-
tained in F in terms of set inclusion has a minimal element.
For x ∈ X define F0(x) =

⋂
Fα(x). Since Fα(x) are com-
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pact, F0(x) is nonempty, (convex) and compact. It remains
to show that F0 is upper semicontinuous. Suppose that
x ∈ X , U is open in Y and F0(x) ⊂ U . Then Fα(x) ⊂ U for
some α. Indeed, if each Fα(x)\U were nonempty then the in-
tersection of these compact nested sets would be a nonempty
subset of F0(x)\U , a contradiction. By upper semicontinu-
ity of Fα, there exists an open set V containing x such that
F0(V ) ⊂ Fα(V ) ⊂ U . •
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When Y = R the proposition below provides a procedure
of constructing a minimal usco contained in a given usco.

Proposition 5.1.24. Let X be a Hausdorff topological
space and F : X → 2R an usco. For each x ∈ X, put
f (x) := min{r | r ∈ F (x)}. Let G : X → 2R be the
closure of f (i.e., the set-valued mapping whose graph is
the closure of the graph of f). Now put g(x) := max{r |
r ∈ G(x)} for each x ∈ X. Finally let H : X → 2R be
the closure of g. Then H is a minimal usco contained in
F .

Proof. Since the graph of F is closed, G is contained in
F , and G is an usco as G is closed and F is an usco. For the
same reason H is an usco contained in G.
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To show that H is minimal, consider open sets U ⊂ X
and W ⊂ R, such that there is some w ∈ H(U) ∩W . It is
sufficient to find a nonempty open subset of U , whose image
under H is entirely contained in W .
Fix some ε < d(R\W ;w). Since w ∈ H(U), there is some
x ∈ U such that g(x) ∈ (w − ε;w + ε). This means that
G(x) ⊂ (−∞;w + ε) and by upper semi-continuity of G
there is an open V ⊂ U , V � x, such that G(V ) ⊂ (−∞ ;
w + ε).
As g(x) ∈ (w−ε, w+ε), there is some x′ ∈ V with f (x′) ∈

(w− ε, w + ε). This means that F (x′) ⊂ (w− ε,+∞) and
by upper semi-continuity of F there is an open V ′ ⊂ V ,
V ′ � x′, such that F (V ′) ⊂ (w − ε,+∞).
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Now H(V ′) ⊂ F (V ′) ∩ G(V ) ⊂ (w − ε, w + ε) ⊂ W .
Thus H is a minimal usco. •

Maximal monotone operators, in particular, subdifferen-
tials of convex functions provide interesting examples of w∗-
cuscos. We leave the verification of the following example as
a guided exercise (Exercise 5.1.17).

Example 5.1.25. Let X be a Banach space, let F : X →
2X

∗
be a maximal monotone multifunction and let S be an

open subset of domF . Then the restriction of F to S is a
w∗-cusco.
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To further explore the relationship of maximal monotone
multifunctions and cuscos we need to extend the notion of
maximal monotone multifunctions to arbitrary set.

Definition 5.1.26. (Maximal Monotone on a Set) Let X

be a Banach space, let F : X → 2X
∗
be a monotone mul-

tifunction and let S be a subset of X. We say that F is
maximal monotone in S provided the monotone set

graphF∩(S×X∗) := {(x, x∗) ∈ S×X∗ | x ∈ S and x∗ ∈ F (x)}
is maximal under the set inclusion in the family of all
monotone sets contained in S ×X∗.
It turns out that a monotone cusco on an open set is max-

imal.
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Lemma 5.1.27. Let X be a Banach space, let F : X →
2X

∗
be a monotone multifunction and let S be an open

subset of X. Suppose that S ⊂ domF and F is a w∗-
cusco on S. Then F is maximal monotone in S.

Proof. We need only show that if (y, y∗) ∈ S×X∗ satisfies

〈y∗ − x∗, y − x〉 ≥ 0 for all x ∈ S, x∗ ∈ F (x),

(5.1.15)

then y∗ ∈ F (y). If not, by the separation theorem there
exists z ∈ X\{0} such that

F (y) ⊂ {z∗ ∈ X∗ | 〈z∗, z〉 < 〈y∗, z〉} = W.

Since W is weak∗ open and F is w∗-upper semicontinuous
on S, there exists an h > 0 with Bh(y) ⊂ S such that
F (Bh(y)) ⊂ W . Now, for t ∈ (0, h/‖z‖), we have y + tz ∈
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Bh(y), and therefore F (y + tz) ⊂ W . Applying (5.1.15) to
any u∗ ∈ F (y + tz) we get

0 ≤ 〈y∗ − u∗, y − (y + tz)〉 = −t〈y∗ − u∗, z〉,
which implies 〈u∗, z〉 ≥ 〈y∗, z〉, that is u∗ ∈ W , a contra-
diction. •

As a corollary we have

Corollary 5.1.28.LetX be a Banach space, let F : X →
2X

∗
be a maximal monotone multifunction and let S be

an open subset of X. Suppose that S ⊂ domF . Then F
is maximal monotone in S.
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Proof. By Example 5.1.25 the maximal monotonicity of
F implies that F is a w∗-cusco on S, so the result follows
from Lemma 5.1.27. •

Now we can prove the interesting relation that a maximal
monotone multifunction on an open set is a minimal cusco.

Theorem 5.1.29. (Maximal Monotonicity and Minimal
cusco) Let X be a Banach space, let S be an open subset
of X and let F be a maximal monotone multifunction in
S. Then F is a minimal w∗-cusco.
Proof. We know by Example 5.1.25 that F is a w∗-cusco.
Suppose that G : S → 2X

∗
is a w∗-cusco and graphG ⊂

graphF . By Lemma 5.1.27, G is maximal monotone, and
therefore G = F . •
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Note that a maximal monotone multifunction need not be
a minimal usco. The following example clarifies the difference
whose easy proof is left as Exercise 5.1.18.

Example 5.1.30.Define monotone multifunctions F0, F1
and F2 from R → 2R by

F0(x) = F1(x) = F2(x) = sgn x if x = 0,

while

F0(0) = {−1}, F1(0) = {−1, 1} and F2(0) = [−1, 1].

Then graphF0 ⊂ graphF1 ⊂ graphF2, and they are all
distinct. The multifunction F2 is maximal monotone and
minimal cusco, F1 is minimal usco and F0 does not have a
closed graph.
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5.1.6 Monotone Operators and the Fitzpatrick Function

Throughout this subsection, (X, ‖ · ‖) is a reflexive Banach

space with dual X∗ and T : X → 2X
∗
is maximal mono-

tone. The Fitzpatrick function FT , associated with T , is
the proper closed convex function defined on X ×X∗ by

FT (x, x
∗) := sup

y∗∈Ty
[〈y∗, x〉 + 〈x∗, y〉 − 〈y∗, y〉]

= 〈x∗, x〉 + sup
y∗∈Ty

〈x∗ − y∗, y − x〉.

Since T is maximal monotone

sup
y∗∈Ty

〈x∗ − y∗, y − x〉 ≥ 0

and the equality holds if and only if x∗ ∈ Tx, it follows that

FT (x, x
∗) ≥ 〈x∗, x〉 (5.1.16)
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with equality holding if and only if x∗ ∈ Tx. Thus, we
capture much of a maximal monotone multifunction via an
associated convex function.
Using only the Fitzpatrick function and the decoupling

lemma we can prove the following fundamental result re-
markably easily.

Theorem 5.1.31. (Rockafellar) Let X be a reflexive Ba-

nach space and let T : X → 2X
∗
be a maximal monotone

operator. Then range(T +J) = X∗. Here J is the duality
map defined by J(x) := ∂‖x‖2/2.
Proof. The Cauchy inequality and (5.1.16) implies that
for all x, x∗,
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FT (x, x
∗) +

‖x‖2 + ‖x∗‖2
2

≥ 0. (5.1.17)

Applying the decoupling result of Lemma 4.3.1 to (5.1.17)
we conclude that there exists a point (w∗, w) ∈ X∗ × X
such that

0 ≤ FT (x, x
∗)− 〈w∗, x〉 − 〈x∗, w〉

+
‖y‖2 + ‖y∗‖2

2
+ 〈w∗, y〉 + 〈y∗, w〉 (5.1.18)

Choosing y ∈ −Jw∗ and y∗ ∈ −Jw in inequality (5.1.18)
we have

FT (x, x
∗)− 〈w∗, x〉 − 〈x∗, w〉 ≥ ‖w‖2 + ‖w∗‖2

2
.

(5.1.19)
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For any x∗ ∈ Tx, adding 〈w∗, w〉 to both sides of the above
inequality and noticing FT (x, x

∗) = 〈x∗, x〉 we obtain

〈x∗ − w∗, x− w〉 ≥ ‖w‖2 + ‖w∗‖2
2

+ 〈w∗, w〉 ≥ 0.

(5.1.20)

Since (5.1.20) holds for all x∗ ∈ Tx and T is maximal we
must have w∗ ∈ Tw. Now setting x∗ = w∗ and x = w in
(5.1.20) yields

‖w‖2 + ‖w∗‖2
2

+ 〈w∗, w〉 = 0,

which implies −w∗ ∈ Jw. Thus, 0 ∈ (T + J)w. Since the
argument applies equally well to all translations of T , we
have range(T + J) = X∗ as required. •
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There is a tight relationship between nonexpansive map-
pings and monotone operators in Hilbert spaces, as stated
in the next lemma.

Lemma 5.1.32. Let H be a Hilbert space. Suppose that
P and T are two multifunctions from subsets of H to
2H whose graphs are related by the condition (x, y) ∈
graph P if and only if (v, w) ∈ graph T where x = w+v
and y = w − v. Then

(i) P is nonexpansive (and single-valued) if and only if
T is monotone.

(ii) domP = range(T + I).

Proof. Exercise 5.1.29. •
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This very easily leads to the Kirszbraun–Valentine theorem
[161, 254] on the existence of nonexpansive extensions to all
of Hilbert space of nonexpansive mappings on subsets of
Hilbert space. The proof is left as a guided exercise.

Theorem 5.1.33. (Kirszbraun–Valentine) Let H be a
Hilbert space and let D be a non-empty subset of H.
Suppose that P : D → H is a nonexpansive mapping.
Then there exists a nonexpansive mapping P̂ : H → H
defined on all of H such that P̂ |D = P .

Proof. Exercise 5.1.30. •

Alternatively [226], one may directly associate a convex
Fitzpatrick function FP with a non-expansive mapping P ,
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and thereby derive the Kirszbraun–Valentine theorem, see
Exercise 5.1.31.
5.1.7 Commentary and Exercises

Multifunctions or set-valued functions have wide applica-
tions and have been the subject of intensive research in the
past several decades. Our purpose in this short section is
merely to provide minimal preliminaries and some interest-
ing examples. Aubin and Frankowska’s monograph [8] and
Klein and Thompson’s book [162] are excellent references for
readers who are interested in this subject.
The subdifferential for convex functions is the first general-

ized differential concept that leads to a multifunction. It has
many nice properties later generalized to the classes of usco
and cusco multifunctions. The usco and cusco also relate to
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other concepts of generalized derivative such as the Clarke
generalized gradient. Our discussion on usco and cusco here
largely follows those in [56, 70, 221].
Maximal monotone operators are generalizations of the

convex subdifferential—though they first flourished in par-
tial differential equation theory. Rockafellar’s result in Theo-
rem 5.1.31 is in [230]. The original proofs were very extended
and quite sophisticated—they used tools such as Brouwer’s
fixed point theorem and Banach space renorming theory. As
with the proof of the local boundedness of Theorem 5.1.8,
ultimately the result is reduced to much more accessible geo-
metric convex analysis. These proofs well illustrate the tech-
niques of variational analysis: using a properly constructed
auxiliary function, the variational principle with decoupling
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in the form of a sandwich theorem and followed by an ap-
propriate decoding of the information. Simon Fitzpatrick
played a crucial role in this process by constructing the aux-
iliary functions. The proof of Theorem 5.1.8 follows [40].
The short proof of Theorem 5.1.31 is a reworking of that
of [241] given in [67] using the Fitzpatrick function discov-
ered in [120]. The technique in the proof of Theorem 5.1.31
becomes much more powerful when we view the Cauchy in-
equality as a special case of the Fenchel–Young inequality
for a general convex function. A beautiful application is the
proof of maximality of the sum of two maximal monotone
operators in reflexive spaces [32, 33, 240] (see also guided
Exercises 5.1.44, 5.1.45 and 5.1.46).

Exercise 5.1.1. Let F be a multifunction from X to Y .
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(i) Show that domF = rangeF−1 and rangeF = domF−1.
(ii) Show that F (x) = {y ∈ Y | (x, y) ∈ graphF} and

F−1(y) = {x ∈ X | (x, y) ∈ graphF}.
Exercise 5.1.2. Let X and Y be Hausdorff topological
spaces and let F : X → 2Y be a multifunction.

(i) Show that if F is closed then it is closed valued.
(ii) Construct a closed valued multifunction whose graph is

not closed.

Exercise 5.1.3. Let X be a metric space and let f : X →
R ∪ {+∞} be a lsc function. Show that graphEf = epi f .

Exercise 5.1.4. LetX be a Banach space and let f : X →
R ∪ {+∞} be a function. Suppose that, for any x∗ ∈ X∗,
x→ f (x)+ 〈x∗, x〉 is quasi-convex. Show that f is a convex
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function. Hint: Choose x∗ such that f (x)+〈x∗, x〉 = f (y)+
〈x∗, y〉.
Exercise 5.1.5.LetX be a Banach space and let F : X →
2X

∗
be a maximal monotone multifunction. Show that F is

convex valued and closed.

Exercise 5.1.6.Prove the representations of the lower and
upper limits of sequence of subsets in (5.1.3) and (5.1.4).

Exercise 5.1.7. Prove Lemma 5.1.10.

Exercise 5.1.8.Prove that in a metric space the sequential
lower and upper limits of a sequence of subsets are always
closed sets. Give an example showing that this is not the
case in a general Hausdorff topological space.
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Exercise 5.1.9.Prove the equivalence of (5.1.7) and (5.1.8)
in Lemma 5.1.11.

Exercise 5.1.10. (Limits of Monotone and Sandwiched Se-
quences) Let (Fi) be a sequence in a metric space Y .

(i) Suppose that (Fi) is monotone increasing, i.e, Fi ⊂ Fi+1
for i = 1, 2, . . . . Then limi→∞Fi = cl

⋃∞
i=1Fi.

(ii) Suppose that (Fi) is monotone decreasing, i.e., Fi+1 ⊂
Fi for i = 1, 2, . . . . Then limi→∞Fi =

⋂∞
i=1 clFi.

(iii) Suppose that Fi ⊂ Gi ⊂ Hi and limi→∞Fi =
limi→∞Hi = G. Then limi→∞Gi = G.

Exercise 5.1.11. (Lower Semicontinuity of Epi-limits) Let
X be a metric space and let fi : X → R be a sequence of lsc
functions. Then both e-lim infi→∞ fi and e-lim supi→∞ fi
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are lsc functions. Therefore, e-limi→∞ fi is a lsc function
when exists.

Exercise 5.1.12. (Characterization of Epi-limits) Prove
Lemma 5.1.13.

Exercise 5.1.13. Construct an example on X = R show-
ing that without the condition that dom f and dom fi be-
long to a compact subset of X , the conclusion (5.1.11) in
Theorem 5.1.14 is false.

Exercise 5.1.14. Prove the claim in Example 5.1.18.

Exercise 5.1.15. Prove Theorem 5.1.20.

Exercise 5.1.16. Let F : X → 2Y be an usco. Show that
graphF is a closed subset of X × Y .
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Exercise 5.1.17.Verify Example 5.1.25. Hint: By Exercise
5.1.5 F is convex valued and closed. The upper semicontinu-
ity of F follows from Theorem 5.1.8 and Proposition 5.1.22.

Exercise 5.1.18.Verify the claims in Example 5.1.30.

Exercise 5.1.19. Construct a multifunction F from R to
R
2 whose projections into R are both minimal usco map-

pings yet F itself is not. Hint: Let F (x) = {(sgn(x); sgn(x))}
for z = 0, while

F (0) = {(−1;−1), (−1; 1), (1;−1), (1; 1)}.
Exercise 5.1.20. Construct a minimal usco contained in
a given usco F : Z → R

N .

Exercise 5.1.21. Deduce that every maximal monotone
mapping on a reflexive space which is coercive (in the sense
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that infx∗∈Tx〈x∗, x〉/‖x‖ → ∞ with ‖x‖ → ∞) is surjec-
tive, by considering the sequence (T + 1

iJ). Hint: It helps
to know that maximal monotone operators (and so their in-
verses) are sequentially demi-closed, that is xi →∗ x, yi →
y, yi ∈ Txi implies y ∈ Tx. This is neatly proved via the
Fitzpatrick function.
In a non-reflexive space this fails badly. Indeed the exis-

tence of surjective, coercive subgradient mappings forces the
space to be reflexive, [121].

Exercise 5.1.22. Show in finite dimensions that a single-
valued surjective monotone mapping is weakly coercive,
meaning that ‖Tx‖ → ∞ when ‖x‖ → ∞.

Exercise 5.1.23. Compute the Fitzpatrick function of T
when T is a linear maximal monotone mapping.
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Exercise 5.1.24.Compute the Fitzpatrick function of T+
S when T is maximal monotone and S is a skew bounded
linear mapping.

∗Exercise 5.1.25. Suppose T is maximal monotone and
skew – that is, both T and−T are monotone onX . Suppose,
on translating if need be that 0 ∈ T (0) and dom(T ) is a
dense absorbing set.
Show that in any Banach space, a maximal monotone skew

mapping whose domain has non-empty interior extends to
a bounded skew affine mapping on the whole space. Hint:
Show that T (x) ⊂ K(x) := {x∗ | FT (x, x∗) ≤ 0}, so that
K is a convex multifunction. Now check that K(0) = {0}.
Deduce that K is single valued, and therefore T (x) = K(x)
on dom(T ).
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Exercise 5.1.26. Supposing T is maximal monotone and
skew, show that dom(T ) is affine.

∗Exercise 5.1.27. Determine when a C1 monotone map-
ping, T , whose domain is open, can be written as T = f ′+S
where f is a twice differentiable convex function and S is a
skew and bounded linear mapping. Hint: (i) the gradient of
T is a linear monotone mapping, and so can be written as
P (x) + S(x) where P is positive semi-definite, and (ii) the
skew monotone part is linear by Exercise 5.1.25. It remains
to determine when P is a Hessian.
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∗Exercise 5.1.28.Monotone mappings such that T + J is
surjective are called hypermonotone. Show that a hyper-
monotone mapping on a reflexive space is maximal mono-
tone as soon as J and J−1 are both injective, but not nec-
essarily more generally. In Hilbert space this result is due
to Minty [194]. Deduce that T is hypermonotone as soon as
T + αJ is surjective for some α > 0.

Exercise 5.1.29. Prove Lemma 5.1.32.

Exercise 5.1.30. Prove Theorem 5.1.33 as follows:

(i) Associate P to a monotone function T as in Lemma
5.1.32.

(ii) Extend T to a maximal monotone multifunction T̂ .
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(iii) Define P̂ from T̂ using Lemma 5.1.32 and use Rockafel-

lar’s theorem to assert dom(P̂ ) = range(T̂ + I) = H .

(iv) Check that P̂ is indeed an extension of P .

∗Exercise 5.1.31.Use Lemma 5.1.32 to explicitly define a
convex Fitzpatrick function associated with a nonexpansive
mapping, and determine its properties.

Exercise 5.1.32.LetH be a Hilbert space and let T : H →
2H be a monotone multifunction. Show that Q := (I +
T−1)−1 is nonexpansive. Moreover, if T is maximal mono-
tone then domQ = H . Hint: domQ = range(I + T−1).
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Exercise 5.1.33. (Resolvents) Let H be a Hilbert space
with T : H → 2H a maximal monotone multifunction. For
λ > 0, show that the resolvent Rλ := (I + λT )−1 is ev-
erywhere defined, with range in the domain of T and non-
expansive. Deduce that the Yosida approximate Tλ(x) :=
TRλ is an everywhere defined, (1/λ)-Lipschitz and maximal
monotone mapping.
Show for x in the domain of T that Tλ(x) converges to the

minimal norm member of Tx. What happens when Tx is
empty?
Non-expansivity is very definitely a Hilbert space prop-

erty, but the Yosida approximate remains useful more gen-
erally (as in the next exercise) [96]. Hint: Supposing x∗ ∈
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Tx and x∗i ∈ Tλ(xi) we have 〈x∗i − x∗, xi〉 ≤ 0. Thus
lim supi→∞‖xi‖ = inf ||Tx‖. Now use demi-closure.

Exercise 5.1.34. For a maximal monotone operator T in

Hilbert space, show that Tλ(x) =
(
T−1 + λI

)−1
(x) for

all x in the space. Hint: for each x the righthand side is
nonempty and a subset of the left.

∗Exercise 5.1.35. Show that the domain—and hence range—
of a maximal monotone operator on a reflexive space is semi-
convex – that is, has a convex closure. It is unknown whether
this holds in arbitrary Banach space [240], but see Exer-
cise 5.1.41. Hint: Without loss assume 0 is in the closure of
conv dom(T ). Fix y ∈ dom(T ), y∗ ∈ T (y), and use inequal-
ity (5.1.19) for T/i to write
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FT/i(y, y
∗/i)− 〈w∗

i , y〉 −
1

i
〈wi, y∗〉 ≥ ‖wi‖2,

where ‖wi‖ = ‖w∗
i ‖ andwi ∈ dom(T ). Since FT/i(y, y

∗/i) =
〈y, y∗〉/i → 0 as i → ∞ we deduce that supi ‖wi‖ < ∞.
Thus (w∗

i ) has a weak cluster point w∗. In particular,

d2dom(T )(0)≤ lim inf
i

‖wi‖2 ≤ inf
y∈dom(T )

〈−w∗, y〉

= inf
y∈conv dom(T )

〈−w∗, y〉 ≤ ‖w∗‖ dconv dom(T )(0) = 0.

We have actually shown that cl conv dom(T ) ⊂ cl dom(T )
and so cl dom(T ) is convex as required. What does this proof
technique allow you to deduce in a non-reflexive Banach
space?



638 5 Multifunctions

∗Exercise 5.1.36. (Maximality of the Sum) Let T and U
be maximal monotone operators on a Hilbert space, H , and
let λ > 0 be given.

(i) Show that range(Tλ + U + μ I) = H , for μ > 1/λ.
(ii) Deduce that Tλ + U is maximal monotone.
(iii) Show that T +U is maximal monotone when dom(U)∩

int(domT ) = ∅.
Hint: (i) For any y ∈ H , the mapping

x �→ (U + μ I)−1[y − Tλ(x)]

is a Banach contraction. (iii) We may suppose 0 ∈ T (0) ∩
U(0) and that 0 is interior to the domain of T . Let λi ↓
0. Note that 0 ∈ Tλi(0). Show that the solutions ti ∈
Tλi(xi), ui ∈ U(xi) with y = ti + ui + xi yield a Cauchy
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sequence (xi) as follows:

〈xi−xj, xi−xj〉 ≤ −〈ti−tj, λi ti−λj tj〉 ≤ 2 (λi+λj) sup ‖tk‖2.
Use monotonicity and the fact that the domains intersect to
show ‖xi‖ ≤ ‖y‖. Now use the interiority hypothesis and the
consequent local boundedness at 0 of the monotone operator
T to show (ti) remains bounded and also has a weakly con-
vergent subsequence. Conclude that (xi) converges in norm.
Finish by taking limits and using demi-closedness.
Note that everything has been reduced to Rockafellar’s the-

orem and so to the Hahn–Banach theorem. An extension of
this proof will work in arbitrary reflexive space, but step
(i) must be replaced by a finite dimensional approximation
argument.
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Exercise 5.1.37. Show that for a closed convex set C in
a Banach space and λ > 0 one has

(∂ιC)2λ = ∂ιC �λ ‖ · ‖2 = λ d2C(x).

∗Exercise 5.1.38. (Monotone Variational Inequalities) Let
T be a maximal monotone operator on a Banach space and
let C be a closed convex subset of X .

(i) Show that the solution of the monotone variational in-
equality:

VI (T,C)

{
there exist x ∈ C and t∗ ∈ T (x)

such that 〈t∗, c− x〉 ≥ 0 for all c ∈ C

is equivalent to the monotone inclusion

0 ∈ (T + ∂ιC)(x).
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(ii) In particular, if T is coercive on C and the sum T +∂ιC
is maximal monotone for which Exercise 5.1.36 gives
conditions, then the variational inequality has a solution.

(iii) Specialize this to the cases when T is coercive and (a)
C = i BX , as i → ∞, or (b) C is a closed convex cone
– a so-called complementarity problem.

(iv) Consider two monotone operators T and U on X and
Y respectively. Show that M (x, y) := (Tx, Uy) is
monotone on X × Y and is maximal if and only if
both T and U are. Denote the diagonal convex set
by Δ := {(x, y) ∈ X × Y | x = y}. Check that
0 ∈ range(T + U) if and only if VI (M,Δ) has solu-
tion.
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∗Exercise 5.1.39. (Transversality I) Let T be maximal
monotone operator on a Hilbert space, H , and let C be a
non-empty closed convex subset of H .

(i) Show that when T is coercive on C the condition

0 ∈ core [dom(T )− C] (5.1.21)

implies VI (T,C) has a solution.
(ii) This remains true in a reflexive Banach space.

Hint: By Exercise 5.1.36, VI (T1/i, C) has a solution:

xi ∈ C, ti ∈ T (xi −
1

i
ti), inf

c∈C
〈ti, c− x〉 ≥ 0.

Condition (5.1.21) and the Baire category theorem imply
that for some N > 0 one has 0 ∈ cl[T−1(NBH) − C ∩
NBH ]. This and coercivity of T suffice to show, much as in
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Exercise 5.1.36, that (xi) and (ti) remain bounded as i goes
to infinity. Thence, (xi) is norm convergent and one may to
move to the limit.

∗Exercise 5.1.40. (Transversality II) Let T and U be max-
imal monotone operators on a Hilbert space.

(i) Use Exercises 5.1.38 and 5.1.39 to show that

0 ∈ core[dom(T )− dom(U)]

implies T + U is maximal monotone.
(ii) This remains true in a reflexive Banach space.

∗Exercise 5.1.41. (Ranges) (i) Prove that a Banach space
X is reflexive if the interior of range(∂f ) is convex for each
strongly coercive continuous convex function f on X . Hint:
Suppose X is nonreflexive and p ∈ X with ‖p‖ = 5 and
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p∗ ∈ Jp where J is the duality map. Define f (x) :=

max

{
1

2
‖x‖2, ‖x− p‖ − 12 + 〈p∗, x〉, ‖x + p‖ − 12− 〈p∗, x〉

}
for x ∈ X . By the max-formula, we have, for x ∈ BX ,

∂f (p) = BX∗ + p∗, ∂f (−p) = BX∗ − p∗, ∂f (x) = Jx

(5.1.22)

using inequalities like ‖p − p‖ − 12 + 〈p∗, p〉 = 13 > 25
2 =

1
2‖p‖2.
Moreover, f (0) = 0 and f (x) > 1

2‖x‖ for ‖x‖ > 1, thus

‖x∗‖ > 1
2 if x∗ ∈ ∂f (x) and ‖x‖ > 1. Combining this with

(5.1.22) shows

range(∂f ) ∩ 1

2
BX∗ = range(J) ∩ 1

2
BX∗.
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Let UX∗ denote the open unit ball in X∗. Now James’ the-
orem gives us points x∗ ∈ 1

2UX∗ \ range(J), thus UX∗ \
range(∂f ) = ∅. However, from (5.1.22)

UX∗ ⊂ conv((p∗+UX∗)∪(−p∗+UX∗)) ⊂ conv int range(∂f )

so range(∂f ) has non-convex interior.
(ii) Deduce the following:

Theorem 5.1.34.A normed linear space X is reflexive
if and only if every continuous convex function f on X
has int range(∂f ) convex.

(iii) Observe that the easiest explicit example lies in the
space c0 of null sequences endowed with the supremum
norm. One may use

f (x) := ‖x− e1‖∞ + ‖x + e1‖∞ (5.1.23)
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where e1 is first unit vector. Then

int range(∂f ) =
{
U�1 + e1

}
∪

{
U�1 − e1

}
cl int range(∂f ) =

{
B�1 + e1

}
∪

{
B�1 − e1

}
both of which are far from convex.
(iv) Compute the closure of the range of the subgradient.

∗Exercise 5.1.42. Let X be a Banach space and let S, T :
X → 2X

∗
be monotone operators. Suppose that

0 ∈ core[conv dom(T )− conv dom(S)].

Prove that there exist r, c > 0 such that, for any x ∈
dom(T ) ∩ dom(S) and t∗ ∈ T (x) and s∗ ∈ S(x),

max(‖t∗‖, ‖s∗‖) ≤ c (r + ‖x‖)(r + ‖t∗ + s∗‖).
Hint: Consider the convex lower semi-continuous function
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σT (x) := sup
z∗∈T (z)

〈z∗, x− z〉
1 + ‖z|| .

This is a refinement of the function we used to prove lo-
cal boundedness of monotone operators. First show that (i)
conv dom(T ) ⊂ domσT , and that (ii)

⋃∞
i=1[{x | σS(x) ≤

i, ‖x‖ ≤ i} − {x | σT (x) ≤ i, ‖x‖ ≤ i}] = X. Reference:
[258].

∗Exercise 5.1.43. Let X be a Banach space and let S, T :
X → 2X

∗
be maximal monotone operators. Suppose that

0 ∈ core[conv dom(T )− conv dom(S)].

Prove that, for any x ∈ dom(T ) ∩ dom(S), T (x) + S(x) is
a w∗-closed subset of X∗.
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Hint: In view of the Krein-Smulian theorem it is enough to
prove that every bounded w∗-convergent net in T (x)+S(x)
has its limits in T (x)+S(x). This can be done by using the
estimate in Exercise 5.1.42. Reference: [258].

∗Exercise 5.1.44.LetX be a reflexive Banach space. Prove
that a monotone mapping T : X → 2X is maximal if and
only if the mapping T (· + x) + J is surjective for all x in
X . References: [33, 240].

∗Exercise 5.1.45. Prove the following theorem.
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Theorem 5.1.35. Let X be a reflexive space, let T be
maximal and let f be closed and convex. Suppose that

0 ∈ core{conv dom(T )− conv dom ∂(f )}.
Then

(a) ∂f + T + J is surjective.
(b) ∂f + T is maximal monotone.
(c) ∂f is maximal monotone.

Hint: Consider the Fitzpatrick function FT (x, x
∗) and fur-

ther introduce fJ(x) := f (x) + 1/2‖x‖2. Let G(x, x∗) :=
−fJ(x)− f∗J(−x

∗). Observe that

FT (x, x
∗) ≥ 〈x, x∗〉 ≥ G(x, x∗)
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pointwise thanks to the Fenchel-Young inequality. Now
apply the decoupling result in Lemma 4.3.1 and Exercise
5.1.44.

∗Exercise 5.1.46.Deduce the following result in [240] as a
corollary of Theorem 5.1.35.

Theorem 5.1.36.Let X be a reflexive Banach space, let
T, S : X → 2X be maximal monotone operators. Suppose
that

0 ∈ core[conv dom(T )− conv dom(S)].

Then T + S is maximal monotone.

Hint: Apply Theorem 5.1.35 to T (x, y) := (T1(x), T2(y))
and the indicator function f (x, y) = ι{x′=y′}(x, y).
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Exercise 5.1.47. (Gossez’ Example [130]) Define

TN := 2−N J�1 − S

for N = 1, 2, . . . where S : �1 → �∞ is a continuous linear
map given by (Sx)n :=

−
∑
k<n

xk +
∑
k>n

xk, for all x = (xk) ∈ �1, n = 1, 2, . . . .

Show that TN is a coercive maximal monotone operator
with full domain whose range for N large has a non-convex
closure.
Hint: We record that S : �1 �→ �∞ is a skew bounded linear
operator, for which S∗ is not monotone but −S∗ is. More-
over, e := (1, 1, . . . , 1, . . .) /∈ cl range(S). [12, 15]. To see
that ΓN := cl range(TN ) is not convex, first note that ΓN
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is homogeneous. Hence, it is impossible that cl range(TN ) =
�∞ for infinitely many N > 0 as this forces e ∈ cl range(S).
Thus, if convex, ΓN must eventually be a norm closed proper
subspace in �∞. Fix such an N with ΓN proper. There then
is some 0 = μ ∈ (�∞)∗ with

2−N〈x, S∗μ〉 = 2−N〈Sx, μ〉 = 〈J(x), μ〉
for all x ∈ �1. By considering the image of {te1 − te2 | t >
0}, we may derive that for all m ∈ �∞, the set ΓN contains
points of the form (y1, y2,m), and so for all z ∈ �∞ we
have 〈z, μ〉 = 〈P (z), μ〉 where P (z) := (z1, z2, 0). Thus,
μ = P ∗(μ) ∈ �1. Select a bounded net xa ⇁

∗ μ, xa ∈ �1,
‖xa‖1 ≤ ‖μ‖1, so xa → μ in �1, by the Kadec property.
Thus,
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0 ≥ 2−N〈μ, S∗μ〉 = 2−N lim
a→∞〈xa, S∗μ〉=lim inf

a→∞ 〈J(xa), μ〉
= 〈J(μ), μ〉
=‖μ‖2 > 0,

which is a contradiction.

5.2 Subdifferentials as Multifunctions

5.2.1 Clarke’s Generalized Gradient

We define the Clarke subdifferential and related normal cone
concepts following Clarke’s original three-step approach.
First, we define the Clarke subdifferential for Lipschitz func-
tions by using the Clarke directional derivative. Then, we
generate the corresponding normal cone with the Clarke sub-
differential for distance functions.
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Finally, we define the Clarke subdifferential for a lsc func-
tion f using the normal cone to the epigraph of f .

Definition 5.2.1. (Clarke Directional Derivative) Let X
be a Banach space and let f : X → R be a locally Lips-
chitz function. We define the Clarke directional deriva-
tive of f at x̄ in the direction h by

f◦(x̄;h) := lim sup
t→0+, y→x

f (y + th)− f (y)

t
.

The following proposition is easy to check.



5.2 Subdifferentials as Multifunctions 655

Proposition 5.2.2. Let X be a Banach space and let
f : X → R be Lipschitz with a Lipschitz constant L near
x̄. Then the function h → f◦(x̄;h) is finite, positively
homogeneous, subadditive and satisfies

|f◦(x̄;h)| ≤ L‖h‖.
Proof. Exercise 5.2.2. •

Definition 5.2.3. (Clarke Subdifferential) Let X be a Ba-
nach space and let f : X → R be a locally Lipschitz func-
tion. We define the Clarke subdifferential of f at x̄ by

∂Cf (x̄) := {x∗ ∈ X∗ | 〈x∗, h〉 ≤ f◦(x̄;h) for all h ∈ X}.
We can show that f◦ is the support function of ∂Cf .
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Proposition 5.2.4. Let X be a Banach space and let
f : X → R be Lipschitz with a Lipschitz constant L near
x̄. Then

(i) x → ∂Cf (x) is a nonempty, convex, weak∗-compact
subset of X∗ and ‖x∗‖ ≤ L for every x∗ ∈ ∂Cf (x̄).

(ii) For every h ∈ X,

f◦(x̄;h) = max{〈x∗, h〉 | x∗ ∈ ∂Cf (x̄)}.
Proof. Conclusion (i) follows directly from the defini-
tion and Alaoglu’s theorem (for the weak∗ compactness).
To prove (ii) observe that for any h ∈ X , f◦(x̄;h) is no less
than the given maximum by the definition. Suppose that
for some h, f◦(x̄;h) exceeds the maximum. Then by the
Hahn–Banach Extension Theorem of Theorem 4.3.7 (with
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the linear subspace being the span of h) there exists a lin-
ear functional x∗ ∈ X∗ majorized by f◦(x̄; ·) and agreeing
with it at h. It follows that x∗ ∈ ∂Cf (x̄), and therefore
f◦(x̄;h) > 〈x∗, h〉 = f◦(x̄;h), a contradiction. •

Thus, properties of ∂Cf can often be derived through cor-
responding properties of f◦. We illustrate this method by
three examples.

Proposition 5.2.5. (Optimality Condition) Let X be a
Banach space and let f : X → R be a locally Lipschitz
function. Suppose that f attains a local minimum at x̄.
Then

0 ∈ ∂Cf (x̄).
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Proof. We need only check by definition that when x̄ is a
local minimum of f , f◦(x̄;h) ≥ 0 for any h ∈ X (Exercises
5.2.1). •

Theorem 5.2.6. (Sum Rule) Let X be a Banach space
and let fn : X → R, n = 1, . . . , N be locally Lipschitz
functions. Then

∂C

( N∑
n=1

fn

)
(x̄) ⊂

N∑
n=1

∂Cfn(x̄).
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Proof. It suffices to prove the case when N = 2 and the
general case follows by induction. Since the support func-
tion on the left- and right-hand sides (evaluated at h) are,
respectively, (f1 + f2)

◦(x̄;h) and f◦1 (x̄;h) + f◦2 (x̄;h), this
follows readily from Proposition 5.2.2. •

Theorem 5.2.7. (Cusco Property) Let X be a Banach
space and let f : X → R be a locally Lipschitz function.
Then ∂Cf is a weak∗ cusco.

Proof. In view of Proposition 5.2.4 we need only show that
∂Cf is an upper semicontinuous multifunction. We show
that (x, h) → f◦(x;h) is an upper semicontinuous function
which implies the conclusion. Let L be a Lipschitz constant
of f near x̄ and let (xi) and (hi) be arbitrary sequences
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converging to x̄ and h̄, respectively. By the definition of the
upper limit, for each i there exist yi ∈ X and ti > 0 such
that ‖yi − xi‖ + ti < 1/i, and

f◦(xi;hi)−
1

i
≤ f (yi + tihi)− f (yi)

ti

=
f (yi + tih̄)− f (yi)

ti

+
f (yi + tihi)− f (yi + tih̄)

ti
.

The last term is bounded above by L‖hi − h̄‖ due to the
Lipschitz property of f . Taking limits as i→ ∞ we have

lim sup
i→∞

f◦(xi;hi) ≤ f◦(x̄; h̄),

which establishes the upper semicontinuity. •



5.2 Subdifferentials as Multifunctions 661

The Clarke normal cone to a closed set is defined through
the distance function to the set – a Lipschitz function with
Lipschitz constant 1. The Clarke tangent cone is defined as
the polar of the Clarke normal cone.

Definition 5.2.8. (Clarke Normal and Tangent Cones) Let
X be a Banach space and let S be a closed subset of X.
We define the Clarke normal cone of S at x̄ by

NC(S; x̄) := cl∗
⋃
λ≥0

∂Cd(S; x̄).

Here cl∗ stands for the weak-star closure. We define the
Clarke tangent cone of S at x̄ by

TC(S; x̄) := NC(S; x̄)
o = {v ∈ X | 〈v∗, v〉 ≤ 0, v∗ ∈ NC(S; x̄)}.
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Combining the optimality condition of Proposition 5.2.5,
the sum rule of Theorem 5.2.6 and the definition of the
Clarke normal cone, we have the following necessary opti-
mality conditions for a constrained minimization problem.

Theorem 5.2.9. Let X be a Banach space, let S be a
closed subset of X and let f : X → R be a locally Lips-
chitz function. Suppose that f attains a local constrained
minimum over S at x̄ ∈ S. Then

0 ∈ ∂Cf (x̄) +NC(S; x̄).
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Proof. Using the exact penalization in Example 3.0.3 there
exists a constant μ such that x̄ is a local minimum of f+μdS.
Applying Proposition 5.2.5 and Theorem 5.2.6 we have
0 ∈ ∂Cf (x̄) + μ∂Cd(S; x̄). Since μ∂Cd(S; x̄) ⊂ NC(S; x̄),
throwing away the information about the size of μ, the con-
clusion follows. •

The Clarke subdifferential and singular subdifferential for
a general lsc function are defined through the normal cone
to its epigraph.

Definition 5.2.10. (Clarke Subdifferential for lsc Func-
tions) Let X be a Banach space and let f : X → R be
a lsc function. We define the Clarke subdifferential and
singular subdifferential of f at x̄ by
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∂Cf (x̄) := {x∗ ∈ X∗ | (x∗,−1) ∈ NC(epi f ; (x̄, f (x̄)))}
and

∂∞C f (x̄) := {x∗ ∈ X∗ | (x∗, 0) ∈ NC(epi f ; (x̄, f (x̄)))},
respectively.

Unlike the Fréchet subdifferential, the Clarke subdifferen-
tial or singular subdifferential is defined everywhere. How-
ever, it is “coarse” compared to the Fréchet subdifferential.

Example 5.2.11. Consider the absolute value function
f (x) := |x| on R. Then

∂Cf (0) = ∂C(−f )(0) = [−1, 1].

We can see in this example that the Clarke subdifferential
does not distinguish between the absolute value function
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and its negative at the crucial point where the minimum (re-
spectively, maximum) occurs. In contrast ∂Ff (0) = [−1, 1]
while ∂F (−f )(0) = ∅. With a little more work we can pro-
duce the phenomenon of Example 5.2.11 at every point of
an interval.

Example 5.2.12. (Rockafellar) Let E be a measurable
set in [0, 1] with the property that the intersection of any
nonempty open interval (a, b) in [0, 1] with both E and its
complement has positive measure; such sets are sometimes
termed ubiquitous [244]. Let χE be the characteristic func-
tion of E (i.e., χE(x) = 1 if x ∈ E and 0 otherwise) and
define

f (x) =

∫ x

0
χE(t) dt = λ(E ∩ [0, x]),
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with λ Lebesgue measure on the line. Then, for all x ∈ (0, 1)

∂Cf (x) = [0, 1].

In fact we know by Lebesgue’s version of the Fundamental
theorem of calculus that for almost all y ∈ (0, 1), f is differ-
entiable and f ′(y) = χ(y). For any such y, we have χE(y) ∈
∂Cf (y). Since ∂Cf is a cusco, we have [0, 1] ⊂ ∂Cf (x) for
any x ∈ (0, 1), by the property of E. On the other hand it is
easy to check that f◦(x; 1) ≤ 1, and f◦(x;−1) ≤ 0 follows

from the equality f (y ± h) − f (y) =
∫ y±h
y χE(t)dt. Thus,

∂Cf (x) ≡ [0, 1].

As a caution, the Clarke subdifferential is not a generaliza-
tion of the usual Fréchet differentiability. This is clarified by
the following example.
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Example 5.2.13. Let

f (x) :=

{
x2 sin(1/x) if x = 0,

0 if x = 0.

Then, f ′(0) = 0 while ∂Cf (0) = [−1, 1].

One way to resolve the difficulty that the Clarke subdiffer-
ential may sometimes – often – be too coarse is to consider
functions for which the Clarke directional derivative does
coincide with the usual directional derivative. This leads to
the following definition.

Definition 5.2.14. (Regularity) Let X be a Banach space
and let f : X → R be a locally Lipschitz function. We say

that f is (Clarke) regular at x̄ provided that f
′
(x̄;h) exists

and agrees with f◦(x̄;h).
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Clearly if a function f is C1 in a neighborhood of x̄ then
it is regular at x̄. In fact, this is true for points of strict
differentiability (Exercise 5.2.4) – it is this property that the
Clarke derivative is really generalizing. Another important
class of functions with the regularity property is the class of
convex or concave functions. Thus, regularity captures both
strictly differentiable functions and convex functions.

Theorem 5.2.15. (Regularity of Convex Functions) Let
X be a Banach space and let f : X → R ∪ {+∞} be a
lsc convex function. Suppose that x̄ ∈ core(dom f ). Then
f is regular at x̄.

Proof. By Theorem 4.1.8 core(dom f ) = int(dom f ). By
Theorem 4.1.3 and Proposition 4.2.4 f is locally Lipschitz
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at x̄ and f ′(x̄;h) exists for all h ∈ X . Denoting the local
Lipschitz constant of f near x̄ by K and choosing a δ > 0,
we know

f◦(x̄;h)= lim
ε→0+

sup
‖x−x̄‖≤εδ

sup
0<t<ε

f (x + th)− f (x)

t

≤ lim
t→0+

sup
‖x−x̄‖≤tδ

f (x + th)− f (x)

t

≤ lim
t→0+

f (x̄ + th)− f (x̄)

t
+ 2Kδ

= f ′(x̄;h) + 2Kδ.

Letting δ → 0, we deduce f◦(x̄;h) ≤ f ′(x̄;h). The opposite
inequality follows directly from the definition. •
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5.2.2 Representation of the Clarke Subdifferential

In a Fréchet smooth Banach space, the Clarke subdifferential
can be represented as the convex closure of the weak-star
sequential limit of the Fréchet subdifferential. Let us start
with Lipschitz functions.

Theorem 5.2.16. (Representation of the Clarke Subdiffer-
ential: Lipschitz Case) Let X be a Fréchet smooth Banach
space and let f : X → R be a locally Lipschitz function.
Then

∂Cf (x̄) = cl∗ conv
{
w*-lim
i→∞

x∗i | x∗i ∈ ∂Ff (xi), xi → x̄
}
.

Here w*-limi→∞ x∗i signifies limit in the weak-star topol-
ogy.
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Proof. We need show that the support function for both
sides is the same, i.e.,

f◦(x̄;h) = sup
{
〈x∗, h〉 | x∗ = w*-lim

i→∞
x∗i , x

∗
i ∈ ∂Ff (xi), xi → x̄

}
.

Since ∂Ff (xi) ⊂ ∂Cf (xi), and, by Theorem 5.2.7, ∂Cf is
upper semicontinuous we have f◦(x̄;h) ≥
sup

{
〈x∗, h〉 | x∗ = w*-lim

i→∞
x∗i , x

∗
i ∈ ∂Ff (xi), xi → x̄

}
.

To prove the opposite inequality, choose yi → x̄ and ti →
0+ such that

f◦(x̄;h) = lim
i→∞

f (yi + tih)− f (yi)

ti
.

By the approximate mean value theorem of Theorem 3.4.7,
for any ε > 0 and each i, there exist xi ∈ Bεti([yi, yi+ tih])
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and x∗i ∈ ∂Ff (xi) such that

〈x∗i , tih〉 ≥ f (yi + tih)− f (yi)− tiε

or

〈x∗i , h〉 ≥
f (yi + tih)− f (yi)

ti
− ε.

Since f is Lipschitz, (x∗i ) is bounded by the Lipschitz con-
stant of f (Theorem 3.4.8). Thus, without loss of generality
we may assume that (x∗i ) weak-star converges to some x∗.
Taking limits in the last inequality we have

sup
{
〈x∗, h〉 | x∗ = w*-lim

i→∞
x∗i , x

∗
i ∈ ∂Ff (xi), xi → x̄

}
≥ f◦(x̄;h

Since ε > 0 is arbitrary we have

sup
{
〈x∗, h〉 | x∗ = w*-lim

i→∞
x∗i , x

∗
i ∈ ∂Ff (xi), xi → x̄

}
≥ f◦(x̄;h
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•

The key to representing the normal cone is the following
lemma.

Lemma 5.2.17. Let X be a Fréchet smooth Banach
spaces and let S be a closed subset of X. Suppose x ∈ X
and x∗ ∈ ∂Fd(S; x). Then for any ε > 0, there are s ∈ S
and s∗ ∈ NF (S; s) such that

‖x− s‖ ≤ d(S; x) + ε and ‖s∗ − x∗‖ < ε.

Proof. If x ∈ S then ∂Fd(S; x) ⊂ NF (S; x) and the
conclusion holds trivially for x = s. Now consider the
case when x ∈ S. Let g be a C1 function such that
g′(x) = x∗ and dS − g attains a minimum at x. Choose
η ∈ (0,min{1, ε/3, d(S; x)}) such that
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‖g′(z)− g′(x)‖ < ε/3, for all z ∈ Bη(x). (5.2.1)

Choose v ∈ S satisfying

‖v − x‖ < d(S; x) + η2

and define f (y, u) := ‖u− y‖ − g(y). Then

f (v, x)= ‖v − x‖ − g(x) ≤ d(S; x)− g(x) + η2

≤ inf
y∈X

(d(S; y)− g(y)) + η2

≤ inf
y∈X,u∈S

f (y, u) + η2.

By the Ekeland variational principle of Theorem 2.1.2 there
exists s ∈ S and z ∈ X satisfying ‖s−v‖ < η, ‖z−x‖ < η
(and hence ‖s− x‖ < d(S; x) + ε) such that

f (z, s) ≤ f (v, x)
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and

f (z, s) ≤ f (y, u)+η(‖y−z‖+‖u−s‖), for all u ∈ S, y ∈ X.

Fixing y = z we have that

u→ ιS(u) + ‖z − u‖ − g(z) + η‖u− s‖
attains minimum at u = s, and therefore

‖ · ‖′(z − s) ∈ NF (S; s) + ηBX∗. (5.2.2)

Similarly fixing u = s we have that

y → ‖y − s‖ − g(y) + η‖y − z‖
attains minimum at y = z, and hence

0 ∈ ‖ · ‖′(z − s)− g′(z) + ηBX∗. (5.2.3)

Combining (5.2.1), (5.2.2) and (5.2.3) we have that there
exists s∗ ∈ NF (S; s) such that
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‖s∗ − x∗‖ < ε.

•

Combining Theorem 5.2.16 and Lemma 5.2.17 we obtain
a representation of the Clarke normal cone in terms of the
adjacent Fréchet normal cones.

Theorem 5.2.18. (Representation of the Clarke Normal
Cone) Let X be a Fréchet smooth Banach space and let
S be a closed subset of X. Then

NC(S; x̄) = cl∗ conv{w*-lim
i→∞

x∗i | x∗i ∈ NF (S; xi), S � xi → x̄}.

Proof. Exercise 5.2.6 •
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Now we are ready to discuss the representation of the
Clarke subdifferential of general lsc functions.

Theorem 5.2.19. (Representation of the Clarke Subdif-
ferential and Singular Subdifferential) Let X be a Fréchet
smooth Banach space and let f : X → R be a lsc func-
tion. Then

∂Cf (x̄) = cl∗ conv
{
w*-lim
i→∞

x∗i
∣∣∣ x∗i ∈ ∂Ff (xi),

(xi, f (xi)) → (x̄, f (x̄))
}
+ ∂∞C f (x̄),

and

∂∞C f (x̄) = cl∗ conv
{
w*-lim
i→∞

λix
∗
i

∣∣∣ x∗i ∈ ∂Ff (xi),

(xi, f (xi)) → (x̄, f (x̄)), λi → 0+

}
.
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Proof. Combine Theorem 5.2.18 and the representations
of Fréchet normal vectors in Theorem 3.1.8 and singular
Fréchet normal vectors in Theorem 3.3.6. •

5.2.3 Limiting Subdifferentials and Calculus

The representation of Clarke subdifferentials and normal
cones shows that in a Fréchet smooth Banach space they
can be viewed as the convex sequential upper semicontinuous
closure of the Fréchet subdifferential and the Fréchet normal
cone. The convexification brings about the nice characteri-
zation in terms of the Clarke directional derivatives, which
leads to much flexibility in discussing the properties of the
Clarke subdifferential and normal cone. On the other hand
this convexification process also adds additional elements to
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the natural sequential limits of the Fréchet subdifferential
and makes the Clarke subdifferential larger than desired in
some situations, such as those illustrated in Example 5.2.11.
Naturally, one may wonder whether omitting the convexi-
fication in this process will still yield subdifferentials and a
normal cone that have a reasonable enough calculus to be
useful. This is the goal of the current subsection.

Definition 5.2.20. (Limiting and Singular Subdifferen-
tial) Let X be a Banach space and let f : X → R ∪ {+∞}
be a lsc function. Define

∂Lf (x) :=
{
w*-lim
i→∞

x∗i : x
∗
i ∈ ∂Ff (xi), (xi, f (xi)) → (x, f (x))

}
,

and ∂∞f (x) :=
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w*-lim
i→∞

tix
∗
i : x

∗
i ∈ ∂Ff (xi), (xi, f (xi)) → (x, f (x)), ti → 0+

}
and call ∂Lf (x) and ∂∞f (x) the limiting subdifferential
and singular subdifferential of f at x, respectively.

Definition 5.2.21. (Limiting Normal Cone) Let X be a
Banach space and let S be a closed subset of X. Define

NL(S; x) :=
{
w*-lim
i→∞

x∗i : x
∗
i ∈ NF (S; xi), S � xi → x

}
and call NL(S; x) the limiting normal cone of S at x.

The representations in Theorems 5.2.16, 5.2.18 and 5.2.19
now can be rewritten as:
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Theorem 5.2.22. (Limiting and Clarke Subdifferentials)
Let X be a Fréchet smooth Banach space, let f : X →
R ∪ {+∞} be a lsc function and let S be a closed subset
of X. Then

∂Cf (x) = cl∗ conv[∂Lf (x) + ∂∞f (x)],

∂∞C f (x) = cl∗ conv ∂∞f (x),
and

NC(S; x) = cl∗ convNL(S; x).
Proof. Exercise 5.2.8. •

Thus, the Clarke subdifferential and normal cone are con-
vex weak-star closure of the limiting subdifferential and the
limiting normal cone.
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Clearly, ∂Ff (x) ⊂ ∂Lf (x) and NF (S; x) ⊂ NL(S; x)
(Exercise 5.2.7). As a consequence the limiting subdifferen-
tial preserves the necessary minimization condition (Exercise
5.2.9). The limiting subdifferential is more accurate in that
it can distinguish a maximum and a minimum as illustrated
by the following example.

Example 5.2.23. Let f (x) = |x| : R → R. Then

∂Lf (x) =

⎧⎪⎨⎪⎩
1 if x > 0,

−1 if x < 0,

[−1, 1] if x = 0,

and
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∂L(−f )(x) =

⎧⎪⎨⎪⎩
−1 if x > 0,

1 if x < 0,

{−1, 1} if x = 0.

A natural method of deriving calculus results for the lim-
iting subdifferential and normal cone is by taking limits in
the corresponding approximate calculus for the Fréchet sub-
differential and the Fréchet normal cone. We illustrate this
method by deriving a sum rule for the limiting subdifferen-
tial in finite dimensional spaces.

Theorem 5.2.24. (Limiting Sum Rule) Let X be a fi-
nite dimensional Banach space. Let f1, . . . , fN : X →
R ∪ {+∞} be lsc functions such that

∑N
n=1 fn attains

a local minimum at x̄. Then, either
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(A1) 0 ∈
N∑
n=1

∂Lfn(x̄);

or there exist un ∈ ∂∞(fn)(x̄), n = 1, . . . , N not all zero
such that

(A2) 0 =

N∑
n=1

un.

Proof. By the approximate local sum rule of Theorem
3.3.1, for each i there exist (xin, fn(x

i
n)) ∈ (x̄, fn(x̄)) +

1
iBX×R and ξin ∈ ∂Ffn(x

i
n) such that∥∥∥ N∑

n=1

ξin

∥∥∥ < 1

i
. (5.2.4)
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Define ti :=
∑N
n=1 ‖ξin‖. We consider the following two

cases.
Case 1. The sequence (ti) is bounded. Then without loss

of generality we may assume that (ξin) converges to ξn for
n = 1, . . . , N . It is obvious that ξn ∈ ∂Lfn(x̄). Upon taking

limits in (5.2.4) we obtain 0 =
∑N
n=1 ξn ∈

∑N
n=1 ∂fn(x̄).

Case 2. The sequence (ti) is unbounded. Then with-
out loss of generality we may assume that ti → ∞ and
(ξin/ti) converges to un. Then un ∈ ∂∞fn(x̄) by the defini-
tion of the singular limiting subdifferential. Dividing (5.2.4)

by ti and taking limits we obtain 0 =
∑N
n=1 un. Since∑N

n=1 ‖ξin‖/ti = 1 we conclude that
∑N
n=1 ‖un‖ = 1, and

therefore not all un are 0. •
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Using a similar approach we can establish a limiting mul-
tiplier rule and a limiting extremal principle. Consider the
minimization problem P in Subsection 3.3.4. Using the no-
tation τn introduced there we have:

Theorem 5.2.25. (Limiting Multiplier Rule) Let X be a
finite dimensional Banach space, let S be a closed subset
of X and let fn be lsc for n = 0, 1, . . . , N and continuous
for n = N+1, . . . ,M . Suppose that x̄ is a local solution of
problem P. Then either there exist μn ≥ 0, n = 0, . . . ,M
satisfying

∑M
n=0 μn = 1 such that

0 ∈
∑

m∈{n:μn>0}
μm∂L(τmfm)(x̄)+

∑
m∈{n:μn=0}

∂∞(τmfm)(x̄)

(A1) +NL(S; x̄),
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or

(A2) there exist un ∈ ∂∞(τnfn)(x̄), n = 0, 1, . . . ,M and
uM+1 ∈ NL(S; x̄) not all zero such that

0 =

M+1∑
n=0

un.

Proof. Exercise 5.2.11. •

When fn’s are smooth functions we can recover the Karush–
Kuhn–Tucker conditions. Theorem 5.2.25 is also a quite gen-
eral result that can be used to derive many subdifferential
calculus rules. The following is an example.
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Theorem 5.2.26. (Limiting Chain Rule) Let X be a finite
dimensional Banach space, let f : RM → R ∪ {+∞} and
fn : X → R ∪ {+∞}, n = 1, . . . , N be lsc functions and
let fn : X → R, n = N + 1, . . . ,M be continuous func-
tions. Suppose that f (f1, . . . , fM ) attains a minimum at
x̄. Then either:

(A1) there exist un ∈ ∂∞(τnfn)(x̄), n = 1, . . . ,M not all
zero such that

0 =

M∑
n=1

un.

or there exist μ = (μ1, . . . , μM ) ∈ ∂f (f1, . . . , fM )(x̄)
such that
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(A2)

0 ∈
∑

m∈{n:μn =0}
μm∂L(τmfm)(x̄)+

∑
m∈{n:μn=0}

∂∞(τmfm)(x̄).

Proof. We leave the proof as a guided exercise (Exercise
5.2.12). •

Theorem 5.2.27. (Limiting Extremal Principle) Let X be
a finite dimensional Banach space and let S1, . . . , SN ⊂
X be an extremal system of fixed sets as in Definition
3.7.5 with an extremal point x̄. Then there exists x∗n ∈
NL(Sn; x̄) such that
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N∑
n=1

‖x∗n‖ = 1 and

N∑
n=1

x∗n = 0.

Proof. Exercise 5.2.14. •

It is not hard to see that in a finite dimensional space the
limiting subdifferentials and the limiting normal cone are
closed.

Proposition 5.2.28. Let X be a finite dimensional Ba-
nach space, let f : X → R ∪ {+∞} be a lsc function and
let S be a closed subset of X. Then ∂Lf , ∂

∞f and NL
are closed multifunctions.

Proof. We prove ∂Lf is a closed multifunction and leave
the other two as Exercise 5.2.16.



5.2 Subdifferentials as Multifunctions 691

SinceX is finite dimensional the weak-star and norm topol-
ogy of X∗ are the same. Let xi → x and ∂Lf (xi) � x∗i →
x∗. Then for each i it follows from the definition of the
limiting subdifferential that there exist yi ∈ B1/i(xi) and

y∗i ∈ ∂Ff (yi) such that y∗i ∈ B1/i(x
∗
i ). Clearly, yi → x and

y∗i → x∗, and therefore x∗ ∈ ∂Lf (x). •

5.2.4 Additional Examples and Counterexamples

Analyzing the proof of the limiting sum rule of Theorem
5.2.24 we can see that in an infinite dimensional space we
will not be able to guarantee that not all un are 0. When all
the un’s are 0 the alternative (A2) is trivial. In fact, most of
the limiting results fail in infinite dimensional spaces. There
are also other complications in infinite dimensional spaces.
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We present several examples here to illustrate pathological
situations that may occur in an infinite dimensional space.
Our first example shows that the limiting sum rule does

not hold in infinite dimensional spaces.

Example 5.2.29. (Failure of Limiting Sum Rule) Consider
a Hilbert space H with two closed subspaces M1 and M2
such that M⊥

1 + M⊥
2 is dense in H but not closed and

M⊥
1 ∩M⊥

2 = {0}.
Define f1 := δM1

and f2 := δM2
+ 〈v, ·〉 where −v ∈

H\(M⊥
1 +M⊥

2 ). SinceM⊥
1 +M⊥

2 dense implies thatM1∩
M2 = {0}, f1 + f2 attains a minimum at 0. However, it
is easy to check that ∂f1(0) = ∂∞f1(0) = M⊥

1 , ∂f2(0) =

M⊥
2 + v and ∂∞f2(0) =M⊥

2 . Thus,
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0 ∈ ∂f1(0) + ∂f2(0)

and
∂∞f1(0) ∩ (−∂∞f2(0)) = {0}

or equivalently

0 ∈ ∂∞f1(0) + ∂∞f2(0)

holds only in the trivial case.
As a concrete example of the basic construction let H :=
�2 and denote the standard unit vectors by {ei}. Sup-
pose (αi) is a sequence of positive real numbers with 1 >

αi ≥
√
1− 1

i2
. Define M1 := cl span{e2i}∞i=1 and M2 :=

cl span{
√

1− α2i e2i−1 − αie2i}∞i=1. Then we can directly

verify that
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M⊥
1 := cl span{f1, f2, . . . }

and
M⊥

2 := cl span{g1, g2, . . . }

where fi := e2i−1, gi := αie2i−1 +
√
1− α2i e2i.

Then for any x =
∑∞
i=1 xiei ∈ H , we have

∑2k
i=1 xiei =

k∑
i=1

(
x2i−1−

x2iαi√
1− α2i

)
fi+

k∑
i=1

x2i√
1− α2i

gi ∈M⊥
1 +M⊥

2 .

Therefore, M⊥
1 + M⊥

2 is dense in H . We can show by a
similar argument thatM1+M2 is dense inH , which implies
thatM1∩M2 = 0. It remains to show thatM⊥

1 +M⊥
2 = H .

Consider
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v :=

∞∑
n=1

√
1− α2i e2i.

If v = y+z with y ∈M⊥
1 and z ∈M⊥

2 then y =
∑∞
i=1 yifi

and z =
∑∞
i=1 zigi because {fi} and {gi} are orthonormal

bases for M⊥
1 and M⊥

2 , respectively. Then we must have
zi = 1 and yi = ziαi = αi → 1 which is impossible.

Since Theorem 5.2.25 implies Theorem 5.2.26 and the
latter implies the limiting sum rule (Exercises 5.2.12 and
5.2.13), Example 5.2.29 also shows that these two results
fail in infinite dimensional spaces.
Our next example shows that in an infinite dimensional

space the limiting normal cone fails to be a closed multifunc-
tion in general. Since the limiting normal cone is the limiting
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subdifferential of an indicator function this also provides an
example for the limiting subdifferential.

Example 5.2.30. (Nonclosed Normal Cone) Let H := �2
and denote the standard basis by {ei}. We define a closed
subset S of H by S :=

{s(e1−jej)+t(je1−ek) | k > j > 1, s, t ≥ 0}∪{te1 | t ≥ 0}.
Then NL(S; 0) is not closed since (i) NL(S; 0) � e1 +
j−1ej → e1 and (ii) e1 ∈ NL(S; 0).
It is easy to check that S is a closed set and that (i) holds.

We leave them as Exercises 5.2.17 and 5.2.18. We will con-
centrate on verifying (ii). Suppose not; then there are xi → 0
and x∗i ∈ NF (S; 0) such that x∗i weakly converges to e1.
Suppose some xi = tie1 for ti ≥ 0. Put u(r) := xi+ re1 for
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r > 0. We have u(r) ∈ S, and therefore

0 ≥ lim sup
r→0+

〈
x∗i ,

u(r)− xi
‖u(r)− xi‖

〉
= lim sup

r→0+

〈
x∗i ,

re1
‖re1‖

〉
= 〈x∗i , e1〉.

On the other hand, (x∗i ) weakly converging to e1 implies
〈x∗i , e1〉 → 1, so that only finitely many xi can be of the
form xi = tie1 for ti ≥ 0. So all but finitely many xi are
necessarily of the form s(e1− jej) + t(je1− ek) where k >
j > 1, s, t ≥ 0.
Now let xi = s(e1 − jej) + t(je1 − ek) where k = k(i) >
j = j(i) > 1,s = s(i) ≥ 0 and t = t(i) ≥ 0. Considering
u(r) = xi + r(je1 − ek) ∈ S we get
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0 ≥ lim sup
r→0+

〈
x∗i ,

u(r)− xi
‖u(r)− xi‖

〉
= lim sup

r→0+

〈
x∗i ,

r(je1 − ek)

‖r(je1 − ek)‖
〉

=
〈
x∗i ,

je1 − ek
‖je1 − ek‖

〉
so that

〈x∗i , e1〉 ≤ 〈x∗i , j−1ek〉, (5.2.5)

while considering u(r) = xi + r(e1 − jej) ∈ S we get
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0 ≥ lim sup
r→0+

〈
x∗i ,

u(r)− xi
‖u(r)− xi‖

〉
= lim sup

r→0+

〈
x∗i ,

r(e1 − jej)

‖r(e1 − jej)‖
〉

=
〈
x∗i ,

e1 − jej
‖e1 − jej‖

〉
so that

〈x∗i , e1〉 ≤ 〈x∗i , jej〉. (5.2.6)

Letting i→ ∞ in (5.2.5) we obtain

1 ≤ lim inf〈x∗i , j(i)−1ek(i)〉.
If the j(i)’s are unbounded then this shows the sequence (x∗i )
is unbounded, contradicting its weak convergence. There-
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fore, in the sequence of (xi) we have only finitely many j(i).
But then (5.2.5) contradicts (x∗i ) weakly converges to e1.

We have seen in Theorem 5.1.29 that a maximal monotone
operator, in particular the subdifferential of a proper convex
lsc function, is a minimal cusco in the interior of its domain.
The next example show that the restriction to the interior
of the domain is necessary.

Example 5.2.31. Again let X = �2 and let {ei} be the
standard basis of �2. Define

yp,i :=
1

p
(ep + epi), y∗p,i := ep + (p− 1)epi

for prime numbers p and i = 2, 3, . . . . Then we have
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〈y∗p,i, yq,j〉 =

⎧⎪⎨⎪⎩
0 if p = q,

1/p if p = q, i = j,

1 if p = q, i = j.

Further, define f : X → R by

f (x) := max
(
〈e1, x〉 + 1, sup{〈yp,i, x〉 | p prime i ≥ 2}

)
so that f is a proper lsc convex function on X . Then f (0) =
f (yp,i) = 1, f (−e1) = 0 and f (x) ≥ 〈y∗p,i, x〉 for all x ∈ X

and p prime, i ≥ 2, which implies y∗p,i ∈ ∂f (yp,i). In fact,

f (x)− f (yp,i) = f (x)− 1 ≥ 〈y∗p,i, x〉 − 1

= 〈y∗p,i, x− yp,i〉, for all x ∈ X.

We also have 0 ∈ ∂f (0), since 0 ∈ ∂f (0) is equivalent to
f (x)−f (0) ≥ 0 for all x ∈ X , which is not true for x = −e1.
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Thus, (0, 0) is not in the graph of ∂f . Now we can show that
the graph of ∂f is not closed in the norm × weak∗ topology
by checking that (0, 0) is in the norm × weak∗ closure of the
set

{(yp,i, y∗p,i) | p prime, i ≥ 2} ⊂ graph ∂f.

Finally we examine a generic version of Example 5.2.12 and
its application. Fix a bounded subset A in a Banach space
X . Let C be a w∗-compact convex subset of X∗. Consider
NC :=

{f | f : A→ R and f (x)−f (y) ≤ σC(x−y) for all x, y ∈ A}.
Note that C is norm bounded and f ∈ NC implies that f
is Lipschitz with a Lipschitz constant L = sup{‖x∗‖ | x∗ ∈
C} (Exercise 5.2.32).



5.2 Subdifferentials as Multifunctions 703

Lemma 5.2.32. Let X be a Banach space, let A be a
bounded subset of X and let C be a w∗-compact convex
subset of X∗. Then the metric space (NC, ρ) is complete,
where

ρ(f, g) := sup
x∈A

|f (x)− g(x)|.

Proof. Assume (fi) is Cauchy. Then (fi) converges point-
wise to some f on A. Because fi(x)−fi(y) ≤ σC(x−y), we
have f (x)− f (y) ≤ σC(x− y) for all x, y ∈ A, so f ∈ NC .
We now show (fi) converges uniformly to f on A. For every
ε > 0 there exists N > 0 such that if i, j ≥ N we have
|fi(x) − fj(x)| ≤ ε for all x ∈ A. Letting j → ∞, we ob-
tain ρ(fi, f ) ≤ ε. That is, (fi) converges to f uniformly on
A. •
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Thus, in (NC, ρ) the Baire category theorem applies and
the generic version of Example 5.2.12 can be stated.

Theorem 5.2.33. Let X be a Banach space, let A be a
bounded subset of X and let C be a w∗-compact convex
subset of X∗. Then in (NC, ρ), the set

{f ∈ NC | ∂Cf ≡ C on A},
is a residual set.
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Proof. Fix x ∈ A and v ∈ X . Consider Gk :={
f ∈ NC

∣∣∣ f (x + tv)− f (x)

t
−σC(v) > −1

k
,∃ 0 < t <

1

k

}
.

(a) Gk is open in NC : Let f0 ∈ Gk. Then for some 0 <
t < 1/k we have

f0(x + tv)− f0(x)

t
− σC(v) > −1/k. (5.2.7)

Let ρ(f, f0) < ε and f ∈ NC . Consider
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f (x + tv)− f (x)

t
− σC(v)

=
(f (x + tv)− f (x))− (f0(x + tv)− f0(x))

t

+
f0(x + tv)− f0(x)

t
− σC(v)

≥−|f (x + tv)− f0(x + tv)| + |f (x)− f0(x)|
t

+
f0(x + tv)− f0(x)

t
− σC(v)

≥−2ε

t
+
f0(x + tv)− f0(x)

t
− σC(v).

The last expression is greater than−1/k by equation (5.2.7).
We may set ε sufficiently small such that
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−2ε

t
+
f0(x + tv)− f0(x)

t
− σC(v) > −1

k
.

Thus, the same t may be used, and so B(f0, ε) ⊂ Gk.

(b) Gk is dense in NC : With f ∈ NC , for every ε > 0 we
verify that the open ball B(f, 3ε) contains a point of Gk.
Define h : X → R by h(x̃) := f (x)− ε+ σC(x̃− x), which
is in NC (Exercise 5.2.33), and set

h1 := min{f, h}, h2 := max{f − 2ε, h1}.
Then h1 ∈ NC , as is h2 (Exercise 5.2.34). Since h1 ≤ f and
f − 2ε ≤ f , we have f − 2ε ≤ h2 ≤ f . As f, σC(· − x) are
continuous at x, for 0 < δ < ε/2 sufficiently small we have
for y ∈ Bδ(x),

f (x)− ε

2
≤ f (y) ≤ f (x) +

ε

2
(5.2.8)
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and
−ε
2
≤ σC(y − x) ≤ ε

2
. (5.2.9)

Now for x̃ ∈ Bδ(x) we have

h(x̃) ≤ f (x)− ε + ε/2 ≤ f (x)− ε

2
≤ f (x̃),

and so h1 = min{f, h} = h on Bδ(x). On the other hand,
on Bδ(x) by equations (5.2.9) and (5.2.8) we have

h1(x̃) = h(x̃) ≥ f (x)− ε− ε/2 ≥ f (x)− 3ε

2
,

and

f (x̃)− 2ε ≤ f (x)− 3ε

2
,

and so h2 = h1 = h on Bδ(x). Choosing 0 < t < 1/k
sufficiently small such that x + tv ∈ Bδ(x), we have
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h2(x + tv)− h2(x)

t
=
h(x + tv)− h(x)

t

=
f (x)− ε + σC(tv)− (f (x)− ε)

t
= σC(v),

which shows h2 ∈ Gk while h2 is arbitrarily close to f .

(c) Since Gk is open and dense in NC ,

Gx,v :=
∞⋂
k=1

Gk,

is a dense Gδ in NC . If f ∈ Gx,v, then for every k we can
find 0 < tk < 1/k such that

f (x + tkv)− f (x)

tk
− σC(v) > −1

k
,

and taking the limit we derive
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f◦(x; v) ≥ lim sup
t↓0

f (x + tv)− f (x)

t
≥ σC(v).

(d) Now let {vk} be a norm dense countable set in E. For
each vk, the set Gx,vk is a dense Gδ set in NC . Hence,

Gx :=

∞⋂
k=1

Gx,vk

is also a dense Gδ set in NC .
Given f ∈ Gx we note that for each k we have

f◦(x; vk) ≥ σC(vk).

Because f◦(x; ·) and σC(·) are Lipschitz, we deduce
f◦(x; v) ≥ σC(v),

for every v ∈ X .
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(e) Finally let {xk} be a norm dense countable set in A.
Since each Gxk is a dense Gδ set in NC , the set

G :=

∞⋂
k=1

Gxk

is also a dense Gδ set in NC . For f ∈ G, and each positive
integer k we have f◦(xk, v) ≥ σC(v) for all v ∈ E. Since
f◦(x; v) is upper semicontinuous in x, we obtain

f◦(x; v) ≥ σC(v),

for every x ∈ A and v ∈ X .
Since f ∈ NC , for every v ∈ E, we have
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f◦(x; v)= lim sup
y→x
t↓0

f (y + tv)− f (y)

t
≤ lim sup

y→x
t↓0

σC(y + tv − y)

t

=lim sup
t↓0

σC(tv)

t
= σC(v). (5.2.10)

Then for f ∈ G, we have f◦(x; v) = σC(v) for every x ∈ A
and v ∈ X . Dually, ∂Cf ≡ C on A. •

Corollary 5.2.34. Let X be a Banach space, let A be a
bounded subset of X and let B∗ be the unit ball of X∗.
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Then in the metric space of nonexpansive functions on
A with the uniform metric, the set

{f | ∂Cf ≡ B∗ on A}
is a residual set.

Proof. Noting that

NB∗ := {f | f : A �→ R is nonexpansive with respect to ‖ · ‖},
the Corollary follows directly from Theorem 5.2.33. •

When X = R, this provides a generic version of Exam-
ple 5.2.12. The result in Theorem 5.2.33 also holds for un-
bounded A. Details are left as guided Exercise 5.2.35. These
results showed that most – in the Baire category sense – Lip-
schitz functions have maximal Clarke subdifferentials and
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therefore contain no information beyond the Lipschitz con-
stant. It is interesting to observe the following recast of a
function with maximal Clarke subdifferential in mathemat-
ical economics.

Example 5.2.35. Cornet (see [157]) formalized a non-
smooth marginal price rule in mathematical economics
by establishing that given a closed production set Y , the
price p ∈ NC(Y ; y) for all y in the boundary of Y . Take
f : X → R with ∂Cf (x) ≡ C. The Clarke normal cone
and tangent cone to the epigraph of f at (x, f (x)) are then
constant multifunctions:

TC(epi f ; (x, f (x))) = {(v, β)| σC(v) ≤ β}
and
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NC(epi f ; (x, f (x))) =
⋃
λ≥0

λ[C,−1].

For every (x, r) ∈ epi f and (v, β) ∈ TC(epi f ; (x, f (x)) we
have

f (x + v) ≤ f (x) + σC(v) ≤ r + β,

thus epi f + TC(epi f ; ·) ⊂ epi f . In R
N , if we take 0 ∈

C ⊂ R
N−1 with N extreme points v1, . . . , vN such that

〈(vn,−1), (vm,−1)〉 = 0 for n = m,

then NC(epi f ; (x, f (x))) is the closed convex cone gener-
ated by (v1,−1), . . . ,
(vN,−1) which is linearly isometric toRN+ . Thus TC(epi f ; (x, f (x)))

is linearly isometric to −R
N
+ . Then epi f is isometric to a

closed set Y ⊂ R
N such that NC(Y ; y) = R

N
+ for y in the
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boundary of Y and Y − R
N
+ ⊂ Y (“free disposal”). Thus

the marginal rule generically imposes no restriction on the
price vector.
5.2.5 Commentary and Exercises

The Clarke generalized gradient was introduced in Clarke’s
thesis [80], a pioneering work that marked the beginning of
nonsmooth analysis, although other earlier efforts such as
that of Pshenichnii [223] on quasi-derivatives have also been
very influential. The exposition here largely follows [84].
Representations of the Clarke generalized gradient in terms
of simpler smooth subdifferentials are the result of efforts
of many researchers [58, 48, 45, 61, 62, 146]. Rockafellar
laid down much of the theory for lsc functions in a series of
seminal papers [232, 233, 234, 235].
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Example 5.2.12 is due to Rockafellar [235]. It shows that
although that Clarke’s subdifferential is weak∗ cusco (Theo-
rem 5.2.7), it is far from a minimal one. The generic versions
of Rockafellar’s example (and its generalizations in [157]) in
Theorem 5.2.33 and Corollary 5.2.34 are taken from Borwein
and Wang [65].
Mordukhovich introduced the limiting subdifferential and

developed its calculus [195, 198]. This has the advantage
of being smaller and more accurate in many applications.
Other subdifferential constructions in the same spirit have
also been proposed in [143, 193, 250, 263, 264]. The dif-
ference between these alternative limiting subdifferentials
and the Clarke subdifferential is vividly illustrated in the
recent paper by Borwein, Borwein and Wang [28]: even in
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R
N for N > 1 the limiting subdifferential and the Clarke

subdifferential for Lipschitz function may differ almost ev-
erywhere. For functions on R a precise relationship between
the Clarke subdifferential and the limiting subdifferential
was established by Borwein and Fitzpatrick in [41]. In par-
ticular, on the line they differ at most countably. While the
limiting subdifferential and normal cone are more accurate,
these objects are less “regular” compared to the Clarke sub-
differential and normal cone as reflected by examples and
counterexamples in subsection 5.2.4. For the construction of
these examples and related literature we refer to [69] (Ex-
ample 5.2.29), [44] (Examples 5.2.30 and 5.2.31) and [65]
(Theorem 5.2.33, Corollary 5.2.34 and Example 5.2.35).
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An alternative idea of looking for “small” subdifferentials
is to search for classes of functions whose Clarke subdiffer-
entials are minimal cuscos. We refer the interested readers
to [43, 57, 31, 70] and the references therein.
When discussing the geometry of a set, the variational tech-

nique naturally leads to an emphasis on its normal cones.
However, in the development of nonsmooth optimality con-
ditions, tangent cones and their duality with normal cones in
the tradition of convex analysis still play an important role.
The guided Exercise 5.2.21 provides a glimpse into the var-
ious tangent cones and their relationship with the normal
cones we have examined. Historically necessary optimality
conditions for constrained minimization problems were de-
veloped in terms of the tangent vectors first. Different ways
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of defining the tangent cones will lead to differential strength
of the necessary optimality conditions. This is illustrated
in Exercise 5.2.27. Although in the nonsmooth setting it is
clear now that one can often formulate more precise neces-
sary optimality conditions in terms of the normal cones for
constrained minimization problems, the tangent cone per-
spective is still useful in providing intuitive understanding
of the geometry of these problems.

Exercise 5.2.1. LetX be a Banach space and let f : X →
R be a locally Lipschitz function. Suppose that f attains a
local minimum at x̄. Prove that f◦(x̄;h) ≥ 0 for any h ∈ X .

Exercise 5.2.2. Prove Proposition 5.2.2. Reference: [84,
p. 26].
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Exercise 5.2.3.Verify Example (5.2.13).

Exercise 5.2.4. LetX be a Banach space and let f : X →
R be a function. We say that f is strictly differentiable at x
provided that f ′(x) exists and for any ε > 0 there exists a
δ > 0 such that∣∣∣f (z + th)− f (z)

t
− 〈f ′(x), h〉

∣∣∣ < ε

for all t ∈ (0, δ), ‖z − x‖ < δ and h ∈ BX . Prove that
∂Cf (x) is a singleton if and only if f is strictly differentiable
at x.

Exercise 5.2.5. Show that ∂Ff (x) ⊂ ∂Cf (x).

Exercise 5.2.6. Prove Theorem 5.2.18.
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Exercise 5.2.7.Verify that ∂Ff (x) ⊂ ∂Lf (x) and
NF (S; x) ⊂ NL(S; x).

Exercise 5.2.8. Prove Theorem 5.2.22.

Exercise 5.2.9. LetX be a Banach space and let f : X →
R ∪ {+∞} be a lsc function. Suppose that f attains a local
minimum at x̄. Show that 0 ∈ ∂Lf (x̄).

Exercise 5.2.10.Verify Example 5.2.23.

Exercise 5.2.11. Take limits in the weak approximate
multiplier rule of Theorem 3.3.8 to prove Theorem 5.2.25.

Exercise 5.2.12. Deduce the limiting chain rule of The-
orem 5.2.26 from Theorem 5.2.25. Hint: Note the fact that
f (f1, . . . , fM ) attains a minimum at x̄ implies that
(x̄, f1(x̄), . . . , fM (x̄)) is a solution of the minimization prob-
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lem:

minimize f (y1, . . . , yM )

subject to fn(x) ≤ yn, n = 1, . . . , N,

fn(x) = yn, n = N + 1, . . . ,M.

(5.2.11)

Exercise 5.2.13.Deduce the limiting sum rule of Theorem
5.2.24 from Theorem 5.2.26.

Exercise 5.2.14. Prove Theorem 5.2.27.

Exercise 5.2.15. (Extremal Principle and Convex Sepa-
ration) Let X be a finite dimensional Banach space and
let S1, S2 be closed convex subsets of X . Suppose that
S1 ∩ S2 = {x̄}.
(i) Show that x̄ is an extremal point of the extremal system

of fixed sets (S1, S2).
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(ii) Deduce a convex separation theorem from the limiting
extremal principle of Theorem 5.2.27.

Exercise 5.2.16. Prove that ∂∞f and NL in Proposition
5.2.28 are closed multifunctions.

Exercise 5.2.17.Verify that the set S defined in Example
5.2.30 is closed.

Exercise 5.2.18.Verify that NL(S; 0) � e1+ j
−1ej → e1

for S defined in Example 5.2.30. Hint: Check that, for 1 <
j < k, ej,k = e1 + j−1ej + jek ∈ NF (S; k

−1(je1 − ek))

and (ej,k) converges weakly to e1 + j−1ej as k → ∞.

Exercise 5.2.19. Supplement the details for Example 5.2.31.

Exercise 5.2.20.The lower semicontinuous function drawn
in Figure 5.1 is continuously differentiable except at z :=
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–2

–1

0

1

2

3

–2 –1 1 2

Fig. 5.1. Determine the various subdifferentials.

−1,−1/2, 0, 1. Determine its Fréchet, Limiting and Clarke
subdifferentials graphically at each such z.
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∗Exercise 5.2.21.The classical orBouligand tangent cone,
also called the contingent cone, is

TB(S; x) :=
{
d ∈ X | d = lim

i→∞
xi − x

ti
, ti ↓ 0, xi →S x

}
,

and the pseudotangent cone is its closed convex hull,
TP (S ; x) := coTB(S; x).

(i) Show that TC(S; x) ⊆ TB(S; x) ⊆ TP (S; x).
(ii) Show that an intrinsic description of the Clarke tangent

cone is TC(S; x) :=

{d ∈ X | for every ti ↓ 0 and xi →S x,

there exists si →S x with (si − xi)/ti → d}.
Note how the change of quantifiers imposes convexity
and destroys monotonicity.
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(iii) Compute these three cones at (0, 0) when S := {0} ×
R∪R×{0} (the axes). Confirm that only TB(S; (0, 0))
is nontrivial.

(iv) Show that in the convex case all three cones agree with
−NF (S; x)o = clR+(S − x). (The three cones also
agree in the case of a smooth manifold as discussed in
Section 7. )

(v) Determine the three cones at all points of the Pacman
set given in polar coordinates by

P (σ) := {(r, θ) | 0 ≤ r ≤ 1, |θ| ≥ σ}.
The set P (1/5) is shown in Figure 5.2.

(vi) Observe that the Clarke and pseudo-tangent cones are
necessarily convex while the contingent cone need not
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Fig. 5.2. A Pacman set, star and normal cone.

be. Note also that the Clarke cone is not monotone – it
may decrease in size as the set grows. Finally, the Bouli-
gand cone is often not convex while the pseudotangent
cone may often be “too” big.

Exercise 5.2.22. (Representation of the Clarke Tangent
Cone) LetX be a Banach space and let S be a closed subset
of X . Show that for any x̄ ∈ S,
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TC(S; x̄) = {h ∈ X | d◦S(x̄;h) ≤ 0}.
Exercise 5.2.23. (Representation of the Contingent Cone)
A similar characterization exists for the contingent cone. Re-
call that the Dini directional derivative of a locally Lipschitz
function f : X → R at x in the direction h ∈ X is defined
by

f−(x;h) := lim inf
t→0+

f (x + th)− f (x)

t
.

Let X be a Banach space and let S be a closed subset of X .
Show that, for any x̄ ∈ S,

TB(S; x̄) = {h ∈ X | d−S (x̄;h) ≤ 0}
∗Exercise 5.2.24. (Tangential Regularity) Let X be a Ba-
nach space and let S be a closed subset ofX . We say S is reg-
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ular at x̄ ∈ S provided that TC(S; x̄) = TB(S; x̄). In terms
of the Dini directional derivative, regularity of a locally Lip-
schitz function f at x is equivalent to f◦(x;h) = f−(x;h)
for all h ∈ X . Show that if dS is regular at x̄ ∈ S then
S is regular at x̄ and the converse holds when X is finite
dimensional. Reference: [75].

∗Exercise 5.2.25. Show that the converse of the conclusion
in Exercise 5.2.24 fails when X is infinite dimensional. Hint:
Let (ei) be an infinite sequence in the unit sphere of X
satisfying ‖ei − ej‖ ≥ δ, i = j for some δ > 0. Define

S := {0} ∪
{
4−i(e0 +

1

4
ei) | i = 1, 2, . . .

}
.
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Then verify that TB(S; 0) = TC(S; 0) = {0}, yet d−S (0; e0) ≤
1/4 < 1 = d◦S(0; e0). Reference: [39].
Exercise 5.2.26. Consider the problem of minimizing a
Fréchet differentiable function f over a closed set S. Show
that a necessary condition for a local optimum to occur at
x̄ is

f ′(x̄) ∈ −TP (S; x̄)o

and that this is sufficient when f is convex and S is pseu-
doconvex at x̄ in the sense that S − x̄ ⊆ TP (S; x̄).

Exercise 5.2.27. Consider the problem of mimimizing
f (x, y) = x2 + y over S := {0} × R ∪ R × {0} ⊂ R

2.

The necessary optimality condition
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f ′(x) ∈ −TP (S; x)o = −TB(S; x)o

clearly implies the necessary condition f ′(x) ∈ −NC(S; x).
Alternatively, we can derive the above necessary optimality
condition as well as a tighter one

f ′(x) ∈ −NL(S; x)
from f ′(x) ∈ −NF (S; x) (Proposition 3.1.7).
Check that (0, 0) is not a solution to the above problem

and show that, of the candidate conditions, only f ′(x) ∈
−TP (S; x)o and f ′(x) ∈ −NF (S; x) can rule out (0, 0) as a
candidate for optimality. (Note that the necessary conditions
in the previous exercise actually apply to Gâteaux differen-
tiable functions. Hence, examples similar to this one can also
be constructed with function f that are not so “nice”.)



5.2 Subdifferentials as Multifunctions 733

∗Exercise 5.2.28.Prove the following representation of the
contingent cone of the preimage of a surjective function.

Theorem 5.2.36. (Liusternik) Let g : RN → R
M be a C1

mapping. Suppose that g′(x̄) : RN → R
M is surjective.

Then
TB(g

−1(g(x̄)); x̄) = Ker g′(x̄).
Hint: Fix a vector v ∈ Ker g′(x̄). Choose any N × (N −
M ) matrix D making the matrix A = (g′(x̄), D) invertible.
Define a function h(x) := (g(x), Dx), and for small real
δ > 0 define

p(t) := h−1(h(x̄) + tAv).

Prove that p is well-defined when δ is small and that p is C1

with :
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(i) p(0) = x̄.
(ii) p′(0) = v.
(iii) g(p(t)) = g(x̄) for all small t.

Thence, deduce that v ∈ Ker g′(x̄) if and only if for some
δ > 0 there exists a C1 function p : (−δ, δ) → R

N satisfying
the three conditions above.

Exercise 5.2.29. (Lagrange Multiplier Rule) Consider

minimize f (x) subject to g(x) = 0, (5.2.12)

where f : RN → R and g : RN → R
M are C1 mappings.

Suppose that x̄ is a solution to the constrained minimization
problem (5.2.12) and suppose that g′(x̄) : RN → R

M is
surjective. Show that there exists λ ∈ R

M such that

f ′(x̄) + 〈λ, g′(x̄)〉 = 0.
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Hint: Note that problem (5.2.12) is equivalent to minimizing
f over S = g−1(0) = g−1(g(x̄)). Then use Exercise 5.2.21
and Theorem 5.2.36.

Exercise 5.2.30. (Ubiquity) Show that the existence of a
function as in Example 5.2.12 implies the existence of a ubiq-
uitous set. Use the Baire category theorem to help construct
a ubiquitous set.

∗Exercise 5.2.31. The star of a set S is the set of points
x ∈ S such that [x, s] ⊂ S for all s ∈ S.

(i) Show that in any Banach space,

star(S) =
⋂
x∈S

x + TB(S; x) =
⋂
x∈S

x + TC(S; x).

(ii) If X has a Fréchet renorm, show
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star(S) =
⋂
x∈S

x + TP (S; x).

Deduce that a closed set in such a space is pseudoconvex
at all its points if and only if it is convex. Reference: [56].

(iii) Verify these claims for the set in Figure 5.2.

Exercise 5.2.32. Let C be a w*-compact convex subset
of X∗. Show that C is norm bounded and f ∈ NC implies
that f is Lipschitz with a Lipschitz constant L = sup{‖x∗‖ |
x∗ ∈ C}.
Exercise 5.2.33. Show that for every x ∈ A, the function
σC(· − x) belongs to NC .
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Exercise 5.2.34. Let Γ be a set and let fγ ∈ NC for
γ ∈ Γ . Show that supγ∈Γ fγ and infγ∈Γ fγ belong to NC
when they are finite everywhere.

∗Exercise 5.2.35.Generalize the results in Theorem 5.2.33
to an unbounded set A. Hint: Consider:

XC := {f : X �→ R | f (x)−f (y) ≤ σC(x−y) for x, y ∈ X}.
Define the metric of uniform convergence on bounded sets,
ρ̃, on XC by

ρ̃(f, g) :=
∞∑
i=1

1

2i
ρi(f, g)

1 + ρi(f, g)
where ρi(f, g) := sup

x∈iB
|f (x)−g(x)|.

For the metric ρ̃, f → g if and only if f → g on iB in
the metric ρi for every i. In an entirely standard fashion, we
may verify that (XC, ρ̃) is complete. For fixed x, v with f0
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and t as in equation (5.2.7), there exists some integer I > 0
such that ‖x‖ ≤ I, ‖x + tv‖ ≤ I . By definition of ρ̃,

1

2I
ρI(f, f0)

1 + ρI(f, f0)
≤ ρ̃(f, f0).

For ρ̃(f, f0) < ε, we have ρI(f, f0) ≤ (2Iε)/(1−2Iε). Thus
for small ε, the same argument in (a) applies to guarantee
Gk being open. The arguments in (b)–(e) still apply. Hence
we can get

Corollary 5.2.37. Let X be a Banach space, let A be a
bounded subset of X and let C be a w∗-compact convex
subset of X∗. Then in (XC, ρ̃), the set

{f ∈ XC | ∂Cf ≡ C on X}
is residual.
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5.3 Distance Functions

We discuss distance functions in Hilbert spaces to illustrate
the various variational and nonsmooth analysis techniques.
5.3.1 Distance Functions as Differences of Convex Functions

Many nice properties of a distance function are due to the
fact that it is the difference of two convex functions (a DC
function), one of which is smooth. To prove this fact we need
the following technical lemma.

Lemma 5.3.1. Let X be a Hilbert space, let G ⊂ X
be an open convex set and let g be a Fréchet differ-
entiable function whose derivative g′ is Lipschitz on G
with a Lipschitz constant L. Then the function f (x) :=
L‖x‖2/2− g(x) is convex on G.
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Proof. Let a ∈ G and let v ∈ X be a unit vector. Define
h(t) := f (a+tv). Then, for any t2 > t1 and a+t1v, a+t2v ∈
G we have

h′(t2)− h′(t1)=L〈a + t2v, v〉 − L〈a + t1v, v〉
−〈g′(a + t2v), v〉 + 〈g′(a + t1v), v〉

≥L(t2 − t1)− ‖g′(a + t2v)− g′(a + t1v)‖ ≥ 0.

Therefore h is convex on the interval {t | a + tv ∈ G} and
consequently f is convex on G •

Now we can prove that a distance function on a Hilbert
space is always a DC function.
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Theorem 5.3.2. (Distance Functions Are DC) Let X be
a Hilbert space and let S ⊂ X be a closed set. Then, dS
is locally the difference of a C1 convex function and a
convex function on X\S.
Proof. Let x̄ ∈ X\S and let G = {x ∈ X | ‖x −
x̄‖ < dS(x̄)/2}. Then, for any y ∈ S, x → ‖x − y‖′ =
(x − y)/‖x − y‖ is Lipschitz with a Lipschitz constant
L = 4/dS(x̄) (Exercise 5.3.1). By Lemma 5.3.1 each func-
tion x → L‖x‖2/2 − ‖x − y‖, y ∈ S is convex on G, and
therefore the function

c(x) := L‖x‖2/2dS(x) = sup{L‖x‖2/2−‖x−y‖ | y ∈ S}
is continuous and convex on G. Now dS(x) = L‖x‖2/2 −
c(x), as was to be shown. •
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5.3.2 The Clarke Subdifferential of a Distance Function

We have seen that the Clarke subdifferential of a Lipschitz
function is always a cusco but not necessarily a minimal one.
Now we have

Theorem 5.3.3. (Minimality of the Clarke Subdifferential
of a Distance Function) Let X be a Hilbert space and let
S ⊂ X be a closed set. Then, ∂C(−dS) is a minimal
w∗-cusco on X\S. Consequently, ∂C(−dS) is a minimal
w∗-cusco on X.
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Proof. Let c be the continuous convex function in the
proof of Theorem 5.3.2. Then

∂C(−dS)(x) = ∂c(x)− Lx.

Since ∂c is a minimal w∗-cusco on X\S (Theorem 5.1.7,
Corollary 5.1.28 and Theorem 5.1.29) so is ∂C(−dS). •

5.3.3 Closest Points

Let X be a Banach space and let S ⊂ X be a closed set.
Consider any y ∈ S. We say x ∈ S is a closest point to y
in S provided that ‖y − x‖ = dS(y). It turns out that in a
Hilbert spaceX at any point y ∈ X\S where ∂FdS(y) = ∅,
y has a closest point in S.
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Theorem 5.3.4. (Subdifferential of the Distance Function
and Closest Point) Let X be a Hilbert space and let S ⊂ X
be a closed set. Suppose that x ∈ S and x∗ ∈ ∂FdS(x).
Then there exists x̄ ∈ S such that

(i) every minimizing sequence (xi) in S of inf{‖s−x‖ |
s ∈ S} converges to x̄, so that x̄ is the unique closest
point of x in S;

(ii) the distance function dS is Fréchet differentiable at
x̄ and x∗ = d′S(x) = (x− x̄)/‖x− x̄‖; and

(iii) x∗ ∈ NF (S ; x̄).

Proof. Let g be a C1 function such that g′(x) = x∗ and
dS − g attains a minimum 0 at x. It is not hard to check
the identity (Exercise 5.3.2)
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d2S(y)−d
2
S(x) = 2dS(x)(dS(y)−dS(x))+(dS(y)−dS(x))2.

It follows that

d2S(y)−d
2
S(x) ≥ 2dS(x)(dS(y)−dS(x)) ≥ 2dS(x)(g(y)−(g(x)),

and therefore 2dS(x)x
∗ ∈ ∂Fd

2
S(x). Now by Proposition

3.1.3 we have

d2S(y)− d2S(x) ≥ 〈2dS(x)x∗, y − x〉 + o(‖y − x‖).
(5.3.1)

Let (xi) be a minimizing sequence of inf{‖s−x‖ | s ∈ S} in
S. Then there exists a sequence of positive numbers εi → 0
such that

d2S(x) ≥ ‖xi − x‖2 − ε2i . (5.3.2)

Combining (5.3.1) and (5.3.2) we have
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〈2dS(x)x∗, y − x〉≤d2S(y)− d2S(x) + o(‖y − x‖)
≤‖xi − y‖2 − ‖xi − x‖2 + ε2i + o(‖y − x‖)
= 〈2xi − y − x, x− y〉 + ε2i + o(‖y − x‖)
= 〈2(xi − x), x− y〉 + ‖y − x‖2 + ε2i
+ o(‖y − x‖)

or

〈2(dS(x)x∗ − x + xi), y − x〉 ≤ ‖y − x‖2 + ε2i + o(‖y − x‖).
(5.3.3)

For any v ∈ BX , setting y = x+ εiv in (5.3.3) and dividing
by εi we have

〈2(dS(x)x∗ − x + xi), v〉 ≤ εi(‖v‖ + 1) + o(1).

Since v ∈ BX is arbitrary, it follows that
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‖dS(x)x∗ − x + xi‖ → 0

or xi → x̄ ∈ S where

x̄ = x− dS(x)x
∗. (5.3.4)

Clearly x̄ is a unique minimizer of inf{‖s − x‖ | s ∈ S},
which verifies (i).
Since d2S(x) = ‖x − x̄‖2 and for any y ∈ X , d2S(y) ≤

‖y − x̄‖2, we have
d2S(x)− d2S(y)≥‖x− x̄‖2 − ‖y − x̄‖2

= 〈x + y − 2x̄, x− y〉
= 〈2(x− x̄), x− y〉 − ‖x− y‖2
= 〈2dS(x)x∗, x− y〉 − ‖x− y‖2.(5.3.5)
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Thus, 2dS(x)x
∗ ∈ ∂Fd

2
S(x) (Exercise 5.3.3). It follows from

Exercise 3.1.4 that d2S is Fréchet differentiable at x and

(d2S)
′(x) = 2dS(x)x

∗. Using identity

d2S(x + tv)− d2S(x)

t
=
dS(x + tv)− dS(x)

t
(dS(x+tv)+dS(x))

we have that both sides converge to 〈2dS(x)x∗, v〉 uniformly
as t→ 0+ for v in bounded sets. Since dS(x + tv) + dS(x)
converges to 2dS(x) > 0 uniformly for v in bounded sets as
t→ 0+, it follows that the difference quotient

dS(x + tv)− dS(x)

t
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converges to 〈x∗, v〉 uniformly as t → 0+ for v in bounded
sets. Thus, d′S(x) = x∗. By (5.3.4) we have x∗ = (x −
x̄)/dS(x) = (x− x̄)/‖x− x̄‖, this verifies (ii).
Finally, observing that function s → ιS(s) + ‖s − x‖2

attains minimum at x̄ we have 2(x− x̄) ∈ NF (S; x̄). Hence
x∗ = (x− x̄)/‖x− x̄‖ ∈ NF (S; x̄), since this set is a cone.
The theorem is proved. •

Since ∂FdS is nonempty on a dense set of X we have the
following corollary.

Corollary 5.3.5. Let X be a Hilbert space and let S ⊂
X be a closed subset. Then dS is attained on a dense
subset of X.



750 5 Multifunctions

Proof. Since ∂FdS is nonempty on a dense subset ofX\S,
dS is attained on every such point by Theorem 5.3.4. Clearly,
dS is attained on every point of S. •

Closest points are interesting in approximation theory. Ide-
ally given a set S of “nice” elements in a Hilbert space X .
We hope for each point x ∈ X there is a unique closest
point in S. A norm closed set that has the above property
is called a Chebyshev set. We can easily deduce from The-
orem 5.3.4 that every closed convex set in a Hilbert space is
a Chebyshev set.
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Corollary 5.3.6. Let X be a Hilbert space and let C be
a closed convex subset of X. Then C is a Chebyshev set.

Proof. Note that the distance function dC is convex
and everywhere finite. It follows from Theorem 4.2.8 that
∂FdC(x) = ∂dC(x) = ∅ for all x ∈ X . Thus, the conclu-
sion follows directly from Theorem 5.3.4. •

5.3.4 Commentary and Exercises

Distance functions associated with sets comprise a most im-
portant class of nonsmooth functions. They closely reflect
the properties of the corresponding sets and norms and have
very nice properties. Besides being DC-functions – in the
Hilbert case – they are also nonexpansive, i.e., Lipschitz
with a Lipschitz constant 1, and can be represented as an
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inf-convolution (Exercises 5.3.4). They play important roles
in exact penalization (see Example 3.0.3) and in the relation-
ship between functions and sets (see Exercises 5.2.24, 5.2.25
and Section 5.5). Theorem 5.3.4 and Corollary 5.3.5 actu-
ally work beyond the Hilbert space settings. Whether the
converse of Corollary 5.3.6 holds in infinite dimensions is a
long standing open problem. Much research has been done
in this area and we refer the interested reader to [126, 259].
Exercises 5.3.8–5.3.12 introduce the notion of a Chebyshev
sun and use this to prove that a closed Chebyshev set in
Euclidean space is necessarily convex. Infinite dimensional
versions are given in Chapter 12 of [97], where it is con-
jectured that there is a non-convex Chebyshev set in any
infinite dimensional Hilbert space.
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Exercise 5.3.1. Let x̄ ∈ X\S and let G = {x ∈ X |
‖x − x̄‖ < d(S; x̄)/2}. Given y ∈ S, prove that x →
‖x − y‖′ = (x − y)/‖x − y‖ is Lipschitz with a Lipschitz
constant 4/d(S; x̄). Hint: Note that for any x ∈ G and
y ∈ S, ‖x− y‖ > d(S; x̄)/2.

Exercise 5.3.2.Verify the identity

d2S(y)−d
2
S(x) = 2dS(x)(dS(y)−dS(x))+(dS(y)−dS(x))2.

Exercise 5.3.3.Verify that inequality (5.3.2) implies 2dS(x)x
∗ ∈

∂Fd2S(x).

Exercise 5.3.4. Verify that dS = dS = ιS � ‖ · ‖ and
by Exercise 1.3.7 is a nonexpansive function (a Lipschitz
function with rank 1).
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Exercise 5.3.5. (Proximal Normal Cone) Let S be a closed
subset of a Hilbert space X . If x ∈ S and s ∈ S satisfies
dS(x) = ‖x−s‖, i.e., s is a closest point to x in S, then any
nonnegative multiple of x− s is a proximal normal vector
to S at s.
The set of all proximal normal vectors to S at s is denoted
NP (S; s).

(i) Show that NP (S; s) is a (typically non-convex) cone
containing zero, called the proximal normal cone of S
at s.

(ii) Show that NP (S; s) = {0} when s ∈ intS.
(iii) Construct an example with NP (S ; s) = {0} for some

s ∈ bd(S).
(iv) Show that NP (S; s) = {0} densely in bd(S).
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(v) Prove that x∗ ∈ NP (S ; x̄) if and only if there exists
r > 0 such that

〈x∗, s− x̄〉 ≤ r‖s− x̄‖2, for all s ∈ S.

Conclude that NP (S; x̄) ⊂ NF (S; x̄), usually properly.

Exercise 5.3.6. Show that Theorem 5.3.4 (iii) can be
strengthened to

x∗ ∈ NP (S; x̄).

∗Exercise 5.3.7. (Proximal Normal Formula) Let S be a
closed subset of a Hilbert space X and let x̄ ∈ S. Use Exer-
cise 5.3.6 to prove the following proximal normal formula

NC(S; x̄) = conv
{
lim
i→∞

x∗i
∣∣ x∗i ∈ NP (S; xi), xi →S x̄

}
by recalling NC(S; x̄) =

⋃
r≥0 r∂CdS(x̄) and showing that
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∂CdS(x̄) = conv
{
lim
i→∞

x∗i
∣∣ x∗i ∈ NP (S; xi), xi →S x̄

}
.

Exercise 5.3.8. Let K be a Chebyshev subset of an inner
product space. Show that

PK [x + t(PK(x)− x)] = PK(x),

for 1 ≥ t ≥ 0, and x ∈ X .

∗Exercise 5.3.9.A subset K of an inner product space X
is a sun if

PK [x + t(x− PK(x))] = PK(x),

for all t ≥ 0 and x ∈ X .
Show that the following coincide for a set.

(i) K is convex.
(ii) K is a sun.
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(iii) PK is nonexpansive.

Hint: Show (iii) implies (i) implies (ii) implies PK(x) =
P[k,PK(x)](x) for each k in K, which implies (iii).

∗Exercise 5.3.10.LetX be a finite dimensional inner prod-
uct space. Show that PK is continuous when K is a Cheby-
shev set in X .

∗Exercise 5.3.11. (Convexity of Sets, I) Let X be a finite
dimensional inner product space. Show that a set in X is a
Chebyshev set if and only if it is closed and convex. Hint:
By Exercise 5.3.9 it suffices to show that every set K is a
sun.

(i) Suppose K is not a sun. Then there is a point x ∈ K
such that
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t0 = sup{t ≥ 0 |PK(x+ t(x−PK(x)) = PK(x)} <∞
is attained.

(ii) Denote x(t) := x + t(x − PK(x)) and note that x0 :=
x(t0) is the point on the ray farthest from PK(x) such
that PK(x(t)) = PK(x).

(iii) Pick ε > 0 such that Bε(x0)∩K = ∅. Define a self map
Q on the closed convex set Bε(x0) by

Q(y) := x0 + ε
x0 − PK(y)

‖x0 − PK(y)‖.

Use Exercise 5.3.10 to show Q is well defined and con-
tinuous.

(iv) By Brouwer’s fixed point theorem, Q has a fixed point
x1 in Bε.
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(v) Show that x0 is a convex combination of x1 and PK(x1)
and then use Exercise 5.3.8 to conclude that PK(x0) =
PK(x1).

(vi) Use (iv) to show that x1 is farther from PK(x) than x0
on the ray x + t(x − PK(x)), t ≥ 0. This contradicts
the construction of x0.

The same proof works for bounded relatively compact sets
in Hilbert space with Schauder’s theorem used instead of
Brouwer’s – one needs to show Q(Bε) is relatively compact.
Indeed, for any non convex set K there must be an un-
countable spanning set of points at which PK fails to be
continuous.
An alternative finite dimensional approach is as follows.
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∗Exercise 5.3.12. (Convexity of Sets, II) Let X be a finite
dimensional inner product space.

(i) Show that a closed set K in X is a set if and only if d2K
is everywhere Fréchet differentiable.

(ii) Show that when d2K is everywhere Fréchet differentiable
one has dK = d∗∗K = dconvK , and so K is convex.

5.4 Coderivatives of Multifunctions

5.4.1 Definitions and Examples

Coderivatives are convenient derivative-like objects for mul-
tifunctions. We define them via normal cones to the graph of
the multifunctions and we emphasize studying coderivatives
by related subdifferentials of the indicator function for the
graph of the multifunction.
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Definition 5.4.1. (Coderivatives) Let X and Y be Ba-
nach spaces, let F : X → 2Y be a closed multifunction
and let (x̄, ȳ) ∈ graphF . The Fréchet coderivative (limit-
ing coderivative) of F at (x̄, ȳ) is defined by:

D∗
FF (x̄; ȳ)(y

∗) := {x∗ ∈ X∗| (x∗,−y∗) ∈ NF (graphF ; (x̄, ȳ))}.(
D∗
LF (x̄; ȳ)(y

∗) := {x∗ ∈ X∗| (x∗,−y∗) ∈ NL(graphF ; (x̄, ȳ))}
)
.

Since F is a multifunction, in general, when discussing
coderivatives we must specify the point ȳ ∈ F (x̄) to avoid
ambiguity. If F is a single valued function then we must have
ȳ = F (x̄) and in this case we will use the notation D∗

FF (x̄)
(D∗

LF (x̄)) instead ofD
∗
FF (x̄;F (x̄)) (D

∗
LF (x̄;F (x̄))). When

F is a C1 function both the Fréchet and the limiting
coderivative of F coincide with the dual of the Fréchet
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derivative of F (Exercise 5.4.1). Thus, coderivatives are nat-
ural generalizations of the derivative concept for functions.
We have seen that the coderivative is defined through

the subdifferential of the indicator function of the graph
of the multifunction. On the other hand, given a lsc func-
tion, its subdifferentials are completely characterized by the
coderivatives of its profile mapping.

Proposition 5.4.2. Let X be a Banach space and let
f : X → R ∪ {+∞} be a lsc function. Then

∂Ff (x) = D∗
FEf (x; f (x))(1),

∂Lf (x) = D∗
LEf (x; f (x))(1),

and
∂∞f (x) = D∗

LEf (x; f (x))(0).
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Proof. Exercise 5.4.2. •

To effectively use coderivatives of multifunctions we also
need to develop calculus rules. These calculus rules may be
established by reducing them to calculus for subdifferentials
of indicator functions of the graphs of the corresponding mul-
tifunctions. As with the approximate calculus for functions,
the calculus for the Fréchet coderivative can be derived in
weak (accurate up to a weak-star neighborhood) and strong
(accurate up to a norm neighborhood) forms.

5.4.2 Weak Fréchet Coderivative Calculus

We start with the weak coderivative calculus. It applies to
general closed multifunctions.
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Theorem 5.4.3. (Weak Coderivative Sum Rule) Let X
and Y be Fréchet-smooth Banach spaces. Let Fn, n =
1, . . . , N and F =

∑N
n=1Fn be closed multifunctions

from X into Y , and ȳ ∈
∑N
n=1Fn(x̄). Fix arbitrary

ȳn ∈ Fn(x̄), n = 1, . . . , N with ȳ =
∑N
n=1 ȳn. Suppose

x∗ ∈ D∗
FF (x̄; ȳ)(y

∗).
Then for any ε > 0 and any weak-star neighborhoods,
U and V , of the origins in X∗ and Y ∗ respectively, there
exist (xn, yn) ∈ (graphFn) ∩ Bε((x̄, ȳn)), y

∗
n ∈ y∗ + V ,

n = 1, . . . , N and x∗n ∈ D∗
FFn(xn; yn)(y

∗
n) with

max
n=1,...,N

(‖x∗n‖, ‖y∗n‖)× diam((x1, y1), . . . , (xN, yN )) < ε

such that
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x∗ ∈
N∑
n=1

x∗n + U. (5.4.1)

Proof. Let x∗ ∈ D∗
FF (x̄, ȳ)(y

∗). Then there exists a C1

function g on X × Y with (x∗,−y∗) = g′(x̄, ȳ) such that

(x, y) → ι
graph

(∑N
n=1 Fn

)(x, y)− g(x, y)

attains a local minimum 0 at (x̄, ȳ). Since

N∑
n=1

ιgraphFn(x, yn) ≥ ιgraphF

(
x,

N∑
n=1

yn

)
and
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N∑
n=1

ιgraphFn(x̄, ȳn) = ιgraphF (x̄, ȳ) = 0,

the function

(x, y1, y2, . . . , yN ) →
N∑
n=1

ιgraphFn(x, yn)− g
(
x,

N∑
n=1

yn

)
attains a local minimum at (x̄, ȳ1, ȳ2, . . . , ȳN ). Thus

(x∗,−y∗, . . . ,−y∗) ∈ ∂F

( N∑
n=1

ιgraphFn(x̄, ȳn)
)
.

Invoking the weak local approximate sum rule of Theorem
3.3.3, there exist xn ∈ Bε(x̄) and yn ∈ Bε(ȳn), as well as
y∗n ∈ Y ∗ and x∗n ∈ D∗

FF (xn; yn)(y
∗
n) with
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max
n=1,...,N

(‖x∗n‖, ‖y∗n‖)× diam((x1, y1), . . . , (xN, yN )) < ε

such that

(x∗,−y∗, . . . ,−y∗) ∈ (x∗1,−y∗1 , 0, . . . , 0)+(x∗2, 0,−y∗2 , 0, . . . , 0)
+ · · · + (x∗2, 0, . . . , 0,−y∗N ) + U × V × · · · × V.

Therefore one has y∗n ∈ y∗ + V, n = 1, . . . , N and (5.4.1).
This completes the proof of the theorem. •

Let X,Y , and Z be Banach spaces and let G : X → 2Y

and F : Y → 2Z be arbitrary closed multifunctions. We
define the composition of F and G by

(F ◦G)(x) := F (G(x)) =
⋃

y∈G(x)
F (y). (5.4.2)
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A chain rule follows from a similar argument.

Theorem 5.4.4. (Weak Coderivative Chain Rule) Let X,
Y and Z be Fréchet-smooth Banach spaces, let G : X →
2Y and F : Y → 2Z be closed multifunctions, and let ȳ ∈
G(x̄) and z̄ ∈ F (ȳ). Suppose x∗ ∈ D∗

F (F ◦G)(x̄; z̄)(z∗).
Then, for any ε > 0 and any weak-star neighborhoods,
U , V and W of the origins in X∗, Y ∗ and Z∗ respec-
tively, there exist x2 ∈ Bε(x̄), yn ∈ Bε(ȳn), n = 1, 2
and z1 ∈ Bε(z̄), as well as x∗2 ∈ X∗, y∗n ∈ Y ∗, n = 1, 2
and z∗1 ∈ Z∗ satisfying y∗1 − y∗2 ∈ V , z∗1 ∈ z∗ + W ,
y∗1 ∈ D∗

FF (y1; z1)(z
∗
1), and x

∗
2 ∈ D∗

FG(x2; y2)(y
∗
2) with

max(‖x∗2‖, ‖y∗1‖, ‖y∗2‖, ‖z∗1‖)× ‖(x1, y1)− (x2, y2)‖ < ε

such that
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x∗ ∈ x∗2 + U. (5.4.3)

Proof. Let x∗ ∈ D∗
F (F ◦G)(x̄; z̄)(z∗). Then there exists

a C1 function g on X × Z with (x∗,−z∗) = g′(x̄, z̄) such
that

(x, z) → ιgraph(F◦G)(x, z)− g(x, z)

attains a local minimum 0 at (x̄, z̄). Observe that

ιgraphF (y, z) + ιgraphG(x, y) ≥ ιgraph(F◦G)(x, z)

and

ιgraphF (ȳ, z̄) + ιgraphG(x̄, ȳ) = ιgraph(F◦G)(x̄, z̄) = 0.

We conclude that (x̄, ȳ, z̄) is a local minimum of the function

(x, y, z) → ιgraphF (y, z) + ιgraphG(x, y)− g(x, z).

Therefore
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(x∗, 0,−z∗) ∈ ∂F (ιgraphF (ȳ, z̄) + ιgraphG(x̄, ȳ)).

Applying the Weak Local Approximate Sum Rule of Theo-
rem 3.3.3, we can select x2 ∈ Bε(x̄), yn ∈ Bε(ȳ), n = 1, 2,
and z1 ∈ Bε(z̄) as well as x

∗
2, y

∗
1 , y

∗
2 , z

∗
1 with

max(‖x∗2‖, ‖y∗1‖, ‖y∗2‖, ‖z∗1‖)× ‖(x1, y1)− (x2, y2)‖ < ε

such that y∗1 ∈ D∗
FF (y1; z1)(z

∗
1), x

∗
2 ∈ D∗

FG(x2; y2)(y
∗
2)

and

(x∗, 0,−z∗) ∈ (0, y∗1 ,−z∗1) + (x∗2,−y∗2 , 0) + U × V ×W.

Then we have y∗1 − y∗2 ∈ V , z∗1 ∈ z∗ +W and (5.4.3). •

5.4.3 Strong Fréchet Coderivative Calculus

The strong calculus for the Fréchet coderivative can be es-
tablished similarly by using the strong local approximate



5.4 Coderivatives 771

sum rule. Now the sequential uniform lower semicontinuity
condition in Definition 3.3.17 comes into play. This condi-
tion is important here for two reasons. First it is stable when
adding a “nice” function as is made precise in item (iii) of
Exercise 3.3.5. For convenience we restate that result as a
lemma below.

Lemma 5.4.5. Let X be a Banach space and let
f1, . . . , fN : X → R ∪ {+∞} be lsc functions. If
(f1, . . . , fN ) is sequentially uniform lower semicontinu-
ous at x and fN+1 : X → R is uniformly continuous
around x then (f1, . . . , fN, fN+1) is sequentially uniform
lower semicontinuous at x.

Proof. Exercise 3.3.5 item (iii). •
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Secondly, the sequential uniform lower semicontinuity is
equivalent to the following general metric regularity con-
dition which is convenient to apply to the sum of indicator
functions of sets. In what follows we will use K to denote the
collection of nonnegative continuous functions ω on [0,+∞)
with ω(0) = 0.

Definition 5.4.6. (General Metric Regularity Qualifica-
tion Condition) Let X be a Banach space, let f1, . . . , fN : X →
R ∪ {+∞} be lsc functions and let x̄ ∈

⋂N
n=1 dom(fn).

We say that (f1, . . . , fN ) satisfies the general metric qual-
ification condition at x̄ provided that there is an ω ∈ K
such that
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d
(
epi

( N∑
n=1

fn

)
; (x, a)

)
≤ ω

( N∑
n=1

d(epi(fn); (x, an))
)

for all x in a neighborhood of x̄ and all a, an satisfying
a =

∑N
n=1 an.

Lemma 5.4.7.Let X be a Banach space, let f1, . . . , fN : X →
R ∪ {+∞} be lsc functions and let x̄ ∈

⋂N
n=1 dom(fn).

Then (f1, . . . , fN ) is sequentially uniformly lower semi-
continuous at x̄ if and only if it satisfies the general met-
ric qualification condition at x̄.

Proof. Exercise 5.4.3. •

The form of this qualification condition for indicator func-
tions of closed subsets is given in the following lemma.
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Lemma 5.4.8. Let X be a Banach space, let S1, . . . , SN
be closed subsets of X and let x̄ ∈

⋂N
n=1 Sn. Then the

indicator functions ιSn satisfy the general metric regu-
larity condition at x̄ if and only if there is an ω ∈ K
such that

d
( N⋂
n=1

Sn; x
)
≤ ω

( N∑
n=1

d(Sn; x)
)

for all x in a neighborhood of x̄.

Proof. Exercise 5.4.5. •

Geometrically, this says that the distance to the intersec-
tion is of the same order as the sum of the distances to the
individual sets. Strong calculus for the coderivatives of mul-
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tifunctions then can be established under this general metric
regularity condition.

Theorem 5.4.9. (Strong Coderivative Sum Rule) Let X
and Y be Fréchet-smooth spaces, and let Fn, n = 1, . . . , N ,
F =

∑N
n=1Fn be closed multifunctions from X into Y .

Suppose ȳ ∈
∑N
n=1Fn(x̄).

Fix arbitrary ȳn ∈ Fn(x̄), n = 1, . . . , N with ȳ =∑N
n=1 ȳn. Let x

∗ ∈ D∗
FF (x̄; ȳ)(y

∗). Suppose that graphFn, n =
1, . . . , N satisfy the following general metric regularity
condition: for any (x, y1, . . . , yN ) sufficiently close to
(x̄, ȳ1, . . . , ȳN ),

d
(
T ; (x, y1, . . . , yN )

)
≤ ω

( N∑
n=1

d(graphFn; (x, yn))
)
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where T := {(x, y1, . . . , yN ) | (x, yn) ∈ graphFn, n =
1, . . . , N} and ω ∈ K. Then for any ε > 0, there exist
(xn, yn) ∈ (graphFn) ∩ Bε((x̄, ȳn)), ‖y∗n − y∗‖ < ε, n =
1, . . . , N and x∗n ∈ D∗

FFn(xn; yn)(y
∗
n) with

max
n=1,...,N

(‖x∗n‖, ‖y∗n‖)× diam((x1, y1), . . . , (xN, yN )) < ε

such that ∥∥∥x∗ − N∑
n=1

x∗n
∥∥∥ < ε. (5.4.4)

Proof. Let x∗ ∈ D∗
FF (x̄; ȳ)(y

∗). Then there exists a C1

function g on X × Y with (x∗,−y∗) = g′(x̄, ȳ) such that
(x, y) → ιgraph(F )(x, y) − g(x, y) attains a local minimum

0 at (x̄, ȳ). Since
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N∑
n=1

ιgraphFn(x, yn) ≥ ιgraph(F )

(
x,

N∑
n=1

yn

)
and

N∑
n=1

ιgraphFn(x̄, ȳn) = ιgraphF (x̄, ȳ) = 0,

the function

(x, y1, y2, . . . , yN ) →
N∑
n=1

ιgraphFn(x, yn)− g
(
x,

N∑
n=1

yn

)
attains a local minimum at (x̄, ȳ1, ȳ2, . . . , ȳN ). Since the
graphs of Fn, n = 1, . . . , N satisfy the general metric regu-
larity condition, (ιgraphF1, . . . , ιgraphFN) is sequentially uni-
formly lower semicontinuous. Then Lemma 5.4.5 implies
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that (ιgraphF1, . . . , ιgraphFN,−g) is sequentially uniformly

lower semicontinuous. Let ϕ(x, y1, . . . , yN ) := g(x,
∑N
n=1 yn).

Then

ϕ′(x̄, ȳ1, . . . , ȳN ) = (x∗,−y∗, . . . ,−y∗).
Since g is C1 there exists an ε′ < ε/2 such that

‖(x, y1, . . . , yN )− (x̄, ȳ1, . . . , ȳN )‖ < ε′

implies that

‖ϕ′(x̄, ȳ1, . . . , ȳN )− (x∗,−y∗, . . . ,−y∗)‖ < ε/2.

Invoking the strong local approximate sum rule of Theorem
3.3.1 with ε′ in place of ε and using (−x∗, y∗, . . . , y∗) to
replace the gradient of ϕ at a point in the ε′ neighborhood
of (x̄, ȳ1, . . . , ȳN ) with an error of at most ε/2 we conclude
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that there exist xn ∈ Bε(x̄) and yn ∈ Bε(ȳn), as well as
y∗n ∈ Y ∗ and x∗n ∈ D∗

FF (xn; yn)(y
∗
n), with

max
n=1,...,N

(‖x∗n‖, ‖y∗n‖)× diam((x1, y1), . . . , (xN, yN )) < ε

such that

0 ∈ (−x∗, y∗, . . . , y∗)+(x∗1,−y∗1 , 0, . . . , 0)+(x∗2, 0,−y∗2 , 0, . . . , 0)
+ · · · + (x∗2, 0, . . . , 0,−y∗N ) + εBX∗×Y ∗×···×Y ∗.

The conclusion of the theorem follows. •

A strong chain rule may be similarly derived.

Theorem 5.4.10. (Strong Coderivative Chain Rule) Let
X, Y and Z be Fréchet-smooth Banach spaces, let G : X →
2Y and F : Y → 2Z be closed multifunctions, and let
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ȳ ∈ G(x̄) and z̄ ∈ F (ȳ). Suppose that x∗ ∈ D∗
F (F ◦

G)(x̄; z̄)(z∗) and suppose that graphF and graphG satisfy
the following general metric regularity condition: for all
(x, y, z) sufficiently close to (x̄, ȳ, z̄),

d((x, y, z), T ) ≤ ω(d(graphG; (x, y)) + d(graphF ; (y, z)))

where T := {(x, y, z) | y ∈ G(x), z ∈ F (y)} and
ω ∈ K. Then for any ε > 0 there exist x2 ∈ Bε(x̄),
yn ∈ Bε(ȳn), n = 1, 2 and z1 ∈ Bε(z̄), as well as
x∗2 ∈ X∗, y∗n ∈ Y ∗, n = 1, 2 and z∗1 ∈ Z∗ satisfying
‖y∗1 − y∗2‖ < ε, ‖z∗1 − z∗‖ < ε, y∗1 ∈ D∗

FF (y1; z1)(z
∗
1),

and x∗2 ∈ D∗
FG(x2; y2)(y

∗
2) with

max(‖x∗2‖, ‖y∗1‖, ‖y∗2‖, ‖z∗1‖)× ‖(x1, y1)− (x2, y2)‖ < ε

such that
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‖x∗ − x∗2‖ < ε. (5.4.5)

Proof. Exercise 5.4.6. •

5.4.4 Limiting Coderivative Calculus

Calculus for limiting coderivatives follows naturally. For this
we need the following condition. A multifunction F : X →
2Y is lower semicompact around x̄ if there is a neighbor-
hood U of x̄ such that for any x ∈ U and any sequence
xi → x with F (xi) = ∅, there is a sequence yi ∈ F (xi)
containing a norm convergent subsequence.

Theorem 5.4.11. (Limiting Coderivative Sum Rule) Let
X and Y be finite dimensional Banach spaces, let F1
and F2 be closed multifunctions from X to Y and let
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ȳ ∈ F1(x̄) + F2(x̄). Suppose that the multifunction

S(x, y) := {(y1, y2) | y1 ∈ F1(x), y2 ∈ F2(x), y1 + y2 = y}
is lower semicompact around (x̄, ȳ) and suppose that the
following constraint qualification condition holds

D∗
LF1(x̄; y1)(0) ∩ (−D∗

LF2(x̄; y2)(0)) = {0},
for all (y1, y2) ∈ S(x̄, ȳ). Then

D∗
L(F1 + F2)(x̄, ȳ)(y

∗)

⊂
⋃

(y1,y2)∈S(x̄,ȳ)
[D∗

LF1(x̄, y1)(y
∗) +D∗

LF2(x̄, y2)(y
∗)].

Proof. Suppose that x∗ ∈ D∗
L(F1 + F2)(x̄, ȳ)(y

∗). Then

(x∗,−y∗) ∈ NL(graphF1 + F2; (x̄, ȳ)).
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Thus, there exist sequences (xi, yi) → (x̄, ȳ) and x∗i ∈
D∗
F (F1 + F2)(xi, yi)(y

∗
i ) such that x∗i → x∗ and y∗i → y∗.

Since S is lower semicompact around (x̄, ȳ), without loss
of generality we may assume that there exists a sequence
(yi1, yi2) ∈ S(xi, yi) converging to (y1, y2) ∈ S(x̄, ȳ).
By Theorem 5.4.3 and using the fact that the norm and

weak-star topology coincide in finite dimensional Banach
spaces, for each i, there exist (y∗i1, y

∗
i2) ∈ B1/i(y

∗
i ) and

x∗in ∈ D∗
FFn(xi, yin)(y

∗
in), n = 1, 2 (5.4.6)

satisfying

‖x∗i − x∗i1 − x∗i2‖ < 1/i. (5.4.7)

If the sequence (‖x∗i1‖) is unbounded then taking a subse-
quence if necessary we may assume that ‖x∗i1‖ → ∞ and
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(x∗i1/‖x∗i1‖) converges to a unit vector v. Dividing (5.4.7)
by ‖x∗i1‖ and taking limits as i → ∞ we obtain that
(x∗i2/‖x∗i1‖) converges to −v. It follows from (5.4.6) that

0 = v ∈ D∗
LF1(x̄; y1)(0) ∩ (−D∗

LF2(x̄; y2)(0)) = {0},
a contradiction to the constraint qualification condition.
Thus, (‖x∗i1‖), and therefore (‖x∗i2‖) must be bounded. Tak-
ing subsequences if necessary we may assume that both x∗i1
and x∗i2 converge. Taking limits in (5.4.6) and (5.4.7) we have

x∗ ∈ D∗
LF1(x̄, y1)(y

∗) +D∗
LF2(x̄, y2)(y

∗)

and the conclusion of the theorem follows. •

Similarly we can prove a limiting coderivative chain rule.
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Theorem 5.4.12. (Limiting Coderivative Chain Rule) Let
X,Y and Z be finite dimensional Banach spaces and let
F : X × Y → 2Z and G : X → 2Y be closed multifunc-
tions. Suppose that the multifunction

M (x, z) := G(x) ∩ F−1(z) = {y ∈ G(x) : z ∈ F (x, y)}
is lower semicompact around (x̄, z̄) and suppose that for
any ȳ ∈M (x̄, z̄) the constraint qualification condition{

(x∗, y∗) ∈ D∗
LF ((x̄, ȳ); z̄)(0)

and− x∗ ∈ D∗
LG(x̄; ȳ)(y

∗)

}
=⇒ x∗ = 0 and y∗ = 0

holds. Then, for all z∗ ∈ Z∗,
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D∗
L(F ◦G)(x̄; z̄)(z∗) ⊂⋃

ȳ∈M(x̄,z̄)

[
x∗1+x

∗
2 : x

∗
1 ∈ D∗

LG(x̄; ȳ)(y
∗), (x∗2, y

∗) ∈ D∗
LF ((x̄, ȳ);

Proof. Exercise 5.4.7. •

5.4.5 Commentary and Exercises

Coderivatives were introduced by Mordukhovich in [196].
In [143] Ioffe used the term coderivative and systematically
studied its properties. We follow [197, 202] for the definition
of coderivatives through the normal cone of the graph of
the multifunction under consideration. For a single valued
C1 function the Fréchet and limiting coderivatives reduce
to the dual of the derivative (Exercise 5.4.1). However, this
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is not true for the limiting coderivative when the single val-
ued function is merely Fréchet differentiable. In fact, in [28]
it is shown that an uncountable number of Fréchet differ-
entiable vector-valued Lipschitz functions differing by more
than constants can share the same limiting coderivatives.
One can find alternative definitions of generalized deriva-

tive concepts for multifunctions using tangent cones in Aubin
and Frankowska [8]. Calculus results for coderivatives may
be found in [202, 207, 209] and the references therein. We em-
phasize that the relationship between coderivative calculus
and that of the subdifferential is made through the careful
use of indicator functions of the graphs of multifunctions.

Exercise 5.4.1. Let X and Y be Banach spaces and let
f : X → Y be a C1 function. Show that
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D∗
Ff (x) = D∗

Lf (x) = [f ′(x)]∗.

Exercise 5.4.2. Prove Proposition 5.4.2.

Exercise 5.4.3. Prove Lemma 5.4.7.

Exercise 5.4.4. Let X and Y be Fréchet smooth Banach
spaces, let F be a closed multifunction from X to Y and let
f : X → Y be a C1 function. Show that

D∗
F (f +F )(x̄, ȳ)(y

∗) = (f ′(x̄))∗y∗+D∗
FF (x̄, ȳ−f (x̄))(y

∗)

and

D∗
L(f+F )(x̄, ȳ)(y

∗) = (f ′(x̄))∗y∗+D∗
LF (x̄, ȳ−f (x̄))(y

∗).

Reference: [207].

Exercise 5.4.5. Prove Lemma 5.4.8.

Exercise 5.4.6. Prove Theorem 5.4.4.
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Exercise 5.4.7. Prove Theorem 5.4.12.

5.5 Implicit Multifunction Theorems

The implicit function theorem plays an important role in
classic analysis for smooth mappings. In this subsection, we
discuss its nonsmooth and multifunction counterpart which
connects and unifies many concepts arising from diverse
backgrounds, including open mapping theorems, metric reg-
ularity, pseudo-Lipschitz continuity for set-valued mappings,
stability and solvability.
Let X,Y and Z be Banach spaces and let F : X×Y → Z

be a mapping. The classical implicit function theorem as-
serts that if F (x̄, ȳ) = 0, F is smooth near (x̄, ȳ) and
Fx(x̄, ȳ) : Y → Z is bijective, then in a neighborhood of
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(x̄, ȳ) the equation F (x, y) = 0 determines x = x(y) as a
function of y. Moreover, x′(y) = −Fx(x(y), y)−1Fy(x(y), y).
Here, we consider the more general situation when F : X ×
Y → 2Z is a close-valued multifunction. We want to find
conditions to ensure that the inclusion 0 ∈ F (x, y) deter-
mines x as a multifunction of y. In other words, defining
G(y) := {x ∈ X | 0 ∈ F (x, y)} we want to find conditions
ensuring G to be (locally) nonempty. The coderivatives will
replace the role of derivatives in these conditions.
5.5.1 Solvability Revisited

Set f (x, y) := d(F (x, y); 0). It is clear that 0 ∈ F (x, y) if
and only if f (x, y) = 0. Thus, we can study the implicit
multifunction problem 0 ∈ F (x, y) by studying the solvabil-
ity of the functional equation f (x, y) = 0. We will take this
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approach and first we discuss a refinement of the solvabil-
ity results in subsection 3.6.2, including an estimate of the
coderivative for the implicit multifunction.

Theorem 5.5.1. (Solvability) Let X and Y be Fréchet
smooth Banach spaces and let U be an open set in X×Y .
Suppose that f : U → R ∪ {+∞} satisfies the following
conditions:

(i) there exists (x̄, ȳ) ∈ U such that

f (x̄, ȳ) ≤ 0;

(ii) y → f (x̄, y) is upper semicontinuous at ȳ;
(iii) for any fixed y near ȳ, x → f (x, y) is lower semi-

continuous;
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(iv) there exists a σ > 0 such that for any (x, y) ∈ U with
f (x, y) > 0, ξ ∈ ∂F,xf (x, y) implies that ‖ξ‖ ≥ σ.

Then there exist open sets W ⊂ X and V ⊂ Y con-
taining x̄ and ȳ respectively such that

(a) for any y ∈ V , W ∩G(y) = ∅;
(b) for any y ∈ V and x ∈ W ,

d(x,G(y)) ≤ f+(x, y)

σ
,

where f+(x, y) := max{0, f (x, y)};
(c) for any (x, y) ∈ W × V , x ∈ G(y),

D∗
FG(p; y)(x

∗) = {y∗ | (−x∗, y∗) ∈ cone ∂Ff+(x, y)}.
Proof. Conclusions (a) and (b) were proven in the proof
of Theorem 3.6.3. We need only establish estimate (c). Con-
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sider a pair (x, y) with x ∈ W ∩ G(y) and let y∗ ∈
D∗
FG(y; x)(x

∗). Then

(y∗,−x∗) ∈ NF (graphG; (x, y)) =
⋃
K>0

K∂Fd(graphG; (x, y)).

By definition there exists a C1 function g with g′(y, x) =
(y∗,−x∗) and a positive constant K such that for any
(u, v) ∈ Y ×X , we have

g(u, v)≤g(y, x) +Kd(graphG; (u, v))

≤g(y, x) +Kd(G(v); v) ≤ g(y, x) + (K/σ)f+(u, v).

Thus (K/σ)f+(u, v)− g(u, v) attains a minimum at (y, x),
i.e., (−x∗, y∗) ∈ (K/σ)∂Ff+(x, y). This establishes

D∗
FG(y; x)(x

∗) ⊂ {y∗ | (−x∗, y∗) ∈ cone ∂Ff+(x, y)}.
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The reverse inclusion follows directly from the inequality
ιgraph G ≥ Kf+ for any K > 0. •

5.5.2 The Subdifferential of the Infimum Function

Using the relationship of nonemptiness of G(y) and the
solvability of f (x, y) = d(F (x, y); 0) ≤ 0 we can deduce
an implicit multifunction theorem from Theorem 5.5.1. The
key is the relationship between the infinitesimal regularity
coderivative condition for a multifunction F and that of the
subdifferential condition for f . Since f (x, y) = d(F (x, y); 0)
can be written as an infimum function we need the following
representation of the subdifferential of infimum. This result
is also interesting on its own.
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Theorem 5.5.2. (Representation of the Subdifferential of
an Infimum) Let X be a Fréchet smooth Banach space,
let fa : X → R ∪ {+∞} , a ∈ A be a family of lsc
function and define f (x) := infa∈A fa(x). Suppose that
x∗ ∈ ∂Ff (x) where f is the lsc closure of f . Then
there exists a function ϕ ∈ K and a positive number M
such that for any small ε > 0 and any (a, y) satisfying
y ∈ Bε(x) and fa(y) < f (x)+ε, there exist z ∈ BM

√
ε(x)

and z∗ ∈ ∂Ffa(z) such that

fa(z) < f(x) +M
√
ε

and
‖z∗ − x∗‖ < ϕ(ε).
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Proof. Let g be a C1 function with g′(x) = x∗ such that
f−g attains a minimum at x over B2δ(x) and g is Lipschitz
with a Lipschitz constant L on B2δ(x). For ε > 0 sufficiently
small, by the definition of (a, y) we have

(fa(u)− g(u))− (fa(y)− g(y)) ≥ −Lε, for all u ∈ B√
ε(y).

(5.5.1)

Applying the multidirectional mean value inequality of The-
orem 3.6.1, there exist z ∈ B√

ε([y,B
√
ε(y)]) ⊂ B2

√
ε(x)

and z∗ ∈ ∂Ffa(z) such that

fa(z)<fa(y) + (g(z)− g(y)) + ε

<f (x) + L‖z − y‖ + 2ε

<f (x) + 2(L + 1)
√
ε (5.5.2)
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and

〈z∗ − g′(z), u− y〉 ≥ −Lε, for all u ∈ B√
ε(y).

(5.5.3)

It follows that

‖z∗ − g′(z)‖ ≤ L
√
ε. (5.5.4)

Set M := 2(L + 1) and

ϕ(ε) := L
√
ε + sup{‖g′(z)− g′(x)‖ | z ∈ B2

√
ε(x)}.

Then ϕ has the required properties. Moreover, it follows from
(5.5.4) that

‖z∗ − x∗‖ ≤ ‖g′(z)− g′(x)‖ + L
√
ε ≤ ϕ(ε), (5.5.5)

which completes the proof. •
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Notice that subdifferentiability implies lower semicontinu-
ity; we have the following corollary.

Corollary 5.5.3. Let X be a Fréchet smooth Banach
space, let fa : X → R ∪ {+∞} , a ∈ A be a family of lsc
functions and define f (x) := infa∈A fa(x). Suppose that
x∗ ∈ ∂Ff (x). Then there exists a function ϕ : [0,∞) →
[0,∞) with ϕ(t) → 0 as t → 0+ and a positive number
M such that for any small ε > 0 and any a satisfying
fa(x) < f (x) + ε, there exist z ∈ BM

√
ε(x) and z∗ ∈

∂Ffa(z) such that

fa(z) < f (x) +M
√
ε

and
‖z∗ − x∗‖ < ϕ(ε).
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Proof. Exercise 5.5.1. •

5.5.3 Implicit Multifunction Theorems

We now use the tools developed in the previous sections to
derive an implicit multifunction theorem. The idea is to view
f as an infimum function.

f (x) = d(F (x); 0) = inf{‖y‖ + ιgraphF (x, y)}.
To state the relationship between the subdifferentials of
d(F (x); 0) and the coderivatives of F (x) we need the con-
cept of an approximate projection. For η > 0, we denote
the η-approximate projection of v to S by prη(S; v) :=

{
s ∈

S
∣∣ ‖s− v‖ ≤ d(S; v) + η

}
.
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Lemma 5.5.4. Let X and Y be Fréchet smooth Banach
spaces, let U ⊂ X be an open set and let F : U → 2Y be
a close-valued upper semicontinuous multifunction. Let
f (x) := d(F (x); 0). Suppose

(i) for any x ∈ U with 0 ∈ F (x)

σ ≤ lim inf
η→0

{
‖x∗‖

∣∣∣ x∗ ∈ D∗
FF (x

′; y′)(y∗), ‖y∗‖ = 1

with x′ ∈ Bη(x), y
′ ∈ prη(F (x

′); 0)
}
.

Then

(ii) for any x̄ ∈ U with f (x̄) > 0, ξ ∈ ∂Ff (x̄) implies
that ‖ξ‖ ≥ σ.

Proof. Consider
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ϕ(x′, y′) = ‖y′‖ + ιgraphF (x
′, y′).

Since F is a closed valued upper semicontinuous multifunc-
tion, the graph of F is a closed set. Thus, ϕ is lsc. Moreover,
f (x′) = d(F (x′); 0) = infy′∈Y ϕ(x

′, y′). Let ξ ∈ ∂Ff (x)
where f (x) > 0. Then f is lsc at x. (In fact, when F is upper
semicontinuous it is not hard to verify directly that f is lower
semicontinuous.) Take η small enough so that ‖x′ − x‖ < η
implies that f (x′) ≥ f (x)/2 > 0. Applying Theorem 5.5.2
with ε = η, we find (uη, vη) and (ξη, ζη) ∈ ∂Fϕ(uη, vη)
such that ‖x− uη‖ < η,

0 < f (uη) < ϕ(uη, vη) < f (uη) + η (5.5.6)

and

‖ξη − ξ‖ < η, ‖ζη‖ < η. (5.5.7)
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It follows from (5.5.6) that vη ∈ prη(F (uη); 0). By the sum

rule of Theorem 3.3.1 there exist (xη, yη), (x
′
η, y

′
η) close to

(uη, vη) and a subgradient y∗η of the norm function ‖y‖ at

the point y′η such that yη ∈ prη(F (xη); 0), ‖y′η‖ > 0 and

(ξη, ζη) ∈ (0, y∗η)+NF (graphF ; (xη, yη))+η(BX∗ ×BY ∗),

i.e., there exists (ξ′η, ζ
′
η) ∈ η(BX∗ ×BY ∗) such that

ξη − ξ′η ∈ D∗
FF (xη, yη)(y

∗
η − ζη + ζ ′η). (5.5.8)

Rewriting (5.5.8) as (ξη − ξ′η)/‖y∗η − ζη + ζ ′η‖ ∈
D∗
FF (xη, yη)((y

∗
η − ζη + ζ ′η)/‖y∗η − ζη + ζ ′η‖)

and noting that ‖y∗η − ζη + ζ ′η‖ ≥ 1 − 2η, it follows from
assumption (i) that

lim inf
η→0

‖ξη‖ = lim inf
η→0

‖ξη − ξ′η‖/‖y∗η − ζη + ζ ′η‖ ≥ σ.
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Relation (5.5.7) then implies that

‖ξ‖ ≥ σ.

•

Combining Theorem 5.5.1 and Lemma 5.5.4 we have the
following implicit multifunction theorem.

Theorem 5.5.5. (Implicit Multifunction Theorem) Let
X,Y and Z be Fréchet smooth Banach spaces and let
U be an open set in X × Y . Suppose that F : U → 2Z is
a closed valued multifunction satisfying:

(i) there exists (x̄, ȳ) ∈ U such that

0 ∈ F (x̄, ȳ),

(ii) y → F (x̄, y) is lower semicontinuous at ȳ,
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(iii) for any fixed y near ȳ, x → F (x, y) is upper semi-
continuous, and

(iv) there exists σ > 0 such that for any (x, y) ∈ U with
0 ∈ F (x, y)

σ ≤ lim inf
η→0

{
‖x∗‖ | x∗ ∈ D∗

FF (x
′, y; z′)(y∗), ‖y∗‖ = 1

with x′ ∈ Bη(x), z
′ ∈ prη(F (x

′, y); 0)
}
.

Then there exist open sets W ⊂ X and V ⊂ P contain-
ing x̄ and ȳ respectively such that

(a) for any y ∈ V , W ∩G(y) = ∅,
(b) for any y ∈ V and x ∈ W , d(G(y); x) ≤ d(F (x, y); 0)/σ,

and
(c) for any (x, y) ∈ W × V , x ∈ G(y),
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D∗
FG(y; x)(x

∗) = {x∗ | (−x∗, p∗) ∈ cone ∂Fd(F (x, y); 0)}.
Proof. Exercise 5.5.2. •

5.5.4 Open Covering, Regularity and Pseudo-Lipschitzian Properties

In this section we discuss the open covering, metric regular-
ity and pseudo-Lipschitzian properties. These concepts are
closely related, yet historically they arose in different con-
texts. We start with the definitions.

Definition 5.5.6. (Metric Regularity) Let X and Y be
Banach spaces and let F : X → 2Y be a closed multi-
function. We say that F is metrically regular at (x̄, ȳ) ∈
graph F with modulus r provided that there exist neigh-
borhoods W and V of x̄ and ȳ respectively such that, for
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any x ∈ W and y ∈ V ,

d(F−1(y); x) ≤ rd(F (x); y).

Definition 5.5.7. (Pseudo-Lipschitz) Let X and Y be
Banach spaces and let F : X → 2Y be a closed multi-
function. We say that F is pseudo-Lipschitz at (x̄, ȳ) ∈
graph F with rank r provided that there exist neighbor-
hoods W and V of x̄ and ȳ respectively such that, for
any x1, x2 ∈ W ,

F (x2) ∩ V ⊂ F (x1) + r‖x2 − x1‖B.
Definition 5.5.8. (Open Covering) Let X and Y be Ba-
nach spaces and let F : X → 2Y be a closed multifunc-
tion. We say that F is an open covering with linear rate
r at (x̄, ȳ) ∈ graph F provided that there exist neighbor-
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hoods W and V of x̄ and ȳ respectively such that, for
any x ∈ W and t sufficiently small,

F (x) ∩ V + trBY ⊂ F (x + tBX).

Now we can precisely state the relationship between metric
regularity, the open covering property with linear rate and
the pseudo-Lipschitz property.

Theorem 5.5.9. Let X and Y be Banach spaces and let
F : X → 2Y be a closed multifunction. Then the follow-
ing are equivalent:

(i) F is an open covering with linear rate r at (x̄, ȳ) ∈
graphF ;

(ii) F is metrically regular with modulus 1/r at (x̄, ȳ) ∈
graphF ;
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(iii) F−1 is pseudo-Lipschitz with rank 1/r at (ȳ, x̄) ∈
graphF−1;

Proof. (i) implies (ii). Let V,W and r be as in Definition
5.5.8 and let y ∈ V and x ∈ W . Shrink V to start with if
necessary, and choose a small positive number η so that

t =
1

r
d(F (x); y) + η

is sufficiently small that the inclusion in Definition 5.5.8
holds. Then

y ∈ F (x) ∩ V + trBY ⊂ F (x + tBX)

and we can find a u ∈ Bt(x) with y ∈ F (u) or u ∈ F−1(y).
It follows that

d(F−1(y); x) ≤ ‖u− x‖ < t =
1

r
d(F (x); y) + η.
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Letting η → 0 we have

d(F−1(y); x) ≤ 1

r
d(F (x); y).

(ii) implies (iii). Let V,W and 1/r be as in Definition 5.5.6.
Note F−1 : Y → 2X so that the roles of V andW switch as
compared to Definition 5.5.7. Let y1, y2 lie in V . Choosing
an arbitrary element x ∈ F−1(y2)∩W we have y2 ∈ F (x).
Since F is metrically regular with modulus 1/r, we have

d(F−1(y1); x) ≤
1

r
d(F (x); y1) ≤

1

r
‖y2 − y1‖,

or

x ∈ F−1(y1) +
1

r
‖y2 − y1‖BX.

Since x ∈ F−1(y2) ∩W is arbitrary we arrive at
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F−1(y2) ∩W ⊂ F−1(y1) +
1

r
‖y2 − y1‖BX.

(iii) implies (i). Let

y1 ∈ F (x) ∩ V + trBY

be an arbitrary element of the set. Note that when t is
sufficiently small y1 ∈ V . Choose y2 ∈ F (x) ∩ V with
‖y1 − y2‖ < tr. Since F−1 is pseudo-Lipschitz with rank
1/r we have

x ∈ F−1(y2) ∩W ⊂ F−1(y1) +
1

r
‖y1 − y2‖BX.

Therefore, there exists x′ ∈ F−1(y1) with ‖x′−x‖ ≤ ‖y1−
y2‖/r < t. That is to say

y1 ∈ F (x′) ⊂ F (x + tBX).
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Since y1 ∈ F (x) ∩ V + trBY is arbitrary we have

F (x) ∩ V + trBY ⊂ F (x + tBX).

•

Using the implicit multifunction theorem of Theorem 5.5.5
and the equivalence relationship in Theorem 5.5.9 we have
the following sufficient conditions to be an open mapping,
or for metric regularity and pseudo-Lipschitz property.

Theorem 5.5.10. Let X and Y be Fréchet smooth Ba-
nach spaces. Let U be an open set in X × Y and let
F : U → 2Y be a closed valued multifunction satisfying:

(i) there exists (x̄, ȳ) ∈ U such that ȳ ∈ F (x̄),
(ii) F is upper semicontinuous in U ,
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(iii) there exists r > 0 such that for any (x, y) ∈ U ,
y ∈ F (x)

r ≤ lim inf
η→0

{
‖x∗‖

∣∣∣ x∗ ∈ D∗
FF (x

′; y′)(y∗), ‖y∗‖ = 1,

with x′ ∈ Bη(x), y
′ ∈ prη(F (x

′); y)
}
.

Then

(a) (Open Covering) F is an open covering with linear
rate r at (x̄, ȳ);

(b) (Metric Regularity) F is metrically regular at (x̄, ȳ)
with modulus 1/r;

(c) (pseudo-Lipschitz) F−1 is pseudo-Lipschitz with rank
1/r at (ȳ, x̄).

Proof. Exercise 5.5.3. •
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The methods we have used so far in dealing with properties
of multifunctions largely rely on distance functions. An al-
ternative approach is to study a smooth function restricted
to a closed set. We illustrate this method by revisiting met-
ric regularity. Let X and Y be Banach spaces, let S be a
closed subset of X and let f : X → Y be a C1 mapping.
We say that f is metrically regular on S at x̄ ∈ S with
modulus r provided that there exists a neighborhood W of
x̄ such that for any x, z ∈ W ∩ S,

d(S ∩ f−1(f (x)); z) ≤ r‖f (z)− f (x)‖.
It is not hard to check (Exercise 5.5.7) that this definition is
consistent with Definition 5.5.6 if we identify f and S with
the multifunction
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FS(x) :=

{
{f (x)} x ∈ S,

∅ otherwise.
(5.5.9)

On the other hand a closed multifunction F : X → 2Y is
metrically regular at (x̄, ȳ) ∈ graphF if and only if the C1

mapping f : X×Y → Y defined by f (x, y) = y is metrically
regular on graphF at (x̄, ȳ) (Exercise 5.5.8). Now, it is easy
to deduce a sufficient condition for a C1 function metrically
regular on a set from Theorem 5.5.10. To do so we need the
following proposition on representing the coderivative of the
multifunction defined by (5.5.9) in terms of the derivative of
f and normal cone of S. The proof follows directly from the
definitions and is left as an exercise.
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Proposition 5.5.11. Let X and Y be Banach spaces,
let S be a closed subset of X and let f : X → Y be
a C1 mapping. Define the multifunction FS : X → 2Y

by (5.5.9). Suppose x ∈ S and x∗ ∈ D∗
FFS(x, f (x))(y

∗).
Then

x∗ − (f ′(x))∗y∗ ∈ NF (S; x).

Proof. Exercise 5.5.9. •

Combining Theorem 5.5.10 and Proposition 5.5.11 we ob-
tain the following sufficient condition for the regularity of a
function on a closed set.
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Corollary 5.5.12. Let X and Y be Fréchet smooth
Banach spaces, let S be a closed subset of X and let
f : X → Y be a C1 mapping. Suppose that for any x in
a neighborhood of x̄ ∈ S, any x∗ ∈ X∗ and y∗ ∈ Y ∗

satisfying x∗ − (f ′(x))∗y∗ ∈ NF (S; x) we have

‖x∗‖ ≥ r‖y∗‖. (5.5.10)

Then f is metrically regular at x̄ with modulus 1/r.

Proof. Exercise 5.5.10. •

Conversely using Corollary 5.5.12 and Exercise 5.5.7 one
can also recover a sufficient condition for a multifunction to
be metrically regular. We leave the verification of this fact
as Exercise 5.5.11. Similarly, one can also study the open
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covering for multifunctions by way of studying open covering
for functions on a closed sets (Exercise 5.5.12).
5.5.5 Commentary and Exercises

Implicit multifunction theorems discussed here are gener-
alizations of implicit function theorems that have funda-
mental importance in analysis. They are closely related to
many other concepts in the analysis of multifunctions and
nonsmooth functions, such as solvability [91], open covering
[103, 104, 264], metric regularity [149, 227, 30], inverse func-
tion theorems [83, 264], pseudo-Lipschitzness [5] and stabil-
ity [227, 228, 253]. The relationship between these properties
were discussed in [73, 219, 199]. Our exposition here, which
emphasizes characterizing properties of multifunctions by
their related distance functions, largely follows [174]. Since
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the distance function to a set can be viewed as an infimum
function, an important tool in doing so is the representa-
tion of the subdifferential of an infimum [173]. This type
of result has also been studied (under the name subdiffer-
ential for marginal functions) in different generality earlier
(see e.g., [48, 151, 247, 174] and Exercise 5.5.5). Theorem
5.5.2 is taken from Ledyaev and Treiman [173] (see also
Ledyaev [172] for an alternative form) which refines ear-
lier results in that it asserts that the subdifferential of f
at x is approximated by the subdifferential of fa at some
nearby points z for all a such that fa(x) is close enough to
f (x). This is a significant improvement and leads to new,
interesting applications (see Exercises 5.5.5 and 5.5.6). The
equivalence between open covering and metric regularity can
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be found in [103] and the connection between these and the
pseudo-Lipschitzian property for F−1 was derived in [73]
and is studied carefully in [199, 205]. Sufficient conditions
for open covering with linear rate and regularity using other
generalized derivative constructions have also been studied
by Ioffe [149, 142] and Warga [264]. Studying open covering
and metric regularity for C1 functions on closed sets and
deducing corresponding results for multifunctions is the pre-
vailing method in early research on these subjects. They are
convenient for deriving sufficient conditions in terms of vari-
ous tangent cones (see Exercises 5.5.13 and [8] for additional
references). Metric regularity is very useful in dealing with
constrained minimization problems. Details can be found in
the guided exercises below (Exercises 5.5.14 and 5.5.15).
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Exercise 5.5.1. Prove Corollary 5.5.3.

Exercise 5.5.2. Prove Theorem 5.5.5.

Exercise 5.5.3. Prove Theorem 5.5.10.

Exercise 5.5.4.Deduce the following weaker result in [174]
from Theorem 5.5.2.

Theorem 5.5.13. Let X be a Fréchet smooth Banach
space, let fa : X → R ∪ {+∞} , a ∈ A be a family of lsc
function and define f (x) := infa∈A fa(x). Suppose that
x∗ ∈ ∂Ff (x). Then for any ε > 0, there exist (a, z) ∈
A× Bε(x) satisfying fa(z) < f(x) + ε and z∗ ∈ ∂Ffa(z)
such that

‖z∗ − x∗‖ < ε.
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∗Exercise 5.5.5. Stegall’s variational principle allows a lin-
ear perturbation. Here is a reflexive Banach space version.
More general versions of this result and their applications
will be discussed in Section 6.3.

Theorem 5.5.14. (Stegall’s Variational Principle) Let X
be a reflexive Banach space, let f : X → R ∪ {+∞} be
a lsc function bounded from below and let A be a closed
subset of X. Then for any ε > 0, there exists x∗ ∈ X∗

with ‖x∗‖ < ε such that

x→ f (x) + 〈x∗, x〉
attains a minimum on A.

Deduce the Stegall’s variational principle [243] in a reflexive
Banach space from Theorem 5.5.2. Hint:
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(i) Define ga(x
∗) := f (a) + 〈x∗, a〉, a ∈ A and define

g : X∗ → R by

g(x∗) := inf
a∈A

ga(x
∗).

Show that g is upper semicontinuous, concave and finite
on X∗ and therefore continuous on X∗.

(ii) Apply Theorem 5.5.2 to conclude that for any ε > 0,
there exists x∗ ∈ εBX∗ such that ∂Fg(x

∗) = ∅.
(iii) Suppose that x ∈ ∂Fg(x

∗). Apply Theorem 5.5.2 to
conclude that for any minimizing sequence ai ∈ A (i.e.,
gai(x

∗) → g(x∗)), there exist sequences (x∗i ) and (xi)
with xi ∈ ∂Fgai(x

∗
i ), such that xi → x.

(iv) Observing that xi = ai we conclude x is the limit of
every minimizing sequence, and therefore x ∈ A and
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f (a) + 〈x∗, a〉
attains a minimum at x over A.

∗Exercise 5.5.6.Deduce the following result on the closest
point to a subset in a Hilbert space from Theorem 5.5.2.

Theorem 5.5.15. (Closest Point: Hilbert Space Case) Let
H be a Hilbert space and let A be a closed subset of X.
Then, there exists a dense subset D of H such that for
any x ∈ D, there is a unique closest point from A.

Hint: First show that

d2A(x) := inf
a∈A

‖x− a‖2

is a continuous function, and therefore

D := dom∂Fd
2
A
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is a dense subset of H . For any x ∈ D and x∗ ∈ ∂Fd
2
A(x)

apply Theorem 5.5.2 to show that for any minimizing se-
quence {an} ∈ A of d2A(x), an → x − x∗/2, and therefore
x − x∗/2 is the unique closest point in A to x. A similar
argument works in a reflexive Banach space.

Exercise 5.5.7. Let X and Y be Banach spaces, let S be
a closed subset of X and let f : X → Y be a C1 mapping.
Show that f is metrically regular on S at x̄ ∈ S with mod-
ulus r if and only if the multifunction FS defined by (5.5.9)
is metrically regular at (x̄, f (x̄)) with modulus r.

Exercise 5.5.8. Let X and Y be Banach spaces and let
F : X → 2Y be a closed multifunction. Show that F is
metrically regular at (x̄, ȳ) ∈ graphF if and only if the
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C1 mapping f : X × Y → Y defined by f (x, y) = y is
metrically regular on graphF at (x̄, ȳ).

Exercise 5.5.9. Prove Proposition 5.5.11.

Exercise 5.5.10. Prove Proposition 5.5.12.

Exercise 5.5.11.Use Corollary 5.5.12 to derive a sufficient
condition for a multifunction to be metrically regular.

Exercise 5.5.12.Define open covering with linear rate for
a C1 function on a closed set and use it to study open cov-
ering with linear rate for multifunctions.

∗Exercise 5.5.13. (Tangential Metric Regularity Condi-
tion) Let X and Y be finite dimensional Banach spaces. Let
f : X → Y be a C1 function and let S be a closed subset
of X . Suppose that x̄ ∈ S and there exists a neighborhood
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W of x̄ such that for all x ∈ W ∩ S,
f ′(x)TB(S; x) = Y. (5.5.11)

Show that f is metrically regular on S at x̄. Hint: Use
a category argument and the compactness of S to show
that (5.5.11) implies there exists r > 0 such that rBY ⊂
f ′(x)[TB(S; x)∩BX ] for all x in a neighborhood of x̄, which
in turn implies (5.5.10).

∗Exercise 5.5.14. (Transversality) Let X and Y be finite
dimensional Banach spaces. Let f : X → Y be aC1 function
and let S and R be closed subsets of X and Y , respectively.
Suppose that x̄ ∈ S and there exists a neighborhood W of
x̄ such that for all x ∈ W ∩ S, we have f (x) ∈ R and

f ′(x) [TB(S; x)]− TB(R; f (x)) = Y. (5.5.12)
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(i) Define function g : X ×Y → Y by g(x, y) = f (x)− y.
Prove g is metrically regular on S ×R at (x̄, f (x̄)).

(ii) Apply the exact penalization in Example 3.0.3 to de-
duce the existence of a constant k such that

d(S×R)∩g−1(g(x̄,f(x̄)))(z, y) ≤ k {‖f (z)− y‖ + dS(z) + dR(y)}
holds for all points (z, y) in a neighborhood of (x̄, f (x̄)).

(iii) Deduce the inequality

d(S∩f−1(R))(z) ≤ k {dS(z) + dR(f (z))}
holds for all points z in a neighborhood of x̄.

(iv) Deduce the inclusions

TC(S; x̄)∩(f ′(x))−1TC(R; f (x̄)) ⊂ TC(S∩f−1(R); x̄)

and
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TB(S; x̄)∩(f ′(x))−1TC(R; f (x̄)) ⊂ TB(S∩f−1(R); x̄).

(v) Suppose f is the identity map, so TC(S; x̄)−TC(R; x̄) =
Y . If either R or S is tangentially regular at x̄, prove

TB(R ∩ S; x̄) = TB(R; x̄) ∩ TB(S; x̄).
(vi) (Guignard) By taking the polar and applying the Krein–

Rutman polar cone calculus of Theorem 4.4.5 and con-
dition (5.5.12) again, deduce

NC(S∩f−1(R); x̄) ⊂ NC(S; x̄)+
[
f ′(x)

]∗
NC(R; f (x̄)).

(vii) If C1 and C2 are convex subsets of X satisfying 0 ∈
core(C1−C2), and the point x̄ lies in C1∩C2, use part
(iv) to prove

TC(C1 ∩ C2; x̄) = TC(C1; x̄) ∩ TC(C2; x̄).
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Reference: [56, p. 158].

∗Exercise 5.5.15. (Guignard Optimality Conditions) Let
X and Y be finite dimensional Banach spaces and let S and
R be closed subsets of X and Y , respectively. Suppose that
x̄ is a local minimizer for the optimization problem

minimize f (x), x ∈ S

subject to g(x) ∈ R,

where f : X → R and g : X → Y are C1 functions with G
satisfying the following transversality condition: for all x in
a neighborhood of x̄,

g′(x) [TB(S; x)]− TB(R; g(x)) = Y.

Use Exercise 5.5.14 to prove the optimality condition
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0 ∈ f ′(x̄) +
[
g′(x̄)

]∗
NC(R; g(x̄)) +NC(S; x̄).

Reference: [131].



6

Variational Principles in Nonlinear Functional Analysis

Calculus of variations provides the stimulation for the devel-
opment of both nonlinear functional analysis and variational
techniques. The development of nonlinear functional analy-
sis and variational techniques have gone hand in hand ever
since. We have seen that modern variational principles grew
out of results in Banach space geometry. In this chapter we
collect several interesting applications to showcase different
approaches and to highlight the diversity of results.
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6.1 Subdifferential and Asplund Spaces

6.1.1 Asplund Spaces

Recall that a subset S of a Banach space X is a Gδ set
provided that it is the intersection of a countable number of
open sets.

Definition 6.1.1. Let X be a Banach space. We say
that X is an Asplund space if every continuous convex
function defined on a nonempty open convex subset C of
X is Fréchet differentiable on a dense Gδ subset of C.

The following lemmas provide convenient ways of checking
whether a space is Asplund.
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Lemma 6.1.2. Let X be a Banach space and let C be
an open convex subset of X. Suppose that f is a convex
and continuous function on C. Then f is Fréchet dif-
ferentiable at x ∈ C if and only if for any ε > 0 there
exists δ > 0 such that for all ‖y‖ = 1 and t ∈ (0, δ),

f (x + ty) + f (x− ty)− 2f (x) < tε. (6.1.1)

Proof. The necessity is easy and left as Exercise 6.1.1. We
prove the sufficiency. Choose x∗ ∈ ∂f (x). It follows that for
all y and all sufficiently small t > 0 such that x± ty ∈ C,

〈x∗, ty〉 ≤ f (x + ty)− f (x) (6.1.2)

and

−〈x∗, ty〉 ≤ f (x− ty)− f (x). (6.1.3)
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By hypothesis, for any ε > 0 there exists δ > 0 such that
(6.1.1) holds for any t ∈ (0, δ) and any y with ‖y‖ = 1, that
is,

f (x+ty)−f (x)−〈x∗, ty〉 ≤ tε+f (x)−f (x−ty)−〈x∗, ty〉.
Inequality (6.1.2) shows that the left side is greater or equal
to 0 while (6.1.3) shows the right side is less than or equal
to tε, which completes the proof. •
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A similar result holds for the Gâteaux differentiability (Ex-
ercise 6.1.2).

Lemma 6.1.3. Let X be a Banach space, let C be an
open subset of X and let f be a continuous and convex
function on C. Then the set G of points in C where f
is Fréchet differentiable is a Gδ set.

Proof. For each i, define Gi :={
x ∈ C

∣∣∣ sup
‖y‖=1

f (x + δy) + f (x− δy)− 2f (x)

δ
<

1

i
, ∃ δ > 0

}
.

By Exercise 4.2.9, for any fixed x and y the functions t →
(f (x± ty)− f (x))/t are decreasing as t→ 0+, hence from
Lemma 6.1.2 we can conclude that G =

⋂∞
i=1Gi. It remains

to prove that each Gi is open. Suppose that x ∈ Gi. Since f
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is locally Lipschitz, there exist δ1 > 0 and L > 0 such that
f satisfies the Lipschitz condition with Lipschitz constant L
on Bδ1(x). Since x ∈ Gi there exist δ > 0 and r > 0 such
that for all y with ‖y‖ = 1 we have x± δy ∈ C and

f (x + δy) + f (x− δy)− 2f (x)

δ
≤ r <

1

i
.

Choose δ2 ∈ (0, δ1) small enough so that B2δ2(x) ⊂ C and
r + 4Mδ2/δ < 1/i. We show that Bδ2(x) ⊂ Gi. In fact, for
any z ∈ Bδ2(x)
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f (z + δy) + f (z − δy)− 2f (z)

δ

≤ f (x + δy) + f (x− δy)− 2f (x)

δ

+
|f (z)− f (x)|

2δ
+
|f (z + δy)− f (x + δy)|

δ

+
|f (z − δy)− f (x− δy)|

δ

≤ r +
4M‖z − x‖

δ
≤ r +

4Mδ2
δ

<
1

i
.

•

6.1.2 A Sum Rule Characterization

It turns out that Asplund spaces are natural places to use
Fréchet subdifferentials in the sense that they are charac-



838 6 Nonlinear Functional Analysis

terized by having a natural Fréchet subdifferential calculus.
Here we need to note that an Asplund space is not neces-
sarily Fréchet smooth so that in such a space the Fréchet
subdifferential and the viscosity Fréchet subdifferential may
differ. In this chapter we use the Fréchet subdifferential in
Definition 3.1.1. We will establish the equivalence of the As-
plund space property and the Fréchet subdifferential (ap-
proximate) calculus by showing first the equivalence of the
Asplund property with a simple Lipschitz local approximate
Fréchet subdifferential sum rule and then establish the equiv-
alence of other calculus rules with this Lipschitz sum rule.
The following proposition provides the easy direction which
essentially says that if an approximate local sum rule holds
in X then X is an Asplund space.
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Definition 6.1.4. (Simple Lipschitz Local Approximate
Fréchet Subdifferential Sum Rule) Let X be a Banach
space. We say that X has a simple Lipschitz local ap-
proximate Fréchet subdifferential sum rule if, for any lsc
function f1 : X → R ∪ {+∞}, any ε > 0 and any Lip-
schitz function f2 : X → R with x̄ ∈ argmin(f1 + f2),
there exist xn and x∗n ∈ ∂Ffn(xn), n = 1, 2 satisfying
(xn, fn(xn)) ∈ Bε((x̄, fn(x̄))), and

‖x∗1 + x∗2‖ < ε.

Proposition 6.1.5. Let X be a Banach space. Suppose
that X has a simple Lipschitz local approximate Fréchet
subdifferential sum rule. Then X is Asplund.
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Proof. Let f be a continuous convex function on an open
convex subset C of X . For any x ∈ C, f is locally Lipschitz
around x by Theorem 4.1.3. Applying the simple Lipschitz
local approximate Fréchet subdifferential sum rule to f1 =
ι{x} and f2 = −f , we conclude that for any ε > 0, −f
is Fréchet subdifferentiable at some point in Bε(x). Since
x is arbitrary, −f is densely Fréchet subdifferentiable in C.
On the other hand, Theorem 4.2.7 and Exercise 4.2.10 imply
that for any x ∈ C, ∂f (x) = ∂Ff (x) = ∅. Thus, f is densely
Fréchet differentiable on C (Exercise 6.1.3) and therefore
Fréchet differentiable on a dense Gδ set by Lemma 6.1.3. •

The converse of Proposition 6.1.5 is more involved. The
proof relies on the separable reduction technique. One of
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the pillars of this method is the following result in Banach
space geometry.

Theorem 6.1.6. Let X be a separable Asplund space.
Then X has an equivalent Fréchet smooth norm.

Since the proof of this theorem relates more to Banach
space geometry than to variational techniques, we will not
present it here. Interested readers can find related discussions
in [99, 101, 221].
The key of the separable reduction method is to show that

for any Banach space X , one can construct a separable sub-
space in such a way that any Lipschitz local approximate
Fréchet subdifferential sum rule in this subspace can be lifted
to the whole space. This is achieved through the primary



842 6 Nonlinear Functional Analysis

space characterization of the sum rule. We build up this re-
sult starting with convex functions.

Lemma 6.1.7.Let X be a Banach space and let f : X →
R ∪ {+∞} be a proper convex function. Then, ∂f (0) = ∅
if and only if there exists c ≥ 0 such that for all h ∈ X,

f (h) ≥ f (0)− c‖h‖.
Proof. Exercise 6.1.4. •

Using Lemma 6.1.7 we can derive the following more gen-
eral result.
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Lemma 6.1.8.Let X be a Banach space and let fn : X →
R ∪ {+∞}, n = 1, . . . , N be convex functions not identi-
cally equal to +∞. Then,

0 ∈
N∑
n=1

∂fn(0)

if and only if there exists c ≥ 0 such that for all hn ∈
X,n = 1, . . . , N ,

N∑
n=1

fn(hn) ≥
N∑
n=1

fn(0)− c
N∑
n=1

‖hn − hN‖. (6.1.4)

Proof. The necessity is easy and left as Exercise 6.1.5. We
prove sufficiency and consider the nontrivial case of N > 1.
Define f : XN−1 → R ∪ {+∞} by
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f (x1, . . . , xN−1) := inf
{N−1∑
n=1

fn(xn+h)+fN(h)
∣∣∣ h ∈ X

}
,

where (x1, . . . , xN−1) ∈ XN−1.
Clearly, f is a convex function. Moreover, it follows from

inequality (6.1.4) that f (0, . . . , 0) =
∑N
n=1 fn(0) and that

f (x1, . . . , xN−1) ≥ f (0, . . . , 0)− c

N−1∑
n=1

‖xn‖

for all (x1, . . . , xN−1) ∈ XN−1. Applying Lemma 6.1.7

to f on XN−1 we have that there exist x∗n ∈ X∗, n =
1, . . . , N − 1 such that
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f (x1, . . . , xN−1) ≥ f (0, . . . , 0) +
N−1∑
n=1

〈x∗n, xn〉,

that is,
N−1∑
n=1

fn(xn + h) + fN (h) ≥
N∑
n=1

fn(0) +
N−1∑
n=1

〈x∗n, xn〉

(6.1.5)

for all x1, . . . , xN−1, h ∈ X .
For any n ∈ {1, . . . , N−1}, setting h = 0 and xm = 0 for

all m ∈ {1, . . . , N − 1}\{n} in (6.1.5) we get x∗n ∈ ∂fn(0).
On the other hand, putting x1 = · · · = xN−1 = −h in
(6.1.5) we deduce that −x∗1 − · · · − x∗N−1 ∈ ∂fn(0). Thus,

we have shown that 0 ∈
∑N
n=1 ∂fn(0). •
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We now turn to a more general result in which the convex
functions in Lemma 6.1.8 are replaced by general functions
and the convex subdifferentials by the Fréchet subdifferen-
tial. This is the main lemma summarizing the technical part
of the separable reduction technique.

Lemma 6.1.9.Let X be a Banach space and let fn : X →
R ∪ {+∞}, n = 1, . . . , N be functions not identically
equal to +∞. Suppose that xn ∈ dom fn. Then

0 ∈
N∑
n=1

∂Ffn(xn) (6.1.6)

if and only if there exists c ≥ 0 and sequences δni, n =
1, . . . , N, i = 1, 2, . . . , of positive numbers such that
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N∑
n=1

mn∑
i=1

βni

kni∑
j=1

αnij[fn(xn + hnij) +
1

i
‖hnij‖] (6.1.7)

≥
N∑
n=1

fn(xn)− c
N−1∑
n=1

∥∥∥ mn∑
i=1

βni

kni∑
j=1

αnijhnij

−
mN∑
i=1

βNi

kNi∑
j=1

αNijhNij

∥∥∥.
whenever hnij ∈ δniBX, αnij ≥ 0, j = 1, . . . , kni,∑kni
j=1αnij = 1, kni = 1, 2, . . . , βni ≥ 0, i = 1, . . . ,mn,

and
∑mn
i=1 βni = 1, mn = 1, 2, . . . , n = 1, . . . , N .
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Proof. Necessity. Let x∗n ∈ ∂Ffn(xn) be such that∑N
n=1 x

∗
n = 0. For n = 1, . . . , N find sequences δni, n =

1, . . . , N, i = 1, 2, . . . , of positive numbers such that, for
any ‖h‖ ≤ δni,

fn(xn + h)− fn(xn) ≥ 〈x∗n, h〉 −
1

i
‖h‖.

Then, for any hnij ∈ δniBX , αnij ≥ 0, j = 1, . . . , kni,∑kni
j=1αnij = 1, kni = 1, 2, . . . , βni ≥ 0, i = 1, . . . ,mn,∑mn
i=1 βni = 1, mn = 1, 2, . . . , n = 1, . . . , N , we have



6.1 Asplund Spaces 849

N∑
n=1

mn∑
i=1

βni

kni∑
j=1

αnij[fn(xn + hnij) +
1

i
‖hnij‖]

≥
N∑
n=1

mn∑
i=1

βni

kni∑
j=1

αnij[fn(xn) + 〈x∗n, hnij〉]

=

N∑
n=1

fn(xn) +
N−1∑
n=1

〈
x∗n,

mn∑
i=1

βni

kni∑
j=1

αnijhnij

−
mN∑
i=1

βNi

kNi∑
j=1

αNijhNij

〉
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≥
N∑
n=1

fn(xn)− c
N−1∑
n=1

∥∥∥mn∑
i=1

βni

kni∑
j=1

αnijhnij

−
mN∑
i=1

βNi

kNi∑
j=1

αNijhNij

∥∥∥,
where c := max{‖x∗1‖, . . . , ‖x∗N−1‖}.
Sufficiency: For n = 1, . . . , N and i = 1, 2, . . . , we define

functions φni : X → R ∪ {+∞} by
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φni(h) := inf
{ k∑
j=1

αj[fn(xn+hj)+
1

i
‖hj‖]

∣∣∣ hj ∈ δniBX,

αj ≥ 0, j = 1, . . . , k,
k∑
j=1

αj = 1,
k∑
j=1

αjhj = h, k = 1, 2, . . .
}
,

if ‖h‖ ≤ δni, and φni(h) = ∞ otherwise. It is not hard to
check that φni are proper convex functions (Exercise 6.1.6).
It follows from (6.1.7) that

φni(0) ≤ fn(xn) (6.1.8)

and
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N∑
n=1

mn∑
i=1

βniφni(hni) ≥
N∑
n=1

fn(xn) (6.1.9)

− c
N−1∑
n=1

∥∥∥mn∑
i=1

βnihni −
mN∑
i=1

βNihNi

∥∥∥
for all hni ∈ X , i = 1, . . . ,mn, mn = 1, 2, . . . , βni ≥ 0,∑mn
i=1 βni = 1, n = 1, . . . , N . Further, for n = 1, . . . , N

define φn : X → R ∪ {+∞} by
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φn(h) := inf
{ m∑
i=1

βiφni(hi)
∣∣∣ hi ∈ X, βi ≥ 0, i = 1, . . . ,m,

m∑
i=1

βi = 1,
m∑
i=1

βihi = h,m = 1, 2, . . .
}
.

Again φn is convex (Exercise 6.1.6). It follows from inequal-
ity (6.1.9) that

N∑
n=1

φn(0) ≥
N∑
n=1

fn(xn).

Combining this with inequality (6.1.8) and (6.1.9) we have
φn(0) = fn(xn) and
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N∑
n=1

φn(hn) ≥
N∑
n=1

φn(0)− c
N−1∑
n=1

‖hn − hN‖

for all hn ∈ X,n = 1, . . . , N . By Lemma 6.1.7 this implies
that

0 ∈
N∑
n=1

∂φn(0).

Now to show (6.1.6), it suffices to show that ∂φn(0) ⊂
∂Ffn(xn). So let x∗n ∈ ∂φn(0). Then for ‖h‖ ≤ δni, by
the definition of φni and φn we have

fn(xn + h) +
1

i
‖h‖≥φni(h) ≥ φn(h)

≥φn(0) + 〈x∗n, h〉 = fn(xn) + 〈x∗n, h〉.
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Hence, for all i,

lim inf
‖h‖→0

fn(xn + h)− fn(xn)− 〈x∗n, h〉
‖h‖ ≥ −1

i
.

Therefore, x∗n ∈ ∂Ffn(xn). •

Now we are ready to prove the key result in our separable
reduction argument.

Theorem 6.1.10. Let X be a Banach space, let Y0 be a
separable subspace of X and let fn : X → R∪{+∞} , n =
1, . . . , N be functions locally bounded from below. Then
there exists a separable subspace Y of X, containing Y0
such that xn ∈ Y, n = 1, . . . , N and
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0 ∈
N∑
n=1

∂F (fn|Y )(xn),

implies

0 ∈
N∑
n=1

∂Ffn(xn).

Proof. Given x = (x1, . . . , xN ) ∈ XN , let η(x) denote
the supremum of all η > 0 such that fn is bounded from
below on Bη(xn) for each n = 1, . . . , N . Define



6.1 Asplund Spaces 857

Amk :=
{
α = {αnij : n = 1, . . . , N, i = 1, . . . ,m, j = 1, . . . , k}

∣∣∣
all αnij ≥ 0 are rational and

∑k
j=1αnij = 1

for n = 1, . . . , N, i = 1, . . . ,m
}
,

and

Bm :=
{
β = {βni : n = 1, . . . , N, i = 1, . . . ,m}

∣∣∣
all βni ≥ 0 are rational and

∑m
i=1 βni = 1

for n = 1, . . . , N
}
.

Clearly, Amk and Bm are countable.
For any x = (x1, . . . , xN ) ∈ XN , sequences ηni ∈

(0, η(x)), n = 1, . . . , N, i = 1, 2, . . . , m, k, l ∈ N , α ∈
Amk, β ∈ Bm and r = (r1, . . . , rN ) ∈ (0,+∞)N , we can
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find
hnij(x, r, α, β, l, ηni) ∈ ηniBX,

such that∥∥∥ m∑
i=1

βni

k∑
j=1

αnijhnij(x, r, α, β, l, ηni)

−
m∑
i=1

βNi

k∑
j=1

αNijhNij(x, r, α, β, l, ηni)
∥∥∥ < rn, (6.1.10)

for n = 1, . . . , N , and
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N∑
n=1

m∑
i=1

βni

k∑
j=1

αnij

[
fn(xn + hnij) +

1

i
‖hnij‖

]

≥
N∑
n=1

m∑
i=1

βni

k∑
j=1

αnij

[
fn(xn + hnij(x, r, α, β, l, ηni))

+
1

i
‖hnij(x, r, α, β, l, ηni)‖

]
− 1

l
(6.1.11)

whenever hnij ∈ ηniBX and∥∥∥ m∑
i=1

βni

k∑
j=1

αnijhnij −
m∑
i=1

βNi

k∑
j=1

αNijhNij

∥∥∥ < rn,

for n = 1, . . . , N.
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Now we construct the space Y by induction.We build sepa-
rable subspaces Y1, Y2, . . . ofX and dense countable subsets
Cl of Yl, l = 0, 1, . . . , as follows. Let C0 be any dense count-
able subset of Y0. If we have constructed C0, Y0, . . . , Cl, Yl
for some l ≥ 0, let Yl+1 be the closed linear span of the set

Cl
⋃{

hnij(x, r, α, β, l, ηni)
∣∣∣ x ∈ CNl , α ∈ Amk, β ∈ Bm,

r = (r1, . . . , rN ), rn > 0 rational, ηni ∈ (0, η(x)) rational,

i = 1, . . . ,m, j = 1, . . . , k, n = 1, . . . , N
}
.

Since the above set is countable, the subspace Yl+1 is sep-
arable. Let Cl+1 be some dense countable subset of Yl+1.
Finally, we define Y as the closure of

⋃∞
l=1 Yl. Thus Y is a

separable subspace of X .
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Let x = (x1, . . . , xN ) with xn ∈ Y , n = 1, . . . , N be such
that

0 ∈
N∑
n=1

∂F (fn|Y )(xn).

We need to verify inequality (6.1.7) in Lemma 6.1.9. Clearly
it suffices to consider all the αnij and βni rational. By
Lemma 6.1.9 there are sequences δni > 0 and c ≥ 0 such
that (6.1.7) holds on replacing hnij ∈ X by hnij ∈ Y .
Take rational sequences ηni ∈ (0,min(η(x), δni)/2). Let
m, k ∈ N , α ∈ Amk, β ∈ Bm and hnij ∈ ηniBX be
fixed. We proceed to show that (6.1.7) holds. Let γ be an
arbitrary positive number and let r = (r1, . . . , rN ) be such
that all rn > 0 are rational and for n = 1, . . . , N ,
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γ > rn −
∥∥∥ m∑
i=1

βni

k∑
j=1

αnijhnij −
m∑
i=1

βNi

k∑
j=1

αNijhNij

∥∥∥.
(6.1.12)

As
⋃∞
l=1 Yl is dense in Y and Cl is dense in Yl, there exists

an l and y = (y1, . . . , yN ) ∈ CNl such that

‖xn − yn‖ < min(γ, η(x)/2), ‖xn − yn + hnij‖ < ηni/2

(6.1.13)

and∥∥∥ m∑
i=1

βni

k∑
j=1

αnij(hnij − hNij) + xn − yn − xN + yN

∥∥∥ < rn

(6.1.14)
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for all n, i. Denote h̃nij = xn− yn+hnij. Then by inequal-
ities (6.1.13) and (6.1.14) we have

‖h̃nij‖ < ηni,∥∥∥ m∑
i=1

βni

k∑
j=1

αnij(h̃nij − h̃Nij)
∥∥∥ < rn

and ‖yn + h− xn‖ < η(x) whenever h ∈ 1
2η(x)BX . Thus,

η(y) ≥ 1
2η(x) and so hnij(y, r, α, β, l, ηni) is well defined

since ηni <
1
2η(x). Now we can estimate
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T :=

N∑
n=1

m∑
i=1

βni

k∑
j=1

αnij

[
fn(xn + hnij) +

1

i
‖hnij‖

]

≥
N∑
n=1

m∑
i=1

βni

k∑
j=1

αnij

[
fn(yn + h̃nij) +

1

i
‖h̃nij‖

]
− γN

i
by (6.1.13)

≥
N∑
n=1

m∑
i=1

βni

k∑
j=1

αnij

[
fn(yn + hnij(y, r, α, β, l, ηni))

+
1

i
‖hnij(y, r, α, β, l, ηni)‖

]
− 1

l
− γN

i
by (6.1.11)
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≥
N∑
n=1

m∑
i=1

βni

k∑
j=1

αnij

×
[
fn(xn + yn − xn + hnij(y, r, α, β, l, ηni))

+
1

i
‖yn − xn + hnij(y, r, α, β, l, ηni)‖

]
− γN

i
− 1

l
− γN

i
by (6.1.13).

Since ‖yn − xn + hnij(y, r, α, β, l, ηni)‖ < ηni (by (6.1.13)
and ‖hnij(y, r, α, β, l, ηni)‖ < ηni/2) and (6.1.7) holds in
Y , we have



866 6 Nonlinear Functional Analysis

T ≥
N∑
n=1

fn(xn)− c
N∑
n=1

∥∥∥ m∑
i=1

βni

k∑
j=1

(αnijhnij(y, r, α, β, l, ηni)

−αNijhNij(y, r, α, β, l, ηNi)) + yn − xn − yN + xN

∥∥∥
−2Nγ

i
− 1

l

>
N∑
n=1

fn(xn)− c
N∑
n=1

rn − 2cNγ − 2Nγ

i
− 1

l
by(6.1.10), (6.1

>

N∑
n=1

fn(xn)− c

N∑
n=1

∥∥∥ m∑
i=1

βni

k∑
j=1

(αnijhnij − αNijhNij)
∥∥∥

−cNγ − 2cNγ − 2Nγ

i
− 1

l
by(6.1.12).
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Since γ could be taken arbitrarily small and l arbitrarily
large we have verified inequality (6.1.7). Thus, by Lemma
6.1.9,

0 ∈
N∑
n=1

∂Ffn(xn).

•

Combining Proposition 6.1.5, Theorem 6.1.6 and Theorem
6.1.10 we can now conclude that the simple Lipschitz local
approximate Fréchet subdifferential sum rule characterizes
an Asplund space.
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Theorem 6.1.11. Let X be a Banach space. Then X
is Asplund if and only if X has a simple Lipschitz local
approximate Fréchet subdifferential sum rule.

Proof. Exercise 6.1.7. •

6.1.3 Subdifferential Characterizations

We now show that the Lipschitz local approximate sum rule
and other subdifferential calculus rules are equivalent in the
sense that in any Banach space the fact that one of them
holds implies that all the others are also valid. Consequently,
all the calculus rules discussed in this section characterize
Asplund spaces. First we precisely define the subdifferential
calculus rules.
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Definition 6.1.12.We say that X has a Fréchet sub-
differential nonlocal approximate sum rule if, for lower
semicontinuous functions f1, . . . , fN : X → R ∪ {+∞}
bounded below with

∧
[f1, . . . , fN ](X) < ∞ and any

ε > 0, there exist xn, n = 1, . . . , N and x∗n ∈ ∂Ffn(xn)
with

diam(x1, . . . , xN )×max(1, ‖x∗1‖, . . . , ‖x∗N‖) < ε,

(6.1.15)

and
N∑
n=1

fn(xn) <
∧

[f1, . . . , fN ](X) + ε

(6.1.16)

such that
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n=1

x∗n
∥∥∥ < ε.

Definition 6.1.13.We say that X has a Fréchet subd-
ifferential multidirectional mean value theorem if for any
nonempty, closed and convex subset S of X, any ele-
ment x ∈ X and any lower semicontinuous function
f : X → R ∪ {+∞} bounded below on a neighborhood
of [x, S] and

r <
∧

[f ](S)− f (x),

given ε > 0, there exist z ∈ Bε([x, S]) and z
∗ ∈ ∂Ff (z)

such that

f (z) <
∧

[f ]([x, S]) + |r| + ε.
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and

r < 〈z∗, y − x〉 + ε‖y − x‖ for all y ∈ S.

Definition 6.1.14.We say that X has a Fréchet subd-
ifferential local approximate sum rule if, for lower semi-
continuous functions f1, . . . , fN : X → R ∪ {+∞} and

x̄ ∈
⋂N
n=1 domfn satisfying

N∑
n=1

fn(x̄) ≤
∧

[f1, . . . , fN ](Bh(x̄)) (6.1.17)

for some h > 0, and for any ε > 0, there exist
xn, n = 1, . . . , N with (xn, fn(xn)) ∈ Bε((x̄, fn(x̄))) and
x∗n ∈ ∂Ffn(xn) such that
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n=1

x∗n
∥∥∥ < ε.

Definition 6.1.15.We say that X has a Fréchet subdif-
ferential Lipschitz local approximate sum rule if condition
(6.1.17) in Definition 6.1.14 is replaced by the require-
ment that all but one of the functions are locally Lips-
chitz at x̄.

The two function version of this Fréchet subdifferential Lip-
schitz local approximate sum rule is called a simple Fréchet
subdifferential Lipschitz local approximate sum rule (see
Definition 6.1.4).

Definition 6.1.16.We say that X has a Fréchet subdif-
ferential extremal principle if for every local extremal point
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x̄ of an extremal system (S1, . . . , SN ) at (p̄1, . . . , p̄N ) and
any ε > 0, there exist pn ∈ Bε(p̄n), xn ∈ Bε(x̄), n =
1, . . . , N and x∗n ∈ NF (Sn(pn), xn) + εBX∗, n = 1, . . . , N
such that ‖x∗1‖ + ‖x∗2‖ + · · · + ‖x∗N‖ ≥ 1 and

x∗1 + x∗2 + · · · + x∗N = 0.

Definition 6.1.17.We say that X has a simple Fréchet
subdifferential extremal principle if a Fréchet subdifferen-
tial extremal principle holds for two multifunctions.

Now we can state and prove our main equivalence result.

Theorem 6.1.18. Let X be a Banach space. Then the
following are equivalent:

(i) for any positive integer N , XN has a simple Fréchet
subdifferential Lipschitz approximate sum rule;
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(ii) for any positive integer N , XN has a Fréchet sub-
differential nonlocal approximate sum rule;

(iii) for any positive integer N , XN has a Fréchet sub-
differential multidirectional mean value inequality;

(iv) for any positive integer N , XN has a Fréchet sub-
differential local approximate sum rule;

(v) for any positive integer N , XN has a Fréchet sub-
differential Lipschitz local approximate sum rule;

(vi) for any positive integer N , XN has a Fréchet sub-
differential extremal principle;

(vii) for any positive integer N , XN has a simple Fréchet
subdifferential extremal principle.

Proof. We outline a cyclic proof and leave some of the
details as exercises.
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(i) ⇒ (ii): Consider the extended-valued function f on XN

defined by

f (y) = f (y1, . . . , yN ) :=

N∑
n=1

fn(yn)

and Lipschitz function s1(y) := s1(y1, . . . , yN ) as in Lemma
3.2.2. For any real number r > 0, define

wr := f + rs1

andMr := inf wr. Then we can show that (Mr) is increasing
with respect to r and is bounded above by

∧
[f1, . . . , fN ](X).

Thus, (Mr) converges, say to M . For each r, applying the
Ekeland variational principle of Theorem 2.1.2 to function
wr, we obtain a point ur = (ur1, . . . , u

r
N ) such that
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wr(y) +
ε

2
‖y − ur‖XN = f (y) + rs1(y) +

ε

2
‖y − ur‖XN

attains a minimum at y = ur and

wr(u
r) < inf wr + 1/r < M + 1/r. (6.1.18)

Note that rs1+(ε/2)‖·‖ is Lipschitz. By the simple Lipschitz
approximate sum rule (i) there exist xr, zr ∈ Bε/r(u

r) with

f (xr) ≤ f (ur) + ε/r such that

0 ∈ ∂Ff (x
r) + ∂F

(
rs1 +

ε

2
‖ · −ur‖XN

)
(zr) +

ε

2N
B
XN∗.

(6.1.19)

Let ξr = (ξr1, . . . , ξ
r
N ) ∈ ∂Ff (x

r) and

ζr = (ζr1 , . . . , ζ
r
N ) ∈ ∂F

(
rs1 +

ε

2
‖ · −ur‖XN

)
(zr)

(6.1.20)
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satisfy

0 ∈ ξr + ζr +
ε

2N
B
XN∗. (6.1.21)

Then ξrn ∈ ∂Ff (x
r
n). Moreover, similar to Lemma 3.2.2 we

can show that (6.1.20) implies that

‖ζr1 + · · · + ζrN‖ < ε

2
.

Thus,
‖ξr1 + · · · + ξrN‖ < ε.

The rest of the proof is similar to that of Theorem 3.2.3.

(ii) ⇒ (iii): The proof of Theorem 3.6.1 still works here.

(iii) ⇒ (iv): Let y = (y1, . . . , yN ) ∈ XN , f (y) := f1(y1) +
f2(y2)+ · · ·+fN(yN ) : XN → R∪{+∞} . Choose h small

enough such that
∑N
n=1 fn(x̄) ≤

∧
[f1, . . . , fN ](Bh(x̄))
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and choose S := {(y1, y2, . . . , yN ) | yn ∈ Bh(x̄), n =
1, . . . , N}. Then ∧

[f ](S)− f (x̃) ≥ 0,

where x̃ = (x̄, x̄, . . . , x̄). Applying the multidirectional
mean value theorem (iii) to f , x̃ and S yields (iv).

(iv) ⇒ (v): Obvious.

(v)⇒ (vi): Let U be a neighborhood of x̄ as in the definition
of an extremal point. Without loss of generality we may as-
sume that U = Br(x̄). Let ε

′ > 0 be a positive number to be
determined later and let p1, p2, . . . , pN be as in the defini-
tion of the extremal point with ε = ε′. Let s1 be as in Lemma
3.2.2 and define f1(y1, y2, . . . , yN ) := s1(y1, y2, . . . , yN )
and
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f2(y1, y2, . . . , yN ) :=

N∑
n=1

ιSn(pn)(yn).

Choose y′n ∈ Sn(pn), n = 1, . . . , N such that ‖y′n− y′m‖ <
d(Sn(pn); x̄) + d(Sm(pm); x̄) + ε′ < 3ε′. Then f1 + f2 > 0
and

(f1 + f2)(y
′
1, y

′
2, . . . , y

′
N ) < 4N2ε′.

By Ekeland’s variational principle of Theorem 2.1.2 there
exist x′n ∈ B

2N
√
ε′(y

′
n), n = 1, . . . , N , such that, for

f3(y1, . . . , yN ) := 2N
√
ε′

N∑
n=1

‖yn − x′n‖,



880 6 Nonlinear Functional Analysis

f1 + f2 + f3 attains a minimum at (x′1, x
′
2, . . . , x

′
N ). It re-

mains to apply the Lipschitz local approximate sum rule of
(v) with a sufficiently small ε′.
(vi) ⇒ (vii): Obvious.

(vii) ⇒ (i): Let f1 be a locally Lipschitz function with a
Lipschitz constant L and let f2 be a lower semicontinuous
function. Assume, without loss of generality, that f1 + f2
attains a minimum at 0 and f1(0) = f2(0) = 0. Define

S1 := {(x, μ) ∈ X × R | f1(x) ≤ μ}
and

S2 := {(x, μ) ∈ X × R | f2(x) ≤ −μ}.
Then it is easy to check that (0, 0) is an extremal point
for sets (S1, S2). For any ε > 0, let ε′ = min{ε/4(1 +
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L)2, 1/4(1 + L)}. By the simple extremal principle (vii),
there exist (xn, μn) ∈ Sn∩εBX×R, and (ξn,−λn) ∈ X∗×
R, n = 1, 2 such that

(ξn,−λn) ∈ NF (Sn; (xn, μn)),

‖(ξn,−λn)‖ ≥ 1− ε′ ≥ 1/2, n = 1, 2 (6.1.22)

and
|λ1 + λ2| < ε′, ‖ξ1 + ξ2‖ < ε′.

Since f1 is Lipschitz with Lipschitz constant L, for any
h ∈ X with ‖h‖ = 1 we have ιS1(x1 + th, μ1 + tL) =
0 for t > 0 sufficiently small. It follows from (ξ1,−λ1) ∈
NF (S1; (x1, μ1)) that
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lim inf
t→o

ιS1(x1 + th, μ1 + tL)− ιS1(x1, μ1)− t〈ξ1, h〉 + tλ1L

t‖(h, L)‖

=lim inf
t→o

−t〈ξ1, h〉 + tλ1L

t‖(h, L)‖ =
−〈ξ1, h〉 + λ1L

‖(h, L)‖ ≥ 0.

That is to say

〈ξ1, h〉 − λ1L ≤ 0, for all ‖h‖ = 1. (6.1.23)

Combining (6.1.22) and (6.1.23) we get λ1 >
1

2(1+L)
> 0

and λ2 < ε′ − λ1 < − 1
4(1+L)

< 0 which forces μ1 = f1(x1)

and μ2 = f2(x2). By Theorem 3.1.8 we have x∗1 := ξ1/λ1 ∈
∂Ff1(x1) and x

∗
2 := −ξ2/λ2 ∈ ∂Ff2(x2). Then, observing

that ‖x∗1‖ ≤ L, we obtain
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‖x∗1 + x∗2‖ =
∥∥∥ξ1
λ1

− ξ2
λ2

∥∥∥ =
∥∥∥ξ1(λ1 + λ2)

λ1λ2
− ξ1 + ξ2

λ2

∥∥∥
≤ ‖x∗1‖ ×

∣∣∣λ1 + λ2
λ2

∣∣∣ + ‖ξ1 + ξ2‖
|λ2|

≤ 4L(1 + L)ε′ + 4(1 + L)ε′ = 4(1 + L)2ε′ < ε.

•

6.1.4 Commentary and Exercises

The concept of an Asplund space was introduced by As-
plund in [4] (where it is called a strong differentiability
space). This class of Banach space plays an important role
in Banach space geometry (see [99, 221]). The Lipschitz ap-
proximate sum rule characterization of Asplund spaces is
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derived in [110, 113, 111]. The method of separable reduc-
tion can be traced back to [222] and elsewhere. The equiva-
lence Theorem 6.1.18 is proved in Zhu [273] (for more general
smooth subdifferentials) developing earlier partial results in
[86, 113, 146, 206, 272]. This result shows that all these ba-
sic subdifferential rules are different facets of the variational
principle in conjunction with a decoupling method. In [211]
it is also shown that a variant of Theorem 3.1.10 characterize
Asplund spaces.
The fact that all the Fréchet subdifferential calculus rules

characterize Asplund spaces further emphasizes the impor-
tance of this class of spaces in the subdifferential theory,
and Mordukhovich and Shao’s paper [208] provides a sys-
tematic accounting of this material. Early indications of this
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are to be found in [61, 62]. It is also shown in [150, 170] that
the equivalence of (i) through (iv) holds for abstract subdif-
ferentials that satisfy a few very plausible axioms. In those
papers one can also find additional equivalent subdifferential
rules.

Exercise 6.1.1.LetX be a Banach space, letC be an open
convex subset of X and let f be a convex and continuous
function on C. Suppose that f is Fréchet differentiable at
x ∈ C. Prove that for any ε > 0, there exists δ > 0 such
that for all ‖y‖ = 1 and t ∈ (0, δ),

f (x + ty) + f (x− ty)− 2f (x) < tε.

Exercise 6.1.2.LetX be a Banach space, letC be an open
convex subset of X and let f be a convex and continuous
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function on C. Prove that f is Gâteaux differentiable at
x ∈ C if and only if for each y ∈ X ,

lim
t→0+

f (x + ty) + f (x− ty)− 2f (x)

t
= 0.

Exercise 6.1.3. LetX be a Banach space and let f : X →
R. Prove that f is Fréchet differentiable at x if and only if
both ∂Ff (x) and ∂F (−f )(x) are nonempty.

Exercise 6.1.4. Prove Lemma 6.1.7. Hint: The necessity
follows directly from the definition of the convex subdifferen-
tial. To prove the sufficiency observe that x→ f (x) + c‖x‖
attains a minimum at x = 0, and therefore 0 ∈ ∂(f + c‖ ·
‖)(0). It remains to apply the subdifferential sum rule of
Theorem 4.3.3.

Exercise 6.1.5. Prove the necessity in Lemma 6.1.8.
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Exercise 6.1.6. Prove that the functions φni and φn de-
fined in the proof of Lemma 6.1.9 are convex.

Exercise 6.1.7. Prove Theorem 6.1.11.

Exercise 6.1.8. Show that the net (Mr) defined in (i) ⇒
(ii) in the proof of Theorem 6.1.18 is bounded by∧
[f1, . . . , fN ](X).

Exercise 6.1.9.Let sp(y1, . . . , yN ), p ≥ 1 be as in Lemma
3.2.2 and let g(y1, . . . , yN ) be a Lipschitzian function with
constant L. Show that

(x∗1, . . . , x
∗
N ) ∈ ∂F (s1 + g)(x1, . . . , xN )

implies that
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n=1

x∗n
∥∥∥ ≤ L.

Exercise 6.1.10.Provide the details for (iii)⇒ (iv) in the
proof of Theorem 6.1.18.

Exercise 6.1.11. Supply the details for (v) ⇒ (vi) in the
proof of Theorem 6.1.18.

6.2 Nonconvex Separation Theorems and Welfare Economies

The convex separation theorem is one of the fundamental
results in analysis. Here we discuss a nonconvex version of
this result and its applications in welfare economy and opti-
mization. We also show that it is equivalent to the extremal
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principle and therefore to all the other subdifferential calcu-
lus rules discussed in the previous section.
6.2.1 Nonconvex Separation Theorems

We start with the definition of a separable point.

Definition 6.2.1. (Separable Points for Multifunctions)
Let X be a Banach space and let Mn, n = 1, . . . , N be
metric spaces. Consider multifunctions Sn : Mn → 2X,
n = 1, . . . , N . We say that (x̄1, . . . , x̄N ) is locally sep-
arable from (S1, S2, . . . , SN ) at (p̄1, p̄2, . . . , p̄N ) provided
that (x̄1, . . . , x̄N ) ∈ S1(p̄1)× S2(p̄2)× · · · × SN (p̄N ) and
there is a positive number h such that for any ε > 0,
there exists

(p1, p2, . . . , pN ) ∈ Bε((p̄1, p̄2, . . . , p̄N ))\{(p̄1, p̄2, . . . , p̄N )},
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satisfying

d
( N∑
n=1

(
Sn(pn) ∩ Bh(x̄n)

)
;

N∑
n=1

x̄n

)
> 0.

Next we discuss an infinitesimal necessary condition for the
separable points.

Theorem 6.2.2. (Separation Theorem for Multifunctions)
Let X be an Asplund space and let Mn, n = 1, . . . , N be
metric spaces. Consider multifunctions Sn : Mn → 2X,
n = 1, . . . , N . Suppose that (x̄1, . . . , x̄N ) is locally sepa-
rable from (S1, S2, . . . , SN ) at (p̄1, p̄2, . . . , p̄N ).
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Then for any ε > 0, there exist pn ∈ Bε(p̄n), xn ∈
Bε(x̄)∩Sn(pn), n = 1, . . . , N and x∗ ∈ X∗ with ‖x∗‖ = 1
such that

x∗ ∈
N⋂
n=1

(
NF (Sn(pn); xn) + εBX∗

)
.

Proof. Let h > 0, ε′ := ε2/16N2(2N+1) and p1, p2, . . . , pN
be as in Definition 6.2.1 for ε = ε′.
Define, g(y) = g(y1, y2, . . . , yN ) :=

∥∥∑N
n=1(yn − x̄n)

∥∥,
f1(y) = f1(y1, y2, . . . , yN ) :=

g(y1, y2, . . . , yN ) +

N∑
n=1

iSn(pn)∩Bδ(x̄n)(yn),

and
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f2(y) = f2(y1, y2, . . . , yN ) =

N∑
n=1

‖yn − x̄n‖2.

Choose y′n ∈ Sn(pn), n = 1, . . . , N such that ‖y′n − x̄n‖ <
d(Sn(pn); x̄n) + ε′ < 2ε′. Then lim infη→0{f1(u) + f2(v) :
‖u− v‖ ≤ η}

≤ (f1 + f2)(y
′
1, y

′
2, . . . , y

′
N )

< Nε′ +N (ε′)2 < 2Nε′

Applying the nonlocal sum rule of Theorem 3.2.3 we have
that there exist x = (x1, . . . , xN ) and z = (z1, . . . , zN ),
(x∗1, . . . , x

∗
N ) ∈ ∂Ff1(x), such that
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‖x− z‖ < ε′, (6.2.1)

f1(x) + f2(z) < lim inf
η→0

{f1(u) + f2(v) : ‖u− v‖ ≤ η} + ε′

< (2N + 1)ε′,
(6.2.2)

and

‖f ′2(z) + (x∗1, . . . , x
∗
N )‖ < ε′. (6.2.3)

Note that (6.2.2) implies that xn ∈ Sn(pn) and

f2(z) =
N∑
n=1

‖zn − x̄‖2 < (2N + 1)ε′. (6.2.4)

Consequently,

‖f ′2(x)‖ < 2N
√
(2N + 1)ε′ = ε/2, (6.2.5)
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and therefore

‖(x∗1, . . . , x∗N )‖ < ε. (6.2.6)

By the choice of (p1, . . . , pN ) we have g(x) > 0. It follows
that g is Fréchet differentiable at x. Suppose that g′(x) =
(ξ1, . . . , ξN ) then for any hn ∈ X,n = 1, . . . , N we have

N∑
n=1

〈ξn, hn〉

= lim
t→0

g(x1 + th1, . . . , xN + thN )− g(x1, . . . , xN )

t

= lim
t→0

‖
∑N
n=1(xn − x̄n) + t

∑N
n=1 hn‖ − ‖

∑N
n=1(xn − x̄n)‖

t
.

(6.2.7)



6.2 Nonconvex Separation Theorems 895

Now, let h be an arbitrary element in X . Setting hn =
−hm = h and hk = 0 for k = n,m in (6.2.7) we have
〈ξn− ξm, h〉 = 0. Thus, all the components of g′(x) are the
same and we can write g′(x) = (−x∗,−x∗, . . . ,−x∗). Next,
setting h =

∑N
n=1(xn − x̄n) for all n = 1, . . . , N in (6.2.7)

yields

N
〈
− x∗,

N∑
n=1

(xn − x̄n)
〉
= N

∥∥∥ N∑
n=1

(xn − x̄n)
∥∥∥

so that ‖p∗‖ = 1. Finally, (x∗1, . . . , x
∗
N )

∈ g′(x) +NF (S1(p1); x1)× · · · ×NF (SN (pN ); xN ).

(6.2.8)

Combining (6.2.6) and (6.2.8) we have, for n = 1, . . . , N ,
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x∗ ∈ NF (Sn(pn); xn) + εBX∗.

•

As an easy corollary we can derive the following separation
theorem for nonconvex sets in [49].

Corollary 6.2.3. (Separation Theorem for Sets) Let X be
a Fréchet-smooth Banach space and let Sn, n = 1, . . . , N
be N closed subsets of X. Suppose that (x̄1, . . . , x̄N ) ∈
S1 × · · · × SN satisfies

N∑
n=1

x̄n ∈ bd
( N∑
n=1

Sn

)
.

Then for any ε > 0, there exist xn ∈ Bε(x̄) ∩ Sn, n =
1, . . . , N and x∗ ∈ X∗ with ‖x∗‖ = 1 such that
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x∗ ∈
N⋂
n=1

(
NF (Sn; xn) + εBX∗

)
.

Proof. Let Mn = X and define Sn(pn) = Sn + pn − x̄n.
Then one can check that (x̄1, . . . , x̄N ) is locally separable
from (S1, . . . , SN ) at (x̄1, . . . , x̄N ). Applying Theorem 6.2.2
there exists pn ∈ Bε/2(x̄n),

yn ∈ Sn(pn) ∩Bε/2(x̄n) = (Sn + pn − x̄n) ∩ Bε/2(x̄n)
and x∗ ∈ X∗ with ‖x∗‖ = 1 such that

x∗ ∈
N⋂
n=1

(
NF (Sn(pn); yn) + εBX∗

)
.
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Define xn = yn − pn + x̄n. Then xn ∈ Bε(x̄n) ∩ Sn and
NF (Sn(pn); yn) = NF (Sn; xn) so that

x∗ ∈
N⋂
n=1

(
NF (Sn; xn) + εBX∗

)
.

•

6.2.2 Relationships With Subdifferential Calculus

Next we show that the nonconvex separation theorem is also
equivalent to the subdifferential calculus rules discussed in
subsection 6.1.3. Thus, it provides yet another characteriza-
tion of Asplund space.
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Definition 6.2.4. (Separation Property for Multifunctions)
Let X be a Banach space. We say that X has the Fréchet
subdifferential nonconvex separation property if for any
closed multifunctions Sn from metric spaces Mn to X,
n = 1, . . . , N , for any local separable point (x̄1, . . . , x̄N )
of (S1, S2, . . . , SN ) at (p̄1, p̄2, . . . , p̄N ) and any ε > 0,
there exist pn ∈ Bε(p̄n), xn ∈ Bε(x̄) ∩ Sn(pn), n =
1, . . . , N and x∗ ∈ X∗ with ‖x∗‖ = 1 such that

x∗ ∈
N⋂
n=1

(
NF (Sn(pn); xn) + εBX∗

)
.

By carefully examining the proof of Theorem 6.2.2 we can
see that the assumption that X is an Asplund space is used
only to ensure the Fréchet subdifferential nonlocal approxi-
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mate sum rule is valid inX . In other words, what we actually
prove in Theorem 6.2.2 is that, if XN has a nonlocal ap-
proximate sum rule for each positive integer N , then XN

has a nonconvex separation property for each positive in-
teger N . Since the nonlocal approximate sum rule is one
of the equivalent subdifferential calculus rules discussed in
Subsection 6.1.3, to prove the equivalence of the noncon-
vex separation property to all the subdifferential calculus in
that subsection, we need only deduce one of the calculus
rules there from it. Our next theorem shows that the simple
extremal principle can easily be deduced from the nonconvex
separation property.
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Theorem 6.2.5.Let X be a Banach space. Suppose that
X has a nonconvex separation property. Then X has a
simple extremal principle.

Proof. Let x̄ be an extremal point of the extremal system
(S1, S2) at (p̄1, p̄2) where p̄n, n = 1, 2 are elements of metric
spaces Mn, n = 1, 2, respectively. Then (x̄,−x̄) is a sepa-
rable point of the multifunctions (S1,−S2) at (p̄1, p̄2) (Ex-
ercise 6.2.2). Since X has a nonconvex separation property,
there exist U = Br(x̄), for any ε > 0, pn ∈ Bε/2(p̄n), n =

1, 2, y1 ∈ S1(p1) ∩Bε/2(x̄), y2 ∈ −S2(p2) ∩Bε/2(−x̄) and
x∗ ∈ X∗ with ‖x∗‖ = 1 such that

x∗ ∈ NF (S1(p1); y1) + εBX∗

x∗ ∈ NF (−S2(p2); y2) + εBX∗.
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Note that NF (−S2(p2); y2) = −NF (S(p2);−y2). Setting
x1 = y1, x2 = −y2 and x∗1 = −x∗2 = x∗ we see that X has
a Fréchet extremal principle. •

Corollary 6.2.6. Let X be a Banach space. Then X is
Asplund if and only if for any N , XN has the Fréchet
subdifferential nonconvex separation property.
6.2.3 Welfare Economies

Now we consider a welfare economy model that can be an-
alyzed conveniently with the separation theorem.
Let X represent a commodity space. We consider an econ-

omy with N consumers and M suppliers. For consumer
n ∈ {1, . . . , N} we use Cn ⊂ X representing its consump-
tion set, i.e., the set of commodities potentially needed by
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consumer n. Similarly, form ∈ {1, . . . ,M} we use Sm ⊂ X
representing its supply set, i.e., commodities that can be pro-
duced by supplier m. Now we consider a welfare economy
model E = (C1, . . . , CN, S1, . . . , SM,W ). Here W ⊂ X
is a net demand constraint set representing constraints re-
lated to the initial inventory of commodities in the econ-
omy. Denote x = (x1, . . . , xN ) ∈ C1 × · · · × CN and
y = (y1, . . . , yM ) ∈ S1×· · ·×SM . Then (x, y) is a possible
state of economy E .
Definition 6.2.7. (Feasible Allocation)We say that (x, y) ∈
ΠN
n=1Cn ×ΠM

m=1Sm is a feasible allocation of E if

N∑
n=1

xn −
M∑
m=1

ym ∈ W. (6.2.9)
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To understand the role of W let us consider two special
cases:
(i) W = {w} where w is usually referred to as the initial

aggregate endowment, representing the initial total available
commodity. In this case, the feasibility condition (6.2.9) re-
duces to the classical market clear condition. It requires an
ideal status of the economy in which all the inventory and
products are exactly consumed without any waste.
(ii) The commodity space X has a natural positive cone
X+ andW = w−X+. Then the feasibility condition (6.2.9)
implies that commodities can be freely disposed.
A general set W allows us to flexibly handle more compli-

cated constraints that allows partial disposal of commodities
or/and to consider virtual consumption/production through
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various contracts such as commodity futures and options.
With such a general net demand constraint set W , many
feasible allocations of E are possible.
The goal of a welfare economy is to best satisfy the pref-

erence of the consumers which is described as follows: the
preference of consumer n is characterized by a multifunction
Pn : C1×· · ·×CN → 2Cn. At each point x ∈ C1×· · ·×CN ,
Pn(x) consists of elements in Cn preferred to xn by con-
sumer n. What is the “best” solution in terms of satisfy-
ing consumer’s preference? There are many possible options.
Here we discuss optimality in the sense of weak Pareto.
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Definition 6.2.8. (Weak Pareto Local Optimal Alloca-
tion) We say that (x̄, ȳ) is a local weak Pareto optimal
allocation if there exists r > 0 such that for every feasible
allocation (x, y) ∈ Br(x̄, ȳ), one has xn ∈ Pn(x̄) ∩ Br(x̄)
for some n ∈ {1, . . . , N}.
Our next theorem provides a necessary optimality condi-

tion for a weak Pareto local optimal allocation.

Theorem 6.2.9. (Existence of Approximate Shadow Price)
Let

E = (C1, . . . , CN, S1, . . . , SM,W )

be an economy. We assume that all the sets
C1, . . . , CN, S1, . . . , SM,W are closed. Let (x̄, ȳ) be a lo-
cal weak Pareto optimal allocation of economy E.
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Suppose that P (x) = ΠN
n=1Pn(x) satisfies the following

conditions: there exists h > 0 such that for any ε > 0
there exists x ∈ Bε(x̄) satisfying

N∑
n=1

Pn(x) ∩Bh(x̄n)−
M∑
m=1

Sm ∩ Bh(ȳm)−W ∩Bh(w̄)

⊂
N∑
n=1

Pn(x̄)∩Bh(x̄n)−
M∑
m=1

Sm∩Bh(ȳm)−W ∩Bh(w̄).

(6.2.10)

Then for any ε > 0, there exist (x, y, w) ∈ Bε((x̄, ȳ, w̄))
and a vector x∗ ∈ X∗ with ‖x∗‖ = 1 satisfying
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−x∗ ∈ NF (Pn(x); xn) + εBX∗, n = 1, . . . , N,

x∗ ∈ NF (Sm; ym) + εBX∗, m = 1, . . . ,M

and
x∗ ∈ NF (W ;w) + εB.

Proof. Let Mn = Cn, n = 1, . . . , N and Mn = R, n =
N +1, . . . , N +M +1. Denote w̄ =

∑N
n=1 x̄n−

∑M
m=1 ȳm.

Then (x̄, ȳ, w̄) is locally separable from

(P1, . . . , PN, S1, . . . , SM,W )

at (x̄1, . . . , x̄N , 0, . . . , 0, 0). In fact, assume to the contrary
that for any h > 0, there exists ε > 0 such that for any
x ∈ Bε(x̄),
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d
( N∑
n=1

Pn(x)∩Bh(x̄)−
M∑
m=1

Sm∩Bh(x̄)−W∩Bh(x̄); 0
)
= 0.

Now selecting h and x ∈ Bε(x̄) satisfying condition (6.2.10)
leads to

0∈
N∑
n=1

Pn(x) ∩ Bh(x̄)−
M∑
m=1

Sm ∩ Bh(x̄)−W ∩ Bh(x̄)

⊂
N∑
n=1

Pn(x̄) ∩ Bh(x̄)−
M∑
m=1

Sm ∩ Bh(x̄)−W ∩ Bh(x̄),

which contradicts (x̄, ȳ, w̄) being a local weak Pareto opti-
mal allocation. Now the conclusion directly follows from the
separation theorem for sets. •
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In finite dimensional spaces we can derive a limiting form
of this result under additional assumptions. Note that any
finite dimensional Banach space is Fréchet smooth. We
say a multifunction F : X → 2Y is normal upper semi-
continuous at (x, y) ∈ graph F provided that for any
(xi, yi) → (x, y) and NF (F (xi); yi) � ξi → ξ we have
ξ ∈ NL(F (x); y).

Theorem 6.2.10. (Existence of Shadow Price) Let

E = (C1, . . . , CN, S1, . . . , SM,W )

be an economy. We assume that all the sets
C1, . . . , CN, S1, . . . , SM,W are closed and the commod-
ity space X is finite dimensional. Let (x̄, ȳ) be a weak
Pareto local optimal allocation of economy E.



6.2 Nonconvex Separation Theorems 911

Suppose that P (x) = ΠN
n=1Pn(x) satisfies the condition

(6.2.10) and in addition we assume that Pn, n = 1, . . . , N
are normal upper semicontinuous at (x̄, x̄n). Then there
exists a unit x∗ ∈ X∗ satisfying

−x∗ ∈ NL(Pn(x̄); x̄n), n = 1, . . . , N,

x∗ ∈ NL(Sm; ȳm), m = 1, . . . ,M

and
x∗ ∈ NL(W ; w̄).

Proof. Take limits in Theorem 6.2.9. •

This result can be explained economically as follows. At the
Pareto optimal point there exists a shadow price x∗ such
that the weak Pareto optimal allocation can be achieved
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when each consumer minimizes his or her cost in purchasing
commodities and each producer maximizes his or her revenue
in arranging their production. We also see that the initial
inventory plays a role of a producer.
6.2.4 Commentary and Exercises

The convex separation theorem has long been an important
tool in studying the welfare economy. A nonconvex separa-
tion theorem and its application in deriving the existence
of the shadow price in a welfare economy involving non-
convex consumption and production sets was initiated by
Borwein and Jofré in [49]. Further refinement can be found
in [154, 153]. Mordukhovich showed that one can also use
extremal principles to derive similar results [203]. The sepa-
ration theorem for multifunctions in Theorem 6.2.2 derived
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in [278] models the generalized extremal principles in [210].
The qualification condition (6.2.10) weakens earlier similar
conditions in [26, 154, 153, 159, 203]. The relationship be-
tween the nonconvex separation theorem and the extremal
principle is discussed in [49, 278].

Exercise 6.2.1. Show that the conclusion of Theorem 6.2.2
can also be expressed as

x∗ ∈
N⋂
n=1

(
∂Fd(Sn(pn); xn) + εBX∗

)
.

where c ≤ ‖x∗‖ ≤ 1 for some c > 0

Exercise 6.2.2. Show that in the proof of Theorem 6.2.5,
(x̄,−x̄) is a separable point for the multifunctions (S1,−S2)
at (p̄1, p̄2).



914 6 Nonlinear Functional Analysis

6.3 Stegall Variational Principles

We have seen several times in a variational principle the situ-
ation where the better the property of the underlying space,
the more we can hope for in the perturbation function. The
Stegall variational principle asserts that in a Banach space
with the Radon–Nikodym property (RNP) as defined be-
low, one can actually make the perturbation function linear.
6.3.1 The Radon–Nikodym Property

Definition 6.3.1. (Slice) Let X be a Banach space and
let A be a nonempty subset of X. For α > 0 and x∗ ∈
X∗, we call

S(x∗, A, α) := {x ∈ A | 〈x∗, x〉 > σA(x
∗)− α}
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a slice of A. If A is a nonempty subset of X∗, we define
a weak-star slice analogously, with the functional coming
from X rather than from X∗∗.
Definition 6.3.2. (Dentable Set) Let X be a Banach
space and let A be a subset of X (X∗). We say that
A is (weak-star) dentable provided for any ε > 0 there
exists x∗ ∈ X∗ (x ∈ X) and α > 0 such that

diam S(x∗, A, α) < ε (diam S(x,A, α) < ε).

For a closed subset an alternate characterization of the
dentable property is given in Exercise 6.3.1. Now we can
define the Radon–Nikodym property.
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Definition 6.3.3. (Radon–Nikodym Property) Let X be
a Banach space and let A be a subset of X. We say A has
the Radon–Nikodym property (RNP) if every nonempty
bounded subset of A is dentable.

We note that a dual space has RNP if and only if the pred-
ual is Asplund, in particular, reflexive spaces and separable
dual spaces such as �1 have the RNP (see [221]).

6.3.2 The Stegall Variational Principle

To state the Stegall variational principle we recall the con-
cept of a strong minimum.
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Definition 6.3.4. Let X be a Banach space and let S
be a nonempty subset of X. Suppose that f is a function
on S bounded from below. We say that x ∈ S is a strong
minimum of f on S if f (x) = infS f and for any sequence
(xi) in S, ‖x− xi‖ → 0 whenever f (xi) → f (x).

We can define a more general slice related to a function f
that is bounded above on S by

S(f, S, α) := {x ∈ S | f (x) > sup
S

f − α}.

Then a necessary and sufficient condition for a function f
to attain a strong minimum on a closed set S is

diam S(−f, S, α) → 0

as α → 0+ (Exercise 6.3.2).
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Theorem 6.3.5. (Stegall Variational Principle) Let X be
a Banach space and let C ⊂ X be a nonempty closed
and bounded convex set with the Radon–Nikodym prop-
erty and let f be a lsc function on C bounded from be-
low. Then for any ε > 0 there exists x∗ ∈ X∗ such that
‖x∗‖ < ε and f + x∗ attains a strong minimum on C.

The following variant due to M. Fabián is often convenient
in applications.

Corollary 6.3.6. Let X be a Banach space with the
Radon–Nikodym property and let f be a lsc function on
X. Suppose that there exists a > 0 and b ∈ R such that

f (x) > a‖x‖ + b, x ∈ X.
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Then for any ε > 0 there exists x∗ ∈ X∗ such that
‖x∗‖ < ε and f + x∗ attains a strong minimum on X.

Proof. Since we can replace f by f − b, we may assume
that b = 0. Note that if x∗ ∈ X∗ with ‖x∗‖ < a/2, then
for any x ∈ X ,

f (x) + 〈x∗, x〉 ≥ a‖x‖ − a

2
‖x‖ =

a

2
‖x‖. (6.3.1)

Let r = (2/a)[f (0) + 1] and apply Theorem 6.3.5 to f re-
stricted to the ball rB, with 0 < ε < a/2. Thus, there
exists x∗ ∈ X∗, ‖x∗‖ < ε, and a point x̄ ∈ rB such that
f + x∗ attains a strong minimum at x̄ in rB. We need
only show that x̄ is a strong minimum of f + x∗ in X . If
x ∈ X is such that f (x) + 〈x∗, x〉 ≤ f (x̄) + 〈x∗, x̄〉 =
infrB(f + x∗) ≤ f (0), then from (6.3.1) we conclude that
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‖x‖ ≤ (2/a)f (0) < r, so x = x̄. Similarly, if (xi) is a se-
quence in X and f (xi) + 〈x∗, xi〉 → f (x̄) + 〈x∗, x̄〉, then
eventually f (xi) + 〈x∗, xi〉 < f (0) + 1, so from (6.3.1) it
follows that xi ∈ rB, and therefore xi → x̄. •

We break the proof of the Stegall’s variational principle
into several lemmas. Our first lemma provides a recipe for
constructing nondentable sets which will be used in the proof
of the Stegall’s variational principle by contradiction.

Lemma 6.3.7. Let X be a Banach space and let (Ai)
be a sequence of (eventually) nonempty subsets of X.
Suppose that there exist constants ε > 0 and λ > 0 such
that for all i = 1, 2, . . ., x ∈ conv(Ai) and y ∈ X,
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d(conv(Ai+1\Bε(y)); x) ≤ λ/2i.

Then the set

A =

∞⋂
i=1

⋃
j≥i

conv(Aj)

is nonempty and not dentable.

Proof. By Exercise 6.3.1 it suffices to show that x ∈
conv(A\Bε/2(x)) for each x ∈ A. First we show that A is
nonempty and that for each i ≥ 1,

conv(Ai) ⊂ B4λ/2i(A). (6.3.2)

To this end, fix i sufficiently large that Ai is nonempty
and suppose that x0 ∈ conv(Ai). By hypothesis, there
exists a point x1 ∈ conv(Ai+1) such that ‖x0 − x1‖ ≤
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2λ/2i. Similarly there exists a point x2 ∈ conv(Ai+2)
such that ‖x1 − x2‖ ≤ 2λ/2i+1. Continuing by induc-
tion, we obtain xk ∈ conv(Ai+k), k = 0, 1, . . . , such that∑∞
k=0 ‖xk − xk+1‖ ≤ 4λ/2i < ∞. This implies that the

series
∑∞
k=1(xk− xk+1) converges to an element y ∈ X , of

norm at most 4λ/2i. By writing y as a limit of the collapsing
partial sums we get y = x0 − z where z = limk→∞ xk. It
follows that z ∈ A (so A is nonempty) and x0 ∈ B4λ/2i(A),

which proves (6.3.2). Suppose that x ∈ A. Fix j such that
4λ/2j < ε/2. Since we have x ∈

⋃
k≥i conv(Ak) for all i,

for each i ≥ j there exists k ≥ i and yi ∈ conv(Ak) such
that ‖x− yi‖ ≤ λ/2i. By hypothesis,

d(conv(Ak+1\Bε(x)); yi) ≤ λ/2k < 2λ/2i,
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so there exists zi ∈ conv(Ak+1\Bε(x)) such that ‖yi−zi‖ <
2λ/2i. We can write zi as a finite convex combination

zi =
∑

λnun, un ∈ Ak+1\Bε(x).
By (6.3.2), for each n we have un ∈ B4λ/2k(A) ⊂ B4λ/2i(A)

so there exist vn ∈ A such that ‖un − vn‖ ≤ 4λ/2i. Let
wi =

∑
λnvn; it follows that ‖zi−wi‖ ≤ 4λ/2i and hence

‖x−wi‖ ≤ 7λ/2i. Since ‖un− x‖ ≥ ε for each n, we have

‖vn − x‖ ≥ ε− 4λ/2i ≥ ε− 4λ/2j > ε/2,

that is, wi ∈ conv(A\Bε/2(x)). It follows that

x ∈ conv(A\Bε/2(x))
as required. •
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The next two lemmas will allow us to reduce the proof of
Theorem 6.3.5 to simply showing that there exist arbitrary
small perturbations f +x∗ of f that define small slices. The
first, whose proof is left as an exercise, follows directly from
the definition.

Lemma 6.3.8. Let X be a Banach space and let S be
a nonempty subset of the unit ball of X. Suppose that
f is bounded from above on S. Then for any α > 0, we
have S(f + x∗, S, β) ⊂ S(f, S, α) provided ‖x∗‖ < α/2
and 0 < β < α− 2‖x∗‖.
Proof. Exercise 6.3.4. •
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Lemma 6.3.9. Let X be a Banach space and let S be
a nonempty bounded closed subset of X. Suppose that
for every lsc function f bounded from below on S and
every ε > 0, there exists x∗ ∈ X∗, ‖x∗‖ < ε, and α > 0
such that diamS(−(f +x∗), S, α) ≤ 2ε. Then for any lsc
function f bounded from below on S and any ε > 0 there
exists x∗ ∈ X∗ such that ‖x∗‖ < ε and f + x∗ attains a
strong minimum on S.

Proof. We assume without loss of generality that S is
contained in the unit ball of X and that 0 < ε < 1. By
hypothesis, there exist x∗1 ∈ X∗, ‖x∗1‖ < ε/2, and 0 < α1 <
1 such that diam S1 < ε, where S1 = S(−(f + x∗1), S, α1).
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By applying the hypothesis to f + x∗1 and ε1 = α1ε/2
2,

we obtain x∗2 ∈ X∗, ‖x∗2‖ < ε1, and 0 < α2 < α1 < 1 such
that diam S2 < 2ε1, where S2 = S(−(f + x∗1 + x

∗
2), S, α2).

Continuing by induction with α0 = 1, we obtain sequences

0 < αi < 1, x∗i ∈ X∗, Si = S(−(f +

i∑
k=1

x∗k), S, αi)

and εi > 0, such that

diamSi ≤ 2εi−1, ‖x∗i ‖ < εi−1, εi = εαi/2
i+1

and αi < αi−1.Obviously, the series
∑∞
i=1 x

∗
i converges to a

point x∗ ∈ X∗ of norm at most ε
∑∞
i=1αi2

−(i+1) < ε. Note
that diam Si → 0, since εi → 0. We claim f + x∗ attains a
strong minimum. By Exercise 6.3.2 it suffices to show that
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diam S(−(f + x∗), S, α) → 0 as α → 0+, and for this it
suffices to prove that for all i there exists α > 0 such that
S(−(f + x∗), S, α) ⊂ Si. This follows from Lemma 6.3.8,

using the fact that f + x∗ = f +
∑i
k=1 x

∗
k + w∗

i where

‖w∗
i ‖ ≤

∞∑
k=i+1

εαk−1/2
k < αi/2;

we need only choose α such that 0 < α < αi − 2‖w∗
i ‖. •

Now we can prove the Stegall variational principle of The-
orem 6.3.5.

Proof of Theorem 6.3.5. By utilizing the previous
lemma, we need only show that given any ε > 0 there
exist x∗ ∈ X∗, ‖x∗‖ < ε, and α > 0 such that diam
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S(−(f +x∗), C, α) ≤ 2ε. Proceeding by contradiction, sup-
pose that for every ‖x∗‖ < ε and each α > 0, we have diam
S(−(f + x∗), C, α) > 2ε. For each i let

Ai =
⋃

{S(−(f + x∗), C, 1/4i) | ‖x∗‖ ≤ ε− 2−i}.

For all sufficiently large i, we have ε − 2−i > 0, so that Ai
is nonempty. Let λ = 5/2; we will show that for this choice
of λ, the sequence (Ai) satisfies the hypothesis of Lemma
6.3.7, the conclusion of which will contradict the hypothesis
of Theorem 6.3.5 (that C has the RNP). Restating the main
hypothesis of Lemma 6.3.7, we want to show that for any
y ∈ X ,

conv(Ai) ⊂ conv(Ai+1\Bε(y)) + (λ/2i)B. (6.3.3)
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Since the set on the right hand side is convex, it suffices to
prove that it contains Ai. Suppose then that x ∈ Ai, but
for some y ∈ X it is not in the right hand side of (6.3.3)
(which has nonempty interior). By the separation theorem
of Theorem 4.3.8 there exists y∗ ∈ X∗, ‖y∗‖ = 1, such that

〈y∗, x〉 ≤ inf{〈y∗, u〉 | u ∈ Ai+1\Bε(y)} − λ/2i.(6.3.4)

Since x ∈ Ai, there exists x∗ ∈ X∗ with ‖x∗‖ < ε − 2−i

such that x is in the slice S(−(f + x∗), C, 1/4i). Write

z∗ = x∗ + y∗/2i+1;

it follows that ‖z∗‖ ≤ ε− 2−i + 2−(i+1) = ε− 2−(i+1) so

S(−(f + z∗), C, 1/4i+1) ⊂ Ai+1.

Since diam S(−(f + z∗), C, 1/4i+1) > 2ε, this slice is
not contained in Bε(y). This implies that there exists z ∈
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C\Bε(y) such that

f (z) + 〈z∗, z〉 < inf
C
(f + z∗) + 1/4i+1. (6.3.5)

Thus, z ∈ Ai+1\Bε(y) and hence, from (6.3.4), we conclude
that

〈y∗, x〉 ≤ 〈y∗, z〉 − λ/2i. (6.3.6)

We will prove the inclusion (6.3.3) by showing that this
cannot be true. Note first that since x ∈ S(−(f+x∗), C, 1/4i)
and z ∈ C, we necessarily have

f (x) + 〈x∗, x〉 < inf
C
(f + x∗) + 1/4i ≤ f (z) + 〈x∗, z〉 + 1/4i.

(6.3.7)

Similarly, from (6.3.5) we have
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f (z) + 〈z∗, z〉 = f (z) + 〈x∗, z〉 + 〈y∗, z〉/2i+1

< inf
C
(f + x∗ + y∗/2i+1) + 1/4i+1

≤ f (x) + 〈x∗, x〉 + 〈y∗, x〉/2i+1 + 1/4i+1.
(6.3.8)

Using (6.3.7) and (6.3.8) we obtain

f (z)+〈x∗, z〉 + 〈y∗, z〉/2i+1

or

〈y∗, z − x〉/2i+1 < 1/4i + 1/4i+1 = 5/4i+1 = 5/22i+2.

Equivalently, 〈y∗, z − x〉 < (5/2)(1/2i) = λ/2i, which con-
tradicts (6.3.6) and completes the proof. •
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Next we discuss two attractive applications of the Stegall
variational principle.
6.3.3 Representation of Radon–Nikodym Sets

Let us first recall the concept of strongly exposed points of
a convex set.

Definition 6.3.10. Let X be a Banach space and let C
be a closed convex subset of X. We say that x ∈ C is
strongly exposed by x∗ ∈ X∗ if for any sequence (xi) in
C, 〈x∗, xi〉 → σC(x

∗) implies ‖xi−x‖ → 0. A functional
x∗ with the property above is called a strongly exposing
functional.

A strongly exposed point and its exposing functional can
be characterized by using the slice (Exercise 6.3.3).
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Theorem 6.3.11. Let X be a Banach space and let
C ⊂ X be a nonempty bounded closed convex set with the
Radon–Nikodym property. Then C is the closed convex
hull of its strongly exposed points. Moreover, the func-
tionals which strongly expose points of C constitute a
dense Gδ subset of X∗.
Proof. We first prove the second assertion. To this end,
define

Gi = {x∗ ∈ X∗ | diamS(x∗, C, α) < 1/i for some α > 0},
and G =

⋂∞
i=1Gi. If y

∗ ∈ Gi (so that diamS(y∗, C, α) <
1/i for some α), then by Lemma 6.3.8, applied to f = y∗, the
α/2-neighborhood of y∗ is contained in Gi, hence the latter
is open. Theorem 6.3.5 (applied to any element f ∈ X∗)
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trivially implies that each Gi is dense in X∗. Obviously, if
x∗ strongly exposes C, then it defines slices of arbitrarily
small diameter, hence is in G. Conversely, if x∗ ∈ G, then
it will define a nested sequence (S(x∗, C, αi)) of slices of C
with diameters converging to 0. Their closures intersect in
a point of C which is strongly exposed by x∗. To prove the
first assertion of the theorem, let D be the closed convex
hull of the strongly exposed points of C. If D = C, then
by the separation theorem there exists x∗ ∈ X∗ such that
σD(x

∗) < σC(x
∗). Since the support functions are norm

continuous on X∗, there exists a functional in the dense set
G for which the same inequality holds, contradicting the
definition of D. •
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Since strongly exposing functional can be used to define
slices of arbitrarily small diameter, Theorem 6.3.11 leads to
a nice characterization of a Banach space with the RNP.

Corollary 6.3.12.A Banach space X has the RNP if
and only if every bounded closed convex subset of X is
the closed convex hull of its strongly exposed points.

Proof. Exercise 6.3.5. •

6.3.4 Pitt’s Theorem

Pitt’s theorem is a classical result about compactness of
bounded linear operators between sequence spaces. We give
a brief proof of Pitt’s theorem using the Stegall variational
principle.
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Theorem 6.3.13. (Pitt) Suppose 1 ≤ p < q < +∞.
Then every bounded linear operator from �q into �p is
compact.

Proof. Let T be a bounded linear operator from �q into
�p. Then the function

f (x) = ‖x‖qq − ‖Tx‖pp, x ∈ �q

is bounded below and f (x) > ‖x‖q if ‖x‖q is large enough.
By Corollary 6.3.6 there is a point x ∈ �q and a functional
x∗ ∈ �∗q such that

f (x + h)− f (x)− 〈x∗, h〉 ≥ 0, h ∈ �q.

It follows that

f (x + h)− f (x− h)− 2f (x) ≥ 0, h ∈ �q.
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Thus, for all h ∈ �q,

‖x+h‖qq+‖x−h‖qq−2‖x‖qq ≥ ‖T (x+h)‖pp+‖T (x−h)‖pp−2‖Tx‖pp.
Let (xi) be a bounded sequence in �q. By passing to a sub-
sequence if necessary we may assume that (xi) converges
weakly to some y ∈ �q. We will show that ‖Txi−Ty‖ → 0
as i→ ∞. Indeed, by substituting h = t(xi− y) in the last
inequality, we get

‖x + t(xi − y)‖qq + ‖x− t(xi − y)‖qq − 2‖x‖qq
≥ ‖Tx + tT (xi − y)‖pp + ‖Tx− tT (xi − y)‖pp − 2‖Tx‖pp
for all i = 1, 2, . . . and all t > 0. Using the fact that (Ex-
ercise 6.3.6) if z ∈ �r, r ≥ 1 and wi → 0 weakly in �r,
then
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lim sup
i→∞

‖z + wi‖rr = ‖z‖rr + lim sup
i→∞

‖wi‖rr,

we have

lim sup
i→∞

‖x± t(xi − y)‖qq = ‖x‖qq + tq lim sup
i→∞

‖xi − y‖qq

and

lim sup
i→∞

‖Tx±tT (xi−y)‖pp = ‖Tx‖pp+tp lim sup
i→∞

‖T (xi−y)‖pp.

Thus,

tq lim sup
i→∞

‖xi − y‖qq ≥ tp lim sup
i→∞

‖T (xi − y)‖pp,

for all t > 0, and therefore ‖T (xi− y)‖p → 0 as i→ ∞. •
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6.3.5 Commentary and Exercises

Stegall’s variational principle appeared in [243]. Corollary
6.3.6 is in Fabián’s paper [109]. Our exposition here including
its application to the representation of the Radon–Nikodym
sets largely follows that of [221]. The Pitt theorem is usu-
ally proved by using the theory of Schauder bases (see [115,
p. 175] or [183, p. 54]). The variational proof here is due to
Fabián and Zizler [112].

Exercise 6.3.1. Let X be a Banach space and let A be a
closed subset ofX . Show that A is dentable if and only if for
every ε > there exists x ∈ A such that x ∈ conv(A\Bε(x)).
Exercise 6.3.2. Let X be a Banach space and let S be
a nonempty closed subset of X . Suppose that f is a lsc
function bounded from below on S. Show that f attains a
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strong minimum on S if and only if diamS(−f, S, α) → 0
as α → 0+.

Exercise 6.3.3. Let X be a Banach space and let C be a
closed convex subset of X . Then x ∈ C is strongly exposed
with an strongly exposing functional x∗ ∈ X∗ if and only if
x ∈ S(x∗, C, α) for every α > 0 and diamS(x∗, C, α) → 0
as α → 0.

Exercise 6.3.4. Prove Lemma 6.3.8.

Exercise 6.3.5. Prove Corollary 6.3.12.

Exercise 6.3.6. Let z ∈ �r, r ≥ 1 and let wi → 0 weakly
in �r. Prove that

lim sup
i→∞

‖z + wi‖rr = ‖z‖rr + lim sup
i→∞

‖wi‖rr.



6.4 Mountain Pass Theorem 941

Hint: First consider the case when z has only finitely many
nonzero components (finitely supported). Then prove that
general case by using the fact that finitely supported ele-
ments in �r are dense and ‖ · ‖rr is Lipschitz on a bounded
set.

Exercise 6.3.7. Prove that the dual of an Asplund space
has the RNP by showing that points of differentiability of
support functions produce denting points in the dual. The
converse is more elaborate [221].

6.4 Mountain Pass Theorem

The variational techniques and applications we discussed so
far are all based on generalizations of the Fermat principle
that any minimum of a function is a critical point. It is well
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known that critical points also arise at minimax (saddle)
points. Can variational principles be used in this situation?
The answer is positive. As an example we discuss a varia-
tional proof of a mountain pass theorem. We adopt the view
of considering the sup as a function in a problem involving
inf sup and applying a variational principle to it.
6.4.1 The Mountain Pass Theorem

The mountain pass theorem is an important result in study-
ing multiple solutions for nonlinear partial differential equa-
tions. The name comes from an interesting geometric pic-
ture. Consider a basin surrounded by mountains. To travel
from a location in the basin to a city outside these surround-
ing mountains one must follow a mountain pass crossing the
mountain ridge.
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Each such mountain pass will have a point with the highest
elevation. Intuitively, one can imagine that among all those
possible mountain passes there must be a pass with a least
highest elevation. This point of minimum highest elevation
on this particular mountain pass must be a saddle point. In
fact, along the mountain pass it has the highest elevation
while it has the lowest elevation along the mountain ridge,
as illustrated in Figure 6.1 One certainly expects it to be a
critical point, and indeed it is, under appropriate conditions.
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To state this result precisely we need to define what we
mean by “mountain pass.” Let X be a Banach space and let
C([0, 1];X) be the Banach space of all continuous functions
x : [0, 1] → X with the supremum norm ‖x‖∞. For a, b ∈ X
we define the set of passes from a to b by

Γ (a, b) := {x ∈ C([0, 1];X) | x(0) = a and x(1) = b}.

Our next definition helps to characterize the mountain
ridge.

Definition 6.4.1.Let X be a Banach space and let S be
a closed subset of X. We say that S separates two points
a and b in X provided that a and b belong to disjoint
connected components of X\S.
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Now we can state and prove the mountain pass theorem.

Theorem 6.4.2. (Approximate Mountain Pass Theorem)
Let X be a Banach space, let a, b ∈ X and let f : X →
R be a continuous and Gâteaux differentiable function
whose Gâteaux differential f ′ : X → X∗ is continuous
from the norm topology of X, the weak∗ topology of X∗.
Define

c = inf
x∈Γ (a,b)

max
t∈[0,1]

f (x(t)).

Suppose that S is a closed subset of X such that S ⊂
{x ∈ X | f (x) ≥ c} and S separates a and b. Then there
exists a sequence (xi) in X such that
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lim
i→∞

d(S; xi) = 0,

lim
i→∞

f (xi) = c,

and
lim
i→∞

‖f ′(xi)‖ = 0.

Proof. Since S separates a and b we can find two disjoint
open sets U and V such thatX\S = U∪V and a ∈ U while
b ∈ V . Fix ε so that 0 < ε < 1

2 min(1, d(S; a), d(S; b)). We
shall prove the existence of a point xε ∈ X such that

(i) c < f (xε) < c + 5
4ε

2,

(ii) d(S; xε) <
3
2ε and

(iii) ‖f ′(xε)‖ < 3
2ε.

To do so let x̄ ∈ Γ (a, b) satisfy
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max{f (x̄(t)) | t ∈ [0, 1]} < c +
ε2

4
. (6.4.1)

Define

α := sup{t ∈ [0, 1] | x̄(t) ∈ U and d(S; x̄(t)) ≥ ε},
β := inf{t ∈ [0, 1] | x̄(t) ∈ V and d(S; x̄(t)) ≥ ε},

so that necessarily d(S; x̄(t)) < ε whenever t ∈ (α, β).
Clearly Γ (x̄(α), x̄(β)) is a closed subset of C([0, 1];X).
Set h(x) := εmax(0, ε − d(S; x)), and define a function
ϕ : Γ (x̄(α), x̄(β)) → R by

ϕ(x) := max{f (x(t)) + h(x(t)) | t ∈ [0, 1]}.
Note that for any x ∈ Γ (x̄(α), x̄(β)) we have that x([0, 1])∩
S = ∅, since x(0) = x̄(α) ∈ U , x(1) = x̄(β) ∈ V and
X\S = U ∩ V . It follows that for any x ∈ Γ (x̄(α), x̄(β))
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ϕ(x) ≥ max{f (x(t))+h(x(t)) | t ∈ [0, 1] and x(t) ∈ S} ≥ c+ε2

so that

inf
Γ (x̄(α),x̄(β))

ϕ ≥ c + ε2. (6.4.2)

On the other hand, let z(t) := x̄(α+t(β−α)) ∈ Γ (x̄(α), x̄(β)).
We have

ϕ(z) ≤ max{f (x̄(t)) + h(x̄(t)) | t ∈ [0, 1]} ≤
(
c +

ε2

4

)
+ ε2.(6.4.3)

We can now apply the Ekeland variational principle of The-
orem 2.1.2 to ϕ on Γ (x̄(α), x̄(β)) to find a path y ∈
Γ (x̄(α), x̄(β)) such that

ϕ(y) ≤ ϕ(z), (6.4.4)

‖y − z‖ ≤ ε/2. (6.4.5)
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and

ϕ(x) +
ε

2
‖x− y‖ ≥ ϕ(y) for all x ∈ Γ (x̄(α), x̄(β)).(6.4.6)

Now let M be the subset of [0, 1] consisting of all points
where (f + h) ◦ y attains its maximum on [0, 1]. We prove
first that there exists t̄ ∈ M such that ‖f ′(y(t̄)‖ ≤ 3

2ε.
Indeed, first note that it follows from (6.4.6) that for any
η ∈ C([0, 1];X) with η(0) = η(1) = 0,

−ε
2
‖η‖ ≤ lim inf

s→0+

ϕ(y + sη)− ϕ(y)

s
.

Using the definition of the Gâteaux differential of f and the
fact that h has a Lipschitz constant ε, it follows that the
last inequality is dominated by
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lim inf
s→0+

1

s

[
max
t∈[0,1]

((f + h)(y(t)) + s〈f ′(y(t)), η(t)〉)

− max
t∈[0,1]

((f + h)(y(t))
]
+ ε‖η‖.

Hence

−3ε

2
‖η‖ ≤ lim inf

s→0+

m(k + sl)−m(k)

s
, (6.4.7)

where k = (f + h) ◦ y, l = 〈f ′(y), η〉 and m is the con-
tinuous convex function on C([0, 1];X) defined by m(x) =
max{x(t) | t ∈ [0, 1]}. Recall that the convex subdifferential
of m has the following representation [147] ∂m(x) = {μ | μ
is a Radon probability measure supported in M (x)} where
M (x) := {t ∈ [0, 1] | x(t) = m(x)}.
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Thus, it follows from (6.4.7) and the max formula of The-
orem 4.2.7 that

−3ε

2
‖η‖≤ lim inf

s→0+

m(k + sl)−m(k)

s
≤max{〈l, μ〉 | μ ∈ ∂m(k)}
=max{

∫
〈f ′(y), η〉 dμ | μ ∈ ∂m(k)}.

By a standard minimax theorem ([7, Theorem 6.2.7]) we
have

−3ε

2
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= inf
η
max
μ

{∫
〈f ′(y), η〉 dμ

∣∣∣ μ ∈ ∂m(k), ‖η‖ ≤ 1, η(0) = η(1) =

=max
μ

inf
η

{∫
〈f ′(y), η〉 dμ

∣∣∣ μ ∈ ∂m(k), ‖η‖ ≤ 1, η(0) = η(1) =

=max
μ

{
−

∫
‖f ′(y)‖ dμ

∣∣∣ μ ∈ ∂m(k)
}

≤min
{
−‖f ′(y(t))‖ | t ∈M (k)

}
.

Combining (6.4.1) and (6.4.2) we can check that (Exercise
6.4.1)

M (k) ∩ {0, 1} = ∅. (6.4.8)

Therefore, there exists t̄ ∈M (k) =M such that ‖f ′(y(t̄))‖ ≤
3ε/2. It remains to show that the point xε = y(t̄) satisfies
(i) and (ii). For (i) combining (6.4.2), (6.4.3) and (6.4.4) to
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get

c + ε2≤ infΓ (x̄(α),x̄(β))ϕ ≤ f (y(t̄)) + h(y(t̄))

= ϕ(y) ≤ ϕ(z) ≤ c + 5ε2
4 .

Since 0 ≤ h ≤ ε2 we obtain c ≤ f (xε) ≤ c+5ε2/4. For (ii)
it is enough to notice that (6.4.8) implies t̄ ∈ (0, 1), hence
d(S; z(t̄)) = d(S; x̄(α+ t̄(β−α))) ≤ ε. This combined with
(6.4.5) gives that d(S; xε) = d(S; y(t̄)) ≤ 3ε/2. •

6.4.2 The Palais–Smale Condition

Theorem 6.4.2 asserts the existence of a sequence (xi) such
that (f ′(xi)) converges to 0. To ensure the existence of an
actual critical point for f we need the following Palais–Smale
type condition.
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Definition 6.4.3. (Palais–Smale Condition) Let X be a
Banach space, let S be a subset of X and let f : X →
R be a Gâteaux differentiable function. We say that f
satisfies the Palais–Smale condition around S at level c
if every sequence (xi) in X verifying limi→∞ f (xi) =
c, limi→∞ d(S; xi) = 0 and limi→∞‖f ′(xi)‖ = 0 has a
convergent subsequence.

Adding this condition to Theorem 6.4.2, we can ensure the
existence of a critical point.

Theorem 6.4.4. (Mountain Pass Theorem) Let X be a
Banach space, let a, b ∈ X and let f : X → R be a
continuous and Gâteaux differentiable function whoes
Gâteaux differential f ′ : X → X∗ is continuous from the
norm topology of X to the weak∗ topology of X∗. Define
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c = inf
x∈Γ (a,b)

max
t∈[0,1]

f (x(t)).

Suppose that S is a closed subset of X such that S ⊂
{x ∈ X | f (x) ≥ c} and S separates a and b. Then there
exists a point x̄ ∈ S such that f (x̄) = c and f ′(x̄) = 0.

Proof. Exercise 6.4.2. •

6.4.3 Solutions of a Dirichlet Problem

The mountain pass theorem is a powerful tool for obtain-
ing the existence and multiplicity results for solutions to
many nonlinear partial differential equations. We illustrate
by considering the Dirichlet problem for semilinear elliptic
equations of the form
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−Δx = F ′(x) y ∈ Ω,

x = 0 y ∈ ∂Ω.
(6.4.9)

Here F is a nonlinear function, Ω is an open subset of RN ,
∂Ω signals the boundary of Ω and Δ is the Laplacian oper-
ator. The solution is in the sense of distribution. Let X be
the Sobolev space H1

0(Ω). Then solutions of (6.4.9) corre-
sponding to critical points of the functional

f (x) :=
1

2
‖x‖2 −

∫
Ω
F (x(y)) dy.

As an example we consider the simple case of F (x) = |x|p,
where 2 < p < 2∗ := (2N−2)/(N−2). Clearly, the Dirich-
let problem (6.4.9) has the trivial solution x(y) = 0. We use
the mountain pass theorem to show it has at least one non-
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trivial solution. The condition 2 < p < 2∗ := (2N−2)/(N−
2) is crucial. Under this condition X = H1

0(Ω) is compactly
imbedded in Lp(Ω), i.e., the imbedding X → Lp(Ω) maps
bounded closed subsets of X to compact subsets of Lp(Ω).
Thus, by the Sobolev inequality, f (x) ≥ r for some r > 0
on the unit sphere SX of X . Clearly, f (0) = 0. Moreover,
fixing x = 0 we have,

f (tx) =
1

2
t2‖x‖2 − tp

∫
Ω
|x|p dy → −∞

as t → +∞. Thus, there exists b = tx such that f (b) ≤
0. This tells us that f satisfies the geometric conditions of
Theorem 6.4.4 with a = 0 and S = SX . To show that f has
a critical point on S it remains to check the Palais–Smith
condition. Let (xi) be a sequence in X such that f (xi) → c
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and f ′(xi) → 0. First we derive a bound on (xi) as follows.
From 〈f ′(xi), xi〉 ≤ ε‖xi‖ we have that

p

∫
Ω
|xi|p dy ≤ ‖xi‖2 + ε‖xi‖,

while f (xi) is bounded implies that, for some constant k,

‖xi‖2 ≤ k + 2

∫
Ω
|xi|p dy,

and therefore

‖xi‖2 ≤ k +
2

p
‖xi‖2 +

2

p
ε‖xi‖2.

Since p > 2 it follows that ‖xi‖ is bounded. Then, taking a
subsequence if necessary, we may assume that (xi) converges
weakly to x̄ in X . Since X is compactly imbedded in Lp(Ω)
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we may assume that (xi) converges strongly in L
p(Ω). Com-

bining this with f ′(xi) → 0 we have (xi) converges strongly
to x̄ (Exercise 6.4.3) in X , and therefore f ′(x̄) = 0.
6.4.4 Commentary and Exercises

The idea of considering the existence of critical points other
than minima was suggested by Morse [212] and Lusternik
and Schirelman [184]. These variational methods are often
referred to as calculus of variation in the large. The mountain
pass theorem is due to Ambrosetti and Rabinowitz [2]. This
theorem and its extensions can handle unbounded functions
and have wide ranging applications in the existence of multi-
ple solutions for nonlinear partial differential equations. The
original proof of the mountain pass theorem in [2] relies on a
deformation lemma. Our proof here using the Ekeland vari-
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ational principle follows [125]. The Palais–Smale condition
is in [215]. The survey papers [1, 224] provide insights and
abundant applications of mountain pass theorems.

Exercise 6.4.1. Prove (6.4.8) in the proof of Theorem
6.4.2.

Exercise 6.4.2. Prove Theorem 6.4.4.

Exercise 6.4.3. Let X = H1
0(Ω) and define f : X → R

by

f (x) :=
1

2
‖x‖2 −

∫
Ω
F (x(y)) dy.

Suppose that (xi) converges weakly to x̄ in X and (xi)
converges strongly to x̄ in Lp(Ω) where 2 < p < 2∗

and (‖f ′(xi)‖) converges to 0. Show that (xi) converges
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strongly to x̄ in X . Hint: f ′(xi)(xi − x̄) → 0 implies that
‖xi‖2 → ‖x̄‖2.
6.5 One-Perturbation Variational Principles

In a typical variational principle one is given a fixed real-
valued lsc function f defined on a complete metric space X
bounded from below and one seeks to find conditions under
which there is at least one “nice” perturbation g such that
the perturbed function f + g attains a minimum.
Our focus here is in some sense to reverse this scheme and

to investigate a situation in which we have one perturba-
tion function, say g, such that for every function f from
some large enough class of functions, f + g always attains a
minimum.
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6.5.1 One-Perturbation Variational Principles

It is well-known, and due to Weierstrass, that if a proper
lsc function g : X → R ∪ {+∞} defined on a Hausdorff
topological space X has at least one non-empty compact
sublevel set, then it is bounded from below and attains its
minimum.
Moreover, something stronger is true: the problem of mini-

mizing g is well-posed in the sense that every minimizing net
(or sequence in the metric case) has a subnet (subsequence)
converging to a minimum .
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Thus the following result holds:

Theorem 6.5.1. (One-Perturbation Variational Principle)
Let X be a Hausdorff topological space and let ϕ : X →
R ∪ {+∞} be a proper lsc function whose sublevel sets
ϕ−1((−∞, r]), r ∈ R are all compact. Then for any
proper lsc function f : X → R ∪ {+∞} bounded from
below, the function

f + ϕ

attains its minimum.
In particular, if domϕ is relatively compact, the conclu-

sion is true for any proper lsc function f (not necessarily
bounded from below).
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Proof. Suppose dom f ∩ domϕ = ∅ (if the latter set is
empty there is nothing to prove). Then the function f + ϕ
is a proper lsc function. In particular, (f + ϕ)−1((−∞, r])
is non-empty (and closed) for some r. Now, if f is bounded
from below then f + ϕ is bounded below as well. But, (f +
ϕ)−1((−∞, r]) ⊂ ϕ−1((−∞, r− inf f ]) and since the latter
set is compact, the same is true for (f +ϕ)−1((−∞, r]). On
the other hand, if the domain of ϕ is relatively compact,
since dom(f + ϕ) ⊂ domϕ, then the domain of f + ϕ is
also relatively compact. Thus, again, (f +ϕ)−1((−∞, r]) is
compact. The result then follows by the remark before the
theorem. •
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In a metric space X , the conditions imposed on the unique
perturbation ϕ in Theorem 6.5.1 are also necessary.

Theorem 6.5.2. Let ϕ : X → R ∪ {+∞} be a proper
function on a metric space X. Suppose that for every
bounded continuous function f : X → R, the function
f + ϕ attains its minimum. Then ϕ is a lsc function,
bounded from below, whose sublevel sets are all compact.

Proof. Obviously ϕ is bounded from below. Suppose it is
not lower semicontinuous. Then its epigraph, epiϕ, is not
closed in the product topology of X × R, i.e., there exists
a sequence ((xi, ri)) in epiϕ such that (xi, ri) → (x0, r) ∈
epiϕ. Fix such an x0 and observe that, since ϕ is bounded
from below, the sequence may be taken to have the form
((xi, ϕ(xi))). This shows that for the fixed x0, the following
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set is non-empty: R :=

{r ∈ R | ∃(xi) ⊂ X such that (xi, ϕ(xi)) → (x0, r) ∈ epiϕ}.
Put r0 := inf R. Since R is bounded from below by inf ϕ,
the number r0 is well-defined and obviously r0 < ϕ(x0).
Moreover, using a diagonal process, one easily sees that r0 ∈
R.
Further, for any i = 0, 1, 2, . . . , let Vi be a neighborhood

of x0 with the property:

ϕ(x) > r0 −
1

2i+1
for any x ∈ Vi.

The existence of such a Vi is guaranteed by the definition
of r0. We may arrange without loss of generality that for
any i = 0, 1, 2, . . . , we have Vi+1 ⊂ Vi and that the family
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{Vi}i∈N provides a local base of neighborhoods for the point
x0.
Now, for any i = 0, 1, 2, . . . , we define the following con-

tinuous function hi : X → [0, 1]:

hi|X\Vi ≡ 1 and hi(x0) = 0.

The functions exist because X is a completely regular topo-
logical space. Choose also α ∈ R+ so that α > r0 − inf ϕ
and let

f (x) := αh0(x) +
∞∑
i=1

1

2i
hi(x), x ∈ X.

The function f is well-defined, continuous, bounded and
such that f (x0) = 0. We show that for every x ∈ X we
have f (x) + ϕ(x) > r0. Indeed, if x = x0 we have
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f (x0) + ϕ(x0) = ϕ(x0) > r0.

If x = x0 we have two possibilities:

Case 1: x ∈ Vi for any i = 0, 1, . . . . In this case hi(x) = 1
for every i and consequently

f (x) + ϕ(x) = α + 1 + ϕ(x) ≥ α + 1 + inf ϕ > r0.

Case 2: x ∈ Vi for some n. Since x = x0 and the family
{Vi} is a local base for x0, we have x ∈ Vk \ Vk+1 for some
k ∈ N. Then, by the definition of f and the hi’s, we have

f (x) + ϕ(x) ≥ 1

2k+1
+ ϕ(x) > r0,

according to the definition of Vk. Thus

f (x) + ϕ(x) > r0, for every x ∈ X. (6.5.1)
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On the other hand, since r0 ∈ R, there is xi → x0 so that
ϕ(xi) → r0. Hence, since f is continuous, f (xi) + ϕ(xi) →
f (x0) + r0 = r0, which together with (6.5.1) shows that
inf(f +ϕ) = r0. But this infimum of the perturbation f +ϕ
is obviously not attained, according to the same inequality
(6.5.1), which contradicts to the assumptions of the theorem.
Therefore, the function ϕ must be lower semicontinuous.

Secondly, let us prove that every sublevel set of ϕ is
compact. We may suppose, without loss of generality, that
inf ϕ = 0. Take some r > 0 and consider the sublevel set
Xr := {x ∈ X | ϕ(x) ≤ r}. Observe that because ϕ is lsc,
the set Xr is closed.
Suppose Xr is not compact. Then there is a sequence (xi)

in Xr which has no cluster point in Xr. We will, for the
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moment, restrict ourselves to the spaceXr with the inherited
metric topology. Using the above, one can see that there are
sequences of sets (Wi), open in Xr, such that xi ∈ Wi for
every i and Wi ∩Wj = ∅ for every i = j. Since ϕ is lsc we
may assume that we have in addition:

ϕ(x) > ϕ(xi)−
1

2i
for all x ∈ Wi. (6.5.2)

Further, for any x ∈ Xr \
⋃∞
i=1Wi there is a relatively

open neighborhoodWx so that xi /∈ Wx for every i (indeed,
otherwise x would be an accumulation point of the sequence
(xi) ). Consider now the following open covering of Xr

Γ :=
{
Wx : x /∈ Xr \

∞⋃
i=1

Wi

}
∪ {Wi : i = 1, 2, . . . }.
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Since Xr is a metric space this covering has an open refine-
ment γ = {Vα :
α ∈ Λ} which is locally finite, i.e., for any x ∈ Xr there is
a neighborhood U of x so that U intersects at most finitely
many members of γ. Let αi ∈ Λ be such that xi ∈ Vαi for
every i = 1, 2, . . . . Because of the definition of the cover-
ing Γ (xi /∈ Wx for every i and x /∈ ∪Wi) and because of
the fact that the Wi are pair-wise disjoint, it follows that
Vαi ⊂ Wi for every n. In particular, Vαi are pair-wise dis-
joint as well. Now, for every n there are continuous functions
hi : Xr → [−ϕ(xi)− 1 + 1/i, 0]:

hi(xi) = −ϕ(xi)− 1 +
1

i
and h|Xr\Vαi ≡ 0.

Finally, let
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h(x) :=
∞∑
i=1

hi(x), x ∈ Xr.

Because the open sets Vαi are pair-wise disjoint, the func-
tion h is well-defined in Xr. Obviously h takes its values
in the interval [−r − 1, 0]. Moreover, it is continuous when
restricted to Xr. Indeed, if x ∈ Vαi for some n, then it coin-
cides with hi on Vαi, hence is continuous at x. If x /∈ Vαi for
any i then due to the properties of the covering γ, there is
an open neighborhood U of the point x so that U intersects
at most finitely many Vαi. Consequently in U the function
h is a finite sum of continuous functions. Thus again, h is
continuous at x.
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Further, sinceXr was closed inX , according to Dugundji’s
extension theorem, there is a continuous function f : X →
[−r − 1, 0] which is an extension of h. Let us consider the
perturbation f + ϕ. We first show that

f (x) + ϕ(x) > −1 for all x ∈ X. (6.5.3)

Indeed, if x /∈ Xr we have ϕ(x) > r and the above inequality
is obvious having in mind the range of f . So, let x ∈ Xr.
Then we again have two cases:

Case 1: x /∈ Vαi for any n. Then f (x) = h(x) = 0. Thus,
f (x) + ϕ(x) = ϕ(x) ≥ 0 and the inequality is obviously
true;

Case 2: x ∈ Vαi for some (unique!) i. Then f (x) = h(x) =
hi(x), and using (6.5.2) we have
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f (x) + ϕ(x) > ϕ(xi)−
1

2i
+ hi(x)

≥ ϕ(xi)−
1

2i
− ϕ(xi)− 1 +

1

i

= −1 +
1

2i
> −1.

Hence, (6.5.3) is also true in this case.
Finally, let us observe that f (xi) + ϕ(xi) = ϕ(xi) +
hi(xi) = −1+1/n→ −1 which, together with (6.5.3) yields
that inf(f + ϕ) = −1, and this infimum is not attained ac-
cording to (6.5.3). This contradiction shows that Xr must
be compact. The proof of the theorem is complete. •
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6.5.2 Perturbation Functions in Separable Banach Spaces

To apply Theorem 6.5.1, we need a collection of functions
ϕ satisfying the hypotheses stated there and having enough
additional regularity properties so that, combined with the
existence of a minimizer of the perturbation, they have inter-
esting consequences. The following result answers this need
when X is separable.
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Proposition 6.5.3.Let X be a separable Banach space.
Then there exists a convex lsc function ϕ : X → [0,+∞]
whose domain is relatively norm-compact and linearly
dense in X. In addition ϕ possesses the following smooth-
ness property:

lim
t→0+

sup
h∈domϕ

ϕ(x + th) + ϕ(x− th)− 2ϕ(x)

t
= 0, ∈ domϕ.

(6.5.4)

Proof. Let {xi : i ∈ N} be a dense subset of BX . Define
T : �2 → X (where �2 is the usual space of square summable
sequences) by

T (α) =

∞∑
i=1

αi2
−ixi, α = (αi) ∈ �2.
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Clearly, T is a well-defined, linear, and bounded mapping.
T is also compact, that is, T (B�2) is a norm-compact set.

Indeed, take any sequence (αk) of elements in B�2. SinceB�2
is weakly compact, there is a subsequence (we do not relabel)
along which αk converges weakly to α = (α1, α2, . . . ): in
particular, α ∈ B�2 and for each i ∈ N, αki → αi as k → ∞.

Let us show that along this same subsequence, T (αk) norm-
converges to T (α). Actually, all natural numbers k,K satisfy∥∥T (αk)− T (α)

∥∥
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≤
∥∥∥ K∑
i=1

(
αki − αi

)
xi

2i

∥∥∥ +
∥∥∥ ∞∑
i=K+1

(
αki − αi

)
xi

2i

∥∥∥
≤

∥∥∥ K∑
i=1

(
αki − αi

)
xi

2i

∥∥∥ +
[ ∞∑
i=K+1

(αki − αi)
2
]1
2

×
[ ∞∑
i=K+1

2−2i
]1
2

≤
∥∥∥ K∑
i=1

(
αki − αi

)
xi

2i

∥∥∥ +
[
2

∞∑
i=1

(αki )
2 + 2

∞∑
i=1

α2i

]1
2

×
( 4

3× 22(K+1)

)1
2
,
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and so

lim sup
k→∞

∥∥T (αk)− T (α)
∥∥ ≤ 0 + 2−K+1/

√
3.

This holds for every K ∈ N, so

lim sup
k→∞

‖T (αk)− T (α)‖ = 0,

as required. (The compactness of T may also be established
more abstractly by observing that since T (B�2) is weakly
closed it suffices to show it is totally bounded.)
We have no guarantee that T is injective. Thus we intro-

duce the quotient space H = �2/T
−1(0) of �2, and factorize

T = S ◦ Q, where Q : �2 → H is the canonical map. It is
not difficult to see, by using the parallelogram law, that H ,
with its quotient norm ‖ · ‖H , is again a Hilbert space.
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The mapping S : H → X is then linear, bounded, com-
pact, and injective. Also, the range of S, range(S), is dense
in X , since range(S) = range(T ) ⊃ {xi : i ∈ N}.
Now we define a function with the desired properties as

follows: for x ∈ X , let

ϕ(x) =

{
tan

(
‖S−1x‖2H

)
if ‖S−1x‖2H < π

2 ,

+∞ otherwise.

Then x ∈ domϕ implies that ‖S−1x‖2H < π/2, and hence

x = S(S−1x) ∈ S
(√π

2BH
)
, the last set being relatively

norm-compact. Also, for every i ∈ N, the standard basis
vector ei in �2 obeys T (2

itei) = txi for all real t.
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This implies that S−1(txi) has small norm in H whenever
t is sufficiently close to 0, and hence that txi ∈ domϕ when-
ever |t| is sufficiently small. Thus domϕ is linearly dense in
X .
The function ϕ is convex because tan(·) is increasing and

convex on [0, π2) and ‖ · ‖2H is convex on H .
Let us show that ϕ is lower semicontinuous. Fix any p ∈ X

and any sequence (pi) in X , with ‖pi − p‖ → 0 as i→ ∞.
We will show that

ϕ(p) ≤ lim inf
i→∞

ϕ(pi).

The inequality is obvious if the right side equals +∞.
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Assume therefore that the right side is finite. Choose a
subsequence (pij) along which

lim inf
n→∞ ϕ(pi) = lim

j→∞
ϕ(pij).

Then
∥∥S−1(pij)‖

2
H < π/2 for all large i, and indeed

lim
j→∞

∥∥S−1(pij)‖
2
H <

π

2
.

By passing to a further subsequence if necessary we may
assume that the bounded sequence (S−1(pij)) converges

weakly to some z ∈ �2 and that limi→∞‖S−1(pij)‖H ex-

ists: the weak lower semicontinuity of ‖ · ‖H then gives

‖z‖2H ≤ lim
j→∞

‖S−1(pij)‖
2
H <

π

2
. (6.5.5)
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Now pij = S(S−1pij) converges weakly to Sz, giving Sz =

p, z = S−1p.
Using the continuity and monotonicity of tan(·) on [0, π/2)

together with (6.5.5), we obtain the desired inequality:

ϕ(p)= tan
(
‖S−1p‖2H

)
= tan

(
‖z‖2H

)
≤ lim
j→∞

tan
(
‖S−1(pij)‖

2
H

)
= lim
j→∞

ϕ(pij) = lim inf
i→∞

ϕ(pi).

Finally, take any x, h ∈ domϕ. Then x± th ∈ domϕ for
all t > 0 sufficiently small, so the parallelogram law gives

‖S−1(x + th)‖2H + ‖S−1(x− th)‖2H − 2‖S−1(x)‖2H
= 2t2‖S−1(h)‖2H (6.5.6)
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(since S−1 is linear). Hence the convex function t �→
‖S−1(x + th)‖2H is differentiable at t = 0, and the same
is true for t �→ ϕ(x + th). This establishes the existence of
all the directional derivatives

ϕ′(x;h) = lim
t→0

ϕ(x + th)− ϕ(x)

t
, x, h ∈ domϕ.

In fact, since h ∈ domϕ if and only if ‖S−1(h)‖2H < π/2,
then (6.5.6) supports a type of uniform differentiability: 0 =

lim
t→0+

sup
h∈domϕ

ϕ(x + th) + ϕ(x− th)− 2ϕ(x)

t
, x ∈ domϕ.

This completes the proof. •
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Combining Theorem 6.5.1 and the above proposition leads
to the main result of this section:

Theorem 6.5.4. Let X be a separable Banach space.
Then there exists a (proper) convex lsc function ϕ : X →
[0,+∞] whose domain domϕ is relatively norm-compact
and linearly dense in X and which satisfies the smooth-
ness property (6.5.4). In particular, for every proper lsc
function f : X → R∪{+∞} , the perturbed function f+ϕ
attains its infimum.

Proof. Exercise 6.5.3 •

6.5.3 Generic Gâteaux Differentiability

In this section we see how the variational principle in the
case of a separable space can be used to obtain some known
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differentiability results. First, we show the following well-
known result:

Theorem 6.5.5. (Generic Gâteaux Differentiability) Sup-
pose X is a separable Banach space. Then every continu-
ous convex function f : X → R is Gâteaux differentiable
at the points of a generic (that is a dense Gδ) subset of
X.

Proof. First, we will show that f is Gâteaux differentiable
at the points of a dense subset of X . After translation, it
suffices to show that every nonempty open set S of X with
0 ∈ S, contains a point at which f is Gâteaux differentiable.
Fix such an S and let ϕ be the function given by Theorem
6.5.4. We may suppose domϕ ⊂ S. Then there is some
x ∈ domϕ ⊂ S at which the function −f + ϕ attains its
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minimum. In particular, for any h ∈ domϕ and t > 0 we
have

−f (x± th) + ϕ(x± th) ≥ −f (x) + ϕ(x).

Using this and the convexity of f we obtain

0 ≤ f (x+th)+f (x−th)−2f (x) ≤ ϕ(x+th)+ϕ(x−th)−2ϕ(x)

which together with the differentiability property (6.5.4) of
ϕ shows that

lim
t→0+

f (x + th) + f (x− th)− 2f (x)

t
= 0,

for every h ∈ domϕ. Since f is locally Lipschitz and domϕ
is linearly dense, in fact, the latter limit is 0 for any h ∈ X .
Finally, the fact that f is convex yields its (linear) Gâteaux
differentiability at x.
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In order to show that the set of points of Gâteaux differen-
tiability of f is exactly a Gδ-subset of X , let us observe that
property (6.5.4) yields a stronger conclusion in the argument
above: in fact, we obtain that X possesses a dense subset in
which every x obeys the following stronger condition

sup
{
f (x + th) + f (x− th)− 2f (x); h ∈ domϕ

}
= o(t), t→ 0+. (6.5.7)

On the other hand, the set of all x ∈ X satisfying (6.5.7) is
always Gδ (Exercise 6.5.4). Therefore, f is Hadamard-like,
as well as Gâteaux differentiable, on a dense Gδ-subset of
X . •

The theorem above can be considerably extended.
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Theorem 6.5.6. Let Y be a Gâteaux differentiability
space and X a separable Banach space. Then Y × X
is a Gâteaux differentiability space.

Proof. Let f : Y ×X → R be a convex continuous func-
tion, and S ⊂ Y ×X be a nonempty open set. Assume, for
simplicity, that 2BY × 2BX ⊂ S and that f is bounded on
S. Let ϕ : X → [0,+∞] be the function provided by Theo-
rem 6.5.4 with domain in BX . Define g : Y → (−∞,+∞]
by

g(y) =

{
inf{−f (y, x) + ϕ(x) | x ∈ X} if y ∈ 2BY ,

+∞ if y ∈ Y \2BY .
Then g is concave and continuous on 2BY . As Y is a
Gâteaux differentiability space, the function g is Gâteaux
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differentiable at some y ∈ BY . By Theorem 6.5.4, there is
x ∈ BX so that g(y) = −f (y, x) + ϕ(x). Thus, for every
k ∈ Y and every h ∈ domϕ we have for all t > 0 sufficiently
small,

f (y + tk, x + th) + f (y − tk, x− th)− 2f (y, x)

≤ −g(y + tk) + ϕ(x + th)

− g(y − tk) + ϕ(x− th)

+ 2g(y)− 2ϕ(x)

= o(t) + o(t).

Finally, the local Lipschitzian property of f and the linear
density of domϕ in X imply

f (y+tk, x+th)+f (y−tk, x−th)−2f (y, x) = o(t), t→ 0+
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for every k ∈ Y and every h ∈ X . Therefore f is Gâteaux
differentiable at the point (y, x). •

6.5.4 Commentary and Exercises

The concept of a one-perturbation variational principle has
been used by Tykhonov [252] in the case of convex functions
f in a Hilbert space with the perturbation function ϕ to be
the square of the norm. This is often referred to as Tykhonov
regularization (so that the perturbation f + ϕ always has
a unique minimum). The general results in Theorems 6.5.1
and 6.5.2 are derived in [38]. Theorem 6.5.6 is a recent result
from [78]. In the case of a normed space (X, ‖ · ‖), allow-
ing translations of the argument of the fixed perturbation
ϕ, we can establish a localization of the minimum of the
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perturbation in Theorem 6.5.1 as in the classical variational
principles discussed in Chapter 2 (Exercise 6.5.2).

Exercise 6.5.1. Prove that if (X, ‖ · ‖) is a real normed
space and ϕ is in addition convex, then the result in The-
orem 6.5.1 remains true for every proper lsc convex f , pro-
vided only that either the sublevel sets of ϕ are only weakly
compact or that domϕ is.

Exercise 6.5.2. Let X be a normed space. Suppose that
X admits a function ϕ as in Theorem 6.5.1. Prove that
for any proper lsc (bounded from below) function f : X →
R ∪ {+∞} , for any x̄ ∈ dom f and each λ > 0, the func-
tion f (x) + ϕ((· − x̄)/μ) (for a suitable μ > 0), attains its
minimum at some u with ‖u− x̄‖ ≤ λ.
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Exercise 6.5.3. Prove Theorem 6.5.4.

Exercise 6.5.4.LetX be a separable Banach space. Prove
that the set of all x ∈ X satisfying (6.5.7) is alwaysGδ (pos-
sibly empty). Reference: [114, proof of Proposition 1.4.5].
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Fig. 6.1. A typical mountain pass.



7

Variational Techniques In the Presence of Symmetry

Symmetry is exploited in many physical and geometrical ap-
plications. The focus of this chapter is what happens when
we apply variational methods to functions with additional
symmetry. The mathematical characterization of symmetry
is invariance under certain group actions. Typical examples
are the spectral functions associated with a linear transfor-
mation, such as the maximum eigenvalue for a matrix. They
are in general invariant with respect to the similarity trans-
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form. Another example is the distance function on a Rieman-
nian manifold, which is invariant with respect to an isometric
transform. It turns out that nonsmooth functions on smooth
manifolds provide a convenient mathematical framework for
such problems.

7.1 Nonsmooth Functions on Smooth Manifolds

7.1.1 Smooth Manifolds and Submanifolds

We start with a brief review of the smooth manifolds and
related notation. In what follows k is either a nonnegative
integer or∞. Let Y be an N -dimensional Ck complex man-
ifold with a Ck atlas {(Ua, ψa)}a∈A. For each a, theN com-
ponents (x1a, . . . , x

N
a ) of ψa form a local coordinate system

on (Ua, ψa). A function g : Y → R is Ck at y ∈ Y if y ∈ Ua
and g◦ψ−1

a is a Ck function in a neighborhood of ψa(y). As
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usual C0 represents the collection of continuous functions.
It is well known that this definition is independent of the
coordinate systems. If g is Ck at all y ∈ Y , we say g is Ck

on Y . The collection of all Ck functions on Y is denoted by
Ck(Y ). A map v : C1(Y ) → R is called a tangent vector of
Y at y provided that for any f, g ∈ C1(Y ),

(i) v(af + bg) = av(f ) + bv(g) for all a, b ∈ R and
(ii) v(f · g) = v(f )g(y) + f (y)v(g).

The collection of all the tangent vectors of Y at y forms
an (N-dimensional) vector space, called the tangent space
of Y at y and denoted by Ty(Y ) or T (Y ; y). The union⋃
y∈Y (y, Ty(Y )) forms a new space called the tangent bun-

dle to Y , denoted by T (Y ). The dual space of Ty(Y ) is the
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cotangent space of Y at y, denoted by T ∗
y (Y ) or T ∗(Y ; y).

Elements of T ∗
y (Y ) are called cotangent vectors. The cotan-

gent bundle to Y then is T ∗(Y ) :=
⋃
y∈Y (y, T

∗
y (Y )). We

will use π (resp., π∗) to denote the canonical projection
on T (Y ) (resp., T ∗(Y )) defined by π(y, Ty(Y )) = y (resp.,
π∗(y, T ∗

y (Y )) = y). A mapping v : Y → T (Y ) is called a
vector field provided that π(v(y)) = y. A vector field v is
Ck at y ∈ Y provided v(g) is Ck for any g ∈ Ck. If a
vector field v is Ck for all y ∈ Y we say it is Ck on Y . The
collection of all Ck vector fields on Y is denoted by V k(Y ).
In particular, if (U,ψ) is a local coordinate neighborhood

with y ∈ U and (x1, . . . , xN ) is the corresponding local

coordinate system on U then ( ∂
∂xn)y, n = 1, . . . , N , defined
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by ( ∂
∂xn)yg = ∂g◦ψ−1

∂xn (ψ(y)), is a basis of Ty(Y ). Let g be

a C1 function at y, the differential of g at y, dg(y), is an
element of T ∗

y (Y ) defined by

dg(y)(v) = v(g) for all v ∈ Ty(Y ).

Let Y and Z be two Ck manifolds. Consider a map
φ : Y → Z. Then for every function g ∈ Ck(Z), φ induces a
function φ∗g on Y defined by φ∗g = g◦φ. A map φ : Y → Z
is called Ck at y ∈ Y (on S ⊂ Y ) provided that φ∗g is Ck

for any g ∈ Ck(Z). Let φ : Y → Z be a C1 map and let
y ∈ Y be a fixed element. For v ∈ Ty(Y ) and g ∈ C1(Z),
define (φ∗v)(g) = v(φ∗g). Then φ∗ : Ty(Y ) → Tφ(y)(Z) is

a linear map. The dual map of φ∗ is denoted by φ∗. It is a



1000 7 Symmetry

map from T ∗
φ(y)

(Z) → T ∗
y (Y ) and has the property that for

any g ∈ C1(Z), φ∗dg(φ(y)) = d(φ∗g)(y).
We often need to study submanifolds of a smooth manifold.

Let Y be an N -dimensional Ck manifold. We say that S ⊂
Y is an M -dimensional submanifold of Y provided that (i)
S is a topological subspace of Y and (ii) for any y ∈ S
there exists a coordinate neighborhood (U,ψ) of y in Y with
the following properties: (a) ψ(y) = 0 ∈ R

N ; (b) ψ(U) =
CNr := {x ∈ R

N | −r < xn < r, n = 1, . . . , N}; and
(c) ψ(U ∩ S) = {x ∈ CNr | xM+1 = · · · = xN = 0}. A
coordinate neighborhood with the above property is called
a preferred neighborhood.
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Next we state two important theorems for identifying sub-
manifolds whose proofs can be found, for example, in [27].
The first identifies submanifolds as fibers of smooth map-
pings and can be viewed as a generalization of the implicit
function theorem on a smooth manifold.

Theorem 7.1.1. (Fiber Theorem) Let Y and Z be C1

manifolds and let f : Y → Z be a C1 mapping. Suppose
that Y is connected with dimension N and rank (f∗)y =
M is a constant for all y ∈ Y . Then, for any ȳ ∈ Y ,
S := f−1(f (ȳ)) ⊂ Y is a C1 manifold with

Ty(S) = Ker (f∗)y, for all y ∈ S.

In particular, the dimension of S is N −M .
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Our next result can be viewed as a generalization of the
parametric representations of surfaces in R

3.

Theorem 7.1.2. (Imbedding Theorem) Let Y and Z be
C1 manifolds and let f : Y → Z be a C1 mapping. Sup-
pose that Y is compact and has dimension M , f is one-
to-one and rank (f∗)y = M is a constant for all y ∈ Y .

Then S := f (Y ) ⊂ Z is a C1 manifold with

Tf(y)(S) = f∗Ty(Y ).

We end this subsection by recalling a convenient frame-
work for studying many problems involving symmetry. A
Lie group G is a group which is also a Ck smooth manifold
such that

G×G � (g, h) → gh−1
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is a Ck map. A Lie group action of a Lie group G on a Ck

manifold Y is a Ck mapG×Y → Y defined by (g, y) → g·y
satisfying

g · (h · y) = (gh) · y, e · y = y,

for all g, h ∈ G and y ∈ Y , where e is the unit element
of G. The orbit of y ∈ Y under a Lie group action of G is
defined by

G · y := {g · y | g ∈ G},
and the stabilizer of y ∈ Y with respect to G is defined as

Stab(G; y) := {g ∈ G | g · y = y}.
Stab(G; y) is a closed subgroup of G and is also a Lie
group. The group action induces a diffeomorphism between
G/Stab(G; y) and G ·y. It follows from the compact imbed-
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ding theorem of Theorem 7.1.2 that when G is compact the
orbits of G are smooth, compact submanifolds of Y .
7.1.2 Subdifferentials on Smooth Manifolds

We now consider nonsmooth functions on a smooth man-
ifold and their subdifferentials. We will consider both the
Fréchet subdifferential and the limiting subdifferentials for
which the limits of cotangent sequences are needed. Let
v∗i ∈ T ∗

yi(Y ), i = 1, 2, . . . be a sequence of cotangent
vectors of Y and let v∗ ∈ T ∗

y (Y ). We say (v∗i ) converges
to v∗, denoted by lim v∗i = v∗, provided that yi → y

and, for any v ∈ V 1(Y ), 〈v∗i , v(yi)〉 → 〈v∗, v(y)〉. Let
(U,ψ) be a local coordinate neighborhood with y ∈ U .
Since yi → y, we may assume without loss of generality
that yi ∈ U for all i. Then lim v∗i = v∗ if and only if
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〈v∗i , (
∂
∂xn)yi〉 → 〈v∗, ( ∂

∂xn)y〉 for n = 1, . . . , N . Another

equivalent description is (ψ−1)∗
ψ(yi)

v∗i → (ψ−1)∗
ψ(y)

v∗ (in

the dual of RN ).

Definition 7.1.3. (Subdifferentials) Let Y be a C1-manifold
and let f : Y → R ∪ {+∞} be an extended-valued lsc
function. We define the Fréchet subdifferential of f at
y ∈ dom(f ) by

∂Ff (y) := {dg(y) | g ∈ C1(Y ) and f−g attains a local min at y}.
We define the limiting subdifferential and singular subdif-
ferential of f at y ∈ Y by

∂Lf (y) := {lim v∗i | v∗i ∈ ∂Ff (yi), (yi, f (yi)) → (y, f (y))}
and ∂∞f (y) :=
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{lim tiv
∗
i | v∗i ∈ ∂Ff (yi), (yi, f (yi)) → (y, f (y)) and ti → 0+},

respectively.

Note that the Fréchet subdifferential of f depends only
on the local behavior of the function f . Moreover, every
locally C1 function can be extended to a C1 function on
Y . Therefore, the support function g in the definition of the
Fréchet subdifferential need only be C1 in a neighborhood
of y.
The elements of a Fréchet subdifferential are called Fréchet

subgradients. As before, we define the Fréchet superdiffer-
ential by ∂Ff (y) = −∂F (−f )(y) and its elements are called
supergradients.
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An alternative definition of a supergradient v∗ ∈ ∂Ff (y)
is: v∗ = dg(y) for some C1 function g such that f−g attains
a local maximum at y on Y .
It follows directly from the definition that ∂Ff (y) ⊂
∂Lf (y) and 0 ∈ ∂∞f (y). Note that ∂Ff (y) may be empty.
However, if f attains a local minimum at y then 0 ∈
∂Ff (y) ⊂ ∂Lf (y). These are the usual properties to be
expected for a subdifferential.
As before, the geometric concept of the normal cones to a

closed set can be naturally established by using the subdif-
ferential for the corresponding indicator function.
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Definition 7.1.4. (Normal Cones) Let Y be a C1-manifold
and let S be a closed subset of Y with s ∈ S. We define
the Fréchet normal cone of S at s by

NF (S; s) := ∂F ιS(s).

We define the (limiting) normal cone of S at s by

NL(S; s) := ∂LιS(s).

It is easy to see that a normal cone always contains 0 and at
an interior point of a set it contains only 0 (Exercise 7.1.2).
We will be interested mainly in nonzero normal cones. These
are necessarily normal cones for the boundary points of the
set by Exercise 7.1.2. The following necessary optimality con-
dition for a constrained minimization problem is useful; its
easy proof is left as an exercise.
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Proposition 7.1.5. Let Y be a C1-manifold, let S be a
closed subset of Y and let f : Y → R be a C1 function.
Suppose that ȳ is a solution of the constrained minimiza-
tion problem

minimize f (y)

subject to y ∈ S.

Then
0 ∈ df (ȳ) +NF (S, ȳ).

Proof. Exercise 7.1.3 •

Our next result relates the normal cone of a smooth sub-
manifold to its tangent cone.
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Proposition 7.1.6. (Normal Cone of a Submanifold) Let
Y be a C1-manifold and let S be a C1-submanifold of Y .
Then, for any s ∈ S, NF (S; s) =

Ts(S)
⊥ := {v∗ ∈ T ∗

s (Y ) : 〈v∗, v〉 = 0 for all v ∈ Ts(S)}.
In particular, NF (S; s) is a subspace of T ∗

s (Y ).

Proof. Assume that the dimension of S isM . Then there
exists a coordinate neighborhood (U,ψ) around s with a cor-
responding local coordinate system (x1, . . . , xN ) such that
s = ψ−1(0) and S ∩ U = {ψ−1(x1, . . . , xM, 0, . . . , 0) |
(x1, . . . , xM, 0, . . . , 0) ∈ ψ(U)}.
Then Ts(S) = span(( ∂

∂x1
)s, . . . , (

∂
∂xM

)s) and Ts(S)
⊥ =

span(dxM+1(s), . . . , dxN (s)). Let v∗ ∈ NF (S; s). Then
there exists g ∈ C1(Y ) such that g(s) = 0, dg(s) = v∗ and
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for any y ∈ S, g(y) ≤ 0. Let v ∈ Ts(S) and γ : (−r, r) → S
be a C1 curve such that γ(0) = s and γ′(0) = v.
Then, in particular, g ◦ γ(t) ≤ 0, t ∈ (−r, r) and g ◦
γ(0) = 0. Thus, d(g ◦ γ)(0) = 〈v∗, v〉 = 0.x That is to say
NF (S; s) ⊂ Ts(S)

⊥.
On the other hand, let

v∗ ∈ Ts(S)
⊥ = span(dxM+1(s), . . . , dxN (s)).

Then v∗ =
∑N
n=M+1αndx

n(s) where αn ∈ R, n = M +
1, . . . , N . Define g : U → R by

g(y) =
N∑

n=M+1

αnx
n(y).

Then, for any y ∈ S ∩ U , g(y) = 0. Thus,
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v∗ =
N∑

n=M+1

αndx
n(s) = dg(s) ∈ NF (S; s),

which establishes Ts(S)
⊥ ⊂ NF (S; s). •

As an application we discuss a special case of the Courant–
Fisher minimax theorem that characterizes the largest and
the smallest eigenvalues of a symmetric matrix.

Proposition 7.1.7. Let A be an N ×N real symmetric
matrix and let λ1 and λN denote its largest and smallest
eigenvalues, respectively. Then

λ1 = max
y∈S

〈y,Ay〉 and λN = min
y∈S

〈y,Ay〉 (7.1.1)
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where S = {y ∈ R
N | ‖y‖2 = 1}. More generally, the

critical values and critical points of 〈y,Ay〉 on S exactly
correspond to the eigenvalues and eigenvectors of A.

Proof. Note that S is a compact smooth manifold and
by the fiber theorem, Theorem 7.1.1, for any y ∈ S,
Ty(S) = {z ∈ R

N | 〈y, z〉 = 0}. Thus, by Proposition
7.1.6 NF (S; y) = {λy | λ ∈ R}. Now consider the problem
of minimizing f (y) = 〈y,Ay〉 subject to y ∈ S. Suppose
that ȳ is a solution. Then, by Proposition 7.1.5

0 ∈ df (ȳ) +NF (S, ȳ),

that is, there exists λ ∈ R such that

Aȳ = λȳ.
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Taking inner product with ȳ on both sides of this equality
we have

λ = 〈ȳ, Aȳ〉.
Note that the same conclusion also applies to f (y) =
−〈y,Ay〉. Thus, the critical values and critical points of
〈y,Ay〉 on S exactly correspond to the eigenvalues and
eigenvectors of A. •

7.1.3 Smooth Chain Rules

When applying the variational technique to problems on a
smooth manifold, it is often convenient to use the local coor-
dinate system to project the problem into a Euclidean space.
The following chain rule is an important tool for doing so.
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Theorem 7.1.8. (Smooth Chain Rule) Let Y and Z be
smooth manifolds, let g : Y → Z be a C1-mapping and
let f : Z → R ∪ {+∞} be a lsc function. Suppose that
z = g(y). Then

g∗∂Ff (z) ⊂ ∂F (f ◦ g)(y), (7.1.2)

g∗∂Lf (z) ⊂ ∂L(f ◦ g)(y), (7.1.3)

and

g∗∂∞f (z) ⊂ ∂∞(f ◦ g)(y). (7.1.4)

Moreover, if g is a C1-diffeomorphism then both sides of
(7.1.2), (7.1.3) and (7.1.4) are equal.

Proof. Since (7.1.3) and (7.1.4) follow directly from (7.1.2)
by taking limits, we prove (7.1.2). Let z∗ ∈ ∂Ff (z). Then
there exists a C1 function h such that dh(z) = y∗ and f−h
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attains a local minimum at z. It follows that f ◦ g − h ◦ g
attains a local minimum at y. Observing that h ◦ g is a C1

function on Y , we have

∂F (f ◦ g)(y) � d(h ◦ g)(y) = g∗dh(z) = g∗z∗.

Thus,
g∗∂Ff (z) ⊂ ∂F (f ◦ g)(y).

When g is a diffeomorphism applying (7.1.2) to f ◦ g and
g−1 yields the opposite inclusion. •
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Applying Theorem 7.1.8 to g = ψ−1 for a local coordinate
mapping ψ yields the following corollary.

Corollary 7.1.9.Let Y be a C1 manifold and let f : Y →
R∪{+∞} be a lsc function. Suppose that (U,ψ) is a local
coordinate neighborhood and y ∈ U . Then

∂Ff (y) = ψ∗∂F (f ◦ ψ−1)(ψ(y)),

∂Lf (y) = ψ∗∂L(f ◦ ψ−1)(ψ(y)),

and
∂∞f (y) = ψ∗∂∞(f ◦ ψ−1)(ψ(y)).

Proof. Exercise 7.1.5 •

We illustrate the usage of Corollary 7.1.9 by proving the
density of the domain of the Fréchet subdifferential.
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Theorem 7.1.10. Let Y be a C1-manifold, let f : Y →
R∪ {+∞} be a lsc function and S be a closed subset of
Y . Then dom(f ) ⊂ dom(∂Ff ) ⊂ dom(∂Lf ) and bd(S) ⊂
{s : NF (S; s) = {0}} ⊂ {s : N (S; s) = {0}}.
Proof. We need only to show that dom(f ) ⊂ dom(∂Ff ).
The rest follows easily. Let y ∈ dom(f ) and W be an arbi-
trary neighborhood of y. Without loss of generality we may
assume that there is a local coordinate neighborhood (U,ψ)
such that W ⊂ U . Then f ◦ ψ−1 : ψ(U) → R ∪ {+∞} is
a lower semicontinuous function and ψ(y) ∈ dom(f ◦ψ−1).
Since ψ(W ) is a neighborhood of ψ(y) by the density
theorem of the Fréchet subdifferential in R

N , there ex-
ists x ∈ ψ(W ) such that ∂F (f ◦ ψ−1)(x) = ∅. Then
z = ψ−1(x) ∈ W and by Lemma 7.1.9
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∂Ff (z) = ψ∗x∂F (f ◦ ψ−1)(x) = ∅.
•

7.1.4 Commentary and Exercises

We refer the readers to Boothby [27] and Matsushima [192]
for preliminaries on smooth manifolds. Materials in sub-
sections 7.1.2 and 7.1.3 regarding nonsmooth analysis on
smooth manifolds were developed by Ledyaev and Zhu
[175, 176, 177] where one can also find more comprehen-
sive discussion on the calculus of subdifferentials for nons-
mooth functions on smooth manifolds and their applications
in optimization and invariance theory on smooth manifolds.
A slightly different approach to generalizing the derivative
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concept to nonsmooth functions on smooth manifolds was
proposed by Chryssochoos and Vinter [79], motivated by
applications to an interesting optimal control problem on a
smooth manifold.

Exercise 7.1.1.Verify thatNF (S; s) is a cone andNL(S; s) :=
∂LιS(s) = ∂∞ιS(s).
Exercise 7.1.2. Show that 0 ∈ NF (S; s) ⊂ NL(S; s) for
any s ∈ S and NF (S; s) = NL(S; s) = {0} for any s ∈
int S.

Exercise 7.1.3. Prove Proposition 7.1.5.

Exercise 7.1.4. (Rayleigh Quotient) Let A be a real sym-
metric matrix and define the Rayleigh quotient of A by
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rA(y) =
〈y,Ay〉
‖y‖2 , y = 0.

Show that Proposition 7.1.7 can be rephrased as: the critical
values and critical points of rA on R

N\{0} exactly corre-
spond to the eigenvalues and eigenvectors of A.

Exercise 7.1.5. Prove Corollary 7.1.9.

Exercise 7.1.6. (Lagrange Multiplier Rule) Consider

minimize f (x)

subject to g(x) = 0,

(7.1.5)

where f : RN → R and g : RN → R
M are C1 mappings.

Suppose that x̄ is a solution to the constrained minimization
problem (7.1.5) and that g′(x̄) : RN → R

M is a surjective.
Show that there exists λ ∈ R

M such that
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f ′(x) + 〈λ, g′(x̄)〉 = 0.

Hint: Note that problem (7.1.5) is equivalent to minimizing
f over S = g−1(0) = g−1(g(x̄)). Then use Propositions
7.1.5, 7.1.6 and Theorem 7.1.1.

7.2 Manifolds Of Matrices and Spectral Functions

7.2.1 Manifolds of Matrices

Let EN×M be the Euclidean space of real N ×M matrices.
Square matrices are particularly interesting in many appli-
cations. We use E(N ) = EN×N to denote the space of N
by N square matrices. For A ∈ EN×M we denote its trans-

pose by A�, an element of EM×N . When A ∈ E(N ) we say

that A is symmetric if A = A� and we say that A is skew
symmetric if A = −A�. We denote the linear subspace of
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N×N symmetric matrices by S(N ) and the linear subspace
of N × N skew symmetric matrices by A(N ). We define
an inner product on EN×M by

〈A,B〉 := tr(A�B) =

N∑
n=1

M∑
m=1

anmbnm,

and the norm of A is defined by ‖A‖ :=
√
〈A,A〉. We

will often use the Lie bracket [A,B] = AB − BA for
A,B ∈ E(N ). The next proposition summarizes some easy
yet useful facts of Lie brackets.

Proposition 7.2.1. If A,B ∈ S(N ) then [A,B] ∈ A(N )
and if A ∈ S(N ) and B ∈ A(N ) then [A,B] ∈ S(N ).

Proof. Exercise 7.2.1. •
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Example 7.2.2. (Manifold of Invertible Matrices) The set
of invertible matrices GL(N ) := {A ∈ E(N ) | det(A) = 0}
is a Lie group under matrix multiplication. Moreover, for
any A ∈ GL(N )

TA(GL(N )) = E(N ).

More generally we have

Example 7.2.3. (Manifold of Full Rank Matrices) Let
N ≥ M . The set of full rank matrices GL(N,M ) := {A ∈
EN×M | rank A = M} is a submanifold of EN×M . More-
over, for any A ∈ GL(N,M )

TA(GL(N,M )) = EN×M.
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Noticing that GL(N ) and GL(N,M ) are open subsets of
E(N ) and EN×M , respectively, these facts are easy to check
and we leave them as exercises.

Example 7.2.4. (Manifold of Orthogonal Matrices) The
set of orthogonal matrices O(N ) := {A ∈ GL(N ) | A�A =
I}, where I is the identity matrix, is a compact Lie group
under matrix multiplication. Moreover, for any A ∈ O(N ),

TA(O(N )) = {B ∈ E(N ) | A�B + B�A = 0},
(7.2.1)

and

NF (O(N );A) = TA(O(N ))⊥ = {AX ∈ E(N ) | X ∈ S(N )},
(7.2.2)
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To verify these results, let us consider the smooth function
f : GL(N ) → S(N ) defined by f (A) = A�A − I . We
can directly calculate that for any A ∈ GL(N ) and B ∈
TA(GL(N )) = E(N ),

(f∗)A(B) = lim
t→0

(A + tB)�(A + tB)− A�A
t

= A�B+B�A.

Moreover, (f∗)A is a surjection onto S(N ) for any A ∈
GL(N ). In fact, as a linear subspace the tangent space of
S(N ) at any point is S(N ) itself. Thus, range (f∗)A is a
subspace of S(N ). Suppose that C ∈ (range(f∗)A)⊥, i.e.,
for any B ∈ E(N ),

〈C,A�B + B�A〉 = 0. (7.2.3)

By Exercise 7.2.4 we have
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〈C,A�B +B�A〉 = tr(C�A�B + C�B�A)

= tr(C�A�B) + tr(C�B�A)

= tr((AC)�B) + tr(B�AC)

= 2 tr((AC)�B) = 〈AC,B〉.
Therefore, AC = 0. Since A is invertible we must have
C = 0, which implies that (range(f∗)A)⊥ = {0} or (f∗)A is
a surjection. Thus, by the fiber theorem (Theorem 7.1.1) we
have O(N ) := f−1(0) is a smooth submanifold of GL(N )
and therefore of E(N ). Observe that for any A ∈ O(N ),
‖A‖ = 1 so that O(N ) is compact. Moreover,

TA(O(N )) = ker(f∗)A = {B ∈ E(N ) | A�B+B�A = 0}.
In particular,
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TI(O(N )) = {B ∈ E(N ) | B +B� = 0} = A(N ).

(7.2.4)

We now turn to the normal cone characterization (7.2.2). It
follows from Proposition 7.1.6 that

NF (O(N );A) = TA(O(N ))⊥.

Let X ∈ S(N ). Using Exercise 7.2.4 we have, for any B ∈
TA(O(N )),

〈AX,B〉=1

2
[tr((AX)�B) + tr(B�(AX))]

=
1

2
[tr(XA�B) + tr(XB�A)]

=
1

2
〈X,A�B +B�A〉 = 0.
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Thus, {AX ∈ E(N ) | X ∈ S(N )} ⊂ TA(O(N ))⊥. On the
other hand the dimensions of both subspaces are the same
as that of S(N ), and therefore they must be the same.

The method used in discussing Example 7.2.4 can also be
used to discuss the more general Stiefel manifolds. We state
the results below and leave the proofs as guided exercises.

Example 7.2.5. (Stiefel Manifold) Define

St(N,M ) := {A ∈ GL(N,M ) | A�A = I}.
Then St(N,M ) is a C∞ submanifold of EN×M , called the
Stiefel manifold. Moreover, for any A ∈ St(N,M ),

TA(St(N,M ))={B ∈ EN×M | A�B + B�A = 0},
(7.2.5)

and
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NF (St(N,M );A)=TA(St(N,M ))⊥

={AX ∈ EN×M | X ∈ S(M )}.
(7.2.6)

Having seen how to use the fiber theorem to identify sub-
manifolds we turn to an example of using the parameteriza-
tion theorem to identify a useful submanifold.

Example 7.2.6. Define a Lie group action of O(N ) on
S(N ) by

U · A = U�AU,U ∈ O(N ), A ∈ S(N ). (7.2.7)

Since O(N ) is a compact Lie group, for any A ∈ S(N ), the
orbit O(N ) · A is a compact smooth submanifold of S(N ).
We show that

TA(O(N ) · A) = {[A,B] | B ∈ A(N )} (7.2.8)
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and

NF (O(N ) · A;A) = {B ∈ S(N ) | [A,B] = 0}(7.2.9)
To this end let us denote by φ : O(N )/Stab(O(N );A) →
O(N ) · A the diffeomorphism induced by the Lie group ac-
tion O(N ) × S(N ) � (U,A) → U�AU . Then φ∗ is an
isomorphism between the corresponding tangent spaces

TI(O(N )/Stab(O(N );A)) and TA(O(N ) · A).
On the other hand let π : O(N ) → O(N )/Stab(O(N );A)
be the quotient map. Then

π∗ : TI(O(N )) → TI(O(N )/Stab(O(N );A))

is onto. Now consider ψ : O(N ) → O(N ) · A defined by
ψ(U) → U�AU . We have ψ = φ ◦ π. Thus, the chain rule
gives
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ψ∗TI(O(N )) = TA(O(N ) · A).
Direct calculation shows that for any B = −B�, ψ∗B =
AB−BA. Combining this with (7.2.4) we arrive at (7.2.8).
Finally, we can check that for C ∈ A(N ) and A,B ∈ S(N )
we have the identity

〈[A,C], B〉 = 〈C, [A,B]〉. (7.2.10)

Now if a matrix B ∈ S(N ) commutes with A then any
matrix C in TI(O(N )) = A(N ) satisfies

〈[A,C], B〉 = 0.

Conversely, suppose that for all C ∈ TI(O(N )) = A(N )

〈[A,C], B〉 = 0.

ChoosingC = [A,B] and using (7.2.10) we have ‖[A,B]‖2 =
0, that is [A,B] = 0.
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7.2.2 Spectral and Eigenvalue Functions

For any A ∈ S(N ) we use λ1(A), . . . , λN (A) to denote the
N (including repeated) real eigenvalues of A in nonincreas-
ing order. We call

λ(A) := (λ1(A), . . . , λN (A))

the eigenvalue mapping. Let RN≥ := {(x1, x2, . . . , xN ) ∈
R
N | x1 ≥ x2 ≥ · · · ≥ xN}. Then λ : S(N ) → R

N
≥ . Let

P (N ) be the set of N by N permutation matrices.
We say that a function f : RN → R

N is permutation in-
variant provided that f (Py) = f (y) for any P ∈ P (N ) and
any y ∈ R

N . A spectral function is a function of the form
φ := f ◦ λ : S(N ) → R ∪ {+∞} where f is permutation
invariant.
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The concept of a spectral function encompasses many
useful functions related to the eigenvalue mapping such
as the maximum eigenvalue λ1(A) = max{λn(A), n =
1, . . . , N}, the spectral radius σ(A) = max{|λn(A)|, n =
1, . . . , N}, the determinant det(A) = ΠN

n=1λn(A) and the

trace tr(A) =
∑N
n=1 λn(A).

A spectral function inherits the symmetric property of a
permutation invariant function f in the form of being uni-
tary invariant. Recall that a unitary mapping u : E(N ) →
E(N ) associated with an orthogonal matrix U ∈ O(N ) is
defined by u(A) = U · A = U�AU .
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Lemma 7.2.7. (Unitary Invariance of Spectral Functions)
Let φ : S(N ) → R ∪ {+∞} be a spectral function and
let u be a unitary mapping associated with U ∈ O(N ).
Then, for any A ∈ S(N ),

(φ ◦ u)(A) = φ(A).

Proof. Exercise 7.2.7. •

An important theme of this section is to relate the prop-
erties of a spectral function on S(N ) to that of the corre-
sponding permutation function on R

N . For this purpose the
mapping diag : RN → S(N ) that maps a vector in x ∈ R

N

to a diagonal matrix diag x ∈ S(N ) with the components
of x as the diagonal elements is useful. We can check that
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the dual mapping diag∗ : S(N ) → R
N is given by (Exercise

7.2.8)

diag∗(anm) = (a11, . . . , aNN ). (7.2.11)

We now prove a useful formula for the sum of the k largest
(or smallest) components of the eigenvalue mapping which
generalizes the Courant–Fisher minimax theorem (Proposi-
tion 7.1.7). The proof of this result is a nice illustration of
the variational argument in combination with the properties
of manifolds of matrices.
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Theorem 7.2.8. (Ky Fan Minimax Theorem) Let A ∈
S(N ) and let k ∈ {1, . . . , N}. Then

λ1(A) + · · · + λk(A) = max
X∈St(N,k)

tr(X�AX)

(7.2.12)

and

λN−k+1(A) + · · · + λN (A) = min
X∈St(N,k)

tr(X�AX).

(7.2.13)

Proof. We prove (7.2.13) and the proof for (7.2.12) is
similar. Define fA : GL(N, k) → R by

fA(B) =
1

2
tr(B�AB).

Then f is a smooth function with
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dfA(B)(C) = 〈AB,C〉. (7.2.14)

Consider the optimization problem of minimizing f on the
smooth manifold St(N, k) ⊂ GL(N, k). Since the Stiefel
manifold St(N, k) is a compact submanifold a minimizer
must exist. Let B be such a minimizer. By Proposition 7.1.5,
B must satisfy

0 ∈ dfA(B) +NF (St(N, k);B).

Combining this necessary condition with (7.2.14) and the
representation of the normal space of a Stiefel manifold in
Example 7.2.5, we have that for some X ∈ S(k),

AB = BX. (7.2.15)

It is not hard to verify that any eigenvalue of X must also
be an eigenvalue of A (Exercise 7.2.12). Thus,
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2fA(B)= tr(B�AB) = tr(B�BX) = tr(X)

= λN−k+1(A) + · · · + λN (A).

The last equality is due to the fact that fA(B) is the mini-
mum of fA over St(N, k). •

Two useful corollaries of the Ky Fan minimax theorem are
given below. Their easy proofs are left as exercises.

Corollary 7.2.9. Let A ∈ S(N ) and let k ∈ {2, . . . , N}.
Then

λk(A) = max
B∈S(N,k)

fA(B)− max
B∈S(N,k−1)

fA(B).

Proof. Exercise 7.2.13. •
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Corollary 7.2.10.Let A,B ∈ S(N ) and let k ∈ {1, . . . , N}.
Then

k∑
n=1

λk(A +B) ≤
k∑
n=1

λk(A) +
k∑
n=1

λk(B).

Proof. Exercise 7.2.14. •

It follows from the representation in Corollary 7.2.9 that
for any k ∈ {1, . . . , N}, λk : S(N ) → R is a DC func-
tion defined on S(N ) , and therefore is locally Lipschitz and
directional differentiable (Exercise 7.2.15). It is well known
that for such a function on a finite dimensional Banach space
the directional derivatives provide a uniform approximation
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for the difference quotient. More precisely we have the fol-
lowing lemma.

Lemma 7.2.11. Let X be a finite dimensional Banach
space and let f : X → R be a locally Lipschitz function.
Suppose that for all h ∈ X, f ′(x̄;h) exists. Then for any
ε > 0, there exists δ > 0 such that ‖h‖ < δ implies

|f (x̄ + h)− f (x̄)− f ′(x̄;h)| ≤ ε‖h‖.
Proof. Suppose for contradiction that there is an ε > 0
and a sequence (hi) with ‖hi‖ = ti < 1/i such that, for
i = 1, 2, . . . ,

|f (x̄ + hi)− f (x̄)− f ′(x̄;hi)| ≥ ε‖hi‖.
Extracting a subsequence if necessary we may assume that
hi/ti → d for some unit vector d. Let L be a local Lipschitz
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constant for f we have

εti ≤ |f (x̄ + hi)− f (x̄)− f ′(x̄;hi)|
≤ |f (x̄ + hi)− f (x̄ + tid)|

+ |f (x̄ + tid)− f (x̄)− f ′(x̄; tid)|
+ |f ′(x̄; tid)− f ′(x̄;hi)|.

It is not hard to verify that h→ f ′(x̄;h) is Lipschitz with
the same Lipschitz constant L (Exercise 7.2.17). Thus, we
have

εti ≤ 2L‖hi − tid‖ + |f (x̄ + tid)− f (x̄)− f ′(x̄; tid)|.
Dividing by ti > 0 and taking limits when i→ ∞ we obtain
the contradiction ε < 0. •
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In particular, we have the following estimate for eigenvalue
functions in terms of its directional derivatives.

Theorem 7.2.12. (Eigenvalue Derivative) Let A ∈ S(N ).
Then there exists h > 0 such that, for B ∈ S(N ) with
‖B‖ < h,

λ(A + B) = λ(A) + λ′(A;B) + o(B).

Proof. Apply Lemma 7.2.11 to the components of λ : S(N ) →
R
N . •

7.2.3 The von Neumann–Theobald Inequality

The variational method can also be used to prove the von
Neumann–Theobald inequality which we will need below. To
do so we need the following combinatorial lemma.
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Lemma 7.2.13.Let x, y ∈ R
N
≥ and let P ∈ P (N ). Then

(i) 〈x, Py〉 ≤ 〈x, y〉, and
(ii) 〈x, Py〉 = 〈x, y〉 if and only if there exists Q ∈ P (N )

such that Qx = x and QPy = y.

Proof. We prove (i) and leave (ii) as a guided exercise
(Exercise 7.2.19). Denote P0 = P and apply the following
algorithms: for n = 1 to N − 1 if (Pn−1y)n < (Pn−1y)n̄ :=
max{(Pn−1y)n+1, . . . , (Pn−1y)N} then switch (Pn−1y)n
and (Pn−1y)n̄ in Pn−1y. The resulting vector is clearly a
permutation of y. We denote its permutation matrix with
respect to y by Pn. We can check that 〈x, Pny〉 is increasing
with n (Exercise 7.2.18). Thus,

〈x, Py〉 ≤ 〈x, PNy〉.
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Notice that PNy ∈ R
N
≥ , and therefore PNy = y. •

Now we can prove the von Neumann–Theobald inequality.
Recall that two matrices A and B in S(N ) have a simulta-
neous ordered spectral decomposition if there exists a or-
thogonal matrix U ∈ O(N ) such that A = U� diag λ(A)U
and B = U� diag λ(B)U .

Theorem 7.2.14. (von Neumann–Theobald Inequality)
Let A,B ∈ S(N ). Then

〈A,B〉 ≤ 〈λ(A), λ(B)〉.
Moreover, equality holds if and only if A and B have a
simultaneous ordered spectral decomposition.

Proof. Consider the optimization problem
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α = sup
C∈O(N)·A

〈C,B〉. (7.2.16)

Let U ∈ O(N ) satisfy B = U · diag λ(B) and choosing
C = U · diag λ(A) shows that α ≥ 〈λ(A), λ(B)〉.
On the other hand, since the orbit O(N ) · A is compact,

problem (7.2.16) has an optimal solution, say C = C0. By
the stationary condition of Proposition 7.1.5 and the fact
that NF (O(N ) · A;C0) is a subspace (Proposition 7.1.6),
we have B ∈
NF (O(N )·A;C0) = NF (O(N )·C0;C0) = N (O(N )·C0;C0).

By the representation ofNF (O(N )·C0;C0) in Example 7.2.6
we have [B,C0] = 0. Thus, there is a matrix U ∈ O(N ) that
simultaneously diagonalizes B and C0:
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B = U · diag(Pλ(B)) and C0 = U · diag λ(C0),

(7.2.17)

where P ∈ P (N ) is a permutation matrix. It follows from
Lemma 7.2.13 that α =

〈C0, B〉 = 〈λ(C0), Pλ(B)〉 ≤ 〈λ(C0), λ(B)〉 = 〈λ(A), λ(B)〉 ≤ α,

whence α = 〈λ(A), λ(B)〉.
We turn to the necessary and sufficient conditions for

the equality. If 〈A,B〉 = 〈λ(A), λ(B)〉 then A must be a
solution of (7.2.16). Therefore, by the previous argument
there exists an orthogonal matrix U ∈ O(N ) such that
A = U · diag λ(A) and B = U · diag(Pλ(B)) for some
P ∈ P (N ) satisfying

〈λ(A), Pλ(B)〉 = 〈λ(A), λ(B)〉.



1048 7 Symmetry

By (ii) of Lemma 7.2.13 there exists a permutation matrix
Q ∈ P (N ) such that Qλ(A) = λ(A) and Qλ(B) = Pλ(B).
Then QU ∈ O(N ) provides a simultaneous ordered decom-
position for A and B. Sufficiency is easy and is left as an
exercise (Exercise 7.2.20). •

7.2.4 Subdifferentials of Spectral Functions

Spectral functions are often intrinsically nonsmooth. Thus,
to analyze their properties we often need to study their subd-
ifferentials. Our first result on the subdifferential of the spec-
tral function follows directly from the smooth chain rule.
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Lemma 7.2.15. (Chain Rule for Spectral Functions) Let φ
be a spectral function on S(N ) and let U ∈ O(N ). Then

∂φ(U�AU) = U�∂φ(A)U,
where ∂ = ∂F , ∂L or ∂∞.

Proof. For U ∈ O(N ), define a mapping u : E(N ) →
E(N ) by u(B) = U�BU .
We can check (Exercise 7.2.21) that u is a diffeomor-

phism and for any A ∈ E(N ), T ∗
A(E(N )) = E(N ) and

(u∗)A : E(N ) → E(N ) is defined by

(u∗)AB = UBU�. (7.2.18)

It follows directly from the smooth chain rule of Theorem
7.1.8 that

(u∗)A∂φ(u(A)) = ∂(φ ◦ u)(A),
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where ∂ = ∂F , ∂L or ∂∞. Since φ ◦ u = φ, the conclusion
follows from (7.2.18). •

A similar result holds for a permutation invariant function
on R

N .

Lemma 7.2.16. (Chain Rule for Permutation Invariant
Functions) Let f be a permutation invariant function on
R
N and let P ∈ P (N ). Then

∂f (Px) = P∂f (x),

where ∂ = ∂F , ∂L or ∂∞.

Proof. Exercise 7.2.22. •
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Next is a result on the commutativity of the subdifferential
of spectral functions.

Lemma 7.2.17. (Commutativity of Subdifferential of Spec-
tral Functions) Let φ be a spectral function on S(N )
and let A ∈ S(N ). Suppose that B ∈ ∂φ(A). Then
AB� = B�A, i.e., [A,B] = 0, where ∂ = ∂F , ∂L or
∂∞.

Proof. We need only to prove the case when ∂ = ∂F . The
rest follows naturally from a limiting process. Observe that
by the definition of the Fréchet subdifferential we have

∂Fφ(A) ⊂ NF (φ
−1(−∞, φ(A));A).

Since φ is a constant on O(N ) · A, we have O(N ) · A ⊂
φ−1(−∞, φ(A)). Thus,
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∂Fφ(A) ⊂ NF (O(N ) · A;A).
The lemma follows from the representation of N (O(N ) ·
A;A) in Example 7.2.6. •

Theorem 7.2.18.Let φ be a spectral function on S(N ).
Suppose that B ∈ ∂φ(A). Then, for some P ∈ P (N ),

diagPλ(B) ∈ ∂φ(diag λ(A)), (7.2.19)

where ∂ = ∂F , ∂L or ∂∞.

Proof. By Lemma 7.2.17 AB� = B�A. Then there ex-
ists a U ∈ O(N ) that diagonalizes both A and B simultane-
ously. That is to say diagPλ(B) = U�BU and diag λ(A) =
U�AU for some permutation matrix P ∈ P (N ). The con-
clusion then follows from Lemma 7.2.15. •
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Next we show that ∂φ(diag λ(A)) = diag ∂f (λ(A)) so that
the subdifferential of a spectral function φ = f ◦λ on S(N )
can be represented in terms of its corresponding permutation
invariant function f defined onRN . For this purpose we need
several auxiliary results.

Lemma 7.2.19. Let w ∈ R
N
≥ . Then the function A →

〈w, λ〉(A) := 〈w, λ(A)〉 is convex and, for any vector x ∈
R
N
≥ ,

diagw ∈ ∂〈w, λ〉(diag x). (7.2.20)

Proof. We leave the convexity of the function A →
〈w, λ〉(A) as a guided exercise (Exercise 7.2.23). It follows
from the von Neumann–Theobald inequality that for any
C ∈ S(N ),
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〈diagw,C〉 ≤ 〈w, λ〉(C).
Thus, for any x ∈ R

N
≥ ,

〈diagw,C − diag x〉 ≤ 〈w, λ〉(C)− 〈w, λ〉(diag x).
This verifies (7.2.20). •

Lemma 7.2.20. Let v ∈ R
N and x ∈ R

N
≥ . Suppose that

Stab(P (N ); x) is a subgroup of Stab(P (N ); v). Then

〈v, λ〉′(diag x) = diag v.

Proof. Exercise 7.2.24. •
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Theorem 7.2.21. Let x ∈ R
N
≥ and A ∈ S(N ). Then

diag∗A ∈ conv{Pλ′(diag x;A) | P ∈ Stab(P (N ); x)}.
(7.2.21)

Proof. Partition the set {1, . . . , N} into consecutive
blocks of integers S1, . . . , SK with N1, . . . , NK elements,
respectively, so that xn = xm if and only if n and m belong
to the same block. Correspondingly, write any vector y in
the form of

y = (y1, . . . , yK), where yk ∈ R
Nk, k = 1, . . . ,K.

Notice that the stabilizer Stab(P (N ); x) consists of matrices
of permutations fixing each block Sk.
Now suppose relation (7.2.21) fails. By the convex separa-

tion theorem there exists some vector y ∈ R
N satisfying
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〈y, diag∗A〉 > 〈y, Pλ′(diag x;A)〉 for all P ∈ Stab(P (N ); x).

(7.2.22)

Let ỹ := (ŷ1, . . . , ŷK) where ŷk represents a permutation of
yk so that the components are in a decreasing order. There
is a vector v ∈ R

N with equal components within every
block Sk (or in other words Stab(P (N ); x) is a subgroup
of Stab(P (N ); v)) so that v + ỹ lies in R

N
≥ . Lemma 7.2.19

shows
diag(v + ỹ) ∈ ∂〈v + ỹ, λ〉(diag x),

or equivalently, for any matrix B ∈ S(N ),

〈diag(v + ỹ), B〉 ≤ 〈v + ỹ, λ′(diag x;B)〉. (7.2.23)

On the other hand Lemma 7.2.20 shows

〈diag v,B〉 = 〈v, λ′(diag x;B)〉. (7.2.24)



7.2 Manifolds of Matrices 1057

Subtracting equation (7.2.24) from inequality (7.2.23) we
have

〈diag ỹ, B〉 ≤ 〈ỹ, λ′(diag x;B)〉. (7.2.25)

Writing diag∗A = a = (a1, . . . , aK), there is a matrix Q ∈
Stab(P (N ); x) satisfying

Q diag∗(A) = diag∗(Q�AQ) = (â1, . . . , âK).

Now choosing B = Q�AQ in inequality (7.2.25) and using
Lemma 7.2.13 repeatedly shows
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〈y, a〉 ≤ 〈(ŷ1, . . . , ŷK, â1, . . . , âK〉
= 〈diag ỹ, Q�AQ〉
≤ 〈diag ỹ, λ′(diag x;Q�AQ)〉
= 〈diag ỹ, λ′(Q� diag xQ;Q�AQ)〉
= 〈diag ỹ, λ′(diag x;A)〉,

where the last equality follows directly from that λ is uni-
tary invariant and the definition of the directional derivative
(Exercise 7.2.25). Now choosing the matrix P in inequality
(7.2.22) so that P�y = ỹ gives a contradiction. •
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Theorem 7.2.22. Let φ = f ◦λ : S(N ) → R∪{+∞} be
a spectral function and let x, y ∈ R

N . Then

y ∈ ∂f (x)

if and only if
diag y ∈ ∂φ(diag x).

Here ∂ = ∂F , ∂L or ∂∞.

Proof. The “only if” part is easy and is left as an exercise
(Exercise 7.2.27). We prove the “if” part. Again we prove
the Theorem for ∂ = ∂F . The conclusion for the limiting
and singular subdifferential follows naturally from a limiting
process.
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First we discuss the special case when x ∈ R
N
≥ . By the

chain rule for permutation invariant functions of Lemma
7.2.16, S := {Py | P ∈ Stab(P (N ); x)} ⊂ ∂Ff (x). The
support function for the convex hull of S, σconv(S), is sublin-

ear with a global Lipschitz constant ‖y‖ (Exercise 7.2.26).
Fix ε > 0. It follows from Proposition 3.1.3 that for small
z ∈ R

N ,

f (x + z) ≥ f (x) + σconvS(z)− ε‖z‖. (7.2.26)

On the other hand, using Theorem 7.2.12, small matrices
C ∈ S(N ) must satisfy

‖λ(diag x + C)− x− λ′(diag x;C)‖ ≤ ε‖C‖,
and hence by inequality (7.2.26),
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f (λ(diag x + C)) = f (x + (λ(diag x + C)− x))

≥ f (x)− ε‖λ(diag x + C)− x‖
+ σconvS

(
λ′(diag x;C) + [λ(diag x + C)

− x− λ′(diag x;C)]
)

≥ f (x) + σconvS(λ
′(diag x;C))− (1 + ‖y‖)ε‖C‖,

using the Lipschitz property of σconvS.
By Theorem 7.2.21,

diag∗C ∈ conv{Pλ′(diag x;C) | P ∈ Stab(P (N ); x)}.
(7.2.27)
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Since convS is clearly invariant under the group Stab(P (N ); x),
so is its support function, whence

σconvS(Pλ
′(diag x;C)) = σconvS(λ

′(diag x;C)),
for any P ∈ Stab(P (N ); x). This, combined with the con-
vexity of σconvS and relation (7.2.27), demonstrates

σconvS(diag
∗C) ≤ σconvS(λ

′(diag x;C)).
So the argument above shows

f ◦ λ(diag x + C)≥f (x) + σconvS(diag
∗C)− (1 + ‖y‖)ε‖C‖

≥f (x) + 〈y, diag∗C〉 − (1 + ‖y‖)ε‖C‖
≥f ◦ λ(diag x) + 〈diag y, C〉 − (1 + ‖y‖)ε‖C

and since ε was arbitrary

diag y ∈ ∂Ff ◦ λ(diag x).
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We now turn to the general case when x is not necessarily
in R

N
≥ . Fix a matrix P ∈ P (N ) with Px ∈ R

N
≥ . Then

Py ∈ ∂Ff (Px) by Lemma 7.2.16. Thus, the special case
proved above shows that

diagPy ∈ ∂F (f ◦ λ)(diagPx).
By Exercise 7.2.9 we can rewrite the last inclusion as

P�(diag y)P ∈ ∂F (f ◦ λ)(P� diag xP ).

This is
diag y ∈ ∂F (f ◦ λ)(diag x),

using chain rule for spectral functions of Lemma 7.2.15. •

Now we are ready for our main representation theorem.
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Theorem 7.2.23. (Representation of the Subdifferential
for Spectral Functions) Let φ = f ◦λ : S(N ) → R∪{+∞}
be a spectral function and let A ∈ S(N ). Then ∂φ(A) =

{U� diag y U | y ∈ ∂f (λ(A)), U ∈ O(N ), A = U� diag λ(A)U}
Here ∂ = ∂F , ∂L or ∂∞.

Proof. For any vector y ∈ ∂f (λ(A)), Theorem 7.2.22
shows

diag y ∈ ∂(f ◦ λ)(diag λ(A)).
Thus, for any U ∈ O(N ) with U�λ(A)U = A we have

U�(diag y)U ∈ ∂(f ◦ λ)(A),
by Lemma 7.2.15.
On the other hand any B ∈ ∂(f ◦ λ)(A) commutes with
A, by the commutativity Lemma 7.2.17. Therefore, A and
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B diagonalize simultaneously: there is a matrix U ∈ O(N )
and a vector y ∈ R

N such that U�(diag λ(A))U = A and
U�(diag y)U = B. The chain rule for spectral function of
Lemma 7.2.15 shows

diag y ∈ ∂(f ◦ λ)(diag λ(A)),
whence y ∈ ∂f (λ(A)), by Theorem 7.2.22. •

7.2.5 The kth Largest Eigenvalue Function

We end this section by applying Theorem 7.2.23 to calcu-
late the subdifferential of the kth largest eigenvalue function
λk of symmetric matrices. Consider the kth order statistic
function φk : R

N → R defined by φk(x) = the kth largest
component of (x1, . . . , xN ).
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Then φk is permutation invariant. Moreover, φk(x) =
λk(diag x) and λk = φk ◦ λ (Exercise 7.2.28). Thus, cal-
culating the subdifferential for φk is crucial.

Proposition 7.2.24. (Fréchet Subdifferential of Order Statis-
tics)
Let φk : R

N → R be the kth order statistic function.
Then, for any x ∈ R

N ,

∂Fφk(x) =

{
conv{en | xn = φk(x)} if φk−1(x) > φk(x),

∅ otherwise.

Here {en | n = 1, . . . , N} is the standard basis of RN .

Proof. Define a set of indices I := {n | xn = φk(x)}. If the
inequality φk−1(x) > φk(x) holds then clearly, close to the

point x, the function φk is given by y ∈ R
N → maxn∈I yn.
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The subdifferential at x of this second function (which is
convex) is just conv{en | n ∈ I}.
On the other hand, if φk−1(x) = φk(x), suppose y ∈
∂Fφk(x) and therefore satisfies

φk(x + z) ≥ φk(x) + 〈y, z〉 + o(z), as z → 0.

For any index n ∈ I , all small positive h satisfy φk(x +
hen) = φk(x) so that yn ≤ 0, but also

φk

(
x− h

∑
n∈I

en
)
= φk(x)− h,

which implies a contradiction
∑
n∈I yn ≥ 1. •
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We now turn to the limiting subdifferentials. We use #(S)
to signify the number of elements in the set S and denote
supp y = {n | yn = 0} for y ∈ R

N .

Theorem 7.2.25. (Limiting Subdifferentials of Order Statis-
tics)
Let φk : R

N → R be the kth order statistic function.
Then for any x ∈ R

N ,

∂∞φk(x) = {0},

∂Lφk(x) =
{
y ∈ conv{en | xn = φk(x)}

∣∣ #(supp y) ≤ α
}
,

where α = 1 − k + #{n | xn ≥ φk(x)}, and ∂Cφk(x) =
conv{en | xn = φk(x)}.
Proof. The singular subdifferential is easy and the Clarke
subdifferential can be derived by taking convex hull of the



7.2 Manifolds of Matrices 1069

limiting subdifferential (Exercise 7.2.29). So we focus on the
limiting subdifferential.
Let xi be a sequence converging to x. Then for any
xn = φk(x), when i is sufficiently large, xin = φk(x

i). By
Proposition 7.2.24,

∂Fφk(x
i) ⊂ conv{en | xin = φk(x

i)} ⊂ conv{en | xn = φk(x)},
when φk−1(x

i) > φk(x
i), and therefore #{n | xin =

φk(x
i)} ≤ α. Thus,

∂Lφk(x) ⊂ {y ∈ conv{en | xn = φk(x)} | #(supp y) ≤ α}.
On the other hand, let y ∈ conv{en | xn = φk(x)} and
#(supp y) ≤ α. Denote J1 = {n | xn < φk(x)}. Then
yn = 0 for any n ∈ J1. Choose a subset J2 of {n | xn ≥
φk(x)} with exactly k − 1 indices n for which yn = 0. For
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h > 0, define x(h) = x + h
∑
n∈J2 e

n. Then when h is
small enough we have φk(x(h)) < φk−1(x(h)) so that by
Proposition 7.2.24

y ∈ conv{en | n ∈ J1 ∪ J2} ⊂ conv{en | x(h)n = φk(x(h))}
= ∂Fφk(x(h)).

Taking limits as h→ 0 yields y ∈ ∂Lφk(x). •

Combining Theorem 7.2.25 and Theorem 7.2.23, we have
the following representation of subdifferentials for the kth
largest eigenvalue function.
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Theorem 7.2.26.Let A ∈ S(N ). Then for k ∈ {1, . . . , N},
∂∞λk(A) = {0},

∂Cλk(A) = conv{uuT | u ∈ R
N, ‖u‖ = 1, Au = λk(A)u},

and

∂Lλk(A) = {B ∈ ∂Cλk(A) | rank B ≤ α},
where α = 1− k + #{n | λn(A) ≥ λk(A)}.
Proof. Exercise 7.2.30. •

7.2.6 Commentary and Exercises

For additional details on manifolds of matrices we refer to
[27, 136]. Ky Fan’s minimax theorem is the culmination of
earlier research by Courant, Fisher and Weyl. Bhatia [22]
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provides an excellent exposition of this minimax theorem
and extensive commentary on its history. The representation
of the subdifferentials for spectral functions of symmetric
matrices appeared in Lewis [179]. Generalizations to spectral
functions of nonsymmetric matrices can be found in [76,
181]. The exposition here follows [175, 176, 177], viewing the
spectral functions as a special class of nonsmooth functions
on matrix manifolds.

Exercise 7.2.1. Prove Proposition 7.2.1.

Exercise 7.2.2. Prove the claims in Example 7.2.2.

Exercise 7.2.3. Prove the claims in Example 7.2.3.

Exercise 7.2.4. Show that, for A,B ∈ E(N ),

tr(AB) = tr(BA).
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∗Exercise 7.2.5. Prove the claims in Example 7.2.5. Hint:

(i) Define f : GL(N,M ) → S(M ) by f (A) := A�A − I
and show that, for any B ∈ TA(GL(N,M )) = EN×M ,

(f∗)A(B) = A�B +B�A.

(ii) Verify that for every A ∈ GL(N,M ), (f∗)A is a surjec-
tion onto S(M ).

(iii) Use the fiber theorem to identify St(N,M ) = f−1(0) as
a submanifold of GL(N,M ) and therefore a submani-
fold of EN×M .

(iv) Use the fiber theorem again to compute the tangent
space TA(St(N,M )) as the kernel of (f∗)A.

(v) Derive the normal cone representation of (7.2.6) using a
method similar to that in Example 7.2.4.
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Exercise 7.2.6. Let C ∈ A(N ) and let A,B ∈ S(N ).
Show that

〈[A,C], B〉 = 〈C, [A,B]〉.
Exercise 7.2.7. Prove Lemma 7.2.7.

Exercise 7.2.8. Prove formula (7.2.11).

Exercise 7.2.9. Let x ∈ R
N and let P ∈ P (N ). Show

that
diagPy = P� diag yP.

Exercise 7.2.10. Let A ∈ S(N ) and let P ∈ P (N ). Show
that

P diag∗A = diag∗P�AP.
Exercise 7.2.11.Verify the formula (7.2.14).
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Exercise 7.2.12. Let A ∈ S(N ), B ∈ EN×k and X ∈
S(k). Suppose that AB = BX . Prove that any eigenvalue
of X must also be an eigenvalue of A.

Exercise 7.2.13. Prove Corollary 7.2.9.

Exercise 7.2.14. Prove Corollary 7.2.10.

Exercise 7.2.15. Show that the sum of them largest (resp.
smallest) eigenvalues of a symmetric matrix is a continuous
convex (resp. concave) function of the data. Deduce that the
kth largest eigenvalue, as the difference of two continuous
convex functions, is a Lipschitz function of the data.

Exercise 7.2.16. Let λ2 denote second largest eigenvalue
of a symmetric doubly stochastic matrix. Show that λ2 is a
convex function of the data.
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Exercise 7.2.17.LetX be a Banach space and let f : X →
R be a Lipschitz function with a Lipschitz constant L.
Suppose that for any h ∈ X , f ′(x̄;h) exists. Show that
h → f ′(x̄;h) is also a Lipschitz function with the same
Lipschitz constant L.

Exercise 7.2.18. Show that the iteration 〈x, Pny〉 defined
in the proof of Lemma 7.2.13 is increasing with n.

Exercise 7.2.19. Prove (ii) of Lemma 7.2.13. Hint: “Only
if” is the part that we need to work on. Suppose that
〈x, Py〉 = 〈x, y〉.
(i) Partition {1, . . . , N} into sets S1, . . . , SM so that xn =

sm for all n ∈ Sm where sm decreases strictly with m.
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(ii) Choose a permutation with matrix Q ∈ P (N ), fix-
ing each index set Sm, and permuting the components
{(Py)n | n ∈ Sm} into nonincreasing order.

(iii) Show that Q has the property that we are looking for.

Exercise 7.2.20. Prove that if A and B in O(N ) have a
simultaneous ordered spectral decomposition then

〈A,B〉 = 〈λ(A), λ(B)〉.
Exercise 7.2.21. Let U ∈ O(N ). Define a mapping
u : E(N ) → E(N ) by u(B) = U�BU .
(i) Show that u is a diffeomorphism, in fact, a one-to-one

linear mapping.
(ii) Show that for any A ∈ E(N ), TA(E(N )) = E(N ) and

for any B ∈ E(N ), (u∗)AB = U�BU .
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(iii) Verify that for any A ∈ E(N ), T ∗
A(E(N )) = E(N ) and

for any B ∈ E(N ), (u∗)AB = UBU�.
Exercise 7.2.22. Prove Lemma 7.2.16.

Exercise 7.2.23. Let w ∈ R
N
≥ . Show that the function

A → 〈w, λ〉(A) := 〈w, λ(A)〉 is sublinear and therefore
convex on S(N ). Hint: Positive homogeneity is obvious. To
show the subadditive property let A,B ∈ S(N ) and let
U ∈ O(N ) diagonalize A + B. Then
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〈w, λ〉(A +B)= 〈diagw, diag λ(A + B)〉
= 〈diagw,U�(A +B)U〉
= 〈U(diagw)U�, A +B〉
= 〈U(diagw)U�, A〉 + 〈U(diagw)U�, B〉
= 〈diagw,U�AU〉 + 〈diagw,U�BU〉
≤〈w, λ(A)〉 + 〈w, λ(B)〉.

The last inequality is due to the von Neumann–Theobald
inequality.

Exercise 7.2.24. Prove Lemma 7.2.20. Reference: [181].

Exercise 7.2.25. Let φ : S(N ) → R be a unitarily in-
variant function and let U ∈ O(N ). Then the directional
derivative φ′(A;B) exists if and only if φ′(U�AU ;U�BU)
exists. Moreover, when this directional derivative exists
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φ′(A;B) = φ′(U�AU ;U�BU).

Exercise 7.2.26. Let y ∈ R
N , let T be a subset of P (N )

and let S := {Py : P ∈ T}. Show that the support function
of convS is given by

σconvS(z) = max{〈z, Py〉 | P ∈ T}.
Moreover, this function is sublinear and Lipschitz with global
Lipschitz constant ‖y‖.
Exercise 7.2.27. Prove the “only if” part of Theorem
7.2.22.

Exercise 7.2.28. Show that the kth order statistic func-
tion φk permutation invariant and show that φk(x) =
λk(diag x) and λk = φk ◦ λ.
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Exercise 7.2.29. Prove the formula for the singular and
Clarke subdifferentials in Theorem 7.2.25.

Exercise 7.2.30. Prove Theorem 7.2.26.

7.3 Convex Spectral Functions of Compact Operators

The pattern we observed in the previous section also ex-
tends to infinite dimensional spectral functions. We start
with the easier case when the spectral functions are convex.
We also restrict ourselves to operators from the complex
Hilbert space �C2 to itself.
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7.3.1 Operator and Spectral Sequence Spaces

Let C be the space of complex numbers and let N be the
set of natural numbers. Let �C2 be the space of sequences
(ci) such that ci ∈ C for each i ∈ N and such that∑
i∈N |ci|2 <∞. We denote by �2 the standard real square

summable sequence space (coefficients in R) with canonical
basis {ei}. Thus, the jth component of the ith element of

this basis is given by the Kronecker delta: e
j
i = δij. We also

consider the real normed sequence spaces �p(1 ≤ p ≤ ∞)
and c0 (the space of real sequences converging to 0 with the
norm of �∞). Note that �1 ⊂ �2 ⊂ c0 ⊂ �∞.
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We also consider the space of bounded self-adjoint op-
erators on �C2 , which we denote by Bsa. We will need a
number of well-known basic properties of Bsa and its sub-
spaces, which we state without proof below. Additional de-
tails for these preliminaries can be found in [128, 216, 239].
We say an operator T ∈ Bsa is positive (denoted T ≥ 0)
if 〈Tx, x〉 ≥ 0 for all x ∈ �C2 . To each T ∈ Bsa one can

associate a unique positive operator |T | = (T ∗T )
1
2 ∈ Bsa.
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Now to each positive T ∈ Bsa one can associate the (pos-
sibly infinite) value

tr(T ) :=
∞∑
i=1

〈Tei, ei〉, (7.3.1)

which we call the trace of T . The trace is actually indepen-
dent of the orthonormal basis {ei} chosen.
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WithinBsa we consider the trace class operators, denoted
by B1, which are those self-adjoint operators T for which
tr(|T |) < ∞. Since any self-adjoint operator T can be de-
composed as T = T+ − T− where T+ ≥ 0 and T− ≥ 0
the trace operator can be extended to any T ∈ B1 by
tr(T ) = tr(T+)− tr(T−).
We let B2 be the self-adjoint Hilbert–Schmidt operators,

which are those T ∈ Bsa such that T 2 = (T ∗T ) ∈ B1. This
gives

B1 ⊂ B2 ⊂ B0 ⊂ Bsa,

where B0 is the space of compact, self-adjoint operators.
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Now any compact, self-adjoint operator T is diagonaliz-
able. That is, there exists a unitary operator U and λ ∈ c0
such that (U∗TU x)i = λixi for all i ∈ N and all x ∈ B0.
This and the fact that tr(ST ) = tr(TS) makes proving
Lidskii’s Theorem (difficult in general) easy for self-adjoint
operators. Lidskii’s theorem (see [239, p. 45]) states

tr(T ) =
∞∑
i=1

λi(T )

where (λi(T )) is any spectral sequence of T , which is any
sequence of eigenvalues of T (counted with multiplicities).
Define Bp ⊂ B0 for p ∈ [1,∞) by writing T ∈ Bp if

‖T‖p = (tr(|T |p))1/p <∞.
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When T is self-adjoint we have (see [128, p. 94])

‖T‖p = (tr(|T |p))1/p =
( ∞∑
i=1

|λi(T )|p
)1/p

.

In this case for p, q ∈ (1,∞) and p−1+q−1 = 1, we get that
Bp and Bq are paired, and the sesquilinear form 〈S, T 〉 :=
tr(ST ) implements the duality on Bp × Bq. These spaces
are the Schatten p-spaces. We also consider the space B0
paired with B1. Spaces similar to Bp, p = 0 or p ∈ [1,∞)
can also be defined for non self-adjoint operators. Details
can be found in [128]. We need these spaces of non self-
adjoint operators only in Propositions 7.3.19 and 7.3.20, and
in Theorem 7.3.21.
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Further, for each x ∈ �C2 define the operator x� x ∈ B1
by

(x� x)y = 〈x, y〉x.
For each x ∈ �∞ we define the operator diag x ∈ Bsa point-
wise by

diag x :=

∞∑
i=1

xi(e
i � ei).

For p ∈ [1,∞), if we have x ∈ �p, then diag x ∈ Bp and
‖ diag x‖p = ‖x‖p. If we have x ∈ c0, then diag x ∈ B0 and
‖ diag x‖ = ‖x‖∞. This motivates:

Definition 7.3.1. (Spectral Sequence Space) For p ∈
[1,∞) we say �p is the spectral sequence space for Bp
and c0 is the spectral sequence space for B0.
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Definition 7.3.2. (Paired Banach Spaces) We say that
V and W are paired Banach spaces V × W , if V = �p
and W = �q and p, q ∈ [1,∞) satisfy p−1 + q−1 = 1
(p = 1, q = ∞) or V = c0 (with the supremum norm)
and W = �1 or vice versa. We denote the norms on V
and W by ‖·‖V and ‖·‖W respectively. Similarly, we say
V and W are paired Banach spaces V×W where V = Bp
and W = Bq and p, q ∈ [1,∞) satisfy p−1+q−1 = 1 (p =
1, q = ∞) or where V = B0 (with the operator norm) and
W = B1 (or vice versa). We denote the norms on V and
W by ‖ · ‖V and ‖ · ‖W respectively. We always take V
to be the spectral sequence space for the operator space
V and W that for W. In this way fixing V × W fixes
V ×W and vice versa.
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7.3.2 Unitarily and Rearrangement Invariant Functions

We will always use the setting of paired Banach spaces in
Definition 7.3.2. The relationship between V and V in Def-
inition 7.3.2 is akin to that of S(N ) and R

N in the pre-
vious section. Let B be the set of all bijections from N
to N . If x = (x1, x2, . . .) ∈ V and π ∈ B then we call
xπ = (xπ(1), xπ(2), . . .) a rearrangement of x. We sometimes
also call π ∈ B a rearrangement.
We say sequences x and y in V are rearrangement equiv-

alent if there is a rearrangement π ∈ B such that xπ(i) = yi
for all i ∈ N .
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Let U be the set of all unitary operators on �C2 . Similarly,
operators S and T in Bsa are unitarily equivalent if there
is a unitary operator U ∈ U such that U∗TU = S.
We say a function φ : V → R ∪ {+∞} is unitarily in-

variant if φ(U∗TU) = φ(T ) for all T ∈ V and all U ∈ U .
We have seen in the previous section that a unitarily in-

variant function φ can be represented as φ = f ◦ λ where
f : RN → R ∪ {+∞} is a rearrangement invariant func-
tion and λ : S(N ) → R

N is the spectral mapping. We now
proceed to derive an analogous result for unitarily invariant
functions on V .
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A function f : V → R ∪ {+∞} is rearrangement in-
variant if f (xπ) = f (x) for any rearrangement π. The def-
inition of the spectral mapping is less straightforward. We
need the following construction that gives us a tool similar
to arranging the components of a vector in R

N according to
lexicographic order.
For fixed x ∈ V let

I>(x) := {i | xi > 0}, I=(x) := {i | xi = 0},
I<(x) := {i | xi < 0}.

Now, define the mapping Φ : V → V by means of the infinite
algorithm:
Informally, we start with the largest positive component of
x, followed by a 0 component and then the smallest negative



7.3 Convex Spectral Functions 1093

(0) Initialize j = 1.

(1) If I>(x) = ∅, (i) choose i ∈ I>(x) maximizing xi,
(ii) define Φ(x)j := xi,
(iii) update I>(x) := I>(x)\{i} and j := j + 1.

(2) If I=(x) = ∅, (i) choose i ∈ I=(x),
(ii) define Φ(x)j := 0,
(iii) update I=(x) := I=(x)\{i} and j := j + 1.

(3) If I<(x) = ∅, (i) choose i ∈ I<(x) minimizing xi,
(ii) define Φ(x)j := xi,
(iii) update I<(x) := I<(x)\{i} and j := j + 1.

(4) Go to (1).

component and so on. If any of the sets I>(x), I=(x) or
I<(x) is empty or exhausted we skip the corresponding step.
We summarize some useful properties of Φ in the following

proposition whose easy proof is left as an exercise.
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Proposition 7.3.3. The mapping Φ defined above has
the following properties.

(i) For each x ∈ �2 there exists a π ∈ B with (Φ(x))i =
xπ(i) for all i ∈ N .

(ii) For any x, y ∈ �2 we have Φ(x) = Φ(y) if and only
if there exists a π ∈ B with yi = xπ(i) for all i ∈ N .

(iii) Φ2 = Φ.
(iv) f : �2 → R ∪ {+∞} is rearrangement invariant if

and only if f = f ◦ Φ.
Proof. Exercise 7.3.1. •
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What is important here is that Φ is constant on the equiv-
alence classes of V that are induced by rearrangements on
V and that the function Φ is the identity for some canonical
element of each equivalence class.
Define the eigenvalue mapping λ : V → V as follows. For

any T ∈ V let μ(T ) be any spectral sequence of T . Then
λ(T ) = Φ(μ(T )), so that λ gives us a canonical spectral
sequence for any given compact self-adjoint operator T .

Proposition 7.3.4.The mapping λ is unitarily invari-
ant, and Φ = λ ◦ diag.
Proof. Exercise 7.3.2 •
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Moreover, λ and diag act as inverses in the following sense.

Proposition 7.3.5. (Inverse Relation)

(i) (λ ◦ diag)(x) is rearrangement equivalent to x for all
x ∈ �2. That is, x and (λ ◦ diag)(x) are in the same
rearrangement invariant equivalence class.

(ii) (diag ◦λ)(T ) is unitarily equivalent to T for all T ∈
V.

Proof. Exercise 7.3.3 •

The proof of the next result can be found in [216, p. 107].

Theorem 7.3.6.For all T ∈ B0 there exists U ∈ U with
T = U∗ diag(λ(T ))U .
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For any rearrangement invariant f : V → R ∪ {+∞} we
have that f ◦ λ is uniformly invariant, and for any unitarily
invariant φ : V → R ∪ {+∞} we have that f ◦ diag is
rearrangement invariant. Thus, the maps λ and diag allow
us to move between rearrangement invariant functions on V
and unitarily invariant functions on V , as the easy results
below show.

Theorem 7.3.7. (Unitary Invariance) Let φ : V → R ∪
{+∞} . The following are equivalent:

(i) φ is unitarily invariant;
(ii) φ = φ ◦ diag ◦λ;
(iii) φ = f ◦λ for some rearrangement invariant f : V →

R ∪ {+∞} .
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If (iii) holds then f = φ ◦ diag.
Proof. Exercise 7.3.4 •

Symmetrically we have:

Theorem 7.3.8. (Rearrangement Invariance) Let f : V →
R ∪ {+∞} . The following are equivalent:

(i) f is rearrangement invariant;
(ii) f = f ◦ λ ◦ diag;
(iii) f = φ ◦ diag for some unitarily invariant φ : V →

R ∪ {+∞} .
If (iii) holds then φ = f ◦ λ.
Proof. Exercise 7.3.5 •
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Let V and V be as in Definition 7.3.2. We have the fol-
lowing useful relations (see Exercise 7.3.6): ‖ diag(x)‖V =
‖x‖V , for all x ∈ V and ‖λ(T )‖V = ‖T‖V , for all T ∈
V .
Having set the stage, we turn to explore the relationship

between unitarily invariant functions on V and their coun-
terparts on V .
7.3.3 The von Neumann Inequality

We now develop an infinite dimensional analogue of the in-
equality in Theorem 7.2.14. We start with bilinear forms.
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Definition 7.3.9. (Bilinear Forms) Let U ∈ U . We say

BU(x, y) = tr[U∗(diag x)U (diag y)], (x, y) ∈ V ×W

is the bilinear form generated by the unitary operator U .
Similarly, let π ∈ B. We say

Pπ(x, y) =

∞∑
i=1

xπ(i)yi, (x, y) ∈ V ×W

is the bilinear form generated by the rearrangement π.

Our next lemma characterizes the bilinear form generated
by a unitary operator.

Lemma 7.3.10. Let U ∈ U . Define uj := Uej. Then

uj ∈ �C2 , and the “infinite matrix” (|uji |2)i,j∈N is doubly

stochastic. That is,
∑∞
i=1 |u

j
i |
2 = 1 for each j ∈ N and
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j=1 |u

j
i |
2 = 1 for each i ∈ N . Further,

BU(x, y) =

∞∑
i,j=1

xi |uji |
2 yj ≤ ‖x‖V ‖y‖W (7.3.2)

for (x, y) ∈ V ×W .

Proof. It is clear that uj ∈ �C2 . In fact, we know {uj}∞j=1
forms an orthonormal basis for �C2 (Exercise 7.3.7). Thus,∑∞
i=1 |u

j
i |
2 = 1 for each j ∈ N . Further, since 〈ej, U∗ei〉 =

〈Uej, ei〉 = 〈uj, ei〉 = u
j
i , we get U∗ei =

∑∞
j=1(u

j
i )
∗ej.

Taking the norm of this equality gives

‖U∗ei‖ = ‖
∞∑
j=1

(u
j
i )
∗ej‖ =

∞∑
j=1

|uji |
2.
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Since ‖U∗ei‖ = 1 (U is unitary), we have (|uji |
2)i,j∈N is

doubly stochastic. We derive equation (7.3.2) by considering
the following equalities
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tr[U∗(diag x)U (diag y)] =
∞∑
j=1

〈
U∗(diag x)U (diag y)ej, ej

〉
=

∞∑
j=1

〈
(diag x)U (yje

j), Uej
〉

=

∞∑
j=1

yj〈(diag x)uj, uj〉

=

∞∑
j=1

yj

〈∑
i

xiu
j
i e
i, uj

〉
=

∞∑
i,j=1

xi |uji |
2 yj.
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Now the sesquilinear form 〈S, T 〉 := tr(ST ) implements
the duality on V × W . Thus, since ‖U∗(diag x)U‖V =
‖ diag x‖V = ‖x‖V for any U ∈ U and any x ∈ V , we
get that

BU(x, y)= 〈 U∗(diag x)U , diag y 〉
≤‖U∗(diag x)U‖V‖ diag y‖W
=‖x‖V ‖y‖W,

and we are done. •

Now we can prove the von Neumann type inequality.

Theorem 7.3.11. Let (x, y) ∈ V ×W . Then

sup
π∈B

Pπ(x, y) = sup
U∈U

BU(x, y).
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Proof. Given any π ∈ B we can define U ∈ U by Uej =
eπ(j) for all j ∈ N . Then U∗(diag x)U = diag(xπ(j)), so
that we get the inequality

sup
π∈B

Pπ(x, y) ≤ sup
U∈U

BU(x, y) (7.3.3)

for (x, y) ∈ V × W . Now let us define two functions on
V ×W . These are

b(x, y) := sup
U∈U

BU(x, y) and p(x, y) := sup
π∈B

Pπ(x, y).

For fixed x ∈ V we know that as a supremum of a family
of linear functions both p and b are convex in y. Lemma
7.3.10 and (7.3.3) together give the inequality p(x, y) ≤
b(x, y) ≤ ‖x‖V ‖y‖W , so for fixed x ∈ V both p and b
are everywhere finite, lsc and hence continuous (Theorem
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4.1.3), convex functions of y. The same is true if we hold y
fixed and consider b and p as functions of x.
Consider F := {x ∈ �∞ | xj = 0 eventually}, the set of

real finitely non-zero sequences. We know F is norm dense
in both V andW . If we show for fixed x ∈ F that b(x, y) ≤
p(x, y) for all y ∈ F , then since F is norm dense in W and
b and p are continuous functions (in y for fixed x), we get
b(x, y) ≤ p(x, y) for all y ∈ W . This holds for arbitrary
x ∈ F ⊂ V , so b(x, y) ≤ p(x, y) for all (x, y) ∈ F ×W .
Now fix y ∈ W . Since b and p are continuous functions in
x the same density arguments give b(x, y) ≤ p(x, y) for all
x ∈ V . As this y is arbitrary, we get b(x, y) ≤ p(x, y) for
all (x, y) ∈ V ×W , which together with (7.3.3) gives the
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results. Thus, it suffices to show b(x, y) ≤ p(x, y) for any
(x, y) ∈ F × F .
Fix (x, y) ∈ F × F and choose N ∈ N such that
xn = yn = 0 for all n ≥ N . For U ∈ U define the dou-
bly stochastic “infinite matrix” as in Lemma 7.3.10. Let
A(N ) be the set of doubly stochasticN×N matrices. Define
A = (amn)

N
m,n=1 by
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amn = |unm|2 m,n = 1, . . . , N − 1,

aNn = 1−
N−1∑
m=1

amn n = 1, . . . , N − 1,

amN = 1−
N−1∑
n=1

amn n = 1, . . . , N − 1,

aNN = 1−
N−1∑
n=1

aNn (= 1−
N−1∑
m=1

amN ).

Clearly, A ∈ A(N ) and for our (x, y) ∈ F × F we have
BU(x, y) = x�Ay, where we abuse notation and interpret
x and y in R

N in the natural way. Let P (N ) be the set of
all N ×N permutation matrices. Birkhoff’s Theorem 2.4.10
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says that the convex hull of P (N ) is exactlyA(N ). Thus, we

can write A =
∑k
n=1 λnPn where Pn ∈ P (N ) and λn ≥ 0

for n = 1, . . . , k with
∑k
n=1 λn = 1. By Lemma 7.2.13 we

have x�Py ≤ x̄�ȳ for any P ∈ P (N ), so that

x�Ay =

k∑
n=1

λn

(
x�Pny

)
≤

k∑
n=1

λn

(
x̄�ȳ

)
= x̄�ȳ.

If we choose π ∈ B (independent of U) such that Pπ(x, y) =
x̄�ȳ, we obtain the inequalityBU(x, y) ≤ Pπ(x, y). We take
the supremum over U ∈ U to get

sup
U∈U

BU(x, y) ≤ Pπ(x, y),

which means b(x, y) ≤ p(x, y) for all (x, y) ∈ F × F . •
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Unlike in the finite dimensional space, the supremum in
Theorem 7.3.11 may not be attained (Exercise 7.3.8).

7.3.4 Conjugacy of Unitarily Invariant Functions

Next we turn to conjugacy of unitarily invariant convex func-
tions. Let X be a Banach space. Recall that the Fenchel
conjugate of an arbitrary function f : X → R ∪ {+∞} ,
which we denote by f∗ : X∗ → R ∪ {+∞} , is

f∗(y) = sup
x∈X

{〈x, y〉 − f (x)}.

Note that the Fenchel conjugate of any function is a convex
function. We have seen that when f is a proper lsc convex
function, so is f∗.
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In this section when considering the second conjugate
f∗∗ : X → R ∪ {+∞} of f , we restrict the domain of
f∗∗ to the original space X as opposed to considering the
spaceX∗∗. Again we fix two paired spectral sequences spaces
V and W , as in Definition 7.3.2, with their corresponding
paired operator spaces V and W .

Theorem 7.3.12. (Conjugacy and Diagonals) Let φ : V →
R ∪ {+∞} be a unitarily invariant function. Then we
have the identity

φ∗ ◦ diag = (φ ◦ diag)∗.
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Proof. Choose y ∈ W . It follows from the definition that

(φ∗ ◦ diag)(y) = φ∗(diag y) = sup{tr[X(diag y)]− f (X) | X ∈ V
Since we can write any X as U∗ diag(x)U for some appro-
priate x ∈ V and U ∈ U , we can write the right hand
side of the above equality as sup{tr[U∗(diag x) U(diag y)]−
φ(U∗(diag x)U) | U ∈ U , x ∈ V }. By the definition of BU
and the fact that φ is unitarily invariant we have

sup
U∈U

{tr[U∗(diag x) U(diag y)]−φ(U∗(diag x)U) | x ∈ V }

= sup{ sup
U∈U

BU(x, y)− f (diag x) | x ∈ V }.

By virtue of Theorem 7.3.11, we have
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(φ∗ ◦ diag)(y) = sup{ sup
π∈B

Pπ(x, y)− φ(diag x) | x ∈ V }

= sup
{ ∞∑
j=1

xπ(j)yj

− f (diag(xπ(j)))
∣∣∣ x ∈ V, π ∈ B

}
= sup{〈z, y〉 − f (diag z) | z ∈ V },
= (f ◦ diag)∗(y).

•

Corollary 7.3.13. (Convexity) Let φ : V → R∪{+∞} be
a unitarily invariant function. Then φ is proper, convex,
and weakly lsc if and only if φ ◦ diag is.
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Proof. Unitary invariance gives φ = φ∗∗ if and only if
φ ◦ diag = φ∗∗ ◦ diag. The results follow since φ∗∗ ◦ diag =
(φ ◦ diag)∗∗. •

Lemma 7.3.14. (Invariance and Conjugacy) Let φ : V →
R ∪ {+∞} (f : V → R ∪ {+∞} ) be unitarily invariant.
Then φ∗(f∗) is unitarily (rearrangement) invariant.

Proof. This lemma follows directly from the definitions.
We leave the proof as an exercise (Exercise 7.3.9). •

Theorem 7.3.15. Let f : V → R ∪ {+∞} be a rear-
rangement invariant function. Then we have

(f ◦ λ)∗ = f∗ ◦ λ.
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Proof. Theorems 7.3.8 and 7.3.12 allow us to write

f∗ = (f ◦ λ ◦ diag)∗ = (f ◦ λ)∗ ◦ diag .
If we compose this expression with λ and observe that
(diag ◦λ)(T ) is unitarily equivalent to T for all T ∈ B0,
then Lemma 7.3.14 allows us to write

f∗ ◦ λ = (f ◦ λ)∗ ◦ diag ◦λ = (f ◦ λ)∗,
and we are done. •

Putting together Theorems 7.3.7 and 7.3.15 as well as The-
orems 7.3.8 and 7.3.12 gives
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Theorem 7.3.16.Let φ : V → R∪{+∞} (resp., f : V →
R∪{+∞} ) be a unitarily invariant function (resp., re-
arrangement invariant). Then we have φ = f ◦ λ (resp.,
f = φ ◦ diag) for some rearrangement invariant (resp.,
unitarily invariant) function f : V → R∪ {+∞} (resp.,
φ : V → R ∪ {+∞} ). Further we get the formula

φ∗ = f∗ ◦ λ (f∗ = φ∗ ◦ diag).
Proof. Exercise 7.3.10. •

7.3.5 Subdifferentials of Unitarily Invariant Functions

Now we proceed to examine the subdifferential of a unitarily
invariant convex function.



7.3 Convex Spectral Functions 1117

Proposition 7.3.17. Suppose R ∈ Bsa. Then for t ∈ R

we have
Ut := exp(itR) ∈ U .

Further, we have

‖Ut − I‖ → 0

and
‖t−1(Ut − I)− iR‖ → 0

as t→ 0 (where ‖ · ‖ denotes the uniform operator norm
and i =

√
−1).
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Proof. It is not hard to check that Ut ∈ U (Exercise
7.3.11). We also have

‖Ut − I‖ =
∥∥∥ ∞∑
j=1

((it)j
j!

)
Rj

∥∥∥
≤

∞∑
j=1

(|t|j
j!

)
‖Rj‖

≤ exp(‖tR‖)− 1.

Thus, we have Ut → I uniformly as t→ 0.
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Further,

‖t−1(Ut − I)− iR‖ =
∥∥∥t−1

∞∑
j=2

((it)j
j!

)
Rj

∥∥∥
≤ t−1

∞∑
j=2

(|t|j
j!

)
‖Rj‖

≤ t−1[exp(‖tR‖)− (1 + ‖tR‖)
]
,

which gives t−1(Ut − I) → iR uniformly as t→ 0. •

Next we state a technical lemma on approximating bounded
operators with unitary operators, whose proof can be found
in [216, p. 98].
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Lemma 7.3.18. If Ã is a bounded (not necessarily self-
adjoint) operator for which ‖Ã‖ < 1, then there is some
N > 2 and {Un}Nn=1 ⊂ U such that

Ã =
1

N

N∑
n=1

Un.

We use this in the proof of the following estimate.

Proposition 7.3.19. Let X be any (non-self-adjoint)
Schatten p-space (1 ≤ p < ∞) or the space of compact
or bounded operators. Let A be a bounded operator and
let T ∈ X. Then both ‖AT‖ and ‖TA‖ are bounded by
‖T‖X‖A‖.
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Proof. If X is the space of compact or bounded operators,
then this is immediate. We consider the case when X is a
(non-self-adjoint) Schatten p-space (1 ≤ p < ∞). If A = 0,
the results are also immediate, so assume A = 0. Fix δ ∈
(0, 1), let Ã = A/(1 + δ)‖A‖ and apply Lemma 7.3.18 to
Ã, giving

‖AT‖p=(1 + δ)‖A‖ · ‖ÃT‖p

=(1 + δ)‖A‖ ·
∥∥∥ 1

N

N∑
i=1

UiT
∥∥∥
p

≤ (1 + δ)‖A‖ 1

N

N∑
i=1

‖UiT‖p

=(1 + δ)‖A‖ · ‖T‖p,
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where we use the fact that ‖UT‖p = ‖T‖p for all U ∈ U .
Since this holds for each δ ∈ (0, 1), we obtain the results we
want. •

Proposition 7.3.20. Let X be any (non self-adjoint)
Schatten p-space (1 ≤ p < ∞) or the space of compact
or bounded operators. Let At be a family of bounded op-
erators which converge uniformly to A as t → 0. Let
Tt ⊂ X be a family of operators which converge in the
norm on X to T as t→ 0. Then we have

lim
t→0

‖AtTt − AT‖X = 0 = lim
t→0

‖TtAt − TA‖X.

Proof. If we consider the inequalities
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‖AtTt − AT‖X = ‖At(Tt − T ) + (At − A)T‖X
≤‖At(Tt − T )‖X + ‖(At − A)T‖X
≤‖At‖ · ‖Tt − T‖X + ‖At − A‖ · ‖T‖X,

we get the first equality by Proposition 7.3.19. The second
can be proven similarly and is left as Exercise 7.3.12. •

Again we return to the paired spectral sequence spaces
V and W , as in Definition 7.3.2, with their corresponding
paired operator spaces V and W .

Theorem 7.3.21. Let f : V → R∪{+∞} be a unitarily
invariant lsc convex function. Suppose that (S, T ) ∈ V ×
W satisfy T ∈ ∂f (S). Then TS = ST .
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Proof. Let Ṽ be the non self-adjoint extension of V and
let Ut = exp[−t(ST − TS)] ∈ U . That is, in Proposition
7.3.17 we have R = −i(TS − ST ) ∈ Bsa. Thus, Ut → I
uniformly and t−1(Ut − I) → (ST − TS) uniformly as
t→ 0. By Proposition 7.3.20 we obtain

t−1(Ut − I)S → −(ST − TS)S (7.3.4)

in the norm on Ṽ . Upon taking the adjoint of this we get

‖t−1S(U∗
t − I) → −S(TS − ST )‖Ṽ → 0. (7.3.5)

Now if we apply Proposition 7.3.20 with the left hand side
of (7.3.4) playing the role of Tt and U

∗
t playing the role of

At, we obtain∥∥[t−1(Ut − I)S]U∗
t + [(ST − TS)S]I

∥∥
Ṽ → 0,

which when we add to (7.3.5) gives
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‖t−1(UtSU
∗
t − S) + (2STS − S2T − TS2)‖V → 0.

(7.3.6)

Hence

tr[t−1(UtSU
∗
t − S)T ] + tr[2STST − S2T 2 − TS2T ].

(7.3.7)

If we examine the right hand side of (7.3.7), we see that since
(S, T ) ∈ V × W , we have STST, S2T 2 and TS2T ∈ B1.
Further, we have
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‖TS − ST‖2=tr[(TS − ST )∗(TS − ST )]

=tr[(ST − TS)(TS − ST )]

=− tr[TSTS + STST − ST 2S − TS2T ]

=− tr[TSTS]− tr[STST ] + tr[ST 2S] + tr[TS2T ]

=− tr[2STST ] + tr[S2T 2] + tr[TS2T ]

=− tr[2STST − S2T 2 − TS2T ]. (7.3.8)

If we use the unitary invariance of f , then for any t ∈ R we
get the inequality

t× tr[t−1(UtSU
∗
t − S)T ] = 〈T, UtSU∗

t − S〉
≤f (UtSU∗

t )− f (S) = 0,

which together with (7.3.7) and (7.3.8) implies ‖TS −
ST‖2 = 0, or TS = ST . •
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Combining this result with the fact that commuting ele-
ments of B0 are simultaneously diagonalizable [216] we have
the following result.

Lemma 7.3.22. Let f : V → R ∪ {+∞} be a unitarily
invariant lsc convex function. For x ∈ V we have y ∈
∂(f ◦ diag)(x) if and only if diag y ∈ ∂f (diag x).

Proof. Assume first that diag y ∈ ∂f (diag x). Then for
each z ∈ V we have

〈y, z − x〉=tr[(diag y)(diag z − diag x)]

≤f (diag z)− f (diag x)

so that y ∈ ∂(f ◦ diag)(x).
To see the other implication given Q ∈ V , choose z ∈ V

and U ∈ U so that Q = U∗(diag z)U . Now we use Theorem



1128 7 Symmetry

7.3.11, the assumption that y ∈ ∂(f ◦ diag)(x) and the
unitary invariance of f (twice) to obtain

tr[(diag y)(Q− diag x)]= tr[(diag y)(U∗ diag z U)]− 〈y, x〉
=BU (z, y)− 〈y, x〉
≤ sup
π∈B

Pπ(z, y)− 〈y, x〉

=sup{〈y, (zπ(j))− x〉 | π ∈ B}
≤ sup
π∈B

{f (diag(zπ(j)))− f (diag x)}

= f (diag z)− f (diag x)

= f (Q)− f (diag x),

which gives us diag(y) ∈ ∂f (diag x). •
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The next result can be viewed as a generalization of the
chain rule in Lemma 7.2.15. We give a direct proof.

Lemma 7.3.23. Let f : V → R ∪ {+∞} be a unitarily
invariant lsc convex function. Then, for (S, T ) ∈ V ×W
we have T ∈ ∂f (S) if and only if U∗TU ∈ ∂f (U∗SU).
Proof. By definition, T ∈ ∂f (S) if and only if

f (S + UHU∗)− f (S) ≥ 〈T, UHU∗〉 for all H ∈ V .(7.3.9)

Since f is unitarily invariant f (S + UHU∗) − f (S) =
f (U∗SU+H)−f (U∗SU). Moreover, one can directly check
that 〈T, UHU∗〉 = 〈U∗TU,H〉. Thus, (7.3.9) is equivalent
to

f (U∗SU +H)− f (U∗SU) ≥ 〈U∗TU,H〉 for all H ∈ V .
That is U∗TU ∈ ∂f (U∗SU). •
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We now prove the central result of this subsection.

Theorem 7.3.24. (Convex Subgradient) Let f : V → R∪
{+∞} be a unitarily invariant lsc convex function. For
(S, T ) ∈ V ×W we have T ∈ ∂f (S) if and only if there
exist U ∈ U and (x, y) ∈ V ×W with S = U∗(diag x)U ,
T = U∗(diag y)U and y ∈ ∂(f ◦ diag)(x).
Proof. Assume first the existence of U, x and y with the
stated properties. Since y ∈ ∂(f ◦ diag)(x), Lemma 7.3.22
tells us that diag y ∈ ∂f (diag x). The unitary invariance of
f gives T = U∗(diag y)U ∈ ∂f (U∗(diag x)U) = ∂f (S).
To see the reverse implication note that T ∈ ∂f (S) im-

plies TS = ST by Theorem 7.3.21, which means S and T
are simultaneously diagonalizable. Thus, there exists U ∈ U ,
(x, y) ∈ V ×W with S = U∗(diag x)U , T = U∗(diag y)U ,
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so that U∗(diag y)U ∈ ∂f (U∗(diag x)U). Now the unitary
invariance allows us to rewrite this as diag y ∈ ∂f (diag x),
which by Lemma 7.3.22 implies y ∈ ∂(f ◦ diag)(x) as re-
quired. •

The next theorem shows that the differentiability of a con-
vex unitarily invariant function f is characterized by that of
f ◦ diag.
Theorem 7.3.25. Let f : V → R∪{+∞} be a unitarily
invariant lower semicontinuous convex function. Then f
is Gâteaux differentiable at A ∈ V if and only if f ◦ diag
is Gâteaux differentiable at λ(A) ∈ V .

Proof. Note that a lsc convex function is Gâteaux dif-
ferentiable at a point if and only if its subdifferential is a
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singleton at that point. Assume that f is Gâteaux differen-
tiable at A. Let y, z ∈ ∂(f ◦ diag)(λ(A)) and let u ∈ U be
such that U∗λ(A)U = A. By Theorem 7.3.24, U∗(diag y)U
and U∗(diag z)U ∈ ∂f (A). Since f is Gâteaux differen-
tiable at A, U∗(diag y)U = U∗(diag z)U which implies that
y = z. Thus, ∂(f ◦ diag)(λ(A)) is a singleton and f ◦ diag
is Gâteaux differentiable at λ(A).
To prove the converse we assume that F is Gâteaux dif-

ferentiable at λ := λ(A). Then ∂(f ◦ diag)(λ) = {μ} is a
singleton.
First we observe that if λi = λj then μi = μj. In fact,

when λi = λj the permutation invariance and the Gâteaux
differentiability of f ◦ diag implies that
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μit + o(t) = f ◦ diag(λ + tei)− f ◦ diag(λ)
= f ◦ diag(λ + tej)− f ◦ diag(λ) = μjt + o(t).

Therefore, μi = μj.
Next we show that if B ∈ U commutes with diag λ, i.e.,

B diag λ = diag λB, (7.3.10)

then B also commute with diag μ. Obviously it suffices to
show that for arbitrary natural numbers i and j,

〈ei, B(diagμ)ej〉 = 〈ei, (diagμ)Bej〉,
or equivalently

μj〈ei, Bej〉 = μi〈ei, Bej〉. (7.3.11)

When λi = λj we have μi = μj which immediately leads to
(7.3.11). It remains to consider the case when λi = λj. Note
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that it follows from (7.3.10) that

λj〈ei, Bej〉= 〈ei, B(diag λ)ej〉 = 〈ei, (diag λ)Bej〉
=λi〈ei, Bej〉,

which implies that 〈ej, Bei〉 = 0. Thus, both sides of (7.3.11)
are 0.
Now consider any two elements S and T of ∂f (A). By

Theorem 7.3.24 there exist unitary operators U, V ∈ U sat-
isfying

U∗(diag λ)U = V ∗(diag λ)V = A (7.3.12)

such that S = U∗(diagμ)U and T = V ∗(diagμ)V . It fol-
lows from (7.3.12) that B := V U∗ commutes with diag λ.
Therefore, B also commutes with diag μ. Then we have
S = U∗(diagμ)U = V ∗B(diagμ)U = V ∗(diagμ)BU =
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V ∗(diagμ)V = T . That is to say ∂f (A) is a singleton, or f
is Gâteaux differentiable at A. •

7.3.6 Generalizations to Nonconvex Functions

In this subsection we show that the method we used in the
previous sections is also applicable to nonconvex functions.
More concretely, we show Theorem 7.3.24 extends to non-
convex Lipschitz functions with the convex subdifferential
replaced by the Gâteaux subdifferential. Let X be a Banach
space and let f : X → R be a Lipschitz function. Recall
that the Gâteaux subdifferential ∂Gf (x) of f at x ∈ X is
defined by ∂Gf (x) :=

{x∗ ∈ X∗ : lim inf
t→0

f (x + th)− f (x)

t
≥ 〈x∗, h〉, for all h ∈ X}.
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We continue to use the paired Banach spaces V ×W and
their corresponding paired operator spaces V × W as de-
scribed in Definition 7.3.2.
The proof of the extension of Theorem 7.3.24 follows the

same strategy as Section 5. First we extend Theorem 7.3.21.

Theorem 7.3.26. (Commutativity) Let f : V → R ∪
{+∞} be a unitarily invariant locally Lipschitz func-
tion. Let S ∈ V and T ∈ W satisfy T ∈ ∂Gf (S). Then
TS = ST .

Proof. Define, as in the proof of Theorem 7.3.21, Ut =
exp[−t(ST − TS)] ∈ U . Then it follows from (7.3.6) that

UtSU
∗
t = S − t(2STS − S2T − TS2) + o(t).
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Since f is unitarily invariant, locally Lipschitz and T ∈
∂Gf (S) we have

0= t−1[f (UtSU
∗
t )− f (S)]

= t−1[f (S − t(2STS − S2T − TS2) + o(t))− f (S)]

= t−1[f (S − t(2STS − S2T − TS2))− f (S)]

+t−1[f (S − t(2STS − S2T − TS2) + o(t))

−f (S − t(2STS − S2T − TS2))]

= t−1[f (S − t(2STS − S2T − TS2))− f (S)] + o(1)

≥−〈T, 2STS − S2T − TS2〉 + o(1)

=− tr(2STST − S2T 2 − TS2T ) + o(1)

= ‖TS − ST‖2 + o(1).

Taking limits as t → 0 yields ‖TS − ST‖ = 0, i.e., TS =
ST . •
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Lemma 7.3.27. Let f : V → R be a unitarily invariant
locally Lipschitz function. For x ∈ V we have y ∈ ∂G(f ◦
diag)(x) if and only if diag y ∈ ∂Gf (diag x).

Proof. The idea is to approximate operators and functions
on V by their finite dimensional restrictions. It is not hard
to check that results similar to Lemma 7.2.17 apply to these
restrictions for the Gâteaux subdifferential. Then the general
result is derived by taking limits.
Observe that the “if” part is easy and left as Exercise

7.3.14. We concentrate on the “only if” part. We will need
the following notations and simple facts.
Let {ej} be the standard basis in �2. Define subspace
En of �C2 by En := span{e1, e2, . . . , en}. Then E⊥

n :=

cl span{en+1, en+2, . . . }. Let Hn denote the Hermitian op-
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erators on the space En. Define the eigenvalue mapping
λn : Hn → R

n taking operators to their eigenvalue se-
quence in decreasing order and define the diagonal map-
ping diagn : R

n → Hn in the natural way: for y ∈ R
n and

μ ∈ Cn,

(diagn y)
n∑
k=1

μke
k =

n∑
k=1

μkyke
k.

Let Pn : �
C
2 → En denote the orthogonal projection. It is

easy to check that the adjoint P ∗
n : En → �C2 is just inclusion

(Exercise 7.3.15). Given any Z ∈ V we have, relative to the
decomposition �C2 = En ⊕ E⊥

n , the block decomposition

P ∗
nPnZP

∗
nPn =

(
PnZP

∗
n 0

0 0

)
.
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Furthermore, we can check the following as an exercise: (Ex-
ercise 7.3.16)

lim
n→∞‖Z − P ∗

nPnZP
∗
nPn‖V = 0.

Finally, let PVn : V → R
n and PWn : W → R

n denote the
natural truncation maps, and note the identity

diagn(P
V
n z) = Pn(diag z)P

∗
n, for z ∈ V.

The analogous identity also holds in W .
Suppose that elements x ∈ V and y ∈ W satisfy y ∈
∂G(f ◦diag)(x). Define a permutation-invariant locally Lip-
schitz function φ : Rn → R ∪ {+∞} by φ(z) := (f ◦
diag)(z1, . . . , zn, xn+1, xn+2, . . . ). It is straightforward to
check PWn y ∈ ∂Gφ(P

V
n x) (Exercise 7.3.17). Then, it follows

from Theorem 7.2.22 (note that the proof of that theorem
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applies to the Gâteaux subdifferential) that diagn P
W
n y ∈

∂G(φ ◦λn)(diagn PVn x). Denote the Lipschitz constant of f
by L. Then for any operator Z ∈ V and small real t > 0 we
have

f (diag x + tZ)− f (diag x) ≥ −Lt‖Z − P ∗
nPnZP

∗
nPn‖V

+ f (diag x + tP ∗
nPnZP

∗
nPn)− f (diag x).

By using the above block decomposition we know

f (diag x+tP ∗
nPnZP

∗
nPn)− f (diag x)

= φ(λn(diagn(P
V
n x) + tPnZP

∗
n))− φ(λn diag(P

V
n x))

≥ t〈diagn PWn y, PnZP
∗
n〉 + ‖Z‖Vo(t)

≥ t〈Pn diag yP ∗
n, PnZP

∗
n〉 + ‖Z‖Vo(t)

≥ t〈diag y, Z〉 − t‖y‖W‖Z − P ∗
nPnZP

∗
nPn‖V + ‖Z‖Vo(t)
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Hence we deduce

f (diag x + tZ)− f (diag x)

≥ t〈diag y, Z〉−t(‖y‖W+L)‖Z−P ∗
nPnZP

∗
nPn‖V+‖Z‖Vo(t).

Taking the limit as n→ ∞ shows

lim inf
t→0

f (diag x + tZ)− f (diag x)

t
≥ 〈diag y, Z〉.

Therefore, diag y ∈ ∂Gf (diag x), as required. •

The next lemma is elementary.

Lemma 7.3.28. Let f : V → R be a unitarily invariant
locally Lipschitz function. For S ∈ V and T ∈ W we
have T ∈ ∂Gf (S) if and only if U∗TU ∈ ∂Gf (U

∗SU).
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Proof. The proof of this lemma is similar to that of the
proof of Lemma 7.3.23 with appropriate notational changes.
We leave the details to Exercise 7.3.15. •

Theorem 7.3.29.Let f : V → R be a unitarily invariant
locally Lipschitz function. For S ∈ V and T ∈ W we
have T ∈ ∂Gf (S) if and only if there exists U ∈ U , x ∈ V
and y ∈ W with S = U∗(diag(x))U , T = U∗(diag y)U
and y ∈ ∂G(f ◦ diag)(x).
Proof. Assume first the existence of U, x and y with the
stated properties. Since y ∈ ∂G(f ◦ diag)(x), Lemma 7.3.27
tells us that diag y ∈ ∂Gf (diag x). The unitary invariance of
f gives T = U∗(diag y)U ∈ ∂Gf (U

∗(diag x)U) = ∂Gf (S).
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To see the reverse implication note that T ∈ ∂Gf (S)
implies TS = ST by Theorem 7.3.26, which means T
and S are simultaneously diagonalizable. Thus, there ex-
ist U ∈ U , x ∈ V and y ∈ W with S = U∗(diag x)U , T =
U∗(diag y)U , so that U∗(diag y)U ∈ ∂Gf (U

∗(diag x)U).
Now the unitary invariance allows us to rewrite this as
diag y ∈ ∂Gf (diag x), which by Lemma 7.3.27 implies
y ∈ ∂G(f ◦ diag)(x) as required. •

7.3.7 Applications and Examples

We illustrate some of the results with a number of examples.
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Example 7.3.30.We know that the norm of �p for p ∈
[1,∞) is Gâteaux differentiable away from the origin. As an
immediate consequence of Theorem 7.3.25, so is the norm of
Bp.

Next we take up the case of the Calderón norm.

Example 7.3.31. For p ∈ (1,∞) and q satisfying p−1 +
q−1 = 1 the symmetric norm defined by

‖|x‖|p = sup
n

(
n
−1
q

n∑
i=1

λi(diag x)
)

is the Calderón norm on �p (see [239]). Clearly, this is a re-
arrangement invariant continuous function on this sequence
space, so that ‖| ·‖|V ,p = ‖| ·‖|p ◦λ(·) is a unitarily invariant
function on Bp. Now apply Theorem 7.3.16 to get (as in the
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case of the Schatten p-norms) the very pleasant formula for
the dual norm

(‖| · ‖|V ,p)∗=(‖| · ‖|p ◦ λ)∗
=(‖| · ‖|p)∗ ◦ λ
=‖| · ‖|V ,q.

A generalization can be found in Exercise 7.3.18.

Now let us consider an example that has been the subject
of much interest in recent years.

Example 7.3.32. In [116] the author looks at self-concordant
barriers, which play a central role in many types of optimiza-
tion problems. A number of the details here can be put into
quite an appealing setting by the theory developed thus far.
We start with the Taylor expansion
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ln(1 + t)= t− 1

2
t2 +

1

3
t3 − 1

4
t4 + · · ·

=−
∞∑
n=1

(−1)n

n
tn.

Thus, the function g : R → R given by

g(t) =

{
t− ln(1 + t) t > −1,

+∞ t ≤ −1.

is convex. Further, g has the conjugate g∗(s) = g(−s) (Ex-
ercise 7.3.19). Now we define the function f on �2 by writing

f (x) =
∞∑
i=1

g(xi).
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Clearly, f is finite and continuous at 0 since |g(t)| ≤ kt2 if
|t| ≤ 1/2. Using our technique we can derive a function φ
on B2 in the obvious way:

φ = f ◦ λ,
and Theorem 7.3.15 shows φ∗(T ) = φ(−T ). Notice that if
T ∈ B2 and I + T ≥ 0, then

φ(T ) = tr(T )− ln(det(I + T )).

Example 7.3.33. The previous example can be extended
to Bp for appropriate p by subtracting more terms of the

series for log: ln(1 + t)− (t− t2/2), . . . . This will be convex
or concave alternatively. Consider for example g(t) := ln(1+
t)− (t− t2/2). Direct calculation yields that g′(t) = t2/(1+
t) and g′′(t) = 1 − 1/(1 + t)2. Therefore, for t > 0, g is
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increasing and convex. The dual of g is

g∗(s) = st(s)− ln(1 + t(s)) + t(s)− t2(s)/2,

where t(s) = s+
√
s2+4s
2 . Since |g(t)| ≤ kt3 for t small, the

(permutation invariant) function

f (x) :=
∞∑
i=1

gi(xi)

is well defined, continuous and convex on �3. Then φ := f ◦λ
is a continuous unitarily invariant convex function on B3.
Consequently φ∗ = f∗◦λ is a continuous unitarily invariant
convex function on B3/2, where f

∗(x) =
∑∞
i=1 g

∗(xi).
Our last example concerns the kth largest eigenvalues of a

positive self-adjoint operator.
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Example 7.3.34.The kth largest eigenvalue of a positive
self-adjoint operator arises naturally in many applications.
Consider 0 < S ∈ Bp. Let us denote the kth largest eigen-
value of S by μk(S). Then μk = φk ◦ λ where φk : �2 → R

is defined by φk(x) := kth largest component of x. Observe
that φk can be expressed as the difference of two convex
continuous permutation invariant functions. In fact, define
σk(x) := max{

∑k
i=1 xni : ni ∈ N}. Then σk is continu-

ous, permutation invariant and convex and φk = σk−σk−1.
Thus, φk is a locally Lipschitz permutation invariant func-
tion on �p, and therefore μk is a unitarily invariant locally
Lipschitz function on Bp. Using Theorem 7.3.29, the char-
acterization of the subdifferentials for the kth largest eigen-
value of symmetric matrices in Theorem 7.2.26 can be gener-
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alized to that of μk. In fact, replacing the Fréchet subdiffer-
ential ∂F in Theorem 7.2.25 by the Gâteaux subdifferential
∂G, the results and the proofs of Theorem 7.2.25 remain
valid. So we have

Theorem 7.3.35. Let x ∈ �p, p > 1 with positive com-
ponents. Then

∂Gφk(x) =

{
conv{ei | xi = φk(x)} if φk−1(x) > φk(x),

∅ otherwise,

∂Cφk(x) = conv{ei | xi = φk(x)},
and

∂Lφk(x) = {y ∈ conv{ei | xi = φk(x)} : #(supp y) ≤ α},
where α = 1− k + #{i | xi ≥ φk(x)}.
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Proof. Exercise 7.3.20. •

Combining Theorems 7.3.29 and 7.3.35 we have

Theorem 7.3.36. Let S ∈ Bp, p > 1 be a positive oper-
ator. Then

∂Cμk(S) = conv{u� u | u ∈ �p, ‖u‖ = 1, Su = μk(S)u},
and

∂Lμk(S) =
{
Y ∈ ∂Cμk(S)

∣∣ rank Y ≤ 1−k+#{i | μi(S) ≥ μk(

Proof. Exercise 7.3.21. •

7.3.8 Commentary and Exercises

Our main reference for this section is [59]. We recommend
[128, 216, 239] for additional information on various opera-



7.3 Convex Spectral Functions 1153

tor spaces and corresponding sequence spaces discussed here.
The Gâteaux differentiability characterization in Theorem
7.3.25 cannot be generalized to Fréchet differentiability. In
fact, the eigenvalue mapping λ defined in this section may
not even be continuous (Exercise 7.3.13). One way to over-
come this difficulty is to eliminate all the zeros in the def-
inition of the eigenvalue mapping. Of course, an eigenvalue
mapping defined this way is not “faithful”. We refer to [55]
for additional details.

Exercise 7.3.1. Prove Proposition 7.3.3.

Exercise 7.3.2. Prove Proposition 7.3.4.

Exercise 7.3.3. Prove Proposition 7.3.5.

Exercise 7.3.4. Prove Theorem 7.3.7.
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Exercise 7.3.5. Prove Theorem 7.3.8.

Exercise 7.3.6. Let V and V be as in Definition 7.3.2.
Prove that

‖ diag(x)‖V = ‖x‖V , for all x ∈ V

and
‖λ(T )‖V = ‖T‖V , for all T ∈ V .

Exercise 7.3.7. Let U ∈ U and let uj := Uej. Show that
{uj} forms an orthonormal basis for �C2 . Reference: [216,
p. 95].

Exercise 7.3.8. Consider the two sequences



7.3 Convex Spectral Functions 1155

x =
(
0,

1√
2
,

1√
22
,

1√
23
, . . .

)
y =

( 1√
2
,

1√
22
,

1√
23
, . . .

)
Show that supπ∈B Pπ(x, y) = 1, but this cannot be attained
by applying any bijection.

Exercise 7.3.9. Prove Lemma 7.3.14.

Exercise 7.3.10. Prove Theorem 7.3.16.

Exercise 7.3.11. Let R ∈ Bsa. Prove that, for t ∈ R,

Ut := exp(itR) ∈ U .
Reference: [216, p. 214].

Exercise 7.3.12. Prove that TtAt converges to TA in the
norm on X as t→ 0 in Proposition 7.3.20.
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Exercise 7.3.13. Consider “diagonal” operators An with
diagonal elements

(−1,−1/2,−1/4, . . . ,−21−n, 0,−2−n, . . . )

and A with diagonal elements

(−1,−1/2,−1/4, . . . ).

Show that An converges to A in B2 but λ(An) does not
converge to λ(A) in �2.

Exercise 7.3.14. Prove the “if” part of Lemma 7.3.27.

Exercise 7.3.15. Let Pn : �
C
2 → En denote the orthog-

onal projection. Prove that P ∗
n : En → �C2 is the inclusion

mapping.

Exercise 7.3.16. Prove that for any Z ∈ V ,
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lim
n→∞‖Z − P ∗

nPnZP
∗
nPn‖V = 0.

Reference: [128, Theorem 6.3, p. 90].

Exercise 7.3.17. Suppose that x ∈ V and y ∈ W satisfy
y ∈ ∂G(f ◦ diag)(x). Define φ : Rn → R ∪ {+∞} by

φ(z) := (f ◦ diag)(z1, . . . , zn, xn+1, xn+2, . . . ).
Show that φ is a permutation invariant locally Lipschitz
function and PWn y ∈ ∂Gφ(P

V
n x).

∗Exercise 7.3.18. For an element x of c0, we rearrange
the components |xi| into decreasing order to obtain a new
element x̄ of c0. Show that

(i) for a fixed decreasing sequence ti → 0+ (not identically
zero),
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x ∈ V → sup
n∈N

{∑n
i=1 x̄i∑n
i=1 ti

}
,

and

y ∈ W →
∞∑
i=1

tiȳi

are a pair of dual norms;
(ii) their compositions with λ are dual norms on the spaces

V and W ;
(iii) when ti = i1/q − (1 − i)1/q(1 < q < ∞) they are the

Calderón norms.

Exercise 7.3.19. Let

g(t) =

{
t− ln(1 + t) t > −1,

+∞ t ≤ −1.



7.3 Convex Spectral Functions 1159

Show that g is convex and has the conjugate g∗(s) = g(−s).
Exercise 7.3.20. Prove Theorem 7.3.35.

Exercise 7.3.21. Prove Theorem 7.3.36.
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extremal principle, 366, 377, 872, 900
and convex separation, 723
approximate, 366, 377
geometry, 372
limiting, 689

extreme points, 99

Farkas lemma, 98
feasible allocation, 903
Fejér Monotone sequence, 500
Fenchel

biconjugate, 478, 479
conjugate, 469, 532, 1099
examples, 479
of exponential, 480, 483
transformations, 480

duality, 473, 549
linear constraints, 483
symmetric, 484

problem, 472
Fenchel–Rockafellar Theorem, 423
Fenchel–Young inequality, 470, 478
Fitzpatrick function, 616
fixed point, 47
fixed point theorem

Banach, 49
Caristi–Kirk, 57
and Banach, 62

Clarke’s refinement, 51
error estimate, 62
iteration method, 61

flower petal, 35

theorem, 37
Fréchet

coderivative, 761
derivative, 132
differentiable, 132, 833
normal cone, 139
smooth space, 132
subderivative, 133
subdifferentiable, 133
subdifferential, 133, 838
superderivative, 346
superdifferential, 150, 173, 346

Fritz John condition, 222
function

bump, 113
Cantor, 155
characteristic, 155
convex
Lipschitz property, 393
regularity, 668

distance, 9, 129, 523, 739, 741, 794
eigenvalue, 129, 1058
entropy, 551
epigraph of, 9
Fitzpatrick, 616
gauge, 389
gauge-type, 101
graph of, 9
indicator, 9
conjugate of, 482
subdifferential of, 408

Lipschitz, 128, 276
lower semicontinuous (lsc), 4, 8
Lyapunov, 308, 312
max, 125
subdifferential of, 467

nonexpansive, 751
number of elements, 79
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optimal value, 126, 184
order statistic, 1058
penalization, 127
set of continuity, 420
sign, 265
spectral, 129
support, 389, 568

Gâteaux differentiable, 30, 424
game, 385
gauge-type function, 101
general metric regularity qualification condition, 772
generic, 112
generic Gâteaux differentiability, 982
Gordan alternative, 68
graph of function, 9
Graves–Lyusternik theorem, 360

Hadamard’s inequality, 272
Hahn–Banach extension, 461
Hamilton–Jacobi equation, 171, 185
Hessian

and convexity, 434
hypermonotone, 633

implicit function theorem, 803
implicit multifunction, 803
indicator function, 9
induced map, 996
inf-convolution, 11, 522
interior, 10

Kirszbraun–Valentine theorem, 621
kronecker delta, 1074
Ky Fan minimax theorem, 1031

Lagrange multiplier rule, 734, 1016
Lambert W-function, 523

level sets, 10

normal cone

representation, 208

of majorization, 72

of preference, 375

singular normal cone

representation, 211

lexicographic order, 1082

Lidskii theorem, 1076

Lie

bracket, 1018

group, 999

action, 999

limiting

chain rule, 688

coderivative, 761

extremal principle, 689

multiplier rule, 686

normal cone, 680

subdifferential, 679, 1001

sum rule, 683

failure, 692

linearity space, 413

Lipschitz

and cone monotonicity, 301

criterion, 286

property, 276

local coordinate system, 992

local sum rule, 871

approximate, 188, 196, 198, 215, 305, 356, 378, 867

log, 483

lower semicompact, 781

lower semicontinuous (lsc), 8

lsc closure, 181

Lyapunov

function, 312

stability, 311
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majorization, 71
and doubly stochastic matrix, 89
level sets of, 72, 92
representation, 75

Mangasarian–Fromovitz condition, 234
manifold, 992

full rank matrices, 1019
invertible matrices, 1019
orthogonal matrices, 1020
Stiefel, 1024

mapping
attracting, 498
nonexpansive, 497

marginal price rule, 714
mathematical economics, 714
mathematical program with equilibrium constraint, 267
matrix, 1018

doubly stochastic, 78, 557
permutation, 75
skew symmetric, 1018
symmetric, 1018

max formula, 421
maximal monotone, 579, 615

on a set, 611
maximum eigenvalue, 1029
meager, 112
mean value inequality, 357
mean value theorem

approximate, 282
Cauchy, 295
Lagrange, 275
Rolle, 274

metric regularity, 805, 813, 824
tangential conditions, 825

metric space, 7
minimal cusco, 615, 700, 742
minimal usco, 606

existence, 606

minimax theorem, 347, 482
minimizer

subdifferential zeroes, 409
monotone

maximal, 579
multifunction, 577
quasi, 290

monotonicity, 277
cone, 288
of gradients, 436

mountain pass theorem, 940, 952
approximate, 943

multidirectional mean value inequality, 335, 796, 869
approximate, 335
convex, 456
refined, 358
two sets, 536

multifunction, 11, 572, 803
argmin, 574
close valued, 575
closed, 575
compact valued, 575
composition, 768
continuity, 598
convex valued, 575
domain of, 12, 572
epigraphical profile, 574
graph of, 11, 572
inverse of, 12, 572
maximal monotone, 579, 611
monotone, 577
boundedness, 582

open valued, 575
profile mapping, 601
range of, 572
semicontinuity, 600
sequential lower limit, 599
sequential upper limit, 599
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subdifferential, 573
sublevel set mapping, 601
sublevel sets, 574

multiobjective optimization, 374
multiplier set, 226
multipliers

nonexistence, 265

nearest point, 488, 524
existence and uniqueness, 488
in polyhedron, 483
normal cone characterization, 490

necessary optimality condition, 238, 686
approximate multiplier rule, 216, 221
Clarke subdifferential, 662
comparison, 731
Fréchet normal cone condition, 140
Frizt John condition, 222
Guignard, 829
Karush–Kuhn–Tucker, 232, 235, 244, 270
Lagrange multiplier rule, 731, 734, 1016
multi-objective optimization, 376
Pshenichnii–Rockafellar, 460, 490

nonconvex separation theorem, 890
and extremal principle, 900
for multifunctions, 890
for sets, 896

nonexpansive
mapping, 621
extension, 621

nonexpansive function, 751
nonlocal approximate sum rule, 165, 176, 178, 191, 336, 368, 449, 868,

892
nonsmooth analysis, 4
nonsymmetrical minimax theorem, 347, 362
norm

subgradients of, 429
normal cone

and subgradients, 454
Clarke, 661
convex, 408
epigraph, 143
Fréchet, 139
level sets, 208
limiting, 680
nonclosed, 696
of a submanifold, 1005
on manifolds, 1003
sublevel sets, 201
to intersection, 454

normal upper semicontinuity, 910

one-perturbation variational principle, 960
open covering with a linear rate, 806
open mapping theorem, 397
optimal principle, 185
optimal value

dual, 472
function, 186, 224
primal, 472

optimality condition, 657
optimization

constrained, 214, 662
multiobjective, 374
necessary optimality conditions, 376

subdifferential in, 409
orbit, 999, 1040
order statistic function, 1058
order-reversing, 469

Pacman set, 727
Painlevé–Kuratowski limit, 586
paired Banach spaces, 1079
Palais–Smale condition, 952
Pareto optimal allocation, 906
pass, 942



1182 Index

permutation
invariant, 1028
matrix, 75, 1028

Pitt’s theorem, 935
polar, 661
polar cone, 476
polyhedron, 466

nearest point in, 483
positive operator, 1075
positively homogeneous, 412
preference, 374
preferred neighborhood, 996
preimage, 10
projection, 491

algorithm, 496
approximate, 799
attractive property, 498
potential function of, 493
properties, 492

projection algorithm, 496
asymptotically regular, 505
convergence, 507
strong convergence, 517
weak convergence, 515

proximal
normal cone, 754
normal formula, 755
normal vector, 754
subderivative, 155
subdifferential, 155

pseudo-Lipschitzian, 806
pseudoconvex set, 731
pseudotangent cone, 726
Pshenichnii–Rockafellar conditions, 460

quasi
convexity, 290, 579
monotone, 290

Radon–Nikodym property, 915, 932
real normed sequence space, 1074
rearrangement, 1082

equivalent, 1081
invariant, 1082

regularity
function, 667
set, 730

residual, 112
resolvent, 635

sandwich theorem, 443, 450
Lewis–Ralph, 534

sandwiched functions, 526
Schatten p-spaces, 1108
segment, 50
self-adjoint operator, 1074
sensitivity, 227
separable, 483
separable points, 889
separable reduction, 841, 846, 855
separation theorem, 462, 723
sequence of sets

lower limit, 585
Painlevé–Kuratowski limit, 585
upper limit, 585

sequential uniform lower semicontinuity, 253
set-valued function, 11
shadow price, 906, 910
sign function, 265
singular

subdifferential, 679, 1001
singular subdifferential

Clarke, 663
singular value

largest, 272
slice, 914, 917

weak-star, 914
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smooth chain rule, 1010
solvability, 343, 791
spectral

decomposition, 1039
function, 129, 1017, 1028
sequence, 1077
sequence space, 1079

spectral radius, 1029
stability, 314
stabilizer, 999
stable set, 311
star of a set, 735
Stegall variational principel, 821, 917
Stiemke’s theorem, 95
strictly convex, 434

and Hessian, 434
strong minimum, 113, 916
strongly exposed, 931
strongly exposing functional, 931
subadditive, 412
subderivative, 133

proximal, 155
superderivative representation, 353

subdifferentiable, 133
subdifferential, 133

of max function, 332
at optimality, 409
Clarke, 655
convex, 407
density, 1013
Fréchet, 1001
Gâteaux, 1122
limiting, 679, 1001
limiting and Clarke, 681
monotonicity, 578
nonempty, 423
of convex functions, 407
of infimum, 795

on manifolds, 1001
proximal, 155
singular, 679, 1001
spectral function, 1045, 1057

subgradient
and normal cone, 454
construction of, 418
existence of, 420
of maximum eigenvalue, 430
of norm, 429
unique, 424

sublevel sets, 10, 574
normal cone
representation, 201

singular normal cone
representation, 211

sublinear, 412, 419, 461
submanifold, 996
sum rule

convex subdifferential, 452, 460
limiting, 658, 683
local, 188, 196
nonlocal, 165

sun, 756
superderivative

subderivative representation, 350
superdifferential, 1002
supergradient, 1002
support, 113

tangent
bundle, 993
cone, 726
Clarke, 661

space, 993
bases of, 995

vectors, 993
trace, 1029
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trace class operators, 1075, 1076
transversality, 642, 826

ubiquitous set, 665
unit ball, 7
unitary

equivalent, 1081
invariant, 1029, 1081
mapping, 1029
operator, 1081

upper semicontinuous, 150
usco, 604

minimal, 604

value function, 445
variational principle, 4, 121

Borwein–Preiss, 101, 137, 145, 167, 178
Deville–Godefroy–Zizler, 113
Ekeland, 20, 25, 33, 38, 44, 52, 58, 203, 457, 674, 875, 947
in finite dimensional spaces, 64

one-perturbation, 960
smooth, 64
Stegall, 821, 917
subdifferential form, 145

variational techniques, 1
vector field, 994
Ville’s theorem, 94
viscosity

Fréchet subderivative, 134
Fréchet subdifferential, 134
solution, 174
uniqueness, 178

subsolution, 174
supersolution, 174

von Neumann–Theobald inequality, 1039, 1048

welfare economy, 902

Yosida approximate, 635
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