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Preface

Minor Errata: The following is a pointer to some minor
errata. Details can be found in the Errata file on the book’s

website at
www.carma.newcastle.edu.au/jon/ToVA/addenda.html.

| Results | Corrections |
Lemma 5.1.11 a compactness assumption is needed
Lemma 5.5.4 |Theorem 5.5.2 in the proof should be replaced by Theorem 2.7 in [174]
Theorem 3.3.8 should be a corollary to a stronger version of Theorem 3.3.7
Theorem 2.1.1 Condition (iii)is inaccurate
Theorem 2.1.4 add “for all z € X\{y}” to the conclusion.
Theorem 3.7.2 s1(x) > 0 in the proof need a justification.
Exercise 4.3.11. minor correction needed.
Exercise 3.4.11. minor correction needed.
Section 4.7.3. minor correction to the definition of doubly stochastic pattern.
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Preface

Variational arguments are classical techniques whose use
can be traced back to the early development of the calculus
of variations and further. Rooted in the physical principle
of least action they have wide applications in diverse fields.
The discovery of modern variational principles and nons-
mooth analysis further expand the range of applications of
these techniques. The motivation to write this book came
from a desire to share our pleasure in applying such varia-
tional techniques and promoting these powertul tools. Po-
tential readers of this book will be researchers and graduate
students who might benefit from using variational methods.



Preface

The only broad prerequisite we anticipate is a working
knowledge of undergraduate analysis and of the basic prin-
ciples of functional analysis (e.g., those encountered in a
typical introductory functional analysis course). We hope to
attract researchers from diverse areas — who may fruitfully
use variational techniques — by providing them with a rel-
atively systematical account of the principles of variational
analysis. We also hope to give further insight to graduate
students whose research already concentrates on variational
analysis. Keeping these two different reader groups in mind
we arrange the material into relatively independent blocks.
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We discuss various forms of variational principles early in
Chapter 2. We then discuss applications of variational tech-
niques in different areas in Chapters 3—7. These applications
can be read relatively independently. We also try to put gen-
cral principles and their applications together.
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The recent monograph “Variational Analysis” by Rockafel-
lar and Wets |237] has already provided an authoritative and
systematical account of variational analysis in finite dimen-
sional spaces. We hope to supplement this with a concise ac-
count of the essential tools of infinite-dimensional first-order
variational analysis; these tools are presently scattered in
the literature. We also aim to illustrate applications in many
different parts of analysis, optimization and approximation,
dynamical systems, mathematical economics and elsewhere.
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Much of the material we present grows out of talks and
short lecture series we have given in the past several years.
Thus, chapters in this book can easily be arranged to form
material for a graduate level topics course. A fair collection
of suitable exercises is provided for this purpose. For many
reasons, we avoid pursuing maximum generality in the main
corpus. We do, however, aim at selecting proofs of results
that best represent the general technique.
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In addition, in order to make this book a useful reference
for researchers who use variational techniques, or think they
might, we have included many more extended guided exer-
cises (with corresponding references) that either give useful
generalizations of the main text or illustrate significant re-
lationships with other results. Harder problems are marked
by a *. The (forthcoming) book “Variational Analysis and
Generalized Differentiation” by Boris Mordukhovich [204],
to our great pleasure, is a comprehensive complement to the
present work.
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We are indebted to many of our colleagues and students
who read various versions of our manuscript and provided
us with valuable suggestions. Particularly, we thank Heinz
Bauschke, Kirsty Eisenhart, Ovidiu Furdui, Warren Hare,
Marc Lassonde, Yuri Ledyaev, Boris Mordukhovich, Jean
Paul Penot, Jay Treiman, Xianfu Wang, Jack Warga, and
Herre Wiersma. We also thank Jiongmin Yong for organiz-
ing a short lecture series in 2002 at Fudan university which
provided an excellent environment for the second author to
test preliminary materials for this book.

We hope our readers get as much pleasure from reading
this material as we have had during its writing. The website
www.cs.dal.ca/ borwein/ToVA will record additional in-
formation and addenda for the book, and we invite feedback.
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December 31, 2004
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1

Introduction and Notation

1.1 Introduction

In this book, variational techniques refer to proots by way
of establishing that an appropriate auxiliary function attains
a minimum. This can be viewed as a mathematical form of
the principle of least action in physics. Since so many impor-
tant results in mathematics, in particular, in analysis have
their origins in the physical sciences, it is entirely natural
that they can be related in one way or another to varia-
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tional techniques. The purpose of this book is to provide an
introduction to this powertul method, and its applications,
to researchers who are interested in using this method. The
use of variational arguments in mathematical proofs has a
long history. This can be traced back to Johann Bernoulli’s
problem of the Brachistochrone and its solutions leading to
the development of the calculus of variations. Since then the
method has found numerous applications in various branches
of mathematics. A simple illustration of the variational ar-
ogument is the following example.



Example 1.1.1. (Surjectivity of Derivatives) Suppose that
f: R — R is differentiable everywhere and suppose that
lim  f(x)/|x] = +o0.

x| —00
Then {f'(z) | z € R} =R,
Proof. Let r be an arbitrary real number. Define g(x) :=
f(x) — rz. We easily check that g is coercive, i.e., g(x) —

+00 as || — oo and therefore attains a (global) minimum
at, say, . Then 0 = ¢'(z) = f/(z) —r. .

Two conditions are essential in this variational argument.
The first is compactness (to ensure the existence of the min-
imum) and the second is differentiability of the auxiliary
function (so that the differential characterization of the re-



4 1 Introduction

sults is possible). Two important discoveries in the 1970’s led
to significant useful relaxation on both conditions. First, the
discovery of general variational principles led to the relax-
ation of the compactness assumptions. Such principles typ-
ically assert that any lower semicontinuous (Isc) function,
bounded from below, may be perturbed slightly to ensure
the existence of the minimum. Second, the development of
the nonsmooth analysis made possible the use of nonsmooth
auxiliary functions.

The emphasis in this book is on the new developments
and applications of variational techniques in the past sev-
eral decades. Besides the use of variational principles and
concepts that generalize that of a derivative for smooth func-
tions, one often needs to combine a variational principle
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with other suitable tools. For example, a decoupling method
that mimics in nonconvex settings the role of Fenchel du-
ality or the Hahn—Banach theorem is an essential element
in deriving many calculus rules for subdifferentials; mini-
max theorems play a crucial role alongside the variational
principle in several important results in nonlinear functional
analysis; and the analysis of spectral functions is a combina-
tion of the variational principles with the symmetric prop-
erty of these functions with respect to certain groups. This
is reflected in our arrangement of the chapters. An impor-
tant feature of the new variational techniques is that they
can handle nonsmooth functions, sets and multifunctions
cequally well. In this book we emphasize the role of nons-
mooth, most of the time extended valued lower semicontin-
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uous functions and their subdifferential. We illustrate that
sets and multifunctions can be handled by using related non-
smooth functions. Other approaches are possible. For exam-
ple Mordukhovich |204] starts with variational geometry on
closed sets and deals with functions and multifunctions by
examining their epigraphs and graphs.

Our intention in this book is to provide a concise introduc-
tion to the essential tools of infinite-dimensional first-order
variational analysis, tools that are presently scattered in the
literature. We also aim to illustrate applications in many
different parts of analysis, optimization and approximation.,
dynamic systems and mathematical economics. To make the
book more appealing to readers who are not experts in the
area of variational analysis we arrange the applications right
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after general principles wherever possible. Materials here can
be used flexibly for a short lecture series or a topics course
for graduate students. They can also serve as a reference for
researchers who are interested in the theory or applications
of the variational analysis methods.

1.2 Notation

We introduce some common notations in this section.

Let (X, d) be a metric space. We denote the closed ball
centered at x with radius r by By(z). We will often work in
a real Banach space. When X is a Banach space we use X*
and (-, -) to denote its (topological) dual and the duality
pairing, respectively. The closed unit ball of a Banach space
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X is often denoted by By or B when the space is clear from
the context.

Let R be the real numbers. Consider an extended-real-
valued function f: X — R U{+o00}. The domain of f is
the set where it is finite and is denoted by dom f = {x |
f(x) < 400}. The range of f is the set of all the values of
f and is denoted by range f = {f(z) | z € dom f}. We
call an extended-valued function f proper provided that its
domain is nonempty. We say f: X — RU {400} is lower
semicontinuous (Isc) at x provided that liminf, . f(y) >
f(x). We say that f is Isc if it is Isc everywhere in its domain.



A subset S of a metric space (X, d) can often be better
studied by using related tunctions. The extended-valued in-
dicator function of S,

Lg(x) = 1(S;x) = {

characterizes S. We also use the distance function
dg(x) = d(S;z) = inf{d(z,y) | y € S}.
The distance function determines closed sets as shown in

Exercises 1.3.1 and 1.3.2. On the other hand, to study a
function f: X — R U {400} it is often equally helpful

to examine its epigraph and graph, related sets in X x R,
defined by

epif = {(z,7) € X xR | f(z) <7}

0 r e,

+00 otherwise,
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and
graph f == {(z, f(z)) € X xR | x € dom f}.

We denote the preimage of f: X — RU{+o0} of a subset
S in R by

f7HS) ={z e X | f(x) € S}.

Two special cases which will be used often are f~1((—o0, a),
the sublevel set, and f~1(a), the level set, of f at a € R.

For a set S in a Banach space X, we denote by int S, S,
bd S, conv S, convs its intertor, closure, boundary, con-
vex hull, closed convex hull, respectively, and we denote by
diam(S) = sup{||z — y|| | =,y € S} its diameter and by

Br(S) :={x € X | d(S;x) < r}its r-enlargement. Closed



sets and Isc functions are closely related as illustrated in
Exercises 1.3.3, 1.3.4 and 1.3.5.

Another valuable tool in studying Isc functions is the inf-
convolution of two functions f and g on a Banach space X
defined by (fOg)(r) = inf,cx|f(y) + g(z — y)|. Exercise
1.3.7 shows how this operation generates nice functions.

Multifunctions (set-valued functions) are equally inter-
esting and useful. Denote by 2¥ the collection of all subsets
of Y. A multifunction F': X — 2Y maps each x € X to a
subset F'(z) of Y. It is completely determined by its graph,

graph F':={(z,y) € X XY |y € F(z)},
a subset of the product space X x Y and, hence, by the
indicator function tgpap p- The domain of a multitunction
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F is defined by domF := {x € X | F(z) # 0}. The inverse
of a multifunction F: X — oY is defined by

F~ y) ={z € X |y € F(x)}.

Note that F~1 is a multifunction from Y to X. We say
a multifunction F' is closed-valued provided that for every
r € domF', F(x) is a closed set. We say the multifunction
is closed it indeed the graph is a closed set in the product
space. These two concepts are different (Exercise 1.3.8).
The ability to use extended-valued functions to relate sets,
functions and multifunctions is one of the great advantages
of the variational technique which is designed to deal flu-
ently with such functions. In this book, for the most part,
we shall focus on the theory for extended-valued functions.
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Corresponding results for sets and multifunctions are most
often derivable by reducing them to appropriate function
formulations.

1.3 Exercises

Exercise 1.3.1. Show that 2 € S if and only if dg(z) = 0.

Exercise 1.3.2. Suppose that S| and S9 are two subsets
of X. show that dg, = dg, it and only it 51 = So.

Exercise 1.3.3. Prove that S is a closed set if and only if
Lg is Isc.

Exercise 1.3.4. Prove that f is Isc if and only if epi f is
closed.

Exercise 1.3.5. Prove that f islsc if and only if its sublevel
set at a, f~1((—o0,al), is closed for all @ € R.
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These results can be used to show the supremum of Isc
functions is lsc.

Exercise 1.3.6. Let { f,},c4 be a family of Isc functions.
Prove that f = sup{fq,a € A} is Isc. Hint: epi f =
ﬂaEA epi fa.

Exercise 1.3.7. Let f be a lsc function bounded from be-
low. Prove that if g is Lipschitz with rank L, then so is fOg.

Exercise 1.3.8. Let F': X — 2¥ be a multifunction. Show
that if /' has a closed graph then F'is closed-valued, but the
converse 1s not true.



2

Variational Principles

A lsc function on a noncompact set may well not attain its
minimum. Roughly speaking, a variational principle asserts
that, for any extended-valued Isc function which is bounded
below, one can add a small perturbation to make it attain a
minimum. Variational principles allow us to apply the vari-
ational technique to extended-valued lsc functions system-
atically, and therefore significantly extend the power of the
variational technique. Usually, in a variational principle the
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better the geometric (smoothness) property of the under-
lying space the nicer the perturbation tunction. There are
many possible settings. In this chapter, we focus on two of
them: the Ekeland variational principle which holds in any
complete metric space and the Borwein—Preiss smooth vari-
ational principle which ensures a smooth perturbation suf-
fices in any Banach space with a smooth norm. We will also
present a variant of the Borwein—Preiss variational princi-
ple derived by Deville, Godefroy and Zizler with an elegant
category proof.

These variational principles provide powerful tools in mod-
ern variational analysis. Their applications cover numerous
areas in both theory and applications of analysis including
optimization, Banach space geometry, nonsmooth analysis,
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economics, control theory and game theory, to name a few.
As a first taste we discuss some of their applications; these
require minimum prerequisites in Banach space geometry;,
fixed point theory, an analytic proot of the Gordan theorem
of the alternative, a characterization of the level sets associ-
ated with majorization and a variational proof of Birkhoft’s
theorem on the doubly stochastic matrices. Many other ap-
plications will be discussed in subsequent chapters.

2.1 Ekeland Variational Principles

2.1.1 The Geometric Picture

Consider a lsc function f bounded below on a Banach space
(X, || - ||). Clearly f may not attain its minimum or, to put
it geometrically, f may not have a supporting hyperplane.
Ekeland’s variational principle provides a kind of approxi-
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mate substitute for the attainment of a minimum by assert-
ing that, for any € > 0, f must have a supporting cone of
the form f(y) —e||lz — y||. One way to see how this happens
geometrically is illustrated by Figure 2.1. We start with a
point zg with f(zg) < infx f + & and consider the cone
f(z0) — €l|x — 2g||. If this cone does not support f then
one can always find a point 21 € Sy ={x € X | f(z) <
f(z) —€l|lx — z||)} such that

1) < inf f + 51 (z0) - nt /).

0
If f(z1)—e||lz — 21 || still does not support f then we repeat
the above process. Such a procedure either finds the desired
supporting cone or generates a sequence of nested closed
sets (.9;) whose diameters shrink to 0. In the latter case,
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Fig. 2.1. Ekeland variational principle. Top cone: f(xg) — €|z — xo|; Middle cone: f(z1) — |z — z1|; Lower cone: f(y) —e|z — y|.

f(y) — e||lr — y|| is a supporting cone of f, where {y} =

7 15;. This line of reasoning works similarly in a complete
metric space. Moreover, it also provides a useful estimate on
the distance between y and the initial e-minimum z.

2.1.2 The Basic Form

We now turn to the analytic form of the geometric picture
described above — the Ekeland variational principle and its
proof.
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Theorem 2.1.1. (Ekeland Variational Principle) Let (X, d)
be a complete metric space and let f: X — R U {400}

be a lsc function bounded from below. Suppose that € > 0
and z € X satisfy

<inft f +e.
flz) <inff+e
Then there exists y € X such that

(i) dzy) <1,
(i) f(y) +2d(5y) < f(2), and
(iii) f(x)+ed(z,y) > fly), forallx € X.

Proof. Define a sequence (z;) by induction starting with
20 = z. Suppose that we have defined z;. Set

Si={x e X | f(x)+ed(x, z) < f(z)}



and consider two possible cases: (a) infg. f = f(2;). Then we
define z; 41 = z;. (b) infg. f < f(2;). We choose 211 € S;
such that

1

Fisn) <inf £+ 500 () = inf ] = 5170+ inf ] < f()
(2.1.1)

We show that (z;) is a Cauchy sequence. In fact, if (a) ever
happens then z; is stationary for 2 large. Otherwise,

ed(z, zi41) < flzi) — flziv1). (2.1.2)
Adding (2.1.2) up from ¢ to j — 1 > ¢ we have
(e, ) < fo) — f(2) 2.13)

Observe that the sequence (f(z;)) is decreasing and bounded
from below by infx f, and therefore convergent. We con-



clude from (2.1.3) that (z;) is Cauchy. Let y := lim; .~ 2;.
We show that vy satisfies the conclusions of the theorem.
Setting ¢ = 0 in (2.1.3) we have

ed(z,zj) + f(z;) < f(2). (2.1.4)
Taking limits as j — oo yields (ii). Since f(z) — f(y) <
f(z) —infx f < ¢, (i) follows from (ii). It remains to show
that y satisfies (iii). Fixing ¢ in (2.1.3) and taking limits as
j — oo yields y € 5;. That is to say

O
(TS ﬂ S;.
1=1
On the other hand, if z € ()72, S; then, forallt = 1,2,...,
ed(z, 1) < flziv1) — f(@) < flzie) —inf f(2.1.5)
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[t follows from (2.1.1) that f(z;11) — infg f < f(z) —
f(zi41), and therefore lim;|f(2;41) — infg. f| = 0. Taking
limits in (2.1.5) as ¢+ — oo we have ed(z,y) = 0. It follows
that

() Si={y}- (2.1.6)
1=1

Notice that the sequence of sets (.9;) is nested, i.e., for any 1,
Sit1 C S;. In fact, for any x € S, 1, f(x) +ed(z, zj11) <
f(ZZ'_|_1) and Zit+1 € S; yields

f(x) +ed(z, z;) < f(x) + ed(x, 2j41) + ed(2, zi11)

< f(zig1) +ed(z;, 2i41) < f(2)
(2.1.7)



which implies that x € S;. Now, for any x # v, it follows
from (2.1.6) that when ¢ sufficiently large = ¢ S;. Thus,
f(x)+ed(x, z;) > f(z). Taking limits as i — oo we arrive
at (iif). :

2.1.3 Other Forms

Since € > 0 is arbitrary the supporting cone in the Ekeland’s
variational principle can be made as “flat” as one wishes. It
turns out that in many applications such a flat support-
ing cone is enough to replace the possibly non-existent sup-
port plane. Another usetul geometric observation is that one
can trade between a flatter supporting cone and a smaller
distance between the supporting point y and the initial e-
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minimum z. The following form of this tradeoff can easily
be derived from Theorem 2.1.1 by an analytic argument.

Theorem 2.1.2. Let (X, d) be a complete metric space
and let f: X — R U {400} be a lsc function bounded
from below. Suppose that € > 0 and z € X satisfy

f(z) < igl(ff—i-&

Then, for any A > 0 there exists y such that

(i) dz,y) <A

(i) fly)+(e/Nd(z,y) < f(z), and

(i) f(z)+ (e/Nd(z,y) > fly), forallze X \{y}.
Proof. Exercise 2.1.1. o
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The constant A in Theorem 2.1.2 makes it very flexible.
A frequent choice is to take A = /e and so to balance the
perturbations in (ii) and (iii).

Theorem 2.1.3. Let (X, d) be a complete metric space

and let f: X — RU{+o0} be a Isc function bounded
from below. Suppose that € > 0 and z € X satisfy

f(z) < igl(ff—ke.

Then, there exists y such that

(1) d(z,y) < e,

(i) fly)+Ved(z,y) < f(2), and

(iii) f(z)+Ved(x,y) > fly), forallz e X\ {y}.
Proof. Set A = /¢ in Theorem 2.1.2. .
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When the approximate minimization point z in Theorem
2.1.2 is not explicitly known or is not important the following
weak form of the Ekeland variational principle is useful.

Theorem 2.1.4. Let (X, d) be a complete metric space
and let f: X — R U {+o0} be a Isc function bounded
from below. Then, for any € > 0, there exists y such that

flz) +Ved(z,y) > fly).
Proof. Exercise 2.1.6. .

2.1.4 Commentary and Exercises

Ekeland’s variational principle, appeared in [106], is inspired
by the Bishop—Phelps Theorem |24, 25] (see the next sec-
tion). The original proof of the Ekeland variational principle



in [106] is similar to that of the Bishop—Phelps Theorem us-
ing Zorn’s lemma. J. Lasry pointed out transfinite induction
is not needed and the proof given here is taken from the
survey paper [107] and was credited to M. Crandall. As an
immediate application we can derive a version of the results
in Example 1.1.1 in infinite dimensional spaces (Exercises
2.1.2).

The lsc condition on f in the Ekeland variational principle

can be relaxed somewhat. We leave the details in Exercises
2.1.4 and 2.1.5.

Exercise 2.1.1. Prove Theorem 2.1.2. Hint: Apply Theo-
rem 2.1.1 with the metric d(-,-) /.

Exercise 2.1.2. Let X be a Banach space and let f: X —
R be a Fréchet differentiable function (see Section 3.1.1).
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Suppose that f is bounded from below on any bounded set
and satisfies
/(@)

lim ——~ = +00.
|z|—o0 (||

Then the range of f'. {f'(z) | x € X}, is dense in X*.

Exercise 2.1.3. As a comparison, show that in Exercise
2.1.2, if X is a finite dimensional Banach space, then f
is onto. (Note also the assumption that f bounded from
below on bounded sets is not necessary in finite dimensional
spaces).

Exercise 2.1.4. We say a function f is partially lower semi-
continuous (plsc) at x provided that, for any z; — x with
f(x;) monotone decreasing, one has f(x) < lim f(x;). Prove
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that in Theorems 2.1.1 and 2.1.2, the assumption that f is
Isc can be replaced by the weaker condition that f is plsc.

Exercise 2.1.5. Construct a class of plsc functions that
are not lsc.

Exercise 2.1.6. Prove Theorem 2.1.4.

One of the most important—though simple—applications
of the Ekeland variational principle is given in the following
exercise:

Exercise 2.1.7. (Existence of Approximate Critical Points)
Let U C X be an open subset of a Banach space and let
f : U — R be a Gateaux differentiable function. Suppose
that for some £ > 0 we have infx f > f(x) — €. Prove that,
for any A > 0, there exists a point x € B)(Z) where the
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Gateaux derivative f/(x) satisfies || f'(x)]] < €/X. Such a
point is an approximate critical point.

2.2 Geometric Forms Of the Variational Principle

In this section we discuss the Bishop—Phelps Theorem, the
Hower-petal theorem and the drop theorem. They capture
the essence of the Ekeland variational principle from a geo-
metric perspective.

2.2.1 The Bishop—Phelps Theorem

Among the three, the Bishop—Phelps Theorem (24, 25| is the
closest to the Ekeland variational principle in its geometric
explanation.

Let X be a Banach space. For any z* € X*\{0} and any
e > 0 we say that



K(z% e) :={r € X | ellz"[|[lz]| < (=7, 2)}

is a Bishop—Phelps cone associated with ™ and . We il-
lustrate this in Figure 2.2 with the classic “ice cream cone”
in three dimensions.

Theorem 2.2.1. (Bishop—Phelps Theorem) Let X be a
Banach space and let S be a closed subset of X. Suppose
that x* € X* is bounded on S. Then, for everye >0, S
has a K(x*,¢) support point y, i.e.,

{y} =SN[K(" ) +yl.
Proof. Apply the Ekeland variational principle of Theorem

2.1.1 to the lsc function f := —z*/||x*|| + tg. We leave the
details as an exercise. .
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Fig. 2.2. A Bishop—Phelps cone.

The geometric picture of the Bishop—Phelps Theorem and
that of the Ekeland variational principle are almost the same:
the Bishop—Phelps cone K (z*, )4y in Theorem 2.2.1 plays



a role similar to that of f(y) — ed(x,y) in Theorem 2.1.1.
One can easily derive a Banach space version of the Ekeland
variational principle by applying the Bishop—Phelps Theo-
rem to the epigraph of a Isc function bounded from below
(Exercise 2.2.2).

If we have additional information, e.g., known points inside
and /or outside the given set, then the supporting cone can
be replaced by more delicately constructed bounded sets.
The flower-petal theorem and the drop theorem discussed in
the sequel are of this nature.
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2.2.2 The Flower-Petal Theorem

Let X be a Banach space and let a,b € X. We say that
Py(a,b) :={x € X | vlla — x| + [z = b]| < |[b — all}

is a flower petal associated with v € (0, +o00) and a,b € X.
A flower petal is always convex, and interesting flower petals
are formed when v € (0,1) (see Exercises 2.2.3 and 2.2.4).

Figure 2.3 draws the petals P-((0,0), (1,0)) for v = 1/3,
and v = 1/2.
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Fig. 2.3. Two flower petals.
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Theorem 2.2.2. (Flower Petal Theorem) Let X be a Ba-
nach space and let S be a closed subset of X. Sup-
pose that a € S and b € X\S with r € (0,d(S;b))
and t = ||b — al|. Then, for any ~v > 0, there exists
y € SN Py(a,b) satisfying ||y — al < (¢ —1r)/y such
that Py(y,b) NS = {y}.
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Proof. Define f(z) := ||z — b|| + tg(x). Then
fla) < igl(ff + (t —1).

Applying the Ekeland variational principle of Theorem 2.1.2
to the function f(z) withand e = t—rand A = (t—r)/~, we

have that there exists y € S such that ||y —al| < (t —71)/v
satistying

ly = bl +~lle =yl < [la 0]
and

|z =0l +~llz —yll > |ly — bf], for all z € S\{y}.

The first inequality says y € Py(a,b) while the second im-
plies that P+ (y,b) NS = {y}. .
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2.2.3 The Drop Theorem

Let X be a Banach space, let C' be a convex subset of X
and let a € X. We say that

la,Cl . =conv({a}UC)={a+tlc—a)l|ce’}
is the drop associated with a and C'.
The following lemma provides usetul information on the

relationship between drops and flower petals. This is illus-
trated in Figure 2.4 and the easy proof is lett as an exercise.

Lemma 2.2.3. (Drop and Flower Petal) Let X be a Ba-
nach space, let a,b € X and let v € (0,1). Then

Blla—sll(1-4)/(149)(8) © Prla, b),
so that

% Blla—p)|1=7)/(14) 0] © Py(a, ).
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Fig. 2.4. A petal capturing a ball.
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Proof. Exercise 2.2.5. .

Now we can deduce the drop theorem from the flower petal
theorem.

Theorem 2.2.4. (The Drop Theorem) Let X be a Banach
space and let S be a closed subset of X. Suppose that
be X\S andr € (0,d(S;b)). Then, for any e > 0, there
exists y € bd(S) satisfying ||y — b|| < d(S;b) + ¢ such
that [y, Br(b)] NS = {y}.
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Proof. Choose a € S satisfying ||a — b|| < d(5;b) + ¢ and
choose

_lla =0l =~

’y p—
|la —b|| +r
It follows from Theorem 2.2.2 that there exists y € S N
P+ (a,b) such that Py(y,b) NS = {y}. Clearly, y € bd(S5).
Moreover, y € P~(a,b) implies that ||y — b|| < |la —b|| <
d(S y) + €. Finally, it follows from Lemma 2.2.3 and r =

20— b]| that [y, By(b)] N S = {y} :

e (0,1).
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2.2.4 The Equivalence with Completeness

Actually, all the results discussed in this section and the
Ekeland variational principle are equivalent provided that
one states them in sufficiently general form (see e.g. [135]).
In the setting of a general metric space, the Ekeland varia-
tional principle is more flexible in various applications. More
importantly it shows that completeness, rather than the lin-
ear structure of the underlying space, is the essential feature.
In fact, the Ekeland variational principle characterizes the
completeness of a metric space.
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Theorem 2.2.5. (Ekeland Variational Principle and Com-
pleteness) Let (X, d) be a metric space. Then X is com-
plete if and only if for every lsc function f: X —
R U {+o0} bounded from below and for every ¢ > 0
there exists a point y € X satisfying

fly) < inf f +e,

and
f(x) +ed(z,y) > fly), forallzeX.
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Proof. The “if” part tfollows from Theorem 2.1.4. We prove
the “only if” part. Let (z;) be a Cauchy sequence. Then,
the function f(x) := lim;_, d(z;, x) is well-defined and
nonnegative. Since the distance function is Lipschitz with
respect to & we see that f is continuous. Moreover, since
(x;) is a Cauchy sequence we have f(x;) — 0 as i — 00 S0
that infy f = 0. For € € (0, 1) choose y such that f(y) <e
and

fly) < f(x) +ed(z,y), foralz e X  (2.2.1)

Letting © = x; in (2.2.1) and taking limits as ¢+ — oo we
obtain f(y) < ef(y) so that f(y) = 0. That is to say

lim; oo x; = . o
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2.2.5 Commentary and Exercises

The Bishop—Phelps theorem is the earliest of this type
24, 25]. In fact, this important result in Banach space geom-
etry is the main inspiration for Ekeland’s variational princi-
ple (see [107]). The drop theorem was discovered by Danes
95]. The flower-petal theorem was derived by Penot in [217].
The relationship among the Ekeland variational principle,
the drop theorem and the flower-petal theorem were dis-
cussed in Penot [217] and Rolewicz [238]. The book [141] by
Hyers, Isac and Rassias is a nice reference containing many
other variations and applications of the Ekeland variational
principle.

Exercise 2.2.1. Provide details for the proof of Theorem
2.2.1.
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Exercise 2.2.2. Deduce the Ekeland variational principle
in a Banach space by applying the Bishop—Phelps Theorem
to the epigraph of a lsc function.

Exercise 2.2.3. Show that, for v > 1, Py(a,b) = {a} and
Pi(a,b) ={da+ (1 —X)b| X e |0,1]}.

Exercise 2.2.4. Prove that Py(a, b) is convex.

Exercise 2.2.5. Prove Lemma 2.2.3.

2.3 Applications to Fixed Point Theorems

Let X be a set and let f be a map from X to itself. We
say x is a fixed point of f if f(x) = x. Fixed points of a
mapping often represent equilibrium states of some underly-
ing system, and they are consequently of great importance.
Therefore, conditions ensuring the existence and uniqueness
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of fixed point(s) are the subject of extensive study in anal-
ysis. We now use Ekeland’s variational principle to deduce
several fixed point theorems.

2.3.1 The Banach Fixed Point Theorem

Let (X, d) be a complete metric space and let ¢ be a map
from X to itself. We say that ¢ is a contraction provided
that there exists k € (0, 1) such that

d(p(x), ¢(y)) < kd(x,y), forallz,y e X.
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Theorem 2.3.1. (Banach Fixed Point Theorem) Let (X, d)
be a complete metric space. Suppose that ¢p: X — X 1is
a contraction. Then ¢ has a unique fixed point.

Proof. Define f(x) := d(z, ¢(x)). Applying Theorem 2.1.1
to f with e € (0,1 — k), we have y € X such that

f(x)+ed(x,y) > f(y), forall z e X.

[n particular, setting x = ¢(y) we have

d(y, 8(y)) < d(8ly), ¢ (y))+ed(y, ¢(y)) < (k+e)d(y, d(y)).

Thus, y must be a fixed point. The uniqueness follows di-
rectly from the fact that ¢ is a contraction and is left as an
exercilse. .
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2.3.2 Clarke’s Refinement

Clarke observed that the argument in the proot of the Ba-
nach fixed point theorem works under weaker conditions. Let
(X, d) be a complete metric space. For z,y € X we define
the segment between x and y by

z,y] ={z€ X |dx,z)+d(z,y) =d(x,y)}.(2.3.1)

Definition 2.3.2. (Directional Contraction) Let (X, d) be
a complete metric space and let ¢ be a map from X to

itself. We say that ¢ is a directional contraction provided
that

(i) @& is continuous, and
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(ii) there exists k € (0,1) such that, for any v € X with
o(x) # x there exists z € |x, ¢p(x)|\{x} such that

d(p(z), ¢(2)) < kd(z, z).

Theorem 2.3.3. Let (X, d) be a complete metric space.
Suppose that ¢: X — X 1is a directional contraction. Then

¢ admits a fized point.
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Proof. Define

flz) = d(z, p(x)).
Then f is continuous and bounded from below (by 0). Ap-
plying the Ekeland variational principle of Theorem 2.1.1 to
f with € € (0,1 — k) we conclude that there exists y € X
such that

fly) < f(x)+ed(z,y), forallz € X. (2.3.2)

If ¢(y) = y, we are done. Otherwise, since ¢ is a directional
contraction there exists a point z # y with z € [y, d(y)],
1.e.,

d(y,z) +d(z,¢(y) = dy, ¢(y)) = fly) (2.3.3)
satisfying

d(¢(2), 9(y)) < kd(z,y). (2.3.4)



2.3 Fixed Point Theorems 53

Letting x = z in (2.3.2) and using (2.3.3) we have
dy,z) +d(z,y) < d(z,¢(2)) + ed(z, y)
or

d(y,z) < d(z,¢(2)) — d(z,¢(y)) +ed(z,y) (2.3.5)
By the triangle inequality and (2.3.4) we have

d(z,¢(2)) — d(z,(y)) < d(é(y), p(2)) < kd(y, z).
(2.3.6)

Combining (2.3.5) and (2.3.6) we have
d(y,z) < (k+¢)d(y, =),

a contradiction. .
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Clearly any contraction is a directional contraction. There-
fore, Theorem 2.3.3 generalizes the Banach fixed point the-
orem. The following is an example where Theorem 2.3.3 ap-
plies when the Banach contraction theorem does not.
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Example 2.3.4. Consider X = R? with a metric induced
by the norm ||z|| = ||(x1, x2)|| = |z1| + |r2|. A segment be-
tween two points (aq, as) and (by, by) consists of the closed
rectangle having the two points as diagonally opposite cor-
ners. Define
3r1  T9 T
(w1, 19) = ( 5 T3 ,x1+§).

Then ¢ is a directional contraction. Indeed, if y = ¢(x) # x.
Then y9 # x9 (for otherwise we will also have y; = 7).
Now the set |x,y| contains points of the form (zy,t) with ¢
arbitrarily close to xo9 but not equal to xo. For such points
we have

9(a1,1),6(w1,22)) = Sdl(a1,0), (21, 22).




so that ¢ is a directional contraction. We can directly check
that the fixed points of ¢ are all points of the form (z, 32/2).
Since ¢ has more than one fixed point clearly the Banach
fixed point theorem does not apply to this mapping.
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2.3.3 The Caristi—Kirk Fixed Point Theorem

A similar argument can be used to prove the Caristi-—Kirk
fixed point theorem for multifunctions. For a multifunction
F: X = 2% we say that x is a fixed point for F' provided
that z € F(x).

Theorem 2.3.5. (Caristi-Kirk Fixed Point Theorem) Let
(X,d) be a complete metric space and let f: X —
RU{+oc0} be a proper lsc function bounded below. Sup-
pose F: X = 2% s q multifunction with a closed graph
satisfying

fly) < f(x) —d(z,y), for all (x,y) € graph F.
(2.3.7)

Then F' has a fixed point.



Proof. Define a metric pon X x X by p((x1, 1), (x2,1y2)) :=

d(z1,9)+d(y1, y2) for any (21, y1), (x2,92) € X x X. Then
(X x X, p) is a complete metric space. Let ¢ € (0,1/2)
and define g: X x X = RU{+o00} by g(z,y) := f(x) —
(1 — e)d(z,y) + tgaph F(T,y). Then g is a Isc function
bounded below (exercise). Applying the Ekeland variational
principle of Theorem 2.1.1 to g we see that there exists
(x*,y*) € graph F' such that

g(z*,y") < gz, y)+ep((z,y), (27,y")), forall (z,y) € XxX
So for all (x,y) € graph F,
f@®) = (1 —e)dz",y")

< f(z) — (1 —e)d(z,y) + e(d(x, ") + d(y, y)).
(2.3.8)
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Suppose z* € F(y*). Letting (z,y) = (v*, 2¥) in (2.3.8) we
have

fl@®) = (1 —=e)d(z",y") < fly") — (1 —e)d(y", 2") +eld(y", 2
+d(z*, y*
It follows that
0< f(@") = fly") —d(z",y") < —(1 —2e)d(y", "),

so we must have y* = z*. That is to say y™ is a fixed point
of F'. .

We observe that it follows from the above proof that

F(y*) ={y"}.



60 2 Variational Principles

2.3.4 Commentary and Exercises

The variational proof of the Banach fixed point theorem ap-
peared in [107]. While the variational argument provides an
elegant confirmation of the existence of the fixed point it
does not, however, provide an algorithm for finding such a
fixed point as Banach’s original proof does. For compari-
son, a proof using an interactive algorithm is outlined in the
ouided exercises below. Clarke’s refinement is taken from
[84]. Theorem 2.3.5 is due to Caristi and Kirk [160] and ap-
plications of this theorem can be found in [105]. A very nice
general reference book for the metric fixed point theory is
1127].

Exercise 2.3.1. Let X be a Banach space and let x,y €
X . Show that the segment between x and y defined in (2.3.1)
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has the following representation:

2yl ={Ar+ (1 =Ny [Ael0,1]}.
Exercise 2.3.2. Prove the uniqueness of the fixed point in
Theorem 2.3.1.

Exercise 2.3.3.Let f: RY — RY be a C! mapping.
Show that f is a contraction if and only if sup{||f'(z)] :
reRN) < 1.

Exercise 2.3.4. Prove that Kepler's equation
r=a+bsin(x), b€ (0,1)
has a unique solution.

Exercise 2.3.5. (Iteration Method) Let (X, d) be a com-
plete metric space and let ¢: X — X be a contraction. De-
fine for an arbitrarily fixed zg € X, 1 = ¢(xq), ..., 1; =



¢(x;_1). Show that (z;) is a Cauchy sequence and x =
lim; _y~o x; 18 a fixed point for ¢.

Exercise 2.3.6. (Error Estimate) Let (X, d) be a complete
metric space and let ¢: X — X be a contraction with con-
traction constant k € (0,1). Establish the following error
estimate for the iteration method in Exercise 2.3.5.

ki

1 —k
Exercise 2.3.7. Deduce the Banach fixed point theorem
from the Caristi-Kirk fixed point theorem. Hint: Define

flz) = d(z, ¢(x))/(1 — k).

|z; — x| < |21 — 2]
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2.4 Variational Principles in Finite Dimensional Spaces

One drawback of the Ekeland variational principle is that
the perturbation involved therein is intrinsically nonsmooth.
This is largely overcome in the smooth variational principle
due to Borwein and Preiss. We discuss a Euclidean space
version in this section to illustrate the nature of this result.
The general version will be discussed in the next section.
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2.4.1 Smooth Variational Principles in Euclidean Spaces

Theorem 2.4.1. (Smooth Variational Principle in a Eu-
clidean Space) Let f: RN — RU {400} be a lsc function
bounded from below, let A > 0 and let p > 1. Suppose
that € > 0 and z € X satisfy

f(z) < igl(ff—ke.

Then, there exists y € X such that
1) [z =yl <A

(i) F(y) + olly — 2P < f(2), and
(i) f(2)+sglle—2lP > f)+plly—=IP. for allz € X.



Proof. Observing that the function x — f(x)+~5(|z— 2|
approaches +00 as ||z|| — oo, it must attain its minimum
at some y € X. It is an easy matter to check that y satisfies
the conclusion of the theorem. o

This very explicit formulation which is illustrated in Fig-
ure 2.5 — for f(z) = 1/z,z = 1,e = 1,A = 1/2, with
p = 3/2 and p = 2 — can be mimicked in Hilbert space
and many other classical reflexive Banach spaces [58]. It is
interesting to compare this result with the Ekeland varia-
tional principle geometrically. The Ekeland variational prin-
ciple says that one can support a lsc function f near its ap-
proximate minimum point by a cone with small slope while
the Borwein—Preiss variational principle asserts that under
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stronger conditions this cone can be replaced by a parabolic
function with a small derivative at the supporting point. We
must caution the readers that although this picture is help-
ful in understanding the naturalness of the Borwein—Preiss
variational principle it is not entirely accurate in the general
case, as the support function is usually the sum of an infinite
sequence of parabolic functions.

This result can also be stated in the form of an approximate
Fermat principle in the Euclidean space RV,

Lemma 2.4.2. (Approximate Fermat Principle for Smooth
Functions) Let f: RY — R be a smooth function bounded
from below. Then there exists a sequence x; € RN such
that f(x;) — infpy f and f'(x;) — 0.

Proof. Exercise 2.4.3. o
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We delay the discussion of the general form of the Borwein—
Preiss variational principle until the next section and digress
to some applications.

We start with an analytical proof of the Gordan alternative.

Theorem 2.4.3. (Gordan Alternative) Let ay,...,a); €

RY . Then, exactly one of the following systems has a
solution:

M M
Z)\mam:O,Z)\mzl,OS)\m,mzlj...,M,
m=1 m=1

(2.4.1)

(am,x) <0 form=1,..., M, r e RV, (2.4.2)
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Proof. We need only prove the following statements are
equivalent:

(i) The function
M
f(x) :=1In ( Z exp (am, x})
m=1

is bounded below.
(ii) System (2.4.1) is solvable.

(iii) System (2.4.2) is unsolvable.

The implications (ii)= (iii) = (i) are easy and left as exer-
cises. It remains to show (i) = (ii). Applying the approxi-
mate Fermat principle of Lemma 2.4.2 we deduce that there
is a sequence (x;) in RN satistying
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M .
IF @l = || D2 Mpam| =0, (243
m=1

where the scalars
)\i _ eXp <Cbm,ﬂfi>
m M
Zl:() eXp <al7 ZCZ>

satisty Z%:l )\Z’n = 1. Without loss of generality we may
assume that \Xl. — A\, m = 1,..., M. Taking limits in
(2.4.3) we see that Ay, m = 1,..., M is a set of solutions
of (2.4.1). .

>0, m=1,.... M



2.4 In Finite Dimensional Spaces 71

2.4.3 Majorization

For a vector x = (x1,...,xN) € RNJ we use ¥ to de-
note the vector derived from =z by rearranging its com-
ponents in nonincreasing order. For z,y € RN we say
that = is majorized by y, denoted by x < y, provided
that Zn | T, = n | Yn and Zn 1xn < Zn 1yn for
k=1,...,N.

Example 2.4.4. Let z € RY be a vector with nonnegative
components satisfying 27];7:1 xy = 1. Then

(1/N,1/N,...,1/N) <2z < (1,0,...,0).

The concept of majorization arises naturally in physics and
economics. For example, if we use x € Rﬂy (the nonnegative

orthant of R™V) to represent the distribution of wealth within
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an economic system, then x < y means the distribution
represented by x is more even than that of y. Example 2.4.4
then describes the two extremal cases of wealth distribution.

Given a vector y € RY the level set of y with respect to
the majorization defined by I(y) := {z € RN | z < y} is
often of interest. It turns out that this level set is the convex
hull of all the possible vectors derived from permuting the
components of y. We will give a variational proof of this fact
using a method similar to that of the variational proof of
the Gordon alternatives. To do so we will need the following
characterization of majorization.

Lemma 2.4.5. Let z,y € RY. Then z < y if and only
if, for any z € RV, (z+ ab) < (24 4.

Proof. Using Abel’s formula we can write
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= > (s = 2ty x Y (wh — =)
k=1 n=1
N
o5 Y (g — ah)
n=1

Now to see the necessity we observe that x < y implies

Zn 1<yn—x%)>0f0rk:1 N—landzgl(yﬁ—
xn) = (. Thus, the last term in the right hand side of the
previous equality is 0. Moreover, in the remaining sum each
term is the product of two nonnegative tactors, and therefore
it is nonnegative. We now prove sufficiency. Suppose that.,
for any z € RY,



0< (eh ) — (b et =37 (e = 2) X D — o)
k=1 n=1
N
+ZJ¢V (y,,% — 37%)
n=1

Setting z = Zk pepfork=1,..., N—1 (where {e 'n
1,..., N} is the standard basis of RN ) we have Zn | y%
anl x%, and setting z = + anl en, we have anl Yn =

N
anl L

Let us denote by P(N) the set of N x N permutation
matrices (those matrices derived by permuting the rows or

Vv
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the columns of the identity matrix). Then we can state the
characterization of the level set of a vector with respect to
majorization as follows.

Theorem 2.4.6. (Representation of Level Sets of the Ma-
jorization) Let y € RY . Then

[(y) = conv{Py : P € P(N)}.

Proof. It is not hard to check that I(y) is convex and, for
any P € P(N), Py € l(y). Thus, conv{Py : P € P(N)} C
l[(y) (Exercise 2.4.8).

We now prove the reversed inclusion. For any x < y, by
Lemma 2.4.5 there exists P = P(z) € P(N) satisfies

(z, Py)= (¥, y¥) > (zH ey > (z,2).  (2.4.4)
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Observe that P(N) is a finite set (with N! elements to be
precise). Thus, the function

f(z) = 1n( Z exp(z, Py — x))
PeP(N)
is defined for all z € RY  is differentiable, and is bounded

)

from below by 0. By the approximate Fermat principle of
Lemma 2.4.2 we can select a sequence (z;) in RYY such that

0= Ii Z — 4.
Zg}g@ Z Ap(Py — o) (2.4.5)
PeP(N

where
eXp<Z7,7 Py o ZC>

P= D> _pep(N)exp(zi, Py — x)




Clearly, )\715 > ( and ZPeP(N) )xiD = 1. Thus, taking a
subsequence 1f necessary we may assume that, for each P €
P(N), hmzﬁoo )\ZP = )\P 2 0 and ZPEP(N) )\P — 1. Now
taking limits as ¢ — oo in (2.4.5) we have
Z Ap(Py —x) =0.
PeP(N)
Thus, x = ZPeP(N) ApPy, as was to be shown. .

2.4.4 Doubly Stochastic Matrices

We use E(N) to denote the Euclidean space of all real N
by N square matrices with inner product
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N
(A, By =tr(B'A)= Y anmbum, A,B€ E(N).
n,m=1
A matrix A = (apm) € E(N) is doubly stochastic provided
that the entries of A are all nonnegative, Zfl\le Anm = 1
form=1,...,N and ZNlebnm =1lforn=1,...,N.

m
Clearly every P € P(N) is doubly stochastic and they pro-
vide the simplest examples of doubly stochastic matrices.
Birkhoft’s theorem asserts that any doubly stochastic matrix
can be represented as a convex combination of permutation
matrices. We now apply the method in the previous section
to give a variational proof of Birkhoft’s theorem.

For A = (anm) € E(N), we denote rp,(A) = {m | apm #

0}, the set of indices of columns containing nonzero elements
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of the nth row of A and we use #(S) to signal the number
of elements in set S. Then a doubly stochastic matrix has
the following interesting property.

Lemma 2.4.7. Let A € E(N) be a doubly stochastic
matriz. Then, for any 1 <ny <n9g <---<ng <N,

K

#(U rnk(A)) > K. (2.4.6)

k=1
Proof. We prove by contradiction. Suppose (2.4.6) is vio-
lated for some K. Permuting the rows of A if necessary we
may assume that

#(U rk(A)) <K (2.4.7)
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Rearranging the order of the columns of A if needed we may

assume
4= (¢p)

where O is a K by L submatrix of A with all entries equal to
0. By (2.4.7) we have L > N — K. On the other hand, since
A is doubly stochastic, every column of C' and every row of
B add up to 1. That leads to L + K < N, a contradiction.

Condition (2.4.6) actually ensures a matrix has a diagonal
with all elements nonzero which is made precise in the next
lemma.
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Lemma 2.4.8. Let A € E(N). Suppose that A satisfies
condition (2.4.6). Then for some P € P(N), the entries
in A corresponding to the 1’s in P are all nonzero. In
particular, any doubly stochastic matrix has the above
property.
Proof. We use induction on V. The lemma holds trivially
when N = 1. Now suppose that the lemma holds for any
integer less than IN. We prove it is true for V. First suppose
that, forany 1 <mj <ng <:---<ng <N, K <N

K

#(U rnk(A)) > K+ 1. (2.4.8)

k=1
Then pick a nonzero element of A, say apn and consider
the submatrix A’ of A derived by eliminating the Nth row
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and Nth column of A. Then A’ satisfies condition (2.4.6),
and therefore there exists P* € P(N — 1) such that the

entries in A" corresponding to the 1’s in P’ are all nonzero.
[t remains to define P € P(N) as

P'0
P=(01)

Now consider the case when (2.4.8) fails so that there exist
l1<ni<ng<---<nig <N, K <N satistying

K

#(U rnk(A)) - K (2.4.9)

k=1
By rearranging the rows and columns of A we may assume
that np. = k,k=1,..., K and Ui(:lrk(A) ={1,...,K}.
Then
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1= (),

where B € F(K), D € E(N—-K)andOisa K by N— K
submatrix with all entries equal to 0. Observe that for any
I1<m<---<np <K,

L L

Ly (B) = | ruy(A).

[=1 [=1
Thus

#(ZLLJl Tnl<B)) > L,

and therefore B satisfies condition (2.4.6). On the other hand
forany K +1<n;<---<nyp <N,
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K L L
Un@|u U@ =1, 530 (D)

k=1 [=1 =1
Thus, D also satisfies condition (2.4.6). By the induction
hypothesis we have P; € P(K) and P, € P(N — K) such
that the elements in B and D corresponding to the 1's in
P and P», respectively, are all nonzero. It follows that

o (];1](32) c P(N),

and the elements in A corresponding to the 1’s in P are all
NONZETO. .

We now establish the following analogue of (2.4.4).
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Lemma 2.4.9. Let A € E(N) be a doubly stochastic
matrix. Then for any B € E(N) there exists P € P(N)
such that
(B,A—P) > 0.

Proof. We use an induction argument on the number of
nonzero elements of A. Since every row and column of A
sums to 1, A has at least N nonzero elements. If A has
exactly NV nonzero elements then they must all be 1, so
that A itself is a permutation matrix and the lemma holds
trivially. Suppose now that A has more than N nonzero
elements. By Lemma 2.4.8 there exists P € P(N) such
that the entries in A corresponding to the 1’s in P are all

nonzero. Let ¢ € (0,1) be the minimum of these N positive
clements. Then we can verify that A = (A—tP)/(1—t)isa
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doubly stochastic matrix and has at least one fewer nonzero
elements than A. Thus, by the induction hypothesis there
exists () € P(N) such that

Multiplying the above inequality by 1 — t we have (B, A —
tP—(1—1)Q) > 0, and therefore at least one of (B, A— P)
or (B, A — () is nonnegative. .

Now we are ready to present a variational proof for the
Birkhoff theorem.

Theorem 2.4.10. (Birkhoff) Let A(N) be the set of all
N x N doubly stochastic matrices. Then

A(N) = conv{P | P € P(N)}.



Proof. It is an easy matter to verify that A(/N) is convex
and P(N) C A(N). Thus, conv P(N) C A(N).

To prove the reversed inclusion, define a function f on
E(N) by

f(B) = m( > exp(B,A- P>>.
PeP(N)
Then f is defined for all B € E(N), is differentiable and
is bounded from below by 0. By the approximate Fermat
principle of Theorem 2.4.2 we can select a sequence (B;) in
E(N) such that

b (B — 1 i (A4
0= lim f(B) = lim > ANp(A— P) (24.10)
PeP(N)

where



exp(B;, A — P)
ZPeP exp(BZ,A P)

Clearly, )\35 0 and ZPEP ))‘P = 1. Thus, taking a
subsequence if necessary we may assume that for each P €
P(N), lim;_yoo A = Ap > 0 and ZPEP(N) Ap = 1. Now
taking limits as ¢ — oo in (2.4.10) we have
> AplA-P)=0.
PeP(N)
It follows that A = ) pec p(n) ApP, as was to be shown. «

Majorization and doubly stochastic matrices are closely
related. Their relationship is described in the next theorem.
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Theorem 2.4.11. (Doubly Stochastic Matrices and Ma-

jorization) A nonnegative matriz A is doubly stochastic
if and only if Az < x for any vector x € RY.

Proof. We usee,,,n =1,..., N, to denote the standard
basis of RY.

Let Az < z for all z € RY. Choosing z to be e,,n =
1,..., N we can deduce that the sum of elements of each
column of A is 1. Next let x = Zﬁf:l en; we can conclude
that the sum of elements of each row of A is 1. Thus, A is
doubly stochastic.

Conversely, let A be doubly stochastic and let y = Ax. To
prove y < x we may assume, without loss of generality, that
the coordinates of both x and ¥ are in nonincreasing order.
Now note that for any k, 1 < k < N, we have
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Z Ym = Y Yamnﬂfn

m=1n=1

If we put t,, = Zmzl amn, then t, € [0, 1] and Zﬁle by =
k. We have
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k k N

k
Zym_ mezztnfn_ me
m=1

m=1 m=1 n=1

N k N
:Ztnxn — Z Tm + (k — Ztn)mk
n=1 m=1 n=1

k N
n=1 n=k+1
<0.

Further, when & = N we must have equality here simply
because A is doubly stochastic. Thus, y < . o

Combining Theorems 2.4.6, 2.4.11 and 2.4.10 we have
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Corollary 2.4.12. Let y € RY. Then l(y) = {Ay | A €
A(N)}.

Theorem 2.4.1 is a finite dimensional form of the Borwein—
Preiss variational principle [58|. The approximate Fermat
principle of Lemma 2.4.2 was suggested by [137]. The varia-
tional proof of Gordan’s alternative is taken from |[56] which
can also be used in other related problems (Exercises 2.4.4
and 2.4.5).

Geometrically, Gordan’s alternative [129] is clearly a con-
sequence of the separation theorem: it says either 0 is con-
tained in the convex hull of a, ..., aps or it can be strictly
separated from this convex hull. Thus, the proot of Theo-
rem 2.4.3 shows that with an appropriate auxiliary function
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variational method can be used in the place of a separation
theorem — a fundamental result in analysis.

Majorization and doubly stochastic matrices are import
concepts in matrix theory with many applications in physics
and economics. Ando [3], Bhatia [22] and Horn and Johnson
1138, 139] are excellent sources for the background and pre-
liminaries for these concepts and related topics. Birkhoft’s
theorem appeared in [23]. Lemma 2.4.8 is a matrix form
of Hall’'s matching condition [134]. Lemma 2.4.7 was estab-
lished in Konig [163]. The variational proofs for the repre-
sentation of the level sets with respect to the majorization
and Birkhoft’s theorem given here follow [279)].

Exercise 2.4.1. Supply the details for the proof of Theo-
rem 2.4.1.



Exercise 2.4.2. Prove the implications (ii) = (iii) = (i)
in the proof of the Gordan Alternative of Theorem 2.4.3.

Exercise 2.4.3. Prove Lemma 2.4.2.

+Exercise 2.4.4. (Ville’s Theorem) Let aq, ..., a3 € RY
and define f: RY — R by

M

f(z) = In ( 3 exp <am,$>).
m=1

Consider the optimization problem
inf{f(x) | x>0} (2.4.11)

and its relationship with the two systems
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M M
Z)\mam:O,Z)\m:LOS)\m,m:l,,M,
m=1 m=1

(2.4.12)

(am,x) <0form=1,..., M, xERJJy. (2.4.13)

Imitate the proof of Gordan’s alternatives to prove the fol-
lowing are equivalent:

(i) Problem (2.4.11) is bounded below.
(ii) System (2.4.12) is solvable.
(iii) System (2.4.13) is unsolvable.

Generalize by considering the problem inf{f(x) | x;, >
0,m € K}, where K is a subset of {1,..., M}.



xExercise 2.4.5. (Stiemke’s Theorem) Let aq,...,ap; €
RN and define f: RN 5 R by
M
f(x) :=1In ( Z exp (am, x))
m=1

Consider the optimization problem

inf{f(z) | z € RV} (2.4.14)
and its relationship with the two systems
M
m=1

and



(am,x) < 0form=1,..., M, not all 0, v e RY.
(2.4.16)

Prove the following are equivalent:

(i) Problem (2.4.14) has an optimal solution.
(ii) System (2.4.15) is solvable.

(iii) System (2.4.16) is unsolvable.
Hint: To prove (iii) implies (i), show that if problem (2.4.14)
has no optimal solution then neither does the problem

M

inf{ Z exXpym |y € K}, (2.4.17)

m=1



where K is the subspace {((al,z),..., (™, z)) | z €
RN }C RM . Hence, by considering a minimizing sequence
for (2.4.17), deduce system (2.4.16) is solvable.

xExercise 2.4.6. Prove the following

Lemma 2.4.13. (Farkas Lemma) Let ay,...,ays and let

b+#0 in RN . Then exactly one of the following systems
has a solution:

M
> Amam=b, 0< Ay, m=1,... .M, (2418
m=1

(am,x) <0form=1,..., M, (b,x) >0, v e RY

(2.4.19)
Hint: Use the Gordan alternatives and induction.
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Exercise 2.4.7. Verify Example 2.4.4.

Exercise 2.4.8. Let y € R, Verify that {(y) is a convex
set and, for any P € P(N), Py € l(y).

Exercise 2.4.9. Give an alternative proof of Birkhoft’s the-

orem by going through the following steps.

(i) Prove P(N) = {(amn) € A(N) | aympn = 0 or 1 for all
m,n}.

(ii) Prove P(N) C ext(A(N)), where ext(S) signifies ex-
treme points of set S.

(iii) Suppose (amn) € A(N)\P(N). Prove there exist se-
quences of distinct indices m1,mo, ..., mp and ny,no, ..., n;
such that

O < a/mrnr7 a/m,r_i_lnr < 1<T — 17 c ey k)
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(where myj. 1 = mq). For these sequences, show the
matrix (al,,,) defined by
e if (m,n) = (my,n,) for some r,
/ .
Ay —Omn = § —¢ if (m,n) = (my11,n,) for some r,
0  otherwise,

is doubly stochastic for all small real e. Deduce (ay,y) €
ext(A(N)).

(iv) Deduce ext(A(N)) = P(N). Hence prove Birkhoff’s
theorem.

(v) Use Carathéodory’s theorem [77] to bound the number
of permutation matrices needed to represent a doubly
stochastic matrix in Birkhoft’s theorem.
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2.5 Borwein—Preiss Variational Principles

Now we turn to a general form of the Borwein—Preiss smooth
variational principle and a variation thereot derived by Dev-
ille, Godefroy and Zizler with a category proof.
Definition 2.5.1. Let (X, d) be a metric space. We say
that a continuous function p: X x X — |0, 00| is a gauge-
type function on a complete metric space (X, d) provided
that

(i) p(x,x) =0, forallxe X,
(ii) for any € > 0 there exists 6 > 0 such that for all
Y,z € X we have p(y, z) < 6 implies that d(y, z) < €.

Theorem 2.5.2. (Borwein—Preiss Variational Principle)
Let (X,d) be a complete metric space and let f: X —
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RU{+o0} be a lsc function bounded from below. Suppose
that p is a gauge-type function and (9; )Z o 1S a sequence
of positive numbers, and suppose that € > 0 and z € X

satisfy
f(z) < igl(ff + €.

Then there exist y and a sequence {x;} C X such that

(1) plz,y) < e/do. plaiy) < e/(2'00),

(i) fy) + 220 0ip(y, xi) < f(2), and

(i) f(2)+3220 ip(w, i) > fy)+3220 0iply, zi), for all:
X\t

Proof. Define sequences (x;) and (S;) inductively starting

with xg .= z and

So = {z € X | f(z) + dop(z,z0) < f(xo)}. (25.1)
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Since xg € Sp, Sq is nonempty. Moreover it is closed because
both f and p(-, zg) are Isc functions. We also have that, for
all x € .5,

d0p(, 7o) < flwo) — fl2) < f(2) —inf f < e.(2.5.2)
Take x1 € Sp such that

)
Fla1) + Sop(z1, 20) < inf [F(z) + dopla, z0)] + -,
r€ES) 250
(2.5.3)

and define similarly

1
S1={zes| f)+ l%w:mm < f(w1) + doplw1, 20) .
) (2.5.4
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In general suppose that we have defined x;,5; for j =
0,1,...,7— 1 satistying

j—1
Zékp RS nf | f@)+ Y ool a)]
k=0

ZIZES]' 1

+ 50 (2.5.5)
T 5

and

J
Sji={ €81 | f@)+D dppleap) < fla))
k=0
j—1
—|—Z5k,0($j,£6k)}. (2.5.6)

k=0



We choose z; € S;_1 such that

reS;_q
852'
28

1—1
flzi)+ Y opplai,xp) < inf
k=0

_|_

and we define
)
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)+ Zl (i, )|
k=0

(2.5.7)



We can see that for every ¢ = 1,2,...,5; is a closed and

nonempty set. It follows from (2.5.7) and (2.5.8) that, for all

xr €9,
1—1

0ip(, ;) < { (23) + > Oppla, x) } { ) + Z%ﬂ (@, x)
k=0
1—1

< {f (23) + Y Sppla, 513/-@)}

k=0




which implies that

plx,x;) < .L, for all x € .5;. (2.5.9)

20

Since p is a gauge-type function, inequality (2.5.9) implies
that d(x,x;) — 0 uniformly, and therefore diam(S;) — 0.
Since X is complete, by Cantor’s intersection theorem there
exists a unique y € ()72 S;, which satisfies (i) by (2.5.2)
and (2.5.9). Obviously, we have z; — y. For any z # y, we
have that « & (172 S;, and therefore for some 7,
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+Z§kpxwk ) > flx +Z(5kpa:xk

j 1

> fxj)+ Y Opplzj,xp)-
o (2.5.10)

On the other hand, it follows from (2.5.1), (2.5.8) and y €
N2 S; that, for any g > 7,
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flwo)> flzj) + > opplxj, zp)

k=0
qg—1
> flxg) + ) Spplag, o)
k=0
q
> fy)+ > orply, zp), (2.5.11)

k=0
Taking limits in (2.5.11) as ¢ — oo we have



i1
f(z) = flxo)> flxj)+ > dpplaj,up)

k=0

0
> )+ opply, ap),  (25.12)

k=0
which verifies (ii). Combining (2.5.10) and (2.5.12) yields
(iii). :

We shall frequently use the following normed space form of
the Borwein—Preiss variational principle, especially in spaces
with a Fréchet smooth renorm, in which case we may deduce
first-order (sub)differential information from the conclusion.
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Theorem 2.5.3. Let X be a Banach space with norm

||| and let f: X — RU{+oc} be a lsc function bounded

from below, let X > 0 and let p > 1. Suppose that € > (
and z € X satisfy

f(z) < igl(ff—i-&

Then there exist y and a sequence (x;) in X with x1 = 2
and a function pp: X — R of the form

0
oplx) =Y pillw — ;7.
1=1

where p; > 0 for all i = 1,2,... and > 72 u; = 1 such
that

i) |z, —yll < An=12,...,



(11)f(y)+(6/kp)sop( ) < f(2), and
(iil) f(z)+(e/A)pp(z) > fly)+(e/AP)ep(y), for all x €
X\ {y}.

Proof. Exercise 2.5.1. .

Note that when || - || is Fréchet smooth so is ¢ for p > 1.

2.5.2 The Deville-Godefroy—Zizler Principle

An important counterpart of the Borwein—Preiss variational
principle subsequently found by Deville, Godefroy and Zi-
zler [98] is given below. It is interesting to see how the Baire
category theorem is used in the proot. Recall that the Baire
category theorem states that in a complete metric space ev-
ery countable intersection of dense open sets is dense: a set
containing such a dense Gg set is called generic or resid-



ual and the complement of such a set is meager. We say a
function f: X — R U {+oo} attains a strong minimum
at ¢ € X if f(z) = infx f and ||x; — z|| — 0 whenever
r; € X and f(x;) — f(z). If fis bounded on X, we define

| flloo :=sup{|f(z)| | x € X}. Wesay that ¢p: X — Risa
bump function if ¢ is bounded and has bounded nonempty
support supp(¢) = {z € X | ¢(x) # 0}.

Theorem 2.5.4. (The Deville-Godefroy—Zizler Variational

Principle) Let X be a Banach space and Y a Banach
space of continuous bounded functions g on X such that

(1) llglloo < liglly for all g €Y.
(ii) For each g € Y and z € X, the function v —
gz(r) = glx + 2) is in Y and ||gz|ly = |lglly-



(iii) For each g € Y and a € R, the function x — g(ax)
15 i Y.

(iv) There exists a bump function in Y.

If f: X = RU{+x} is a proper lsc function and

bounded below, then the set G of all g € Y such that

f + g attains a strong minimum on X is residual (in

fact a dense Gy set).

Proof. Given g € Y, define S(g;a) :={xr € X | g(x) <
infxyg+a} and U; == {g € YV | diamS(f + g;a) <
1/i, for some a > 0}. We show that each of the sets U
1s dense and open in Y and that their intersection is the
desired set G.

To see that U; is open, suppose that ¢ € U; with a
corresponding a > 0. Then, for any A € Y such that



lg — hlly < a/3, we have ||g — hljlco < a/3 Now for
any z € S(f + h;a/3),

(f + 1)) < inf(f + ) + 3
It 1s an easy matter to estimate
(F+9)@) < (f +R)(a) + llg = hlloo < f(f + 1) + 5

Tllg =Pl
<inf(f+9g) + 5 +2llg — hlloo <if(f +g) +a.

This shows that S(f +h;a/3) C S(f+g;a). Thus, h € U;.

To see that each U; is dense in Y, suppose that g € Y and
e > 0; it suffices to produce h € Y such that ||h|ly < €
and for some @ > 0 diam S(f + g + h;a) < 1/i. By hy-



pothesis (iv), Y contains a bump function ¢. Without loss
of generality we may assume that ||¢|ly < €. By hypoth-
esis (ii) we can assume that ¢(0) # 0, and therefore that
¢(0) > 0. Moreover, by hypothesis (iii) we can assume that
supp(¢) C B(0,1/24). Let a = ¢(0)/2 and choose z € X
such that

(f+9)(x) < ig(f(f +9) +0(0)/2.

Define h by h(x) := —¢(x — ); by hypothesis (i), h € YV
and ||h|ly = ||¢|ly < € and h(Z) = —¢(0). To show that
diam S(f+g+h;a) < 1/1, it suffices to show that this set is
contained in the ball B(z,1/2i); that is, if ||x — Z|| > 1/2t,
then = € S(f + g+ h; a), the latter being equivalent to
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(f+g+h)(x)>ig1(f(f+g+h)+a.

Now, supp(h) C B(x,1/2i),s0 h(x) =0if ||z — z|| > 1/2i
hence

(f +g+h)(z)

(f +9)(x) > igl(f(f +9)>(f+9)(x) —a
(

f+g+n)(z)+¢(0) - ¢(0)/2

219(f(f+g+h)+a.

as was to be shown.

Finally we show (72, U; = G. The easy part of G C
iz Uj is left as an exercise. Let g € (721 U;. We will show
that g € G; that is, f + ¢ attains a strong minimum on X.
First, for all ¢ there exists a; > 0 such that diam S(f +
g;a;) < 1/i and hence there exists a unique point T €



N1 S(f + g;a;). Suppose that 2 € X and that (f +
g)(xp) = infx(f +g). Given ¢ > 0 there exists 7 such that
(f + g)(zp) < infx(f + g)+ a; for all i > i, therefore
r € S(f + g;a;) for all i > iy and hence ||z — Z|| <
diam S(f + g;a;) < 1/i if k > idg. Thus, ;. — T, and
therefore g € G. .

2.5.3 Commentary and Exercises

The Borwein—Preiss smooth variational principle appeared
in [58]. The proof here is adapted from Li and Shi [182].
Their original proot leads to a clean generalization of both
the Ekeland and Borwein—Preiss variational principle (see

Exercises 2.5.2 and 2.5.3). The Deville-Godefroy—Zizler vari-
ational principle and its category proof is from [98]. Another



very useful variational principle due to Stegall, is given in
Section 6.3.

Exercise 2.5.1. Deduce Theorem 2.5.3 from Theorem
2.5.2.

Hint: Set p(x,y) = ||z — y||*.

Exercise 2.5.2. Check that, with 0 := 1, 9; := 0,7 =
1,2,... and p := ed, the procedure in the proot of Theorem
2.5.2 reduces to a proof of the Ekeland variational principle.

If one works harder, the two variational principles can be
unified.

xExercise 2.5.3. Adapt the proof of Theorem 2.5.2 for a
nonnegative sequence (9;)7°., dp > 0 to derive the following
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generalization for both the Ekeland and the Borwein—Preiss
variational principles.

Theorem 2.5.5. Let (X, d) be a complete metric space
and let f: X — R U {+oo} be a lsc function bounded
from below. Suppose that p 1s a gauge-type function and
(0;)72, 15 a sequence of nonnegative numbers with oy > 0.
Then, for every e > 0 and z € X satisfying

flz) <inff+e.

there exists a sequence {x;} C X converging to some
y € X such that

(1> IO(Z, y) < 8/507
(i) fly)+ 2 200iply, ;) < f(2), and



(i) f(2)+> 20 dip(x, i) > f(y)+D 220 dip(y, x;), for all x
X\ {y}-
Moreover, if 0. > 0 and 0 = 0 for all |l > k > 0, then
(iii) may be replaced by
(iii") for all x € X \ {y}, there exwists j > k such that
k-1
f(x)+ ) diple, @) + Oppla, x) > f(y)
-
+ > diply, ;) + Spply, ;).
1=0
The Ekeland variational principle, the Borwein—Preiss vari-
ational principle and the Deville-Godetroy—Zizler variational
principle are related in the following exercises.
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Exercise 2.5.4. Deduce the following version of Ekeland’s
variational principle from Theorem 2.5.4.

Theorem 2.5.6. Let X be a Banach space and let
f: X — RU{+o0} be a proper Isc function and bounded
below. Then for all € > 0 there exists * € X such that

f(z) < igl(ff+25

and the perturbed function x — f(x) + el|lx — Z|| attains
a strong minimum at .

Hint: Let Y be the space of all bounded Lipschitz contin-
uous functions g on X with norm

l9(z) — g(y)

lz =y

lglly = llglloo +sup { ryeXaty}
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Exercise 2.5.5. Deduce the following version of the smooth
variational principle from Theorem 2.5.4.

Theorem 2.5.7. Let X be a Banach space with a Lip-
schitz Fréchet smooth bump function and let f: X —
R U {+o00} be a proper lsc function and bounded below.
Then there exists a constant a > 0 (depending only on
X ) such that for all ¢ € (0,1) and for any y € X satis-
fying f(y) < infy f+ag?, there exist a Lipschitz Fréchet
differentiable function g and x € X such that

(i) f+ g has a strong minimum at x,

(i) llglloc <€ and ||¢']|oc <.
(iii) flz -yl <e.
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«Exercise 2.5.6. (Range of Bump Functions) Let b: RY —
R be a C't bump function.

(i) Show that 0 € intrange(d’) by applying the smooth vari-
ational principle.

(ii) Find an example where range(d’) is not simply con-
nected.

Reference: [37].



3

Variational Techniques in Subdifferential Theory

For problems of smooth variation we can usually apply ar-
cuments based on Fermat’s principle — that a differentiable
function has a vanishing derivative at its minima (maxima).
However, nonsmooth functions and mappings arise intrinsi-
cally in many applications. The following are several such
examples of intrinsic nonsmoothness.

Example 3.0.1. (Max Function) Let f,: X — R U
{+o0},n=1,..., N be lsc functions. Then so is
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f=max(fi,..., fx).

However, this maximum is often nonsmooth even if all
fn,m=1,..., N are smooth functions. For example,

2| = max(z, —x).
i1s nonsmooth at x = 0.

Example 3.0.2. (Optimal Value Functions) Consider the
simple constrained minimization problem of minimizing f(x)
subject to g(x) = a, x € R. Here a € R is a parameter al-
lowing for perturbation of the constraint. In practice it is
often important to know how the model responds to the
perturbation a. For this we need to consider, for example,
the optimal value

v(a) == inf{ f(x) : g(a) = a}
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as a function of a. Consider a concrete example, illustrated
in Figure 3.1, of the two smooth functions f(x) = 1 —
cosx and g(x) :=sin(6x) — 3z, and a € |—m /2, 7 /2] which
corresponds to x € [—m/6,7/6]. It is easy to show that the
optimal value function v is not smooth, in fact, not even
continuous.

Example 3.0.3. (Penalization Functions) Constrained op-
timization problems occur naturally in many applications.
A simplified form of such a problem is
P minimize f(x)
subject to x € S,

where S 1s a closed subset of X often referred to as the
feasible set. One often wishes to convert such a problem
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05 1 15

Fig. 3.1. Smooth becomes nonsmooth: g (vertical) plotted against f.

to a simpler one without constraint. The use of nonsmooth
functions makes this conversion easier. For example, if f is
Lipschitz with a Lipschitz constant L then, for any u > L,
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problem P is equivalent to
minimize f + udg.

This is often referred to as exact penalization. If f is Isc
then P is equivalent to

minimize f + ¢g.

Example 3.0.4. (Spectral Functions) The maximum eigen-
value of a matrix often plays an important role in problems
related to a matrix. When the matrix contains one or more
parameters, the maximum eigenvalue then becomes a func-
tion of those parameters. This maximum eigenvalue function
is often intrinsically nonsmooth. For example, consider the
2 by 2 matrix with a parameter x.
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-1

Then the maximum eigenvalue is 1+ |x|, a nonsmooth func-
tion.

This intrinsic nonsmoothness motivated the development
of nonsmooth analysis. Concepts generalizing that of the
derivative for smooth functions have been introduced which
cnable us to apply the variational technique to nonsmooth
functions. There are many competing concepts of subdiffer-
entials; we mainly focus on the Fréchet subdifferential which
is a natural fit for the variational technique.
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3.1 The Fréchet Subdifferential and Normal Cones

3.1.1 The Fréchet Subdifferential

To generate the Fréchet subdifferential at a nondifferen-
tiable point of a Isc function, we use the collection of all
the (Fréchet) derivatives of smooth “osculating” functions
(functions lying below and touching at the point in ques-
tion), if they exist, to replace the missing derivative. More
often than not, this simple contrivance is sufficient. More-
over, in the language of analysis, we are led to study a local
minimum of the difference of two functions which fits very
well with techniques of variational analysis. The geometric
concept of the Fréchet normal cone to a closed set is then
introduced through the subdifferential of the indicator func-
tion of the set — an extended-valued Isc function.
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Let X be a Banach space. We say a function f on X is
Fréchet differentiable at x and f'(x) € X* is the Fréchet
derivative of f at x provided that

o @) — ()~ (), B
Jh][S0 I

= 0.

We say fis Ctat « if f/: X — X* is norm continuous at
x. We say a Banach space is Fréchet smooth provided that
it has an equivalent norm that is differentiable, indeed C' 1,

for all = # 0.
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Definition 3.1.1. (Fréchet Subdifferential) Let X be a
real Banach space. Let f: X — R U {400} be a proper
Isc function. We say f is Fréchet-subdifferentiable and =™
15 a Fréchet-subderivative of f at x if x € domf and

o fah) = fl@) — (2, by
12]|=0 |7

We denote the set of all Fréchet-subderivatives of f at x
by O f(x) and call this object the Fréchet subdifferential

of [ at x. For convenience we define Opf(x) =0 if v &
domf.

>0.  (3.1.1)
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Definition 3.1.2. (Viscosity Fréchet Subdifferential) Let
X be a real Banach space. Let f: X — R U {400}
be a proper lsc function. We say [ s viscosity Fréchet-
subdifferentiable and x™ is a viscosity Fréchet-subderivative
of f at x if x € domf and there exists a C function g
such that ¢'(x) = x* and f — g attains a local mini-
mum at r. We denote the set of all viscosity Fréchet-
subderivatives of f at x by Oy pf(x) and call this object
the viscosity Fréchet subdifferential of f at x. For conve-

nience we define Oy pf(x) =0 if x & domf.
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Since shifting g by a constant does not influence its deriva-
tive we can require that f — g attains a local minimum of 0
at x in the above definition.

The following relationship between the Fréchet subdiffer-
ential and the viscosity Fréchet subdifferential is easy and
useful.

Proposition 3.1.3. Let X be a Banach space and let
f: X - RU{+00} be a lsc function. Then Oy pf(x) C

Opf(z).
Proof. Exercise 3.1.1. .

In fact, with some additional effort one can show that in
a Fréchet-smooth Banach space Oy pf(x) = Opf(x) [99].
Since we work mostly in Fréchet smooth Banach spaces in
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this book, we will use dp for both Fréchet and viscosity
Fréchet subdifferentials unless pointed out otherwise.

If f is Fréchet differentiable at 2 then it is not hard to show
that Op f(x) = {f/(x)}. The converse is not true (Exercises
3.1.3). In general, O f(x) may be empty even if x € domf.
An easy example is Op(—||+]|)(0) = (). However, a variational
argument leads to the following important result about the
existence of the Fréchet subdifferential.

Theorem 3.1.4. Let X be a Fréchet smooth Banach
space and let f: X — RU{+o0} be a lsc function. Then
{r € X |0pf(x)# 0} is dense in domf.

Proof. Let x € domf and let £ be an arbitrary posi-
tive number. We show f is Fréchet subdifferentiable at some
point y € B:(Z). Since f is Isc at x there exists 6 > 0
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such that f(z) > f(z) — 1 for all z € Bg(z). Define
) Then, f is Isc and

5(T
% int 1—1nf 1.
fe) = f(@) < jnf f+1=inff+

Applying the Borwein—Preiss Varlatlonal Principle of The-
orem 2.5.3, using the asserted Fréchet smooth renorm with
A < min(d, €), we conclude that there exists y € B)(Z) C
int(Bs(z) N Be(z)) and @o(w) = >_°° ;]| — 24]|* where
(x;) is a sequence converging to y and (u;) is a sequence
of positive numbers satisfying > °°, u; = 1 such that
f + )\_2902 attains a minimum at y. Since y is an interior
point of Bs(Z), f 4+ A "2y attains a local minimum at .
After checking that ¢y is Fréchet differentiable, we see that
f is Fréchet subdifferentiable at y € B:(%). .



We put meat on the bones of the last result by recall-
ing that Hilbert space and Ly(l < p < oo) are Fréchet
smooth in their original norms while every reflexive space
has a Fréchet smooth renorm [58, 99].

Note that the subdifferential is usually a set. The following
are subdifferentials of several nonsmooth functions at typical
nonsmooth points that can easily be verified.

Example 3.1.5.
Op|-1(0) = [-1,1],

0p/| - 1(0) = (00, 00),

O max(-, 0)(0) = [ 1,

and
Optyp,11(0) = (—o0, 0],
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3.1.2 The Fréchet Normal Cone

The central geometric concept of the normal cone to a closed
set can now be defined through the indicator function of the
set.

Definition 3.1.6. (Fréchet Normal Cone) Let S be a
closed subset of X. We define the Fréchet normal cone
of S at x to be Np(S;x) .= dptg(x).

Some easy facts directly follow from the definition. It is easy
to verify that Np(S;x) is a cone that always contains {0}
and when x € int S, Np(S;x) = {0} (Exercises 3.1.6, 3.1.8

and 3.1.9). Moreover, consider the constrained minimization
problem



minimize f(x) (3.1.2)
subject to x € § C X.

We have an easy and useful necessary optimality condition
in terms of the normal cone of §.

Proposition 3.1.7. Let X be a Fréchet smooth Banach
space, let f be a C1 function on X and let S be a closed
subset of X. Suppose that T is a solution of the con-
strained minimization problem (3.1.2). Then

0 € f'(z) + Np(S; ).
Proof. Exercise 3.1.13. .

Recall that for a C! function f, v = f(x) if and only if
(v, —1) is anormal vector for the graph of f at (x, f(z)). Our
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next theorem is a Fréchet subdifferential version of this fact
which characterizes the Fréchet subdifferential of a function
in terms of the normal cone to its epigraph.

Theorem 3.1.8. Let X be a Fréchet smooth Banach
space and let f: X — RU{+oo} be a lsc function. Then
v* € Opf(x) if and only if

(¢¥,—1) € Np(epif; (z, f(z))).
Proof. (a) The “only if” part. Let x* € Opf(z). Then

there exists a C'! function ¢ such that ¢/(z) = z* and f — g
attains a minimum at x. Define h(y, 1) := g(y) —r. We have

W (z, f(z)) = (2*, —1) and
tepi (4, 7) = Wy, 1) = tepif(z, f2)) — Mz, f(2)]3.1.3)
Thus, (2%, —1) € Np(epif; (z, f(z))).



(b) The “if” part. Let (x*,—1) € Np(epif;(x, f(z))).
Then there exists a C'' function h such that A/ (z, f(z)) =
(x*, —1) and h(y,r) < h(z, f(x)) = 0 for any (y,r) € epif.
By the implicit function theorem (see e.g. [271]) there ex-
ists a C! function g: X — R such that in a neighborhood
of x, h(y,g(y)) = 0, g(z) = f(z) and ¢'(x) = x*. Since
h is C! and the second component of A'(z, f(x)) is nega-
tive there exists a > 0 such that h(y,r) < h(y,r’), for any
y € By(z)and f(x)—a <1’ <r < f(z)+a. Takeb € (0,a)
such that for any y € By(x), g(y) € (f(z) — a, f(x) + a)
and f(y) > f(x) — a. Then, for any y € Bp(x), we have
fly) —gly) > 0= f(x) — g(z). In fact, the inequality is
obvious when f(y) > f(x)+a. If f(y) < f(x)+ a then it
follows from h(y, f(y)) < 0= h(y, g(y)). .
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The normal cone to the epigraph of a function has the
following special properties.

Lemma 3.1.9. Let f be a Isc function. Then

(i) forany (z,r) € epif, Np(epif; (x,r)) C Np(epif; (z, f(z)
(ii) of (x*, —A) € Np(epif;(x, f(z))) and X # 0 then \ >
0 and z* € \Opf(x).

Proof. Exercise 3.1.10.
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Thus, Theorem 3.1.8 also characterizes

(2%, A) € Np(epif; (z, f(x)))
when A # 0 in terms of the subdifferentials of f. The char-
acterization of (x*,0) € Np(epif; (x, f(x))) in terms of the
subdifferentials of f is more delicate and will be discussed

later after we have developed the subdifferential calculus.

3.1.3 The Subdifferential Form of the Variational Principle

We conclude this section with a subdifferential version of
the Borwein—Preiss Variational Principle. This is the form
most frequently used in applications involving subdifferen-
tials. The easy proof is left as an exercise.
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Theorem 3.1.10. Let X be a Banach space with a

Fréchet smooth norm || - || and let f: X — R U {+o0}
be a lsc function bounded from below, A > 0 and p > 1.
Then, for every e > 0 and z € X satisfying

f(z) < igl(ff—ke,

there exists a point y € X such that ||z — y|| < A and

a C1 function ¢ with |o(y)| < /X and Hgo’(y)||_< pe/ A
such that f + @ attains a mz’m’mum at y. Consequently,

opf(y) Nt BX* # 0.
Proof. Exercise 3.1.12.
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3.1.4 Commentary and Exercises

Although the use of generalized (one-sided) derivatives dates
back explicitly to Dini and before, especially in the con-
text of integration theory, the systematic study of such con-
cepts for variational analysis, especially off the real line, is
quite recent. Consistent theory was developed first for cer-
tain classes of functions, e.g., the convex subdifferential for
convex functions (see [229]) and the quasi-differential for
quasi-differentiable functions (see [223]). Clarke’s pioneering
work [81] on the generalized gradient opened the door to me-
thodical study of general nonsmooth problems. Many com-
peting concepts of generalized derivatives were introduced
in the ensuing past several decades. Several frequently used
concepts are Halkin’s screen |133], the limiting subditferen-
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tial developed by Mordukhovich [195, 196, 198], loffe’s ap-
proximate and G-subdifferential [142, 145, 146], Michel and
Penot’s subdifferential [193], Treiman’s linear subdifferential
250, 251], Warga’s derivative container [263, 264] and Suss-
mann’s semidifferential (245, 246].

The last decade has witnessed a unification and reconcilia-
tion of much of this work in two directions. One is along the
ideas pioneered by Warga to study abstract subdifferentials
that satisfy a set of axioms so as to provide basic proper-
ties of many different subdifferentials alluded to above with
a unified framework. The other, which is more relevant to
this book, is to turn our attention to the simpler smooth
subdifferentials based on the fact that many of the above
subdifferentials can be represented by such smooth subd-



ifferentials in spaces with a reasonable geometric property
48, 85, 146, 185]. In this book we primarily consider the
Fréchet subdifferential in Fréchet smooth Banach spaces. It
was introduced by Bazaraa, Goode and Nashed in finite
dimensions [20] and developed in detail in infinite dimen-
sions by Borwein and Strojwas [61], Kruger [164, 165, 166),
Kruger and Mordukhovich [167] and others. This allows us
to illustrate variational techniques without too many tech-
nical assumptions. Most of the results apply to more general
bornological smooth subdifferentials or s-Holder subdiffer-
entials [58, 221] with minor changes. Systematic accounts
of nonsmooth analysis and its applications can be found in

8, 84, 85, 91, 185, 150, 198, 208, 237, 263, 264].
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Unlike derivatives, subdifferentials do not determine func-
tions up to a constant, even on well connected sets. Thus,

we do not have an “integration” theory corresponding to the
subdifferentials (see guided Exercises 3.1.19, 3.1.20, 3.1.21
and 3.1.22 for details).

Exercise 3.1.1. Prove Proposition 3.1.3.

Exercise 3.1.2. Verify the Fréchet subdifferentials in Ex-
ample 3.1.5.

Exercise 3.1.3. Show that

(i) If f is Fréchet differentiable at = then Opf(z) =
{f(x)}.

(ii) A function can have a unique Fréchet subdifferential
without being differentiable.



(iii) There exists a Lipschitz function having the properties
described in (ii).

Hint: Consider f(x) := |z|(sin(log(|z])) + 1),x # 0 and

f(0):=0.

Exercise 3.1.4. (Fréchet Superdifferential) Let f: X —

R U {—o00} be an upper semicontinuous function (i.e., —f

is Isc). We define the Fréchet superdifferential of f at x to

be O f(x) = —0p(—f)(x) . Prove that f is Fréchet differ-

entiable at « if and only if 8% f(z) = 9p(f)(z) = {f'(z)}.

Indeed it suffices that 0% f(z) N Opf(z) # 0.

Exercise 3.1.5. Show that for any A > 0, 9p(Af)(x) =

ANOp f(x). Care must be taken with zero, when Jpf(x) is

empty.
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Exercise 3.1.6. Verity that for any closed set S and x € 5,
Np(S;x) is a cone, ie., for any 2* € Np(S;x) and any
r>0,re* € Np(S;x).

Exercise 3.1.7. Show that for any lsc function f: RY —
R U {+o00} and any x € dom f. The set Op f(x) is always
closed. Deduce that, for any closed subset S in RY and any

r € S, the normal cone Np(S;x) is closed. Reference: See
Theorem 8.6 in [237].

Exercise 3.1.8. Show that if s € intS, then Np(S;s) =
{0}

Exercise 3.1.9. Let {¢;} be the standard orthonormal ba-
sis of £y and let S 1= conv{=£e;/i};°,. Show that 0 & intS
vet Np(S;0) = {0}.
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Exercise 3.1.10. Prove Lemma 3.1.9.

Exercise 3.1.11. Show that in Definition 3.1.2 we can re-
quire that f — g attains a local minimum of 0 at z.

Exercise 3.1.12. Suppose that f is a lsc function and that
gisa C! function. Show that Op(f+¢)(z) = Opf(x)+d (x).

Exercise 3.1.13. Prove Proposition 3.1.13.

Exercise 3.1.14. Prove that if f is a Lipschitz function

with rank L then, for any z, 2* € Opf(x) implies that
|lz*]| < L.

xExercise 3.1.15. Let X be a Fréchet smooth Banach space
and let f: X — RU{+o0} be alsc function. Prove that f is
Lipschitz with rank L if and only if, for any z, ™ € dp f(x)
implies that |[z*| < L.



3.1 Fréchet Subdifferential 153

xExercise 3.1.16. Let X be a Fréchet smooth Banach space
and let f: X — RU {400} be a lsc function. Prove that
Oy pf(x)=0pf(x). Reference: [99].

xExercise 3.1.17. Let X be a Banach space with a Fréchet
smooth equivalent norm and let f: X — R U {+00} be a
Isc function. Prove that * € O f(z) if and only if there
exists a concave C! function ¢ such that ¢/(z) = z* and

f — g attains a local minimum at x, as drawn in Figure 3.2.
Reference: |71, Remark 1.4].

Exercise 3.1.18. Prove Theorem 3.1.10.

Exercise 3.1.19. Construct two lsc functions on R with
the identical Fréchet subdifferential yet their difference is not
a constant. Hint: Consider f =1 — X[0,1] and 2f where x g
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Fig. 3.2. Every Fréchet subdifferential is a “viscosity” subdifferential.



is the characteristic function of set S defined by xg(x) =1
for x € S and yg(x) =0forx & 5.

Exercise 3.1.20. Construct two continuous functions on R
with the identical Fréchet subdifferential yet their difference

is not a constant. Hint: Consider the Cantor function f and
2f (see |7T1] and also Exercise 3.5.5).

Exercise 3.1.21. Prove that if two Lipschitz functions on
R have the identical Fréchet subdifferential then they differ
only by a constant.

xExercise 3.1.22. The conclusion in Exercise 3.1.21 fails if
the Fréchet subdifferential is replaced by the proximal sub-
differential. Recall the proximal subdifferential is defined as
follows.
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Definition 3.1.11. (Proximal Subdifferential) Let X be a
real Hilbert space. Let f: X — R U {400} be a proper
Isc function. We say [ s a proximal subdifferentiable and
x™ is a proximal subderivative of f at x if x € domf and

there exists a constant ¢ > 0 such that

fly) = (", y) —clly — ||
attains a local minimum at x. We denote the set of all

proximal-subderivatives of f at x by Opf(x) and call this
object the proximal subdifferential of f at x. For conve-

nience we define Opf(x) =0 if x & domf.
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Precisely prove the following theorem.

Theorem 3.1.12. There exists uncountably many dif-
ferent Lipschitz function f: R — R with f(0) = 0 such
that Opf(x) = (—1,1) when x is a dyadic rational, and
Opf(x) =0 when x is not a dyadic rational.

One can start with the construction in the following propo-
sition for a function on [0, 1] and then extend it periodically

to RR.
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Proposition 3.1.13. Let (a;) be a sequence satisfying
0 < a1 <ay < - < 1,a; = 1 cmin(l—az-) —
0o. Then there exists a Lipschitz function f:[0,1] — R
with Lipschitz constant 1 satisfying f(0) = f(1) =0 and
f(1/2) = ay/2 such that Opf(z) = (—1,1) when x € (0, 1)
is a dyadic rational, and Opf(x) = 0 when x € (0,1) is
not a dyadic rational.

Hint: Define f = lim; f; where f; are affine on the intervals
/2", (n+1)/2Y forn =0,1,...,2" — 1. Denote the slope
of f; on this interval by s, ; and define f;(0) = 0 and
Soni = Gy, Son+14 = 28pj—1 — @i, it sp1 >0,
SO = 28pi—1 1 Qi S = —ay, it 5,1 <0.
Then show that
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(i) Foralle=1,2,..., f; is defined and Lipschitz on [0, 1]
and f;(2n/2Y) = f;_1(n/2 " forn=0,...,2" ! and
i=2.3 ...

(i) sp; € [—aja])foralln=0,...,2 tandi =1,2,....

(iii) The sequence (f;) uniformly converges to a Lipschitz
function f with a Lipschitz constant 1.

(iv) Opf(x) = (—1,1) when x € (0,1) is a dyadic rational.

(v) Ipf(x) =0 when x € (0,1) is not a dyadic rational.

(vi) Verify that f(0) = f(1) =0 and f(1/2) = a1/2.

(vil) Extend f periodically to R and check Opf(z) = (—1,1)

when x is an integer.

Reference: see [46] for details and check [21, 66, 92] for related
carlier examples.
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3.2 Nonlocal Approximate Sum Rule and Viscosity Solutions

To effectively use the Fréchet subdifferential one otten needs
to decouple subdifferential information in various different
settings. Here we discuss a result that combines a varia-
tional principle and a decoupling mechanism. It is flexible
enough that one can conveniently use it to derive several
other results on the calculus of subdifferentials of a similar
nature.

3.2.1 The Decoupled Infimum

We start by introducing the concept of a decoupled infimum.
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Definition 3.2.1. (Decoupled Infimum) Let X be a Ba-
nach space, fr: X = RU{+o0},n=1,..., N extended-
value functions and S a subset of X. We define the de-
coupled infiimum of fi,..., fxy over S by

1n—0

N
Alfis - fy1(S) = lim inf {LS(:);O) 57 fulan)
n=1

diam(zxg, x1,...,zN) < 77}
(3.2.1)
Some useful elementary properties of the decoupled infi-

mum are discussed in Exercises 3.2.1, 3.2.2 and 3.2.3.
The following lemma is often useful.
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Lemma 3.2.2. Let sp(y1,...,YnN) = Z,,]szl lyn—yml|?
with p > 1. Suppose that

(x],...,T) € Opsp(xy,...,zN).
Then
N
> aj =0 (3.2.2)
n=1
Moreover, if p=1 and si(xy,...,xn) > 0, then

max{||z}|| |n=1,...,N} > 1. (3.2.3)
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Proof. Conclusion (3.2.2) is easy and left as an exercise.
To prove (3.2.3) we observe that s; is homogeneous. By
Proposition 3.1.3 we have

N
5t -n0 <t
si(xy —try,. .., oy —tey) — s1(x1,...,TN)
t
=—s1(xq,...,xN). (3.2.4)

Combining (3.2.2) and (3.2.4) we have
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sl(xl,...,xN)gz T Ty Z T Ty —

n=1 n=1
N—1
<max{||z}]| | n < N —1} Z |zn — 2|
n=1
<max{||z}|| | n}si(z1,...,zn),  (3.2.5)

which implies (3.2.3) when s{(x1,...,xn) > 0. .

3.2.2 Nonlocal Approximate Sum Rules

Now we can prove the main result of this section.
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Theorem 3.2.3. (Nonlocal Approximate Sum Rule) Let
X be a Fréchet smooth Banach space and let f1,..., fy: X —
RU{+o0} be lsc functions bounded below. Suppose that
A1, IN](X) < 4o0. Then, for any € > 0, there

exist xy and x), € Opfn(xn),n=1,..., N satisfying
diam(zy, ..., xyx) x max(L, |27, ..., [|[z¥]) <e,
(3.2.6)
and

N
an(%z) </\[f17'-'7fN](X>—|_€ (3.2.7)
n=1

such that
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N
H Z Ty (3.2.8)
n=1
Proof. Without loss of generality, we may assume that
|- | is CT away from 0. Define, for any real number 7 > 0
and s as in Lemma 3.2.2,

wr(yl,...,yN an Un _l_TSQ(yla"'?yN)

and M, = inf w,. Then M,r is an increasing function of r
and is bounded above by A|f1, ..., fx](X) (Exercise 3.2.4).
Let M = limy_so0 M. Observe that the product space X N
of N copies of the Fréchet smooth Banach space X (with
the Euclidean product norm) is also Fréchet smooth. For
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each r, applying the Borwein—Preiss Variational Principle of
Theorem 3.1.10 to the function w,., we obtain a C'* function
¢r and Ty p,n =1,..., N such that

N
1 1
Z f?”L(CU’n,’I“) S ”UJT([ELT, e 7‘/EN7T) < Hlf wfr' —I— ; S M —I— ;’
n=1

(3.2.9)
||¢;°<5’31,r7 e axN,r>|| < ¢/N, and

N
> falyn) +rsa(yr, - yn) + 6r(yL, - UN)
n=I1

attains a local minimum at (z1,...,2y,). Thus,
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(T oy T ) == (@1 TNy =TT TN )

€ Opfi(wyy) X - X Opfn(aN ).
Summing the N components of the above inclusion and us-
ing Lemma 3.2.2 we obtain (3.2.8). By the definition of M,

we have

M,y <ty o1, T )

-
:wr(xl,ra ce ,:CN’,,a) — 552($1,’r> ce 7:EN,7“>

L r
<M, + ph 552(371,% TN ) (3.2.10)

Rewriting (3.2.10) as rsa(@1,, ..., N ) < 2(Mp— M, o+

1) yields
lim rso(z1s,...,2N,) =0. (3.2.11)

r—00
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Therefore,

. = 0. 2.12

frlggo dlam(xl r CUN,?“) 0 (3 )

Moreover,

Tl;ng@ diam(z1 gy, ..., T ,) X max(||a:>f7r||, . ”5’3}(\7,7“”) = 0.
(3.2.13)

Also,

<lim inf Z fn(Tnr) = limint wr(azl - ,ZCNJ.) < M

r—>00 r—>00 o

which yields
M= Nfi,... FNI(X). (3:2.14)
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For r sufficiently large, set @y == @y and xy, == 27, ., n =

1,...,N. Then (3.2.6) follows from (3.2.12) and (3.2.13) and
(3.2.7) follows from (3.2.9) and (3.2.14). .

Theorem 3.2.3 is a powerful result. The guided Exercise
3.2.7 illustrates how to use it to deduce Theorem 3.1.4. The
conditions in the nonlocal approximate sum rule are mini-

mum in a certain sense (see examples in Exercises 3.2.5 and
3.2.6).



3.2 Nonlocal Sum Rule 171

3.2.3 The Uniqueness of Viscosity Solutions

We now use the nonlocal approximate sum rule to prove a
uniqueness theorem for the viscosity solution of the following
Hamilton—Jacobi equation

uw+ H(z,u') =0. (3.2.15)

This equation is closely related to the optimal value function
of certain optimal control problems.

Consider the value function u of the optimal control prob-
lem
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u(x) = inf{/oo e tF(z(t), c(t))dt - 2'(t) = g(x(t), e(t)),

0
c(t) € C,x(0) = a:}
(3.2.16)

where f and g are Lipschitz functions, ¢ is a measurable
function modeling the control and C' is a compact set mod-
eling the admissible range of the control function. We assume
that for any given x, an optimal control for the above prob-
lem exists. When w is smooth it satisfies equation (3.2.15)
with

H(z,p) :==sup{(—g(z,c),p) — f(z,c): c € C}
(3.2.17)



The proot is outlined in the guided exercises 3.2.11 and
3.2.12.

In general such a value function is not necessarily smooth
and (3.2.15) does not necessarily have a classical solution.
Viscosity solutions were introduced to replace classical so-
lutions. We recall the definition below. First, let f: X —
RU{—o00} be an upper semicontinuous function. We define
the Fréchet superdifferential of f at =, % f(z), by

0" f(x) == —0p(—f)(x).



Definition 3.2.4. (Viscosity Solutions) A functionu: X —
R is a viscosity supersolution (viscosity subsolution) of

(3.2.15) if u is lower (upper) semicontinuous and, for

every © € X and every x* € Op(u)(z) (z* € 0F (u)(x)),

wz)+ H(x,z*) >0 (u(x)+ H(z,z") <0).

A continuous function u 1s called a viscosity solution if u
1 both a viscosity subsolution and a viscosity supersolu-
twon.

One can using an argument similar to that in Exercises
3.2.11 and 3.2.12 to show that when wu is continuous it is
a viscosity solution of (3.2.15). The uniqueness of viscosity
solutions to the Hamilton—Jacobi equation follows readily
from the following comparison theorem.
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Theorem 3.2.5. (Comparison Theorem) Let u be an up-
per semicontinuous function bounded above and v be a
lower semicontinuous function bounded below. Suppose
H: X x X* — R satisfies the following assumption:

(A) for any x1,29 € X and x7,25 € X7,
|H (1, 27) — H(zg,25)| Sw(z) — 29, 2] — 75)
+M max(||27]], |[z3]])]|z1 — 2

where M > 0 is a constant and w: X x X* — R is
a continuous function with w(0,0) = 0.

Suppose furthermore that u s a viscosity subsolution of

(3.2.15) and v is a wviscosity supersolution of (3.2.15).
Then u < v.
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Proof. Let € be an arbitrary positive number. Applying

the nonlocal approximate sum rule of Theorem 3.2.3 with

fi =vand fo = —u, there exist x1, 29 € X, 27 € Opv(z1)

and x5 € O u(z9) satisfying

o lv1—xo| <&, [|2]|[||x1 —2l| < eand |[z3]|[|z1 — 22| <
&5

ev(xry) —u(xy) < infy(v—u)+e; and

o||z] — 5| <e.

Since the function v is a viscosity supersolution of (3.2.15)

we have
v(xy) + H(zq,27) >0

Similarly
u(xe) + H(xo,25) <0
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Therefore,

igl(f(v —u)>v(r]) —u(ry) —¢
> [H (w9, 13) — H(xy,27)] — ¢
> —[w(xe — 21, 25 — x7)

+M max(||z7]], [[25|)]|z2 — z1][] — &

As ¢ — 0 the right hand side converges to 0 which yields
inf y (v —u) > 0. .



Corollary 3.2.6. (Uniqueness of Viscosity Solutions) Un-
der the assumptions of Theorem 3.2.5 any continuous
bounded viscosity solution to (3.2.15) is unique.

We note that the function H defined in (3.2.17) satisfies
condition (A) in Theorem 3.2.5 (Exercise 3.2.13).

3.2.4 Commen tary and Exercises

The nonlocal approximate sum rule was derived by Zhu in
272]. In essence, it is a combination of the Borwein-Preiss
smooth variational principle and a decoupling method. De-
coupling techniques are important parts of calculus of vari-
ations and are behind many important results in functional,
convex and nonsmooth analysis. The decoupling method we
use here with a smooth symmetric penalty function was in-
spired by the proot of uniqueness of the viscosity solution in



93]. Many other calculus results for subdifferentials in this
chapter, such as approximate local sum rules, mean value
theorems, multidirectional mean value inequalities and ex-
tremal principles, are also of this nature and can be deduced
from the nonlocal approximate sum rule. Actually they are
equivalent (see [273] and Section 6.1). We note that approx-
imate local sum rules, mean value theorems and extremal
principles are local in nature, and therefore also accompa-
nied with corresponding limiting forms under suitable condi-
tions for the limiting process to be justified. We will discuss
these limiting forms in Chapter 5 after giving the defini-
tion of limiting subdifferentials and their associated normal
cones. The importance of the decoupled infimum is empha-
sized by Lassonde in [170], where it is called a uniform in-



fimum. He points out that many conditions associated with
decoupling methods (see [48, 68, 88, 148, 272, 273]) involve
this quantity. The assumptions in Theorem 3.2.3 cannot be
dispensed with as shown by examples in Exercises 3.2.5 and
3.2.6. The name arises since, in contrast to earlier more con-
ventional (local) rules; one cannot guarantee the placement
of the approximate minimizers. Nonetheless, Exercise 3.2.7
shows that conclusion (3.2.7) in Theorem 3.2.3 can often pro-
vide information on the location of points z,,, n =1,..., N,
indirectly. The fact that a smooth value function of the op-
timal control problem (3.2.16) satisfies the Hamilton—Jacobi
equation (3.2.15) is a classical result in dynamic program-
ming theory (see e.g., [122]). That a continuous value func-
tion satisfies the same equation in the sense of viscosity so-
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lutions is the seminal work of Crandall and Lions [94]. Early
forms of the uniqueness theorem of the viscosity solution are
discussed in (94, 93|. The relationship between the unique-
ness of viscosity solutions and the Fréchet subdifferential
calculus is discussed by Deville and Haddad in [108]. How-
ever, the condition in [108] is stronger and does not apply to
the control problem (3.2.16). Theorem 3.2.5 with the more
realistic condition (A) is derived in |68, 71]. The improve-
ment is achieved through better estimates on the size of the

subderivative in the subdifferential calculus such as (3.2.6)
in Theorem 3.2.3.

Exercise 3.2.1. Show that f(z) := A[f|({z}) is the Isc
closure of f(x), i.e., the largest Isc function dominated by

£
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Exercise 3.2.2. Verify that

AU NS = AL INIS) = ALfis - s sl

Exercise 3.2.3. Prove the following.

(i) I£S CT then Alfy,.... fNI(S) = Alfts-- -, INIT),

(1) Al - SNJS) < infpeg Alf1s -5 fv]({e}) and
equality holds when S is compact.

(1) infre g Alf1, -5 Sv]({z}) < infreg Zfzvzl fnlz).
(iv) Show that the inequality in (iii) can be strict. Can you

do it for N =17

Exercise 3.2.4. Show that M, defined in the proot of The-
orem 3.2.3 is an increasing function of r and is bounded

above by Alf1, ..., fn](X).
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Exercise 3.2.5. Show that functions fj(x) = x and
fo(x) = 0 defined on R do not satisfy the nonlocal approxi-
mate sum rule and explain why:.

Exercise 3.2.6. Show that functions fi(z) = ¢fgy(z) and

folx) =t {1}($) defined on R do not satisfy the nonlocal
approximate sum rule and explain why.

Exercise 3.2.7. Deduce Theorem 3.1.4 from Theorem
3.2.3. Hint: Let f be a lsc function bounded below. For any
r € domf, define f1 := f and fy := Liz) and apply The-
orem 3.2.3 to f1 and f9 to conclude that there exist x1, a9
with Op fr(xn) # 0, n = 1,2, satisfying [|z] — x9]| < e.
Note that we must have x9 = x. Thus, 1 € Bs(z) and

Opf(x1) # 0.
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Exercise 3.2.8. Prove (3.2.2) in Lemma 3.2.2.

Exercise 3.2.9. Show that if all but one of fq,..., f) are
uniformly continuous around S then A|f1,..., fy](S) =

ASnoy fal(S).

Exercise 3.2.10. Let ¥ minimize f over a closed set S.
Prove that if f is C' then —f/(z) € Np(S; z).

xExercise 3.2.11. Consider the optimal value function v of
the following optimal control problem

o(t, z) mf{/ F(s.2(s), c(s)) ds - 2/(s) = g(s. 2(s), e(s))
c(s) € C,x(t) = ZU}
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where f and g are Lipschitz functions, ¢ is a measurable
function and C' is a compact set. We assume that for any
given (t, x), an optimal control for the above problem always
exists.

(i) Prove the optimal prln(:lple for any solution pair (z, ¢)
of the control system z'(s) = g(s,x(s),c(s)), c(s) €
C,z(t) = x, we have

(t, ) / f(s,2(s),c(s))ds +v(r,z(r))

and equality holds when (x, ¢) is an optimal control pair.
(ii) If in addition v is a C' function then it satisfies the
following Hamilton—Jacobi equation

vi(t, ) = H(t, z,vs(t, ),



where [:[(ta Qj,p) = Sup{<_g(t7 £z, C)ap> _f(tv £z, C) L
C'}.
xExercise 3.2.12. Show that if the optimal value function

u defined in (3.2.16) is C then it satisfies the Hamilton -
Jacobi equation (3.2.15).

Exercise 3.2.13. Show that the function H defined in
(3.2.17) satisfies condition (A) in Theorem 3.2.5.

3.3 Local Approximate Sum Rules and Constrained Minimization

Local approximate sum rules are generalizations of the sum
rule for derivatives of smooth functions. They are important
in studying constrained optimization problems and other
problems involving local properties of subdifferentials.
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Consider Isc functions f; and fy such that f; + fo attains
a minimum at x. Then 0 € Op(f1 + f2)(z). We would hope
that we could conclude that

0 € Opfi(x) + Op folz) (3.3.1)

as is the case when both f; and fo are differentiable or con-
vex continuous functions. Unfortunately, (3.3.1) is false in
general. For example, if fi(x) .= —fo(x) = |z R — R
then f1 + fo attains a minimum at 0. Yet 0p f2(0) = 0 so
that 0 € Opf1(0) + Opfo(0) = (). Thus, one has to settle
for an approximate form of (3.3.1) in terms of subdifferen-
tials at points near x. Such a result is referred to as a local
approximate sum rule.
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In infinite dimensional Banach spaces there are two ba-
sic types of local approximate sum rules: strong and weak.
corresponding to the approximation’s accuracy up to an ar-
bitrary strong- or weak-star neighborhood, respectively.

3.3.1 Strong Approximate Sum Rules

Theorem 3.3.1. (Strong Local Approximate Sum Rule)
Let X be a Fréchet smooth Banach space and let
fi,.. ., fn: X = RU{+oc} be lsc functions. Suppose

that © € 07];[:1 domf, and there exists an h > 0 such
that

an </\f1>--- ())

H |

(3.3.2)
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Then, for any € > 0, there exist xy, and x;, € Op fn(xy),
n=1,..., N satisfying
diam(zy, ..., xyx) x max(L, |27, ..., [|[z¥]) <e,
(3.3.3)

and

(Zn, fn(zn)) € Bz((Z, fn(Z))) (3.3.4)

such that
N

0€ Y ) +eBx~. (3.3.5)

n=1
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Proof. Since f,,n = 1,..., N are Isc and since (3.3.2)
implies that for any 0 < A’ < b,

an </\f1»--- ())
S/\[fl?"'?f (Bp(T <an

(3.3.6)

decreasing h if necessary we may assume that h € (0, min(1, ¢))
and that for any = € By, (),

fnlx) > fn(x) —e/N,n=1,... N. (3.3.7)
Moreover, it follows from condition (3.3.2) that for g1 =
h?/32N?, we can choose 1 € (0, h) satisfying
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N N
Y falz) < inf { > Falyn)+ip, () (w0) | lyn—ymll <,
n=1 n=1

n,m:0,1,...,N} +ep. (3.3.8)
Define, forn =1,..., N,

2
gn = fa+ - =2|"+ 1B, ()
Then gy, are Isc and bounded from below with

N
Aot - an)(X) < Y fal) < 0.
n=1

Applying the nonlocal approximate sum rule of Theorem
3.2.3 to gn,m = 1,..., N with g9 € (0, min(n,e1)) yields
Ty and ¥ € Opgp(xn),n=1,..., N satisfying
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diam(xy, ..., zn) x max(L, ||ly{l, .-, [|lynll) < e2,
(3.3.9)

and

Zgn Tp) </\gl,...,gN X)+eo  (3.3.10)

such that

< e, (3.3.11)

N
n=1

[t follows from (3.3.10) that z,, € By(Z),n=1,..., N and
from (3.3.8) and (3.3.9) that
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N

Z[ ()"‘Hxn_x” — &1 <Zgnxn </\917---79N(}

n=1
-+ 62
< Zgn +ep = Z fulz
T 52- (3.3.12)
Thus,
N
ZHIn-fHQ < e1+e9 < 2g (3.3.13)
n=1

which implies that x;, € int By,(z), and each (||-||?) (xp—2),
n=1,...,N is bounded by €/2N. We can check that
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=y = (1 17 (20 — 2) € Op fulwn), (3.3.14)
and from (3.3.9) and (3.3.11) that x,, and x, satisfy (3.3.3)

and (3.3.5). It remains to verify (3.3.4) which follows from
(3.3.13), (3.3.7) and the following estimate:

fn(fl?n <fn ‘|‘ Z fm — Im xm)] T €9

m=n
(N —1)e
N

< fn(T)+ + 9 < fn(Z) + £3.3.15)

Condition (3.3.2) in the strong approximate sum rule can-
not be replaced by a usual infimum in general. Examples
are discussed in [100, 255]. The following proposition pro-
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vides two useful sufficient conditions for (3.3.2). The proof
is elementary and is left as an exercise.
Proposition 3.3.2. Let f,: X — R U {+0},n =

1,..., N be lsc functions and let T € ﬂ,,];le dom f,,. Then
there em’sts a number h > 0 such that

an </\f17--- <_>)

of & 1s a local minimum of Z,,‘/,val fn and either
(i) all but one of f, are uniformly continuous in a neigh-
borhood of x, or

(ii) at least one of fn has compact lower level sets in a
neighborhood of x.
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Proof. Exercise 3.3.2. .

3.3.2 Weak Approximate Sum Rules

If we are willing to weaken the conclusion of Theorem 3.3.1
in replacing e B+ in (3.3.5) by an arbitrary weak-star neigh-
borhood, then condition (3.3.2) can be eliminated. Such a
result is often called a weak local approximate sum rule.

Theorem 3.3.3. (Weak Local Approximate Sum Rule)
Let X be a Fréchet smooth Banach space and let

fi,- s fn: X = RU{+o0} be lsc functions. Suppose
that x € ﬂfl\le domfy, and x* € 5’F(Z7]1V:1 fn)(Z). Then,
for any € > 0 and any weak-star neighborhood V' of 0
in X*, there exist xy, and z;, € Opfn(xp),n =1,..., N
satisfying
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diam(zy, ..., xy5) x max(L, |27, ..., [|lz¥]) <e,

(3.3.16)
and
(fna fn(fn» S Be(@a fn(@)) (3-3-17)
such that
N
ey a4V (3.3.18)
n=1

Proof. Let € > 0 be a positive number and let V' be a
weak-star neighborhood of 0 in X™*. Fix r > 0 and a finite
dimensional subspace L of X such that L+ + 2rB x+* C V.

Since z* € Op( 7]2721 £2)(z) there exists a C! function
g such that ¢'(z) = x* and Z;]?Y:l fn — g attains a lo-
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cal minimum at . Choose 0 < n < min(e,r) such that
ly — Z|| < n < e implies that [|¢'(x) — g(Z)|| < r. Then
Z;]l\[:l Jn — g + 1z, attains a local minimum at z. Since
vz 1, has locally compact sublevel sets, by Proposition 3.3.2,
the functions f1,..., fn, —g, ¢z, satisty the condition of
Theorem 3.3.1.

Applying the strong local approximate sum rule of The-
orem 3.3.1 yields the existence of xp,n = 1,....N + 2
such that ||z, —Z|| <n < en =1,...,N+2, ) €
Opf(zp)yn=1,...,N, ¥y | = —¢'(xpn4q) and TN o €
Optzy1(xno) satisfying the conclusion of Theorem 3.3.1.
That is, forn=1,..., N,

| fn(zn) — falZ)] <n <e,



|7y xdiam({zy, ..., on}) < [|lp || xdiam({zy, ..., 2y42}) <
and

Lz L(TNy2) — L n(T)] <.
Thus x .9 € T + L, and

HZx xN+1>+$N+2H <.

Note that Optz. 1 (2 n10) = LT and ||z* — ¢'(xn.q)|] < 7.
Therefore,

N N
€ Zx;+LL+2rBX* C Zaz;'fmtv.
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Note that in finite dimensional Banach spaces the strong
and weak(star) topologies coincide, and therefore the strong
approximate sum rule holds in finite dimensional Banach
spaces without condition (3.3.2).

3.3.3 Normal Vectors to (Sub)Level Sets

When f is a C'! function it is well known that if f/(z) # 0
then it generates the normal cone of f~((—o0, f(z)]) at .
We now discuss nonsmooth versions of this fact as an appli-
cation of the approximate local sum rules. They are closely
related to the approximation of the singular normal vectors
to the epigraph and graph of functions and are important
in studying necessary optimality conditions for constrained
optimization problems.



Theorem 3.3.4. (Representation of Normal Vectors of
Sublevel Sets) Let X be a Fréchet smooth Banach space
and let f: X — RU {400} be a lsc function. Suppase
that liminfy .z d(Op f(z) ;0) > 0 and € € Np(f~1((—o0,al);
Then, for any € > 0, there exist A > 0, (x, f(z)) €
B:((z, f(x))) and x* € Opf(x) such that

[Az™ = ¢ <e.
Proof. Assume that
liminfd(Op f(x),0) > ¢ > 0. (3.3.19)
T—X

We consider the nontrivial case when & # 0. Moreover, since
for any (z,a) € epif,

Np(f~H (=00, a));2) € Np(f~((—o0, f(2)]); 2)
we may assume that a = f(z). Choose n € (0, ¢) satisfying



2n|€]1 (1 + 2n)
2n]/€]] + p

and choose § € (0, ¢) such that
&y < mliglll[All, forall z +h
e [~ {(—o0,a]) N Bs(z), h #0, (33.21)
f is bounded below on Bgs(z) and

inf  d(0 - () .
:Celél(;(a_:) (Opf(z);0)>c

<e/2. (3.3.20)

Then
[z + K (¢,n)]N fH((—o0,a]) N Bs(z) = {z},
(3.3.22)

where K (&,n) is the Bishop—Phelps cone. Define, for each
natural number 7,



g, =f—a+ idi:—l—K(ﬁ,Qn)'
Then (g;) is bounded below on Bgs(z) and g;(x) = 0. We
consider two possible cases: (A) infp 7y g; < 0 and (B)
infp 7 9i = 0. For case (A), by the Ekeland variational

principle of Theorem 2.1.1 there exists y; € Bg(%) such that
gi(yi) < 0 and

1
gi + =l - ~yil
attains a (local) minimum at y; over Bg(Z). We must have
v, € T+ K(& n) for otherwise (3.3.22) implies that y; &

f_l((—oo,a]) and g;(y;) > 0, a contradiction. We claim
that

[V

doskiconW) 2 G plvi =2l (3323)
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Indeed, if

i B
hil < —
Ibll < s s = 1
or

|h]] < nlly; — z|| — 2n]h|],
then

Eyi—T+h)y=(&y —7)+ ()
<&l y; — 2l + ][]~ ]
<2n|[&lllly; — z|| — [|A]l]
<2||&llyi — z + hl].

That is to say y;—T+h & K(&,2n). Since (f(y;)) is bounded

from below we have
lim df+K(§7277> (yz) = 0. (3.3.24)

1—00
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Combining (3.3.23) and (3.3.24) we have y; — T as i — 00.

Therefore, for ¢ sufficiently large we have y; € int Bs(Z). In
case (B) we set y; = x. Thus, in both cases (A) and (B),

1
gi + =l - —yil

attains a local minimum at y; when ¢ is sufficiently large.
By the strong approximate sum rule of Theorem 3.3.1
there exists x;,2; € int Bs(z), 7 € Opf(z;) and 27 €

Opdz 4k (¢,2n) (i) such that
x5 + iz || <n+1/i. (3.3.25)
Since K(§,2n) is convex, so is the function dgy (e o).

Moreover, this function is a Lipschitz function with Lips-
chitz constant 1. Using the convex separation theorem as an
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exercise (see Exercises 4.2.8 and 4.3.13) we can show that
angf;+K(§,2n)(°) C{al=¢+2n|[¢][Bx+) | a > 0} N B+
(3.3.26)

Let 27 = a;(—& + 2n|£[[6¥) for some b" € Bx«. It follows
from (3.3.25) that
|27 —dagéll < 2ie||€lln +n+1/i.  (3.3.27)

We must have ic; > ¢/2]|€||(1 4 2n) for otherwise we would
have ||z7|| < ¢, a contradiction. Now letting A; = 1/ic; and
multiplying (3.3.27) by A; we have

2n|1€]|(1 + 2n) N 2[[€]](1 + 2n)
ic '

[Niwy — &Il < 2nll€]] +
For
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4[1€]I(1 4 2n)

P> |
ce
setting A = \;, * = x; and 2™ = 27 we have
[Ax™ — & < e.

A corresponding approximation can be derived for the nor-
mal cone of £~ (a) when f is a continuous function.



Theorem 3.3.5. (Representation of Normal Vectors to the
Level Sets) Let X be a Fréchet smooth Banach space
and let f: X — R be a continuous function. Suppose
that liminf, .z d(Opf(x) U Op(—f)(x),0) > 0 and & €
Np(f~Y(a):z). Then, for any e > 0, there exists A > 0,
(z, f(2)) € Be((, f(2))) and 2™ € Ip f(z) U Op(=f)(z)
such that
|Az™ =& <e.

Proof. We give a sketch of the proof here and the details
are left as an exercise. As in the proof of Theorem 3.3.4 we
may assume that

liminf d(Opf(x) Udp(—f)(x),0) > ¢ >0 (3.3.28)

T—T
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and & # 0. Note that we must have a = f(z). As in the

proof of Theorem 3.3.4, choose 17, € (0, ¢) small enough so

that

(&) <nl€lnll, for all & + b € f~'(a) N By(z), b #0,
(3.3.29)

and

inf  d(0 0 .
336%15@3) ( Ff(x)7 )>C

Then

[z + K(&n)] N[ (a)n Bs(z) = {z}, (33.30)
where K (£, n) is the Bishop—Phelps cone defined in Section
2.2.1. We have that either
(a) f(x) > aforall z € [z + K(&,n)] N Bs(z), or
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(b) f(z) <aforall z € |z+ K(&n)| N Bs(z).

In fact, suppose on the contrary that there exist x1,x9 €
T+ K(&,n)] N Bs(x) such that f(x1) > a and f(x9) < a.
Then x1, x9 # Z. Since f is continuous there exists r € (0, 1)
such that z .= rz; + (1 — r)xy satisfies f(z) = a. Clearly
z € x4+ K(&,n)] N Bsg(x), and therefore z = & by (3.3.30).
However, this leads to 0 = r(x1 — ) + (1 — r)(x9 — ) or
T(Il_g_:) — —(1—7“)(232—3_3) = K(fﬂ?)“[_[{(fﬂ?)] — {O}a
a contradiction. Define
) f—a+idyigeo, ncase (a)
I —f+a+idy gy Incase (b).

The rest of the proot is similar to that of Theorem 3.3.4.
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Using Theorems 3.3.4 and 3.3.5 we can also easily derive
the following subdifferential characterizations for the singu-
lar normal vectors of the epigraph or the graph of a function.

Theorem 3.3.6. (Subdifferential Approximation of the
Singular Normal Cone to the Epigraph and Graph of a
Function) Let X be a Fréchet smooth Banach space
and let f: X — RU {400} be a lower semicontinu-
ous (resp. continuous) function. Suppose that (*,0) €
Np(epif;(z,a)) (resp. (z%,0) € Np(graphf;(z, f(2)))).
Then, for any € > 0, there exist x,x* and X\ € (0,¢),
such that x* € Opf(x) (resp. o™ € Op f(x)U0p(—f)(x)),
(z, f(x)) € Be(z, f()) and

[Az™ — %] < e.



Proof. We sketch the proof for the case of epigraph and
leave the details as an exercise. Without loss of generality,
we may assume that a = f(x). Set F(x,t) = f(x) — t.
Then epif = F~1((—o00,0]). Applying Theorem 3.3.4 to
the function F' yields the conclusion. 5

Constrained optimization problems provide important mod-
els in many different applications. Finding good first order
necessary conditions for solutions to such problems is a pre-
requisite. For smooth finite dimensional problems the La-
orange multiplier theorem and Karush-Kuhn—Tucker con-
ditions are the canonical results. There is a vast literature
on the generalizations of these “critical point” conditions



3.3 Local Sum Rules 213

to nonsmooth and infinite dimensional settings. We now
present a form of such necessary conditions in terms of
Fréchet subdifferentials as an application of the local ap-
proximate sum rule which enables us to impose minimal
assumptions on the data: lower semicontinuity for the in-
equality constraints, continuity for the equality constraints
and closedness for the feasible set. We consider the following
minimization problem:

P minimize fo(x)

subject to fp(z) <0, n=1,..., N,
fnlz)=0, n=N+1,..., M,
reSCX.
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Here X is a Fréchet smooth Banach space, f,,,n =0,1,..., N
are Isc functions, f,,n = N+1,..., M are continuous func-
tions and .S is a closed subset of X.

We will derive necessary optimality conditions for P. Ob-
serve that if x is a solution to the constrained optimization
problem P then it is a local minimum of the following func-
tion

N M
fot 2t (oo T 2 i) TS
n=1 n=N+1
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Applying the weak approximate sum rule of Theorem 3.3.3
yields a necessary condition in terms of the subdifferential
of fo and the normal cones to the level sets of the f,, and
S. Then we relate the normal cones to the level sets of the
functions fj, to their subdifferentials by Theorems 3.3.4 and
3.3.5.

To simplity notation we introduce 7, = 1forn =0,1,..., N
and 7, € {—1,1} forn=N+1,..., M corresponding, re-
spectively, to inequality and equality constraints.
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Theorem 3.3.7. (Approximate Multiplier Rule) Let X be
a Fréchet smooth Banach space, let S be a closed subset
of X, let f, be lsc form =20,1,...,N and [, be contin-
uwous forn =N+ 1,..., M and let x be a local solution
of P.

Suppose that liminf,_z d(Opfn(x),0) > 0, for n =
1,...,N and liminf, 7z d(Op fn(x) U0p(— fn)( ),0) >0,
form=N+1,..., M.

Then, for any positive number € > 0 and any weak-star
neighborhood U of 0 in X*, there exist (xy, frn(zn)) €

(z, fn(Z))+eBxxr,n=0,1,...,M and zps1 € T+eBx
such that for some pp, >0,n=1,..., M
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M
0 € pfolwo) + Y  pmOp(Tnfu)(@n) + Np(S, ap41) + U
n=1
Proof. Let V be a weak-star neighborhood of 0 in X™ and
assume that (M + 1)V C U. Decreasing ¢ if necessary we
may assume that for any y € B:(T),

liminf d(Op frn(x),0) > 0,

T—Y
forn=1,..., N and

lim inf d(Op fn(x) U Op(—fn)(z),0) > 0,

r—Y

forn > N + 1.
Observe that 7 is a local minimum of the following function
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N M
Jot Zlbfn1<(0<>,0]>+ 2 i) TS

n=N+1

Since fn, n = 1,..., N are lower semicontinuous and fy,
n = N+1,..., M are continuous we can choosen € (0,¢/2)
such that y € By(z) implies fp(y) > fo(z) — /2 for
n=1,....,N and fu(y) € (fn(Z) — /2, fn(T) + /2) for

= N + 1,..., M. By the weak approximate sum rule
of Theorem 3 3 8 there exist (xzq, fo(x )) € Bn((az fo(x))),
Tl € Bp(x) NS, yn € By(z),n , M with
£t (=00, ful@) W) T (=00, fule )P I<mn=1 M
and ]Lfn_1(0>(yn) —Lfn_l(m(f)] <n,n=N+1,...,M, (and

therefore (yn, fu(yn)) € Be o((@, fn(2)))), x5 € Opf(xo),



Thryy € Ne(Ciapria) v € Ne(fy ' (=00, fu(@)]);yn)
for n = 1,...,N and y} € Np(f,1(0);yn) for n =
N +1,..., M such that
M
0€ah+ Y ynt+ah+V. (3.3.31)
n=1

Theorems 3.3.4 and 3.3.5 imply that there exist

(@n, fn(xn)) € B.ja((Yn, fnlyn))) C Be((@, fu(2))),

pn > 0and zy, € Op fu(xn) (x5, € Op fnlzn)UOp(— fn)(zn))
forn=1,...,N (n=N+1,..., M) such that

Y € pnay + V. (3.3.32)
Combining (3.3.31) and (3.3.32) completes the proof. .
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Conditions liminf, 5z d(Op fn(z),0) > 0, forn=1,..., N
and

lim inf d(Op fn(x) U Op(—fn)(z),0) > 0,

rT—rT
form=N+1,..., M serve as “constraint qualifications” to

force the coefficient pg of O f to be one. However, since our
necessary conditions are in an approximate form they are less
stringent than the usual constraint qualifications such as the
Mangasarian—Fromovitz condition. These conditions are not
necessary if we do not insist pg to be nonzero. Indeed, if the
above condition fails for one of the f,’s then we can assign
the multiplier corresponding to that f;, to be 1 and the rest
of the multipliers to be 0. Thus, the following form of the
multiplier rule holds without any constraint qualification.
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Theorem 3.3.8. (Weak Approximate Multiplier Rule) Let
X be a Fréchet smooth Banach space, let S be a closed
subset of X, let fy be lsc form =20,1,..., N and let fy,
be continuous forn=N+1,..., M. Assume that x s a
local solution of P. Then, for any positive number € > (
and any weak-star neighborhood U of 0 in X ™, there exist

(33”, fn<$n)> S ('f? fn(j» + 5BXXR,R — 07 17 s 7M and
Tprfa1 € T+ eBx such that

M
0 & Z ,Lénap’(Tnfn)(:Cn) + NF(S, xM—I—l) +U

n=0
where iy > 0,n=20,1,..., M and Z%:O/‘n = 1.
Proof. Exercise 3.3.16. .
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When X is a finite dimensional space and f,,,n =0,..., M
are C'! functions and S = X we can recover the Fritz John
condition from the weak approximate multiplier rule by tak-
ing limits.

Theorem 3.3.9. (Fritz John Condition) Let X be a fi-
nite dimensional Banach space, let S = X, let f,, be C

functions forn = 0,1,..., M. Assume that x s a local
solution of P. Then,

M
0 € Z NnTnfr,L(f>
n=>0

where py > 0,n=0,1,..., M and Z;]y:o,un = 1. More-
over, pnfn(Z) =0 forn=1,... N.
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Proof. Exercise 3.3.17 .

3.3.5 Sensitivity Analysis

In almost all practical problems, inaccuracies occur in both
the modeling of a problem and collecting data for a given
mathematical model. Thus, it is important to be able to
cauge the influence of such inaccuracies on the outcome of
the underlying mathematical model. This is often referred to
as sensitivity analysis. The basic pattern is well illustrated
by the following example.



Example 3.3.10. Consider the optimization problem P,
of minimizing f(xz) subject to h(x) = a and define the
optimal value or marginal function v(a) = inf{f(z) :
h(z) = a}. Then it is not hard to see that, for any =,
v(h(z)) < f(xz). On the other hand, if z is a solution to
Py then v(h(x)) = f(x). Thus, T is a minimum point for
the function,

r— f(x) —v(h(x)).

Assuming all the functions involved are smooth then
f'(z) = (0)h(z) = 0.
In other words, —v’(0) is a Lagrange multiplier (shadow
price) of the problem Py.
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We have seen that v is rarely a smooth function. There-
fore, the above argument will not apply in general. Never-
theless the general pattern does persist and it turns out that
the Fréchet subdifferential provides a convenient language
to describe it.

Consider the following family of constrained minimization
problems without the set constraint.

P,  minimize fy(z)
subject to fn(z) <ap, n=1,..., M,
fnlx)=an, n=M+1,..., N.

We denote a = (aq, ..., ay) and the infimum of fj over the
feasible set of P, by v(a).
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Motivated by Theorem 3.3.7 we define the multiplier set
of problem P, as follows.

Definition 3.3.11. Let € be a positive number and let
U be a weak-star neighborhood of 0 in X*. We say v =
(v1,...,vN) 18 a multiplier of problem Py, corresponding
to (z,e,U) if vp,m = 1,..., N are not all 0, T,v, > 0
and there exist (xy, fn(Tn)) € (T, fu(Z)) + eBxxr,n =
0,1,..., N such that

N

0 € I folzo) + Y  TavnOp(Tnfn)(@n) + U.

n=1
We denote the set of all such multipliers by M. 7(T).
Here 1, are as in Theorem 3.5.7.



Theorem 3.3.12. (Sensitivity) Let x, be a solution to

problem P,. Then, for any € > 0 and any weak-star
neighborhood U of 0 in X,

—0pv(a) C M, (xq) + €Bpn.

Proof. There is nothing to prove if 0pv(a) = (). Let A €
—0pv(a) # (). Then there exists a Fréchet smooth function g
such that v + ¢ attains a local minimum 0 at a and ¢'(a) =
A. Note that for any x satisfying the constraint, fy(x)
bp,n=1,...,M and fp(x) = byp,n=M+1,..., N,
have fo(x) > v(b) so that

folx) +g(b) > v(b) + g(b) > v(a) + g(a) = folza) + g(a).

Thus, (x4, a) is a solution to the minimization problem

<
we



minimize fo(x) + g(b)
subject to fn(z) —0, <0, n=1,..., M,
fonlx)—b, =0, n=M+1,...,N.
Choose & > 0 smaller than /2 such that o’ € &’ Bpn
implies that ||g'(a’) — ¢'(a)|| < €/2. Note that U x &'Bpy
is a weak-star neighborhood in X ™ x R, By Theorem 3.3.7,

there exists 2, € x4+’ By C xq4+eBy and d’ € cH—e’BRN
such that

0 € dpfolxg) X {g } + Z vn|Op(Tnfn)(@n) X (—Then))
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where {en,n =1,..., N} is the standard basis of RN, We
can rewrite this relation as

N
0 € Opfolzo) + > vnOp(Tafu)(zn) + U
n=1
and
0€g(d)—v+ 5/BRN.
That iS )\ E Ms,U<$a) —I_ 5BRN °

3.3.6 Constraint Qualifications

If in a multiplier u = (po, . . ., p) for the necessary condi-
tions of Theorem 3.3.8, 1 is zero or can be arbitrarily close
to zero, then this multiplier is detached from the cost func-
tion fp, and therefore does not provide useful information.
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We call such multipliers degenerate. Thus, it is important
to find conditions ensuring the existence of nondegenerate
multipliers in the necessary conditions. These conditions are
called constraint qualifications. We will illustrate the ideas
in finite dimensional spaces.

In general, there are two different types of constraint qual-
ifications. The first makes g near 0 impossible in Theorem
3.3.8; or all uy,’s uniformly bounded in Theorem 3.3.7.
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The following is a natural qualification.
(CQ1) There exist constants n,c¢ > 0 such that, for any
e € (0,n) and
(xn, fnlxn)) € (T, fu(Z))+eBxxr,n=0,1,..., N
and x 41 € Be(T) such that

N
A(0, 3 w0 (rufa)(wn) + Np(S,2541)) > ¢
n=1
where 7, = 1 forn =1,...,M and 7, € {—1,1}
forn=M+1,...,N, up, > 0,n =1,..., N and

N
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With this constraint qualification we have the following
generalization of the Karush—Kuhn—Tucker necessary condi-
tions.

Theorem 3.3.13. Let X be a finite dimensional Banach
space, let S be a closed subset of X, let f,, be lsc for
n=20,1,...,M and let f,, be continuous for n = M +
1,...,N. Assume that x s a local solution of P and
suppose (CQ1) holds. Then, for any positive number & >
0, there exist (xn, fn(xn)) € (T, fun(Z)) + eBxyr,n =

0,1,...,N and x| € T+ecBx and a positive constant
K such that for some uy, € 0, K|
N

0 € I folxo)+ Y nOp(Tafa)(@n)+Np(S, 2 n41)+eBy.

n=1
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Proof. Without loss of generality we may assume that € <
c/2. 1f there exists (zq, fo(zg)) € (@, fn(Z)) +eBx xR such
that d(Op fo(xg),0) < e then we need only to take g = 1
and py, = 0for n = 1,..., N. Otherwise, applying Theo-
rem 3.3.8 we have (x,, fn(xn)) € (%, fn(Z)) +eBx«r, N =
0,1,...,N and z)y 1 € T + eBx such that

N
0€ Y Andp(mafa)(@n) + Np(S,zn41) + (¢/2) By,

n=0

(3.3.33)

where A\,, > 0 and Z,,‘],Y:O An = 1. We claim that A\ > 1/2.
In fact, if Ay < 1/2 then, by (CQ1) we have

Aog/2 = Aod(Op fo(xo), 0) = d(AIp fo(z0), 0) = (1—=Ag)c—e/2



This exceeds €/2, a contradiction. It remains to multiply
(3.3.33) by 1/X\g and let pp, = Ap/Ag,m = 1,..., N and
K — 2 °

For problems with smooth data and without the set con-
straint, the constraint qualification (CQ1) becomes the fol-
lowing Mangasarian—Fromovitz condition.

(MF) The derivatives f)(Z),n = 1,..., N are linearly inde-
pendent.
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Theorem 3.3.14. (Karush-Kuhn-Tucker Conditions) Let
X be a finite dimensional Banach space, let S = X and
let f, be C1 functions for n = 0,...,N. Assume that

T 15 a local solution of P and suppose the constraint
qualification condition (MF) holds at . Then,

N
0 € fo(@)+ Y pnmafh(E),
n=1

where iy > 0 are not all zero and 1, are as in (CQI).
Proof. Exercise 3.3.19.
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In Theorem 3.3.14, the assumption that f,,,n=0,..., N
are C'! cannot be replaced by the assumption that they are
Fréchet differentiable at . A counterexample is given in
Exercise 3.3.20.

The second type of constraint qualification condition di-
rectly ensures the existence of a multiplier such that g is
bounded away from 0 for Theorem 3.3.8, or the ;s are all
bounded for Theorem 3.3.7. To state such a condition let
us consider the following perturbation of problem P where

a=(ag,...,ay).



Pa minimize fo(x)
subject to fn(z) < ap,n=1,..., M,
fonlx)=ap,n=M-+1,..., N,
reSCX.
We denote the infimum of fy over the feasible set of P, by

v(a). Now we can state our second constraint qualification

condition, which is often referred to as the calmness condi-
t1omn.

(CQ2) 9pv(0) # 0.
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Theorem 3.3.15. Let X be a finite dimensional Banach
space, let S be a closed subset of X, let f,, be lsc for
n=20,1,...,M and let f,, be continuous for n = M +
1,...,N. Assume that x* s a local solution of P and
suppose (CQ2) holds. Then, for any positive number & >
0, there exist (xn, fn(xn)) € (T, fn(Z)) + eBxyr,n =
0,1,...,N and x| € T+eBx and a positive constant

K such that
N

0 € dp folzo) + Y  1ndp(tnfn)(@n) + Np(S,zn41) + B

n=1
where y € |0, K.
Proof. Suppose that p € dpv(0) # 0. Then there exists a
C! function g on RY with ¢/(0) = p such that v — ¢ attains



a local minimum at a = 0. It follows that (z,0) is a solution
of the following minimization problem on space X X RN

minimize fo(x) — g(a)

subject to fp(z) —ap < 0,n=1,..., M,
folx)—an=0n=M+1,..., N,
(z,a) € S x RY.

Choose 1 < min(1,&/2) such that ||d|| < 7 implies
that ||¢'(a’) — p|| < 1. Applying Theorem 3.3.7 we have
ay € NBpN, (Zn, fnlzn)) € (T, fn(T)) + nBxxr,n =
0,1,....N,zyy1 € x+nBx and pyp, 2 0,n =1,..., N
such that
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N
0 € (DFfolxo), g'(a0)) + Y un(Op(Tnfn)(xn), —€n)

n=1
+ NF(Sv QjN—I—l) X {ORN} + nBX* <RV (3334>

Now the first component of (3.3.34) provides the necessary
condition and the second component of (3.3.34) shows that
un < K = |p|| + 1. .

3.3.7 Constrained Optimization and Inequalities

Necessary optimality conditions for constrained optimiza-
tion problems are often effective tools for discovering and
proving inequalities. We illustrate by proving the following
inequality.
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Theorem 3.3.16. Let x,, € Ron = 1,..., N satisfy
Z,,‘/,val xn > 0. Then

N 9 N
Z Tpetm > N Z x2
n=1 n=1

Proof. The strategy is to consider the constrained mini-
mization probl f minimizi N tn_ 2 5NNV 02
problem of minimizing » " xpe 2 =1 T

subject to the constraint Z,,‘];f:l xry > 0 and show that the
minimum 1s nonnegative.

First we show that the minimum is attained. For z =
(x1,...,xN) € RY we denote the p norm of z by

N

el = (3 feal?)

n=1
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We will also use the notation z* := (z],...,2) and
v~ = (x|,...,7y) where, for any t € R, tT = max(0, t)
and ¢t~ = max(0,—t). It is not hard to check ||z|y <

|z||]q, for any z € RY. Moreover, for z € RY satisfying
Zfz\le zy > 0 we have ||z|l; < 2||z7||; (Exercise 3.3.25).
For z = (z1,...,zy) € RY, define

N 9 N
flz) = Z Tpetn — N Z x2
n=1 n=1

Since ¥(t) = te’ is convex on [0, 00) and te™! < 1/e for all
t € 10,00) (Exercise 3.3.26), we have
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n=1 n=1
21012
> Vo5 Zx ) =~ el
N 2. 5
zw(ﬁnﬁnf) -—- %nxnlg
N (_ - )____ +112
> [l exp (2t ) = = = <l

243

Thus, for z € {z € RY | Z;]?Y:l rn > 0} as ||z]|] = oo we

have f(z) — oo. It follows that the set
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N
{z eRY | f(z) < C,an > 0}
n=1
1s compact.
Therefore, the constrained minimization problem

minimize f(x)
N
subject to — an <0,
n=1
has a solution, say . Applying the Karush—Kuhn—Tucker
necessary optimality condition in Theorem 3.3.14 to the

above minimization problem we have that there exists a
(> 0 such that, forn=1,... N

)
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y 4
(Zy + 1)e™ — ~n = H (3.3.35)

where moreover p = 0 if Zn 1 T, = 0. This condition
is satisfied when = 0; then f(z) = 0. From now on we
assume that r # 0 which implies that x has at least one
strictly positive component.

Consider the function g(t) = (¢t + 1)e! — 4¢/N. We can
check that g has a unique critical point ¢ € (—2,0] and is
strictly decreasing to the left of ¢ and strictly increasing to
the right of ¢ (see Exercise 3.3.27).

Thus, equation (3.3.35) has at most two solutions. There-
fore, the components of £ can achieve at most only two
different values. Since z # 0 and Z,,],Y:l ZTn, > 0, the compo-
nents of ¥ take exactly two values, one positive and the other
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negative. Now suppose there are M positive components all
equal to a and N — M negative components all equal to b
with 1 < M < N —1. Moreover, one can directly check that
for N > 2andt > 0 we have g(—t) < g(t) (Exercise 3.3.27).
This implies that |b| > a, and so we can write b = —sa with
some s > 1. Also the condition Ma+ (N — M)b > 0 implies
(N — M)s < M, which in turn implies that s < N — 1.
Thus, we have

F(Z) = Mae® — (N — M)sae™ — %(MaQ LN = M)sZad)

<Mae* — Mae™ " — 3(]\4&2 + Msa?)

N
a __ _—sa 9
< Mda2(1 (6 ¢ ——)>o
sMa (s "N/ 2
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because, for all @ > 0 and s € (1, N — 1],
e’ —e % e —e¢ 2 2
> > > —.
a(l+s) — a(l+s) — (1+s) N

Necessary optimality conditions can be used to derive
many other inequalities. Some examples are given in Ex-

ercises 3.3.28, 3.3.29 and 3.3.30.

3.3.8 Commentary and Exercises

The prototype of the local approximate sum rules appeared
in loffe [143]. Generalizations and refinements can be found
in 48, 68, 108, 146, 148, 170, 209]. Limiting forms of the
subdifferential sum rule in finite dimensional spaces are dis-
cussed in Section 5.2 along with counterexamples showing
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that they fail in infinite dimensional spaces without addi-
tional assumptions. The two approximate sum rules in this
section are taken from [68]. Theorem 3.3.1 fails without con-
dition (3.3.2) (see examples in Exercises 3.3.11 and 3.3.12).
On the other hand, condition (3.3.2) is not tight either
(study the example in Exercise 3.3.10). A version of The-
orem 3.3.1 with a condition weaker than (3.3.2) is discussed
in [170], where one may also find additional examples. Con-
dition (3.3.2) has the drawback that it is not stable in terms
of adding new “nice” functions. An example is given in Ex-
ercise 3.3.4. In this respect the stronger sequential uniform
lower semicontinuity condition introduced in |48, 148] is
more convenient (see Exercises 3.3.5-3.3.9).
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The approximate sum rule is particularly useful in dis-
cussing necessary optimality conditions for constrained min-
imization problems. It allows us to use penalization functions
involving indicator functions [251] and make the proof of the
necessary condition simple and natural. Theorem 3.3.7 was
proved in Borwein, Treiman and Zhu [63] for problems in
reflexive Banach spaces and generalized in 213, 276]. Lim-
iting forms of these necessary optimality conditions can be
derived by taking limits of the approximate form. An ex-
ample is Theorem 5.2.25 in Section 5.2. This result is quite
general in that it allows lsc inequality constraints and con-
tinuous equality constraints. Some more general constraints
such as general equilibrium constraints [189, 214| and varia-
tional inequality constraints [268] can be conveniently con-
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verted to the equality and inequality constraints in P. Such
conversions are discussed in [276] and the essence is given
in guided Exercises 3.3.24 and 3.3.23. The history of these
kinds of necessary conditions can be traced back to La-
grange, whose original work led to the Fritz John [155] and
the Karush-Kuhn-Tucker [158, 168| conditions for smooth
problems with equality and inequality constraints. General-
izations to nonsmooth problems with set constraints were de-
veloped with the advance of nonsmooth analysis; related lit-
erature can be found in [84, 144, 185, 198, 223, 229, 265, 266

Research in sensitivity analysis for nonsmooth mathemat-
ical programming problems can be found in [9, 84, 123, 124,
201, 236, 262]. A variational argument naturally reduces
the discussion of the sensitivity to an appropriate necessary
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condition for the corresponding optimization problem. Note
that to calculate the value of v(a) one has to solve an op-
timization problem which usually is costly. By contrast the
multiplier set is defined through the original data and is eas-
ier to get hold of. Hence, Theorem 3.3.12 provides a useful
estimate for the value function v (see Exercise 3.3.18 for an
example).

Constraint qualification condition (CQ1) can be viewed as
a nonsmooth version of the Mangasarian—Fromovitz condi-
tion (MF) [190, 268] while (CQ2) is the calmness condi-
tion [84] stated in terms of the Fréchet subdifferential of the
optimal value function. Note that, unlike (CQ1), condition
(CQ2) does not exclude the possibility of existing degener-
ate multipliers and is therefore more interesting. However,



this condition is in terms of the optimal value function for
a perturbed problem rather than the data of the original
problem and is harder to verity.

The inequality in Theorem 3.3.16 is from [47] where one
can find the more accurate inequality with the constant 2/N
improved to Cpy /N where C'y = max{2,e(1 —1/N)}.
Exercise 3. 3 1. Prove that

an ) < Al fNl(Bp(2)

if and only 1f for any r < h,

an —/\fl,---;fN](Br(f»
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Exercise 3.3.2. Prove Proposition 3.3.2 and show that
condition (i) or (ii) in Proposition 3.3.2 cannot be dispensed
with.

Exercise 3.3.3. Show that in Theorem 3.3.1, it any f,, is
a C'! function then we can replace z% by f(z).

Exercise 3.3.4. Define A .= {0}U{1/i | i = £1,42,--- },
fi(x) == 1q(x) and fo(x) := x. Verify that, for any h > 0,
f1(0) < ALfil(l=h, R]) yet

2
> fal0) > Nlf1 £2l([=h, b)),
n=0

xExercise 3.3.5. (Sequential Uniform Lower Semicontinu-
ity Condition)
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Definition 3.3.17. Let X be a Banach space, let
fi,- o fn: X — RUA{+o0} be lsc functions and let

T € ﬂﬁ;l domfy,. We say that (f1,..., fn) is sequentially
uniformly lower semicontinuous at T if there exists h > 0

such that for any sequences (v, ;),n = 1,..., N belong-
ing to Bp(T) and such that lim; o diam(z1 4,. .., 2N ;) =
0, there is a sequence (u;) in By(Z) such that, for all
n=1,...,N,lim;_,||7,; — vl =0 and

N
liminf Y~ (fu(zn,) — falug)) > 0.
i—00 £~

(i) Show that if (f1,..., fa) is sequentially uniformly lower

semicontinuous at x and z is a local minimum of Zfl\le In,
then condition (3.3.2) holds.



(ii) Construct two functions fi, fo such that (fq, fo) is not
sequentially uniformly lower semicontinuous at a point
T yet they satisfy condition (3.3.2). Reference: |71, Ex-
ample 2.10].

(iii) Suppose that fy is uniformly continuous in a neigh-
borhood of z. Prove that if (fi,..., fx) is sequen-
tially uniformly lower semicontinuous at x then so is

(fos f1:-- - IN).

Exercise 3.3.6. Prove the following sufficient conditions
for sequential uniform lower semicontinuity.

Proposition 3.3.18. Let f,,: X — R U {4+oc},n =
1,..., N be lsc functions and let T € ﬂ;]lv:l dom f,,. Then
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(f1,---, fn) is sequentially uniformly lower semicontin-
wous at T if & 18 a local minimum of Z;]?Y:l fn and either

(i) all but one of fy, are uniformly continuous in a neigh-
borhood of x, or

(ii) at least one of fn has compact lower level sets in a
neighborhood of x.

Exercise 3.3.7. (Sequential Weak Lower Semicontinuity)
We say a function f: X — RU{+o0} is sequentially weak
lower semicontinuous (w-1sc) at T if for any sequence (x;)
weak convergent to Z, liminf, _,~ f(x;) > f(Z). Show that
if f is a convex function and is Isc at x, then it is w-Isc at .



3.3 Local Sum Rules 257

Exercise 3.3.8. Prove that it f1,..., fy are functions in a
reflexive Banach space and are w-Isc at = then (f1,..., fx)
is sequentially uniformly lower semicontinuous at .

Exercise 3.3.9. Prove the following general form of the
strong local approximate sum rule.

Theorem 3.3.19. Let X be a Fréchet smooth Banach
space and let f1,..., fxy: X — RU {400} be lsc func-

tions. Let T € ﬂfy  dom f, and suppose that (f1,..., fN)
1S sequentzagvy umformly lower semicontinuous at r and
r* € 0p() . Then, for any € > 0, there exist
Ty and x}, E 8an(xn), n=1,...,N satisfying

diam(z1, ..., zy5) x max(L, |27, ..., [|[z¥]) <e,
(3.3.36)
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and
(@n, flzn)) € Be((Z, fn(Z))) (3.3.37)

N
‘ T — Z:):;';
n=1

Exercise 3.3.10. Let X := /5 and let {e; } be the standard
basis. Define

such that

< €. (3.3.38)

0 if x =0,
filw) =4 -1/j ifx=e/j,
o0 otherwise,

and



0 if £ =0,
folw) =< —-1/7 ifx=(ej+e1/i)/y,

00 otherwise,

where 2,5 = 1,.... Verity that for x = 0, f,,n = 1,2 do
not satisfy condition (3.3.2) yet the conclusion of Theorem
3.3.1 holds. Reference: [274].

xExercise 3.3.11. Let X := /9 and let {¢;} be the standard

basis. Then x € X can be uniquely represented as x =
> 2  wie;. Moreover, z; — 0 as i — oo and so ||x||OO =
max{|z;| | 1 <1 < oo} exists. Define Fj == {z | [[z|| <
3, mzZOandxz—OlfzmodB#Oorz<3]} Now we
construct two functions
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0 if x=0,

filz) = —ﬁ —lylloe if = =3e3; 1 +y,y € F},
+00 otherwise,
and
( .
0 it © =0,
fo@) = § == = llylloc if z=7esjn+yyeF;
|00 otherwise.

Prove that f; and fo are lsc functions and f; + fo attains
a minimum at x = 0. Yet, for any ||zn|| < 1 and z) €
Opfn(xn),n = 1,2, |27 + 25| > 1. Reference: |255].
xExercise 3.3.12. Let X := {9 and let {e;},2 = 1,2,...,
be the standard basis. Denote Y := {x € X | (e}, z) = 0}.



(i) Construct a sequence of even functions o;: R — R, ¢ =
2,3,..., with support in [—(i — 1)~Y2 —(i+1)~1/2]U
(i 4+ 1)"Y2, (i — 1)7Y/?] for i > 3 and with support
(—oo, —1] U [1,400) for ay such that, for each t # 0,
there exists ¢ > 2 with a;(¢) > 1 and such that for each
t and each n, a;(t) € [0,2] and a;(i71/2) = 2.

(ii) Define

fla) ==Y aj(x)z; —|z1].
i=2

where x; = (x, ¢;). Show that f is continuous.
(iii) Show that f is C' on X\Y and for any z € X\Y,

|F (@)= = 1.
(iv) Show that for any =z € Y, Op f(x) = 0.



(v) Verify that the strong fuzzy sum rule fails for f| .= f
and fo := 1y at any x € Y (reference [100]).

Exercise 3.3.13. Consider the problem of minimizing f(x)
subject to x € C' where C' is a closed nonempty subset of a
Fréchet smooth Banach space X. Use appropriate subdiffer-
ential sum rules to derive necessary conditions for a solution
x of this problem in terms of the Fréchet subdifferential of
f and the Fréchet normal cone of C' for the following three
cases: (i) fis C1, (ii) f is Lipschitz and (iii) f is lsc.
Exercise 3.3.14. Prove inclusion 3.3.26.

Exercise 3.3.15. Provide details for the proof of Theorem
3.3.5.

Exercise 3.3.16. Prove Theorem 3.3.8.
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Exercise 3.3.17. Prove Theorem 3.3.9. Hint: Take limits
in Theorem 3.3.8. The conditions pyfn(Z) = 0 for n =
1,..., N follow from the fact that if f,(z) < 0 then the
corresponding constraint is not binding and can be taken
away so that one can let p, = 0.

Exercise 3.3.18. Consider the optimal value

o(a) = inf{f(z) - gl) = a}
as a function of a, where f(x) .= 1 — cosz and g(x) =
sin(6x) — 3x and a € |[—7n/2,7/2] which corresponds to
r e |—7/6,m/6|.
(i) Use Theorem 3.3.12 to show that

Opv(a) C {\: f'(z) — Ag'(z) = 0,9(z) = a}.
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(ii) Show that v is a C L function in the three open intervals
(—m/2,7/6 —/3/2), (/6 — V/3/2,v/3/2 — 7/6) and
(v/3/2 — /6, ).

Exercise 3.3.19. Prove Theorem 3.3.14. Hint: Use condi-

tion (MF) to show that pg > 0 (and therefore can be scaled

to 1) in Theorem 3.3.9.

Exercise 3.3.20. (Nonexistence of Multipliers [118]) De-
fine the sign function sgn: R — R by

(1 if x > 0,

sgn(x) =<0 ifz=0,

-1 itx <0.




Consider functions f(z,y) == z and h(z,y) = y—sgn(y)(z)?
Show that A is Fréchet differentiable at (0, 0) with A’(0,0) =
(0,1) and (0,0) is an optimal solution for the problem
minimize f(x,y)
subject to h(x,y) =0

yet the Karush—Kuhn—Tucker condition is not satisfied at
(0,0).

Exercise 3.3.21. Find conditions in terms of f,, and S
that ensure that the optimal value function v(a) is lsc.

Exercise 3.3.22. Give an example of a minimization prob-
lem that satisfies (CQ2) but not (CQ1).



266 3 Subdifferential Theory

xKxercise 3.3.23. Derive necessary optimality conditions
for the following optimization problems in finite dimensional
Banach spaces:

(i) (Multifunction Constraint)
minimize f(x)
subject to 0 € F(x).
Here f: X — RU{+o0} is alsc function and F': X —

2" is a closed multifunction.
(ii) (Variational Inequality Constraints)
minimize f(x)
subject to (h(x),y —x) >0, forally € C
r e C.
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Here f: X — RU{+o0} isalsc function, h: X — RY
is a continuous function and (' 1s a closed convex subset

of X.

Hint: Convert the constraint to 0 € h(x) + Np(C'; x). Ref-
erence: [276].

xExercise 3.3.24. Consider a general model of optimization
problems with equilibrium constraints.

MPEC minimize fy(x)
subject to 0 € h(z) + F(g(x)),
r €S,

where fy: X — RU{+o00} is a lower semicontinuous func-
tion, S is a closed subset of X, A: X — RN=M and
g: X — RM are continuous functions and F: RM —
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QRN_M

is a multifunction with a closed graph. Derive a nec-
essary optimality condition by converting problem MPEC
to a problem with the form of P. Hint: Denote the compo-

nentsof gand hby g = (f1,..., far)and h = (faret, -5 fN)
and show that if z is a solution to problem M'PEC then

(z,9(x),—h(x)) is a solution to the following optimization
problem.
AP minimize fy(x
subject to fp(z) —up =0,n=1,..., M,
folx)+up,=0n=M+1,... N,
(x,u) € X x graph F.

N———

Reference: |276].
Exercise 3.3.25. Let z € RV,
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(i) Show that [|z]ls < |||,

(ii) Show that if S"Y_, 2, > 0, then ||z||; < 2[|27T|.

Exercise 3.3.26. Show that

(i) 9(t) = te! is convex on [0, 00); and

(i) te”t < 1/e for all t € [0, 00).

Exercise 3.3.27. Let g(t) = (t+1)e! —4t/N, where N >

2.

(i) Show that g has a unique critical point ¢ € (—2,0] and is
strictly decreasing to the lett of ¢ and strictly increasing

to the right of ¢.
(ii) Show that for any ¢ > 0, g(—t) < g(1).



270 3 Subdifferential Theory

Exercise 3.3.28. (Largest Eigenvalue [56, p. 162]) Let A
be an NV x N symmetric matrix. Use the Karush-Kuhn-
Tucker necessary optimality conditions to calculate

max{(z, Az) | ||z|| = 1,z € RV}
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xExercise 3.3.29. (Largest Eigenvalue [139, p. 135]) Let A
be an M x N matrix. Consider the optimization problem

o = sup{(z, Ay) | [z]* =1, |y|* = 1,2 e RM y e RV}
(3.3.39)

and the matrix

0 A
A0
Here A' is the transpose of A.

(i) If v is an eigenvalue of A, prove —p is also.

(if) If yo is an eigenvalue of A, use a corresponding eigenvec-
tor to construct a feasible solution to problem (3.3.39)
with objective value pu.

(iii) Prove problem (3.3.39) has an optimal solution.

A=




(iv) Use the Karush-Kuhn—Tucker necessary optimality con-
ditions to prove any optimal solution to problem (3.3.39)
corresponds to an eigenvector of A

(v) (Jordan [156]) Deduce « is the largest eigenvalue of A
(This number is called largest singular value of A.)

Exercise 3.3.30. (Hadamard’s Inequality [132]) Let

(:1:1, . ,:EN) be an NV x N matrix with columns xl, NN
in RV, Prove (z!,...,z"V) solves the problem
minimize — det(z!,...,z")
subject to ||z"[[*=1forz" e RY,n=1,...,N
if and only if det(z?, . .. ,:EN) —1and zL,... 2" forming

an orthonormal basis of RYY. Deduce the inequality
det(z!t, .., 2™y < T ||2").
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3.4 Approximate Mean Value Theorems and Applications

The mean value theorems are fundamental results in calcu-
lus. They have numerous applications. The proofs of mean
value theorems are classical examples of variational argu-
ments. This section is devoted to the discussion of mean
value theorems, their generalizations to nonsmooth functions
and applications.

3.4.1 Mean Value Theorems

We start with Rolle’s Theorem which illustrates the pattern
and provides a foundation for developing other more general
mean value theorems.



274 3 Subdifferential Theory

Theorem 3.4.1. (Rolle’s Mean Value Theorem) Let f: R —
R be a function and let a < b be two real numbers. Sup-
pose that f is continuous on |a,b|, differentiable on (a,b)
and f(a) = f(b). Then there exists a point ¢ € (a,b) such
that f'(c) = 0.

Proof. We consider the nontrivial case when f is not a
constant on |a, b|. Since f is continuous on |a, b|, f or —f
attains its minimum at some point ¢ € (a,b). Thus, f'(c) =

0. .

In applications the following Lagrange mean value theorem
is often more flexible.
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Theorem 3.4.2. (Lagrange Mean Value Theorem) Let
f: R — R be a function and let a < b be two real num-
bers. Suppose that f is continuous on |a,b| and differen-

tiable on (a,b). Then there exists a point ¢ € (a,b) such
that

f(b) = fla) = f'(c)(b—a).
Proof. Apply Rolle’s Theorem to

ha) = fla) - LO =

(x —a).

A similar trick can be used to derive the even more gen-
eral Cauchy mean value theorem. We leave that as an ex-
ercise (Exercise 3.4.1) and turn to applications of differ-



276 3 Subdifferential Theory

ential characterizations of Lipschitz property, monotonicity
and convexity. We say a function f: R — R is Lipschitz
with a Lipschitz constant L provided that for all x,y € R,
f(y) - f(@) < Lly -z

Theorem 3.4.3. (Characterization of Lipschitz Property)
Let f: R — R be a differentiable function. Then [ 1is

Lipschitz with a Lipschitz constant L if and only if, for
allz € R, |f'(x)| < L.

Proof. Exercise 3.4.2. .

We say a function f: R — R is (strictly) increasing pro-
vided that for any = < y, (f(x) < f(y)) f(z) < f(y). We
say f is (strictly) decreasing if — f is (strictly) increasing. A
function is (strictly) monotone if it is either (strictly) increas-



ing or (strictly) decreasing. Monotonicity of a differentiable
function is characterized by the fact that its derivative pre-
serves sign. This can also be proven easily using the mean
value theorem.

Theorem 3.4.4. (Characterization for Monotonicity) Let
f: R — R be a differentiable function. Then [ 1is in-

creasing if and only if for all v € R, f'(x) > 0.
Proof. Exercise 3.4.3. .

Note that f/(x) > 0 for all x € R is a sufficient condition
for f to be strictly increasing (Exercise 3.4.4) but is not a
necessary condition (examining f(z) = ).

Recall that a function f: R — R is convex provided that
for any x,y € R and A € [0, 1],



fOz+ (1= Ny) < Af(@) + (1= A)f(y).
For a differentiable function the convex property is charac-
terized by the increasing of its derivative.

Theorem 3.4.5. (Characterization for Convex Property)
Let f: R — R be a differentiable function. Then [ is
convex if and only if f' is increasing.

Proof. Necessity: Let x < y and let A € (0, 1). It follows
from

fOz+ (1 =Ny) < Af(z)+(1—=XN)f(y)

that
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Taking limits as A — 0 we have f'(y)(z —y) < f(x) — f(y)
or

Jly) — flx
fly) > W= 341
Yy —T
Switch the position of x and y and A and 1 — A and taking
limits as A — 1 we have
Yy —T
Combining (3.4.1) and (3.4.2) we have f'(y) > f/(x).




Sufficiency: Suppose that f’ is increasing. Let x < vy and
let A € [0,1]. Applying the Lagrange mean value theorem
on intervals [z, Ax + (1 —\)y| and [Ax+ (1 — Ny, y], respec-
tively, we have that there exist ¢; € (z, Ax + (1 — \)y) and
62 € (Ax+(1—AN)y,y) such that f(x)— f(Ax+(1—=N)y) =

flle) = N(@ —y) and f(y) — fAz + (1 = Ny) =

f'(co) My — x). Clearly f(co) > f(cp). It follows that
M)+ (1 =A)fy) — fAz + (1 = A)y)
=Af() = fQz 4+ (1 = A)y)) + (1 = A)(f(y)
—fAz+ (1= A)y))
=Af(c))(1 =Nz —y) + (1 =N f(ca) My — @)
=1 = N)(f(c2) = fle))(y —x) > 0.

Therefore, f is convex.
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The above differential characterizations for the Lipschitz
property, the monotonicity and the convexity lead to many
useful inequalities. Some examples are given as exercises in
the end of this section.

3.4.2 Approximate Mean Value Theorems

A closer look at the applications of the mean value theorems
will reveal that (a) only one direction of the inequality is
important, and (b) the variational arguments proving these
mean value theorems are in fact valid for Isc functions. We
now make the above observations precise.
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Theorem 3.4.6. (Limiting Approximate Mean Value The-
orem) Let X be a Fréchet smooth Banach space, let
f: X = RU{+o0} be a lsc function, let a,b € X be
two distinct points with f(a) < oo and let r € R be such
that r < f(b) — f(a). Then there exist ¢ € |a,b) and a
sequence x; with (x;, f(x;)) — (¢, f(c)) and x7 € Op f(x;)
such that

(i) liminf; ,o{x;,c—x;) > 0;

(i) liminf; yoo(z;,b —a) > r;

(i) (c) < f(a) + Ir|

Proof. Take v € X™ such that (v,a — b) = r. Then

g9(x) = f(z) + (v,2) + ¢} (@)



attains its minimum at some ¢ € |a, b) because g(b) > g(a).
Applying the local approximate sum rule of Theorem 3.3.1,
there exist sequences (x;), (y;), (z7) and (y;) satisfying
(@, fx;)) = (¢, fl0), af € Opflz;), la,b] 2 y; — ¢
and y; € Np(la,b], y;) such that ||z7]| x [|z; — y;|| < 1/7,
Il % 1 — il < 1/i and

2] +y; + vl < 1/i.
Then (i) can be derived directly via:

liminf(x;, c — ;) =liminf(z; + v, ¢ — ;)
1—00 =0

=liminf(—y, c —y;) > 0.
I—500
To show (ii) note that ¢ € |a, b) implies that y; € |a,b) for
v sufficiently large. Then
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Ib—al
10—y

(7 +v,0—a) = (z; +v,0—y;)

Taking limits we obtain

b
liminf(z; +v,b — a) =liminf(z; + v, b — y;) Ib—all
1o 1200 Hb — yzH

o b — a
— f{— X b — H 0.
}Lgé% < y’&’ yZ>Hb_CH -
This is (ii) in disguise. Clearly f(c) satisfies (iii). .

By passing to a subsequence one can replace the limit in-
ferior in Theorem 3.4.6 by a limit. One can also write the
theorem in the following approximate form.
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Theorem 3.4.7. (Approximate Mean Value Theorem) Let
X be a Fréchet smooth Banach space; let f: X — R U
{+o00} be a lower semicontinuous function; let a,b € X
be two distinct points with f(a) < oo and let r € R be
such that r < f(b)— f(a). Then there exist ¢ € |a,b) such
that for any € > 0, there exist (x, f(x)) € Be((c, f(c)))
and x* € Opf(x) satisfying

(i) (x",c—x) > —¢;

(i) (x*,b—a) >r;

(i) f(z) < fla) + |r| +<

Proof. Fxercises 3.4.10. .

As in calculus we can use this approximate mean value the-
orem to derive subdifferential criteria for various properties
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of functions such as monotonicity, Lipschitzness, convexity.
ete.

3.4.3 A Lipschitz Criterion

Theorem 3.4.8. Let X be a Fréchet smooth Banach
space, let U C X be an open conver set with U N
dom(f) # O and let L > 0. Then [ 1is Lipschitz with
a Lipschitz constant L on U if and only if for all x € U,
sup{||«*[| - =™ € Op f(x)} < L.

Proof. The “only if” part is straightforward. We prove
the “if” part. Let a,b € U with a € dom(f) and a # b,
let » € R such that r < f(b) — f(a), and let ¢ > 0. It
follows from Theorem 3.4.6 (ii) that there exist x € U and
™ € O f(x) such that



3.4 Mean Value Theorems 287

r<{(z*,b—a)+e<L||b—al +e.

Sincer < f(b)— f(a) and € > 0 are arbitrary, we derive that
f(b)— f(a) < L||b— al|. Therefore, f(b) < oco. Exchanging
the roles of @ and b we can conclude that f is Lipschitz of

rank L on U. .

Corollary 3.4.9. Let X be a Fréchet smooth Banach
space, let f: X — RU{+o0} be a lsc function and let
U C X be a path connected open set with UNdom(f) # 0.
Then f s a constant function on U if and only if for all
v e U, dpf(x) C {0}.

Note that unlike the smooth counterpart of this result one
needs only check where the subdifferential O f is nonempty.
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3.4.4 Cone Monotonicity

The next result generalizes the monotonicity criteria in cal-
culus.

Let X be a Banach space, let K be a cone in X. We define
the polar of K by

KO:={ax" e X*: (2", 2) <0, forallz € K}
Let f be atfunction on X. We say that f is K -nonincreasing
provided that y € x + K implies f(y) < f(x).

Theorem 3.4.10. Let X be a Fréchet smooth Banach
space, let K be a cone in X and let f: X — RU{+o0}

be a lsc function. Suppose that for all x, Opf(x) C K°.
Then f s K-nonincreasing.
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Proof. Let x,y € X such that f(z) < f(y). It follows
from the Approximate Mean Value Theorem that there ex-
ist z € dom(f) and 2z* € Opf(z) with (z*,y —x) > 0.
Therefore y — x does not belong to K. .

In particular, we have the following corollary.

Corollary 3.4.11. Let f: R — RU{+o0} be a Isc func-
tion. Suppose that for all x, Opf(x) C (—o0,0]. Then f
1S NONINCTEASING.

Proof. Exercise 3.4.12. .
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3.4.5 Quasi-Convexity

Let X be a Banach space. We recall that a function f: X —

R U {400} is called quasi-convexr provided, for any xz,y €
domf and z € |z,y], f(z) < max{f(x), f(y)} and that a
multifunction F': X — X™ is quasi-monotone if

v* € F(x),y" € F(y)and (", y—x) > 0= (y",y—x) > 0.

Theorem 3.4.12. Let X be a Fréchet smooth Banach
space and let f: X — R U {+o0} be a lsc function.
Suppose that O f is quasi-monotone. Then [ is quasi-
CONVEL.

Proof. We work by way of contradiction. Assume that
there exist some z,y,z € X such that z € [z,y] and
f(z) > max{f(x), f(y)}. Applying Theorem 3.4.6 with



a = v and b = z, there exist sequences x; and x5 € Op f(7;)
such that z; — = € [v,2), liminf; ,(z;, 2 — ;) > 0
and liminf; _,o(x;, 2 — ) > 0. Combining with y —

Hg:i” (z — x) we have
lim inf(z;, y — x;) > 0. (3.4.3)
i—00

Let A € (0,1) be such that z =z + Ay — ) and set z; :=
r;+Ny—x;). Then z; — z. Since f is lower semicontinuous,
in considering relation (3.4.3) we can pick an integer ¢ such

that f(z;) > f(y) and
(x7,y — x;) > 0. (3.4.4)

Applying Theorem 3.4.6 again with a := y and b = z;,
there exist sequences (y;) and (yj) satisfying y}k € Orf(y))



such that y; — § € |y, 2;), lim infjéoo<y;-‘, y—y;) > 0and
lim infjéoo<y;-‘, z; —y) > 0. Noting that z; — y and x; — ¥
lie in the same direction, we obtain
lim inf(y;f, T; — y]> > (). (3.4.5)
j—00
Since y € [x;,y), inequality (3.4.4) yields
liminf(x},y; — a;) = (27,9 — ;) > 0. (3.4.6)
]—>OO
[nequalities (3.4.5) and (3.4.6) imply that for j sufficiently
large, we have both <y;<, r; —y;) > 0and (x7,y; —x;) >0,
i.e., Opf is not quasi-monotone, a contradiction. .
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3.4.6 Commentary and Exercises

Mean value theorems for differentiable functions are classical
results in analysis. Their extension to nonsmooth functions
can be traced back to Lebourg [171]. The limiting approx-
imate mean value theorem of Theorems 3.4.6 appeared in
Zagrodny [270] in terms of the Clarke-Rockafellar subdiffer-
ential, see also Penot [218|. The Fréchet subdifferential forms
were given in [186, 208, 220] along with some applications.
The proof given here by using the local approximate sum rule
is taken from [274]. It is worth pointing out that although
Theorems 3.4.6 and 3.4.7 are stated in (possibly) infinite di-
mensional Banach spaces, they are actually restricted to a
line segment. In fact in the guided Exercise 3.4.9 one can
find a Fréchet differentiable function on ¢ constructed by



Ferrer [119] that equals to 0 on the unit sphere yet whose
derivative does not vanish inside the unit ball. Recently, Bor-
wein, Kortezov and Wiersma constructed in [50] a delicate
C! function on R? that is even on the unit circle vet has
no critical points in the unit ball showing that the Rolle’s
theorem is essentially a one dimensional result.

The prototypes of the Lipschitz criterion appeared in Rock-
afellar [231] for functions on finite dimensional spaces and in
Treiman [249] for functions on infinite dimensional spaces.
The proof adopted here is from 248, 186].

Characterization of quasi-convexity for Isc functions was
discussed in [187]. The short proofs here follow a more gen-
eral version in [10]. It is easy to deduce a subdifferential
characterization for convex functions from this result that
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extends Theorem 3.4.5 to nonsmooth functions. We will dis-
cuss 1t later.

Exercise 3.4.1. Prove the Cauchy mean value theorem:

Theorem 3.4.13. (Cauchy Mean Value Theorem) Let
f,g: R — R be two functions and let a < b be two real
numbers. Suppose that f and g are continuous on |a,b),
differentiable on (a,b) and suppose g is strictly increas-
ing. Then there exists a point ¢ € (a,b) such that

g (c)(f(b) — fla)) = f'(c)(g(b) — g(a)).
Hint: Apply Rolle’s Theorem to

hia) = fla) = g5 — oo (o(e) = gla))
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Exercise 3.4.2. Prove Theorem 3.4.3. Hint: Necessity fol-
lows directly from the definitions of derivative and the Lips-
chitz property. For sufficiency use the Lagrange mean value
theorem and prove by contradiction.

Exercise 3.4.3. Prove Theorem 3.4.4. Hint: Necessity fol-
lows directly from the definitions of derivative. For sufhi-
ciency use the Lagrange mean value theorem and prove by
contradiction.

Exercise 3.4.4. Show that if f: R — R is a differentiable
function with f/(x) > 0 for all z € R then f is strictly
Inereasing.

Exercise 3.4.5. Prove that for z,y € R, |siny —sinz| <
y — xl.
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Exercise 3.4.6. Use the trigonometric identity

r+vy . yYy—=x
S1n 5

COSY — COST = —2sIn

to establish the inequality, for 0 < a < b
b2 — a?

cosa — cosb <

Then prove that for 0 < a < b and x # 0,

cos ax — cos bx _ b2 — q?
12 2

Exercise 3.4.7. Prove that for h > Oand p > 1, (1+h)P >
1 + ph.

Exercise 3.4.8. Let f: R — R be a twice differentiable
function. Show that f is convex if and only if f”(z) > 0 for
all x € R.
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xExercise 3.4.9. (Ferrer’'s Example) In this exercise we
break into several steps Ferrer’'s example of a Fréchet dif-
ferentiable function on fo that vanishes on the unit sphere
yet has no critical point inside the unit ball.

We will denote by {e;} the standard basis of 9. Let

L,R: /o — {5 be the linear lett and right shift operators
on {9 defined by

Lx = (x9,x3,24,...) Rx=(0,21,29,23,...).

(i) Show that ||Lz| < ||z|| and ||Rz| = ||z||, and L and
R are adjoint to each other, that is

(x, Ru) = (Lx,u).
(ii) Define operator T': f9 — {9 by
T(z) = (12 — ||z|*)e1 + Rz
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Show that 1" is a continuous operator and T'x # x for
any r € (.
(iii) Define Ferrer’s function
2
L — fl]

flz) = -
|z — T'(2)|°
Verify that f is a Fréchet differentiable function that

vanishes on the unit sphere.
(iv) Use the quotient rule to compute (f'(z),u)

2z, u) ||z — T(x)||? + 2z — T(x),uw — T'(x)u)
|z — T()||*

(3.4.7)

for any z,u € /£o.
(v) Verify that



/ —2
M= =z
+(1 = [|2]1*) (1 + 221 + 2||z]1%))=
—(1 = ||z[I")(Lx + T(x))].
(vi) Prove by contradiction that f’(z) # 0 in the interior
of the unit ball of 5. Hint: Suppose the contrary; then

f(x) =0 for ||z|| < 1. It follows that
Lz +T(x) = sz,

|z —T(x)|

where
e = T@)
L — [zl
Applying L to both sides gives
L2x—sLx+a::O,

+ 1422 +2||z||*




3.4 Mean Value Theorems 301

so x satisfies the second-order linear recurrence relation
Tjro — STix1 +x; =0, 12>1,
whose characteristic equation is
> —st+1=0.
Discuss case by case the three types of solutions to the

recurrence, depending on the discriminant of the above
characteristic equation.

Reference: [119, 267].

Exercise 3.4.10. Prove Theorem 3.4.7.

Exercise 3.4.11. Deduce the Lipschitz criterion for the
cone monotonicity criterion. Hint: consider the monotonicity

of f(z)+ L.
Exercise 3.4.12. Prove Corollary 3.4.11.
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3.5 Chain Rules and Lyapunov Functions

3.5.1 Approximate Chain Rules

We now introduce an approximate chain rule for the Fréchet
subdifferential that estimates the subdifferential of f o F.
Observe that if f o F' attains its minimum at x then

(z,y) = fly) + Loraph F(2,9)

attains a minimum at (z, F'(z)). This suggests that we can
use subdifferential sum rules to deduce chain rules. This is
the method we adopt. Similar to the subdifferential sum
rules there are strong and weak versions of approximate
chain rules. First we discuss a strong approximate chain rule
which needs some qualification conditions on F'.
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Let X and Y be Banach spaces. Recall that a map
F: X — Y is locally compact at x provided that there
is a neighborhood U of x such that for any closed subset

S C U, F(S) is compact.
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Theorem 3.5.1. (Strong Approximate Chain Rule) Let X
and Y be Fréchet smooth Banach spaces, let f: Y — RU
{+o00} be a lsc function and let F': X — Y be a locally
Lipschitz and locally compact mapping at . Suppose that
x* € Op(f o F)(T).

Then, for any € > 0, there exist x € B:(T), y €
B:(F(z), y* € Opf(y), A =yl < e and 2 €
Op(A, F)(x) such that [f(y) — f(F(2))] < ¢,

max([|All |y [l 12" DIy = F(@)l| <& (3.5.1)

and ||x* — 2¥|| < e.
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Proof. Let g be a C! function such that fo F — g attains
a minimum at 7 and ¢'(z) = 2*. Then

(2,y) = f(y) + tgraph F(2,Y) — g(2)
attains a minimum at (z, F'(%)). Define fi(z,y) = f(y) —
g(z) and fo(2,y) = topapn F(2,y). As an exercise one can
verify that f1, fo satisfy condition (3.3.2) in the local ap-
proximate sum rule of Theorem 3.3.1. Applying Theorem

3.3.1 we have © € B:(%), 2 € B:(Z) close enough to = so
that [|g'(2) — 2™|| <€/2,y € Bo(F(2)), y* € Op f(y) and

(2%, =) € Optgraph (7, F(z)) (3.5.2)
satisfying (3.5.1) and
I(=g'(2),4%) + (=%, =A)|| < = (3.5.3)

2
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By (3.5.2) and the definition of the Fréchet subdifferen-
tial there exists a C'* function h: X x Y — R such that
W (xz, F(x)) = (2*,—)\) and, for y in a neighborhood of ,

0> h(y, F(y)) — bz, F(z)=(z"y —x) — (\, Fy) — F(x))

+o(lly — zl).
It follows that 2* € g (A, F')(x). The rest of the conclusions
in the theorem follow from (3.5.3). .

The same argument can be used to prove the following

weak approximate chain rule if we replace Theorem 3.3.1 by
Theorem 3.3.3.
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Theorem 3.5.2. (Weak Approximate Chain Rule) Let X
and Y be Fréchet smooth Banach spaces, let f: Y — RU
{+o0} be a lsc function and let F': X — Y be a locally
Lipschitz mapping at T. Suppose that x* € Op(f o F')(Z).
Then, for any ¢ > 0 and any weak-star neighborhood
U of 0 in X*, there exist x € B:(T), y € B:(F (%)),
y* € 0pfly), [N —v*|| < e and z* € Op(\, F)(x) such

that | f(y) — f(F(z))] <e,
max([[All, 1y, [[27[Dlly — F2)]| <e.

and
e+ U.
Proof. Exercise 3.5.1. .
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3.5.2 Lyapunov Functions and Stability

We now use the subdifferential chain rule derived above to

obtain an interesting generalization of the Lyapunov indirect

method in the stability theory of dynamical systems.
Consider the differential equation

' = f(x), (3.5.4)

where f: RY - RV isa locally Lipschitz mapping, that is,
for any x € RN there exists a neighborhood U of x and a
constant . = Ly > 0 such that for any y, z € U,

1f(y) = f2)l < Llly — =]

[t is well known that for any initial condition z(0) = z, dif-
ferential equation (3.5.4) has a unique solution x(¢, xg) de-
finedont € |0, 7) for some 7 > 0. We further assume that all



the solutions of (3.5.4) are defined on |0, +00). A simple suf-
ficient condition ensuring this property is || f(z)]| < a|lz||+b
for some constants a, b.

The idea of the Lyapunov indirect method is rather simple.
Suppose that f(0) = 0 so that {0} is an equilibrium point
of (3.5.4). This method tells us that if there is a C'! positive
definite function V' with V' (0) = 0 (a function satisfying

V(xz) > 0 for x # 0 and V(z) — 0 if and only if x — 0)
such that for some a > 0,

V'(x), f(x)) +aV(z) <0, (3.5.5)

then the equilibrium solution 0 is stable. Moreover, if a > 0
then it is asymptotically stable.
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In fact, for any trajectory x(-) of (3.5.4), using calculus
rules for derivatives and inequality (3.5.5) we have

SV () < 0.

and therefore the function

t — eV (2(t))
is decreasing. The stability and asymptotic stability (in the
case when a > 0) of the equilibrium {0} then follows from
the positive definite property of V.

We show that this line of reasoning essentially remains
valid for the more general stability concept related to sta-
bility sets defined below when the derivatives involved are
replaced by the Fréchet subdifferential for lower semicontin-
uous functions.
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Definition 3.5.3. (Stable and Attractive Sets) Let S be a
closed subset of RY . We say that S s stable with respect
to differential equation (3.5.4) provided that for any

e > 0, there exists a 0 > 0 such that for any xy € Bg(S),

x(t,xg) € B:(S), for allt € |0,+00).

We say that S s attractive with respect to differential
equation (3.5.4) provided that S is stable and there exists
a 6 > 0 such that for any xo € Bs(S),
t—li?oo d(x(t,xg); S) = 0.
Note that if S = {s} for an equilibrium solution s of (3.5.4)
then Definition 3.5.3 recovers the classical concepts of Lya-

punov stability and asymptotic stability for equilibrium so-
lutions.
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However Definition 3.5.3 encompasses many useful situa-
tions beyond the stability of equilibriums. For example, con-
sider the simple linear system :1:’1 = X9, :E’2 = —x71. It is easy
to see that the phase-portrait of any trajectory of this system
is a stable set. Another example is that the phase-portrait
of any stable limiting circle of a plane autonomous system
15 attractive.

Next we define Isc Lyapunov functions and the related crit-
ical sets that model the potential stable and attractive sets.
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Definition 3.5.4. Let V: RY — [0, +00] be an extended-

valued Isc function. We say that a closed set S C RY s

a critical set of V' provided that,

i) Sc{zeRYN : V(z)=0};

(ii) for anye > 0 there exists a 6 > 0 such that Bs(S) C
{z e RN :V(z) <e}; and

(iii) for any € > 0 there exist 6, > 0 such that

{z e RY : V(z) <6} N Boyyy(S) C Be(S).

Now we can state our generalization of the Lyapunov in-
direct method.
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Theorem 3.5.5. (Stability) Let V: RY — [0, +00] be a
Isc function and let S be a compact critical set of V.
Suppose that there exists a constant a > 0, for any z* €

OV (x) with V(x) > 0,
(2, f(x)) +aV(z) <0. (3.5.6)

Then S is a stable set of the differential equation (3.5.4).
Moreover, S s attractive when a > 0.

Proof. We need only show that, for any xg sufficiently
close to S, the function ¢t — e®V (x(t)) is decreasing for
the solution x(t) = x(t, zq) of differential equation (3.5.4).
Indeed to see that S is stable, let € be an arbitrary positive
number. Since S is a critical set of V' by Definition 3.5.4
(iii) there exist ¢/,n > 0 such that {z € RY : V(z) <



e’} N Beqy(S) C Be(S) and by (ii) there exists § > 0
such that Bg(S) € {z € R" : V(x) < £'}. Now, for any
ro € Bg(S) and any t € [0, +00),

Viz(t, ) < e “Vizg) < € (3.5.7)

so that z(t, xg) € Be(S).

When a > 0, inequality (3.5.7) implies that lims_— + 5o V (2(¢, 2o
0. Thus we must have limy_, 1 oo d(S; 2(t, xg)) = 0, by prop-
erty (iii) of Definition 3.5.4.

Now we turn to prove that the function t — e®V (z(t)) is
decreasing. In the above argument we see that only points in
a small neighborhood of S are relevant. So we may consider

such a neighborhood and assume without loss of generality
that on this neighborhood f is Lipschitz with a Lipschitz



constant L and || f]| is bounded by some constant M. By
virtue of Corollary 3.4.11 we need only show that, for any
¢ € 0p(e™V(x(t)), € < 0. Define g(z,y) = yV(z) and
G(t) = (x(t),e™). Then ¢ € Op(g o G)(t). Applying the
approximate chain rule of Theorem 3.5.1 we have that, for
any € > 0, there exist ' € (t —e,t +¢), |z — z(t)] < &,
y — et| < & (ya*,y*) € Opgla,y), i, y* = V(x),
z* € OpV(x), (A ) — (y=*,y")|| < e and

25 € Op((\ 1), (2(-), €N () = {0 2 (¢) + ape™ )
satisfying ||& — 2*|| < € and

t/
max([[Afl, |l 1=yl ™ (| 125D % (|lz—z(E) ||+ ]y—e|) < e
It follows that



= (N, 2/ (1)) + a,ueat/ +e=(\ flz(th))) + a,ueat/ + .

/ /
(') + aV(x)e™ + &+ Me + cae™
r)) +aV(x)e '\ ¢+ Me + Le + cae

N
*
x +
m

I

IA AN IA

1 N N

yx™, f(
yx™, f( y
(™, f(x)) + aV (x)]e '\ e & Me+ Le + cae™ + ¢
Y
M
§5(1+M+L+aeat/+—).
Y

Letting € — 0 we have £ < 0, as was to be shown. .

at’

<

3.5.3 Commentary and Exercises

Chain rules are important tools in analyzing subdifferen-
tials and have been discussed in many different settings (see

71, 84, 91, 198, 209, 237, 264] and the references therein).
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The chain rules discussed here and their applications in the
stability of dynamic systems largely follows [277]. An al-
ternative approach based on the weak invariance-viability
type theorems has been discussed in [6, 169, 256, 257]. The
survey paper [90] provides an excellent account of this ap-
proach and other related issues in dynamic systems. Allow-
ing extended-valued lsc Lyapunov functions provides much
flexibility. Many operations such as truncation, taking max-
imum or absolute value, and using indicator functions be-
come possible. Exercises 3.5.2.3.5.3 and 3.5.4 provide some
examples.

Exercise 3.5.1. Prove Theorem 3.5.2.



Exercise 3.5.2. Construct a Lyapunov function to show
that for any r > 0, S(r) :== {(x1,29) € R?*: 2% + 25 =1}
is a stable set of differential equations

T = 29,15 = —11. (3.5.8)
Hint: Use the Lyapunov function V(z, x9) = |£IZ% + :1:% -
rl,r > 0.
Exercise 3.5.3. The following system naturally occurs in
population models.

' = f(x) = —x(x +2)(z - 1). (3.5.9)
Define



(x4+2)° =< —1/2
V(z):= < +oo, r e (—1/2,1/2),
(x —1)%, =>1/2

(i) Check that both S7 = {1} and Sy = {—2} are critical
sets of V.

(ii) Verify that for z < —1/2 or & > 1/2, V is C* and it
satisfies

, —2x(x — 1)V (x), v < —1/2

Vi) fz) { —2x(x+2)V(x), © > 1/2 < =3/21

(iii) Show that at x = —1/2 and 1/2 we have OpV (—1/2) =
2(—1/2+2),400) and OpV (1/2) = (—o0,2(1/2—1)],
respectively.



(iv) Conclude that both 1 and —2 are asymptotic equilib-
rium points.

Reference: [277].

xKxercise 3.5.4. Prove that :13% + :13% = 1 is a stable limit
circle of the following system of differential equations.
) = —x9 + 21(1 — :13% - x%)

2 2).

, (3.5.10)
Ty =21+ x2(1 — 2] — 25

Hint: Construct the function

1 —a? —a3], z2+a5>1/2
ooy {18 0

+-00, x%+x%< 1/2.
(i) Verify that S = {(z1,29) : 5+ 25 = 1} is a critical set
of V.
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(ii) Check that the function V' is C'! at any point (z1, zo) ¢
S and CU% +$% > 1/2 and, for these points V"’ is the only
element in 0pV which satisfies

V', fy+V <.

Here f represent the right hand side of (3.5.10).
(iii) For :1:% + $% < 1/2 we do not need to verify (3.5.6)
because

OpV(x1,22) = 0.
(iv) Show that for points x = (x1, x9) satisfying xl + xz —
1/2 we have

OpV(x) ={kx : k € (—o0, —2]}.
These points also satisfy (3.5.6) with a = 1.
Reference: [277].
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In the above examples the sets of nonsmooth points for the
V' functions are all of measure zero. One may wonder then
whether it is necessary to check inequality (3.5.6) for these
points. The following guided exercise shows that the answer
is positive. In other words, handling the nonsmooth points
of Isc Lyapunov functions is a crucial part of this method
that cannot be omitted.

xExercise 3.5.5. Let C' be the Cantor ternary set on |0, 1]
consisting of every ternary decimal involving only 0 and 2 in
1ts expression.

Since C' is closed, [0, 1]\C is the union of denumerable
disjoint open intervals. We write
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O
0, 1N\C = | (a. by)-
k=1
Consider the classical Cantor ternary function V: C —
0, 1] defined as follows:

©.@)
T
V($> = Z Qiil
1=0
where x; is the ¢th digit of the ternary decimal expression
x = 0.z129--- of x.
As for each £, aj. and b;. must have “dual” ternary expres-
sions

aj. = 0.cicg -+ ¢;0222- -+ and by = 0.cico - -+ ¢;2000 - - -,
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we can check that V(ag) = V(bs.). Thus, we can extend V
to |0, 1] by defining

V(x) :=Viag) =V(b), forall xz e (ar,by).

We further extend V' to |0, 4+00) by setting V(x) == 1,2 >
1. It is well known that V' is continuous and non-decreasing.
Next we extend V' to R as an even function. It is easy to
check that {0} is a critical set of V. Moreover, it follows from
the calculation in Example 9.2 of [71] and the symmetry of
V' with respect to 0 that
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K € [CU(=C)\{~bp} U {b} U {0}
0,00) =€ ({b}),
(—00,0] = € ({~b}),

0 r € R\[C U (=C)).

Note that the set of nonsmooth points of V' is of measure
zero and V has derivative 0 at any of its differentiable points.
Thus, if we use V' to determine the stability of {0} by check-
ing only its differentiable points satistying the inequality
(3.5.6) we would arrive at the conclusion that every differ-
ential equation is stable at {0}, which is absurd.

(‘)FV(:J:) = <
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The method used in the proof of the chain rules in this
section can also be used to prove other forms of chain rules
that are more closely related to the other calculus rules for
subdifferentials. Guided exercises below will help the readers
to develop these results.

Exercise 3.5.6. Prove the following chain rule in which the
inside function may be continuous or lower semicontinuous.



Theorem 3.5.6. (Approximate Chain Rule without Lip-
schitz Assumption) Let X be a Fréchet smooth Banach
space. Suppose that f1,..., far: X — RU{+o0} are lsc
Junctions, fyri1,---,JN are continuous functions and
f: RY 5 RU {+o00} is a lsc function nondecreasing
for each of its first M wvariables (M < N ). Suppose that
r* € Opf(fi,-- ., fN)(T).

Then for any positive number € > 0 and any weak-star
neighborhood U of 0 in X™, there exist (xp, fn(zn)) €

B:((z, fn(x))),n = 0,1,...,N, (r, f(r)) € B:(r, f(F))

where 7 = (f1(2),..., fn(Z)) and p = (p1,..., pN) €
Opf(r) +eBgpn such that py >0 forn=1,..., M, and
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N
r" € Z O (pnfn)(an) + U
n=1

Hint: Let ¢ be a C! function such that ¢'(Z) = z* and
f(f1,---, fn) — g attains a local minimum at z. Denote
r=(rg,.. TN) e RY. Observing that the function

(z,7) — f(r "‘Z Leplf T, 7n)+ Z Loraph f, (z,7mn)—9(x)
= n=M+1
(3.5.11)

attains a local minimum at (z, f1(z),..., fy(Z)), the con-

clusion follows from the weak local approximate sum rule of
Theorem 3.3.3.
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When f is a smooth function we can sharpen the results
in Theorem 3.5.6.

Exercise 3.5.7. Prove the following refined smooth chain
rule.

Theorem 3.5.7. (Refined Smooth Approximate Chain
Rule) Let X be a Fréchet smooth Banach space. Suppose
that fi,...,fn: X = RU{+x} are lsc functions and
F:RY 5 Ris a C function strictly increasing for each
of its variables. Suppose that x* € Opf(fi,..., fn)(T).
Then, for any positive number € > 0 and any weak-star
neighborhood U of 0 in X*, there exist (xy, frn(zn)) €
B:((z, fn(z))),n=0,1,..., N such that
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N
AS Z OF(pnfn)(xn) + U,
n=1

where 1= (p1, ..., puy) = f/(f1(2), ..., fn(@).
Exercise 3.5.8. Deduce the weak local approximate sum
rule of Theorem 3.3.3 from Theorem 3.5.7.

Exercise 3.5.9. Apply the chain rule of Theorem 3.5.6 to
max(fi,..., fn) to deduce the following result.
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Theorem 3.5.8. (Subdifferential of the Max Function) Let
X be a Fréchet smooth Banach space and let f,: X —
RU{+cc},n=1,...,N be lsc functions. Suppose that
r* € Opmax(fi1,..., fn)(@). Then, for any € > 0 and
any weak-star neighborhood U of 0 in X*, there exist
(@n, fn(2n)) € Be((Z, fn(2))), 23, € Op fuln) and Ap = 0
with | Zflvzl An — 1| < € such that

N

¥ € Z Ay, + U.

n=I1
Exercise 3.5.10. Show that Theorem 3.5.1 remains valid
if we assume f is w*-lsc and F' is linear. (In particular, this
is valid when f is a convex continuous function.)
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«Exercise 3.5.11. Show that when Y = RY and f and
fn, n = 1,..., N are Lipschitz functions, Theorem 3.5.1
provides a sharper result than Theorem 3.5.6. Construct an
example (in a finite dimensional space X) to show this re-
finement is impossible if f,,, n = 1,..., N are merely con-
tinuous. Reference: |274].

3.6 Multidirectional Mean Value Inequalities and Solvability

In this section we discuss a multidirectional generalization
of the approximate mean value theorem of Theorem 3.4.7.
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We replace the endpoint b by a set .S and r» < f(b) by the
decoupled infimum A|f](S). Applications of this result to
solvability and representation of superdifferentials are also
discussed.

3.6.1 Multidirectional Mean Value Inequalities

Recall that for a point x and a set S in a Banach space,

(z, S| = conv({x} U .S) represents the drop associated with
xr and S.



Theorem 3.6.1. (Approximate Multidirectional Mean Value
Inequality) Let X be a Fréchet smooth Banach space. Let
S be a nonempty, closed and convexr subset of X, let
f: X =>RU{+x} be a lsc function and let x € domf.

Suppose that for some h > 0, f s bounded below on
By([x, S]) and

NIAIS) = ) > 7. (3.6.1)

Then for any € > 0, there exist z € Be:(|x,S]) and 2* €
Orf(2) such that

(z) < A1z, 1) + Ir| +e. (3.6.2)
and

r<(z%,y—xa)+elly—z| forally € S. (3.6.3)
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Proof. We divide the proof into two steps.
(1) The special case in which r = 0. Let f := f+ip, (1, 5])-
Then f is bounded below on X. It follows from (3.6.1) that
we can fix an n € (0,h/2) such that infy632n<5> fly) >
f(x). Without loss of generality we may assume that
€<rmn{mjgkﬁf@) f@%n}-
Applying the nonlocal approximate sum rule of Theorem
3.2.3 to fi = f+ LBy (2,9]) and fo = Uz,s] We obtain
that there exist z € domf N By(|z,S]) and u € [z, 9]
with ||z — u|| < ¢, 25 € Opfi(z) = Opf(z) and u* €
Optyy o (u) = Np([z, S| u) satisfying

max([|27, [[u*]]) x |z —ul| <& (3.64)
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and
</\ ([z,S]) +e < fx) + (3.6.5)
such that
2"+ u®|| <e. (3.6.6)
Since [x, S| is convex, Np(|x, S];u) coincides with the nor-
mal cone of [z, S| at u in the sense of convex analysis. Thus,
u* € Opuy, g)(u) = Np(|lz, ST; u) implies that
(w5 w—u) <0, forallwe[z,S]. (3.6.7)
Combining (3.6.6) and (3.6.7) yields
5w —uy=G"+u w—u) — (S, w— u)
> (2" 4+ u",w— u)
>—¢llw—u|, forallwée |z, S\{u}.
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That is
0 < (", w—u)+el|lw—ul, forallwe[z,S]\{u}.
(3.6.8)

Moreover, we must have d(S;u) > n for otherwise we would
have d(S;z) < 2n and f(z) > infy632n<s> fly) > f(x)+¢€
which contradicts (3.6.5). Let u := z + t(y — x) for some
t € [0,1] and y € S. Then n < |lu —y[| = (1 —t)||z — y|
implies 1 — ¢ > 0. Clearly € S. For any y € S setting
w =1y +t(y —y) # uin (3.6.8) yields

0< (z",y—u)+e|ly—ul, foralyesS. (3.6.9)

(2) The general case. Consider X x R with the Fuclidean

product norm [[(z, )| = +/||z]|? + 2. Take an & €
(0,e/2) small enough so that
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ALFIS) = flx) >r+€
and define
F(z,t) = f(z) — (r + . (3.6.10)

Obviously F' is Isc on X X R and is bounded below on
By, ([(x,0),S x {1}]). Moreover,

ALFIS x {1}) = ALS) = (r +£') > f(x) = F(a,0).

Applying the special case proved above with f, x and S
replaced by F', (z,0) and S x {1} we conclude that there
exist (z,5) € B=([(x,0),S x {1}]) (so that z € B:([x, 5]))
and (2%, %) € 8FF( ) C Opf(z) x{—(r+¢’)} satisfying

f(z) = (r+&)s s) < N\[FI([(2,0), 8 x {1}]) + €,

in other words,
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</\ ([(2,0),8 x {1}])) + (r+&)s + €
</\ z,S)|) +|r|+¢€
such that, for all (y,1) € S x {1},
0<{(z%,5%), (y,1) — (,0)) +£'((y — z, D)
<(y—a) = (r+e)+(ly -z +1)
=(Ny—a) —rtefly—a| <My —z) —r+elly -2
This completes the proof. .

[t is clear that when S is bounded the term ¢|ly — x| in
(3.6.3) can be eliminated. This is not the case in general.
One can convince oneselt by examining the simple example

when X =Y = R and f(y) = €Y (Exercise 3.6.1). When



S is a compact subset of X or f is uniformly continuous in
a neighborhood of S we can verify that A|[f](S) = infg f
(Exercise 3.6.2). In general A|f](.S) in Theorem 3.6.1 cannot
be replaced by infg f (Exercises 3.6.5 and 3.6.6). In general,
it is impossible to ensure the mean value z belongs to |z, S]
(Exercise 3.6.3). Yet, this refinement is possible under addi-
tional conditions. One such condition is to assume f to be
convex. This will be discussed later.

The following corollary is often useful in various applica-
tions.
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Theorem 3.6.2. (Decrease Principle) Let X be a Fréchet
smooth Banach space, let f: X — RU{+o0} be a Isc
function bounded from below and let r > 0. Suppose that
for any x € B,(Z), £ € Opf(x) implies that ||€]| > o > 0.
Then

Lo . flx) < f(x) —or

Proof. Exercise 3.6.9. .

3.6.2 Solvability

Consider a lIsc function f: X x Y — R U {4+00}. As an
application of the multidirectional mean value inequality, we
seek infinitesimal conditions in terms of the Fréchet subdit-
ferential for the solvability of inequality f(z,y) < 0 in terms



of parameter y or the nonemptiness of G(y) := {xr € X |
fz,y) <0} We use O, to signify the Fréchet subdiffer-
ential with respect to x. We will see later that this is closely
related to the more general implicit multifunction theorems.

Theorem 3.6.3. (Solvability) Let X and Y be Fréchet
smooth Banach spaces and let U be an open set in X XY .

Suppose that f: U — RU {+o0} satisfies the following
conditions:

(i) there exists (T,y) € U such that
fz,y) <0,
(i) y — f(x,y) is upper semicontinuous at y;

(iii) for any fixed y near y, x — f(x,y) is lower semi-
continuous;
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(iv) there exists a o > 0 such that for any (x,y) € U with
flz,y) >0, § € 0p . f(x,y) implies that ||£]] > o

Then there exist open sets W C X and V C Y con-
taining x and 1y respectively such that

(a) for any y € V, W N G(y) #0;
(b) for any y € V and x € W,

d(z, G(y)) < LY

o

where f(x,y) = max{0, f(z,y)}.

Proof. Let ' be a positive number such that B,.(x) x
B,/(y) C U and let r = r'/3. Since f(z,y) is upper semi-
continuous at g and f(Z,y) = 0, there exists an open neigh-
borhood V' of § such that V' C B./(y) and y € V implies
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that f(z,y) < ro. We will show that V and W := int B,-(7)
satisfy the conclusion of the theorem. Let y be an arbitrary
element of V. We show that W N G(y) # 0. In fact, if this
is not the case, then f(x,y) > 0 for any x € B+ (%), 7 < r.
Choose 7 close enough to r so that f(z,y) < 7o. Invoking
the decrease principle of Theorem 3.6.2 we have

0 < xelélf(a:) f(xay) < f(.f,g) — 70 < 07

a contradiction.
To show the estimate (b), consider x € W and y € V. If

Bz, f+(x,y)/0) ¢ ntB(z,r')
then ||z — Z|| + fo(z,y) /o > 7" or fi(x,y)/oc > 2r. Since
conclusion (a) implies that d(z, G(y)) < 2r, estimate (b)
holds. Now we turn to the case when B(x, fi(x,y)/0) C
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intB(z,r"). Take 7 > fi(x,y)/o such that B(z,7) C
intB(z,r’). Since f(z,y) < 7o an argument similar to the
proof of (a) yields that there exists z € B(x,7) such that
f(z,y) <0. Thus, d(z,G(y)) < 7. Letting 7 — f(z,y)/o
we arrive at estimate (b). .

3.6.3 Superdifferential and Subdifferential

Recall that if f: X — |—00,00) is usc then we define the
Fréchet superdifferential of f at z by 0% f(x) = —0p(—f)(x).
Interestingly, for a continuous function a superderivative
¥ e of f(x) can be represented as a convex combination
of subderivatives at points in a neighborhood of z. To prove
this result we need the following nonsymmetrical minimax
theorem.
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Theorem 3.6.4. (Nonsymmetrical Minimax Theorem: A
Banach Space Version) Let S be a closed bounded convex
subset of Banach space X™ and let T be a convex subset
of X. Suppose that f: ST — R 1s a function conver in
s and concave in t and that for eacht € T, s — f(s,1)
18 weak-star lsc. Then

inf sup f(s,t) = sup inf f(s,t).
se€SteT teT SES

Proof. Let a < inficgsupier f(s,t). Define, for each
t € T, theset Sy = {s € S| f(s,t) < a}. Then Sy is
weak-star closed subset of S and

() 5¢=0.

terl
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Since S is weak-star compact, the finite intersection theorem
yields a finite set t1,...,tn such that

N
() St, = 0.
n=1

Now define a set

K:={reRY|3se S r> fls,tn),n=1,...,N}.
(3.6.11)

Then (a,...,a) € K. We can check that K is a convex set
(Exercise 3.6.11). Applying the finite dimensional separation
theorem (see e.g., [237, Theorem 2.39]) we have that there
exists h := (hy,...,hy) # 0 such that for any k € K,

(h, k) > (R, (ar, ..., ). (3.6.12)
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Clearly, hy, > 0 (Exercise 3.6.12) and d1V1d1ng by Z 1 hn

if necessary, we may assume that anl hy, = 1. Then for
any s € 9,

Oz<ZhnfS tn) <f Zhntn

[t follows that

a < inf ht sup inf f(s,t
SESf Z nn t€$565f< ).

Letting o — infgc g supser f(s,t) we have

inf sup f(s,t) < sup inf f(s,1). (3.6.13)
s€SteT teT 5€5

Since the opposite inequality
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inf sup f(s,t) > sup inf f(s,1) (3.6.14)
se€SteT teT s€S

always holds (Exercise 3.6.13), the proof is complete. .

Now we turn to subderivative representation of a su-
perderivative. We discuss the results in reflexive Banach
spaces which are Fréchet smooth.

Theorem 3.6.5. (Subderivative Representation of Superderive
tives) Let X be a reflexive Banach space, let f: X — R

be a Ilsc function and let v* € ﬁFf(x) Then for any

e >0, one has

¥ e conv{ U 8Ff } + e B x+.
weE Be(x
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Proof. Let z* € 9! f(x). Then there exists a § € (0,¢/2)
and a C'! function ¢ with ¢/(z) = 2* such that f — g attains
a maximum at x over Bg(x). Taking a smaller ¢ if necessary,
we may assume that y € Bg(x)\{z} implies that

f@) = fly) > g(z) —gly) > (2", 2 —y) —ellz —y]|.

(3.6.15)
Applying the multidirectional mean value inequality of The-
orem 3.6.1 (see also Exercise 3.6.1 (1)) with r == (x*, x —

y) — ||z —yl|| and the small positive constant ¢, there exists
z € Bs(|x,y]) C Be(x) and z* € dp f(z) such that

(" e —y) = (@ z—y) —ellz —yll. (3.6.16)
Writing y = x — v for v € B, we have
(2™ — 2%, v) <e. (3.6.17)
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Denote M := Uyep.(x) Orf(w). It follows that for any
v E B,

ceinf (T —&u) < inf (@7 —£,0) < e (36.18)

Taking the supremum over v € B we get

sup inf (2" —¢&v) <e. (3.6.19)
ve B €conv M

In accordance with Theorem 3.6.4, this implies

inf sup(z®—¢&.0Y= inf |&2F=¢| <e
§€convMU€%< 3 > fEconvM” f” -

(3.6.20)

which completes the proof. 5
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A symmetric result of representing subderivatives in terms

of superderivatives can be deduced from Theorem 3.6.5 by
replacing f with — f.
Theorem 3.6.6. (Superderivative Representation of Sub-
derivatives) Let X be a reflexive Banach space, let f: X —
RU{—o0} be a usc function and let x* € Opf(x). Then,
for any € > 0, one has

S conv{ U 3Ff }—H:BX*.

we€ Be(x
Proof. Exercise 3.6.15. .
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3.6.4 Commentary and Exercises

The multidirectional mean value theorems discussed in this
section were discovered by Clarke and Ledyaev [88]. A sim-
ilar but less general result was derived earlier by Luc [188].
Theorem 3.6.1 generalizes the original results in [88] by al-
lowing S to be unbounded. This theorem and its proof are
taken from [272]. Other generalizations and refinements have
been discussed in [10, 64, 170, 174, 178, 225]. Applications
to various fields can be found in |88, 91].

The solvability theorem first appeared in [82, 83|. Theo-
rem 3.6.3 is a Fréchet subdifferential version of |91, Theo-
rem 3.1] taken from |174]. This result is closely related to the
Graves—Lyusternik Theorem (Exercise 3.6.10) and implicit
multifunction theorems to be discussed later.
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Theorems 3.6.6 and 3.6.5 are reflexive Banach space ver-
sions of similar results in |89, 173] where one can also find fur-
ther generalizations and applications. In finite dimensional
spaces these results were known to Barron and Jensen ear-
lier in a less general form related to applications in viscosity
solutions to partial differential equations [11]. Theorem 3.6.4
is a special case of Borwein and Zhuang’s nonsymmetrical
minimax theorem in [72] (see Exercise 3.6.16).

Exercise 3.6.1. (i) Show that if S is bounded then the
term ||y — x|| in (3.6.3) can be eliminated. (ii) Construct
an example showing that in general this term cannot be
dispensed with.

Exercise 3.6.2. Let f be an extended-valued lsc function
on Banach space X. Prove that A[f|(S) = infg f if S is
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a compact subset of X or if f is uniformly continuous in a

neighborhood of §.

Exercise 3.6.3. Verify that in Theorem 3.6.1 one cannot
ensure z € |x, S| by examining the following example: X =
R, x = 0,5 := {1} and f(y) —/Jy| for y < 0 and
f(y) :=1fory > 0.
Exercise 3.6.4. Let f be a C! function on R™. Suppose
that, for any = € Bp(Z), ||f'(z)]| > o > 0. Prove that
SUpP B, (z) f— infBr(@ f > 2ro.

xExercise 3.6.5. Deduce the approximate local sum rule of
Theorem 3.3.1 from Theorem 3.6.1. Reference: [255].

Exercise 3.6.6. Show that the decoupled infimum A |f](.S)
in Theorem 3.6.1 cannot be replaced by infg f. Hint: Use
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Exercise 3.6.5 and Exercise 3.3.11 or 3.3.12 to get a contra-
diction.

Exercise 3.6.7. Deduce the following unidirectional mean
value inequality from Theorem 3.6.1.

Theorem 3.6.7. Let X be a Fréchet smooth Banach
space and let f: X — R U {+oo} be a lsc function
bounded below. Then, for any r < f(y) — f(x) and any
e > 0, there exist z € B:(|r,y]) and 2* € Opf(z) such
that

(5 y—x) >7r
and

f(z) < min(f(z), f(y)) +[r| +e.
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xExercise 3.6.8. Prove the following refined multidirec-

tional mean value inequality and deduce from it both The-
orem 3.6.1 and Theorem 3.4.6. Reference: [272].

Theorem 3.6.8. (Refined Multidirectional Mean Value In-
equality) Let X be a Fréchet smooth Banach space. Let
S be a nonempty, closed and convexr subset of X, let
f: X = RU{+o00} be a lsc function and let x € domf.

Suppose that for some h > 0, [ s bounded below on
By([z,5]) and

ALAS) = fla) > 7.
Then there exists n > 0 such that for any € > 0, there

exist u € |x,S], d(u,S) >n, z € Be(u) and 2* € Opf(2)
such that
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1250 % flu = 2] <,

F(z) < NUf(l. S) + Irl + e,

0< (", w—u)+e||lw—ul, forall w € [z,9],

and
r<{(z%y—ux)+elly—z| forall y € S.

Exercise 3.6.9. Prove Theorem 3.6.2. Hint: Apply Theo-
rem 3.6.1 with S = B/(z), 7 <r, x =7 and let ' — r.
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Exercise 3.6.10. Prove the Graves—Lyusternik theorem
below.

Theorem 3.6.9. (Graves—Lyusternik) Let F': X XY — Y
be a Ct mapping, let U be an open set of X x Y and let
(z,79) € U satisfy F(z,y) = 0. Suppose that FL.(Z,7) is
onto. Then there exist open sets W C X and V C Y

containing T and y respectively, such that for some o >
0, foranyy €V and x € W,

1Gly ) < IE@

Here G(y) ={z € X | F(x,y) = 0}.
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Hint: Apply the solvability theorem to f(x,y) = || F(z,y)]]
and notice that when f(x,y) > 0, the Fréchet subdif-
ferential of f with respect to x at (z,y) contains only
Fl(z,y)*F(z,y)/||F(z,y)||, whose norm is bounded away
from O by some o > 0 when (x,y) is sufficiently close to
(7, 7).

Exercise 3.6.11. Verify that the set K defined in (3.6.11)
1S COnvex.

Exercise 3.6.12. Show that the vector h in (3.6.12) has
the property that Ay, > 0,n=1,..., V.
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Exercise 3.6.13. Let S and T be arbitrary sets and let
f: S8 xT — R. Show that

inf sup f(s,t) > sup inf f(s,t).

SES teT teT S€ES
Exercise 3.6.14. Let f be a Isc function. Suppose that
o f(x) # 0.
(i) Show that that f is continuous at x.

(ii) Give an example of such f that is not continuous in any
neighborhood of z.

Exercise 3.6.15. Deduce Theorem 3.6.6 from Theorem
3.6.5

xExercise 3.6.16. Prove the following general nonsymmet-
rical minimax theorem.
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Theorem 3.6.10. (Nonsymmetrical Minimax Theorem)
Let X and Y be topological vector spaces, let S be a com-
pact convex subset of X and let T’ be a convexr subset of
Y. Suppose that f: S X T'— R is a function conver in
s and concave in t and that for eacht € T, s — f(s,1)
15 Isc. Then

inf sup f(s,t) = sup inf f(s,t).
se€SteT teT SES

3.7 Extremal Principles and Multi-Objective Optimization

An extremal principle of the form we discuss in this section
may be viewed as a local version of the Hahn—Banach sepa-
ration theorem for nonconvex sets. It is a powertul tool for
studying various forms of problems related to optimization.
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3.7.1 Extremal Systems and Examples

We start with the definition of an extremal system.

Definition 3.7.1. (Extremal System) Let X be a Banach
space and let My, n =1,2,..., N be finitely many metric
spaces. Consider closed-valued multifunctions Sy, : M, —
X, n=12,...,N. We say that T 1s an extremal point of
the extremal system (51, 59, ...,Sn) at (M, Mo, ..., Mmy)
provided that x € Si(mq) N So(mg) N--- N Sy(my) and
there 1s a neighborhood U of & such that for any € > 0,
there exists (my,mo,...,my)

E BS((m17m27’ ° 7mN>)\{(m17m27’ ° 7mN>}7
with d(Sp(my);z) <e,n=1,2,...,N, and
UNSi(my)NSy(mg)N---NSylmy) = 0.
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The concept of an extremal system captures, from a geo-
metric perspective, the essence of many different structures
related to optimization. Exercises 3.7.5 and 3.7.6 provide
some useful examples.

3.7.2 Extremal Principles

The following extremal principle provides a convenient tool
for deriving necessary optimality conditions. A limiting form

of the extremal principle in finite dimensional Banach spaces
can be found in Theorem 5.2.27 in Section 5.2.
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Theorem 3.7.2. (Extremal Principle) Let X be a Fréchet
smooth Banach space and let My, n=1,2,..., N be met-
ric spaces. Consider closed-valued multifunctions Sy, : My, —
X, n=12...,N. Suppose that T 1s an extremal point

of the extremal system (S, 59, ...,SN) at (M, Mo, ..., My)
Then for any € > 0, there exist my, € Bz(my), T, €
B:(x),n=1,2,...,N and

such that max{||z}| |n=1,...,N} > 1 and
]+ a5+ 4+ xy =0.
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Proof. Let U be a neighborhood of Z as in the definition of
an extremal point. Without loss of generality we may assume
that U = By(z). Choose &’ € (0,¢/2) satisfying (Exercise
3.7.1)

AN?[(AN? + 1)’ + N(")?] < €2/4
and let m1,mo,...,my be as in the definition of the ex-
tremal point for ¢ = &’. Let s7 be as in Lemma 3.2.2 and

define

1y, v2, - yN) = 511,92, - -, UN),
N

Foly192: - UN) = D 15, () Yn) + (01 YN,

n=1
where
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T(yla'“?yN ZHyn_wH

Choose i}, € Sp(my),n = 1,2, ..., N such that ||y, — || <
d(Sp(my); ) + &’ < 2¢’. Then

AL BN < (i + )WL vh, - yly) < AN+ N(€)

Applying the nonlocal approximate sum rule of Theorem
3.2.3 we have that there exist x = (z1,...,2yN), 2 =

(21,5 2Nn), —(2],...,2y) € Opfi(z) = Opsi(z), and
(2],--.,2y) € Opfao(z) such that

|z — 2| < €, (3.7.1)
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11(2) + falx) < A\l )XY+ < (AN?+ 1"+ N ('),
(3.7.2)

and

125, ..., 28) — (2, ., 2y < €. (3.7.3)
Note that (3.7. 2) implies that x,, € Sy (my,) and

ZHfEn | < N2 4 1)+ N(E)2(3.7.4)

Consequently,
[r'(@)[] < 2N\/(4N? + 1)’ + N(&')? < /2. (3.7.5)

Since
Op fo(x) = Np(Si(my); x1)x- - X Np(Sy(my); zy)+r'(z),
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combining (3.7.3) and (3.7.5) we have
) € Np(Sn(mp); xn) + eBxx.

Finally, it follows from Lemma 3.2.2 that 27 +x5+- - -+2y =
0 and max{||z3|| | n=1,..., N} > 1, which completes the
proof. .

The following corollary is obvious yet often most conve-
nient in applications.
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Corollary 3.7.3. Let X be a Fréchet smooth Banach
space and let My,n =1,2,..., N be metric spaces. Con-
sider closed-valued multifunctions Sy: M, — X, n =
1,2,...,N. Suppose that T s an extremal point of the
extremal system (S1,S59,...,5N) at (mi,ma,..., mpy).
Then for any € > 0, there exist my, € Bz(mp), Ty €
B:(%) and z}, € Np(Sp(mp),zn), n = 1,2,..., N such
that max{||z;|| |n=1,..., N} > 1—¢ and

|z] + a5 + -+ 2y <e
Proof. Exercise 3.7.4. .
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Fig. 3.3. The extremal principle for two fixed sets.

Figure 3.3 illustrates the geometry of Corollary 3.7.3 in the
case of two fixed sets as described in and below Definition

3.7.5.
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3.7.3 Multi-Objective Optimization

Practical decision problems often involve many factors and
can be described by a vector-valued decision function whose
components describe several competing objectives. The com-
parison between different values of the decision function is
determined by a preference of the decision maker.
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We model such problems by using a Banach space Y with
a nonreflexive preference < to represent the image space of
the objective function. Let X be a Banach space representing
the decision variables, let S be a subset of X representing
the feasible decisions and let f: X — Y be the objective
function. Then a multi-objective optimization problem can
be formulated as:

M minimize f(x)
subject to x € S.

Here minimization is with respect to the preference <.
Namely, we say that T is a solution to problem M if there
is no x € S near T such that f(x) < f(Z).
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We will derive a subdifferential necessary optimality con-
dition for a local solution to problem M. We will denote
the level set at y € Y with respect to the preference < by

lly) ={z€Y |z=<y}



Theorem 3.7.4. (Necessary Optimality Condition for Multi-
objective Optimization) Let X and Y be Fréchet smooth
Banach spaces and let f: X — Y be a Lipschitz map-
ping. Suppose that & is a solution of the multi-objective
optimization problem M. Then for any positive num-
ber € > 0, there exist xg,xr1 € B:(Z), yo,y1 € Be(f(%)),
y* € Np(l(yo),y1) with [ly*|| =1 and 2™ € Np(S:21)
such that

0€ 2™+ 0p(y", [)(xg) +eBxx.
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Proof. Define My = I(f(z)) U {f(z)}, My := {0},
S9(0) = {(&’, f(«)) + 2’ € X} and Si(y) == 5 x l(y)
for any y € Mj. Then (z, f(z)) is an extremal point of
(S1,52) at (f(x),0) (Exercise 3.7.6). Let € be an arbi-
trary positive number and choose €' < min(2eL /(1 +
Ly),e/2,1/4), where Ly is the Lipschitz constant of f. By
the approximate extremal principle of Corollary 3.7.3 there
exist yp € B€/<f(il_3)>, (fz,yz) = B€/<J_J,f<1_})>, (l’T,yik) =
Np(S1(yo), (z1,y1)) and (25,y5) € Np(S2(0), (z2,92))
such that max{||(z7, y7), [[(z5,y5)||} > 1 and

(a7, y7) + (25, 95)|| <€ (3.7.6)
[t follows that
1T D)l (a3, )] > 1 —2¢" > 172, (3.7.7)
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By the definition of a Fréchet normal cone we have that for
(z,y) € So(0) sufficiently close to (x9,12),

0> (a8, — x2) + (43,9 — y2) — €' l(x — w2,y — ) |-
Observing that 19 = f(x9) and y = f(x), we have
v — = (25, x—w2)+(y3, f(2)— f(22))—'|(w—22, f(2)—f(a
attains a local minimum 0 at £ = x9. Combining the local

sum rule of Theorem 3.3.1 and the chain rule of Theorem
3.5.1 there exists (g € B_(x2) C By(x) such that

0 € —x5—0p(ys, [)(xg) + (1 + Lf)g’BX*. (3.7.8)
[t follows from (3.7.6) and (3.7.8) that
0 € x7 + Op (Y, f)(zo) +2(1+ L)' By«. (3.7.9)
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[t follows from (3.7.7) and (3.7.9) that |jy7|| > 1/4L. Di-
viding (3.7.9) by |ly7|| and set ™ := 27/||y|| € Np(S;21)

and y* ==y /[|y]]| € Np(l(yo); y1) we have
0 € 2™+ 0p(y”™, f)(xo) + eBxx,

as was to be shown. .

So far we have discussed a multi-objective optimization
problem with only set constraints. This is not a severe re-
striction. In fact, consider a more general problem with in-
equality, equality and set constraints:



M, minimize f(x)
subject to fn(z) <0, n=1,2,..., N,
folx)=0, n=N+1,..., M,
reS.

Here, S is a closed subset of X, fr,: X - RU{+o00},n =
1,2,..., N are Isc functions and f,: X — R,n = N +
1,..., M are continuous functions. Denote the feasible set
by S1. Note that by the definition of the Fréchet normal cone
r* € Np(Sy; x) implies that (z*, y—x) — (¢/2)|[|ly— x| <0
for all y € S sufficiently close to . Then x is a local solution
to the following minimization problem
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*

Y —x)

subject to frn(y) <0, n=1,2,..., N,
foly) =0, n=N+1,..., M,
y € 5.

minimize — (x

Thus, we can deduce a necessary optimality condition for
problem M, by combining Theorem 3.7.4 and Theorem
3.3.7. We leave the detail as an exercise.

3.7.4 Commentary and Exercises

The term extremal principle appeared in Mordukhovich
200] while the essence of this result goes back to Mor-

dukhovich [195] and Kruger-Mordukhovich [167]. Extremal
systems were defined first for fixed sets as follows.
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Definition 3.7.5. (Extremal System of Fixed Sets [167])
Let Sp,,n = 1,...,N be closed subsets of X. We say
(S1,...,9N) is an extremal system and T is an extremal
point provided that there exists a meighborhood U of x

such that for any ¢ > 0, there exist m, € sBxy,n =
L,..., N such that

UN(S1+my)N---N(Sy+mpy)=0.

[n [275], Zhu observed that the variational proof of the ex-
tremal principle actually applied to the separation of sets
formed by more general deformation and used this fact to
discuss necessary optimality conditions for multi-objective
optimal control problems. Later a similar approach was used
to derive necessary optimality conditions for constrained
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multi-objective optimization problems [269]. The general
definition of an extremal system and its applications to
multi-objective optimization problems in this section follow
210]. This concept of a general extremal system covers a
wide variety of problems related to optimization and game
theory:.

Exercise 3.7.1. Find an explicit estimate for ¢’ in the proof
of Theorem 3.7.2 in terms of € and N.

Exercise 3.7.2. Show that the extremal system of fixed
sets defined in Definition 3.7.5 gives rise naturally to an ex-
tremal system.

Exercise 3.7.3. Define Si(s1) :={(z,y) | |z|—2|y| > s1}
and Sy(s2) == {(2,y) | ly| — 2|z| = s2}.



(i) Show that (S7(s1),S59(s2)) is an extremal system at
(0,0).

(ii) Show that (S57(0),S9(0)) is not an extremal system of
fixed sets.

Exercise 3.7.4. Prove Corollary 3.7.3.

Exercise 3.7.5. (Constrained Minimization Problem) Con-
sider the problem of minimizing f(z) subject to x € C
where f is a lsc function and C' a closed subset of Ba-
nach space X. Let & be a solution of this problem. Define
S1 =epif and 99 = C' x (—o0, f(¥)]. Show that (z, f(7))
is an extremal point for the extremal system (S7,.52) in the
sense of Definition 3.7.5.
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Exercise 3.7.6. Suppose that Z is a solution to M. Define

My = I(f(z)) U{f(x)}, My = {0}, Si(y) == S x I(y)
for y € My and S5(0) = {(2, f(z")) | 2’ € X}. Show
that (z, f(Z)) is an extremal point of the extremal system
(51, 52) at (f(z),0).

Exercise 3.7.7. (Two Person Game) Consider a two player
came in which the players A and B have strategy sets C
and D which are closed subsets of Banach spaces X and Y,
respectively. Let f: X XY — R be the payoft of the game.
The objective of player A is to maximize the payoff while
that of B is to minimize it. In other words, we consider the
game problem of

I
G éneagf(x,y) an ﬁlgf(x,y)



We say (z,%) is a solution to the game or a saddle pair
provided that for all (z,y) € C x D, f(x,y) < f(z,y) <
f(z,y).

Show that (z, f(Z,9),y, f(Z,y)) is an extremal point for
the extremal system (57, .59) at (f(z,¥), f(Z,y)). (For dis-
cussions of the relevant game theory see the classic book

261]).

Exercise 3.7.8. Derive necessary optimality conditions for

problem M.



4

Variational Techniques in Convex Analysis

Convex analysis is now a rich branch of modern analysis.
The purpose of this chapter is merely to point out the appli-
cations of variational techniques in convex analysis. In most
of the cases direct proofs in the convex case lead to sharper
results.
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4.1 Convex Functions and Sets

4.1.1 Definitions and Basic Properties

Let X be a Banach space. We say that a subset C of X
is conver if, for any z,y € C and any A € [0,1], Az +
(1—=MX)y € C. We say an extended-valued function f: X —
R U {+oc} is conver if its domain is convex and for any
x,y € dom f and any A\ € [0, 1], one has

fOz+ (1= Ny) < Af(z)+ (1= A f(y).
We call a function f: X — [—o0,+00) concave if —f is

convex. In some sense convex functions are the simplest func-
tions next to linear functions.
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Convex functions and convex sets are intrinsically related.
For example, it C' is a convex set then ¢~ and d are con-
vex functions. On the other hand if f is a convex function
then epi f and f~1((—o00,a]), @ € R are convex sets (Exer-
cises 4.1.1, 4.1.2 and 4.1.3). Two other important functions
related to a convex set C' are the gauge function defined by

volz) =inf{r >0 |z e rC},
and the support function defined on the dual space X™ by
oo(x™) = o(C;x™) .= sup{{(x,2") | z € C}.

Several useful properties of the gauge function and the sup-
port function are discussed in Exercises 4.1.6 and 4.1.10.
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4.1.2 Local Lipschitz Property of Convex Functions

Lower semicontinuous convex functions are actually locally
Lipschitz in the interior of their domains.

This is, in fact, a combination of two facts: (a) a con-
vex function f locally bounded above is locally Lipschitz in
int dom f and (b) a lsc convex function f is locally bounded
above in intdom f. Fact (a) is quite useful itself and we
describe it in two propositions.

Proposition 4.1.1. Let X be a Banach space and let
f: X = RU{+o0} be a conver function. Suppose that
f s locally bounded above at x € D := int(dom f). Then
f 1s locally bounded at .
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Proof. Suppose f is bounded above by M say, in By(x) C
int(dom f) for some r > 0, then it is bounded below in
By(x). Indeed, if y € By(x) then so is 2z — y and

() < 5[Fw) + £z —y)] < 5[f(w) + M
so f(y) > 2f(x) — M for all y € By(x). .

Proposition 4.1.2. Let X be a Banach space and let
f: X — RU{+o0} be a conver function. Suppose that
f is locally bounded at * € D := int(dom f). Then f is
locally Lipschitz at .
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Proof Suppose that |f| is bounded by M over By,.(T) C
D. Consider distinct points x,y € By (Z). Let a = ||y — x||

and let z =y + (r/a)(y — x). Then z € By,(¥). Since

a r
z + X
a-+r a-+r

is a convex combination lying in Bs,(Z), we have
r

y:

fly) < ——f(z) + ——f(a)
Thus,
Fo) — f() < —(f(2) — fla)) < 0 = 2y — .

Interchange x and y gives

Fw) — F@)] < 2y ).
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Theorem 4.1.3. (Lipschitz Property of Convex Functions)
Let X be a Banach space and let f: X — R U {+oc}
be a lsc convex function. Then f 1is locally Lipschitz on
int(dom f).

Proof. DBy Propositions 4.1.1 and 4.1.2 we need only
show f is locally bounded above. For each natural num-
ber i, define D; == {x € X : f(x) < i}. The sets D;
are closed and D C |J72 D;. Since D is an open set, by
Baire’s category theorem, we must have for some ¢, int D;
is nonempty. Suppose that Bg(x) C int D;. Then f is
bounded above by i over Bg(x). Also since D is open, if
y € D and y # =z, then there exist ¢ > 1 such that



z=x+puly—x) € D. Let A\ = 1/u € (0,1). The set
U={ 2+ (1—Xb:be Bg(x)} is a neighborhood of y in
D. For any point u = Az+ (1 —A)b € U (where b € Bg(z))
we have

Flu) < Af()+ (1= )i
so f is bounded above in U and therefore locally Lipschitz
at . .

4.1.3 Convex Series Closed Sets

The condition in Theorem 4.1.3 can be weakened. To under-
stand this deeper result we need the following concepts.
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Definition 4.1.4. (Convex Series Closed and Compact)
Let X be a Banach space and let C be a subset of
X. We say that C' is convex series closed (cs-closed) uf
T = zqil ANy with A; > 0, Z;‘il ANi=1and z; € C
implies © € C'. We say that C' is convex series compact
(cs-compact) if for any sequence x; € Cii=1,2,..., and
any sequence N\; > 0,1 = 1,2, ..., with > 721\ = 1 we
have > 721 \jx; converges to a point of C.

Some simple yet useful facts related to the cs-closed and
cs-compact sets are given below.

Lemma 4.1.5. Closed convex sets, open conver sets and
(G5 convex sets in a Banach space are cs-closed.
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Proof. We prove the lemma for open convex sets and the
proofs for the other two cases are left as exercises. Let C' be
a convex open set in a Banach space and let & = > 7% \jx;
with A; > 0,> 7%, A\; = land z; € C. We show that z € C.
Suppose on the contrary that x ¢ C'. Then according to
the Hahn—Banach separation theorem there exists a nonzero
linear functional x* € X™ such that (z*, ¢) > (™, z) for all
c € C. In particular, 0 > (x*, 2 — x;) for i = 1,2,..., and
therefore for any ) A > 0,0 > (%, \;(Z — x;)). This leads to
0> (2%, — > 21\ ZUZ> = (, a contradiction. .



Lemma 4.1.6. Let X and Y be two Banach spaces and
let A: X =Y be a continuous linear mapping. Suppose

that C' is a cs-compact subset of X. Then A(C) is cs-
closed.

Proof. Exercise 4.1.13. .

An important fact about cs-closed sets is that they share
their interior points with their closure.

Theorem 4.1.7. (Open Mapping Theorem: c¢s-Closed Sets)
Let S be a cs-closed subset of a Banach space X. Then

int S =1int S.

Proof. We consider the nontrivial case when int S £ 0.
Let = € int S. Shifting .S and multiplying it by a constant
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if necessary we may assume (see Exercise 4.1.16) that

— 1
O:xEBXCSCS+§BX. (4.1.1)
For i =1,2,... multiplying (4.1.1) by 1/2* we have
1 1 1

[t follows from (4.1.2) that for any ¢ = 1,2,...,

1 1 1 1 1

-B —S + - oo+ =S+ —By. (4.1.

> XC25+4S+ +2zs+22+1 y. (4.1.3)

That is to say, for any u € Bx /2 there exist s1,...,s; € S

such that

1 1 1 1
u6551+182+---+§si+2”1

By. (4.14)



Taking limits as i — oo in (4.1.4) we haveu = .59, 5;/2¢ €
S because S is cs-closed. Thus, 0 € 271B x C 5, and there-
fore int S C int S. Hence int S =int §. .

We now turn to the promised sharper results on the local
Lipschitz property for a convex function. Let .S' be a subset
of a Banach space X. We say s is in the core of S, denote
s € core(S), provided that |Jy~qA(S — s) = X. Clearly,
int(.S) C core(.S) and the inclusion could be proper (Exer-
cises 4.1.17 and 4.1.18). Our next result says that if S is the
domain of a Isc convex function then the interior and the
core of S coincide. The importance of this result is due to
the fact that it is much easier to verify that a point belongs
to the core than to the interior.



400 4 Convex Analysis

Theorem 4.1.8. Let X be a Banach space and let
f: X =>RU{+00} be alsc conver function. Then

core(dom f) = int(dom f).
Proof. We need only show that
core(dom f) C int(dom f).

Suppose that € core(dom f). For each natural number i,
define D; :={x € X : f(z) < i}. The sets D, are closed

and

:U (dom f—1z) = U] — ). (4.1.5)

7,0=1

By Baire’s Category theorem, int(D; — z) (and therefore
int D;) is nonempty for some . Suppose that Bp(z) C
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int D;. Then f is bounded above by i over Bj(x). More-
over, by (4.1.5) there exist integers j,k > 0 such that
T —x € j(Dp — ). Letting u = (1 + 1/5), we have
z:=x+u(@—x) € D;.. Note that Dy and D, are contained
in the convex set Do ) Let A =1/p € (0,1). The set
U={X z+(1—=X)b:be By(x)} is a neighborhood of Z in
D C dom f. o

max(i,k)

4.1.4 Commentary and Exercises

Although there is a long history of using the convexity of
both functions and sets in analysis, the systematical study
of convex functions and sets starts in the 1950’s associated
with the names of Fenchel, Moreau, and Rockafellar. A clas-



sical reference for convex analysis is Rockafellar [229]. For a
nice short introduction that provides details missed in this
chapter we recommend Phelps [221]. More discussion on con-
vex series closed and compact sets can be found in Jameson
1152].

Exercise 4.1.1. Let C' be a convex subset of a Banach
space. Show that d and ¢ are convex functions.

Exercise 4.1.2. Let f be a convex function on a Banach
space. Show that for any a € R, f~((—o0,a]) is a convex
set.

Exercise 4.1.3. Let X be a Banach space and let f: X —
RU {400} be an extended-valued function. Show that f is
convex if and only if epi f is a convex subset of X x R.
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Exercise 4.1.4. Show that the intersection of a family
of arbitrary convex sets is convex. Conclude that f(x) =
sup{ fa(x) : a € A} is convex (and lsc) when { fo}oea is a
collection of convex (and lsc) functions.

Exercise 4.1.5. Calculate the gauge function for ' =
epi 1/xN Ri and conclude that a gauge function is not nec-
essarily lsc.

Exercise 4.1.6. Let C' be a convex subset of a Banach
space X and let v~ be the gauge function of C.

(i) Show that o is convex and when 0 € C' it is subaddi-
tive.
(ii) Show that if x € core C' then domyo_, = X.
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(iii) Suppose 0 € coreC. Prove that clC C {z € X |
vo(z) < 1}

Exercise 4.1.7. Let X be a Banach space and let C be a

cs-closed subset of X. Prove that int C' = core C.

Exercise 4.1.8. Let X be a Banach space and let C' be
a convex subset of X. Suppose that C'is cs-closed and 0 €
core C.

(i) Show that intC' = {x € X | yo(x) < 1}.
(ii) Deduce that ¢ is defined on X and is continuous.

xExercise 4.1.9. Construct an example showing that the
conclusion in Exercise 4.1.8 fails when C' is not cs-closed.
Hint: Use the existence of a Hamel basis in a vector space to
show that in every infinite dimensional Banach space there is
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a finite linear functional, ¢ which is (everywhere) discontinu-
ous. Deduce that C' = ¢~ 1—1, 1] is a symmetric convex set
with a nonempty core that contains 0 but an empty interior.

Yet vo(0) =0 < 1.

Exercise 4.1.10. Let C'{ and (9 be closed convex subsets
of a Banach space X. Then C7 C (5 if and only if, for any
v* € X* o(Cp;2%) < o(Cy; x™). Thus, a closed convex set
is characterized by its support function.

Exercise 4.1.11. Prove that it f is a convex lsc function
then 0f(x) = Opf(x).

Exercise 4.1.12. Prove Lemma 4.1.5 for the cases of closed
convex sets and convex G sets.

Exercise 4.1.13. Prove Lemma 4.1.6.
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Exercise 4.1.14. Let X be a Banach space and let C be
a subset of X. Show that C'is cs-compact if and only if C
i3 cs-closed and bounded. In particular, both the open and
closed unit balls in a Banach space are cs-compact.

Exercise 4.1.15. Let X be a Banach space and let A and
B be subsets of X. Suppose that A is cs-compact and B is
cs-closed. Then A + B and conv(A U B) are cs-closed.

Exercise 4.1.16. Suppose that S is cs-closed and x € S.
Show that for any 6 > 0 (S — 2)/d is also cs-closed.

Exercise 4.1.17. Let S be a subset of a Banach space.
Show that int(S) C core(.5).

Exercise 4.1.18. (Core Versus Interior) Consider the set
in R?



S={(z,y) ly=0o0r|y >z}
Prove 0 € core(5) \ int(.9).

Exercise 4.1.19. Show that in the proof of Theorem 4.1.8
the set U can be expressed explicitly as U = By.(;_)(Z).

4.2 Subdifferential

4.2.1 The Subdifferential and the Normal Cone

Let X be a Banach space. We define the conver subdifferen-
tial of a convex function f: X — RU{+oo} at 2 € dom f
by

Of(x) :={2" € X" : f(y) — f(x) > (z%,y — ), fory € X},
(4.2.1)

and we define its domain



domdf ={x e X |0f(x) # 0}.

An element of 0f(x) is called a subgradient of f at z. Al-
though the domain of a convex function is always convex it
is not necessarily so for dom df (see Exercise 4.2.6).

For a closed convex set C' C X, we define the normal cone
of C'at x € C' by N(C;Z) = Ovc(T). Sometimes we will
also use the notation No(z) = N(C;x). A useful charac-
terization of the normal cone is x* € N(C'; ) if and only if,
forall y € C, (x*,y — x) < 0 (Exercise 4.2.7). The follow-
ing easy observation suggests the fundamental significance
of subdifferential in optimization.
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Proposition 4.2.1. (Subdifferential at Optimality) Let X
be a Banach space and let f: X — RU{+o00} be a proper
convex function. Then the point * € X 1is a (global)
minimizer of f if and only if the condition 0 € 0f(x)
holds.

Proof. Exercise 4.2.9. .

Alternatively put, minimizers of f correspond exactly to
“zeroes” of Of. It is obvious that df(x) C O f(x) and we
actually have equality (Exercise 4.2.10).
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We have seen that a general Isc function in a Fréchet
smooth Banach space is densely subdifferentiable in its do-
main. For convex functions we have a similar but much
stronger result: the subdifferential of a lIsc convex function
is nonempty at every point in core(dom f). This will be the
focus of the next two subsections.
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4.2.2 Directional Derivatives of Convex Functions

One useful tool in analyzing the convex subdifferential is
the directional derivative. Let f: X — RU {400} and let
r € dom f and d € X. The directional derivative of f at x
in the direction of d is defined by

, r+td) — f(x
fld i JE ) =S
t—0+ t
when this limit exists. It turns out that the directional
derivative of a convex function is again convex. Furthermore,

the directional derivative has an even stronger property of
characterizing subgradients as seen in Proposition 4.2.5.
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If a convex function f satisfies the stronger condition
fOx + py) < Af(x) +pfly) forallz,y € X, Ap >0

we say f is sublinear. If f(Ax) = A\f(x) for all x in X and
A > 0 then f is positively homogeneous; in particular this
implies f(0) = 0. (Here we use the convention 0 X (+00) =
0.) If flx +y) < f(z)+ f(y) for all z and y in X then
we say [ is subadditive. 1t is an easy exercise to show that
these two properties characterize a sublinear function.

Proposition 4.2.2. (Sublinearity) Let X be a Banach
space and let f: X — RU{+oo} be an extended-valued
function. Then f 1s sublinear if and only if it is positively
homogeneous and subadditive.

Proof. Exercise 4.2.11. .



[t is immediate that if the function f is sublinear then
—f(x) < f(—x) for all x in X. The linearity space of a
sublinear function f is the set

lin f ={z e X[ —f(z) = f(—=)}.
The following result shows this set is a subspace.

Proposition 4.2.3. (Linearity Space) Let X be a Banach
space and let f: X — RU{+oo} be a sublinear function.
Then, the linearity space lin f of f is the largest subspace
of X on which f is linear.

Proof. It is clear that if Y is a subspace on which f is
linear then Y C lin f. We need only show that lin f is a
subspace. Let z € lin f and a € R. Since f is homogeneous
we have
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flaz) = ra\f(ﬁx) - !a\f(—mx)

=~/ (lal( - 7)) = ~fl-an)

so that ax € lin f. Let x,y € lin f. Since f is subadditive
we have

fle+y) < fla)+ fly) = —fl-z) = f(-y)
< —flmz—y) = —f(=(z+y)),
so that x +y € lin f. Thus, lin f is a subspace. o

[t is easy to check that if the point x lies in the core of the
domain of a convex function f then the directional derivative
f'(z:-) is well-defined and positively homogeneous.



Proposition 4.2.4. (Sublinearity of the Directional Deriva-
tive) Let X be a Banach space and let f: X — RU{+o00}

be a conver function. Suppose that T € core(dom f).
Then the directional derivative f'(z;-) is everywhere fi-
nite and sublinear.

Proof. For d in X and nonzero t in R, define

[z +td) — f(x
glaet) = HEHIDZIE)
By convexity we deduce (Exercise 4.2.1) for 0 <t < s € R,
the inequality

g(d; —s) < g(d; —t) < g(d;t) < g(d; s).

Since z lies in core(dom f), for small s > 0 both g(d; —s)
and g(d; s) are finite, so as t | 0 we have




+00 > g(d; s) > g(d; t) | f'(z;d) > g(d; —s) > —o0.
(4.2.2)
Again by convexity we have for any directions d and e in X
and real t > 0,
g(d +et) < g(d;2t) + g(e; 2).

Now letting ¢ | 0 we see that f’(z;-) is subadditive. The
positive homogeneity is easy to check. 5

Next we show that the directional derivative characterizes
subgradients. That explains why it is useful in analyzing the
subdifferential.



Proposition 4.2.5. (Subgradients and Directional Deriva-
tives) Let X be a Banach space, let f: X — R U {+o0}
be a conver function and let T € dom f. Then x* € X~
1s a subgradient of f at T if and only if it satisfies
v < f(E;).

Proof. For the “only if” part, let * € 0f(z). Then, for
any h € X and t > 0,

(x™,th) < f(Z +th) — f(z).

Dividing by ¢ and taking limits as ¢ — 0 we have (x™, h) <
f'(z; h).

For the reverse direction, it follows from the proot of Propo-
sition 4.2.4 that for any h € X and t > 0,
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< o < TEE) — @)

L
Let x be an arbitrary element of X. Setting h = z — T and

t = 1 in the above inequality we have

(v%,2 = x) < fl2) - f(2),
that is ™ € 0f (7). .

4.2.3 Nonemptiness of the Subdifferential

The main result of this section is that the set of subgradients
of a convex function is usually nonempty. We prove this
by actually constructing a subgradient. The idea is rather
simple.
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We recursively construct a decreasing sequence of sublinear
functions which, after translation, minorize f. At each step
we guarantee one extra direction of linearity. The basic step
is summarized in the following lemma.

Lemma 4.2.6. Let X be a Banach space and letp: X —
R U {+00} be a sublinear function. Suppose that d &
core(dom p). Then the function q(-) = p'(d;-) satisfies the
conditions

(i) q(Ad) = Ap(d) for all real A,

(i) ¢ <p.

(iii) ling D linp + span{d}, and

(iv) p = q on linp.

Proof. Fxercise 4.2.12. .
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With these tools we are now ready for the main result,
which gives conditions guaranteeing the existence of a sub-
eradient of a convex function. Proposition 4.2.5 showed how
to identity subgradients from directional derivatives; this
next result shows how to move in the reverse direction. For
an extended-valued function f we use cont f to denote the
set of all points where f is finite and continuous.



4.2 Subdifferential 421

Theorem 4.2.7. (Max Formula) Let X be a Banach
space, d € X and let f: X — RU{+o00} be a convex
function. Suppose that either

Q1 = € core(dom f) and f is lsc or
Q2 x € cont f.

Then,
f(z;d) = max{{(z*,d) : z* € Of(z)}.  (4.2.3)

Proof. In view of Proposition 4.2.5, we simply have to
show that for any fixed d in X there is a subgradient x*
satisfying (z*, d) = f(z;d).

Let p(-) := f/(z;-). Then p is a sublinear function de-
fined on X. Consider the family § of all sublinear functions
dominated by p and coinciding with p at d, with a partial



order defined by: po < pq if and only if linps C linpy and
p1 < po with equality holding on lin po. We can check that
any chain {pq},ec4 C S has an upper bound p := inf,c 4 pg
defined on |J ¢ 4 dom(p,) (Exercise 4.2.13). Thus, by Zorn's
lemma S has a maximum element z*. By Lemma 4.2.6
we must have lin ¥ = X. Under the constraint qualifi-
cation condition Q1 or Q2 f is locally Lipschitz at . When
Q1 holds this follows from Theorems 4.1.3 and 4.1.8 and
when )2 holds this follows directly from Proposition 4.1.2.
Let L be a Lipschitz constant of f in a neighborhood of

. Then |f'(z;h)] < L||h]| for all h € X. Since z* is
dommated by p() = f'(z;-), we must have z* € X%
and therefore z* € 0f(Z). The max formula follows from

(¢*,d) = p(d) = f'(z;d). .
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As an easy corollary of the max formula we have the follow-

ing key result in subdifferential theory due to Fenchel and
Rockafellar.

Theorem 4.2.8. (Nonemptiness of Subdifferential) Let X
be a Banach space and let f: X — R U {4+o00} be a
conver function. Suppose that either

Q1 = € core(dom f) and f is lsc or
Q2 x € cont f.

Then the subdifferential Of(Z) is nonempty.
Proof. Follows directly from Theorem 4.2.7. .

The constraint qualification conditions in Theorems 4.2.7
and 4.2.8 are indispensible in any infinite dimensional spaces
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because in any infinite dimensional normed space there exists
a discontinuous linear functional defined on the whole space
(Exercise 4.2.14).

A differentiability result for convex functions follows im-
mediately. Recall that a function f: X — R is Gateaur
differentiable at x provided that there exists * € X™ such
that for any v € X, the directional derivative f'(z;v) exists
and f/(xz;v) = (z*,v).

Corollary 4.2.9. (Differentiability of Convex Functions)
Let X be a Banach space, let f: X — R U {+o0} be
a convex function and let T € core(dom f). Then f is
Gateaur differentiable at T exactly when f has a unique

subgradient at T (in which case this subgradient is the
derivative).
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Proof. Exercise 4.2.15 .

The conclusion 0f(x) # () can be stated alternatively as
there exists a linear functional 2* such that f — 2™ attains
its minimum at . Thus, in a certain sense Theorem 4.2.8
plays a role in the analysis of convex functions similar to
that of a variational principle in the analysis of general lower
semicontinuous functions. Note that due to the nice prop-
erties of convex functions the conclusion here is stronger in
comparison to the variational principles. One can view the
variational principles as approximate versions of Theorem
4.2.8 for (nonconvex) Isc functions.

The condition & € core(dom f) is crucial in ensuring
Jf(x) # (0. Without this condition the subdifferential may



be an emptyset. As a simple example one can check that
df(0) = 0 for function f: R — R U {400} defined by
f(x) = —y/x,z > 0 and +oo otherwise. The following is a
systematical scheme for generating such functions in infinite
dimensional spaces.

Example 4.2.10. Let X be an infinite dimensional sepa-
rable Banach space and let C' be a symmetric compact con-
vex set whose core is empty but whose span is dense. (The
Hilbert cube in £ is a typical example of such a set, see Exer-
cise 4.2.18.) Let z & span(C'). Define f: X — RU {+o0}
by f(x) = min{\ € R |  + A\z € C}, where we use
the convention that min()) = +o0. It is easy to check that
f is a convex function and for any s € R and ¢ € C,
f(c+ sx) = —s (Exercise 4.2.19). It follows that
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jn ) —s ity=rc+sriorsomece Candr,seR,

+00  otherwise.

Now we show that df(0) = (). Suppose on the contrary that
xr* € df(0). Since span(C') is dense in X, for any s € R we
can find r € R and ¢ € C such that rc 4 sz is close to a
unit vector so that

—||z*|| = 1 < (", rc+ sz) < f’(O,rc+ ST) = —S8,

which 1s a contradiction.

4.2.4 Commen tary and Exercises

The nonemptiness of subdifferentials and the more delicate
max formula are core results of the convex analysis. Fenchel.
Moreau, Rockafellar, Valadier and many others contributed



428 4 Convex Analysis

to the current form of these results. Besides providing a con-
vex version of the variational principle, they also character-
ize convexity which leads to a number of important ways of
recognizing convex functions (see Exercise 4.2.16). The al-
gebraic proof of the max formula we follow here is due to
29]. The convexity of a function is also characterized by the
monotonicity of its subdifferential. Exercise 4.2.21 provides
a taste of the more general results along this line. Exam-
ples of emptiness of the subdifferential in the absence of the
qualification conditions are discussed in {60, 221].

Exercise 4.2.1. Let X be a Banach space and let f: X —

R U {400} be a convex function. Suppose that & € core(dom f)
Show that forany d € X, t — g(d;t) := (f(z+td)—f(x))/t

is a nondecreasing function.
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Exercise 4.2.2. Prove the subdifferential of a convex func-
tion at a given point is a closed convex set.

Exercise 4.2.3. Prove the following functions z € R +
f(x) are convex and calculate Of:

(1) Edk

(i1) LR

(iii) —/x if x >0,
+00 otherwise;

(iv) 0 ifx <O,
1 it x =0,
+00 otherwise.

Exercise 4.2.4. (Subgradients of Norm) Calculate 9| - ||.
Generalize your result to an arbitrary sublinear function.
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Exercise 4.2.5. (Subgradients of Maximum Eigenvalue)
Denote the largest eigenvalue of an /N by N symmetric ma-

trix by Aj. Prove that OA{(0) is the set of all N by N sym-
metric matrices with trace 1.

Exercise 4.2.6. (Domain of Subdifferential) If the function
f:R? = RU {400} is defined by
max{l — /71, |zo| }if 21 > 0,
fan,z2) = {-|—OO otherwise,
prove that f is convex but that dom df is not convex.

Exercise 4.2.7. (Normal Cone’s Characterization) Let C
be a closed convex subset of X. Prove that x* € Ng(x) if
and only if, for all y € C,

(2™, y —x) <0.
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Exercise 4.2.8. Let K C X be a closed convex cone.
Show that both dy and ¢y are convex functions and, for
any r € X,

Odyc(x) C Ovge(0) N Bxx,
and

81,[((:1:) C 81,[((0).

Exercise 4.2.9. Prove Proposition 4.2.1.
Exercise 4.2.10. (The Fréchet Subdifferential of Convex

Functions) Prove that for a lsc convex function f: X —
R U {400} and z € X,

Of (x) = Opf(x).
Exercise 4.2.11. Prove Proposition 4.2.2 (Sublinearity).

Exercise 4.2.12. Prove Lemma 4.2.6.
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Exercise 4.2.13. Show that the chain {pq},ca C S de-
fined in the proof of Theorem 4.2.7 has an upper bound

p = inf,c 4 pg defined on (¢ 4 dom(pg).

Exercise 4.2.14. Let X be a normed space. Show that the
following are equivalent

(i) X is finite dimensional.

(ii) Every linear function f is continuous.

(iii) Every absorbing convex set has zero in its interior.
Hint: (iii) = (ii): f~%(—1,1) is absorbing and convex and
symmetric. (ii) = (i): use the existence of an infinite lin-
early independent set {e;} to define a discontinuous ev-
erywhere finite linear functional satisfying f(e;/||e;]|) = 7.
(i) = (iii) is obvious.
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Exercise 4.2.15. Prove Corollary 4.2.9.

xExercise 4.2.16. (Recognizing Convex Functions) Sup-
pose the set C' C RY s open and convex, and consider a
function f: C' — R. For points x ¢ C, define f(z) = +oc.

(i) Prove 0f(x) is nonempty for all x in C'if and only if f
is convex. Hint: For points v and v in C' and real A in
0, 1], use the subgradient inequality (4.2.1) at the points
T = Au—+ (1 —Xvand x = u, v to check the definition
of convexity.

(ii) Prove that if T C R is an open interval and g: T —
R is differentiable then ¢ is convex if and only if ¢’
is nondecreasing on 1, and ¢ is strictly convex if and
only if ¢ is strictly increasing on T'. Deduce that if ¢ is
twice differentiable then ¢ is convex if and only if ¢ is
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nonnegative on 7" and ¢ is strictly convex if ¢” is strictly
positive on 1.

(iii) Deduce that if f is twice continuously differentiable on
C' then f is convex if and only if its Hessian matrix is
positive semidefinite everywhere on C', and f is strictly
convex if its Hessian matrix is positive definite every-
where on C'. Hint: Apply part (i) to the function g
defined by ¢(t) = f(x + td) for small real ¢, points x in
C', and directions d in X.

(iv) Find a strictly convex function f: (—1,1) — R with
(0) = 0.

(v) Prove that a continuous function h: clC' — R is convex
if and only if its restriction to C'is convex. What about
strictly convex functions?
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Exercise 4.2.17. (DC function) We say that f: X — RU
{+00} is a DC function if it can be written as the difference
of two real valued Isc convex functions. Prove that a DC
function is locally Lipschitz and directional differentiable at
any x € coredom f.

Exercise 4.2.18. The Hilbert cube in /5 is defined by
H:={x=(z,29,...) € (2 ] < 1/9',i = 1,2,...}.
Show that the Hilbert cube is a symmetric compact convex

set of (9 satisfying core H = () and span(H) = #s.

Exercise 4.2.19. Prove that the function f defined in Ex-
ample 4.2.10 is convex and has the property that for any
seRandce C, f(c+ sx) = —s.
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xExercise 4.2.20. With some additional work we can also
construct a convex function whose subdifferential is empty
on a dense subset of its domain. Let X = 9 and H be the
Hilbert cube defined in Exercise 4.2.18 and define f: X —
R U {+00} by

f(a) = — > \/2_i+xz- ifx € H,
+00 otherwise.

Show that f is Isc and df(z) = () for any € H such that
z; > —27" for infinitely many i. Reference: 221, Example
3.8].

xExercise 4.2.21. (Monotonicity of Gradients) Suppose

that the set ¢ c R is open and convex and that the
function f: C' — R is differentiable. Prove f is convex if
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and only if
(f'(2) = f'(y)x —y) 20 forallz,y € 5,

and f is strictly convex if and only if the above inequal-
ity holds strictly whenever z # y. (You may use Exercise
4.2.16.)

xFixercise 4.2.22. We consider an objective function py
involved in the coupon collection problem given by

- a .
pvla)= ) (HZN' )(ZZJ i 4o )’

summed over all V! permutatlons; so a typical term is
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N

Mt )5,

1=1
For example, with NV = 3 this is

1 1 1 1 1
01205 ) () () e
q1+q2+q3/ \q2 +Gq3/ \q3/ \q1 +~ @21+ q3 Qg2+ q3 (

Show that pp is convexr on the positive orthant. Further

more show that 1/py is concave.
Hint:
(i) Establish

PN(T1, .- TN) = /01(1 - 1]a —tx”))%.
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(ii) Use

to establish
N

where
SiN:{yERﬂy]O<yn§tforn:1,...,N}.

(iii) Derive
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N
(1— e_m”)) dt

J -

. n io (z,y)

= (7}_[1 xn) : dt /IR%{Y\S?{Ve 91 dy
N O

() oo
n=I1 +

where

1 if max(yq,...,yn) > t,
xt(y) = .
0 otherwise.

(iv) Show that the integral in (iii) can be expressed as the
joint expectation of Poisson distributions. Explicitly, it
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r = (x1,...,2) 18 a point in the positive orthant R

then
N

/000(1 ~T10 - e—m‘n)) dt

n=1

(H xz) / (z.y) max(yq, ..., YyN) dy.

(v) Deduce that

_ —(y1+-+yn) (y1 y_N)d
X1, ..., e max L
pN( I 3 N) /]RN T N Yy

and hence that pp is positive, decreasing and convex,
as 1s the integrand.
(vi) To derive the stronger result that 1/pp is concave. Let
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2ab
a+b
Then h is concave and show that the concavity of 1/py
Is equivalent to
r+ '
2

h(a,b) =

) < hipn(z),pn(z) for all z, 2" € Rﬂy.
(4.2.5)

Reference: The history of this problem and additional details
can be found in Borwein, Bailey and Girgensohn [35, p. 36].
This book and its sister volume by Borwein and Bailey |34]
also discuss how to use methods of experimental mathemat-
ics to gain insights on this and other related problems.

o
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4.3 Sandwich Theorems and Calculus

4.3.1 A Decoupling Lemma

As in the case of the Fréchet subdifferential, to apply the
convex subdifferential we need a convenient calculus for it.
[t turns out the key for developing such a calculus is again
to combine a decoupling mechanism with the existence of
subgradient that plays a role similar to that of the variational
principles. We summarize this idea in the following lemma.
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Lemma 4.3.1. (Decoupling Lemma) Let X and Y be Ba-
nach spaces, let the functions f: X - R and g: Y — R
be convex and the map A: X — 'Y be linear and bounded.
Suppose that f, g and A satisfy either the condition

0 € core(dom g — Adom f) (4.3.1)
and both f and g are lsc, or the condition
A dom f Ncont g # 0. (4.3.2)

Then there is a y* € Y™ such that for any x € X and
yey,

p <I[f(z) = (y", Ax)] +[g(y) + (y",v)], (4.3.3)
where p = inf x{f(z) + g(Ax)}.



Proof. Define an optimal value function h: Y — [—00, +00]
by
h(u) = inf {f(x)+ g(Ax + u)}.
reX

It is easy to check A is convex and domh = domg —
A dom f. We will show that 0 € int h(0) under the con-
straint qualification condition (4.3.1) or (4.3.2).

First assume condition (4.3.1) is satisfied so that f and g
are lsc functions. We may assume f(0) = ¢(0) = 0, and
define S = Upep {v € Y | flz) + g(Adz +u) < 1},
Clearly S is a convex set. We check that S is absorbing and
cs-closed.

Let y € Y be an arbitrary element. Since 0 € core(dom g—
A dom f) there exists ¢ > 0 such that ty € domg —
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A dom f. Choose an element € dom f such that Az+ty €
dom ¢g. Then,

fx) 4+ g(Az + ty) = k < 0. (4.3.4)
Choose m > max{||x||, |k|,1}. Dividing (4.3.4) by m and
observing f and g are convex and f(0) = g(0) = 0 we have
t
f(ﬁ) +g(AI + y) < 1.

m m m
Thus, ty/m € S and S is absorbing.

To show S is cs-closed let y = > 72 N\jy; where \; > 0,
~1Ai = 1and y; € S. By the definition of S for each i
there exists x; € By such that

flai) + g(Az; +y;) < 1. (4.3.5)




Since By is cs-compact (see Exercise 4.1.14) ZZ 1)\ T;
converges to a point x € By. Multiplying (4.3.5) by A; and
sum over all = 1,2,... we have

> fla)+) g(Avi+y) <1
i=1 i=1

Since f and g are convex and Isc and A is continuous we
have

flx)+g(Az +y) <1

or y € .5, proving S is cs-closed. It follows from Exercise
4.1.7 that 0 € core.S = int S. Note that h is bounded above
by 1 on .S and therefore continuous (actually locally Lips-
chitz) in a neighborhood of 0 by Propositions 4.1.1 and 4.1.2.
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Next assume condition (4.3.2) holds. Choosey € A dom fN
cont g. Then there exists r > 0 such that for any v € r By,

gly +u) < g(y) + 1. Let € dom f be an element sat-
isfying y = Ax. It follows that for all u € rBy, h(u) <
f(z)+g9(Ax+u) < f(x)+g(y)+ 1. Again by Propositions
4.1.1 and 4.1.2, 0 € cont h.

Now, Theorem 4.2.8 implies that Oh(0) # (). Suppose that
—y* € Oh(0). Then for all v in Y and z in X,

h(0) =p < h(u) + (¥, u)
< f(@) + g(Az + u) + (y", u). (4.3.6)

For arbitrary y € Y, set u = y — Az in (4.3.6) we arrive at
(4.3.3). .
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We can see the two basic variational techniques at work
here. The attainment of a minimum of the perturbed func-
tion takes the form of Oh(0) # () and the decoupling of vari-
ables is achieved through the perturbation w. In this aspect
this lemma is rather similar to the nonlocal approximate
sum rule of Theorem 3.2.3. Again, due to the nice property
of convex functions the conclusion here is more precise.

4.3.2 Sandwich Theorems

We apply the decoupling lemma of Lemma 4.3.1 to establish
a sandwich theorem.
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Theorem 4.3.2. (Sandwich Theorem) Let X and Y be
Banach spaces, let f: X — RU{+oc0} and g: Y —

R U{+oc} be conver functions and let A: X —Y be a
bounded linear map.

Suppose that
f=—-goA

and f, g and A satisfy either condition (4.3.1) or condi-
tion (4.3.2). Then there is an affine function a: X — R
of the form a(x) = (A*y™, x) + r satisfying

fZa>—goA.
Moreover, for any T satisfying f(Z) = —go A(Z), we have
—y* € 0g(AT).
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Proof. By Lemma 4.3.1 there exists y* € Y™ such that
forany x € X and y € Y,

0<p<[flz)—(y" Az)] + [9(y) + (y", y)]. (4.3.7)
For any z € X setting y = Az in (4.3.7) we have
flx) = (A" ) > —g(Az) — (A"y", ). (4.3.8)
Thus,

@ = Wl [f(z) - (A", a)] 2 b= sup[—g(Az) — (A%, 2)].
r€X zeX

Picking any r € |a,b], a(z) = (A*y",x) + r is an affine

function that separates f and —go A. Finally, when f(z) =

—g o A(x), it follows from (4.3.7) that —x* € dg(Azx).
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4.3.3 Calculus for the Subdifferential

We now use the tools established above to deduce calculus
rules for the convex functions. We start with a sum rule
that can be viewed as a convex function version of the local
approximate sum rule of Theorem 3.3.1.

Theorem 4.3.3. (Convex Subdifferential Sum Rule) Let
X and Y be Banach spaces, let f: X — RU{+oo} and
g: Y = RU{+oc} be convex functions and let A: X —
Y be a bounded linear map. Then at any point x in X,
we have the sum rule

If+goA)x)DIf(x)+ A0g(Ax), (4.3.9)
with equality if either condition (4.3.1) or (4.3.2) holds.



Proof. Inclusion (4.3.9) is easy and left as an exercise. We
prove the reverse inclusion under condition (4.3.1) or (4.3.2).
Suppose z* € O(f + g o A)(Z). Since shifting by a constant
does not change the subdifferential of a convex function, we
may assume without loss of generality that

v — f(z) +g(Ar) — (27, z)

attains its minimum 0 at x = z. By the sandwich theorem
there exists an affine function a(x) = (A*y*, x) + r with
—y* € dg(Ax) such that

flz) = (2% 2) = a(z) = —g(Az).
Clearly equality is attained at x = . It is now an easy
matter to check that z* + A*y* € f (). .
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Note that when A is the identity mapping, Theorem 4.3.3
sharpens the Fréchet subdifferential sum rules discussed in
Section 3.3.1. The geometrical interpretation of this is that
one can find a hyperplane in X x R that separates the epi-
oraph of f and hypograph of —g. Also, by applying the
subdifferential sum rule to the indicator functions of two
convex sets we have parallel results for the normal cones to
the intersection of convex sets.

Theorem 4.3.4. (Normals to an Intersection) Let C and
Cy be two conver subsets of X and let x € Cy N Ch.

Suppose that Cy and Cy are closed 0 € core(C — C9) or
CiNint Cy #£ 0. Then

N({CiNCyx)=N(Cq;x) + N(Cy; x).
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Proof. Exercise 4.3.6. .

The condition (4.3.1) or (4.3.2) is often referred to as a con-
straint qualification. Without it the equality in the convex
subdifferential sum rule may not hold (Exercise 4.3.12).

Using the convex subdifferential sum rule we can also get
a version of the multidirectional mean value inequality for
convex functions that refines Theorem 3.6.1.
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Theorem 4.3.5. (Convex Multidirectional Mean Value In-
equality) Let X be a Banach space, let C' be a nonempty,
closed and conver subset of X and * € X and let

f: X — R be a continuous convex function. Suppose
that f is bounded below on |x,C| and

inf f(y) — flz) >

Y

Then for any € > 0, there exist z € |x,C| and z* €
0f(z), the convex subdifferential of f at z, such that

inf
flz) < [;?C]f+ 7| +¢,

and

r < (" y—xz)+tely— x| forally € C.
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Proof. As in the proof of Theorem 3.6.1 we can convert
the general case to the special case when r = 0. So we will
only prove this special case. Let f = f+ Uz, O Then f 1S
bounded below on X. By taking a smaller € > 0 if necessary,
we may assume that

e < mf fly)— f(x).

yeC

Applying Ekeland’s variational principle of Theorem 2.1.2
we conclude that there exists z such that

flz) <inff+e (4.3.10)
and
f(2) < f(u)+¢ellu—z|, forallu € X. (4.3.11)
That is to say
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u— flu) + ¢ o(u) +eflu—z|

attains a minimum at z. By (4.3.10) f(z) < 400 hence z €
[z, C']. The sum rule for convex subdifferential of Theorem
4.3.3 (with A being the identity mapping) implies that there
exists z* € O0f(z) such that 0 < (z*,w — 2) + ¢||lw —
z||, forall w € |x,C]. Using a smaller £ to begin with if
necessary, we have for w # z,

0< (" w—2)+¢ellw—z], forall w € [x, C]\{4.3.12)
Moreover by inequality (4.3.10) we have f(z) = f(z) <

f(x)+e < infe f,s0 z € C. Thus we can write z = x+1t(y—
x) wheret € [0,1). Foranyy € C'set w =y+tly—y) # =
in (4.3.12) yields

0< (%, y—x)+elly—z, forall y € C. (4.3.13)
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4.3.4 The Pshenichnii—Rockafellar Conditions

We turn to discuss the simple convex programming problem

of

CP minimize f(x) (4.3.14)
subject to x € C C X,

where X is a Banach space, C' is a closed convex subset
of X and f: X — R U {400} is a convex lsc function.
The convex subdifferential calculus developed in this section
enables us to derive sharp necessary optimality conditions

for CP.



Theorem 4.3.6. (Pshenichnii-Rockafellar Conditions) Let
X be a Banach space, let C' be a closed convex subset of
X and let f: X — RU {+o00} be a convex function.
Suppose that C Ncont f # O orint C Ndom f # 0 and f
15 bounded below on C. Then there is an affine function
a < f with info f = infoa. Moreover, T 15 a solution of
CP if and only if it satisfies

0edf(x)+ N(C;z).

Proof. Apply the convex subdifferential sum rule of The-
orem 4.3.3 to f + ¢ at @. .
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4.3.5 The Extension and Separation Theorems

We have seen that the sandwich theorem and the convex sub-
differential calculus are intimately related to the separation
theorem. We now explicitly deduce the separation theorem
and the Hahn—Banach theorem from these results.

Theorem 4.3.7. (Hahn-Banach Extension) Let X be a
Banach space and let f: X — R be a continuous sublin-
ear function with dom f = X. Suppose that L 1s a linear
subspace of X and the function h: L — R is linear and
dominated by f, that is, f > h on L. Then there exists
r* € X*, dominated by f, such that

h(xz) = (z*, x), for all x € L.



Proof. Apply the sandwich theorem of Theorem 4.3.2 to
fand g:=—h+17. o

Theorem 4.3.8. (Separation Theorem) Let X be a Ba-
nach space and let C7 and Cy be two convexr subsets of
X. Suppose that int Cy # 0 and CoNintCy = 0. Then
there exists an affine function o on X such that

sup al(cy) < inf afe).

c1eCy co€Cy
Proof. Without loss of generality we may assume that 0 €
int C7 and then apply the sandwich theorem with f = ¢ ¢,
A the identity mapping of X and g =y, — 1. o



4.3 Sandwich Theorems 463

4.3.6 Commen tary and Exercises

We can view convex analysis as a natural next step from
linear functional analysis. Thus, it is not surprising to see
fundamental results of linear functional analysis follow from
those of convex analysis. There are different ways of devel-
oping basic results in convex analysis. Here we follow our
short notes |67] using the Decoupling Lemma as a starting
point. This development actually works in a more general
setting (for details see [67]). In particular, the space Y need
not be complete (Exercise 4.3.3). The proof of this result is a
typical variational argument similar to those of the basic re-
sults in the calculus of Fréchet subdifferentials. We illustrate
the potential of this theorem by deducing the sandwich the-
orem, the sum rule for convex subdifferential and a convex



version of the multidirectional mean value theorem due to
Ledyaev and Zhu [174]. The Pshenichnii-Rockafellar condi-
tion |223, 229] provides a prototype for necessary conditions
for nonsmooth constrained optimization problems. Subsec-
tion 4.3.5 and several exercises below further highlight how
to use the sandwich theorem to deduce other important re-
sults in convex and linear functional analysis.

Exercise 4.3.1. Define
h(u) = inf {f(x)+ g(Az +u)}.
reX
Prove that

domh =domg — A dom f.

Exercise 4.3.2. Show that condition (4.3.2) implies the
inclusion in (4.3.1).
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xExercise 4.3.3. Show in the Decoupling Lemma that it
suffices to assume only that X is a topological vector space
that has a cs-compact absorbing set, A is linear and closed
and that Y is a barrelled topological vector space. Hint:
When condition (4.3.2) is satisfied the proof is the same.
When condition (4.3.1) is satisfied, let C' be a cs-compact
absorbing set in X and define S :=J, co{v €Y | f(z) +
g(Ax +u) < 1} Prove T'= S N (—S) is cs-closed and the
closure of T' is a barrel in Y. Reference: [67].

Exercise 4.3.4. Supply details for the proof of Theorem
4.3.3 by

(i) Proving (4.3.9).

(ii) Verifying ™ 4+ A*y™ € 0f(z).



466 4 Convex Analysis

Exercise 4.3.5. Interpret the sandwich theorem geometri-
cally in the case when A is the identity map.

Exercise 4.3.6. Prove Theorem 4.3.4.

Exercise 4.3.7. Give the details of the proof of Theorem
4.3.6.

Exercise 4.3.8. Apply the Pshenichnii-Rockafellar condi-
tions to the following two cases:

(i) C' a single point {2} C X,

(i) C' a polyhedron {z | Az < b}, where b € RN =Y,
Exercise 4.3.9. Provide details for the proot ot Theorem
4.3.7.

Exercise 4.3.10. Provide details for the prootf of Theorem
4.3.8.
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Exercise 4.3.11. (Subdifferential of a Max-Function) Sup-
pose that [ is a finite set of integers, and ¢;: X — R U
{+00},7 € I are lower semicontinuous convex functions

with
dom g; N ﬂ cont g; # ()
1el\1J}
for some index 7 in I. Prove
O(max g;)(z) = conv |_J dg;(z).
7’ iel
xExercise 4.3.12. (Failure of Convex Calculus)

(i) Find convex functions f,g: R — R U {+o00} with

0f(0) +9g(0) # A(f + ¢)(0).
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(i) Find a convex function g: R> — RU{+occ} and a linear

map A: R — R? with A*9g(0) # 0(g o A)(0).
Exercise 4.3.13. Let K(2%,¢) = {x € X | ¢l|lz”||||z] <
(x*,x)} be a Bishop—Phelps cone. Show that

N(K (2*,€);0) = e (e )(0) C | rBeppe (=2,
r>0

4.4 Fenchel Conjugate

In this section we give a concise sketch of the Fenchel conju-
gation theory. One can regard it as a natural generalization
of the linear programming duality, or as a form of the Leg-
endre transform in the convex setting. More relevant to the
context of this book is to think of it as an elegant primal-
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dual space representation of the basic variational techniques
for convex functions.

4.4.1 The Fenchel Conjugate

Let X be a Banach space. The Fenchel conjugate of a
function f: X — |—00,40o0] is the function f*: X* —
|—00, +00| defined by
fH(@”) = sup {(2", ) — f(z)}.
reX

The function f* is convex and if the domain of f is nonempty
then f* never takes the value —oo. Clearly the conju-
gacy operation is order-reversing: for functions f,g: X —
|—00, +00], the inequality f > ¢ implies f* < ¢g*. We can
consider the conjugate of f* called the biconjugate of f and
denoted f**. This is a function on X**.
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4.4.2 The Fenchel-Young Inequality

This is an elementary but important result that relates con-
jugation with the subgradient.

Proposition 4.4.1. (Fenchel-Young Inequality) Let X be
a Banach space and let f: X — RU{+o0} be a convex
function. Suppose that x* € X* and x € dom f. Then
satisfy the inequality

fl@) + fH(27) = (&7, z). (4.4.1)
FEquality holds if and only if x* € Of(x).
Proof. The inequality (4.4.1) follows directly from the
definition. Now we have the equality

fl@)+ [ (@") = (27, z),
if and only if, for any y € X,
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flz)+ (@ y) — fly) < (27, 2).
That is
fly) = flx) > (a",y — x),
or x* € df(x). .

4.4.3 Weak Duality

Conjugate functions are ubiquitous in optimization. Our
next result is phrased in terms of convex programming prob-
lems. The formulation is in many aspects similar to the du-
ality theory in linear programming.

Theorem 4.4.2. (Fenchel Weak Duality) Let X and Y
be Banach spaces, let f: X — RU{4+oc} and g: Y —
R U {400} be conver functions and let A: X =Y be a
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bounded linear map. Define the primal and dual values
p,d € [—00,+00| by the Fenchel problems

p= inf {f(z)+g(Az)}
reX
d= sup {—f"(A*z™) — g"(—2™)}. (4.4.2)
rreYy™
Then these values satisfy the weak duality inequality p >
d.

Proof. Exercise 4.4.1. .

4.4.4 Strong Duality

The Fenchel duality theorem can be viewed as a dual repre-
sentation of the sandwich theorem.
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Theorem 4.4.3. (Fenchel Duality) Let X and Y be Ba-
nach spaces, f: X — RU{+oco} and g: Y — RU{+o00}
be convex functions and A: X — Y be a bounded linear
map. Suppose that f, g and A satisfy either condition
(4.3.1) or condition (4.3.2). Then p = d, and the supre-
mum in the dual problem (4.4.2) is attained if finite. Here
p,d € |[—00, +o0| are defined as in Theorem 4.4.2.

Proof. If pis —oo there is nothing to prove, while if con-
dition (4.3.1) or (4.3.2) holds and p is finite then by Lemma
4.3.1 there is a ™ € X™ such that (4.3.3) holds. For any
u €Y, setting y = Ax + w in (4.3.3), we have

p < f(z)+ g(Az +u) + (¥, u)
={f(z) — (A"2", 2)} + {g(Az +u) — {(—2™, Az + u) }.
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Taking the infimum over all points u, and then over all points
x, gives the inequalities

p < —fH(A%2") — g"(—2") <d < p.
Thus ™ attains the supremum in problem (4.4.2), and p =
d. .

To relate Fenchel duality and convex programming with
linear constraints, we let g be the indicator function of a
point, which gives the following particularly elegant and use-
ful corollary:.



Corollary 4.4.4. (Fenchel Duality for Linear Constraints)
Given any function f: X — R U {+o00}, any bounded
linear map A: X — Y, and any element b of Y, the
weak duality inequality
f {f(z) | Az = b} > sup {(ba") — f*(A"2")}
reX rrEY
holds. If f is lsc and convex and b belongs to core(A dom f)
then equality holds, and the supremum s attained when
finite.

Proof. Exercise 4.4.8. .
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Fenchel duality can be used to conveniently calculate polar
cones. Recall that for a set K in a Banach space X, the
(negative) polar cone of K is the convex cone

K={2z"e X" | (2% 2) <0, foralze K}.

The cone K is called the bipolar— sometimes in the second
dual and sometimes in the predual, X. Here, we take it in
X. An important example of the polar cone is the normal
cone to a convex set C' C X at a point z € (', since

N(Ciz)=(C —x)°
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The following calculus for polar cones is a direct conse-
quence of the Fenchel duality theorem.

Corollary 4.4.5. Let X and Y be Banach spaces, let
K C X and H CY be cones and let A: X — 'Y be a
bounded linear map. Then

KO+ A*H° c (KN A" H).
Equality holds if H and K are closed and convexr and
satisfy H — AK =Y.

Proof. Observe that for any cone K, we have K¢ =
O (0). The result follows directly from Theorem 4.4.3.
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4.4.5 Commentary and Exercises

Fenchel’s original work is [117]. Much of the exposition here
follows the concise book [56] which is also a good source for
additional examples and applications.

Exercise 4.4.1. Prove Theorem 4.4.3. Hint: This follows
immediately from the Fenchel-Young inequality (4.4.1).

Exercise 4.4.2. Many important convex functions f on
a reflexive Banach space equal their biconjugate f**. Such
functions thus occur as natural pairs, f and f*. Table 4.1
shows some elegant examples on R, and Table 4.2 describes
some simple transformations of these examples. Check the
calculation of f* and check f = f** for functions in Table
4.1. Verity the formulas in Table 4.2.



f(@) =g"(z) |dom f 9(y) = f*(y) dom g
0 R 0 {0}
0 R, 0 R,
0 [—1,1] vl R
0 [0,1] y* R
zP/p, p>1 | R || [yl%/q (;+3:=1) R

lz[P/p, p>1 | Ry || [yF]9/q (

—aP/p, 0<p<l| Ry |=(-y)%/q (;+;=1)|—intRs

—logx int Ry —1 —log(—y) —int Ry
z ylogy —y (y > 0)
‘ 8 {0 y=o0) |

Table 4.1. Conjugate pairs of convex functions on R.

4.4 Fenchel Conjugate
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Exercise 4.4.3. Calculate the conjugate and biconjugate

of the function
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=g g=fr
f(z) 9(v)
h(az) (a#0)|| h*(y/a)

h(z +b) h*(y) — by

ah(z) (a>0)|| ah*(y/a)

Table 4.2. Transformed conjugates.

r x% |
— + xologro — a9 if 1o > 0,
219

flz1,22) = 4 0 if £1 =29 =0,

| +00 otherwise.

xExercise 4.4.4. (Maximum Entropy Example)
(i) Let a’,al,...,a" € X. Prove the function



4.4 Fenchel Conjugate 481

N N
Zazn — 1,anan =
n=0 n=0

N

g(z) .= inf {Zexp*(xn)

N+1
reR n—0

1S CONVex.
(i) For any point y in RV prove

gy = s {§j<xn<an,y e ‘an—l}.

(iii) Deduce the conjugacy formula
N

g (y)=1+1In (Zexp <a”,y>).

n=0

(iv) Compute the conjugate of the function of z € RNF1,
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+00 otherwise.

{Zon exp*(n) i SN g, =1,

Exercise 4.4.5. Give the details for the proof of Theorem
4.4.2 (Fenchel Weak Duality).

Exercise 4.4.6. (Conjugate of Indicator Function) Let X
be a reflexive Banach space and let C' be a closed convex
subset of X. Show that 17y = o¢ and 177 = 1.

Exercise 4.4.7. Let X be a reflexive Banach space. Sup-
pose that A: X — X™ is a bounded linear operator, C
a convex subset of X and D a nonempty closed bounded
convex subset of X*. Show that

inf sup (y, Ar) = max inf (y, Ax).
xeCyE%@ ) yeD :peC<y )
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Hint: Apply the Fenchel duality theorem to f = (o and
g=1p.
xExercise 4.4.8. Prove Corollary 4.4.4 (Fenchel Duality for

Linear Constraints). Deduce duality theorems for the follow-
ing separable problems.

N
inf { Z p(zn)
n=1

where the map A: RY — RM ig linear, b € RM - and the

function p: R — R U {400} is convex, defined as follows:

(i) (Nearest Points in Polyhedra) p(t) = t?/2 with domain
R..

(ii) (Analytic Center) p(t) = —logt with domain int R..

(iii) (Maximum Entropy) p = exp*.

Ax:b},
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What happens it the objective function is replaced by

N
an($n>?
n=1

Exercise 4.4.9. (Symmetric Fenchel Duality) Let X be a
Banch space. For functions f,g: X — |[—00,+00], define
the concave conjugate g«: X — |[—00,4+00] by

9:(*) = inf {(a*,2) - g(a)}.
Prove

inf(f — g) > sup(g« — [7),

with equality if f is lower semicontinuous and convex, g is
upper semicontinuous and concave, and

0 € core(dom f — dom(—g)),
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or f is convex, g is concave and
dom f Ncont g # 0.

Exercise 4.4.10. Let X be a Banach space and let K C X
be a cone. Show that txo = 17, and therefore ¢ o0 = 177

Exercise 4.4.11. (Sum of Closed Cones) Let X be a finite
dimensional Banach space.

(i) Prove that any cones H, K C X satisty (H + K)? =
H°N K°.
(ii) Deduce that if H and K are closed convex cones then
they satisfy (H N K)? =cl (H? + K°).
In R3, define sets
H={z|z}+ 25 <25 23 <0} and
K={x |z = —u3}.



(iii) Prove H and K are closed convex cones.

(iv) Calculate the polar cones H?, K° and (H N K)°.

(v) Prove (1,1,1) € (HNK)°\(H°+ K?), and deduce that
the sum of two closed convex cones is not necessarily
closed.

4.5 Convex Feasibility Problems

Let X be a Hilbert space and let C),,n = 1,..., N be
convex closed subsets of X. The convex feasibility problem
is to find some points

N
x € ﬂ Ch
n=1

when this intersection is nonempty:.
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In this section we discuss projection algorithms for finding
such a feasible point. These kinds of algorithms have wide
ranging applications in many different problems, such as so-
lution of convex inequalities, minimization of convex nons-
mooth functions, medical imaging, computerized tomogra-
phy and electron microscopy. Following the theme of this
book we approach this problem by converting it to a convex
optimization problem.

4.5.1 Projection

We start by defining projection to a closed convex set and
its basic properties. This is based on the following theorem.
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Theorem 4.5.1. (Existence and Uniqueness of Nearest
Point) Let X be a Hilbert space and let C' be a closed

conver subset of X. Then for any x € X, there exists a
unique element T € C' such that

lz — ]| = d(C; ).
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Proof. If x € (C then £ = =z satisfies the conclusion.
Suppose that x € C'. Then there exists a sequence x; € C
such that d(C; x) = lim;_,~ ||z —x;||. Clearly, x; is bounded
and therefore has a subsequence weakly converging to some
T € X. Since a closed convex set is weakly closed (Mazur’s
Theorem), we have z € C' and d(C'; x) = ||z — z||. We show
such x is unique. Suppose that z € C' also has the property
that d(C;x) = ||z — z||. Then for any t € |0, 1] we have
tT + (1 —t)z € C. It follows that

d(Ciz)<|lz — (tz+ (1= 1)2)]| = [tz —2) + (1 —t)(z — 2)|
<tlle =zl + (1 =)z — 2] = d(C: 2).

That is to say

t — |lz—z—t(z—2)||* = ||x—z||*—2t{z—2, T—2)+t||z— 2|
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1s a constant mapping, which implies x = z. o

The nearest point can be characterized by the normal cone
as follows.

Theorem 4.5.2. (Normal Cone Characterization of Near-
est Point) Let X be a Hilbert space and let C' be a closed
conver subset of X. Then for any x € X, T € C is a
nearest point to x if and only if

r—2x € N(C;2).

Proof. Noting that the convex function f(y) = ||y —x||?/2
attains a minimum at x over set C, this directly follows from
the Pshenichnii-Rockafellar conditions in Theorem 4.3.6.
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Definition 4.5.3. (Projection) Let X be a Hilbert space
and let C be a closed convex subset of X. For anyx € X
the unique nearest point y € C 1s called the projection
of © on C' and we define the projection mapping P by
Pox =y.

We summarize some useful properties of the projection

mapping in the next proposition whose elementary proof
is left as an exercise.



Proposition 4.5.4. (Properties of Projection) Let X be
a Hilbert space and let C be a closed convex subset of

X. Then the projection mapping FPo has the following
properties.

(i) foranyx e C, Pox = x;

(i) P4 = Pg;

(i) for any 2,y € X, | Poy — Poe| < |ly — o]
Proof. [Exercise 4.5.3. o

Projection to a convex set can also be represented as the
Fréchet derivative of a convex function and therefore is a
monotone operator.
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Theorem 4.5.5. (Potential Function of Projection) Let X

be a Hilbert space and let C' be a closed convexr subset of
X. Define

f(z) —Sup{< Y) — yT ‘ y € C}-

Then f is convex, Pr(x) = f'(x), and therefore Pr is a
monotone operator.

Proof. It is easy to check (Exercise 4.5.6) that f is convex

and
1

f(@) =5(ll2* = llz = Po(@)]).

We need only show Po(z) = f/(x). Fix z € X. For any
y € X we have

Iz +y) = Polz +y)ll < [[(z +y) = Pol)],
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SO

\(z+y) — Polz+y)IIP <z +yll* — 2(x +y, Po(2)) + | Pe
=z +ylI* + |z — Po(@)|I” = ||=|
— 2y, Po(x)),

hence f(z+y)— f(x)— (Po(x),y) > 0. On the other hand,

since ||z — Po(x)|| < ||z — Po(z + y)|| we get

flz+y) = flz) = (Polx),y) <(y, Po(z +y) — Po(x))

<|lyl| x [[Pc(z +y) — Po(z)|

which implies Po(z) = f/(z). .
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4.5.2 Projection Algorithms as Minimization Problems

We start with the simple case of the intersection of two con-
vex sets. Let X be a Hilbert space and let C' and D be two

closed convex subsets of X. Suppose that C'N.D # (). Define
a function

flesd) = gle = I +10(0) + ep(d).

We see that f attains a minimum at (¢, d) if and only if
¢ =d € CnND. Thus, the problem of finding a point in
C' M D becomes one of minimizing tunction f.

We consider a natural descending process for f by alter-
nately minimizing f with respect to its two variables. More
concretely, start with any g € D. Let x1 be the solution of
MInimizing



r— f(x,xg).
It follows from Theorem 4.5.2 that
rg—x1 € N(C;xq).
That is to say z1 = Poxg. We then let x9 be the solution
of minimizing
r — f(x1, ).
Similarly, 9 = Ppx1. In general, we define
Pox; 118 even
= { o TR s
Ppx; 1 is odd.

This algorithm is a generalization of the classical von Neu-
mann projection algorithm for finding points in the intersec-
tion of two half spaces.



We will show that in general x; weakly converge to a point
in C N D and when int(C'N D) # () we have norm conver-
gence.

4.5.3 Attracting Mappings and Fejér Sequences

We discuss two useful tools for proving the convergence of
the projection algorithm.

Definition 4.5.6. (Nonexpansive Mapping) Let X be a
Hilbert space, let C' be a closed convex nonempty subset
of X and letT: C — X. We say that T’ s nonexpansive
provided that ||Tx — Tyl < ||z — y||-
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Definition 4.5.7. (Attracting Mapping) Let X be a Hilbert
space, let C' be a closed convexr nonempty subset of X and
let T': C'— C' be a nonexpansive mapping. Suppose that
D s a closed nonempty subset of C'. We say that T is
attracting with respect to D if for every x € C\D and
ye D,

1Tz —y|| < flz =yl
We say that T 1s k-attracting with respect to D if for
every v € C\D and y € D,

) 2 )
klle = Tal|” < flo —yl|” = 1Tz —y”.

Lemma 4.5.8. (Attractive Property of Projection) Let X
be a Hilbert space and let C' be a convex closed subset of
X. Then Po: X — X is l-attracting with respect to C'.
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Proof. Let y € C'. We have

|z — y||* — || Pox — y||*= (v — Pox,x + Pox — 2y)
= <£IZ — Pox,x — Pox + Q(Pcaj — y)>
— ||z — Poa||® +2(z — Pox, Prz — y
> ||z — Poz|)”.

Note that if T" is attracting (k-attracting) with respect to
a set D, then it is attracting (k-attracting) with respect to
any subset of D.
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We now turn to Fejér monotonicity:.

Definition 4.5.9. (Fejér Monotone Sequence) Let X be a
Hilbert space, let C' be closed convex set and let (x;) be a

sequence i X . We say that (x;) is Fejér monotone with
respect to C' if

|xjo1 —cl| < ||lxj—c|l, forallce C andi=1,2,...

Our next theorem summarizes important properties of
Fejér monotone sequences.



Theorem 4.5.10. (Properties of Fejér Monotone Sequences)
Let X be a Hilbert space, let C be a closed convex set and
let (x;) be a Fejér monotone sequence with respect to C.
Then

(i) (x;) is bounded and d(C;x;,1) < d(C;x;).

(ii) (x;) has at most one weak cluster point in C.

(iii) If the interior of C' is nonempty then (x;) converges
in noTrm.

(iv) (Pox;) converges in morm.
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Proof. (i) is obvious.
Observe that, for any ¢ € C the sequence (||z; — ¢[|?)
converges and so does

(lill” = 2(zi, ). (4.5.2)

Now suppose cq, co € C' are two weak cluster points of (z;).
Letting ¢ in (4.5.2) be ¢ and ¢y, respectively, and taking
limits of the difference, yields (c1, c; — c9) = (¢9,¢1 — ¢9) 50
that ¢; = co, which proves (ii).

To prove (iii) suppose that By(c) C C. For any x;,1 # x;,
simplifying

Tit] — Tj N\ 19 Tit] — Ti 2
21— (c—h— 1= < JJzj—(c—h |
1 2541 —CE@H) i 2541 —%'H)

we have



2h| i1 — x5l < |l — cll* = |lzier — ¢l

For any 7 > ¢, adding the above inequality from 7 to 3 — 1
yields

2 2
2h[xj — ail| <l —cl|” = o — cfl”

Since (||a; — ¢||?) is a convergent sequence we conclude that
(x;) is a Cauchy sequence.

Finally, for natural numbers ¢, 57 with 7 > ¢, apply the
parallelogram law |la — b||* = 2||a||? + 2||b]|*> = ||a + b||* to
a = Porj—xjand b:= Pgx; — x; we obtain



| Powj — Pewill® = 2| Powj — aj|* + 2| Pow; — ||
B 4H PC:E]' + Pox;
2
< 2||Poj — ajl|” + 2l Pow; — )|
— 4[| Py — ]|
< 2||Poxi — ajl|” = 2| Powj — ajl|°
< 2||Pow; — ail|* = 2l Poj — |
We identify (Pox;) as a Cauchy sequence, because
(||x; — Pox;||) converges by (i).

2
-]
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4.5.4 Convergence of Projection Algorithms

Let X be a Hilbert space. We say a sequence (x;) in X is
asymptotically reqular it

lim [z — 241/ = 0.

—00
Lemma 4.5.11. (Asymptotical Regularity of Projection
Algorithm) Let X be a Hilbert space and let C' and D

be closed convex subsets of X. Suppose CND # 0. Then
the sequence (x;) defined by the projection algorithm

. Pox; 1 1s even,
" Ppx; 1 1s odd.

18 asymptotically reqular.
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Proof. By Lemma 4.5.8 both Py and Pp are 1-attracting
with respect to C'N D. Let y € C'N D. Since x;41 is either
Pox; or Ppx; it follows that

|z — 2ill” < o — yll” = w1 — ™
Since (||z; — y||?) is a monotone decreasing sequence, there-

fore the right-hand side of the inequality converges to 0 and
the result follows. .

Now, we are ready to prove the convergence of the projec-
tion algorithm.



Theorem 4.5.12. (Convergence of Projection Algorithm
for the Intersection of Two Sets) Let X be a Hilbert space
and let C' and D be closed convex subsets of X. Sup-

pose C D = () (int(C N D) £ (). Then the projection
algorithm

{P(;xi 115 even,

Li+1 = o

Ppx; 1 1s odd.
converges weakly (in norm) to a point in C N D.

Proof. Let y € C' N D. Then, for any x € X, we have
|Pex —y| = [[Pex — FPoy|l < [lz =yl and || Ppz — y|| =
| Ppx — Ppy|| < || — y||. Since z;,1 is either Pox; or
Ppx; we have that

lzivr =yl < [z =yl



That is to say (x;) is a Fejér monotone sequence with re-
spect to C'N D. By item (i) of Theorem 4.5.10 the sequence
(x;) is bounded, and therefore has a weakly convergent sub-
sequence. We show that all weak cluster points of (x;) be-
long to C'N D. In fact, let (x;.) be a subsequence of (z;)
converging to x weakly. Taking a subsequence again if nec-
essary we may assume that (z;, ) is a subset of either C' or
D. For the sake of argument let us assume that it is a sub-
set of C' and, thus, the weak limit x is also in C'. On the
other hand by the asymptotical regularity of (x;) in Lemma
4.5.11 (Ppx;, ) = (74, 41) also weakly converges to z. Since
(Ppz;,) is a subset of D we conclude that x € D, and
therefore x € C'N D. By item (ii) of Theorem 4.5.10 (x;)
has at most one weak cluster point in C' " D, and we con-



clude that (x;) weakly converges to a point in C'N D. When
int(C' N D) # () it follows from item (iii) of Theorem 4.5.10
that (x;) converges in norm. .

Whether the alternating projection algorithm converged
in norm without the assumption that int(C'N D) £ (), or
more generally of metric regularity, was a long-standing open
problem. Recently Hundal constructed an example showing
that the answer is negative [140]. The proof of Hundal’s ex-
ample is self-contained and elementary. However, it is quite
long and delicate, therefore we will be satisfied in stating the
example.
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Example 4.5.13. (Hundal) Let X = {9 and let {¢; | 1 =

2,...} be the standard basis of X. Define v: |0, +00) —
X by
v(r) = eXp<—1OOT3>€1—|—COS ((r—Tr ])7T/2) p 421N ((r=[r])m/
where |r| signifies the integer part of r and further define

C = {e;}* and D = conv{v(r) | r > 0}.
Then the hyperplane C' and cone D satisfies C' N D = {0}.
However, Hundal’s sequence of alternating projections x;
given by
riy1 = PpFow;

starting from xy = v(1) (necessarily) converges weakly to 0,
but not in norm.

A related useful example is the moment problem.
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Example 4.5.14. (Moment Problem) Let X be a Hilbert
lattice — a Banach lattice in the Hilbert norm — with lattice
cone D = X . All Hilbert lattices are realized as Lo(£2, 11)
in the natural ordering for some measure space.

Consider a linear continuous mapping A from X onto
RN, The moment problem seeks the solution of A(z) =
y € RV 2 € D (see [53] for a recent survey). Define
C = A~ '(y). Then the moment problem is feasible if and
only if C'N D # (. A natural question is whether the projec-
tion algorithm converges in norm. This problem is answered

affirmatively in [13] for N = 1 yet remains open in general
when N > 1.
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4.5.5 Projection Algorithms for Multiple Sets

We now turn to the general problem of finding some points

11
N
ﬂ C’na
n=I1
where C,,n = 1,..., N are closed convex sets in a Hilbert
space X.
Let an,n =1,..., N be positive numbers. Denote

xN = {v=(x1,29,....,2N) |2 € X;n=1,...,N}
the product space of N copies of X with inner product

Z fn; yn

n=1
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Then X% is a Hilbert space. Define C' := C] x C X - -+ X
Cy and D == {(zq,...,an) € XV 12y =29 = - =
zn}. Then C' and D are closed convex sets in XV and
T € ﬂf;;l Cp if and only if (x,x,...,x) € CN D (Exercise
4.5.2).

Applying the projection algorithm (4.5.1) to the convex
sets C' and D defined above we have the following general-
ized projection algorithm for finding some points in

N
() Cn.
n=1

Denote P, = P¢ . The algorithm can be expressed by
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N
Lij11 = (Z )\nPn) Xj, (4.5.3)
n=1

where A\, = ap/ 2%21 am. In other words, each new ap-
proximation is the convex combination of the projections of
the previous step to all the sets C;,,n =1,..., N. It follows
from the convergence theorem in the previous subsection
that the algorithm (4.5.3) converges weakly to some point

in ﬂﬁf:l C, when this intersection is nonempty.
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Theorem 4.5.15. (Weak Convergence of Projection Algo-
rithm for the Intersection of N Sets) Let X be a Hilbert
space and let Cp,,n =1,..., N be closed convex subsets

of X. Suppose that ﬂ;y:l Cn # 0 and N\, > 0 satisfies
Z,,‘],val An, = 1. Then the projection algorithm

N
n=1

converges weakly to a point in ﬂﬁf:l Ch.
Proof. This follows directly from Theorem 4.5.12. .
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When the interior of ﬂ;]zvzl Cp, is nonempty we also have
that the algorithm (4.5.3) converges in norm. However, since
D does not have interior this conclusion cannot be derived
from Theorem 4.5.12. Rather it has to be proved by directly
showing that the approximation sequence is Fejér monotone
with respect to ﬂé\le Ch.



Theorem 4.5.16. (Strong Convergence of Projection Al-
gorithm for the Intersection of N Sets) Let X be a Hilbert
space and let Cy,,n =1,..., N be closed convex subsets

of X. Suppose that int ﬂﬁf:l Crn # 0 and Ny, > 0 satisfies
Z,,‘],val An, = 1. Then the projection algorithm

N
Tit] = (Z )\nPn) Tj,
n=1

converges to a point in ﬂ;y:l Cp tn norm.
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Proof. Let y € ﬂ;];[:l Cp. Then
N N
21— yll=|| (32 P ) i = o] = | 32 MnlPai — Pay)
n=1 n=1
N

N
< Z Anl| Py — Pryl| < Z Anllzi — yl| = |l -
n=1 n=1
That is to say (x;) is a Fejér monotone sequence with respect

to ﬂ,ﬁ;l C'p,. The norm convergence of (x;) then follows di-
rectly from Theorems 4.5.10 and 4.5.15. 5

4.5.6 Commentary and Exercises

The projection algorithm can be traced back to von Neu-
mann |260] and has been studied extensively. Here we em-



4.5 Feasibility 519

phasize the relationship between the projection algorithm
and variational methods in Hilbert spaces. While projection
operators can be defined outside the setting of a Hilbert
space, they are not necessarily nonexpansive (Exercises 4.5.4
and 4.5.5). Indeed, the nonexpansive property of the projec-
tion operator characterizes Hilbert spaces in two or more
dimensions. Thus, Hilbert space is the natural setting for
the analysis of projection algorithms.

The survey paper |14] and the book [97] discuss many
possible generalizations, provide historical perspective and
are a rich source for additional literature. Many interest-
ing applications are presented in [242]. Hundal’s example
is constructed in [140]. A simplification can be found in
1191]. This example also clarifies many other related prob-
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lems about convergence such as convergence of averages of
projectors, the classical proximal point algorithm and the
string-averaging projection method. Details of these appli-
cations can be found in [19]. Bregman distance (see |74] and
Exercise 4.5.1) provides an alternative perspective into many
of the generalizations of the projection algorithm. We refer
the readers to |17, 18] for details and additional references.

xkxercise 4.5.1. Let X be a Hilbert space and let f: X —
RU{+00} bestrictly convex and differentiable on int(dom f).
Define the Bregman distance d¢: dom f x int(dom f) — R
by

dp(w,y) = fz) = fly) = {f'(y). 2 —y).
(i) Prove d¢(x,y) > 0 with equality if and only if z = y.



(ii) Compute dy when f(t) = t2/2 and when f is the
Boltzmann—Shannon entropy defined in 4.7.3.
(iii) Suppose [ is three times differentiable. Prove d ¢ is con-

vex if and only if —1/f" is convex on int(dom f).

(iv) Extend the results in (ii) and (iii) to the function
Dy: (dom £)Vx (int(dom f))Y — R defined by Dy(z,y) =
Zﬁle df(xn,yn). (See [16] for the more general case
when D¢ is not separately defined. )

Exercise 4.5.2. Show that x € ﬂ;];[:l Cp it and only if

(x,x,...,2) € CND.

Exercise 4.5.3. Prove Proposition 4.5.4.

Exercise 4.5.4. Show that Theorem 4.5.1, and therefore
Definition 4.5.3, can be extended to reflexive Banach spaces.
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Exercise 4.5.5. Show that in more than one dimension,

with respect to the || - ||p, for 1 < p < oo and p # 2, the
projection operator 1s not nonexpansive.

Exercise 4.5.6. Let X be a Hilbert space and let C' be a
closed convex subset of X. Show that

2
(@) = sup{{e,y) — 121

1s convex and

ly e C}

Lo 2
f@) =5zl = llz = Pol)]").
xExercise 4.5.7. (Infimal Convolution) If the functions
f,g: X — (—00,400]| are convex, we define the infimal
convolution fOg: X — [—o00,4+00| by

(fB9)(y) = mf{ f(z) + g(y — 2)}.



(i) Prove fOg is convex. (On the other hand, if g is concave
prove so is fOg.)

(ii) Prove (fO¢g)* = f* + ¢*.

(iii) If dom f N cont g = 0, prove (f + ¢g)* = f*Og*.

(iv) Define the Lambert W -function W: Ry — Ry as the
inverse of y € Ry +— ye¥. Prove the conjugate of the

function
332
re€R— exp(z) + 5
is the function
(W (e¥))?

y € R— W(eY)+ 5

xExercise 4.5.8. Given a nonempty set C' C X, consider
the distance function
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d~(z) = inf ||z — yll.
c(z) ylgCva yl|

(i) Prove d% is a difference of convex functions, by observ-

ing
2 2
o |1z |- y
([do(@) = 15— (5= +10) ()
Now suppose C' is convex.

(i) Prove d¢ is convex and diy = 1, + 16 = LBy, +0C
(iii) If C'is closed and = & C', prove

—1
do(z) = do(2) ™ (z — Pol@)),
where Po(x) is the nearest point to z in C.
(iv) If C' is closed, prove for all points x that

(“2) ) = & - Poo
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4.6 Duality Inequalities for Sandwiched Functions

We derive duality inequalities that involve a mix of convex
and nonconvex functions. These inequalities can be used to
derive the striking Clarke-Ledyaev two-set multidirectional

mean value theorem [87] and its elegant reformulation by
Lewis and Ralph [180].
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4.6.1 Sandwiched Functions

To avoid technical distraction we establish our fundamental
inequality in RY and we consider the simple case when the
nonconvex function is smooth.

Theorem 4.6.1. (Sandwiched Functions) Let C' be a nonemp
compact convexr subset of RN . Suppose that f and h are
proper convex lsc functions with f* and h™ continuously
differentiable and dom(f) Ndom(h) C C. Then, for any
continuously differentiable function g: C' — R, there ex-
ists z € C' such that

max(g — f) +max(—g — h) = f*(g'(2)) + h*(=g'(2))

Proof. Let M := 2sup{||c|]| | ¢ € C} and W = {x :
0,1] — C | x is Lipschitz with a Lipschitz constant no



more than M}. Then W is compact in the uniform norm
topology, by the Arzela—Ascoli Theorem [102]. For x € W
define

t 1
Ta(t) = /O (1) 0 g 0 x(s)ds + /t (h*) o (—g') o 2(s) ds.
(4.6.1)

Then T: W — W is continuous (Exercise 4.6.1). Since W
is compact and convex, the Schauder fixed point theorem
96, p. 60| shows that there is x € W such that x = Tx.
That is

t 1
o(t) = /O (%) 0 g o a(s)ds + /t (1) o (—g') o x(s) ds.



528 4 Convex Analysis



4.6 Sandwiched Functions 529

By Fenchel’s equality of Proposition 4.4.1 we have
1
g(a(1) = g(a0)= [ (7" og 0a(s) + o (5" 0g 0a(s))ds

1
+ [ 0o (=g)oats
+ho (") o (—g) 0 als)) ds.

By the integral form of Jensen’s inequality we have
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+ f(/ol(f*)’ o g’ ox(s) dS)
+ h( /Ol(h*)’ o (—g') o z(s) ds)

1
_ /O (F* o g ox(s)+ h* o (—g') o al(s))ds
+ [(x(1)) + h(z(0)).
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Then, for some z = z(t) € C we have

g(x(1))—g((0))—f(2(1))—h(x(0)) = f*(¢'(z)+h"(—7'(2)).
Thus, (1) € C' and 2(0) € C will give the required inequal-
1ty. .

4.6.2 Two-Set Mean Value Inequalities

We will deduce the Clarke-Ledyaev two-set multidirectional
mean value inequality and its reformulation due to Lewis
and Ralph from the fundamental inequality in the previous
subsection. The idea is to let f and h be the indicator func-
tions of the sets involved.
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Since such f and A may not have smooth duals we need
to generalize Theorem 4.6.1. For this purpose we need the
following lemma which is a useful tool to smooth the dual
of a convex function.

Lemma 4.6.2. Let f: RY — RU{+oco} be a proper

convex Isc function. Suppose that dom(f) is a bounded
subset of RN. Then, for any ¢ > 0, (f + ¢ - ||2)* s
continuously differentiable.

Now we have the following generalization of Theorem 4.6.1
whose proof is left as a guided exercise.
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Theorem 4.6.3. Let C be a nonempty compact convex
subset ofRN. Suppose that f and h are proper convex lsc
functions with dom(f)Ndom(h) C C. Then, for any con-
tinuously differentiable function g: C — R, there exists
2z € C such that

max(g — f) +max(—g —h) = f7(¢'(z) + 1" (=4'(2));
Proof. Exercise 4.6.3. .

This result remains valid with ¢ assumed only Lipschitz
and with gradients replaced by Clarke subdifferentials (see
42] for this and other extensions). We illustrate what The-
orem 4.6.3, so generalized, does and does not say in Figure
4.1. Therein, one has a subdifferential which does not sepa-
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rate the convex and concave functions but a lower translate
with the same slope does. However, there are other subgra-
dients that will work. It is not known whether this is always
true.

The following corollary is immediate.

Corollary 4.6.4. (The Lewis—Ralph Sandwich Theorem)
Let C' be a nonempty compact convexr subset OfJRN. Sup-
pose that f and h are proper conver lsc functions with
dom(f) Ndom(h) C C. Then, for any continuously dif-
ferentiable function g: C' — R such that f > g > —h,
there exists z € C such that

0> f*(g'(2)) + h*(—4'(2)).
Proof. Exercise 4.6.4. .
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Fig. 4.1. The duality sandwich on a compact interval.
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Now we can deduce a two-set multidirectional mean value
inequality. For two-sets C1,Cy C X we denote |C, (o] :=
conv(C1 U C9).

Corollary 4.6.5. (Two-Set Multidirectional Mean Value

Inequality) Let C] and Co be nonempty compact convex
subsets of RY . Suppose that

g: [C1,Co) = R

15 a continuously differentiable function. Then there ex-
ists z € |C1, Cy| such that for any x € C and y € Cy,

/ .
r—1vy,q(2)) <maxg— ming.
(* —y,9'(2)) wxg —min g
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Proof. In Theorem 4.6.3 we take [ = (g and h =
Lo, and C = [C1, Cy). Since f*(2¥) = max,cc, (2, 2") and
h*(2%) = max, e, (y, 27), we get the desired inequality. .

4.6.3 Refinements

Using the same technique of proving the fundamental in-
equality to the situation when one of f or h is removed or
when f = h(—-) we can substantially improve the conclu-
SI0NS.
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Theorem 4.6.6. Let C' be a nonempty compact convex
subset ofRN. Suppose that | 1s a proper conver lsc func-
tions and dom(f) C C'. Then for any o # 1 and any con-
tinuously differentiable function g: |C,aC] — R, there
are z € |C,aC| and a € C' such that

9(0a) = 99) _ ¢ty > (g ().

a—1
Proof. The method used to deduce Theorem 4.6.3 from
Theorem 4.6.1 allows us to assume without loss of generality
that f* is continuously differentiable.

Let M = (14 |a|)sup{|lc|| | ¢ € C} and W = {z :
0,1] — [C,aC] | = is Lipschitz with a Lipschitz constant
less than M }. Then W is compact in the uniform norm
topology, again by the Arzela—Ascoli Theorem. For x € W
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define

t 1
Tx(t) := a/o (f*) og ox(s)ds +/t (f*) o g ox(s)ds.
(4.6.2)

Then T: W — W is continuous (Exercise 4.6.2). Since W
is compact and convex, once more the Schauder fixed point
theorem shows that there is x € W such that x = T'x. That
1S

t 1
o(t) = o /O (1) 0 g 0 (s)ds + /t (%) 0 g 0 (s) ds.
Thus
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By Fenchel’s inequality (Proposition 4.4.1) we have

gl (1)) — g((0))
= (a—1) fol(f* og ox(s)+ fo(f*) og ox(s))ds.

By the integral form of Jensen’s inequality we have

9@(1&_1 /f o g ox(s
(/ (* >’ogow<s>ds)

_ /O F*od ox(s)ds + f(x(0)).

Letting a = x(0) we see that there is some z = x(t) €
(', aC] such that
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glaa) — g(a)

DI fla) > £(d(2)
since (1) = ax(0) = aa. .
Setting « = —1 and 0 we have two useful corollaries below.

Corollary 4.6.7. Let C' be a nonempty compact convex
subset ofRN. Suppose that | 1s a proper convex lsc func-
tion and dom(f) C C. Then for any a # 1 and any con-
tinuously differentiable function g: |C,—C| — R, there
are z € |C,—C] and a € C such that

N ZID oy > £ (2)

In particular, if f dominates the odd part of g on C then
f*(g'(z)) <0.
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Proof. Let a = —1 in Theorem 4.6.6. .

Corollary 4.6.8. Let C' be a nonempty compact con-
vex subset of RN . Suppose that f is a proper convex lsc
functions and dom(f) C C. Then for any o # 1 and any
continuously differentiable function g: |0,C] — R, there
are z € |0,C| and a € C' such that

gla) — g(0) > fla) + f*(4'(2)).
Proof. Let & = 0 in Theorem 4.6.6. .

4.6.4 Commentary and Exercises

Clarke and Ledyaev proved two interesting multidirectional
mean value inequalities: the one-set version presented in
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Theorem 3.6.1 and the two-set version discussed in Corol-
lary 4.6.5. The one-set version is proved by a variational
method. The original proof for the two-set version in [87]
involves flows and a fixed point theorem. Whether one can
find a “pure” variational proof for the two-set version re-
mains an open problem. The general framework of this sec-
tion in terms of sandwiched functions following [42] provides,
in particular, a proot for the two-set multidirectional mean
value inequality that combines a duality inequality (vari-
ational in nature) and topological fixed point theory. The
comparison of f to the odd part of g in Corollary 4.6.7 re-
inforces the suggestion that fixed point theory is central to
these results. The main result on sandwiched functions in
Theorem 4.6.1 also enables us to further refine the two-set
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multidirectional mean value inequality (see Theorem 4.6.6
and its corollaries). One can find interesting special cases
when the convex set C' is the unit ball (Exercises 4.6.5). The
equivalent sandwich theorem form of the two-set multidirec-
tional mean value inequality in Corollary 4.6.4 is derived in
1180].

Exercise 4.6.1. Show that the operator 1" defined in
(4.6.1) is a continuous mapping that maps W to itself.

Exercise 4.6.2. Show that the operator T' defined in
(4.6.2) is a continuous mapping that maps W to itself.

Exercise 4.6.3. Prove Theorem 4.6.3. Hint: First apply
Theorem 4.6.1 to f +¢l|-||?, h+¢| - ||* and g and then take
limits when € — 0.



4.6 Sandwiched Functions 545

Exercise 4.6.4. Prove Corollary 4.6.4.

Exercise 4.6.5. Setting C' to be the unit ball in Theorem
4.6.6, use Corollaries 4.6.7 and 4.6.8 to deduce the following.

Corollary 4.6.9. Let B be the closed unit ball of RY .
Then for any o # 1 and any continuously differentiable
function g: B — R, there exists z € B such that

e HOD =0 > /)

Corollary 4.6.10. Let B be the closed unit ball of RY .
Then for any continuously differentiable function g: B —
R, there exists z € B such that

A= 920 5 @l

max
acB



546 4 Convex Analysis

Corollary 4.6.11. Let B be the closed unit ball of RV,
Then for any continuously differentiable function g: B —
R, there exists z € B such that

max g(a) — g(0) > [|g/(2)]]

acl

Note that Corollary 4.6.11 can also be deduced from

the one-set multidirectional mean value inequality Theo-
rem 3.6.1, and therefore has a variational proof.

Exercise 4.6.6. Deduce Corollary 4.6.11 from Theorem
3.6.1. Hint: Apply Theorem 3.6.1 in the form for bounded
set S = B pointed out in Exercise 3.6.1 (i) to function
f = —g. Reference: See [42] for a direct variational proof.



4.7 Entropy Maximization

Entropy maximization is a special kind of convex program-
ming problem with a finite number of linear constraints rep-
resenting the condition on moments and a convex cost func-
tion emulating the negative of an entropy. A wide variety of
application problems can be covered by this model due to
its physical background. In this section we discuss the gen-
eral duality theory for entropy maximization problems and
illustrate its applications with a number of examples. The
special structure of finitely many linear constraints in this
problem makes the dual problem easy to solve. This is the
key teature that we are going to explore.
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4.7.1 Duality for Entropy Maximizations

We consider the following general form of the entropy max-
imization problem.

E minimize f(x)
subject to Az = b,

where f: X — R U {+o00} is a Isc convex function on a
Banach space X representing the negative of an entropy like
function and A: X — R is a linear operator. Our solution
to this entropy maximization problem in different concrete
forms will be based on the following duality theorem.



Theorem 4.7.1. (Duality for Entropy Maximization) Let
X be a Banach space, let f: X — RU{+o0} be a lsc
convexr function and let A: X — RY be a continuous
linear operator. Suppose that b € core(A dom f). Then

nf {f(z) | Az = b}= max {{¢,) — f*(A"¢)}.
xTE peR
(4.7.1)

Proof. Let g = vgy. Then g*(¢) = (¢, ) (Exercise 4.7.1).
Thus, it follows directly from the Fenchet duality equality
of Theorem 4.4.3 that
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xig({f () | Ax = b}:xig({f () + g(Az)}
= sup {—g"(—¢) — f(A79)}
HERN

= sup {{(¢,b) — f7(A"¢)}.(4.7.2)

peRN

The condition b € core(A dom f) ensures that the infimum
is finite. We leave the fact that sup¢€RN{<gb, by — f*(A%p)}

must be attained as Exercise 4.7.2. .

In general the infimum in the equality (4.7.1) may not be
attained. An example is given in Exercise 4.7.3.



4.7.2 Finite Dimensional Problems

Entropy maximization problems in finite dimensional spaces
for the classical Boltzmann—Shannon entropy illustrate well
the characteristics of such problems. We start with the def-
inition of the Boltzmann—Shannon entropy function. Define

tnt —t ift>0,
p(t) == 4 0 ift =0, (4.7.3)
+00 if t <0,
and f: RY — RU {400} by

N
fla) =) plan). (4.7.4)
n=1



552 4 Convex Analysis

The p and f defined above are Boltzmann—Shannon entropy
functions on R and RY | respectively. We note that the origi-
nal Boltzmann—Shannon entropy functions are the negatives
of p and f and they are maximized. The following propo-
sition summarizes some basic properties of the Boltzmann—
Shannon entropy function whose elementary proof is left as
an exercise.

Proposition 4.7.2. Let  be the Boltzmann—Shannon
entropy function defined in (4.7.4). Then

(i) for any c € RY, f(x) + (c,x) is strictly convex on
Rﬂy and has compact sublevel sets;

(ii) for any x € int(R]JY) and x € bd(RﬂY), oz —2) =
_m.



Proof. Exercise 4.7.4. .

We now consider the finite dimensional entropy maximiza-
tion problem.

FE minimize f(z)+ (¢, )
subject to Az = b,

where f is the Boltzmann—Shannon entropy function defined
in (4.74), c € RN b e RM and A: RY — RM is a linear
mapping.

The general duality theorem in this case can help us con-
veniently derive an explicit formula for the unique solution
of problem F& in terms of the solution to its dual problem.
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Theorem 4.7.3. Suppose that there exists a z € int(Rﬂy )
such that Az = b. Then problem FE has a unique solu-
tion T = (Z1,...,2TN) determined by
Ty = exp(ATgE —C)p,n=1,..., N,
where ¢ is a solution to the dual problem
T

ma {(9,0) — (f +¢)"(AT9)},

peRM
Proof. The compactness of the sublevel sets of the ob-
jective function as asserted in Proposition 4.7.2 ensures the
existence of solutions to problem FE. By (ii) of Proposition
4.7.2 the directional derivative of the cost function is —oco

on any boundary point x of Rf , the domain of the cost
function, in the direction of z — 2. Thus, any solution of F&
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must be in the interior of ]R]Jy . By (i) of Proposition 4.7.2

the cost function is strictly convex on int(Rf ), and therefore

the solution is unique. Let us denote this unique solution of
FE by x. Then the duality result of Theorem 4.7.1 implies
that

f(z)+ (c,x) = ian{f(x) + (¢, ) | Ax = b}
rclR

= max {(¢,b) — (f + )" (A" ¢)}.

Now let ¢ be a solution to the dual problem. We have

(@) + (e, 8) + (f + ) (A" d) = (6,b) = (6, Az) = (A, ).
It follows from Proposition 4.4.1 that A'¢ € O(f + ¢)(Z).
Since T € int(Rf ) where f is differentiable, we have
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ATqb f ( ) + ¢. The formula for & now follows from ex-
plicit computation (Exercise 4.7.5). .

We note that ¢ is a Lagrange multiplier for the constrained
minimization problem FE (Exercise 4.7.6).

4.7.3 The DAD Problem

We now turn to an interesting application in matrix the-
ory. Let A = (anm) be an N by N matrix. We say that
A is doubly stochastic if each entry is nonnegative and
N _ _ N _
Y1 Gpm = Lform =1,...,N and > .~ japm =1
forn =1,...,N. We say that A has a double stochastic
pattern if there is a doubly stochastic matrix with exactly
the same zero entries as A. Using the result in the previ-
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ous subsection we can prove the following characterization
of matrices that have a doubly stochastic pattern.

Theorem 4.7.4. (Matrices with Doubly Stochastic Pat-
tern) Let A be a square matriz. Then A has a double
stochastic pattern if and only if there are diagonal ma-

trices D1 and Do with strictly positive diagonal entries
such that D1ADy 1s doubly stochastic.

Proof. The sufficiency is easy and is left as an exercise
(Exercise 4.7.7). We prove the necessity. Let A have a doubly
stochastic pattern. Define a set Z = {(n, m)|apm > 0}, and
let RZ denote the set of vectors with components indexed by
Z and RJZF denote those vectors in RZ with all nonnegative
components. The key is to realize that the desired doubly
stochastic matrix D1 ADy = B is a solution of the following
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entropy maximization problem.

minimize Z (p(Znm) — Tpmloganm)  x € R?

(n,m)eZ
subject to Z Toym =1 torm=1,...,N
n:(n.m)eZ
Z Toym =1 form=1,... N.
m:(n.m)eZ

Here p is the Boltzmann—Shannon entropy function defined
in (4.7.3). That matrix A has a doubly stochastic pattern im-
plies that the constraint is satisfied at an interior point of R_{
(Exercise 4.7.8). Thus, by Theorem 4.7.3, the above entropy
maximization problem has a unique solution & = (Zpm)

whose components are given by Tp;, = exp[(GTqb)nm +
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In(anm)], where G is the matrix in the linear equality con-

straints and ¢ is a solution of the dual problem. Since
G: R% — RN we can write ¢ = (AL, oo e s AN [y -y V)
It follows that, for any = (zn;m) € RZ.

(2,G' )= (Gx, )

N N
— Z An Z Tnm T Z Hm Z Lnm
n=1 m=1

m:(n,m)eZ n:(n,m)eZ

— Z Tnm(An + m)-

n:(n.m)eZ

Thus,
(GTQB)nm = A + lm.



Now we have Ty = anpm exp(An + fim) = apm exp(An) X
exp(m). Define B = (bym) by bpm = Tnm for (n,m) € Z
and bp;, = 0 otherwise. Then B is a doubly stochastic

matrix and B = D{ADs where Dy and Dy are diago-
nal matrices with diagonal entries exp(A1), ..., exp(Ay) and

exp(p1), ... ,exp(uy), respectively. .

4.7.4 Infinite Dimensional Problems

Maximum entropy methods in image reconstruction and op-
tion pricing problems lead to the following entropy maxi-
mization problem in infinite dimensional space.



7€  minimize f(x) = /]p(x(t))dt x e LYI)

subject to /@n(t)x(t) dt =bp,n=1,...,N.
I

Here again p is the Bolzmann—Shannon entropy defined

n (4.7.3), [ is a (possibly infinite) interval, a,, € L°°(I)
and the integral [ p( rp(x(t))dt is understood in the follow-
ing sense: If there ex1sts a function o € LY(I) such that
a(t) > p(x(t)) almost everywhere on I, the integral has an
unambiguous classical value (finite or —o0). Otherwise, we

set f[p ) dt =
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Although Theorem 4.7.1 holds for problem Z&, the con-
straint qualification b € core(A dom f) is too strong for
most of the applications. Fortunately, this condition has
been weakened in [51] to: b belongs to the relative interior of
A dom f, the interior relative to span(A dom f) denoted by
ri(A dom f). We will not get into the full technical details
and will merely state this duality theorem.



Theorem 4.7.5. (Duality for Entropy Maximization in In-
finite Dimensional Spaces) Let f: LYI) — RU {400} be
the lsc convex function defined in IE, let A: LYI) —
RY be the continuous linear operator defined by

Az = ( /] an(Dx(t) dt, . ... /] an (D)2 (1) dt)

and let b = (by,...,by). Suppose that b € ri(Adom f).
Then

inf {f(z) | Az = b} = max {(6,) — [*(4*0)}.
veLY(I) HERN
(4.7.5)

Proof. Sce |51, 36]. .
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For problem Z& we can actually get an explicit represen-
tation of the solution. For this we need a representation of

the dual of the f.

Proposition 4.7.6. (Dual of the Integral of Entropy) For
any ¥ € L>(1),

i) = /]p*(x*(t))dt = /]exp(x*(t))dt.

Proof. Let us begin with the case when [ is finite. We can

compute that p*(s) = e® (Exercise 4.7.10). Thus, for any
x* e L*(1)
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P =sup{ [ (" (@).2(0) ~ plae)t | 2 € £'(D)}
< /[ sup[(z* (1), ) — p(x)] dt
_ / (b)) dt = / exp(a*(t)) dt.
I

I
On the other hand, clearly z(t) := exp(z*(t)) € LY(I) and

sup{ [ [(a” (), 2(0) ~ plote)] dt | 2 € V(D))

Is attained at .
When [ is an infinite interval and exp(z*(-)) € LY(I) the

result follows from the finite interval case by limiting process.
If exp(z*(-)) € L'(I) then both sides of the equality are
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+00 according to our convention. We leave the detail as an
exercise (Exercise 4.7.11). .

Combining Theorem 4.7.5 and Proposition 4.7.6 we have
the following corollary that gives an explicit solution to prob-

lem ZE&.

Corollary 4.7.7. Let f: LY(I) — RU {+oc0} be the Isc
conver function defined in IE, let A: L'(I) — RN be
the continuous linear operator defined by

Az = ( /] an(Dz(t) dt, . ... /] an(t)z(t) dt)

and let b = (by,...,byn). Suppose that b € ri(Adom f).
Then Z&E has a unique solution given by



N
:I_j(t) = exp (Z anan(t)) ;
n=1

where ¢ € RY is the solution of

max {(¢,b) — f*(A%)}. (4.7.6)
peRN
Proof. Exercise 4.7.12. .

4.7.5 Commentary and Exercises

The DAD problem and its infinite dimensional extensions
to probability theory were discussed in [54]. A comprehen-
sive foundation for infinite dimensional entropy maximiza-
tion was established in [51] and other papers by Borwein and
Lewis, especially [52]. The value of such formalism is that
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it naturally allows one to handle non-negativity and similar
constraints with a natural barrier function, and that it cap-
tures much of the power of convex duality theory as shown
in Section 4.7.4. A fleshed out application of the results in
that subsection to option pricing can be found in [36].

Exercise 4.7.1. Let X be a Banach space and let C' be
a closed convex subset of X. Show that L*C(¢> = oc(¢) =

SUP.ec (@, ¢). In particular, L?b} = (¢, b).
Exercise 4.7.2. Show that the last supremum in (4.7.2)
must be attained.

Exercise 4.7.3. Show that the infimum in the equality
(4.7.1) may not be attained.

Exercise 4.7.4. Prove Proposition 4.7.2.



Exercise 4.7.5. Let [ be the Boltzmann—Shannon entropy
function defined in (4.7.4). Show that f'(z) = A*¢p — ¢
implies that £ = (%1, ..., Zy) is determined by

Tp =exp(A*p —c)p,n=1,...,N.

Exercise 4.7.6. Verify that ¢ in Theorem 4.7.3 is a La-
erange multiplier for the constrained minimization problem

FE.

Exercise 4.7.7. Let A be a square matrix. Prove that if
there are diagonal matrices D1 and Do with strictly positive
diagonal entries such that D1 ADs is doubly stochastic then
A has a double stochastic pattern.
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Exercise 4.7.8. Show that the constraint in the optimiza-
tion problem in the proot of Theorem 4.7.4 is satisfied at an
interior point of R_{ .

Exercise 4.7.9. Construct a square matrix with nonnega-
tive entries that does not have a doubly stochastic pattern.

Exercise 4.7.10. Verify that for the Bolzmann—Shannon
entropy p defined in (4.7.3) we have p*(s) = e°.

Exercise 4.7.11. Supplement the detail for the proof of
Proposition 4.7.6 in the case when [ is an infinite interval.

Exercise 4.7.12. Prove Corollary 4.7.7.



5

Variational Techniques and Multifunctions

Multifunctions arise naturally in many situations. Some fre-
quently encountered examples are: the level sets and sub-
level sets of a function, various subdifferentials of nonsmooth
functions, the solution sets of an optimization problem de-
pending on some parameters and the vector field of a control
system.



572 5 Multifunctions

Here we give a concise discussion on how to apply the
technique of variational analysis to problems involving multi-
functions. We also discuss subdifferentials as multifunctions.

5.1 Multifunctions

5.1.1 Multifunctions and Related Functions

Let X and Y be two sets. A multifunction from X to Y
iIs a mapping F': X — 2Y7 where 2 represents the col-
lection of all subsets of Y. We define the domain, range
and graph of F' by domF = {z € X | F(x) # 0},
range F' = {y € Y | y € F(z) forsome x € X} and
graph F':= {(x,y) € X XY | y € F(x)}, respectively. The
inverse of a multifunction F: X — 2% is a multifunction
F71 Y — 2% defined by F~Y(y) ={x € X |y € F(x)}.
Clearly the domain of F is the range of F~! and the
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range of F is the domain of F~1. A multifunction is com-
pletely characterized by its graph. Moreover, we have the
following symmetric relationship between F, F~! and the
graph of F: F(z) = {y € Y | (x,y) € graph F'} and
F~Hy) ={z € X | (z,y) € graph F'}. The following are

some examples of multifunctions.

Example 5.1.1. Let X be a Fréchet smooth Banach space
and let f: X — R U {400} be a Isc function. Then O f is
a multifunction from X to X*.

Example 5.1.2. Let X and Y be metric spaces and let
f: X XY — RU{+o0} be alsc function. Then the solution
set to the parametric minimization problem of minimizing

r— f(x,y),



argmin(y) .= {z € X | f(z,y) = inf{f(2,y) | 2’ € X}},
is a multifunction from Y to X.

Example 5.1.3. Let X be a metric space and let f: X —
R U {400} be a lsc function. Then the sublevel set

fH(=o0,r]) = {z € X | f(z) <7}

and the level set

fr) ={zeX|flz)=r}
are multifunctions from R — X.

Example 5.1.4. Let X be a metric space and let f: X —
R be a Isc function. Then the epigraphical profile mapping

Ef(z) = {r e R| f(a) <1}



is a multifunction from X — R. We can see that graph E f=
epi f (Exercise 5.1.3).

One can often study a multifunction F': X — oY through
related functions. Clearly, topap) p completely characterizes
£ When both X and Y are topological spaces, tgqpn 18 a
Isc function on X XY if and only if graph F'is a closed subset
of X x Y. This is an important condition when we analyze a
multifunction with variational techniques. Thus, we define a
multifunction to be closed if its graph is closed. We say that
multifunction F is closed (open, compact, convex) valued if,
for every x € dom F', the set F'(x) is closed (open, compact,
convex). Note that a closed multifunction is always closed
valued yet the converse is not true (Exercise 5.1.2). When
Y has additional structure other functions can be used to
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study a multifunction F': X — oY For example when Y is
a metric space we can use (z,y) — d(F'(x);y) and when Y
is a Banach space we can use (x,x*) — o(F(x);x™). These
functions are in general nonsmooth. We will emphasize the
use of variational tools in studying multifunctions by their
related nonsmooth functions.

5.1.2 An Example: The Convex Subdifferential

Subdifferentials are multifunctions from X to X™*. In Section
3.4 we have seen the interplay of properties of a function
and its (Fréchet) subdifferential. Here we further discuss the
subdifferential of a convex function to illustrate various nice
properties of the subdifferential as a multifunction inherited
from the convexity of the underlying function.



We say a multifunction F': X — 2X™ is monotone pro-
vided that for any x,y € X, * € F(z) and y* € F(y),
(" — 2%y —x) =0
The convex subdifferential of a convex Isc function is a typ-
ical example of a monotone multifunction.

Theorem 5.1.5. Let X be a Banach space and let
f: X - RU{+o0} be a lsc convexr function. Then Of
1$ a monotone multifunction.

Proof. Let z* € 0f(x) and y* € df(y). It follows from
the definition of the convex subdifferential that

fly) = flx) > (=¥, y — x) (5.1.1)

and
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fle) = fly) = e —y) (5.1.2)
Adding (5.1.1) and (5.1.2) we have

(y* — 2%y —x) >0.

In fact the monotonicity of the subdifferential characterizes
the convexity of the underlying function.

Theorem 5.1.6. (Convexity) Let X be a Fréchet smooth
Banach space and let f: X — R U {400} be a lsc func-
tion. Suppose that Opf is monotone. Then f is convex.
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Proof. If Opf is monotone then for each z* € X™ the
operator x — dpf(x) + x* = dp(f + x™)(x) is monotone,
hence quasi-monotone. By Theorem 3.4.12, for each x* €
X*, the function f + 2™ is quasi-convex. This implies the
convexity of f (Exercise 5.1.4). .

Recall that a monotone multifunction F: X — 2% is
said to be maximal monotone if graph F' is not properly
contained in the graph of any monotone multifunction. It is
not hard to check that a maximal monotone multifunction
is convex valued and closed (Exercise 5.1.5). We can fur-
ther prove the maximal monotonicity of a monotone Fréchet

subdifferential of a Isc function (which must be convex by
Theorem 5.1.6).
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Theorem 5.1.7. (Maximal Monotonicity) Let X be a
Fréchet smooth Banach space and let f: X — RU{+o0}
be a proper lsc function. Suppose that dom [ # () and
Orf 1s monotone. Then Orf 1s mazrimal monotone.

Proof. Let b € X and b € X* be such that b* ¢
Opf(b). We need to show that there exists z € X and
r* € Opf(x) such that (x* — b*, x — b) < 0. Observing
that 0 € Jp(f —b*)(b), and therefore b is not a minimum of
f—0b", there exists a € X such that (f—b%)(a) < (f—b%)(b).
Then it follows from the approximate mean value theorem of
Theorem 3.4.6 that there exists a sequence (x;) converging
to ¢ € |a,b) and x; € Opf(x;) such that ¥ == z7 — b* €
Op(f — b*)(x;) satisfying liminf; o (y’, ¢ — x;) > 0 and
lim inf; oo (y;, b —a) > 0. It follows that
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liminf(x; — b*, b — x;) > liminf(y;, b — ¢)

1—>00 1—00
+ liminf(y;, ¢ — z;)
11— 00
h_
> o=l liminf(y;, b — a)

B ||b — CLH 1—00
+ liminf(y;, ¢ — x;) > 0
i—00
[t remains to set x := x; and 2™ = z7 for ¢ sufficiently
large. o

We have seen in Proposition 4.1.2 and Theorem 4.1.8 that
a lsc convex function is locally Lipschitz in the core of its do-
main. Consequently the subdifferential of a Isc convex func-
tion is locally bounded in the core of its domain.
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We will show this holds true in general for a maximal mono-
tone multifunction. The proof actually reduces this more
general situation to the continuity of a convex function in
the core of its domain.

Theorem 5.1.8. (Boundedness of Monotone Multifunc-
tions) Let F': X — 2X" be a monotone multifunction.
Suppose that x € core (dom F). Then F is locally
bounded at x.

Proof. By choosing any z* € F(z) and replacing F' by
the monotone multifunction y — F(y + x) — x*, we lose

no generality in assuming that x = 0 and that 0 € F(0).
Define, for x € X,

f(z) = sup{(y", 2—y) 1y € dom F, [[y[| < Tandy* € F(y)}.
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As the supremum of affine continuous functions, f is con-
vex and lower semicontinuous. We show that dom f is an
absorbing set. First, since 0 € F(0), we must have f > 0.
Second, whenever y € dom F' and y* € F(y), monotonic-
ity implies that 0 < (y* — 0,y — 0), so f(0) < 0. Thus,
f(0) = 0. Suppose x € X. By hypothesis, dom F' is absorb-
ing so there exists ¢ > 0 such that F(tx) # (). Choose any
element u* € F(tx). If y € dom F and y* € F(y), then by
monotonicity

(y" te —y) < (u”,tx —y).
Consequently,

ftz) < sup{(u”,tr —y) 1y € dom F, [|ly[| < 1}
< (u*,tx) + ||[u”|| < 4o0.



By virtue of Proposition 4.1.2 and Theorem 4.1.8, f is
continuous at 0 and hence there exists n > 0 such that
f(x) < 1 for all x € 2nBy. Equivalently, if x € 2nByx,
then (y*, z) < (y*,y) + 1 whenever y € dom F, ||y|| <1
and y* € F(y). Thus, if y € nBx Ndom F and y* € F(y),
then

2n||ly* |l = sup{(y*, z) : = € 2nBx} < |ly*lyll+1 < nl|y™ ||+
so |ly*|| < 1/m. :

Note that Theorem 5.1.8 does not require that the domain
of F' be convex.
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5.1.3 Limits of Sequences of Sets

Having defined multifunctions we turn to their limits and
continuity. We will take a sequential approach, and therefore
need to study the limits of sequences of sets.

Definition 5.1.9. Let Y be a Hausdor{f topological space
and let (F;) be a sequence of subsets of Y. The sequential
lower and upper limits of F; are defined by

liminf F; ={ lim y; |y; € F; foralli=1,2,...}
1— 00 1— 00
and

limsup F; ={ lim y; |y; € F; for some i, — oo}.
71— 00 k—00

Clearly limint; o F; C limsup,;_,~ F;. When they are
equal we define the common set to be the Painlevé-Kuratowski



limit of the sequence (F;) and denote it by lim;_,~, F;. In a
metric space both the sequential lower and upper limits are
closed. However, this is not true in general (Exercise 5.1.8).

When Y is a metric space the lower and upper limits can
be represented alternatively as

O OENG ORNNO ¢
fF;, = 1.

muntr=AUNBE 613

k=1j7=11=j
and

O OENG ORNNG @

limsup F; = ﬂ ﬂ UB; (5.1.4)

1= k=1j=1i=j "

We leave the proofs of these alternative representations as
Eixercise 5.1.6.
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These lower and upper limits can also be described by using
the distance between a set and a point.

Lemma 5.1.10. Let Y be a metric space and let (F;) be
a sequence of subsets imn'Y . Then

liminf F; = {y € Y | limsupd(F;;y) =0}

100 i—00
and
limsup F; = {y € Y | liminf d(F};y) = 0}.
1—00 1— 00
Proof. Exercise 5.1.7. .

Lemma 5.1.10 is a special case of the following more general
characterization of the upper and lower limits of a sequence
of sets.
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Lemma 5.1.11. Let Y be a metric space, let F' be a

closed subset of X and let (F;) be a sequence of subsets
in Y. Then

F C liminf Fj (5.1.5)
i—00
iof and only if for anyy € Y,
limsup d(F5;y) < d(F;y); (5.1.6)
1—00
and
limsup F; C F (5.1.7)
1—00
iof and only iof for anyy € Y,
liminf d(Fy;y) > d(F;y). (5.1.8)
1— 00

Consequently,



lim Fi = F
1— 00
of and only if for anyy € Y,
lim d(Fy) = d(F:y).

1— 00

Proof. We prove the equivalence of (5.1.5) and (5.1.6). It
follows from Lemma 5.1.10 that (5.1.6) implies (5.1.5). Now
suppose (5.1.5) holds and let y € Y be an arbitrary element.

For any € > 0 choose x € F such that d(F;y)+e¢ > d(x,y)
and let (x;) be a sequence converges to x with x; € F;. Then

d(Fiy) < d(i,y).
Taking lim sup as ¢ — oo we have

limsup d(£y;y) < d(z,y) < d(F;y) +e.

1—00
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Since ¢ is arbitrary we obtain (5.1.6).
The proof of the equivalence of (5.1.7) and (5.1.8) is similar
and left as Exercise 5.1.9. .

Applying the Painlevé-Kuratowski limit to the epigraph
of a sequence of functions leads to the concept of epi-
convergence. This is particularly useful in analyzing approx-
imations of functions when minimizing the function is a pri-
mary CONcCern.
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Definition 5.1.12. (Epi-convergence) Let X be a metric

space and let f;: X — R be a sequence of lsc functions.

The lower epi-limit e-limint,_,~, f; s the function with
epi(e-liminf f;) = lim sup epi f;,

100 i—00
and the upper epi-limit e-limsup;_,~, f; 1S the function
with
epi(e-limsup f;) = liminf epi f;.
i—00 1700
When these two functions coincide we say that f; epi-
converges to its epi-limit

e-lim f; = e-liminf f; = e-limsup f;.
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Note that both lower and upper epi-limits are lsc functions,
and so is the epi-limit when it exists (Exercise 5.1.11). Epi-
limits have the following easy yet useful characterization.
whose proof is left as an exercise.

Lemma 5.1.13. Let X be a metric space and let f;: X —
R be a sequence of Isc functions. Then f = e-lim;_~ f;
iof and only if at each point x € X one has

liminf f;(x;) > f(x) for every sequence x; — x
1— 00
(5.1.9)
and
limsup f;(x;) < f(x) for some sequence x; — x

71— 00

(5.1.10)
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Proof. Exercise 5.1.12. .

We end this subsection with a result that illuminates the
usefulness of epi-convergence in minimization problems.

Theorem 5.1.14. Let X be a metric space and let
fi: X — R be a sequence of lsc functions. Suppose that
f =-e-lim;_y~ f; and thatdom f,dom f; C E,2=1,2,...
for some compact subset E of X. Then

lim inf f; = inf f, (5.1.11)
i—00
and
lim sup argmin f; C argmin f. (5.1.12)

1—00
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Proof. Let x € argmin f. Then
(z, f(xz)) € epi f C liminfepi f;,
11— 00

so that there exists (x;, 7;) € epi f; satisfying lim;_, o (2, 7;) =
(z, f(z)). It follows that

inf f = f(z) = lim ri > lmsup; o0 fi(2;)

> lim sup,_yo inf f;. (5.1.13)
On the other hand, let z; € argmin f; C E. Since F is com-
pact there exists a subsequence (7z.) of the natural numbers
such that for some z € E, x = lim,_, ;, and

lim f; (z;,) = liminfinf f;.
k—00 1—00

Thus,



5.1 Multifunctions 595

(x, liminfinf f;) € limsupepi f; C epi f,

=00 i—00
so that
liminfinf f; > f(x) > inf f. (5.1.14)
1— 00

Combining inequalities (5.1.13) and (5.1.14) we have

lim inf f; = inf f.

1— 00

Finally, let € lim sup argmin f; so that there exists a sub-
sequence (zy) of the natural numbers and x; € argmin f;,
such that = limy,_, o, @, . Since
limsupepi f; C epi f
1—»00

we have (7, limsupg_,o f7,(75,)) € epi f so that
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11211 sup fi, (@) = f(2).

Now consider any z € dom f. Then
(z, f(x)) € epi f C liminfepi f;
i—00

so that there exists a sequence (y;,r;) € epi f; converging
to (x, f(x)). It follows that

f(z)= lim r; > limsup f;(y;)

1= i—00
> limsup i, (vy,)) > /(@)
k— 00

Since x € dom f is arbitrary, £ € argmin f. o
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By carefully examining the proof we can see that the condi-
tion that dom f and dom f; are contained in a compact sub-
set E of X is not needed in establishing inclusion (5.1.12).
However, without this condition, (5.1.11) is false (Exercise
5.1.13).

5.1.4 Continuity of Multifunctions

The basic definition is given below.



Definition 5.1.15. (Continuity of Multifunction) Let X
and Y be two Hausdorff topological spaces and let F': X —
oY be a multifunction. We say that F is upper (lower)
semicontinuous at * € X provided that for any open set

U inY with F(z) C U, (F(z)NU #0),
{freX|Flx)cU} {zxeX|Flx)nU=#0})

1S an open set in X.

We say that F' is continuous at x if it 1s both upper
and lower semicontinuous at x. We say that F' is upper
(lower) continuous on S C X if it is upper (lower) con-

tinuous at every x € S. We omit S when it coincides
with the domain of F.



5.1 Multifunctions 599

We will also need a sequential approach to limits and conti-
nuity of multifunctions. This is mainly for applications in the
subdifferential theory because the corresponding topological
approach often yields objects that are too big.

Definition 5.1.16. (Sequential Lower and Upper Limits)
Let X and Y be two Hausdorff topological spaces and let
F: X =2 bea multifunction. We define the sequential
lower and upper limit of F' at * € X by

s-liminf F'(x ﬂ{hm inf F'(x;) | x; — T}

r—T
and
s-limsup F(x) = U{lim sup F'(x;) | x; — T}.
T—X 1—> 00

When
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s-liminf F'(z) = s-limsup F(x)
L= T—T

we call the common set the sequential limit of F at T
and denote it by s-limy_z F'(x).

Definition 5.1.17. (Semicontinuity and Continuity) Let
X and Y be two Hausdorff topological spaces and let
F: X =2 beq multifunction. We say that F' is sequen-

tially lower (upper) semicontinuous at &+ € X provided
that

F(z) C s-liminf F(z) (s-limsup F(x) C F(x)).

T—x T—7T

When F' is both upper and lower semicontinuous at T

we say it 1s continuous at x. In the notation introduced
above,
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F(z) = s-lim F(x).

T—T
Clearly, when Y is a metric space the sequential and the

topological (semi) continuity coincide.
The following example illustrates how the semicontinuity
and continuity of multifunctions relate to that of functions.

Example 5.1.18. (Profile Mappings) Let X be a Banach
space and let f: X — RU{+oo0} be a function. Then the
epigraphic profile of f, E¢ 1s upper (lower) semicontinuous
at T if and only if f is lower (upper) semicontinuous at
z. Consequently, £ ¢ is continuous at T if and only if f is
continuous.

Example 5.1.19. (Sublevel Set Mappings) Let X be a
Banach space and let f: X — R U {400} be a lsc function.



Then the sublevel set mapping S(a) = f~'((—o0,d]) is
upper semicontinuous.

When X and Y are metric spaces we have the following
characterizations of the sequential lower and upper limit.

Theorem 5.1.20. (Continuity and Distance Functions)
Let X and Y be two metric spaces and let F': X — oY
be a multifunction. Then F is sequentially lower (up-
per) semicontinuous at * € X if and only if for every
y €Y, the distance function x — d(F(x);y) is upper
(lower) semicontinuous. Consequently, F is continuous
at T iof and only if for every y € Y, the distance function
r — d(F(z);y) is continuous.



Proof. This follows from Lemma 5.1.11. Details are left as
Exercise 5.1.15. .

The acronym usco (cusco) stands for a (convex) upper semi-
continuous non-empty valued compact multifunction. Such
multifunctions are interesting because they describe com-
mon features of the maximal monotone operators, of the
convex subdifferential and of the Clarke generalized gradi-
ent.
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Definition 5.1.21. Let X be a Banach space and let Y
be a Hausdorff topological vector space. We say F: X —
oY s an usco (cusco) provided that F is a nonempty
(convex) compact valued upper semicontinuous multi-
function. An usco (cusco) is minimal if it does not prop-
erly contain any other usco (cusco).

A particularly useful case is when Y = X* with its weak-
star topology. In this case we use the terminology weak™-usco
(-cusco).
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Closed multifunctions and uscos have an intimate relation-
ship.
Proposition 5.1.22. Let X and Y be two Hausdorff
topological spaces and let F': X — 2 be a multifunc-
tion. Suppose that F is an usco. Then it is closed. If in
addition, range F' 1s compact, then F' is an usco if and
only if F' 1s closed.

Proof. It is easy to check that if F': X — oY is an usco,
then its graph is closed (Exercise 5.1.16). Now suppose F'is
closed and range F' is compact. Then clearly F' is compact
valued. We show it is upper semicontinuous. Suppose on the
contrary that F'is not upper semicontinuous at £ € X. Then
there exists an open set U C Y containing F'(Z) and a net
ro — T and yo € F(xq)\U for each a. Since range F' is



compact, we can take subnet (zg,y3) of (za,ya) such that
rg — = and yg — y ¢ U. On the other hand it follows
from F' is closed that y € F'(x) C U, a contradiction. .

An important feature of an usco (cusco) is that it always
contains a minimal one.

Proposition 5.1.23. (Existence of Minimal usco) Let
X and Y be two Hausdorff topological spaces and let
F: X — 2 be an usco (cusco). Then there exists a
minimal usco (cusco) contained in F'.

Proof. By virtue of of Zorn’s lemma we need only show
that any decreasing chain (Fy,) of usco (cusco) maps con-
tained in F' in terms of set inclusion has a minimal element.

For x € X define Fy(x) = () Fu(x). Since Fy(x) are com-



pact, Fp(x) is nonempty, (convex) and compact. It remains
to show that F{y is upper semicontinuous. Suppose that
r € X,UisopeninY and Fy(xz) C U. Then F(x) C U for
some . Indeed, if each Fi(x)\U were nonempty then the in-
tersection of these compact nested sets would be a nonempty
subset of Fjy(x)\U, a contradiction. By upper semicontinu-
ity of Fy,, there exists an open set V' containing x such that

Fo(V) C Fo (V) CU. .
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When Y = R the proposition below provides a procedure
of constructing a minimal usco contained in a given usco.

Proposition 5.1.24. Let X be a Hausdorff topological
space and F': X — R an usco. For each x € X, put
flz) == min{r | r € F(z)}. Let G: X — 2R be the
closure of f (i.e., the set-valued mapping whose graph is
the closure of the graph of f). Now put g(z) := max{r |
r € G(z)} for each x € X. Finally let H: X — 2R pe
the closure of g. Then H 1s a mintmal usco contained in
F.

Proof. bSince the graph of F'is closed, G is contained in
F', and (G is an usco as G is closed and F' is an usco. For the
same reason H is an usco contained in G.



To show that H is minimal, consider open sets U C X
and W C R, such that there is some w € H(U) "W It is
sufficient to find a nonempty open subset of U, whose image
under H is entirely contained in W

Fix some e < d(R\W;w). Since w € H(U), there is some
v € U such that g(z) € (w — €;w + €). This means that
G(x) C (—oo;w + €) and by upper semi-continuity of G
there is an open V- C U, V 3 z, such that G(V') C (—o0 ;
w+ €).

As g(z) € (w—e,w+e), thereissome 2’ € V with f(2') €
(w — &, w + ). This means that F'(2') C (w — &, +00) and
by upper semi-continuity of F' there is an open V' C V.,
V' > 2/, such that F(V') C (w — €, +00).
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Now HV') ¢ FV)NG(V) C (w—¢c,w+e) CW.

Thus H 1s a minimal usco. .

Maximal monotone operators, in particular, subdifferen-
tials of convex functions provide interesting examples of w™*
cuscos. We leave the verification of the following example as
a guided exercise (Exercise 5.1.17).

Example 5.1.25. Let X be a Banach space, let F': X —
2X” he a maximal monotone multifunction and let S be an
open subset of dom F'. Then the restriction of F' to S is a
w-cusco.
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To turther explore the relationship of maximal monotone
multifunctions and cuscos we need to extend the notion of
maximal monotone multifunctions to arbitrary set.

Definition 5.1.26. (Maximal Monotone on a Set) Let X

be a Banach space, let F': X — 2X" be a monotone mul-
tifunction and let S be a subset of X. We say that F 1s
maximal monotone in S provided the monotone set

graph FN(Sx X™) == {(x,2") € SxX* | x € Sand 2™ € F(x)
1s maximal under the set inclusion wn the family of all
monotone sets contained in S X X*.

It turns out that a monotone cusco on an open set is max-
imal.



612 5 Multifunctions

Lemma 5.1.27. Let X be a Banach space, let F': X —
2X" be a monotone multifunction and let S be an open
subset of X. Suppose that S C dom F and F is a w'-
cusco on S. Then F' 1s maximal monotone in S.

Proof. We need only show that if (y, y*) € S'x X ™ satisfies
(y* —a*,y—x)>0forall x € S,2" € F(x),
(5.1.15)

then y* € F(y). If not, by the separation theorem there
exists z € X \{0} such that
Fly) c{z" € X7 | {",2) < (y". 2)} = W.

Since W is weak™ open and F' is w™upper semicontinuous
on S, there exists an h > 0 with Bj(y) C S such that
F(By(y)) € W. Now, for t € (0,h/||z]|), we have y +tz €
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By, (y), and therefore F'(y + tz) C W. Applying (5.1.15) to
any u* € F(y + tz) we get
0<(y" —u'y—(y+tz)) = —ty" —u",2),

which implies (u*, z) > (y*, 2z), that is ™ & W, a contra-
diction. .

As a corollary we have

Corollary 5.1.28. Let X be a Banach space, let F': X —
2X" be a mazimal monotone multifunction and let S be
an open subset of X. Suppose that S C dom F'. Then F
1s maximal monotone in S.
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Proof. DBy Example 5.1.25 the maximal monotonicity of
F implies that F'is a w*cusco on S, so the result follows
from Lemma 5.1.27. .

Now we can prove the interesting relation that a maximal
monotone multifunction on an open set is a minimal cusco.

Theorem 5.1.29. (Maximal Monotonicity and Minimal
cusco) Let X be a Banach space, let S be an open subset
of X and let F' be a mazrimal monotone multifunction in
S. Then F is a minimal w*-cusco.

Proof. We know by Example 5.1.25 that F' is a w™cusco.
Suppose that G: S — 24 is a w'cusco and graph G C
graph F'. By Lemma 5.1.27, G is maximal monotone, and

therefore G = F'. .
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Note that a maximal monotone multifunction need not be
a minimal usco. The following example clarifies the difference
whose easy proof is left as Exercise 5.1.18.

Example 5.1.30. Define monotone multifunctions Fj, F
and F5 from R — 2R by

Fy(x) = Fi(x) = Fo(x) = sgn z if x # 0,
while
Fo(0) = {—=1}, £71(0) = {=1,1} and F5(0) = [-1,1].

Then graph Fy C graph F7 C graph F5, and they are all
distinct. The multifunction F5 is maximal monotone and
minimal cusco, F7 is minimal usco and F{y does not have a
closed graph.
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5.1.6 Monotone Operators and the Fitzpatrick Function

Throughout this subsection, (X, || - ||) is a reflexive Banach
space with dual X* and T: X — 2X™ is maximal mono-
tone. The Fitzpatrick function Frp, associated with T', is
the proper closed convex function defined on X x X™ by
Pp(z,2%)= sup [(y",z) + (z",y) — (¥, y)]
yrely

— <$*7$> T SU‘CIZ{ <$* o y*ay o CE>
yrely

Since 1" 1s maximal monotone
sup (2% —y*,y —x) >0
yrely
and the equality holds if and only if 2™ € Tz, it follows that
Fp(x, ™) > (2™, x) (5.1.16)



with equality holding if and only if z* € Tx. Thus, we
capture much of a maximal monotone multifunction via an
associated convex function.

Using only the Fitzpatrick function and the decoupling
lemma we can prove the following fundamental result re-
markably easily.

Theorem 5.1.31. (Rockafellar) Let X be a reflexive Ba-
nach space and let T: X — 2X" be a maximal monotone

operator. Then range(T' + J) = X*. Here J is the duality
map defined by J(x) := 0| z||*/2.

Proof. The Cauchy inequality and (5.1.16) implies that
for all =, x*,



|]|” + [l*]° )
2
Applying the decoupling result of Lemma 4.3.1 to (5.1.17)
we conclude that there exists a point (w*,w) € X* x X
such that
0 < Fp(z,x*) — (w*, z) — (¥, w)
P+ QI
2
Choosing y € —Jw* and y* € —Jw in inequality (5.1.18)
we have

FT(CE,$*> + > 0. (5.1.17

+{(w*, y) + (y*,w)y  (5.1.18)

N 0 e e

Fr(z,z™) — (w*, z) — (", w) > 5

(5.1.19)



For any z* € Tz, adding (w™, w) to both sides of the above
inequality and noticing Frp(x, 2*) = (x*, x) we obtain

2 * (|2
P T

+ {(w*, w) > 0.
(5.1.20)

Since (5.1.20) holds for all z* € Tz and T' is maximal we
must have w* € Tw. Now setting #* = w*™ and = w in

(5.1.20) yields
w]” + [lw*]*
2
which implies —w™* € Jw. Thus, 0 € (T + J)w. Since the

arcument applies equally well to all translations of 1", we
have range(T + J) = X™ as required. .

+{w*, w) =0,
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There is a tight relationship between nonexpansive map-

pings and monotone operators in Hilbert spaces, as stated
in the next lemma.

Lemma 5.1.32. Let H be a Hilbert space. Suppose that
P and T are two multifunctions from subsets of H to
o whose graphs are related by the condition (x,y) €
graph P if and only if (v,w) € graph T where v = w4+
and y =w —v. Then

(i) P is nonexpansive (and single-valued) if and only if

1" 18 monotone.
(ii) dom P = range(T + I).
Proof. Exercise 5.1.29. o
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This very easily leads to the Kirszbraun—Valentine theorem
1161, 254] on the existence of nonexpansive extensions to all
of Hilbert space of nonexpansive mappings on subsets of
Hilbert space. The proof is left as a guided exercise.

Theorem 5.1.33. (Kirszbraun—Valentine) Let H be a
Hilbert space and let D be a non-empty subset of H.
Suppose that P: D — H 1s a NONETPANsIEe Mapping.
Then there exists a nonerpansive mapping P: H — H

defined on all of H such that P|p = P.
Proof. Exercise 5.1.30. o

Alternatively [226], one may directly associate a convex
Fitzpatrick function Fp with a non-expansive mapping P,



622 5 Multifunctions
and thereby derive the Kirszbraun—Valentine theorem, see
Eixercise 5.1.31.

5.1.7 Commen tary and Exercises

Multifunctions or set-valued functions have wide applica-
tions and have been the subject of intensive research in the
past several decades. Our purpose in this short section is
merely to provide minimal preliminaries and some interest-
ing examples. Aubin and Frankowska’s monograph [8] and
Klein and Thompson’s book [162] are excellent references for
readers who are interested in this subject.

The subdifferential for convex functions is the first general-
ized differential concept that leads to a multifunction. It has
many nice properties later generalized to the classes of usco
and cusco multifunctions. The usco and cusco also relate to



5.1 Multifunctions 623

other concepts of generalized derivative such as the Clarke
generalized gradient. Our discussion on usco and cusco here
largely follows those in [56, 70, 221].

Maximal monotone operators are generalizations of the
convex subdifferential—though they first flourished in par-
tial differential equation theory. Rockafellar’s result in Theo-
rem 5.1.31 is in |230]. The original proofs were very extended
and quite sophisticated—they used tools such as Brouwer’s
fixed point theorem and Banach space renorming theory. As
with the proof of the local boundedness of Theorem 5.1.8,
ultimately the result is reduced to much more accessible geo-
metric convex analysis. These proofs well illustrate the tech-
niques of variational analysis: using a properly constructed
auxiliary function, the variational principle with decoupling
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in the form of a sandwich theorem and followed by an ap-
propriate decoding of the information. Simon Fitzpatrick
played a crucial role in this process by constructing the aux-
iliary functions. The proof of Theorem 5.1.8 follows [40)].
The short proof of Theorem 5.1.31 is a reworking of that
of [241] given in |67 using the Fitzpatrick function discov-
ered in [120]. The technique in the proof of Theorem 5.1.31
becomes much more powerful when we view the Cauchy in-
equality as a special case of the Fenchel-Young inequality
for a general convex function. A beautiful application is the
proof of maximality of the sum of two maximal monotone

operators in reflexive spaces [32, 33, 240| (see also guided
Exercises 5.1.44, 5.1.45 and 5.1.46).

Exercise 5.1.1. Let F' be a multifunction from X to Y.
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(i) Show that dom F' = range '~ ! and range F' = dom F~ 1.

(ii) Show that F(x) = {y € Y | (x,y) € graph F'} and
F~ly) = {z € X | (x,y) € graph F'}.

Exercise 5.1.2. Let X and Y be Hausdorft topological

spaces and let F: X — 2¥ be a multifunction.

(i) Show that if F' is closed then it is closed valued.
(i1) Construct a closed valued multifunction whose graph is
not closed.

Exercise 5.1.3. Let X be a metric space and let f: X —
R U {+00} be a Isc function. Show that graph E¢ = epi f.

Exercise 5.1.4. Let X be a Banach space and let f: X —
R U {400} be a function. Suppose that, for any z* € X*,
r — f(x)+ (x*, z) is quasi-convex. Show that f is a convex
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function. Hint: Choose x* such that f(z)+{(x*, x) = f(y)+
(%, y).
Exercise 5.1.5. Let X be a Banach space and let F': X —

92X he a maximal monotone multifunction. Show that F is
convex valued and closed.

Exercise 5.1.6. Prove the representations of the lower and
upper limits of sequence of subsets in (5.1.3) and (5.1.4).

Exercise 5.1.7. Prove Lemma 5.1.10.

Exercise 5.1.8. Prove that in a metric space the sequential
lower and upper limits of a sequence of subsets are always
closed sets. Give an example showing that this is not the
case in a general Hausdorft topological space.
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Exercise 5.1.9. Prove the equivalence of (5.1.7) and (5.1.8)
in Lemma 5.1.11.

Exercise 5.1.10. (Limits of Monotone and Sandwiched Se-
quences) Let (F;) be a sequence in a metric space Y.

(i) Suppose that (F}) is monotone increasing, 1.e, F C F;1q
fori=1,2,.... Then lim; , F; = cl|J;2

(ii) Suppose that (FZ) is monotone decreasmg, e Fz‘+1 C
Fjfor i =1,2,.... Then lim; oo F; = (72 Cl F;.

(iii) Suppose that F; C G; C H; and lim;_, F; =
lim;_y~o H; = G. Then lim;_,,, G, = G.

Exercise 5.1.11. (Lower Semicontinuity of Epi-limits) Let

X be a metric space and let f;: X — R be a sequence of lsc

functions. Then both e-liminf;_,, f; and e-limsup,_,, f;
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are lsc functions. Therefore, e-lim; ., f; is a Isc function
when exists.

Exercise 5.1.12. (Characterization of Epi-limits) Prove
Lemma 5.1.13.

Exercise 5.1.13. Construct an example on X = R show-
ing that without the condition that dom f and dom f; be-
long to a compact subset of X, the conclusion (5.1.11) in
Theorem 5.1.14 is false.

Exercise 5.1.14. Prove the claim in Example 5.1.18.
Exercise 5.1.15. Prove Theorem 5.1.20.

Exercise 5.1.16. Let F': X — 2¥ be an usco. Show that
oraph F' is a closed subset of X x Y.
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Exercise 5.1.17. Verity Example 5.1.25. Hint: By Exercise
5.1.5 Fis convex valued and closed. The upper semicontinu-
ity of F' follows from Theorem 5.1.8 and Proposition 5.1.22.

Exercise 5.1.18. Verify the claims in Example 5.1.30.

Exercise 5.1.19. Construct a multifunction F' from R to
R? whose projections into R are both minimal usco map-
pings yet F itself is not. Hint: Let F'(z) = {(sgn(x); sgn(x))}
for z # 0, while

F(O) — {<_13 _1)7 <_13 1)7 (13 _1>7 (13 1>}

Exercise 5.1.20. Construct a minimal usco contained in
a given usco F': Z — R,

Exercise 5.1.21. Deduce that every maximal monotone
mapping on a reflexive space which is coercive (in the sense



that inf «cp,. (2%, ) /||z|| = oo with ||z|| — oo) is surjec-
tive, by considering the sequence (T + %J ). Hint: It helps
to know that maximal monotone operators (and so their in-
verses) are sequentially demi-closed, that is x; —4 x,y; —
y,y; € Tx; implies y € T'x. This is neatly proved via the
Fitzpatrick function.

In a non-reflexive space this fails badly. Indeed the exis-
tence of surjective, coercive subgradient mappings forces the
space to be reflexive, [121].

Exercise 5.1.22. Show in finite dimensions that a single-
valued surjective monotone mapping is weakly coercive,
meaning that ||Tx|| — oo when ||z|| — oo.

Exercise 5.1.23. Compute the Fitzpatrick function of T’
when 7' is a linear maximal monotone mapping.
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Exercise 5.1.24. Compute the Fitzpatrick tunction of 17"+
S when T’ is maximal monotone and S is a skew bounded
linear mapping.

xExercise 5.1.25. Suppose 7T' is maximal monotone and
skew —that is, both 7" and —1" are monotone on X . Suppose,
on translating if need be that 0 € T'(0) and dom(7") is a
dense absorbing set.

Show that in any Banach space, a maximal monotone skew
mapping whose domain has non-empty interior extends to
a bounded skew affine mapping on the whole space. Hint:
Show that T'(z) C K(x) := {z* | Fp(x,2™) < 0}, so that
K is a convex multifunction. Now check that K(0) = {0}.
Deduce that K is single valued, and therefore T'(x) = K (x)
on dom(7T).



Exercise 5.1.26. Supposing 71" is maximal monotone and
skew, show that dom(7T") is affine.

«Exercise 5.1.27. Determine when a C'! monotone map-
ping, T, whose domain is open, can be written as T' = '+
where f is a twice differentiable convex function and S is a
skew and bounded linear mapping. Hint: (i) the gradient of
T" is a linear monotone mapping, and so can be written as
P(x) + S(xz) where P is positive semi-definite, and (ii) the
skew monotone part is linear by Exercise 5.1.25. It remains
to determine when P is a Hessian.



5.1 Multifunctions 633

xExercise 5.1.28. Monotone mappings such that 7"+ J is
surjective are called hypermonotone. Show that a hyper-
monotone mapping on a reflexive space is maximal mono-
tone as soon as J and J 1 are both injective, but not nec-
essarily more generally. In Hilbert space this result is due
to Minty [194]. Deduce that T" is hypermonotone as soon as
T+ o J is surjective for some o > 0.

Exercise 5.1.29. Prove Lemma 5.1.32.
Exercise 5.1.30. Prove Theorem 5.1.33 as follows:

(i) Associate P to a monotone function T as in Lemma
5.1.32. .
(ii) Extend T to a maximal monotone multifunction 7.
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(iii) Define P from T using Lemma 5.1.32 and use Rockafel-
lar’s theorem to assert dom(P) = range(T + I) = H.
(iv) Check that P is indeed an extension of P.

xExercise 5.1.31. Use Lemma 5.1.32 to explicitly define a
convex Fitzpatrick function associated with a nonexpansive
mapping, and determine its properties.

Exercise 5.1.32. Let H be a Hilbert spaceand letT': H —
H he a monotone multifunction. Show that Q = (I +
T~ 1~ is nonexpansive. Moreover, if T is maximal mono-

tone then dom @ = H. Hint: dom Q = range(I + T~ 1).
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Exercise 5.1.33. (Resolvents) Let H be a Hilbert space
with T: H — 2 a maximal monotone multifunction. For
A > 0, show that the resolvent Ry == (I + XT)~ ! is ev-
erywhere defined, with range in the domain of 7" and non-
expansive. Deduce that the Yosida approzimate T)(x) :=
T R) is an everywhere defined, (1/)\)-Lipschitz and maximal
monotone mapping.

Show for x in the domain of T" that Ty (x) converges to the
minimal norm member of T'x. What happens when T'x is
empty”?

Non-expansivity is very definitely a Hilbert space prop-
erty, but the Yosida approximate remains useful more gen-
erally (as in the next exercise) |96]. Hint: Supposing x* &€
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Tx and z7 € T)\(x;) we have (x; — 2, 2;) < 0. Thus

(4
lim sup;_s o ||%;]| = inf ||Tx||. Now use demi-closure.

Exercise 5.1.34. For a maximal monotone operator 1" in
Hilbert space, show that T)(x) = (T_1 + )\])_1 (x) for
all  in the space. Hint: for each = the righthand side is
nonempty and a subset of the left.

xExercise 5.1.35. Show that the domain—and hence range—
of a maximal monotone operator on a reflexive space is semi-
convex — that is, has a convex closure. It is unknown whether
this holds in arbitrary Banach space [240], but see Exer-
cise 5.1.41. Hint: Without loss assume 0 is in the closure of
convdom(T). Fix y € dom(T), y* € T'(y), and use inequal-
ity (5.1.19) for T'/7 to write
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. 1
where [|w;|| = ||wS|| and w; € dom(T"). Since FT/Z-(y, y* i) =
(y,y*)/i — 0 as i — oo we deduce that sup; ||w;|| < oo.
Thus (w;) has a weak cluster point w*. In particular,

d- 0) <liminf |[|w;||* <  inf —w™,
dom(T )( )_ : || z|| > yEdom(T)< y)
— inf <_w*7y> < Hw*” dconvdom(T)<O> =0

yeconv dom(7T)

We have actually shown that clconvdom(7T) C cldom(T)
and so cl dom(T") is convex as required. What does this proof
technique allow you to deduce in a non-reflexive Banach
space”’
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+Exercise 5.1.36. (Maximality of the Sum) Let T" and U

be maximal monotone operators on a Hilbert space, H, and
let A > 0 be given.

(i) Show that range(T\ +U 4+ pl) = H, for p > 1/
(ii) Deduce that T\ + U is maximal monotone.

(iii) Show that T'+ U is maximal monotone when dom(U') N
int(domT") # ().

Hint: (i) For any y € H, the mapping

2 (UA+pl) " [y — Ty(2)]
is a Banach contraction. (iii) We may suppose 0 € T'(0) N
U(0) and that 0 is interior to the domain of T Let \; |

0. Note that 0 € T} (0). Show that the solutions ¢; €
Ty, (z),u; € Ulx;) with y = t; + u; + ; yield a Cauchy
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sequence (x;) as follows:
(wi—aj, vi—xj) < —(ti—tj, \iti—Aj ;) < 2(AA;) sup ||t

Use monotonicity and the fact that the domains intersect to
show ||z;|| < |ly||. Now use the interiority hypothesis and the
consequent local boundedness at 0 of the monotone operator
T to show (t;) remains bounded and also has a weakly con-
vergent subsequence. Conclude that (x;) converges in norm.

Finish by taking limits and using demi-closedness.

Note that everything has been reduced to Rockafellar’s the-
orem and so to the Hahn—-Banach theorem. An extension of
this proot will work in arbitrary reflexive space, but step
(i) must be replaced by a finite dimensional approximation
argument.
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Exercise 5.1.37. Show that for a closed convex set C in
a Banach space and A > 0 one has

(D1c)oy, = Dec O - [P = Ad2 ().

+Exercise 5.1.38. (Monotone Variational Inequalities) Let
T" be a maximal monotone operator on a Banach space and
let C' be a closed convex subset of X.

(i) Show that the solution of the monotone variational in-
equality:

there exist z € C' and t* € T'(x)

such that (t*,¢ —x) > 0 for all c € C

1S equivalent to the monotone inclusion

0e (T+0uo)(x).

VI(T,C) {



(ii) In particular, if T"is coercive on C' and the sum T+ 0v
is maximal monotone for which Exercise 5.1.36 gives
conditions, then the variational inequality has a solution.

(iii) Specialize this to the cases when T' is coercive and (a)
C' =iByx,asi— oo, or (b) Cis a closed convex cone
— a so-called complementarity problem.

(iv) Consider two monotone operators 1" and U on X and
Y respectively. Show that M(z,y) = (Tz,Uy) is
monotone on X X Y and is maximal if and only if
both T" and U are. Denote the diagonal convex set
by A = {(z,y) € X xY | z = y}. Check that
0 € range(T + U) if and only if VI (M, A) has solu-

t1omn.
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xExercise 5.1.39. (Transversality 1) Let T° be maximal
monotone operator on a Hilbert space, H, and let C' be a
non-empty closed convex subset of H.

(i) Show that when T is coercive on C' the condition
0 € core|dom(T) — C] (5.1.21)

implies VI (T, C') has a solution.
(ii) This remains true in a reflexive Banach space.

Hint: By Exercise 5.1.36, VI(T7 /;, C') has a solution:
1
x; € Ot ET(mi——_ti), int <ti,C—CIZ’> > 0.
() ceC

Condition (5.1.21) and the Baire category theorem imply
that for some N > 0 one has 0 € [T~ NBpy) — C N
N Bp|. This and coercivity of T" suffice to show, much as in
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Exercise 5.1.36, that (x;) and (¢;) remain bounded as ¢ goes
to infinity. Thence, (z;) is norm convergent and one may to
move to the limit.

xExercise 5.1.40. (Transversality II) Let T and U be max-
imal monotone operators on a Hilbert space.

(i) Use Exercises 5.1.38 and 5.1.39 to show that
0 € core[dom(T") — dom(U )]

implies T'+ U is maximal monotone.
(ii) This remains true in a reflexive Banach space.

xExercise 5.1.41. (Ranges) (i) Prove that a Banach space
X is reflexive if the interior of range(df) is convex for each
strongly coercive continuous convex function f on X. Hint:
Suppose X is nonreflexive and p € X with ||p|| = 5 and
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p* € Jp where J is the duality map. Define f(x) :=

1
e { Sl o = pll = 12+ 9%, 2), o+ 2l - 12 - 7 2)|
for x € X. By the max-formula, we have, for ¢ € By,

0f (p) = Bx++p*, 0f(=p)=Bx+—p", 0f(x)=Jx
(5.1.22)
using inequalities like ||p — p|| — 12 + (p*,p) = 13 > % =
1 2
5llpll~
Moreover, f(0) = 0 and f(z) > %Hx” for ||x|| > 1, thus
||| > % if 2* € 0f(x) and ||x|| > 1. Combining this with
(5.1.22) shows

1 1
range(0f) N iBX* = range(J) N iBX*°



5.1 Multifunctions 645

Let Ux+ denote the open unit ball in X™*. Now James’ the-
orem gives us points x* € %UX* \ range(J), thus Ux= \
range(df) # (). However, from (5.1.22)

Ux+ C conv((p*+Ux+)U(—p*+Ux+)) C convint range(9 f)
so range(d f) has non-convex interior.

(ii) Deduce the following:

Theorem 5.1.34. A normed linear space X s reflexive
of and only if every continuous convex function f on X
has int range(0f) convex.

(iii) Observe that the easiest explicit example lies in the
space cqg of null sequences endowed with the supremum
norm. One may use

f(z) = ||z —e1llcc + ||z + e1]lco (5.1.23)
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where ey is first unit vector. Then

int range(0f) = {U51+61} {Ug1 —61}
cl int range(0f) = {Bg1 + 61} {Bg1 — 61}

both of which are far from convex.
(iv) Compute the closure of the range of the subgradient.

xExercise 5.1.42. Let X be a Banach space and let S, T :
X — 2% be monotone operators. Suppose that

0 € core[conv dom(T") — conv dom(.S)].

Prove that there exist r,c > 0 such that, for any z €&
dom(7T") Ndom(S) and t* € T'(x) and s* € S(z),

max([[t7]], |s™[]) < e (r + ||=]))(r + [t + s7]]).

Hint: Consider the convex lower semi-continuous function
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(2%, x — 2)

op(z) = sup .
2*eT(z) L+ [[z]]

This is a refinement of the function we used to prove lo-
cal boundedness of monotone operators. First show that (i)

convdom(7) C domop, and that (ii) J;2[{z | og(z) <
i x| < i} —{x | oplz) < i, ||z|| <1} = X. Reference:
258].
xExercise 5.1.43. Let X be a Banach space and let S, T :
X — 2X7 be maximal monotone operators. Suppose that
0 € core[conv dom(T") — conv dom(5)).

Prove that, for any x € dom(7T") N dom(S), T'(x) + S(x) is
a w™-closed subset of X™*.



Hint: In view of the Krein-Smulian theorem it is enough to
prove that every bounded w*-convergent net in T'(x) + S(x)
has its limits in T'(x) + S(z). This can be done by using the
estimate in Exercise 5.1.42. Reference: [258].

xExercise 5.1.44. Let X be a reflexive Banach space. Prove
that a monotone mapping 1" : X — 24 is maximal if and
only if the mapping T'(- + x) + J is surjective for all z in
X . References: [33, 240].

xkxercise 5.1.45. Prove the following theorem.
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Theorem 5.1.35. Let X be a reflevive space, let T be
maximal and let f be closed and convexr. Suppose that

0 € core{convdom(T") — convdom O(f)}.

Then

(a) Of +T + J is surjective.
(b) Of +T is mazximal monotone.
(c) Of is maximal monotone.

Hint: Consider the Fitzpatrick function Fp(x, x*) and fur-
ther introduce fy(z) = f(z) 4+ 1/2||z||*. Let G(x,z*) =
—fj(x) — f7(=2"). Observe that

Fr(x,z*) > (x,2") > G(z,x2")
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pointwise thanks to the Fenchel-Young inequality. Now

apply the decoupling result in Lemma 4.3.1 and Exercise
5.1.44.

xExercise 5.1.46. Deduce the following result in [240] as a
corollary of Theorem 5.1.35.

Theorem 5.1.36. Let X be a reflexive Banach space, let

7Ss: X — 2X be mazimal monotone operators. Suppose
that

0 € core[conv dom(T") — conv dom(.5)].

Then T + S 15 maximal monotone.

Hint: Apply Theorem 5.1.35 to T'(x,y) := (T1(x), T5(y))
and the indicator function f(z,y) = tg— n (2, y).
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Exercise 5.1.47. (Gossez” Example [130]) Define

for N =1,2,... where S : {1 — f~ is a continuous linear
map given by (Sx), =

—Zxk+2xk, forall v = (x1.) € {1,n=1,2,....
k<n k>n

Show that Ty is a coercive maximal monotone operator
with tull domain whose range for N large has a non-convex
closure.

Hint: We record that S : ¢1 — f~ is a skew bounded linear
operator, for which S* is not monotone but —S* is. More-
over, e := (1,1,...,1,...) & clrange(.S). [12, 15]. To see
that I'y := clrange(T) is not convex, first note that I'y
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is homogeneous. Hence, it is impossible that clrange(Ty) =
(> for infinitely many N > 0 as this forces e € clrange(.S).
Thus, if convex, I'n must eventually be a norm closed proper

subspace in £°°. Fix such an N with I’y proper. There then
is some 0 # p € (£°°)* with

2~ M, S ) = 27N (S, p) = (J (), )

for all € ¢'. By considering the image of {te] — tes | t >
0}, we may derive that for all € £°°, the set 'y contains
points of the form (y1,ys,m), and so for all z € £ we

have (z,u) = (P(2), ) where P(z) = (21, 29,0). Thus,
1= P*(u) € 1. Select a bounded net z, —* 1, x4 € {1,
lzalll < ||pll1, so g — p in £1, by the Kadec property.

Thus,
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0> 27N, %) =27 lim (wg, S*u) =liminf(J(zq), p)

a—r <0 a—r o<

=(J(p), )
=lul* >0,

which 1s a contradiction.

5.2 Subdifferentials as Multifunctions

5.2.1 Clarke’s Generalized Gradient

We define the Clarke subdifferential and related normal cone
concepts following Clarke’s original three-step approach.
First, we define the Clarke subdifferential for Lipschitz func-
tions by using the Clarke directional derivative. Then, we
generate the corresponding normal cone with the Clarke sub-
differential for distance functions.
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Finally, we define the Clarke subdifferential for a lsc func-
tion f using the normal cone to the epigraph of f.

Definition 5.2.1. (Clarke Directional Derivative) Let X
be a Banach space and let f: X — R be a locally Lips-
chitz function. We define the Clarke directional deriva-
tive of f at T wn the direction h by

f°(z;h) := limsup fly+th) = f(y)
t—0+, y—x t

The following proposition is easy to check.
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Proposition 5.2.2. Let X be a Banach space and let
f: X — R be Lipschitz with a Lipschitz constant L near
T. Then the function h — f°(Z;h) is finite, positively
homogeneous, subadditive and satisfies

f(@h) < LAl
Proof. Exercise 5.2.2. o

Definition 5.2.3. (Clarke Subdifferential) Let X be a Ba-
nach space and let f: X — R be a locally Lipschitz func-
tion. We define the Clarke subdifferential of f at T by

Ocf(z) ={z* € X*| (% h) < f°(x;h) forallh € X}.
We can show that f© is the support function of 9. f.



Proposition 5.2.4. Let X be a Banach space and let
f: X — R be Lipschitz with a Lipschitz constant L near
. Then

X

(i) = — Ocf(x) is a nonempty, convex, weak™-compact
subset of X* and ||x*|| < L for every x* € O f(Z).

(ii) For every h € X,

fo(@:h) = max{(z", h) | " € Oc f(x)}.

Proof. Conclusion (i) follows directly from the defini-
tion and Alaoglu’s theorem (for the weak™ compactness).
To prove (ii) observe that for any h € X, f°(x; h) is no less
than the given maximum by the definition. Suppose that
for some h, f°(x;h) exceeds the maximum. Then by the
Hahn-Banach Extension Theorem of Theorem 4.3.7 (with



the linear subspace being the span of h) there exists a lin-
ear functional x* € X™* majorized by f°(Z;-) and agreeing
with it at h. It follows that 2* € 9o f(7), and therefore
fe(z;h) > (x*, h) = f°(x; h), a contradiction. .

Thus, properties of o f can often be derived through cor-
responding properties of f°. We illustrate this method by
three examples.

Proposition 5.2.5. (Optimality Condition) Let X be a
Banach space and let f: X — R be a locally Lipschitz

function. Suppose that | attains a local minimum at T.
Then

0 € 0o f(x).
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Proof. We need only check by definition that when Z is a

local minimum of f, f°(z;h) > 0 for any h € X (Exercises
5.2.1). :

Theorem 5.2.6. (Sum Rule) Let X be a Banach space

and let fn,: X — R,n = 1,...,N be locally Lipschitz
functions. Then

N

5’(]( Z fn) (@ C é\f: a(]fn(ff)-
n=1

n=1
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Proof. It suffices to prove the case when N = 2 and the
general case follows by induction. Since the support func-
tion on the left- and right-hand sides (evaluated at h) are,
respectively, (f1 + f2)°(z;h) and f{(z;h) + f5(x; h), this
follows readily from Proposition 5.2.2. .

Theorem 5.2.7. (Cusco Property) Let X be a Banach
space and let f: X — R be a locally Lipschitz function.
Then O f is a weak® cusco.

Proof. In view of Proposition 5.2.4 we need only show that
Ocf is an upper semicontinuous multifunction. We show
that (xz,h) — f°(x; h) is an upper semicontinuous function
which implies the conclusion. Let L be a Lipschitz constant
of f near ¥ and let (x;) and (h;) be arbitrary sequences
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converging to 7 and h, respectively. By the definition of the
upper limit, for each ¢ there exist y;, € X and t; > 0 such
that ||y; — x;|| +¢; < 1/7, and

L flyi + tihi) — (i)

fo(xs; hy) _gﬁ tz‘
_ flyi+tih) — fy)
t; )
N flyi +tih;) — fly; + tih>.

L
The last term is bounded above by L||h; — h|| due to the
Lipschitz property of f. Taking limits as ¢ — oo we have
limsup f°(x; hi) < f°(3; h),
1—00
which establishes the upper semicontinuity. o
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The Clarke normal cone to a closed set is defined through
the distance function to the set — a Lipschitz function with
Lipschitz constant 1. The Clarke tangent cone is defined as
the polar of the Clarke normal cone.

Definition 5.2.8. (Clarke Normal and Tangent Cones) Let
X be a Banach space and let S be a closed subset of X.
We define the Clarke normal cone of S at & by

Ne(S:z) = c* | ] cd(S: z).
A>0

Here cl* stands for the weak-star closure. We define the
Clarke tangent cone of S at T by

TA(S: %) = No(S:2)° = {v € X | (v*,0) < 0,0" € No(S: 7))



Combining the optimality condition of Proposition 5.2.5,
the sum rule of Theorem 5.2.6 and the definition of the
Clarke normal cone, we have the following necessary opti-
mality conditions for a constrained minimization problem.

Theorem 5.2.9. Let X be a Banach space, let S be a
closed subset of X and let f: X — R be a locally Lips-

chitz function. Suppose that f attains a local constrained
minimum over S at & € S. Then

0€dof(z)+ No(S;z).
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Proof. Using the exact penalization in Example 3.0.3 there
exists a constant u such that z is a local minimum of f+udg.
Applying Proposition 5.2.5 and Theorem 5.2.6 we have
0 € 0o f(Z) + udcd(S; ). Since udcd(S;x) C No(S; ),
throwing away the information about the size of i, the con-
clusion follows. .

The Clarke subdifferential and singular subdifferential for

a general Isc function are defined through the normal cone
to its epigraph.
Definition 5.2.10. (Clarke Subdifferential for lsc Func-
tions) Let X be a Banach space and let f: X — R be
a lsc function. We define the Clarke subdifferential and
singular subdifferential of f at T by



Oof(@) :={a" € X" | (2", —1) € Nel(epi f; (@, f(Z)))}

and
O f(z) ={a" € X* | (27,0) € Neo(epi f; (z, f(2)))},

respectively.

Unlike the Fréchet subdifferential, the Clarke subdifferen-
tial or singular subdifferential is defined everywhere. How-
ever, it 18 “coarse” compared to the Fréchet subdifferential.

Example 5.2.11. Consider the absolute value function
f(x) := |x| on R. Then
I f(0) = 0o (—f)(0) = [-1,1].
We can see in this example that the Clarke subdifferential
does not distinguish between the absolute value function
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and its negative at the crucial point where the minimum (re-
spectively, maximum) occurs. In contrast g f(0) = [—1, 1]
while Op(—f)(0) = 0. With a little more work we can pro-
duce the phenomenon of Example 5.2.11 at every point of
an interval.

Example 5.2.12. (Rockafellar) Let E be a measurable
set in |0, 1] with the property that the intersection of any
nonempty open interval (a,b) in [0, 1] with both E and its
complement has positive measure; such sets are sometimes
termed ubiquitous [244]. Let x g be the characteristic func-
tion of F (i.e., xgp(z) = 1if x € E and 0 otherwise) and
define

Fz) = /O By dt = NE N 0, a]),
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with A Lebesgue measure on the line. Then, for all z € (0, 1)
Oc f(x) = [0,1].

In fact we know by Lebesgue’s version of the Fundamental
theorem of calculus that for almost all y € (0, 1), f is differ-
entiable and f’(1y) = x(y). For any such y, we have y g(y) €
Oc f(y). Since Oo f is a cusco, we have |0, 1] C J¢ f(x) for
any x € (0, 1), by the property of E. On the other hand it is
easy to check that f°(x;1) < 1 and fe (m —1) < 0 follows

from the equality f(y £ h) — f Y= t)dt. Thus,
dc f(x) = [0,1].
As a caution, the Clarke subdifferential is not a generaliza-

tion of the usual Fréchet differentiability. This is clarified by
the following example.
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Example 5.2.13. Let

f(x) = {xQ sin(1/x) %f x # 0,
0 if £ =0.
Then, f'(0) = 0 while 9 f(0) = [—1,1].
One way to resolve the difficulty that the Clarke subdiffer-
ential may sometimes — often — be too coarse is to consider
functions for which the Clarke directional derivative does

coincide with the usual directional derivative. This leads to
the following definition.

Definition 5.2.14. (Regularity) Let X be a Banach space
and let f: X — R be a locally Lipschitz function. We say

that f is (Clarke) regular at & provided that f/(@; h) exists
and agrees with f°(z;h).
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Clearly if a function f is C't in a neighborhood of Z then
it is regular at z. In fact, this is true for points of strict
differentiability (Exercise 5.2.4) — it is this property that the
Clarke derivative is really generalizing. Another important
class of functions with the regularity property is the class of
convex or concave functions. Thus, regularity captures both
strictly differentiable functions and convex functions.

Theorem 5.2.15. (Regularity of Convex Functions) Let
X be a Banach space and let f: X — RU {+o00} be a
Isc convex function. Suppose that T € core(dom f). Then
f 1s reqular at .

Proof. By Theorem 4.1.8 core(dom f) = int(dom f). By
Theorem 4.1.3 and Proposition 4.2.4 f is locally Lipschitz
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at 7 and f'(Z;h) exists for all h € X. Denoting the local
Lipschitz constant of f near x by K and choosing a 0 > 0.
we know
th) —
f°(z;h)= lim  sup  sup flz +th) = (@)
e—0+ HJU—JT?HSSCS O<t<e t

flz +th) — f(=)

< lim sup

=0+ |lz—z||<ts L
< fip LEF ZS@) s
t—0+ t

= f'(z; h) + 2KG.

Letting & — 0, we deduce f°(z;h) < f/(z; h). The opposite
inequality follows directly from the definition. o
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5.2.2 Representation of the Clarke Subdifferential

In a Fréchet smooth Banach space, the Clarke subdifferential
can be represented as the convex closure of the weak-star
sequential limit of the Fréchet subdifferential. Let us start
with Lipschitz functions.

Theorem 5.2.16. (Representation of the Clarke Subditfer-
ential: Lipschitz Case) Let X be a Fréchet smooth Banach

space and let f: X — R be a locally Lipschitz function.
Then

dcf(x) = cl* conv { W*—lim v; | af € Opf(xi),x; — x}.
i—+00

Here W*-limiﬁoo x; signifies limit in the weak-star topol-
0qy.
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Proof. We need show that the support tunction for both
sides is the same, i.e..

fo(@; h) =sup {(x™, h) | ¥ = W*—limxjf,xjf € opfla;),x; >
11— 00
Since O f(x;) C Ocf(x;), and, by Theorem 5.2.7, O f is
upper semicontinuous we have f°(z; h) >
sup {(z*, h) | 2™ = W*—limx;f,x;f € Opflx;),xi — T}
I—00

To prove the opposite inequality, choose vy, — z and t; —

04 such that
(2 k) = lim flyi +tih) — flyi)

i—00 t;

By the approximate mean value theorem of Theorem 3.4.7,
for any € > 0 and each ¢, there exist x; € Bey,([y4, yi +tih])
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and 7 € Op f(x;) such that
(@7, tih) = f(yi +tih) — f(yi) — tie

(2% 1) > flyi+tih) = flyi)

g
Since f is Lipschitz, (x7) is bounded by the Lipschitz con-
stant of f (Theorem 3.4.8). Thus, without loss of generality
we may assume that (z7) weak-star converges to some ™.

Taking limits in the last inequality we have

sup {(2*, h) | 2% = w-limaf, af € Opf(a)),0i 2} 2 f°(@

or

X

Since € > 0 is arbitrary we have

sup { (2", h) | 2% = Vzv.zlci)gﬂflif,fvf € Opfle),z; — 1} > (&
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The key to representing the normal cone is the following
lemma.

Lemma 5.2.17. Let X be a Fréchet smooth Banach
spaces and let S be a closed subset of X. Suppose x € X
and ™ € Opd(S;x). Then for any e > 0, there are s € S
and s* € Np(S:;s) such that

|z —s|| < d(S;z)+e and ||s* — 2| < e.
Proof. If z € S then 9pd(S;x) C Np(S;x) and the
conclusion holds trivially for + = s. Now consider the
case when © & S. Let g be a C! function such that
g (z) = o* and dg — ¢ attains a minimum at z. Choose

n € (0,min{l,e/3,d(S;x)}) such that



1d'(z) = d'(x)]] < /3, forall z € By(x). (5.2.1)
Choose v € S satistying

lo— || < d(S;2)+n°
and define f(y,u) := ||[u — y|| — g(y). Then

flo,2)= v =zl — glz) < d(S;2) — g(x) +17°

< nf (d(Siy) — g(y) + 0’

< inf ,Uu) + 2,
_yeX’uEsf(y )+

By the Ekeland variational principle of Theorem 2.1.2 there
exists s € S and z € X satisfying ||s—v|| <n, ||z—z|| <7
(and hence ||s — x|| < d(S;z) + €) such that

flz,s) < flv,2)
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and
f(z,s) < fly,uw)+n(||ly—z||+||lu—s||), forallue S ye X.
Fixing y = 2z we have that
u = tg(u) + ||z —ul| = g(z) + nlju — s

attains minimum at v = s, and therefore

|-]|'(z — s) € Np(S;s)+nBx-. (5.2.2)
Similarly fixing v = s we have that

y = [ly = sl —g(y) +nlly — 2|
attains minimum at y = z, and hence

0e|l-|I'(z—s)— ¢ (2) + nBx=. (5.2.3)
Combining (5.2.1), (5.2.2) and (5.2.3) we have that there
exists s* € Np(S; s) such that
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s — 2™ < e.

Combining Theorem 5.2.16 and Lemma 5.2.17 we obtain
a representation of the Clarke normal cone in terms of the
adjacent Fréchet normal cones.

Theorem 5.2.18. (Representation of the Clarke Normal
Cone) Let X be a Fréchet smooth Banach space and let
S be a closed subset of X. Then

No(S; 1) = cl conv{w*—lim ;| x; € Np(S;z;),S >z, > &
[—+00

Proof. Exercise 5.2.6 .
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Now we are ready to discuss the representation of the
Clarke subdifferential of general lsc functions.

Theorem 5.2.19. (Representation of the Clarke Subdif-
ferential and Singular Subdifferential) Let X be a Fréchet

smooth Banach space and let f: X — R be a lsc func-
tion. Then

Iof(x) = cl” conv{w_*—lim z; |z € Opf(x;),
[—+00

(i, f(1) = (7, F(2)) | + OF f(2)

and
oF f(z) = cl* conv{w*-lim Nir | xf € Opf(ay),
11— 00

(@i, f(21) = (2, f(@)), A = 0+ .
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Proof. Combine Theorem 5.2.18 and the representations
of Fréchet normal vectors in Theorem 3.1.8 and singular
Fréchet normal vectors in Theorem 3.3.6. 5

5.2.3 Limiting Subdifferentials and Calculus

The representation of Clarke subdifferentials and normal
cones shows that in a Fréchet smooth Banach space they
can be viewed as the convex sequential upper semicontinuous
closure of the Fréchet subdifferential and the Fréchet normal
cone. The convexification brings about the nice characteri-
zation in terms of the Clarke directional derivatives, which
leads to much flexibility in discussing the properties of the
Clarke subdifferential and normal cone. On the other hand
this convexification process also adds additional elements to
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the natural sequential limits of the Fréchet subdifferential
and makes the Clarke subdifferential larger than desired in
some situations, such as those illustrated in Example 5.2.11.
Naturally, one may wonder whether omitting the convexi-
fication in this process will still yield subdifferentials and a
normal cone that have a reasonable enough calculus to be
useful. This is the goal of the current subsection.

Definition 5.2.20. (Limiting and Singular Subdifferen-
tial) Let X be a Banach space and let f: X — RU {400}
be a lsc function. Define

Opf(x) = {w -lima} : & € Opf(x;), (x4, f(z)) — (z, f(2))}

1— OO

and O f(x) =
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{w -limtga? - af € Opf(xy), (i, flz)) = (2, f(2)),t; — 04

i—00
and call O, f(x) and 0% f(x) the limiting subdifferential
and singular subdifferential of f at x, respectively.
Definition 5.2.21. (Limiting Normal Cone) Let X be a
Banach space and let S be a closed subset of X. Define
Np(S;x) = {W*—limw,}k -2 € Np(S;2;), S 3 x; — x}
11— 00

and call Ny (S;z) the limiting normal cone of S at x.

The representations in Theorems 5.2.16, 5.2.18 and 5.2.19
now can be rewritten as:
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Theorem 5.2.22. (Limiting and Clarke Subdifferentials)
Let X be a Fréchet smooth Banach space, let f: X —
R U {400} be a lsc function and let S be a closed subset

of X. Then
Ocf(x) = cI” conv[O, f(z) + 0% f ()],
O f(z) = I conv 0 f (),

and
Ne(S;x) = cl* conv N (S; x).

Proof. Exercise 5.2.8. .

Thus, the Clarke subdifferential and normal cone are con-
vex weak-star closure of the limiting subdifferential and the

limiting normal cone.



Clearly, Opf(x) C Opf(x) and Np(S;x) C Ny(S;x)
(Exercise 5.2.7). As a consequence the limiting subdifferen-
tial preserves the necessary minimization condition (Exercise
5.2.9). The limiting subdifferential is more accurate in that
it can distinguish a maximum and a minimum as illustrated
by the following example.

Example 5.2.23. Let f(x) = |z]: R — R. Then
(1 ifz >0
aLf(CIZ'> = —1 it <0,
[=1,1] ifz=0,

and



—1 ifz >0,
Or(—f)(x) = 1 ifx <0,
{—1,1} ifx=0.

A natural method of deriving calculus results for the lim-
iting subdifferential and normal cone is by taking limits in
the corresponding approximate calculus for the Fréchet sub-
differential and the Fréchet normal cone. We illustrate this

method by deriving a sum rule for the limiting subdifferen-
tial in finite dimensional spaces.

Theorem 5.2.24. (Limiting Sum Rule) Let X be a fi-
nite dimensional Banach space. Let fi,...,fn: X —

R U {4+o0} be Isc functions such that Z;]?Y:l fn attains
a local minimum at x. Then, either
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N
(A1) 0e S opfn@
=1

or there exist up € 0°°(fn)(x), n=1,..., N not all zero
such that

N
(A2) 0="> up

n=1

Proof. By the approximate local sum rule of Theorem

331 for each i there exist (z Lofa(zh) € (Z, fu(@)) +
_BXxR and fn € Op fn(zl) such that

anlffg

(5.2.4)
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Define t; := Z;]?Y:l 1€4]I. We consider the following two
cases.

Case 1. The sequence (t;) is bounded. Then without loss
of generality we may assume that (ffz) converges to &, for
n=1,...,N.Itisobvious that &, € 9 fn(Z). Upon taking
limits in (5.2.4) we obtain 0 = Z,,‘],val En € Z,,‘],val 0 fn(T).

Case 2. The sequence (t;) is unbounded. Then with-
out loss of generality we may assume that t;, — oo and
(€L /t;) converges to uy. Then uy, € 0% f,(Z) by the defini-
tion of the singular limiting subdifferential. Dividing (5.2.4)
by t; and taking limits we obtain 0 = Z;]?Y:l Up,. Since

N I€N/t = 1 we conclude that S"0 [jug|| = 1, and
therefore not all u,, are 0. .
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Using a similar approach we can establish a limiting mul-
tiplier rule and a limiting extremal principle. Consider the
minimization problem P in Subsection 3.3.4. Using the no-
tation 7, introduced there we have:

Theorem 5.2.25. (Limiting Multiplier Rule) Let X be a
finite dimensional Banach space, let S be a closed subset
of X and let f;, be lsc forn=20,1,..., N and continuous
forn = N-+1,..., M. Suppose that x 1s a local solution of
problem P. Then either there exist iy, > 0, n=20,..., M
satisfying Z%:O Uy = 1 such that

0 € Z ,meaL(Tmfm) (@"‘ Z aOO(Tmfm) (f)

me{n: >0} me{n:pu,=0}

(A1) +N(S;7),
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or
(A2) there exist uy € 0°°(1nfn)(x), n=0,1,..., M and
upr+1 € N (S;z) not all zero such that
M+1

0= Z Up.
n=>0

Proof. Exercise 5.2.11. .

When f,,’s are smooth functions we can recover the Karush—
Kuhn—Tucker conditions. Theorem 5.2.25 is also a quite gen-
eral result that can be used to derive many subdifferential
calculus rules. The following is an example.
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Theorem 5.2.26. (Limiting Chain Rule) Let X be a finite
dimensional Banach space, let f: RM — R U {+o00} and
fn: X = RU{4+},n=1,...,N be lsc functions and
let f,: X - Rn=N+1,...,M be continuous func-

tions. Suppose that f(f1,..., far) attains a minimum at
x. Then either:

(A1) there exist uy € 0°(tnfn)(Z), n=1,..., M not all

zero such that
M
n=1

or there exist n = (u1,...,u1yr) € Of(f1,..., far)(@)
such that
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(A2)
0 € Z pmOr (Tm fm)(Z)+ Z 800(7'77%][777/) (7).

me{n:puy#0} me{n: =0}
Proof. We leave the proof as a guided exercise (Exercise
5.2.12). .

Theorem 5.2.27. (Limiting Extremal Principle) Let X be
a finite dimensional Banach space and let S1,...,S5ny C
X be an extremal system of fixed sets as in Definition
3.7.5 with an extremal point . Then there exists x; €

Ny (Sn; @) such that
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N N
d lzill=1 and ) ;=0
n=1 n=1

Proof. Exercise 5.2.14. .

[t is not hard to see that in a finite dimensional space the
limiting subdifferentials and the limiting normal cone are
closed.

Proposition 5.2.28. Let X be a finite dimensional Ba-
nach space, let f: X = RU{+o00} be a lsc function and

let S be a closed subset of X. Then 07 f, 0°°f and Ny
are closed multifunctions.

Proof. We prove 07 f is a closed multifunction and leave
the other two as Fxercise 5.2.16.
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Since X is finite dimensional the weak-star and norm topol-
ogy of X* are the same. Let x; — x and O f(z;) > o —
x*. Then for each i it follows from the definition of the
limiting subdifferential that there exist y; € B; /Z(xz) and
y; € Opf(y;) such that y* € B, /Z(x;") Clearly, y; — x and
y; — 2*, and therefore 2™ € Or f (7). .

5.2.4 Additional Examples and Counterexamples

Analyzing the proof of the limiting sum rule of Theorem
5.2.24 we can see that in an infinite dimensional space we
will not be able to guarantee that not all u,, are 0. When all
the uy,’s are 0 the alternative (A2) is trivial. In fact, most of
the limiting results fail in infinite dimensional spaces. There
are also other complications in infinite dimensional spaces.
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We present several examples here to illustrate pathological
situations that may occur in an infinite dimensional space.

Our first example shows that the limiting sum rule does
not hold in infinite dimensional spaces.

Example 5.2.29. (Failure of Limiting Sum Rule) Consider
a Hilbert space H with two closed subspaces M and M>
such that ]\41L + ]\42L is dense in H but not closed and
Mit N Mz = {0},

Define f1 := dpg, and fo = dpp, + (v,) where —v €
H\(]WlL + MQL) Since ]\41L +- ]\42L dense implies that M1 N
My = {0}, fi + fo attains a minimum at 0. However, it
is easy to check that df1(0) = 0°°f1(0) = M1L7 0f(0) =
]\42L + v and 0% f3(0) = ]\42L Thus,



0 ¢ 0f1(0) + 0f2(0)
and
0% f1(0) N (=0~ f2(0)) = {0}

or equivalently

0 € 0% f1(0) + 97 f(0)
holds only in the trivial case.
As a concrete example of the basic construction let H :=

lo and denote the standard unit vectors by {e;}. Sup-
pose (q;) is a sequence of positive real numbers with 1 >
a; > 1— =. Define My = clspan{eg;}>°, and My =
clspan{4/1 — &%827;_1 — ajeg;i 2. Then we can directly
verify that
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Mi- = clspan{fi, fo, ...}
and
Mj- = clspan{gy, go, ... }

- - / 2
where fz = €91, §; ‘= i€ _1 + I — Q€24

Then for any x = 2931 x;e; € H, we have Z%ﬁl Tie; =
k

Lo,
Z(I2¢—1— = )f@+z QZEMl + My
i—1 V1 14/1—a?

Therefore, Ml + M2 is dense in H. We can show by a
similar argument that M+ Mo is dense in A, which implies

that M;NMs = 0. It remains to show that ]\4%%—]\42L + H.
Consider
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e
VUV .= Z\/l—a?e%.
n=1

[fv=y+zwithy & .MlL and z € MZLtheny => "2 vifi
and z = > > z;g; because { f;} and {g;} are orthonormal
bases for .MlL and .MQL7 respectively. Then we must have
z; = 1 and y; = z;a; = a; — 1 which is impossible.

Since Theorem 5.2.25 implies Theorem 5.2.26 and the
latter implies the limiting sum rule (Exercises 5.2.12 and
5.2.13), Example 5.2.29 also shows that these two results
fail in infinite dimensional spaces.

Our next example shows that in an infinite dimensional
space the limiting normal cone fails to be a closed multifunc-
tion in general. Since the limiting normal cone is the limiting
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subdifferential of an indicator function this also provides an
example for the limiting subdifferential.

Example 5.2.30. (Nonclosed Normal Cone) Let H := /9
and denote the standard basis by {e;}. We define a closed
subset S of H by S =

{s(er—jej)+t(jer—eg) | k> 7> 1, 5t > 0}U{te; | t > 0F.

Then Ny (S;0) is not closed since (i) Nz (S;0) > e +
j_lej — e1 and (ii) e; € N7(S;0).

[t is easy to check that S is a closed set and that (i) holds.
We leave them as Exercises 5.2.17 and 5.2.18. We will con-
centrate on verifying (ii). Suppose not; then there are x; — 0
and z7 € Np(S;0) such that x7 weakly converges to ej.
Suppose some x; = t;eq for t; > 0. Put u(r) := x; + req for
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r > (0. We have u(r) € S, and therefore

0 > limsup <a;;<, ulr) — > = lim sup <a;;<, Tl > — <£C;<, e1
r—0+ [ul(r) — ;] r—0+ req|

On the other hand, (z7) weakly converging to e; implies
(z7,e1) — 1, so that only finitely many x; can be of the

form x; = t;eq for t; > 0. So all but finitely many z; are
necessarily of the form s(ej — je;) +t(je; — e) where k >
17>1, s5,t > 0.

Now let z; = s(e; — jej) +t(je; — ey,) where k = k(i) >
j=4(i) > 1s=s(t) > 0and t = t(i) > 0. Considering
u(r) =x; +r(je; —ep) € S we get
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| u(r) — x;
0> hmsup<:z:;-k, Hugri — fEZH>
1

r—0-+
— lim Sup<:1:§<, T(j,el — ) >
0+ Ir(jer — ep)l]

_ * j@l—ek >
Cf ljer — e

(z7,e1) < (2,7 ep), (5.2.5)

while considering u(r) = z; +r(e; — je;) € S we get

so that
1
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0 > lim Sup<x;<, ulr) = >
r—0+ [u(r) — 4|

) < * T<61 _]8]) >
= limsup( z,, :
r—0+ |lr(e1 — jej)|

"ler — gyl

so that
(z7, e1) < (7, jej). (5.2.6)
Letting ¢ — oo in (5.2.5) we obtain
1 < liminf(z}, j (i) eg).

1)
[f the j(i)’s are unbounded then this shows the sequence ()
is unbounded, contradicting its weak convergence. There-



fore, in the sequence of (x;) we have only finitely many j(7).
But then (5.2.5) contradicts (z7) weakly converges to ej.

We have seen in Theorem 5.1.29 that a maximal monotone
operator, in particular the subdifferential of a proper convex
Isc function, is a minimal cusco in the interior of its domain.
The next example show that the restriction to the interior
of the domain is necessary:.

Example 5.2.31. Again let X = /9 and let {e;} be the
standard basis of £o. Define

1
Yp,i = Z_?(ep +e,i), Ypi = ept+(p— Le,;

for prime numbers p and ¢+ = 2,3, .... Then we have
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0 ifp#q
WpirYgj) = 1/p ifp=qi#}j,
1 ftp=gq,i=7.
Further, define f: X — R by
f(z) == max({ey, z) + 1,sup{(yp ;, ) | p prime i > 2})

so that f is a proper lsc convex function on X. Then f(0) =
fypi) =1, f(—e1) =0and f(z) > <y;7i,x> forallz € X
and p prime, ¢ > 2, which implies y;’i € Of(yp.i). In fact,
flx) = flypi) = f(x) =1 > (y, ;) — 1
= <y;7i, T —Ypi), foral e X

We also have 0 € 9f(0), since 0 € 9f(0) is equivalent to
f(x)—f(0) > 0forall x € X, which is not true for x = —ej.



Thus, (0, 0) is not in the graph of . f. Now we can show that
the graph of df is not closed in the norm x weak™ topology
by checking that (0, 0) is in the norm x weak™ closure of the
set
{(Wp,i»y,;) | pprime, i > 2} C graphdf.

Finally we examine a generic version of Example 5.2.12 and
its application. Fix a bounded subset A in a Banach space
X. Let C' be a w*compact convex subset of X*. Consider

Ne =
{flf: A= Rand f(x)—f(y) < oc(x—y) forall z,y € A}.

Note that C' is norm bounded and f € Ny implies that f
is Lipschitz with a Lipschitz constant L = sup{||z™*|| | z* €
C'} (Exercise 5.2.32).
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Lemma 5.2.32. Let X be a Banach space, let A be a
bounded subset of X and let C' be a w*-compact convex
subset of X*. Then the metric space (N, p) is complete,
where

p(f,g) = sup |f(x) — g(z)]|.

reA
Proof. Assume (f;) is Cauchy. Then ( f;) converges point-
wise to some f on A. Because f;(x)— f;(y) < oc(z—1y), we
have f(z) — f(y) < oc(x—y) forall x,y € A, so f € N
We now show ( f;) converges uniformly to f on A. For every
e > 0 there exists NV > 0 such that if 7,7 > N we have
|filw) — fj(x)] < eforall z € A Letting j — oo, we ob-
tain p(f;, f) < e. That is, (f;) converges to f uniformly on
A .
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Thus, in (N, p) the Baire category theorem applies and
the generic version of Example 5.2.12 can be stated.

Theorem 5.2.33. Let X be a Banach space, let A be a

bounded subset of X and let C' be a w™-compact conver
subset of X*. Then in (N, p), the set

{feNg|Ocf =C on A},

15 a residual set.
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Proof. Fixz € A and v € X. Consider G} :=

— 1 1
{f e No f<x+wt> f<m)—0c(”0> > _E’HO <t< E}'

(a) G} is open in N Let fo € Gp.. Then for some 0 <
t < 1/k we have

folz + ?f”0t> — folz) oo(v) > —1/k. (5.2.7)

Let p(f, fo) < e and f € Ng. Consider
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Flo+to) — f(z)

; —oc(v)
_ (flz+tv) — f(z)) = (folz +tv) — folz))
t

4 fO(m + tvt) _ fO(CE> B 0'0(’(})

f@+ ) = folz + )| + | f(z) — fol)]
o t
4 fO(CE + tvt) B fo(ﬂ?) . 0'0(?)>
2_2: 1 fO(x + t?;) B fO(x) o 0'0(”U>.

The last expression is greater than —1/k by equation (5.2.7).
We may set ¢ sufficiently small such that
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—2 — 1
t5 4 fO(CE _l_tvg fO(I) B O'C'<?)> > _E'

Thus, the same ¢t may be used, and so B(fy,c) C Gj..

(b) G}. is dense in N With f € N, for every € > 0 we
verify that the open ball B(f,3e) contains a point of Gy.
Define h: X — R by h(Z) := f(x) — e+ oc(x — x), which
is in N (Exercise 5.2.33), and set

hi :=min{f, h}, ho :=max{f — 2, h}.
Then hy € Ng, as is hy (Exercise 5.2.34). Since hy < f and
f—2e< f,wehave f —2e < hy < f. As f,o0(- — x) are
continuous at x, for 0 < § < /2 sufficiently small we have
for y € Bs(x),

fla) == < f(y) < fl)+ > (5.2.8)
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and

VAN
DO | O

—— < ooy — x) (5.2.9)

5=
Now for & € Bg(x) we have

hz) < flz) —e+e/2 < f(a f(@),

) =
and so hy = min{f,h} = h on Bg(z). On the other hand,
on Bg(x) by equations (5.2.9) and (5.2.8) we have

(E) = h(z) 2 flz) = — /2 2 [2) - 5,

l\Dlm

and
3e

f(@—%éf(@’)—?,

and so hg = h; = h on Bg(x). Choosing 0 < t < 1/k
sufficiently small such that x + tv € Bg(x), we have
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ho(x +tv) — ho(z)  h(x +tv) — h(x)

t t
flz) —e+ocftv) — (flz) —€) \

= ; = o0(v,

which shows hg € Gj. while ho is arbitrarily close to f.

(¢) Since G}, is open and dense in N,

©.@)
Grw = () Gk
k=1

is a dense G5 in N If f € Gy, then for every k we can
find 0 < ;. < 1/k such that

flz+tp) — flz) 1
) ¢ K
and taking the limit we derive
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f°(x;v) > limsup flz +tv) = Jz)
T 0 t

(d) Now let {v:.} be a norm dense countable set in E. For
each vy, the set G, is a dense G set in N Hence,

> (70(1}).

©.@)
Gx = ﬂ GCC,’Uk
k=1
is also a dense Gg set in N
Given f € (G, we note that for each k£ we have

o vg) = oc(vg).
Because f°(x;-) and o (-) are Lipschitz, we deduce

fo(@v) 2 oc(v),
for every v € X.
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(e) Finally let {z;.} be a norm dense countable set in A.
Since each G, is a dense G set in N, the set

0
G = m Gy,
k=1

is also a dense G set in Np. For f € GG, and each positive
integer k we have f°(xp,v) > oc(v) for all v € E. Since
f°(x;v) is upper semicontinuous in x, we obtain

fo(@v) 2 oc(v),
for every x € A and v € X.
Since f € N, for every v € E, we have
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tv) — v —
() =lim sup fly+t) = 1) 0 . oc(y +tv—y)
Y—T t Y—T L
£10 £10
. oo (tv)
=lim sup = oo (v). (5.2.10)
£10
Then for f € G, we have f°(x;v) = oc(v) for every x € A
and v € X. Dually, 0o f = C on A. .

Corollary 5.2.34. Let X be a Banach space, let A be a
bounded subset of X and let B* be the unit ball of X*.
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Then in the metric space of nonexpansive functions on
A with the uniform metric, the set

{f | cf = B* on A}

15 a residual set.
Proof. Noting that

Np«:={f ] f: A— R is nonexpansive with respect to || - ||},
the Corollary follows directly from Theorem 5.2.33. .

When X = R, this provides a generic version of Exam-
ple 5.2.12. The result in Theorem 5.2.33 also holds for un-
bounded A. Details are left as guided Exercise 5.2.35. These
results showed that most —in the Baire category sense — Lip-
schitz functions have maximal Clarke subdifferentials and
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therefore contain no information beyond the Lipschitz con-
stant. It is interesting to observe the following recast of a
function with maximal Clarke subdifferential in mathemat-
ical economics.

Example 5.2.35. Cornet (see [157]) formalized a non-
smooth marginal price rule in mathematical economics
by establishing that given a closed production set Y, the
price p € Neo(Y;y) for all y in the boundary of Y. Take
f: X — R with 0o f(x) = C. The Clarke normal cone
and tangent cone to the epigraph of f at (z, f(x)) are then
constant multifunctions:

Telepl f; (z, f(z))) = {(v, B)| oc(v) < B}

and



5.2 Subdifferentials as Multifunctions 715
Ne(epi f; U AC
A>0

For every (z,r) € epi f and (v, B) € T(epi f; (x, f(x)) we
have

flx+v) < flx)+oow) <r+p,
thus epi f + T(epi f 5 -) C epif. In RV if we take 0 €
C c RV=1 with NV extreme points v1, ..., v such that

<(Un7 _1)7 (Uma _1>> =0 forn#m,
then Ne(epi f;(x, f(x))) is the closed convex cone gener-
ated by (v, —1),.
(vpy, —1) which is linearly isometric to Rﬂy . Thus T (epi f (
is linearly isometric to —]R{]JY . Then epi f is isometric to a

closed set Y € R such that No(Y ; y) = Rﬂy for ¢ in the

S
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boundary of Y and Y — R]I C Y (“free disposal”). Thus

the marginal rule generically imposes no restriction on the
price vector.

5.2.5 Commentary and Exercises

The Clarke generalized gradient was introduced in Clarke’s
thesis |80], a pioneering work that marked the beginning of
nonsmooth analysis, although other earlier efforts such as
that of Pshenichnii [223] on quasi-derivatives have also been
very influential. The exposition here largely follows [84].
Representations of the Clarke generalized gradient in terms
of simpler smooth subdifferentials are the result of efforts
of many researchers [58, 48, 45 61, 62, 146|. Rockafellar
laid down much of the theory for Isc functions in a series of
seminal papers 232, 233, 234, 235|.
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Example 5.2.12 is due to Rockafellar [235]. It shows that
although that Clarke’s subdifferential is weak™ cusco (Theo-
rem 5.2.7), it is far from a minimal one. The generic versions
of Rockafellar’s example (and its generalizations in [157]) in
Theorem 5.2.33 and Corollary 5.2.34 are taken from Borwein
and Wang [65].

Mordukhovich introduced the limiting subdifferential and
developed its calculus [195, 198|. This has the advantage
of being smaller and more accurate in many applications.
Other subdifferential constructions in the same spirit have
also been proposed in [143, 193, 250, 263, 264]. The dif-
ference between these alternative limiting subdifferentials
and the Clarke subdifferential is vividly illustrated in the
recent paper by Borwein, Borwein and Wang [28]: even in
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RY for N > 1 the limiting subdifferential and the Clarke
subdifferential for Lipschitz function may differ almost ev-
erywhere. For functions on R a precise relationship between
the Clarke subdifferential and the limiting subdifferential
was established by Borwein and Fitzpatrick in [41]. In par-
ticular, on the line they differ at most countably. While the
limiting subdifferential and normal cone are more accurate.,
these objects are less “regular” compared to the Clarke sub-
differential and normal cone as reflected by examples and
counterexamples in subsection 5.2.4. For the construction of
these examples and related literature we refer to [69] (Ex-
ample 5.2.29), |44 (Examples 5.2.30 and 5.2.31) and [65]
(Theorem 5.2.33, Corollary 5.2.34 and Example 5.2.35).
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An alternative idea of looking for “small” subdifferentials
is to search for classes of functions whose Clarke subdiffer-
entials are minimal cuscos. We refer the interested readers
to 43, 57, 31, 70| and the references therein.

When discussing the geometry of a set, the variational tech-
nique naturally leads to an emphasis on its normal cones.
However, in the development of nonsmooth optimality con-
ditions, tangent cones and their duality with normal cones in
the tradition of convex analysis still play an important role.
The guided Exercise 5.2.21 provides a glimpse into the var-
ious tangent cones and their relationship with the normal
cones we have examined. Historically necessary optimality
conditions for constrained minimization problems were de-
veloped in terms of the tangent vectors first. Different ways
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of defining the tangent cones will lead to differential strength
of the necessary optimality conditions. This is illustrated
in Exercise 5.2.27. Although in the nonsmooth setting it is
clear now that one can often formulate more precise neces-
sary optimality conditions in terms of the normal cones for
constrained minimization problems, the tangent cone per-
spective is still usetul in providing intuitive understanding
of the geometry of these problems.

Exercise 5.2.1. Let X be a Banach space and let f: X —
R be a locally Lipschitz function. Suppose that f attains a

local minimum at z. Prove that f°(z;h) > 0 forany h € X.

Exercise 5.2.2. Prove Proposition 5.2.2. Reference: |84,
p. 26].
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Exercise 5.2.3. Verity Example (5.2.13).

Exercise 5.2.4. Let X be a Banach space and let f: X —
R be a function. We say that f is strictly differentiable at x

provided that f’(x) exists and for any € > 0 there exists a
0 > 0 such that

Herth 16Dy

for all ¢ € (0,9), ||z — z|| < § and h € By. Prove that
Oc f(x) is a singleton if and only if f is strictly differentiable
at x.

Exercise 5.2.5. Show that 0pf(x) C O f(x).
Exercise 5.2.6. Prove Theorem 5.2.18.
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Exercise 5.2.7. Verify that 0pf(x) C 97 f(x) and
Np(S;x) C Ni(S;x).
Exercise 5.2.8. Prove Theorem 5.2.22.

Exercise 5.2.9. Let X be a Banach space and let f: X —

R U {+00} be a lsc function. Suppose that f attains a local
minimum at . Show that 0 € 97 f(%).

Exercise 5.2.10. Verify Example 5.2.23.

Exercise 5.2.11. Take limits in the weak approximate
multiplier rule of Theorem 3.3.8 to prove Theorem 5.2.25.

Exercise 5.2.12. Deduce the limiting chain rule of The-
orem 5.2.26 from Theorem 5.2.25. Hint: Note the fact that
f(f1,-.., far) attains a minimum at x implies that

(z, f1(x), ..., fas(Z)) is a solution of the minimization prob-
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lem:

minimize f(y1,...,Yr) (5.2.11)
subject to fn(z) <yp,n=1,..., N,
fnlx)=yp,n=N+1,..., M.
Exercise 5.2.13. Deduce the limiting sum rule of Theorem
5.2.24 from Theorem 5.2.26.

Exercise 5.2.14. Prove Theorem 5.2.27.

Exercise 5.2.15. (Extremal Principle and Convex Sepa-
ration) Let X be a finite dimensional Banach space and
let 51,59 be closed convex subsets of X. Suppose that
S1 NSy = {f}

(i) Show that Z is an extremal point of the extremal system

of fixed sets (57, .92).
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(ii) Deduce a convex separation theorem from the limiting
extremal principle of Theorem 5.2.27.

Exercise 5.2.16. Prove that 9°° f and N7 in Proposition
5.2.28 are closed multifunctions.

Exercise 5.2.17. Verity that the set S defined in Example
5.2.30 is closed.

Exercise 5.2.18. Verify that N7(S5;0) 3 61—|—j_1€j — €]
for S defined in Example 5.2.30. Hint: Check that, for 1 <
j<koep=e+j e+ jer € Np(S;k™(jer — ep))

and (e; 1) converges weakly to eq + j -1

ej as k — 00.
Exercise 5.2.19. Supplement the details for Example 5.2.31.

Exercise 5.2.20. The lower semicontinuous function drawn
in Figure 5.1 is continuously differentiable except at z =
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Fig. 5.1. Determine the various subdifferentials.

—1,—1/2,0, 1. Determine its Fréchet, Limiting and Clarke
subdifferentials graphically at each such z.
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xExercise 5.2.21. The classical or Bouligand tangent cone,
also called the contingent cone, is

Tp(Siz) = {de X |d= lim ——"

i—oo 1

7t’i i Oaaj’i %S :E}a
and the pseudotangent cone is its closed convex hull,
Tp(S ;x):=7col'g(S;x).
(i) Show that T(S;x) C Tgr(S;x) C Tph(S;x).
(ii) Show that an intrinsic description of the Clarke tangent
cone is T (S; x) :=
{d € X | for every t; | 0 and z; — g =,
there exists s; —¢ x with (s; — ;) /t; — d}.
Note how the change of quantifiers imposes convexity
and destroys monotonicity.
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(iii) Compute these three cones at (0,0) when S := {0} x
RUR x {0} (the axes). Confirm that only T'5(S’; (0,0))
is nontrivial.

(iv) Show that in the convex case all three cones agree with
—Np(S;2)° = clRT(S — ). (The three cones also
agree in the case of a smooth manifold as discussed in
Section 7. )

(v) Determine the three cones at all points of the Pacman
set given in polar coordinates by

Plo)=4{(r,0) | 0<r<1,/0| > 0o}

The set P(1/5) is shown in Figure 5.2.
(vi) Observe that the Clarke and pseudo-tangent cones are
necessarily convex while the contingent cone need not
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Fig. 5.2. A Pacman set, star and normal cone

be. Note also that the Clarke cone is not monotone — it
may decrease in size as the set grows. Finally, the Bouli-
gand cone is often not convex while the pseudotangent
cone may often be “too” big.

Exercise 5.2.22. (Representation of the Clarke Tangent
Cone) Let X be a Banach space and let .S be a closed subset
of X. Show that for any x € 5,
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To(S:z) = {h € X | d2(z:h) < 0},

Exercise 5.2.23. (Representation of the Contingent Cone)
A similar characterization exists for the contingent cone. Re-
call that the Dini directional derivative of a locally Lipschitz
function f: X — R at x in the direction h € X is defined
by

f(x;h) :=liminf fle+th) - f<$)
t—0+ t

Let X be a Banach space and let S be a closed subset of X
Show that, for any x € 9,

Tp(S:2) = {h € X | dg(a:h) < 0}

xExercise 5.2.24. (Tangential Regularity) Let X be a Ba-
nach space and let .S be a closed subset of X. We say S is reg-
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ular at € S provided that T (S; ) = T(S; x). In terms
of the Dini directional derivative, regularity of a locally Lip-
schitz function f at x is equivalent to f°(xz;h) = f~(x; h)
for all h € X. Show that if dg is regular at x € S then
S is regular at r and the converse holds when X is finite
dimensional. Reference: [75].

xExercise 5.2.25. Show that the converse of the conclusion
in Exercise 5.2.24 fails when X is infinite dimensional. Hint:
Let (e;) be an infinite sequence in the unit sphere of X
satisfying [le; — e;|| > 9,7 # j for some § > 0. Define

S = {0} U {4—%@0%@) =12, ).



Then verify that Tg(5;0) = T:(S;0) = {0}, yet d¢(0; ¢g) <
1/4 <1 =dg(0;ep). Reference: [39].
Exercise 5.2.26. Consider the problem of minimizing a
Fréchet differentiable function f over a closed set S. Show
that a necessary condition for a local optimum to occur at
T 1S

f'(z) € =Tp(S;7)°
and that this is sufficient when f is convex and S is pseu-
doconver at T in the sense that S — z C Tp(S; ).

Exercise 5.2.27. Consider the problem of mimimizing
flr,y) = 224+ y over S := {0} x RUR x {0} C R

The necessary optimality condition



fl(x) € =Tp(S;x)° = —Tg(S;z)°

clearly implies the necessary condition f/(z) € —No(S; x).
Alternatively, we can derive the above necessary optimality
condition as well as a tighter one

f'(x) € =N(S;z)

from f'(x) € —Np(S;x) (Proposition 3.1.7).

Check that (0,0) is not a solution to the above problem
and show that, of the candidate conditions, only f’(z) €
—Tp(S;2)° and f'(x) € —Np(S;x) can rule out (0,0) as a
candidate for optimality. (Note that the necessary conditions
in the previous exercise actually apply to Gateaux differen-
tiable functions. Hence, examples similar to this one can also
be constructed with function f that are not so “nice”.)
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xExercise 5.2.28. Prove the following representation of the
contingent cone of the preimage of a surjective function.

Theorem 5.2.36. (Liusternik) Let g: RY — RM pe ¢ C1
mapping. Suppose that ¢ (T): RY — RM s surjective.
Then

Tp(gH(g(x)); ) = Ker g/ ().

Hint: Fix a vector v € Ker ¢/(z). Choose any N x (N —
M) matrix D making the matrix A = (¢/(z), D) invertible.
Define a function h(x) = (g(z), Dx), and for small real
0 > 0 define

p(t) == h Y (h(z) + tAv).
Prove that p is well-defined when § is small and that p is C'!
with :



i) p(0) = 7.

(it) p'(0) = v.

(iii) g(p(t)) = g(x) for all small .

Thence, deduce that v € Ker ¢/(z) if and only if for some
§ > 0 there exists a C'! function p: (—4,0) — R satisfying
the three conditions above.

Exercise 5.2.29. (Lagrange Multiplier Rule) Consider
minimize f(x) subject to ¢g(x) =0, (5.2.12)

where f: RY — R and g: RY — RM are C! mappings.
Suppose that T is a solution to the constrained minimization
problem (5.2.12) and suppose that ¢/(z): RY — RM js
surjective. Show that there exists A € RM guch that

@)+ g'(@) =0.
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Hint: Note that problem (5.2.12) is equivalent to minimizing
fover S = ¢ 10) = g7 (¢g(z)). Then use Exercise 5.2.21
and Theorem 5.2.36.

Exercise 5.2.30. (Ubiquity) Show that the existence of a
function as in Example 5.2.12 implies the existence of a ubig-
uitous set. Use the Baire category theorem to help construct
a ubiquitous set.

xExercise 5.2.31. The star of a set S is the set of points
r € S such that |z,s] C S forall s € S.

(i) Show that in any Banach space,
star(S) = () + Tp(S;x) = ()| @+ To(S; ).
resS resS
(ii) If X has a Fréchet renorm, show
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star(S) = ﬂ x+ Tp(S; ).
resS
Deduce that a closed set in such a space is pseudoconvex
at all its points if and only if it is convex. Reference: [56].
(iii) Verify these claims for the set in Figure 5.2.

Exercise 5.2.32. Let C' be a w*-compact convex subset
of X*. Show that C' is norm bounded and f € N implies
that f is Lipschitz with a Lipschitz constant L = sup{||z™|| |
z* e C}.

Exercise 5.2.33. Show that for every x € A, the function
oo(- — x) belongs to N¢.
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Exercise 5.2.34. Let I' be a set and let fy € N for
v € I". Show that sup,ep f+ and infy e fy belong to Ne
when they are finite everywhere.

xExercise 5.2.35. Generalize the results in Theorem 5.2.33
to an unbounded set A. Hint: Consider:

Xo =1+ X =R | f(z)=fly) < oclz—y) for z,y € X7}.

Define the metric of uniform convergence on bounded sets,

p, on X by
) — 1 pilf.9)
p(f.q) = ; Tt o (f g e pilf ) = sup. |f(z)—gl(a

For the metric p, f — ¢ if and only if f — ¢ on ?8B in
the metric p; for every . In an entirely standard fashion, we
may verify that (Xq, p) is complete. For fixed x,v with f



738 5 Multifunctions

and t as in equation (5.2.7), there exists some integer I > 0
such that ||z|| < I, ||z + tv|| < I. By definition of p,

L pr(f, fo) .
201+ pr(f, fo) < A o)

For p(f, fo) < e, we have pr(f, fo) < (2%e)/(1—2%e). Thus
for small €, the same argument in (a) applies to guarantee

G 1. being open. The arguments in (b)—(e) still apply. Hence
we can get
Corollary 5.2.37. Let X be a Banach space, let A be a

bounded subset of X and let C' be a w™-compact conver
subset of X*. Then in (Xp, p), the set

{feXo|0cof=C on X}

15 residual.
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5.3 Distance Functions

We discuss distance functions in Hilbert spaces to illustrate
the various variational and nonsmooth analysis techniques.

5.3.1 Distance Functions as Differences of Convex Functions

Many nice properties of a distance function are due to the
fact that it is the difference of two convex functions (a DC
function), one of which is smooth. To prove this fact we need
the following technical lemma.

Lemma 5.3.1. Let X be a Hilbert space, let G C X
be an open convexr set and let g be a Fréchet differ-
entiable function whose derivative ¢’ is Lipschitz on G
with a Lipschitz constant L. Then the function f(x) =
L||z||?/2 — g(x) is convex on G.
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Proof. Let a € G and let v € X be a unit vector. Define
h(t) := f(a+tv). Then, for any to > t] and a+tjv, a+tov €
(G we have
K (ty) — B (t1) = L{a + tov, v) — L{a + tyv, v)
—(¢'(a + tov),v) + (¢'(a + t1v),v)

> L(ta —t1) — ||¢'(a + tov) — ¢'(a + t1v)|| >0
Therefore h is convex on the interval {t | a + tv € G} and
consequently f is convex on GG .

Now we can prove that a distance function on a Hilbert
space is always a DC function.
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Theorem 5.3.2. (Distance Functions Are DC) Let X be
a Hilbert space and let S C X be a closed set. Then, dg
is locally the difference of a C' convex function and a
convex function on X\S.

Proof. Let z € X\S andlet G = {x € X | ||z —
z|| < dg(z)/2}. Then, for any y € S, v — ||z — y||| =
(x — y)/||r — yl|| is Lipschitz with a Lipschitz constant
L = 4/dg(x) (Exercise 5.3.1). By Lemma 5.3.1 each func-
tion  — L||z|*/2 — ||z — y||,y € S is convex on G, and
therefore the function

c(x) = Lla||*/2dg(x) = sup{L||z[|*/2 = |z =yl | y € S}

is continuous and convex on G. Now dg(z) = L||z||?/2 —
c(x), as was to be shown. .
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5.3.2 The Clarke Subdifferential of a Distance Function

We have seen that the Clarke subdifferential of a Lipschitz
function is always a cusco but not necessarily a minimal one.
Now we have

Theorem 5.3.3. (Minimality of the Clarke Subdifferential
of a Distance Function) Let X be a Hilbert space and let
S C X be a closed set. Then, Oc(—dg) is a minimal
w*-cusco on X\S. Consequently, 0c(—dg) is a minimal
w*-cusco on X.



Proof. Let ¢ be the continuous convex function in the
proof of Theorem 5.3.2. Then

Oo(—dg)(x) = Oc(x) — Lzx.

Since dc is a minimal w*-cusco on X\S (Theorem 5.1.7,
Corollary 5.1.28 and Theorem 5.1.29) so is 0p(—dg). .

5.3.3 Closest Points

Let X be a Banach space and let S C X be a closed set.
Consider any y € S. We say x € S is a closest point to y
in S provided that ||y — z|| = dg(y). It turns out that in a
Hilbert space X at any point y € X\.S where 0pdg(y) # 0,
y has a closest point in S.
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Theorem 5.3.4. (Subdifferential of the Distance Function

and Closest Point) Let X be a Hilbert space and let S C X

be a closed set. Suppose that x ¢ S and ™ € Opdg(x).

Then there exists x € S such that

(i) every minimizing sequence (x;) in S of inf{||s — x| |
s € S} converges to T, so that T is the unique closest
point of x in S;

(ii) the distance function dg is Fréchet differentiable at
z and x* = dg(zx) = (v — Z)/||x — Z||; and

(iii) 2* € Np(S ; 7).

Proof. Let g be a C! function such that ¢/(z) = z* and

dg — g attains a minimum 0 at z. It is not hard to check
the identity (Exercise 5.3.2)
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d3(y)—dg(x) = 2dg(x)(dg(y) —ds(@))+(dg(y) —dg(x))*.
[t follows that

dgly)—dg(a) > 2ds(2)(ds(y)—ds(x)) > 2dg(x)(g(y)—(g9(x)),

and therefore 2dg(x)z™ € 8Fd%(x). Now by Proposition
3.1.3 we have

d3(y) — d%(z) > (2dg(x)z*,y — x) + o ||y — z])).
(5.3.1)

Let (z;) be a minimizing sequence of inf{|[s—zx