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About Verbal Presentations

I feel so strongly about the wrongness of reading

a lecture that my language may seem immoderate.

· · · The spoken word and the written word are quite

different arts. · · · I feel that to collect an audience

and then read one’s material is like inviting a friend

to go for a walk and asking him not to mind if you

go alongside him in your car.∗ — Sir Lawrence

Bragg

• What would he say about reading overheads?

∗From page 76 of Science, July 5, 1996.
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Srinivasa Ramanujan (1887–1920)

• G. N. Watson (1886–1965), on reading Ramanujan’s

work, describes:
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a thrill which is indistinguishable from the thrill I

feel when I enter the Sagrestia Nuovo of the Capella

Medici and see before me the austere beauty of the

four statues representing ‘Day,’ ‘Night,’ ‘Evening,’

and ‘Dawn’ which Michelangelo has set over the

tomb of Guiliano de’Medici and Lorenzo de’Medici.

4



1. Abstract

The Ramanujan AGM continued fraction

Rη(a, b) =
a

η+
b2

η+
4a2

η+
9b2

η+ ...

enjoys attractive algebraic properties such as a striking

arithmetic-geometric mean relation & elegant links with

elliptic-function theory.
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• The fraction presented a serious computational chal-

lenge, which we could not resist.

♣ Resolving this challenge lead to four quite subtle pub-

lished papers:

– two published in Experimental Mathematics 13 (2004),

275–286, 287–296 and;

– two in The Ramanujan Journal 13, (2007), 63–101

and 16 (2008), 285–304.
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In Part I (colloquium): we show how to rapidly evaluate
R for any positive reals a, b, η. The problematic case being
a ≈ b—then subtle transformations allow rapid evaluation.

• On route we find, e.g., that for rational a = b, Rη is an
L-series with a ’closed-form.’

• We ultimately exhibit an algorithm yielding D digits
of R in O(D) iterations.∗

In Part II (seminar): we address the harder theoretical
and computational dilemmas arising when (i) parameters
are allowed to be complex, or (ii) more general fractions
are used.
∗The big-O constant is independent of the positive-real triple a, b, η.
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2. Preliminaries

PART I. Entry 12 of Chapter 18 of Ramanujan’s Second

Notebook [BeIII] gives the beautiful:

Rη(a, b) =
a

η+
b2

η+
4a2

η+
9b2

η+ ...

(1.1)

which we interpret—in most of the present treatment—for

real, positive a, b, η > 0.
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Remarkably, for such parameters, R satisfies an AGM re-

lation:

Rη
(
a+ b

2
,
√
ab

)
=
Rη(a, b) +Rη(b, a)

2
(1.2)

1. (1.2) is one of many relations we develop for computation of Rη.

2. The hard cases occur when b is near to a, including the case
a = b.

3. We eventually exhibit an algorithm uniformly of geometric/linear
convergence across the positive quadrant a, b > 0.

4. Along the way, we find attractive identities, such as that for
Rη(r, r), with r rational.

5. Finally, we consider complex a, b—obtaining theorems and conjec-
tures on the domain of validity for the AGM relation (1.2).
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Research started in earnest when we noted

R1(1,1) ‘seemed close to’ log 2.

Such is the value of experiment:

one can be led into deep waters.

As can be seen by ‘cancellation’ of the η

elements down the fraction:

Rη(a, b) = R1(a/η, b/η),

valid because the fraction converges.

Discussed in Ch. 1 of Experimen-

tation in Mathematics.
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To prove convergence we put a/R1 in RCF (reduced con-

tinued fraction) form:

R1(a, b) =
a

[A0;A1, A2, A3, . . . ]
(2.1)

:=
a

A0 +
1

A1 +
1

A2 +
1

A3 + ...

where the Ai are all positive real.
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It is here [Ra-

manujan’s work on

elliptic and modu-

lar functions] that

both the profundity

and limitations of

Ramanujan’s knowl-

edge stand out most

sharply.

— G.H. Hardy
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Inspection of R yields the RCF elements explicitly and gives

the asymptotics of An:

For even n

An =
n!2

(n/2)!4
4−n

bn

an
∼

2

π n

bn

an
.

For odd n

An =
((n− 1)/2!)4

n!2
4n−1

an−1

bn+1
∼

π

2 abn

an

bn
.
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• This representation leads immediately to:

Theorem 2.1: For any positive real pair a, b the fraction

R1(a, b) converges.

Proof: An RCF converges iff
∑
Ai diverges. (This is the

Seidel–Stern theorem [Kh,LW].)

In our case, such divergence is evident for every choice of

real a, b > 0. c⃝

We later show a different fraction for R(a), and other com-

putationally efficient constructs.
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• Note for a = b, divergence of
∑
Ai is only logarithmic

— a true indication of slow convergence (we wax more

quantitatively later).

• Our interest started with asking how, for a > 0, to

(rapidly) evaluate

R(a) := R1(a, a)

and thence to prove suspected identities.
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3. Hyperbolic-elliptic Forms

Links between standard Jacobi theta functions

θ2(q) :=
∑

q(n+1/2)2, θ3(q) :=
∑

qn
2

and elliptic integrals yield various results. We start with:

Theorem 3.1: For real y, η > 0 and q := e−πy

η
∑
k∈D

sech(kπy/2)

η2 + k2
= Rη(θ22(q), θ

2
3(q)),

η
∑
k∈E

sech(kπy/2)

η2 + k2
= Rη(θ23(q), θ

2
2(q)),

where D,E denote respectively the odd, even integers.
Consequently, the Ramanujan AGM identity (1.2) holds
for positive triples η, a, b.
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Proof: The sech relations are proved—in equivalent form—
in Berndt’s treatment (Vol II, Ch. 18) of Ramanujan’s
Notebooks [BeIII].

For the AGM, assume 0 < b < a. The assignments

θ22(q)/θ
2
3(q) := b/a, η := θ22(q)/b

are possible (since b/a ∈ [0,1), see [BB]) and implicitly
define q, η, and together with

θ22(q) + θ23(q) = θ23(
√
q),

2 θ2(q)θ3(q) = θ22(
√
q)

and repeated use of the sech sums above yield

R1

(
θ23(q)/η, θ

2
2(q)/η

)
+R1

(
θ22(q)/η, θ

2
3(q)/η

)
= 2R1

(
θ23(
√
q)/(2η), θ22(

√
q)/(2η)

)
.
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Since

θ22(q) = η b, θ23(q) = η a

the AGM identity (1.2) holds for all pairs with a > b > 0.
The case 0 < a < b is handled by symmetry, or on starting
by setting θ22(q)/θ

2
3(q) := a/b. c⃝

• The wonderful sech identities above stem from clas-
sical work of Rogers, Stieltjes, Preece, and of course
Ramanujan [BeIII] in which one finds the earlier work
detailed.

• The proof given for the AGM identity has been claimed
for various complex a, b sometimes over ambitiously.∗

∗Mea culpa indirectly.
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• These sech series can be used to establish two numer-
ical series involving the complete elliptic integral

K(k) :=
∫ π/2
0

1√
1− k2 sin2 (θ)

dθ.

We write K := K(k), K′ := K(k′) with k′ :=
√
1− k2.∗

Theorem 3.2: For 0 < b < a and k := b/a we have

R1(a, b) =
πaK

2

∑
n∈Z

sech
(
nπK′

K

)
K2 + π2a2n2

. (3.1)

Correspondingly, for 0 < a < b and k := a/b we have

R1(a, b) = 2πbK
∑
n∈D

sech
(
nπ K′

2K

)
4K2 + π2b2n2

. (3.2)

∗K(k) is fast computable via the AGM iteration.
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Proof: The series follow from the assignments

θ23(q)/η := max(a, b), θ22(q)/η := min(a, b)

and Jacobi’s nome relations

e−πK
′/K = q, K(k) =

π

2
θ23(q)

inserted appropriately into Theorem 3.1. c⃝

• The sech-elliptic series (3.1-2) allow fast computation
of R1 for b not too near a.

• D digits for R1(a, b) requires O(DK/K′) summands.

• So, another motive for the following analysis was slow
convergence of the sech-elliptic forms for b ≈ a.
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• We also have attractive evaluations such as

R1

(
1,

1√
2

)
=
π

2
K

(
1√
2

) ∑
n∈Z

sech(nπ)

K2(1/
√
2) + n2π2

.

Here

K

(
1√
2

)
=

Γ2(1/4)

4
√
π

,

see [BB].

• There are similar series for R1(1, kN) at the N-th sin-

gular value, [BBa2].
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• A similar relation for R1

(
1/
√
2,1

)
obtains via (3.2),

and via the AGM relation (1.2) yields the oddity:

R1

(
1+
√
2

2
√
2

,
1

21/4

)
= πK

(
1√
2

) ∑
n∈Z

sech(nπ/2)

4K2(1/
√
2) + n2π2

.

• But we have no closed forms for a ̸= b.
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4. Six Forms for R(a)

• Recalling that R(a) := R1(a, a), we next derive rela-
tions for the hard case b = a.

Interpreting (3.1) as a Riemann-integral in the limit as
b → a− (for a > 0), gives a slew of relations involving
the digamma function [St,AS] ψ := Γ′

Γ and the Gaussian
hypergeometric function

F = 2F1(a, b; c; ·).

• The following identities are presented in an order that
can be serially derived:
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Evaluating R(a)

Proposition: For all a > 0:

R(a) =
∫ ∞
0

sech
(
π x
2 a

)
1+ x2

dx

= 2 a
∞∑
k=1

(−1)k+1

1+ (2 k − 1) a

=
1

2

(
ψ

(
3

4
+

1

4a

)
− ψ

(
1

4
+

1

4a

))
=

2a

1+ a
F

(
1

2a
+

1

2
,1;

1

2a
+

3

2
;−1

)

= 2
∫ 1

0

t1/a

1+ t2
dt

=
∫ ∞
0

e−x/a sech(x) dx.
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Exploiting the Various Forms

The first series or t-integral yield a recurrence

R(a) =
2a

1+ a
−R

(
a

1+ 2a

)
,

while known relations for digamma [AS,St] lead to

R(a) = C(a) +
π

2
sec

(
π

2a

)
− (4.1)

2a2(1 + 8a− 106a2 +280a3 +9a4)

1− 12a+25a2 +120a3 − 341a4 − 108a5 +315a6

for a “rational-zeta” series [BBC]:

C(a) =
1

2

∑
n≥1
{ζ(2n+1)− 1}

(3a− 1)2n − (a− 1)2n

(4a)2n
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• Note that (4.1), while rapidly convergent for some a,

has sec poles, some being cancelled by the rational

function.

– We require a > 1/9 for convergence of the rational-

zeta sum.

– However, the recurrence relation above can be used

to force convergence of such a rational-zeta series.
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• The hypergeometric form for R(a) is of special interest

because [BBa1] of:

The Gauss continued fraction

F (γ,1; 1 + γ;−1) = [α1, α2, · · · , αn, · · · ] (4.2)

=
1

α1 +
1

α2 +
1

α3 +
1

α4 + ...
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Here, we have explicitly α1 = 1 and

αn = γ ((n− 1)/2)!)−2 (n− 1+ γ)
(n−3)/2∏
j=1

(j + γ)2

n = 3,5,7, . . .

αn = γ−1 (n/2− 1)!2 (n− 1+ γ)
n/2−1∏
j=1

(j + γ)−2

n = 2,4,6, . . .
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Asymptotic Expansions need not Converge

An interesting aspect of formal analysis is based upon the

first sech-integral for R(a). Expanding and using a repre-

sentation of the even Euler numbers

E2n := (−1)n
∫ ∞
0

sech(πx/2)x2n dx

one obtains

R(a) ∼
∑
n≥0

E2n a
2n+1,

yielding an asymptotic series of zero radius of conver-

gence. Here the E2n commence

1,−1,5,−61,1385,−50521,2702765 . . .
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Moreover, for the asymptotic error, we have [BBa2,BCP]:∣∣∣∣∣∣R(a)−
N−1∑
n=1

E2n a
2n+1

∣∣∣∣∣∣ ≤ |E2N | a2N+1,

• It is a classic theorem of Borel [St,BBa2] that for every

real sequence (an) there is a C∞ function f on R with

f(n)(0) = an.

• Who knew they could be so explicit?
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• The oft-stated success of Padé approximation is well

exemplified in our case.

If one takes the unique (3,3) Padé form∗ we obtain

R(a) ≈ a
1+ 90 a2 +1433 a4 +2304 a6

1+ 91 a2 +1519 a4 +3429 a6
.

• This is remarkably good for small a; e.g., yielding

R(1/10) ≈ 0.09904494 correct to the implied precision.

For R(1/2) and the (30,30) Padé approximant† one

obtains 4 good digits.

∗Thus, top and bottom of R(a)/a have degree 3 in the variable a2.
†Numerator and denominator have degree 30 in a2.
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• Though the convergence rate is slower for larger a, the
method allows, say, graphing R to reasonable precision.

A plot of R

Having noted a formal expansion at a = 0, we naturally
asked for: An asymptotic form valid for large a?

• Via a typical asymptotic development, we find more,
namely a convergent expansion for all a > 1:
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Starting with our second sech integral

R(a) =
∫ ∞
0

e−x/a sechx dx

we again use the Euler numbers and known Hurwitz-zeta

evaluations of sech-power integrals for odd powers. We

obtain a convergent series valid at least for real a > 1:

R(a) =
π

2
sec

(
π

2a

)
− 2

∑
m∈D+

β(m+1)

am

= 2
∑
k≥0

β(k+1)
(
−
1

a

)k
Here D+ denotes positive odd integers and

β(s) := 1/1s − 1/3s+1/5s − · · ·

is the Catalan primitive L-series mod 4.
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• Remarkably, we find the leading terms for large a in-
volve Catalan’s constant G := β(2) via

R(a) =
π

2
−

2G

a
+

π3

16a2
− · · ·,

a development difficult to infer from casual inspection
of Ramanujan’s fraction.

• Even the asymptote R(∞) = π/2 is hard to so infer,
though it follows from various of the previous repre-
sentations for R(a). Using recurrence relations and
various expansions we also obtain results pertaining to
the derivatives of R, notably

R′(1) = 8(1−G), R′
(
1

2

)
=
π2

24
.
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• A peculiar property of ψ leads to an exact evaluation
of the imaginary part of the digamma representation
of R(a) when a lies on the circle

C1/2 := {z : |z −
1

2
| =

1

2
}

in the complex plane.

Imaginary parts of the needed digamma values have a
closed form [AS,St], and we obtain

Im(R(a)) =
π

2
cosech

(
πy

2

)
−

1

y

for

y := i

(
1−

1

a

)
and a ∈ C1/2.
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• Note that y is always real, and we have an elementary
form for Im(R) on the given continuum set. Admittedly
we have not yet discussed complex parameters; we do
that later.

• The Ramanujan fraction converges at least for a =
b, Re(a) ̸= 0, and it is instructive to compare numerical
evaluations of imaginary parts via the above cosech
identity.

Firmament — made for Coxeter at ninety
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5. The R Function at Rational Arguments

For positive integers p, q, we have from the above

R
(
p

q

)
= 2p

(
1

q+ p
−

1

q+3p
+

1

q+5p
− . . .

)
,

which is in the form of a Dirichlet L-function. One way to
evaluate L-functions is via Fourier-transforms to pick out
terms from a general logarithmic series. An equivalent,
elementary form for the digamma at rational arguments is
a celebrated result of Gauss. In our case

R
(
p

q

)
=

4p∑
odd k>0

e−2πi k(q+p)/(4p)×

− log
(
1− e2πi k/(4p)

)
−

1

n

q+p−1∑
n=1

e2πi kn/(4p)

.
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After various simplifications, forcing everything to be real-
valued, we arrive at a finite closed form. Namely:

R
(
p

q

)
= −2p

p+q−1∑
n=1

1

n

(
δn≡p+q mod 4p − δn≡3p+q mod 4p

)
− 2

∑
0 <odd k<2p

cos

(
(p+ q)kπ

2p

)
log

(
2 sin

(
πk

4p

))
+ 2π

∑
0 <odd k<2p

(
1

2
−

k

4p

)
sin

(
(p+ q)kπ

2p

)
(5.1)

• When q = 1, so that we seek R(p) for integer p, the
first, rational sum vanishes. The finite series (5.1) with
O(p+ q) total terms leads quickly to exact evaluations
such as:
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Exact Evaluations

R(1/4) =
π

2
−

4

3
, R(1/3) = 1− log 2,

R(1) = log 2, R(1/2) = 2− π/2,

R(2/3) = 4−
π√
2
−
√
2 log(1 +

√
2),

R(3/2) = π+
√
3 log (2−

√
3),

R(2) =
√
2
{
π

2
− log(1 +

√
2)
}
,

R(3) =
π√
3
− log 2,
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• And, of course, many other attractive forms.

• From (5.1) for positive integer q one has

R(1/q) = rational + (−1)(q−1)/2 log 2 (q odd)

R(1/q) = rational + (−1)q/2 π/2 (q even)

as also follow from R(1) = log2, R(1/2) = 2−π/2 and

R
(
1

q

)
=

2

q − 1
−R

(
1

q − 2

)
.

• An alluring evaluation involves the golden mean:

R(5) =
π√
τ
√
5
+ log2−

√
5 log τ, (τ := (1+

√
5)/2).
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• Such evaluations—based on (5.1)—can involve quite

delicate symbolic work.

• We have not analyzed evaluating R(a) for irrational a

by approximating a first via high-resolution rationals,

and then using (5.1).

Such a development would be of both computational

and theoretical interest.
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• Armed with exact knowledge of R(p/q) we find some

interesting Gauss-fraction results, in the form of ratio-

nal multiples of

F (γ,1; 1 + γ;−1) = [α1, α2, . . . ].

For example, (4.2) yields

R(1) = log2 =
1

1+
1

2+
1

3+
1

1+ ...

,
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But alas the beginnings of this fraction are misleading;
subsequent elements an run

log2 = [1,2,3,1,5,
2

3
,7,

1

2
,9,

2

5
, . . . ],

being as αn = n,4/n resp. for n odd, even.

Similarly, one can derive

2− 2 log2 = [13, r2,2
3, r4,3

3, r6,4
3, . . . ],

where the even-indexed fraction elements r2n are com-
putable rationals.

• Though these RCFs do not have integer elements, the
growths of the αn provide a clue to the convergence
rate, which we study in a subsequent section.
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6. Transformation of R1(a, b)

The big step. We noted that the sech-elliptic series (3.1)

(also (3.2)) will converge slowly when b ≈ a, yet in

Sections 4, 5 we successfully addressed the case b = a.

We now establish a series representation when b < a

but b is very near to a.

We employ the wonderful fact that sech is its own Fourier

transform, in that∫ ∞
−∞

ei γxsech(λx) dx =
π

λ
sech

(
πγ

2λ

)
.
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Using this relation, one can perform a Poisson transform

of the sech-elliptic series (3.1).

• The success of the transform depends on analyzing

I(λ, γ) :=
∫ ∞
−∞

sechλx

1+ x2
ei γx dx.

One may obtain the differential equation:

−
∂2I

∂γ2
+ I =

π

λ
sech

(
πγ

2λ

)
and solve it — after some machinations.
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We obtained

I(λ, γ) =
π

cosλ
e−γ +

2π

λ

∑
d∈D+

(−1)(d−1)/2e−πd γ/(2λ)

1− π2d2/(4λ2)
.

where D+ denotes the positive odd integers.

• When λ = πD/2 for some odd D, the 1/ cos pole conve-

niently cancels a corresponding pole in the summation,

and the result can be inferred either by avoiding d = D

in the sum and inserting a precise residual term

∆I = π(−1)(D−1)/2e−γ(γ +1/2)/λ,

or more simply by taking a numerical limit as λ→ πD/2.
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• When γ → 0 we can recover the ψ-function form of the
integral of sech(λx)/(1 + x2).

Via Poisson transformation of (3.1) we obtain, for 0 < b < a,

R1(a, b) = R
(
πa

2K′

)
+

π

cos K′
a

1

e2K/a − 1
(6.1)

+ 8πaK′
∑

d∈D+

(−1)(d−1)/2

4K′2 − π2d2a2
1

eπdK/K
′ − 1

where k := b/a, K := K(k), K′ := K(k′), and D+ again
denotes the positive odd integers.
A similar Poisson transform obtains from (3.2) in the case
b > a > 0. Such transforms appear recondite, but we have
what we desired: convergence is rapid for b ≈ a: because
K/K′ ∼ ∞.
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7. Convergence Results

For an RCF x = [a0, a1, . . . ] (i.e., each ai is nonnegative but

need not be integer) one has the usual recurrence relations∗

pn = an · pn−1 +1 · pn−2,

qn = an · qn−1 +1 · qn−2,

with

(p0, p−1, q0, q−1) := (a0,1,1,0).

∗The corresponding matrix scheme with bn inserted for ‘1’ applies
generally to CF’s.
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We also have the approximation rule for the convergents∣∣∣∣∣x− pnqn
∣∣∣∣∣ < 1

qnqn+1
,

so that convergence rates can be bounded by virtue of the

growth of the qn.

• One may iterate the recurrence in various ways, obtain-

ing for example

qn =

(
1+ anan−1 +

an

an−2

)
qn−2 −

an

an−2
qn−4.
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An immediate application is

Theorem 7.1: For the RCF form of the Gauss fraction,
F (γ,1; 1 + γ;−1) = [α1, α2, . . . ], and for γ > 1/2 we have∣∣∣∣∣F − pnqn

∣∣∣∣∣ < c

8n/2
,

where c is an absolute constant.

Remark: One can obtain sharper γ-dependent bounds.
We intend here just to show geometric convergence; i.e.
that the number of good digits grows at least linearly in
the number of iterates.

Also note that for the R(a) evaluation of current interest,
γ = 1/2+ 1/(2a) so that the condition on γ is natural.
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Proof: From the element assignments in (4.2) we have

αnαn−1 =
4

(n− 1)2
(n− 1+ γ)(n− 2+ γ);

1 < n odd ,

αnαn−1 =
1

(n/2− 1+ γ)2
(n− 1+ γ)(n− 2+ γ);

n even .

We also have q1 = 1, q2 = 1 + 1/γ > 2 so that for suffi-
ciently large n we have αnαn−1 +1 > 4,2 respectively as n
is odd, even.

From the estimate qn > (αnαn−1 +1)qn−2 the desired bound
follows. c⃝
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• A clever computational acceleration for Gauss fractions
is described in [BBa1,AAR,LW]. Consider the previ-
ously displayed fraction log2 = [1,2,3,1,5,2/3, . . .].

Generally a “tail” tN of this construct, meaning a subfrac-
tion starting from the N-th element, runs like so:

tN :=
1

4

N
+

1

N +1+
1

4

N +2
+

1

N +3+ ...

.

We hope this tail tN is near the periodic fraction

[4/N,N,4/N,N, . . . ] = N(
√
2− 1)/2.

54



• This suggests that if we evaluate the Gauss fraction

and stop at element 4/N , this one element should be

replaced by 2(1 +
√
2)/N .

- in our own numerical experiments, this trick always

adds a few digits precision.

• As suggested in [LW], there are higher-order takes of

this idea; e.g., the use of longer periods for the tail

sub-fraction.

- as the reference shows, experimentally, the acceler-

ation can be significant.
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Convergence Rates

We now attack convergence of the Ramanujan RCF, viz

a

R1(a, b)
= [A0;A1, A2, A3, . . . ].

with the Ai defined subsequent to (2.1).

• The qn convergents are linear combinations of ai · bj’s
for i, j even integers, and can be explicitly determined.
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This leads to

qn ≥ 1+
bn−2

an

n∏
m even

(
1−

1

m

)2
> 1+

1

2n

bn−2

an

for n even,

qn ≥
1

b2
+
an−1

bn+1

n−1∏
m even

(
m

m+1

)2
>

1

b2
+

1

n

an−1

bn+1

for n odd.
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• We are ready for a convergence result —which can be
sharpened — for the original Ramanujan construct:

Theorem 7.2: For the Ramanujan RCF
a

R1(a, b)
= [A0;A1, A2, A3, . . .]

we have for b > a > 0∣∣∣∣∣ a

R1(a, b)
−
pn

qn

∣∣∣∣∣ < 2nb4

(b/a)n
,

while for a > b > 0 we have∣∣∣∣∣ a

R1(a, b)
−
pn

qn

∣∣∣∣∣ < nb/a

(a/b)n
.

Proof: The given bounds follow directly upon inspection
of the products qn qn+1. c⃝
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• As previously intimated, convergence for a = b is slow.

What we can prove is:

Theorem 7.3: For real a > 0, we have∣∣∣∣∣ a

R(a)
−
pn

qn

∣∣∣∣∣ < c(a)

nh(a)
,

where c(a), h(a) are n-independent constants.

The exponent h(a) can be taken to be

h(a) = c0 min(1,4π2/a2)

where the constant c0 is absolute (can be sharpened—and

made more explicit.)
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Remark: The bound is computationally poor, but conver-
gence does occur. Indeed, for a = b or even a ≈ b we now
have many other, rapidly convergent options.

Proof: Inductively, assume for (n-independent) d(a), g(a)
and n ∈ [1, N−1] that qn < dng. The asymptotics following
(2.1) mean An > f(a)/n for an n-independent f .

Then we have a bound for the next qN :

qN >
f

N
d(N − 1)g + d (N − 2)g .

For g < 1, 0 < x ≤ 1/2 we have

(1− x)g > 1− gx− gx2,
and the constants d, g can be arranged so that qN > dNg;
hence the induction goes through. c⃝
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We reprise the import of these three theorems:

• (Theorem 7.1) The Gauss fraction for R(a) exhibits
(at least) geometric/linear convergence.

• (Theorem 7.2) So does the original Ramanujan form
R1(a, b) when a/b or b/a is (significantly) greater than
unity .

• (Theorem 7.3) When a = b we still have convergence
in the original form.

As suggested by Theorem 7.3 convergence is far below
geometric/linear.
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8. A Uniformly Convergent Algorithm

• We now give a complete algorithm to evaluate the

original fraction Rη(a, b) for positive real parameters.

• Convergence is uniform — for any positive real triple

η, a, b we obtain D good digits in no more than cD

computational iterations, where c is independent of the

size of η, a, b.∗

∗‘Iterations’ mean continued-fraction recurrence steps, or series-
summand additions.
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Algorithm for Rη(a, b) with real η, a, b > 0:

1. Observe that Rη(a, b) = R1(a/η, b/η) so with impunity we may
assume η = 1 and evaluate only R1.

2. If (a/b > 2 or b/a > 2) return original (1.1), or equivalently (2.1);

3. If (a = b) {
if (a = p/q rational) return finite form (5.1); else return the Gauss
RCF (4.2) or rational-zeta form (4.1) or (4.3) or some other
scheme such as rapid ψ computations; }

4. If (b < a) {
if (b is not too close to a)∗, return sech-elliptic result (3.1); else
return Poisson-transform result (6.1); }

5. (We have b > a) Return, as in (1.2),

2R1

(
(a+ b)/2,

√
ab
)
−R1(b, a).

c⃝

∗Say, |1− b/a| > ε > 0 for any fixed ε > 0.
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• It is an implicit tribute to Ramanujan’s ingenuity that
the final step (4) of the algorithm allows the entire pro-
cedure to go through for all positive real parameters.

• One may avoid step (4) by invoking a Poisson trans-
formation of (3.2), but Ramanujan’s AGM identity is
finer!
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PART II: 9. About Complex Parameters

PART II. Complex parameters a, b, η are complex, as we
found via extensive experimentation.

We attack this by assuming η = 1 and defining

D := {(a, b) ∈ C2 : R1(a, b) converges},

i.e., the convergents for (1.1) have a well-defined limit.

• There are literature claims [BeIII] that

{(a, b) ∈ C2 : Re(a), Re(b) > 0} ⊆ D,

i.e., that convergence occurs whenever both parame-
ters have positive real part.
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• This is false — as we shall

show. The exact identifica-

tion of D is very delicate.

• R1(a, b) typically diverges for |a| = |b|: we observed nu-

merically∗ that

R1

(
1

2
+

√
−3
2

,
1

2
−
√
−3
2

)
and R1(1, i) have ‘period two’ — as is generic — while

R1(t i, t i) is ‘chaotic’ for t > 0.

∗After a caution on checking only even terms!
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• We have implicitly used, for positive reals a ̸= b and
perforce for the Jacobian parameter

q :=
min(a, b)

max(a, b)
∈ [0,1),

the fact that

0 ≤
θ2(q)

θ3(q)
< 1.

• If, however, one plots complex q with this ratio of ab-
solute value less than one, a complicated fractal
structure emerges, as shown in the Figures below —
this leads to the theory of modular forms [BB].

• Thence the sech relations of Theorem 2.1 are suspect
for complex q.
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• Numerically, the identities appear to fail when |θ2(q)/θ3(q)|
exceeds unity as graphed in white for |q| < 1:

• Such fractal behaviour is ubiquitous.
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• Where |θ4(q)/θ3(q)| > 1 in first quadrant.∗

∗Colours show gradations between zero and one.
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Though the fraction R1(a, b)

converges widely, the AGM

relation (1.2) does not hold

across D.

Using a := 1, b := −3/2+ i/4 the computationalist will find
that the AGM relation fails:

R1

−1
4
+

i

8
,

√
−
3

2
+

i

4

 ̸= R1 (1, b) +R1 (b,1)

2
.

• The key to determining the domain for the AGM re-
lation seems to be the ordering of the moduli of the
relevant parameters.
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• We take the elliptic integral K(k) for complex k to be
defined by

K(k) =
π

2
F
(
1

2
,
1

2
; 1; k2

)
.

• The hypergeometric function F converges absolutely
for k in the disk (|k| < 1) and is continued analytically.

• For any numbers z = reiϕ under discussion, r ≥ 0, arg(z) ∈
(−π,+π] and so

√
z :=

√
reiϕ/2.

• We start with some numerically based Conjectures now
proven:
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Theorem 9.0 (Analytic continuation): Consider com-
plex pairs (a, b). Then

If |a| > |b| the original fraction R1(a, b) exists and agrees
with the sech series (3.1).

If |a| < |b| the original fraction R1(a, b) exists and agrees
with the sech series (3.2).

Theorem 9.1: R(a) := R1(a, a) converges iff a ̸∈ I. That
is, the fraction diverges if and only if a is pure imaginary.
Moreover, for a ∈ C\I the fraction converges to a holomor-
phic function of a in the appropriate open half-plane.

Theorem 9.2: R1(a, b) converges for all real pairs; that is
whenever Im(a) = Im(b) = 0.
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Theorem 9.3: (i) The even/odd parts of R1(1, i) (e.g.)
converge to distinct limits.
(ii) There are Re(a),Re(b) > 0 such that R1(a, b) diverges.

⋆ Define

• H := {z ∈ C :
∣∣∣∣2√z1+z

∣∣∣∣ < 1},

• K := {z ∈ C :
∣∣∣ 2z
1+z2

∣∣∣ < 1}.

Theorem 9.4: If a/b ∈ K then R1(a, b) and R1(b, a) both
converge.

Theorem 9.5: H ⊂ K (properly).

These results combine to give a region of validity for the
AGM relation:
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Theorem 9.6: If a/b ∈ H then R1(a, b) & R1(b, a) con-
verge, and the arithmetic mean (a+ b)/2 dominates the
geometric mean

√
ab in modulus.

• As to the problematic issues regarding the AGM re-
lation (1.2) · · · . We performed “scatter diagram”
analysis (very robust) to find computationally where
the AGM relation held in the parameter space.

⋆ The results (shown to

the right in yellow) were

quite spectacular!

• And led to the Theorems

above.
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• With C′ := {z ∈ C : |z| = 1, z2 ̸= 1}, we were led to:

Theorem 9.11: The precise domain of convergence for
R1(a, b) is

D0 = {(a, b) ∈ C × C : (a/b ̸∈ C′) or (a2 = b2, b ̸∈ I)}.
Hence, for a/b ∈ C′ we have divergence. Also, R1(a, b) con-
verges to an analytic function of a or b on the domain

D2 := {(a, b) ∈ C × C : |a/b| ̸= 1} ⊂ D0.

• Note, we are not harming Theorems 9.4–9.6 because
neither H nor K intersects C′.

• The “bifurcation” of Theorem 9.11 is very subtle.

75



Theorem 9.12: Restricting a/b ∈ H implies the truth of
the AGM relation (1.2) with all three fractions converging.

Proof: For a/b ∈ H, the ratio (a+ b)/(2
√
ab) ̸∈ C′ and via

9.11 we have sufficient analyticity to apply Berndt’s tech-
nique of Part I. c⃝

• A picturesque take on Theorems 9.4–9.6 and 9.12 is:

Equivalently, a/b belongs to the closed exterior
of ∂H, which in polar-coordinates is given by the
cardioid-knot

r2 + (2cosϕ− 4)r+1 = 0

drawn in the complex plane (r := |a/b|).
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• a/b ∈ H: the arithmetic mean dominating the geomet-

ric mean in modulus.

A cardioid-knot, on the (yellow) exterior of which the Ramanujan

AGM relation (1.2), (9.1) holds.
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Proof: A pair from Theorem 9.11 meets

1 ≤
∣∣∣∣∣a+ b

2
√
ab

∣∣∣∣∣
2

=
1

4

∣∣∣∣∣√z+ 1
√
z

∣∣∣∣∣
2

,

with z := a/b. Thus, for z := reiϕ we have 4 ≤ r+2cosϕ+1/r,
which defines the exterior∗ of the cardioid-knot curve. c⃝

• To clarify, consider the two lobes of ∂H: We fuse the
orbits of the ± instances, yielding:

r = 2− cos θ ±
√
(1− cos θ)(3− cos θ).

• Thus, H has a small loop around the origin, with left-
intercept

√
8− 3+ 0i, and a wider contour whose left-

intercept is −3−
√
8+ 0i.

∗As determined by Jordan crossings.
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• The condition a/b ∈ H (K) is symmetric: if a/b is in
H (K) then so is b/a, since r → 1/r leaves the polar
formula invariant.

• In particular, the AGM relation holds whenever (a, b) ∈
D and a/b lies on the exterior rays:

a

b
or

b

a
∈ [
√
8− 3,∞) ∪ (∞,−3−

√
8],

thus including all positive real pairs (a, b) as well as a
somewhat wider class.

• Similarly, the AGM relation holds for pairs (a, b) = (1, iβ)
with

±β ∈ [0,2−
√
3] ∪ [2 +

√
3,∞).
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Remark. We performed extensive numerical experiments
without faulting Theorems 9.11 and 9.12.

• Even with a = b we needed (a, a) ∈ D; recall (i, i) (also
(1, i)) provably is not in D.
The unit circle only intersects H at z = 1.

Where R exists (not yellow) and where the AGM holds (red).∣∣∣∣∣2
√
z

1+ z

∣∣∣∣∣⇒
∣∣∣∣2 z

1+ z2

∣∣∣∣ < 1.
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⋄ A key component of our proofs, actually valid in any B∗

algebra, is:

Theorem 9.13. Let (An), (Bn) be sequences of k × k

complex matrices.

Suppose that
∏n
j=1Aj converges as n→∞ to an invertible

limit while
∑∞
j=1 ∥Bj∥ <∞. Then

n∏
j=1

(Aj +Bj)

also converges to a finite complex matrix.
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• Theorem 9.13 appears new even in C1!

⋆ It allows one to linearize nonlinear matrix recursions —

ignoring O
(
1/n2

)
terms for convergence purposes.

• This is how the issue we now turn to, of the dynamics

of (tn), arose when applied to the matrix form of the

partial fraction for R1:

An =

An+Bn is linearization︷ ︸︸ ︷
I +

1

2an

 0
(
a
b

)2n
(
b
a

)2n
0

 −
Bn︷ ︸︸ ︷

O

(
1

n2

)
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10. Visual Dynamics from a ‘Black Box’

• Six months after the discoveries we had a beautiful proof

using genuinely new dynamical results.

Starting from the linear dynamical system t0 := t1 := 1:

tn ←↩
1

n
tn−1 + ωn−1

(
1−

1

n

)
tn−2,

where ωn = a2, b2 for n even, odd respectively — or is much

more general.

• Indeed
√
n tn is bounded ⇔ R1(a, b) diverges [actually

tn = qn−1/n!]
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• Numerically all one learns is that it is “tending to zero
slowly”. Pictorially we see significantly more:

• Scaling by
√
n, and coloring odd and even iterates, fine

structure appears.
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The attractors for various |a| = |b| = 1.
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⋆ This is now fully explained, especially the original rate
of convergence, which follows by a fine singular-value
argument. The radii are also determined.

• We used our matrix stability theorem to show the hard
case: |a| = |b|, a ̸= b, a ̸= 0 implies divergence of the
fraction.

• A Cinderella generated applet at
http://www.carma.newcastle.edu.au/~jb616/rama.html

neatly illustrates the behaviour of tn.

♠ L. Lorentzen (2008) has now provided a fine more con-
ventional proof of Theorem 9.11.
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11. The ’Chaotic’ Case

Jacobsen-Masson theory used in Theorem 9.1 shows, un-

like R1(1, i), even/odd fractions for R1(i, i) behave “chaot-

ically,” neither converge.

When a = b = i, (tn) exhibit a fourfold quasi-oscillation, as

n runs through values mod 4.

⋆ Plotted versus n, the (real) sequence tn(1,1) exhibits

the “serpentine oscillation” of four separate “neck-

laces.”
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For a = i, the detailed asymptotic is

tn(1,1) =

√
2

π
cosh

π

2

1
√
n

(
1+O

(
1

n

))
×

 (−1)n/2 cos(θ − log(2n)/2) n is even

(−1)(n+1)/2 sin(θ − log(2n)/2) n is odd

where

θ := argΓ((1 + i)/2).
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The subtle four fold serpent.

♠ This behaviour seems very difficult to infer directly from
the recurrence.
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♡ Analysis is based on a striking hypergeometric parametriza-
tion which was both experimentally discovered and
computer proved!

It is

tn(1,1) =
1

2
Fn(a) +

1

2
Fn(−a),

where

Fn(a) := −
an21−ω

ω β(n+ ω,−ω) 2F1

(
ω, ω;n+1+ ω;

1

2

)
,

where

β(n+1+ ω,−ω) =
Γ(n+1)

Γ (n+1+ ω)Γ (−ω)
,

and ω = 1−1/a
2 .
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12. More General Fractions

Study of R devolved to hard but compelling conjectures

on complex dynamics, with many interesting proven and

unproven generalizations (e.g., Borwein-Luke, 2008).

For any sequence a ≡ (an)∞n=1, we considered fractions

like

S1(a) =
12a21

1+
22a22

1+
32a23

1+ ...
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• We studied convergence properties for deterministic

and random sequences (an).

• For the deterministic case the best results are for peri-

odic sequences, satisfying

aj = aj+c

for all j and some finite c.

• The cases (i) an = Const ∈ C, (ii) an = −an+1 ∈ C, (iii)
|a2n| = 1, a2n+1 = i, and (iv) a2n = a2m, a2n+1 = a2m+1

with |an| = |am| ∀ m,n ∈ N, were already covered.

92



A period three dynamical system

(odd and even iterates)



13. Final Open Problems

• On the basis of numerical experiments, we note that

some “deeper” AGM identity might hold.

- there are pairs {a, b} so

R1(a, b) +R1(b, a)

2
̸= R1

(
a+ b

2
,
√
ab

)
but the LHS agrees numerically with some vari-

ant, S1((a+ b)/2,
√
ab), naively chosen from (3.1)

or (3.2).

- such coincidences are remarkable and difficult to

predict.
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1. What precisely is the domain of pairs for which R1(a, b)

converges, and some AGM holds?

2. Relatedly, when does the fraction depart from its various

analytic representations?

3. While R(i) := R1(i, i) does not converge, the ψ-function

representation of Section 4 has a definite value at a = i.

Does some limit such as limϵ→0R1(i+ ϵ, i) exist and

coincide?

4. Despite a host of closed forms for R(a) := R1(a, a), we

know no nontrivial closed form for R1(a, b) with a ̸= b.
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G.H. Hardy

All physicists and a good many quite respectable

mathematicians are contemptuous about proof. · · ·
Beauty is the first test. There is no permanent

place in the world for ugly mathematics.
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