Dynamics of generalizations of the AGM continued fraction of Ramanujan. Part I: divergence.

Jonathan M. Borwein
Faculty of Computer Science
Dalhousie University
jborwein@cs.dal.ca
and
D. Russell Luke
Pacific Institute for the Mathematical Sciences
Simon Fraser University
rluke@cecm.sfu.ca

July 26, 2004

Continued Fractions

For the sequence $a:=\left(a_{n}\right)_{n=1}^{\infty}$, denote the continued fraction $\mathcal{S}_{1}(a)$ by

$$
\mathcal{S}_{1}(a)=\frac{1^{2} a_{1}^{2}}{1+\frac{2^{2} a_{2}^{2}}{1+\frac{3^{2} a_{3}^{2}}{1+\cdots}}}
$$

We study the convergence properties of this continued fraction for deterministic and random sequences $\left(a_{n}\right)$. For the deterministic case we derive our most general results from an examination of periodic sequences, that is, sequences satisfying $a_{j}=a_{j+c}$ for all j and some finite c. Many special cases of the above continued fraction for particular choices of a have been determined in [3, 4]. In particular the cases (i) $a_{n}=$ const $\in \mathbb{C}$, (ii) $a_{n}=-a_{n+1} \in \mathbb{C}$, (iii) $\left|a_{2 n}\right|=1, a_{2 n+1}=i$, and (iv) $a_{2 n}=a_{2 m}, a_{2 n+1}=a_{2 m+1}$ with $\left|a_{n}\right|=\left|a_{m}\right| \forall m, n \in \mathbb{N}$. In the present work we are interested in the convergence of \mathcal{S}_{1} for arbitrary sequences of parameters.

Difference Equations

To evaluate \mathcal{S}_{1}, we study the recurrence for the classical convergents p_{n} / q_{n} to the fraction \mathcal{S}_{1},

$$
p_{n}=p_{n-1}+n^{2} a_{n}^{2} p_{n-2} \quad \text { and } \quad q_{n}=q_{n-1}+n^{2} a_{n}^{2} q_{n-2}
$$

Difference Equations

It is helpful to consider the renormalized sequences $\left(t_{n}\right)$ and $\left(v_{n}\right)$ where

$$
t_{n}:=\frac{q_{n-1}}{n!} \quad \text { and } \quad v_{n}:=\frac{q_{n}}{\Gamma(n+3 / 2) a_{n}^{(n+1)}}
$$

The corresponding recurrence relations are

$$
t_{n}=\frac{1}{n} t_{n-1}+\frac{n-1}{n} a_{n-1}^{2} t_{n-2},
$$

and

$$
v_{n}=\frac{2}{a_{n}(2 n+1)}\left(\frac{a_{n-1}}{a_{n}}\right)^{n} v_{n-1}+\frac{4 n^{2}}{(2 n-1)(2 n+1)}\left(\frac{a_{n-2}}{a_{n}}\right)^{(n-1)} v_{n-2}
$$

Difference Equations

For $\left|a_{n}\right|=\left|a_{m}\right|=b \neq 0$ for all $n, m \in \mathbb{N}$, the continued fraction \mathcal{S}_{1} diverges that is, the convergents separate - if

$$
\left|t_{n}\right| \leq O\left(\frac{b^{n}}{\sqrt{n}}\right) \quad \text { or } \quad\left(v_{n}\right) \text { is bounded, }
$$

each of these being equivalent.

Convergence: real parameters

Theorem 1. [arbitrary real parameters] The generalized Ramanujan continued fraction \mathcal{S}_{1} converges whenever all parameters a_{n} are real and satisfy $0<m \leq\left|a_{n}\right| \leq M<\infty$.

Issue: What about complex a_{n} ?

Numerical evidence

Figure 1: Dynamics for cycles of length $c=2$. Shown are the iterates $\widetilde{t}_{n}:=\sqrt{n} t_{n}$ for t_{n} with $\left(a_{1}, a_{2}\right)=(\exp (i \pi / 4), \exp (i \pi / 6))$. Odd iterates are light, even iterates are dark.

Figure 2: Dynamics for cycles of length $c=4$. Shown are the iterates $\widetilde{t}_{n}:=\sqrt{n} t_{n}$ for t_{n} with cycle length $4, a_{1}=a_{3}=\exp (i \pi / 4), a_{2}=\exp (i \pi / 6)$, $a_{4}=\exp (i(\pi / 6+1 / 2))$. Odd iterates are light, even iterates are dark.

Figure 3: Dynamics for random cycles. Shown are the iterates $\widetilde{t}_{n}:=\sqrt{n} t_{n}$ for t_{n} with (a) cycle length ∞ with only one random strand mod2, $a_{2 n+1}=\exp (i \pi / 4), a_{2 n}=\exp \left(i \theta_{n}\right), \theta_{n} \sim U[0,2 \pi]$, and (b) cycle length ∞ (i.e. $a_{n}=\exp \left(i \theta_{n}\right), \theta_{n} \sim U[0,2 \pi]$ for all n). Odd iterates are light, even iterates are dark.

Figure 4: Dynamics for cycles of length 3. Shown are the iterates $\widetilde{t}_{n}:=\sqrt{n} t_{n}$ for t_{n} given by with $\left(a_{1}, a_{2}, a_{3}\right)=(\exp (i \pi / 4), \exp (i \pi / 4), \exp (i \pi / 4+1 / \sqrt{2}))$. Odd iterates are light, even iterates are dark.

(a)
(b)

Figure 5: Dynamics for cycles of length 3. Shown are the iterates (a) $\widetilde{t}_{n}:=\sqrt{n} t_{n}$ for t_{n} and (b) v_{n}. In both of these examples the parameter values are $\left(a_{1}, a_{2}, a_{3}\right)=(\exp (i \pi / 4),-\exp (i \pi / 4), \exp (i \pi / 4+1 / \sqrt{2}))$. Odd iterates are light, even iterates are dark.

Figure 6: Dynamics for cycle of length $c=3$. Shown are the iterates $\widetilde{t}_{n}:=\sqrt{n} t_{n}$ for t_{n} with $\left(a_{1}, a_{2}, a_{3}\right)=(\exp (i \pi / 2), \exp (i \pi / 6), \exp (-i \pi / 6))$. Even iterates are light, odd iterates are dark.

Figure 7: Dynamics for cycle of length $c=3$. Shown are the iterates $\widetilde{t}_{n}:=\sqrt{n} t_{n}$ for t_{n} with $\left(a_{1}, a_{2}, a_{3}\right)=(\exp (i(\pi / 3+0.05)), \exp (-i(\pi / 3+0.05)), \exp (0.05 i))$. Even iterates are light, odd iterates are dark.

Convergence/divergence: general (random) parameters

Theorem 2. [summary] Let the nonzero (random) complex sequence of parameters $a:=\left(a_{n}\right)$ satisfy (in probability)

$$
0 \neq \prod_{n=1}^{\infty}\left(1-\frac{1}{(2 n)^{2} a_{2 n}^{2}}\right)<\infty \quad \text { and } \quad 0 \neq \lim _{n \rightarrow \infty} \frac{a_{2}}{a_{2 n}^{2 n-1} a_{2 n-1}^{2 n-2}} \prod_{j=1}^{2 n-2} a_{j}^{2}<\infty
$$

The iterates v_{n} of the corresponding (stochastic) difference equation are bounded (with probability 1) and the (stochastic) Ramanujan continued fraction $\mathcal{S}_{1}(a)$ diverges (almost surely) with the even/odd parts of $\mathcal{S}_{1}(a)$ converging (in probability) to separate limits in the following cases:

Convergence/divergence: general (random) parameters

(i) Even periodic parameters: If $a_{n}=a_{n+c}$ for all n and fixed c even, and $|\gamma|=1$ with $\gamma \neq 1$ where

$$
\gamma:=\left(\prod_{n=1}^{c / 2} \frac{a_{2 n-1}^{2}}{a_{2 n}^{2}}\right) .
$$

(ii) General deterministic parameters:

$$
\sup _{k}\left|\sum_{j \geq n}^{k} \frac{1}{a_{2}} \prod_{i=1}^{j} \frac{a_{2 i-1}^{2}}{a_{2 i}^{2}}\right|<\infty \quad \text { and } \quad \sup _{k}\left|\sum_{j \geq n}^{k} \frac{a_{2}}{a_{2 j}^{2}} \prod_{i=1}^{j} \frac{a_{2 i}^{2}}{a_{2 i-1}^{2}}\right|<\infty .
$$

(iii) Random parameters:

$$
\sum_{n}^{\infty} \frac{1}{n^{2}} \operatorname{var}\left(\frac{1}{a_{2}} \prod_{j=1}^{n} \frac{a_{2 j-1}^{2}}{a_{2 j}^{2}}\right)<\infty \quad \text { and } \quad \sum_{n}^{\infty} \frac{1}{n^{2}} \operatorname{var}\left(\frac{a_{2}}{a_{2 n}^{2}} \prod_{j=1}^{n} \frac{a_{2 j}^{2}}{a_{2 j-1}^{2}}\right)<\infty
$$

References

[1] Abramowitz, M. and Stegun, I. A., Handbook of Mathematical Functions, Dover, New York, 1970.
[2] Borwein, J. and Crandall, R. and Fee, G. "On the Ramanujan AGM fraction. Part I: The real parameter case", Experimental Mathematics (in press).
[3] Borwein, J. and Crandall, R. "On the Ramanujan AGM fraction. Part II: The complex parameter case", Experimental Mathematics (in press).
[4] Borwein, D. and Borwein, J. and Crandall, R. and Mayer, R. "On the dynamics of certain recurrence relations". Ramanujan Journal (in press).
[5] Grimmett, G. R. and Stirzacker, D. R. Probability and Random Processes, Clarendon Press, Oxford, 1992.
[6] Knopp, K. Theory and Application of Infinite Series, Dover, New York, 1990.
[7] Lorentzen, L. and Waadeland, H. Continued Fractions with Applications, North-Holland, New York, 1992.
[8] Shiryaev, A. N. Probability, Second Ed., Springer-Verlag, New York, 1989.
[9] Trench, W. F. "Invertibly convergent infinite products of matrices", J. Comp. Appl. Math., 101(1999), pp.255-263.
[10] Zygmund, A. Trigonometric Series Vol. I, Cambridge University Press, Cambridge, 1959.

