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Continued Fractions

For the sequence a := (an)∞n=1, denote the continued fraction S1(a) by

S1(a) =
12a2

1

1 +
22a2

2

1 +
32a2

3

1 + . . .

We study the convergence properties of this continued fraction for
deterministic and random sequences (an). For the deterministic case we
derive our most general results from an examination of periodic sequences,
that is, sequences satisfying aj = aj+c for all j and some finite c. Many special
cases of the above continued fraction for particular choices of a have been
determined in [3, 4]. In particular the cases (i) an = const ∈ C, (ii)
an = −an+1 ∈ C, (iii) |a2n| = 1, a2n+1 = i, and (iv) a2n = a2m, a2n+1 = a2m+1

with |an| = |am| ∀ m,n ∈ N. In the present work we are interested in the
convergence of S1 for arbitrary sequences of parameters.
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Difference Equations

To evaluate S1, we study the recurrence for the classical convergents pn/qn to
the fraction S1,

pn = pn−1 + n2a2
npn−2 and qn = qn−1 + n2a2

nqn−2
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Difference Equations

It is helpful to consider the renormalized sequences (tn) and (vn) where

tn :=
qn−1

n!
and vn :=

qn

Γ(n + 3/2)a(n+1)
n

.

The corresponding recurrence relations are

tn =
1
n
tn−1 +

n− 1
n

a2
n−1tn−2,

and

vn =
2

an(2n + 1)

(
an−1

an

)n

vn−1 +
4n2

(2n− 1)(2n + 1)

(
an−2

an

)(n−1)

vn−2.
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Difference Equations

For |an| = |am| = b 6= 0 for all n, m ∈ N, the continued fraction S1 diverges –
that is, the convergents separate – if

|tn| ≤ O

(
bn

√
n

)
or (vn) is bounded,

each of these being equivalent.
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Convergence: real parameters

Theorem 1. [arbitrary real parameters] The generalized Ramanujan
continued fraction S1 converges whenever all parameters an are real and
satisfy 0 < m ≤ |an| ≤ M < ∞.

Issue: What about complex an?
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Numerical evidence

Figure 1: Dynamics for cycles of length c = 2. Shown are the iterates
t̃n :=

√
ntn for tn with (a1, a2) = (exp(iπ/4), exp(iπ/6)). Odd iterates are light,

even iterates are dark.
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Figure 2: Dynamics for cycles of length c = 4. Shown are the iterates
t̃n :=

√
ntn for tn with cycle length 4, a1 = a3 = exp(iπ/4), a2 = exp(iπ/6),

a4 = exp(i(π/6 + 1/2)). Odd iterates are light, even iterates are dark.
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(a) (b)

Figure 3: Dynamics for random cycles. Shown are the iterates t̃n :=
√

ntn
for tn with (a) cycle length ∞ with only one random strand mod2,
a2n+1 = exp(iπ/4), a2n = exp(iθn), θn ∼ U [0, 2π], and (b) cycle length ∞
(i.e. an = exp(iθn), θn ∼ U [0, 2π] for all n). Odd iterates are light, even iterates
are dark.
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Figure 4: Dynamics for cycles of length 3. Shown are the iterates t̃n :=
√

ntn
for tn given by with (a1, a2, a3) = (exp(iπ/4), exp(iπ/4), exp(iπ/4+1/

√
2)). Odd

iterates are light, even iterates are dark.
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(a) (b)

Figure 5: Dynamics for cycles of length 3. Shown are the iterates (a) t̃n :=
√

ntn
for tn and (b) vn. In both of these examples the parameter values are
(a1, a2, a3) = (exp(iπ/4),− exp(iπ/4), exp(iπ/4+1/

√
2)). Odd iterates are light,

even iterates are dark.
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Figure 6: Dynamics for cycle of length c = 3. Shown are the iterates t̃n :=
√

ntn
for tn with (a1, a2, a3) = (exp(iπ/2), exp(iπ/6), exp(−iπ/6)). Even iterates are
light, odd iterates are dark.
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Figure 7: Dynamics for cycle of length c = 3. Shown are the iterates t̃n :=
√

ntn
for tn with (a1, a2, a3) = (exp(i(π/3 + 0.05)), exp(−i(π/3 + 0.05)), exp(0.05i)).
Even iterates are light, odd iterates are dark.
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Convergence/divergence: general (random) parameters

Theorem 2. [summary] Let the nonzero (random) complex sequence of
parameters a := (an) satisfy (in probability)

0 6=
∞∏

n=1

(
1− 1

(2n)2a2
2n

)
< ∞ and 0 6= lim

n→∞

a2

a2n−1
2n a2n−2

2n−1

2n−2∏
j=1

a2
j < ∞.

The iterates vn of the corresponding (stochastic) difference equation are
bounded (with probability 1) and the (stochastic) Ramanujan continued
fraction S1(a) diverges (almost surely) with the even/odd parts of S1(a)
converging (in probability) to separate limits in the following cases:
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Convergence/divergence: general (random) parameters

(i) Even periodic parameters: If an = an+c for all n and fixed c even, and
|γ| = 1 with γ 6= 1 where

γ :=

 c/2∏
n=1

a2
2n−1

a2
2n

 .

(ii) General deterministic parameters:

sup
k

∣∣∣∣∣∣
k∑

j≥n

1
a2

j∏
i=1

a2
2i−1

a2
2i

∣∣∣∣∣∣ < ∞ and sup
k

∣∣∣∣∣∣
k∑

j≥n

a2

a2
2j

j∏
i=1

a2
2i

a2
2i−1

∣∣∣∣∣∣ < ∞.

(iii) Random parameters:

∞∑
n

1
n2

var

 1
a2

n∏
j=1

a2
2j−1

a2
2j

 < ∞ and
∞∑
n

1
n2

var

 a2

a2
2n

n∏
j=1

a2
2j

a2
2j−1

 < ∞.
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