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Computer-assisted Discovery and Proof            
(esp. of Generating Functions for Riemann’s Zeta)

Jonathan M. Borwein
Dalhousie and Newcastle

David H Bailey
Lawrence Berkeley Labs

“Elsewhere Kronecker said "In mathematics, I recognize true scientific value 
only in concrete mathematical truths, or to put it more pointedly, only in 
mathematical formulas." ... I would rather say "computations" than "formulas", 
but my view is essentially the same. Harold M. Edwards, 2005

Details are in Excursions in Experimental Mathematics,
Bailey, Borwein et al, A.K. Peters, 2007. (MAA Short Course)

ABSTRACT I shall further describe some of the methods that are 
now available for computer-assisted discovery and proof of highly 
non-trivial mathematical formulas and identities.



OUTLINE
Part A Underlying Methods and Some Discoveries

Individual Digits of Pi
and Normality

Reciprocal Series for Pi
Discovery and Replication
Proof via Wilf-Zeilberger

Part B Quadrature and Generating Functions

High Precision Numerical Quadrature
Theory and Illustrations

Apéry like series for ζ(2n)
Discovery and Proof



Conclusions First 

"The plural of 'anecdote' is not 'evidence'."
- Alan L. Leshner, Science's publisher

The students of 2010 live in an information-rich, judgement-poor world 
The explosion of information is not going to diminish
So we have to teach judgement (not obsessive concern with plagiarism)

that means mastering the sorts of tools I have illustrated
We also have to acknowledge that most of our classes will contain a very 
broad variety of skills and interests (few future mathematicians) 

properly balanced, discovery and proof can live side-by-side and allow 
for the mediocre and the talented to flourish in their own fashion

Impediments to the assimilation of the tools I have illustrated are myriad 
(as I am only too aware from recent teaching experiences)
These impediments include our own inertia and

organizational and technical bottlenecks (IT - not so much dollars)
under-prepared or mis-prepared colleagues
the dearth of good material from which to teach a modern syllabus



Algorithms Used in Experimental 
Mathematics

Symbolic computation for algebraic and calculus 
manipulations.
Integer-relation methods, especially the “PSLQ” algorithm.
High-precision integer and floating-point arithmetic.
High-precision evaluation of integrals and infinite series 
summations.
The Wilf-Zeilberger algorithm for proving summation 
identities.
Iterative approximations to continuous functions.
Identification of functions based on graph characteristics.
Graphics and visualization methods targeted to 
mathematical objects.



“High-Precision” or “Arbitrary Precision”
Arithmetic

High-precision integer arithmetic is required in symbolic 
computing packages.
High-precision floating-point arithmetic is required to permit 
identification of mathematical constants using PSLQ or 
online constant recognition facilities.
Most common requirement is for 200-500 digits, although 
more than 1,000-digit precision is sometimes required. 
One problem required 50,000-digit arithmetic.

"Rigour is the affair of philosophy, not of mathematics." 
Bonaventura Cavalieri (1598 -1647)

"Logic is the hygiene the mathematician practices to keep his 
ideas healthy and strong."

Hermann Weyl, 1885 - 1955



Typical Scheme for High-Precision 
Floating-Point Arithmetic

A high-precision number is represented as a string of n + 4 integers (or a 
string of n + 4 floating-point numbers with integer values):
First word contains sign and n, the number of words.
Second word contains p, the exponent (power of 2b).
Words three through n + 2 contain mantissas m1 through mn.
Words n + 3 and n + 4 are for convenience in arithmetic.
The value is then given by:

For basic arithmetic operations, conventional schemes suffice up to 
about 1000 digits.  Beyond that level, Karatsuba’s algorithm or FFTs, 
or… can be used for significantly faster multiply performance. 

Division and square roots can be performed by Newton iterations.

For transcendental functions, Taylor series or (for higher precision) 
quadratically convergent elliptic function algorithms can be used (Brent)



Newton Iteration Methods

Newton iterations arise frequently in experimental math, such as to 
iteratively solve an equation p(x) = 0:

Applications include:

• Performing division and square roots using high-precision arithmetic.

• Computing exp, given a fast scheme for log.

• Finding polynomial roots and roots of more general functions. 

Potential pitfalls:

• A large array of values may need to be computed to locate the root.

• Derivative of function may be zero at a zero of the function. 

See companion book for ways to deal with such problems.



LBNL’s Arbitrary Precision 
Computation (ARPREC) Package

Low-level routines written in C++.
C++ and F-90 translation modules permit use with existing 
programs with only minor code changes.
Double-double (32 digits), quad-double, (64 digits) and arbitrary 
precision (>64 digits) available.
Special routines for extra-high precision (>1000 dig).

Arithmetic being upgraded (including Brent-Zimmermann)
Includes common math functions:  sqrt, cos, exp, etc.
PSLQ, root finding, numerical integration.
An interactive “Experimental Mathematician’s Toolkit”
employing this software is also available. 

Available at:  http://www.experimentalmath.info
Also recommended: GMP/MPFR package, available at 

http://www.mpfr.org



The PSLQ Integer Relation Algorithm

Let (xn) be a vector of real numbers.  An integer relation 
algorithm finds integers (an) such that 

At the present time, the PSLQ algorithm of 
mathematician-sculptor Helaman Ferguson is the best-
known integer relation algorithm.
PSLQ was named one of ten “algorithms of the century”
by Computing in Science and Engineering.
High precision arithmetic software is required:  at least    
d × n digits, where d is the size (in digits) of the largest of 
the integers ak.



Ferguson’s Sculpture



Decrease of minj |Aj x| in PSLQ:                    
self-diagnosing



Some Supercomputer-Class PSLQ Solutions

Identification of B4, the fourth bifurcation point of the 
logistic iteration. 

Integer relation of size 121; 10,000 digit arithmetic.
Identification of Apéry sums.

15 integer relation problems, with dimension up to 118, 
requiring up to 5,000 digit arithmetic.

Identification of Euler-zeta sums.
Hundreds of integer relation problems, each of size 145 
and requiring 5,000 digit arithmetic.
Run on IBM SP parallel system.

Finding relation for root of Lehmer’s polynomial.
Integer relation of size 125;  50,000 digit arithmetic.   
Utilizes 3-level, multi-pair parallel PSLQ program.
Run on IBM SP using ARPEC; 16 hours on 64 CPUs.



Fascination With Pi
Newton (1670):
“I am ashamed to tell you to how many figures I 

carried these computations, having no other 
business at the time.” (1666)

Carl Sagan (1986):
In his book “Contact,” the lead scientist (played 

by Jodie Foster in the movie) looked for 
patterns in the digits of pi.

Wall Street Journal (Mar 15, 2005):
“Yesterday was Pi Day: March 14, the third 

month, 14th day.  As in 3.14, roughly the ratio 
of a circle’s circumference to its diameter…” NYT 3.15.08

GoogleFlu



Fax from “The Simpsons” Show

Permission 
refused by FOX



Peter Borwein’s Observation

In 1996, Peter Borwein of SFU in Canada observed that 
the following well-known formula for loge 2

leads to a simple scheme for computing binary digits at an
arbitrary starting position (here {} denotes fractional part):



Fast Exponentiation Mod n

The exponentiation (2d-n mod n) in this formula can be 
evaluated very rapidly by means of the binary algorithm 
for exponentiation, performed modulo n:

Example:
317 = (((32)2)2)2 x 3 = 129140163

In a similar way, we can evaluate:
317 mod 10 = ((((32 mod 10)2 mod 10)2 mod 10)2 mod 10) x 3 mod 10
32 mod 10 = 9
92 mod 10 = 1
12 mod 10 = 1
12 mod 10 = 1
1 x 3 = 3             Thus 317 mod 10 = 3.

Note: we never have to deal with integers larger than  81.



Is There a BBP-Type Formula for Pi?

The “trick” for computing digits beginning at an arbitrary 
position in the binary expansion of log(2) works for any 
constant that can be written with a formula of the form

where p and q are polynomial functions with integer 
coefficients, and q has no zeroes at positive integer values.

• In 1995, no formula of this type was known for π.

Note however that if α and β have such a formula, then so 
does γ = r α+ s β, where r and s are integers.  This suggests 
using PSLQ to find a formula for π.



The BBP Formula for Pi

In 1996, Simon Plouffe at PBB’s suggestion, using DHB’s PSLQ 
program, discovered this formula for π:  

Indeed, this formula permits one to directly calculate binary or
hexadecimal (base-16) digits of π beginning at an arbitrary 
starting position n, without needing to calculate any of the 
first n-1 digits.

It was found after several months in terms of hypergeometric 
and logarithmic values that reduced to the above.

Was used to `quickly’ confirm Kanada’s 2002 computation of a 
trillion hex digits (and 1.25 trillion decimals).



Proof of the BBP Formula  (Maple or Mathematica)

Thus



Calculations Using the BBP 
Algorithm

Position Hex Digits of Pi Starting at Position
106 26C65E52CB4593

107 17AF5863EFED8D

108 ECB840E21926EC

109 85895585A0428B

1010 921C73C6838FB2

1011 9C381872D27596

1.25 x 1012 07E45733CC790B [1]
2.5 x 1014 E6216B069CB6C1 [2]

[1] Fabrice Bellard, France, 1999
[2] Colin Percival, Canada, 2000



Some Other Similar New Identities



Is There a Base-10 Formula for Pi?

Note that there is both a base-2 and a base-3 BBP-type 
formula for π2. Base-2 and base-3 formulas are also 
known for a handful of other constants.

Question:  Is there any base-n BBP-type formula for π, 
where n is NOT a power of 2?

Answer:  No.  This is ruled out in a 2004 paper by JMB, 
David Borwein and Will Galway.

This does not rule out some completely different 
scheme for finding individual non-binary digits of π.

Q1 Is there any naturalnatural slow series for e?



Normal Numbers

A number is b-normal (or “normal base b”) if every 
string of m digits in the base-b expansion appears with 
limiting frequency b-m. 
Using measure theory, it is easy to show that almost all 
real numbers are b-normal, for any b.
Widely believed to be b-normal, for any b:

π = 31415.926535…
e = 2.7182818284…
Sqrt(2) = 1.4142135623…
Log(2) = 0.6931471805…
All irrational roots of polynomials with integer coefficients.

But to date there have been no proofs for any of these. 
Proofs have been known only for contrived examples, 
such as C = 0.12345678910111213…



BBP Formulas and Normality
Consider the ‘chaotic’ sequence defined by x0 = 0, and

where { } denotes fractional part as before.

Result: log(2) is 2-normal if and only if this sequence is 
equidistributed in the unit interval.

In a similar vein, consider the sequence x0 = 0, and

Result: π is 16-normal (and hence 2-normal) if and only if 
this sequence is equidistributed in the unit interval:     
agrees with the hex-digits of Pi for a million terms and 
probably forever (Borel law).



A Class of Provably Normal Constants

Crandall and DHB have also shown (unconditionally) that an
infinite class of mathematical constants is normal, including

α2,3 was proven 2-normal by Stoneham in 1971, but we have 
extended this to the case where (2,3) are any pair (p,q) of 
relatively prime integers.  We also extended to uncountably
infinite class, as follows [here rk is the k-th bit of r in (0,1)]:



Ramanujan-Like Identities Revisited

Guillera and Gourevich have recently found Ramanujan-like identities, including:

where

Guillera proved the first two of these using the Wilf-Zeilberger algorithm.  He 
ascribed the third to Gourevich, who found it using integer relation methods.  

Are there any higher-order analogues?  

Not as far as we can tell



Searches for Additional Formulas

We searched for additional formulas of either the following forms:

where c is some linear combination of

where each of the coefficients pi is a linear combination of

and where α is chosen as one of the following:



Relations Found by PSLQ
in addition to Guillera’s three relations were all known 

via Ramanujan-like methods and none were missed



The Wilf-Zeilberger Algorithm
for Proving Identities

A slick, computer-assisted proof scheme to prove certain 
types of identities
Provides a nice complement to PSLQ

PSLQ and the like permit one to discover new 
identities but do not constitute rigorous proof

W-Z methods permit one to prove certain types of 
identities but do not suggest any means to 
discover the identity



Example Usage of W-Z

We rewrite two experimentally-discovered identities

Guillera cunningly started by defining

He then used the EKHAD software package to obtain the companion



Example Usage of W-Z, II

When we define

Zeilberger's theorem  gives the identity

which when written out is

A limit argument completes the proof of Guillera’s identities

Q2. What about the formula for 1/π3?

http://ddrive.cs.dal.ca/~isc/portal

http://ddrive.cs.dal.ca/~isc/portal


A Cautionary Example

These constants agree to 42 decimal digits accuracy,  
but are NOT equal:

Computing this integral is nontrivial, due largely to difficulty 
in evaluating the integrand function to high precision. 

Fourier transforms turn the 
integrals into volumes and neatly 
explains this happens when a 
hyperplane meets a hypercube 
(LP) …



Part  B

JM Borwein and DH Bailey

“Anyone who is not shocked by quantum theory has not understood a
single word." - Niels Bohr



History of Numerical Quadrature

1670: Newton devises Newton-Coates integration.
1740: Thomas Simpson develops Simpson's rule.
1820: Gauss develops Gaussian quadrature.
1950-1980: Adaptive quadrature, Romberg integration, 
Clenshaw-Curtis integration, others.
1985-1990: Maple and Mathematica feature built-in numerical 
quadrature facilities.
2000: Very high-precision quadrature (1000+ digits).

With these high-precision values, we can use PSLQ to obtain 
analytical evaluations of integrals: Monte Carlo and Sparse 
Grid methods are not usually adequate. We are currently trying 
to use a mixture of Sparse Grid and what follows:



The Euler-Maclaurin Formula

[Here h = (b - a)/n and xj = a + j h.  Dm f(x) means m-th derivative of f(x).]

Note when f(t) and all of its derivatives are zero at a and b, 
the error E(h) of a simple block-function approximation to 
the integral goes to zero more rapidly than any power of h.



Block-Function Approximation to the Integral of a 
Bell-Shaped Function



Quadrature and the 
Euler-Maclaurin Formula

Given f(x) defined on (-1,1), employ a function g(t) such 
that g(t) goes from -1 to 1 over the real line, with g’(t) going 
to zero for large |t|.  Then substituting x = g(t) yields

[Here xj = g(hj) and wj = g’(hj).]

If g’(t) goes to zero rapidly enough for large t, then even if 
f(x) has an infinite derivative or blow-up singularity at an 
endpoint, f(g(t)) g’(t)  often is a nice bell-shaped function for 
which the E-M formula applies.



Three Suitable ‘g’ Functions

The third & fourth are known as “tanh-sinh” quadrature

• are being implemented in Maple and Mathematica

• non-adaptive (which is often a virtue)

• excellent in 1D, good in 2D



Original and Transformed Integrand Function

Original function (on [-1,1]):

Transformed function using 
g(t) = erf t:



Tanh-Sinh Quadrature: Example 1

Let

Then PSLQ yields

Several general results have now been proven, including



Numerical Integration and PSLQ

where

is a primitive Dirichlet series.



Numerical Integration: Example 2

This arises in mathematical physics, 
from analysis of the volumes of ideal 
tetrahedra in hyperbolic space.   

This identity (one of 998) is proven 
(Zagier 86) and verified numerically 
to 20,000 digits, but no proof is 
known of most of the other 997.

Note that the integrand function has a 
nasty singularity.



Expected and unexpected scientific spinoffs
• 1986-1996. Cray  used quartic-Pi to check  machines in factory
• 1986. Complex FFT sped up by factor of two
• 2002. Kanada used hex-pi (20hrs not 300hrs to check computation)
• 2005. Virginia Tech (this integral pushed the limits)
• 1995- Math Resources (another lecture)

The integral was split  at the nasty interior singularity
The sum was `easy’.
All fast arithmetic & function evaluation ideas used

Extreme Quadrature …
20,000 Digits (50 Certified) 

on 1024 CPUs

Run-times and speedup ratios  on  the Virginia Tech G5 Cluster

Perko knots 10162 and 10163
agree:  a dynamic proof

2.1 years



Example 3

Define

Then 

This has been verified to over 1000 digits.  The interval 
in J23 includes the singularity.



Error Estimation in Tanh-Sinh Quadrature

Let F(t) be the desired integrand function, and then define f(t) = F(g(t)) g'(t), 
where g(t) = tanh (sinh t)  (or one of the other g functions above).  Then 
an estimate of the error of the quadrature result, with interval h, is:

• First order (m = 1) estimates are remarkably accurate and “cheap”..  

• Higher-order estimates (m > 1) can be used to obtain “certificates” on 
the accuracy of a tanh-sinh quadrature result. 

For convergence analysis see:

JMB and Peter Ye, “Quadratic Convergence of ‘tanh-sinh’
Quadrature,” manuscript, available at 

http://users.cs.dal.ca/~jborwein/tanh-sinh.pdf



Example of Error Estimates

Results for tanh-sinh quadrature to integrate the function

DHB and JMB, “Effective Error Estimates in Euler-Maclaurin Based 
Quadrature Schemes,” (published) available at           
http://crd.lbl.gov/~dhbailey/dhbpapers/em-error.pdf



Apéry-Like Summations
The following formulas for ζ(n) have been known for many decades:

These results have led many to speculate that

might be some nice rational or algebraic value.

Sadly, PSLQ calculations have established that if Q5 satisfies a polynomial 
with degree at most 25, then at least one coefficient has 380 digits.

Best result since Apéry (1978) showed ζ(3) is irrational: provably one of 
is irrational (Zudilin, Moscow and Newcastle)

The RH in Maple

Apéry



Nothing New under the Sun

The case a=0 above is Apéry’s formula for ζ(3)!



Apéry-Like Relations Found 
Using Integer Relation Methods

Formulas for 7 and 11 were found by JMB and David Bradley; 5 and 9 
by Kocher 25 years ago, as part of the general formula:



Newer (2005) Results

Using bootstrapping and the “Pade/pade” function JMB and Dave 
Bradley then found the following remarkable result (1996):

Following an analogous – but more deliberate – experimental-based 
procedure, we have obtained a similar general formula for ζ(2n+2) that is 
pleasingly parallel to above:

Note that this gives an Apéry-like formula for ζ(2n), since the LHS equals

• We will sketch our experimental discovery of this in the new few slides.



The Experimental Scheme

1. We first supposed that ζ(2n+2) is a rational combination of terms of the 
form:

where r + a1 + a2 + ... + aN = n + 1 and ai are listed increasingly.  

2. We can then write:

where Π(m) denotes the additive partitions of m.  

3. We can then deduce that

where Pk(x) are polynomials whose general form we hope to discover:



The Bootstrap Process



Tabular Coefficients Obtained



Resulting Polynomials (Ugly)



After Using “Padé” Function in          
Mathematica or Maple

which immediately suggests the general form:



Several Confirmations of 
Z(2n+2)=Zeta(2n+2) Formula 

We  symbolically computed the power series coefficients 
of the LHS and the RHS , and verified that they agree up 
to the term with x100.

We verified that Z(1/6), Z(1/2),  Z(1/3), Z(1/4) give 
numerically correct values (analytic values are known).

We then affirmed that the formula gives numerically 
correct results for 100 pseudorandomly chosen
arguments.

We subsequently proved this formula two different ways, 
including using the Wilf-Zeilberger method….



3. was easily computer proven (Wilf-
Zeilberger) (now 2 human proofs)

2

Riemann 
(1826-66)

Euler 
(1707-73)

1

2005 Bailey, Bradley  
& JMB discovered 

and proved - in 3Ms -
three equivalent

binomial identities

2. reduced
as hoped

Apery summary

1. via PSLQ to    
5,000 digits
(120 terms)

3



Apéry-Like Summations
There is a related formula whose lead term is ζ(4). So the following are 
all seeds for generating functions

Q3 Is there a corresponding generating function for ζ(4n+1)?   
Or more likely for the alternating zeta function



Conclusions
New techniques now permit integrals, 

infinite series sums and other entities 
to be evaluated to high precision 
(hundreds or thousands of digits), 
thus permitting PSLQ-based 
schemes to discover new identities.

These methods typically do not suggest 
proofs, but often it is much easier to 
find a proof when one “knows” the 
answer is right.

Full details are in Excursions in Experimental Mathematics, and in some 
cases in the second edition of Mathematics by Experiment by Jonathan 
M. Borwein, and David H. Bailey.  A “Reader’s Digest” version of the later 
book(s) is available at http://www.experimentalmath.info

"The plural of 'anecdote' is not 'evidence'." 
- Alan L. Leshner,  Science's publisher
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