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1 Introduction

This note discovers, derives, and then studies, simple closed-form Taylor
series expressions for integer powers of arcsin(x). Specifically, we show that
for |x| ≤ 2 and N = 1, 2, . . .

arcsin2N
(

x
2

)
(2N)!

=
∞∑

k=1

HN (k)(
2k
k

)
k2

x2 k, (1)

where H1(k) = 1/4 and

HN+1(k) :=
1
4

k−1∑
n1=1

1
(2n1)2

n1−1∑
n2=1

1
(2n2)2

· · ·
nN−1−1∑
nN=1

1
(2nN )2

,

and also that for |x| ≤ 2 and N = 0, 1, 2, . . .

arcsin2N+1
(

x
2

)
(2N + 1)!

=
∞∑

k=0

GN (k)
(
2 k
k

)
2(2k + 1)42k

x2k+1, (2)
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where G0(k) = 1 and

GN (k) :=
k−1∑
n1=0

1
(2n1 + 1)2

n1−1∑
n2=0

1
(2n2 + 1)2

· · ·
nN−1−1∑
nN=0

1
(2nN + 1)2

.

The convention is that the sum is zero if the starting index exceeds the
finishing index.

Nested sums are not new. The last decade saw many interesting results
concerning Euler sums or multizeta values, wonderful generalizations of the
classical ζ-function, whose discovery can be traced to a letter from Goldbach
to Euler [2, pp.99–100] and [3, Chapter 3]—a letter that played a seminal
role in the discovery of the ζ-function.

When Gauss was criticized for the lack of motivation in his writings, he
remarked that the architects of great cathedrals do not obscure the beauty
of their work by leaving the scaffolding in place after the construction has
been completed. While we find (1) and (2) worthy of undistracted attention,
in truth their discovery was greatly facilitated by the use of experimental
mathematics—the relatively new approach to doing mathematical research
with the intelligent use of computers. This perspective is elucidated through-
out this paper. It is also illustrative of the changing speed of mathematical
communication that the special cases (3), (4), (5), and (6) given below are
already online at [11].

2 Experiments and Proofs

The first identity below is very well known:

arcsin2
(x

2

)
=

1
2

∞∑
k=1

x2k(
2 k
k

)
k2
. (3)

It is explored at some length in [4, pp.384–386]. While it is seen in various
calculus books (see [6, pp.88–90], where the series for arcsin3(x) is also
proven), it dates back at least two centuries and was given by Ramanujan
among many others; see [10, pp.262–63]. As often in Mathematics, history is
complicated. Equation (3) has been rediscovered repeatedly. For example,
an equivalent form is elegantly solved as a 1962 MAA Monthly problem (“A
Well-Known Constant”, Problem E 1509, p.232). We quote in extenso, the
editors’ attempts to trace the history of the formula:

The series was located in the Smithsonian Mathematical Formulae and
Tables of Elliptic Functions, 6.42 No. 5, p. 122; Chrystal, Algebra, vol.
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2. 1906 ed, Ex. xx, No. 7, p. 335, (cites Pfaff as source); Bromwich,
An Introduction to the Theory of rnfinite Series, 1908 ed, Prob. 2,
p. 197 (claims known to Euler); Knopp, Theory and Application of
Infinite Series, Ex. 123, Chap. VIII, p.271; Schuh, Leerboek der Dif-
fertiaal en Integraalrekening, vol. 2, pp. 154–6; Hobson, Treatise on
Plane Trigonometry, eqs. 20, 21, 22, pp. 279–80; M.R. Speigel, this
Monthly, 60 (1953) 243–7; Taylor, Advanced Calculus, p. 632; Ed-
wards, Differential Calculus for Beginners (1899), p.78.

Note the appearance in the Monthly itself in 1953.
The second identity, slightly rewritten (see [10]), is less well known:

arcsin4
(x

2

)
=

3
2

∞∑
k=1

{
k−1∑
m=1

1
m2

}
x2k(
2 k
k

)
k2
, (4)

and when compared, they hint at the third and fourth identities below—
subsequently confirmed numerically—from the prior if flimsy pattern:

arcsin6
(x

2

)
=

45
4

∞∑
k=1

{
k−1∑
m=1

1
m2

m−1∑
n=1

1
n2

}
x2 k(
2 k
k

)
k2
. (5)

arcsin8
(x

2

)
=

315
2

∞∑
k=1


k−1∑
m=1

1
m2

m−1∑
n=1

1
n2

n−1∑
p=1

1
p2

 x2 k(
2 k
k

)
k2
. (6)

Reassured by this confirmation we conjectured that in general

arcsin2N
(

x
2

)
(2N)!

=
∞∑

k=1

HN (k)(
2 k
k

)
k2

x2 k, (7)

where HN+1(k) is as in (1) above. Subsequently, we were naturally led to
discovering the corresponding odd formulas.

We next provide a proof of both (1), equivalently (7), and (2).

Proof. ((1) and (2)). The formulae for arcsink(x) with 2 ≤ k ≤ 4 are given
on pages 262–63 of [10], and Berndt comments that [6] is the best source
he knows for k = 2 and 3. Berndt’s proof also implicitly gives our desired
result since he establishes, via a differential equation argument, that for all
real parameters a one has

ea arcsin(x) =
∞∑

n=0

cn(a)
xn

n!
(8)
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where

c2n+1(a) := a
n∏

k=1

(
a2 + (2k − 1)2

)
, c2n(a) :=

n∏
k=1

(
a2 + (2k − 2)2

)
.

Now expanding the power of an on each side of (8) provides the asserted
formula. Note that (8) is equivalent to the somewhat-less-elegant if more-
concise [7, Formula 10.49.33], specifically,

∞∑
k=0

(ia)k/2

k!(ia+ 1)−k/2
(−ix)k = exp

[
2a sin−1

(x
2

)]
. (9)

Another proof can be obtained from the hypergeometric identity

sin(ax)
a sin(x)

= 2F1

(
1 + a

2
,
1− a

2
;
3
2
; sin2(x)

)
given in [4, Exercise 16, p.189]. 2

Maple can also prove identities such as (8) as the following code shows.

> ce:=n->product(a^2+(2*k)^2,k=0..n-1):
> co:=n->a*product(a^2+(2*k+1)^2,k=0..n-1):
> sum(ce(n)*x^(2*n)/(2*n)!,n=0..infinity) assuming x>0;

cosh(a arcsin(x))

> simplify(expand(sum(co(n)*x^(2*n+1)/(2*n+1)!,n=0..infinity)))
assuming x>0;

sinh(a arcsin(x))

A — necessarily equivalent — formula for powers of arcsin is listed by
Hansen in [7, 88.2.2],

∞∑
n=0

x2n
m−1∏
k=1


nk−1∑
nk=0

(2nk−1 − 2nk)!
[(nk−1 − nk)!]2(2nk−1 − 2nk + 1)

22nk−2nk−1

 (2nm−1)!
(nm−1!)2(2nm−1 + 1)

2−2nm−1

=
(

sin−1 x

x

)m

(10)

but its relation to (1) and (2) is not obvious; our nested-sum representations
are definitely more elegant. While Ramanujan listed only the first two cases
in his notebooks [10, pp.262–63], his previous entries suggest an approach
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for any power was being assembled. One can only imagine how much farther
his intuition would have taken him if he had today’s computational power!

Powers of arcsin play an important role in analytical calculations of mas-
sive Feynman diagrams, see [8], and in the construction of Laurent expan-
sions of different types of hypergeometric functions with respect to small
parameters. In [8], series expansions for small powers of arcsin are given,
but they do not have the compact nested-sum form seen in equations (1)
and (2). Likewise, formula (8) has proven central to recent work on effective
asymptotic expansions for Laguerre polynomials and Bessel functions, [1].
These results are again motivated largely by applications in mathematical
physics and in prime computation.

3 Properties of Coefficient Functions

It is of some independent interest, at least to the present authors, to deter-
mine a few properties of HN (k) and GN (k).

Corollary 1 The following properties obtain:

(a) HN (k) = GN (k) = 0 if N > k.

(b) HN (k) =
∑k−1

j=N−1
HN−1(j)

(2j)2
, GN (k) =

∑k−1
j=N−1

GN−1(j)
(2j+1)2

(c) Hk(k) = 1
4k(k−1)!2

, Gk(k) = 4kk!2

(2k)!2

(d)
∑k

N=1(−4)NHN (k) = 0 for k ≥ 2,
∑k

N=0(−1)NGN (k) = 0 for k ≥ 1.

Proof. Parts (a)–(c) follow from the definition of HN (k) and GN (k). To
prove part (d), first note that equation (1) may be rewritten as

x2N =
(2N)!
4N

∞∑
k=1

4k+NHN (k)(
2k
k

)
k2

(sinx)2k.

Use this to obtain

1− 2 sin2 x = cos(2x) = 1 +
∞∑

N=1

(−1)N4Nx2N

(2N)!

= 1 +
∞∑

N=1

(−1)N
∞∑

k=1

4k+NHN (k)(
2k
k

)
k2

(sinx)2k

= 1 +
∞∑

k=1

4k(sinx)2k(
2k
k

)
k2

k∑
N=1

(−4)NHN (k).
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Now, matching powers of (sinx)2 implies the first part of (d). Equation (2)
may be similarly manipulated to give the second part of (d). 2

Correspondingly,

Corollary 2 For non-negative integers N and k one has

42kHN (k)(
2k
k

)
k2

= −
k−1∑
j=0

(
2j
j

)(
2k−2j
k−j

)
2j − 1

GN (k − j) (11)

and (
2k−2
k−1

)
GN (k − 1)

22k−1(2k − 1)
= −

k−1∑
j=0

(
2j
j

)
4k−2j

(k − j)(2j − 1)
(
2k−2j
k−j

)HN+1(k − j). (12)

Proof. Differentiate equation (2) to obtain

arcsin2N
(x

2

)
=

√
1−

(x
2

)2
(2N)!

∞∑
k=0

GN (k)
(
2 k
k

)
16k

x2k. (13)

Using the binomial theorem and comparing to equation (1) gives equation
(11). Similarly, differentiating equation (1) leads to (12). 2

Even the simplest case, with N = 1, yields the non-obvious identity:

42k−1(
2k
k

)
k2

= −
k−1∑
j=0

(
2j
j

)(
2k−2j
k−j

)
2j − 1

k−j−1∑
n=0

1
(2n+ 1)2

. (14)

Asking a student to prove this identity directly is instructive, particularly
from an experimental mathematics perspective. While Maple stares dumbly
at the right side, it immediately redeems itself after one interchanges the
order of summation, producing

k−1∑
n=0

1
(2n+ 1)2

k−n−1∑
j=0

(
2j
j

)(
2k−2j
k−j

)
2j − 1

= −
√
π 4k Γ(k)

4k Γ(k + 1/2)
,

which may be easily rewritten as the desired expression (14).
A host of partition identities tumble directly from (2) and (7) on com-

paring various ways of combining powers of arcsin.
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Corollary 3 Given m, n, {Mi}m
i=1 ≥ 1 and {Ni}n

i=1 ≥ 0, let

T := 2M1 + · · ·+ 2Mm + (2N1 + 1) + · · ·+ (2Nn + 1)

and
W := 2−n (2M1)! · · · (2Mm)!(2N1 + 1)! · · · (2Nn + 1)! .

Then for any s ≥ n where s and n have the same parity,

W
∑ (

2k1
k1

)
· · ·
(
2kn

kn

)
HM1(j1) · · ·HMm

(jm)GN1(k1) · · ·GNn
(kn) 42n(

2j1
j1

)
· · ·
(
2jm

jm

)
(j1 · · · jm)2(2k1 − 1) · · · (2kn − 1)42k1+···+2kn

=


4T ! HT/2(s/2)

( s
s/2)s2

, n even

T !
2

(
s−1

(s−1)/2

) G(T−1)/2((s−1)/2)

s 4s−1 , n odd

where the sum is taken over all partitions of

s+ n

2
= j1 + · · ·+ jm + k1 + · · ·+ kn

where j1, j2, . . . , jm ≥ 1 and k1, k2, . . . , kn ≥ 1.

An interesting special case occurs when we specify n = 0, m = 2,
M1 = M2 = 1 and s = 2k:

k−1∑
j=1

1(
2j
j

)(
2k−2j
k−j

)
j2(k − j)2

=
6(

2k
k

)
k2

k−1∑
j=1

1
j2
, (15)

hence

lim
k→∞

k−1∑
j=1

(
2k
k

)(
2j
j

)(
2k−2j
k−j

) k2

j2(k − j)2
= π2.

4 Powers of Arcsin via Iterated Integrals

Since arcsin′(x) = 1/
√

1− x2, we may also express any power of arcsin(x)
as an iterated integral. Specifically,

arcsinn x

n!
=
∫ x

0

dy1√
1− y2

1

∫ y1

0

dy2√
1− y2

2

∫ y2

0

dy3√
1− y2

3

· · ·
∫ yn−1

0

dyn√
1− y2

n

.

(16)
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To convert the multiple integral into a multiple sum, note that the binomial
theorem gives

1√
1− x2

=
∞∑

k=0

1
4k

(
2k
k

)
x2k,

which may be repeatedly used in (16) to yield

arcsinn x

n!
=

∞∑
k1,k2,...,kn=0

(
2k1

k1

)(
2k2

k2

)
· · ·
(
2kn

kn

)
x2wn+n

4wn(2k1 + 1)(2k1 + 2k2 + 2) · · · (2wn + n)

= xn
∞∑

k=0


k∑

k1=0

(
2k1

k1

)
4k1(2k1 + 1)

k−k1∑
k2=0

(
2k2

k2

)
4k2(2k1 + 2k2 + 2)

· · ·
k+kn−wn∑

kn=0

(
2kn

kn

)
4kn(2wn + n)

xk

= xn
∞∑

k=0


k∑

k1=0

(
2k1

k1

)
(2k1 + 1)

k∑
k2=k1

(
2k2−2k1

k2−k1

)
(2k2 + 2)

· · ·
k∑

kn=kn−1

(2kn−2kn−1

kn−kn−1

)
(2kn + n)

1
4kn

xk

where wn := k1 + k2 + · · ·+ kn.
Though this process also writes the coefficients in terms of nested-sums,

these terms are not nearly as simple as HN and GN .

5 Related Series Manipulations

After having discovered formulas such as (1) and (2), the analyst’s natural
inclination is to “mine” them for striking examples. We rescale (1) and (2)
to obtain

arcsin2N (x) = (2N)!
∞∑

k=1

HN (k)4k(
2 k
k

)
k2

x2 k,

and

arcsin2N+1(x) = (2N + 1)!
∞∑

k=0

GN (k)
(
2 k
k

)
(2k + 1)4k

x2k+1,

These series, or their derivatives, may be evaluated at values such as
x = π/2, π/3, π/4, π/6, i/2, and i to obtain many formulae along the lines
of those found by Lehmer and others as described in [4, pp.384–86]. A few
examples are:

∞∑
k=1

HN (k)4k(
2 k
k

)
k2

=
1

(2N)!

(π
2

)2N
,

∞∑
k=1

HN (k)3k(
2 k
k

)
k2

=
1

(2N)!

(π
3

)2N
,

8



∞∑
k=1

HN (k)2k(
2 k
k

)
k2

=
1

(2N)!

(π
4

)2N
,

∞∑
k=1

HN (k)(
2 k
k

)
k2

=
1

(2N)!

(π
6

)2N
,

∞∑
k=1

HN (k)(−1)k(
2 k
k

)
k2

=
(−1)N

(2N)!

(
log

√
5− 1
2

)2N

,

and
∞∑

k=1

HN (k)(−4)k(
2 k
k

)
k2

=
(−1)N

(2N)!

(
log(1 +

√
2)
)2N

.

Integrating (1) and (2) is, naturally, much more challenging. Replacing
x by i x in (1) and (2) provides the Maclaurin series for positive integer
powers of the form

logN (x+
√
x2 + 1).

These expressions may then be integrated (or differentiated). In partic-
ular, see [4, Exercise 17, p.189], we have

1
4

∞∑
n=1

(−1)n+1

n3
(
2n
n

) =
∫ 1/2

0

log2(x+
√
x2 + 1)

x
dx =

ζ(3)
10

. (17)

Likewise, with more work, see [5], we obtain∫ 1/2

0

ln4(x+
√
x2 + 1)

x
dx = −3

2
Li5
(
g2
)

+ 3 Li4
(
g2
)
ln (g) +

3
2
ζ (5) (18)

−12
5
ζ (3) ln2 (g)− 4

15
π2 ln3 (g) +

4
5

ln5 (g) ,

where g = (
√

5 − 1)/2 is the golden ratio and where Lin(z) =
∑∞

k=1 z
k/kn

is the polylogarithm of order n.
This process may be generalized as follows. Define

Ln :=
2n

n!

∫ 1/2

0

lnn(x+
√
x2 + 1)

x
dx.

We leave it to the reader to determine the explicit series expression for Ln,
for n even and for n odd.

Extensive experimentation with Maple coupled with pattern lookups
with Sloane’s Online Encyclopedia of Integer Sequences1 produced

Ln = ζ(n+ 1)− n(− log g2)n+1

2(n+ 1)!
−

n+1∑
j=2

(− log g2)n+1−j

(n+ 1− j)!
Lij(g2).

1URL: www.research.att.com/personal/njas/sequences/eisonline.html
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Multiplying by xn, and summing over n ≥ 1, shows this is equivalent to
the next generating function, written in terms of ψ, the digamma function:

−x
∫ − log g

0
(e2xy − 1) coth(y) dy =

1
2

+ x (γ + ψ(1− x))− 1/2 + x log g
e2x log g

+ e−2x log g
∞∑

k=2

Lik(g2)xk.

These observations can be made rigorous with the next result.

Theorem 4 For n ≥ 1 and |x| ≤ 1,

1
n!

∫ x

0

arcsinn(y)
y

dy = −
n+1∑
k=2

Lik((
√

1− x2 + ix)2)
(−2i)1−k arcsin(x)n+1−k

(n+ 1− k)!

− i arcsinn+1(x)
(n+ 1)!

+
arcsinn(x)

n!
log
(
2x2 − 2ix

√
1− x2

)
+
(
i

2

)n

ζ(n+ 1).

Proof. The derivatives of each side match, and the equation holds for x = 0.
Alternatively, this is a reworking of formula (7.48) in [9, p.199]. 2

In hindsight, this equation should not come as much of a surprise since Ra-
manujan’s entries immediately preceding (3) give similar formulae using the
Clausen functions. One can substitute (1) or (2) to obtain further formulae.
This allows for extensions to the complex plane. For example:

Corollary 5 For n ≥ 1 and |x| ≤ 1, and Re(x) ≥ 0

(−1)n

2

∞∑
k=1

Hn(k)(−4)k(
2 k
k

)
k3

x2 k = −
2n+1∑
k=2

Lik((x−
√

1 + x2)2)
21−karcsinh(x)2n+1−k

(2n+ 1− k)!

+
arcsinh2n+1(x)

(2n+ 1)!
+

arcsinh2n(x)
2n!

log
(
2x
√

1 + x2 − 2x2
)

+
ζ(2n+ 1)

4n
.

Example. Substituting x = i gives

1
2

∞∑
k=1

Hn(k)4k(
2k
k

)
k3

=
n∑

k=1

(1− 2−2k)ζ(2k + 1)
(
−1

4

)k (π/2)2n−2k

(2n− 2k)!

+
(π/2)2n

(2n)!
log 2 +

(
−1

4

)n

ζ(2n+ 1)

with the special case n = 1 yielding
∞∑

k=1

4k(
2k
k

)
k3

= π2 log 2− 7
2
ζ(3). (19)
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6 Conclusion

We hope this examination of (1) and (2) encourages readers to similarly
explore what transpires for arctan and other functions. Armed with a good
computer algebra system, and an internet connection, one can quite fear-
lessly undertake this task.
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