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Abstract

We present a set of algorithms for automated simplification of symbolic constants of the formP
i αixi with αi rational and xi complex. The included algorithms, called SimplifySum 1 and

implemented in Mathematica, remove redundant terms, attempt to make terms and the full
expression real, and remove terms using repeated application of the multipair PSLQ integer
relation detection algorithm. Also included are facilities for making substitutions according
to user-specified identities. We illustrate this toolset by giving some real-world examples of its
usage, including one, for instance, where the tool reduced a symbolic expression of approximately
100,000 characters in size enough to enable manual manipulation to one with just four simple
terms.
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1. Introduction

A common occurrence for many researchers who engage in computational mathematics
is that the result of a Computer Algebra System (CAS) operation, in say Mathematica
or Maple, is a very long, complicated expression, which although technically correct, is
not very helpful; only later do these researchers discover, often indirectly, that in fact
the complicated expression they produced further simplifies, sometimes dramatically, to
something much more elegant and useful. With some frequency the CAS will provide no
answer and may well ‘hang’. Such events are to be expected, given the limitations of any
symbolic computing package, for any of a number of reasons, including the difficulty of
recognizing when a given subexpression is zero.

Such instances are closely related to the problem of recognizing a numerical value
as a closed-form expression. In this case, researchers have used integer relation-finding
algorithms, such as the PSLQ algorithm and its variants (Bailey and Broadhurst, 2000),
to express the given numerical value as a linear sum of constants or terms. In both in-
stances, researchers seek as simple a closed-form expression as possible. Such simplified
closed-form expressions are highly desirable, both in mathematical research and in prob-
lems, say, from mathematical physics. The various definitions and importance of closed
forms is described in (Borwein and Crandall, 2013; Chow, 1999). Examples of such work
are described in (Bailey et al., 2010b) and (Borwein et al., 2010).

We present herein a software package SimplifySum for the simplification of symbolic
constants of the form

∑
i αixi, where each αi is rational and each xi real or complex.

Such constants frequently arise in looking for closed forms for integrals or sums, and
are frequently large and machine-generated by symbolic mathematics software such as
Mathematica or Maple.

Implemented in Mathematica, our package includes a focused set of tools for simplifica-
tion of such constants. The package is able to remove redundant constants, opposites and
conjugates, symbolically, numerically or both. It can simplify complex terms, which is
useful if some xi are complex yet the whole constant is real. The package uses symbolic
algebra to repeatedly apply the multipair variant of the PSLQ integer relation detec-
tion algorithm, and reduces expressions using exact, rational number arithmetic. It also
contains code to apply substitutions, so the user may specify identities or substitutions
they would like performed. These tools can be accessed through a convenient, simple
function interface. Users also have access to the individual functions that can thence be
customized.

The criterion to decide which version of an expression is simpler is straightforward —
a sum that has fewer terms is simpler. 2 All the algorithms (with the exception of sub-
stitution) only process the rational coefficients αi, so an expression

∑m
i=1 αixi is simpler
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than
∑n
i=1 βixi if m < n. This is in contrast to the general case discussed in (Carette,

2004), where the question of which version of a general expression is considered and
formalized. Because of the restriction to sums, our definition is nearly always consistent
with the Carette’s formalism. In general, the package does not alter xi in simplification,
it only removes terms and alters the rational coefficients. Unless the new αi are very
complex, the resulting expression is simpler. Note that if the user requests substitutions
(as described in section 3) then the substitution will be made regardless of whether this
reduces or increases the complexity.

The tools have proven quite effective. Many computer-generated constants have in-
stances of the simple redundancies described above. The techniques using integer-relations
are general and reliable, provided numerical results are used with appropriate caution.
The substitutions allow the user to apply specific identities automatically. This will allow
them to use identities that arise repeatedly in particular work, but are not in Mathemat-
ica.

Note also that the restriction to sums is very general — no limit is placed on each xi,
only that it must evaluate to a real or complex number, so each xi may be arbitrarily
complicated. Each term will be treated as a single constant by all parts of the code, with
the exception of substitutions.

The remainder of the paper is structured as follows. In Section 2 existing literature
on simplification and simplification in current CAS is discussed. In Section 3 the general
structure of SimplifySum is described. Precise descriptions of the package are relegated
to an Appendix (Section 7). In Section 4 we give a variety of illustrative examples, then
conclude in section 5 with timing and results on some large research constants.

All tests were performed on a stock 2012 MacBook Pro with a 2.9 GHz Intel Core i7
processor and 8 GB of RAM using Mathematica 7.01.

2. Related Literature and Previous Work

There are two central questions to consider when designing a simplification algorithm.
First, what does it mean for an expression to be simpler than another? Second, given a
constant, what algorithms can be applied to make the expression simpler?

2.1. Simplification in the literature

The paper (Carette, 2004) provides a formal description of simplification. The author
discusses, using ideas including Kolmogorov complexity and minimum description length,
a method for defining whether a version of an expression is simpler than another. The
author also discusses use of this formalism to make practical decisions on simplification
of particular expressions and discusses the relationship of his formalism and the simpli-
fication algorithms included with Maple. Notably, the author also discusses the lack of
available literature, both on formalism and practical methods for simplification: “But if
one instead scours the scientific literature to find papers relating to simplification, a few
are easily found: a few early general papers... some on elementary functions... as well
as papers on nested radicals... Looking at the standard textbooks on Computer Algebra
Systems (CAS) leaves one even more perplexed: it is not even possible to find a proper
definition of the problem of simplification.”

Searching for methods of simplification reveals many older papers as mentioned in
(Carette, 2004). The papers (Buchberger and Loos, 1982; Casas et al., 1990; Caviness,
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1970; Fateman, 1972; Fitch, 1973; Moses, 1971) explore formalism and technique for
simplification. The papers (Caviness and Fateman, 1976; Zippel, 1985) discuss simplifi-
cation techniques specific to expressions involving radicals. The papers (Harrington, 1979;
Hearn, 1971) discuss an earlier CAS called Reduce and some associated algorithms. All
of these provide relevant early discussions of the basic questions here, but there have
been dramatic advances in CAS systems and computing power since they were written.

For more modern techniques, there is a variety of literature on theoretical matters of
simplification, and much on simplification and resolution of specific types of expressions.
We describe some of this work. The work (Stoutemyer, 2011) describes the philosophy
and goals of a practical, effective simplification algorithm, discussing many heuristics
about correctly selecting branches, merits of particular forms of various expressions and
user control and interface. The papers (Bradford and Davenport, 2002; Beaumont et al.,
2003, 2004) primarily address simplification of elementary functions in the presence of
branch cuts, building on the earlier work (Dingle and Fateman, 1994), though none of
these address practical issues associated with large expressions. The work (Schneider,
2008) deals with a specific class of symbolic sums, in particular the question of finding
closed forms of sums dependent on a parameter, and (Kauers, 2006) approaches the
same problem for a more general class of symbolic sums. The work (Gutierrez and Recio,
1998) describes simplification of highly specific expressions involving sines and cosines
related to inverse kinematic problems. The work (Monagan and Pearce, 2006) discusses
simplification specific to rational expressions modulo an ideal of polynomial rings. The
work (Fateman, 2003) discusses how to check automatically that a program is correct,
and explores certain questions of automatic simplification that occur in the process.

2.2. Simplification in current CAS

Two of the most commonly used simplification routines are Mathematica’s Simplify
and FullSimplify. The system is closed and proprietary; documentation of the algo-
rithms is not available. Empirically, Mathematica’s Simplify and FullSimplify tend to
get “gummed up” when run on a very large sum and become so slow they sometimes
do not return results for over a day or ever. Neither algorithm returns any intermediate
updates, leading one to wonder after over a day if anything will ever return. It is not
clear why this is true or if there are effective, general ways to combat these problems.
Regardless, these routines were inadequate to simplify constants that arose in work such
as (Bailey et al., 2010b; Borwein et al., 2010).

In Maple (Maple, 2012) more documentation is available but the underlying issues
remain. More details are available about customization of the algorithms, and one can
direct the CAS to focus on exponential, logarithmic or rational functions, or specify ex-
pressions in polar coordinates. Notably, one may specify that the given expression is a
constant not dependent on any parameters and issue a preference for reducing the size
of such an expression. In this context, the algorithms will also look for possible cancela-
tions involving the real and imaginary parts of complex subexpressions. The algorithm
also leverages numerical information, but the precise method of this is not stated. Some
information is given in the documentation on nesting strategies, but again, not enough
to truly understand internals of the algorithms. There are also techniques for simplifica-
tion using Maple’s identify function, see (Borwein et al., 2002). Based on a mixture of
algorithms such as PSLQ and access to a lookup table, identify is surprising successful
when applied to floating point values of expressions.
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The more recent package SAGE (Stein et al., 2012), which is free and open source,
relies on another CAS called Maxima (Maxima, 2011) for simplification algorithms. Doc-
umentation for Maxima describes routines for symbolic summation, simplification of ra-
tional functions, and various facilities for user defined patterns. The SAGE and Maxima
documentation do not state high level simplification strategies, and the source code is
difficult to follow.

It seems there is very little modern literature on how to build or implement a simpli-
fication routine for the case of a large, machine generated input constant. When one has
a sum of the form considered here, robustness in the presence of hundreds or thousands
of terms is crucial. Moderate scaling of runtime is not a problem, but scaling of runtime
that leads the user to think nothing is happening for hours on end is unacceptable. The
SimplifySum toolset is designed to address these concerns. By focusing on sums, we can
employ such straightforward and effective algorithms.

In summary, we believe that the current package occupies a useful and previously
unfilled space among existing simplification packages and algorithms.

3. The ‘SimplifySum’ package

The package components are as follows, all four steps of which can be called separately.

(1) First, redundancy is explored. The code compares all pairs to remove redundant
equalities, opposites and complex conjugates. This O(n2) loop is robust at removing
such elements, while more generic approaches may miss such relationships or simply
fail to function. The loop repeats until no change is detected. Pseudocode is shown
in Algorithm 1.

Algorithm 1 Removal of redundancy
1: repeat
2: for all pairs of indices i, j do
3: if (αixi == αjxj) || (|αixi − αjxj | < tol) then
4: αi = 2αi
5: Remove αjxj
6: end if
7: if (αixi == −αjxj) || (|αixi + αjxj | < tol) then
8: Remove αixi and αjxj
9: end if

10: if (αixi == αjxj) || (|re(αixi − αjxj)| < tol && |im(αixi + imαjxj)| < tol )
then

11: αixi = 2 re(αixi)
12: Remove αjxj
13: end if
14: end for
15: until no change has occurred

The first comparison in each if statement is Mathematica’s built-in, symbolic
equality. The second is a numerical evaluation of the terms as written using built-
in arbitrary precision arithmetic. The parameter tol is set to 10−digits, where digits
is user specified and has a default value 500.
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The symbolic equality comparisons are in place because the user may wish to
avoid numerical comparisons. It seems unlikely that the symbolic equality case will
pass, because Mathematica will group terms automatically, but this does happen.
We observed this behavior simplifying the constant J(2), which is discussed in sec-
tion 5. The code includes switches to perform comparisons only with the symbolic
or numerical comparisons, as desired.

Mathematica’s built in caching is used to avoid reevaluating expressions. The
first loop usually takes the majority of the time, since in the first evaluation no
evaluations are cached.

There are algorithms that have a better asymptotic order, but the evaluation
of each element is much more costly than looping over the list. Additionally, this
approach is more resistant to bugs. We plan to explore approaches with a better
asymptotic complexity in the future.

(2) Next are decomplexification routines to attempt to make constants real. The code
looks for terms that are stored as complex but have numerically zero imaginary
part. These are converted to real datatypes. This step is O(n). It then evaluates
remaining complex terms and converts them to real if their imaginary parts sum to
zero. It removes them from the sum entirely if both the real and imaginary parts
sum to zero. This is unusual, but sometimes all the complex terms (not just their
imaginary parts) are extraneous results of a machine calculation. This is also O(n).
Pseudocode is shown in Algorithm 2.

Algorithm 2 Decomplexification
1: for i = 1:n do
2: if |im(αixi)| < tol then
3: αixi = re(αixi)
4: end if
5: end for
6: Define E = {i : xi is complex}
7: if |im

(∑
i∈E αixi

)
| < tol then

8: if | re
(∑

i∈E αixi
)
| < tol then

9: Remove αixi for i ∈ E
10: else
11: Set αixi = re(αixi) for i ∈ E
12: end if
13: end if

This routine does not look at arbitrary combinations of elements, only single
elements and the whole sum. Note that removal of conjugate pairs in Algorithm 1
is also decomplexification, and this examines all pairs but not all subsets.

(3) The code then performs an integer-relation detection step, using the multipair
PSLQ algorithm (Bailey and Broadhurst, 2000) to remove dependent terms. Here
we use the notation zi = αixi for clarity.

An integer relation algorithm takes a vector of real or complex numbers (z1, z2 . . . zn)
and attempts to find a nontrivial relationship

a1z1 + a2z2 + · · ·+ anzn = 0, (1)
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where each ai is an integer. The multipair PSLQ algorithm, like any scheme for
integer relation detection, must be performed using at least (nd)-digit precision,
where d is the size in digits of the largest of the coefficients ai, and n is the vec-
tor length. See (Bailey and Broadhurst, 2000) for details on the multipair PSLQ
algorithm.

If such a relationship is found, our code uses the simple identity

zi = −
∑
j,j 6=i ajzj

ai
(2)

for some i such that ai 6= 0 to remove zi from the expression.
The package repeatedly runs the multipair PSLQ algorithm to find relations. If a

relationship is found, a term is removed using equation (2), and then the algorithm
is re-run, until no relations are found. The scheme can be run on the entire expres-
sion, or some subset of the sum. The computer runtime of this algorithm increases
at least cubically with n, and even more rapidly if one takes into account the higher
precision needed for large n, so selecting a smaller subset is either essential or at
least beneficial in most cases.

Zero determination is treated separately. Instead of applying equation (2), the
code will also check for the fortunate circumstance that∑

i s.t.
ai 6=0

zi = 0. (3)

or equivalently

ai ∈ {0, 1} for all i. (4)

That is, some combination of terms in the original equation simply summed to
zero. In this case the appropriate zi are all removed. This is surprisingly common
in practice with machine generated constants. The problem of finding subsets which
sum to zero is formally NP-Complete, see (Lagarias and Odlyzko, 1985). PSLQ can
frequently find such relationships, even despite the complexity of the full formal
problem.

Pseudocode for integer-relation detection is shown in Algorithm 3.

Algorithm 3 Integer relation detection
1: Select a subset of sum elements E and remove it from the sum.
2: repeat
3: Run multipair PSLQ to detect an integer relation
4: if a relationship is found then
5: if ai ∈ {0, 1} for all i then
6: Remove all zi such that ai = 1. This is zero determination.
7: else
8: Apply equation (2) to remove a term from the sum.
9: end if

10: end if
11: until no relationship is found
12: Replace the simplified E in the sum.
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There are three strategies to pick subsets of the sum on which to run multipair
PSLQ. First, relationships are much more likely to be found between terms that
have some mathematical relationship with each other. Thus, the code examines
subsets that are related according to user provided categories. For example, as
in section 5, one may wish to group all terms with logarithms in one category,
dilogarithms in another and so forth. If possible, this is the best strategy.

Another strategy is to make a randomized selection of terms. This may be ef-
fective when little is known about the individual terms of the sum. If the user has
enough knowledge to determine categories a priori, then using that knowledge is
more effective. The final strategy is to simply run on adjacent blocks of the overall
sum. This would seem less effective than randomized selection, but experience has
shown it is frequently better. Perhaps this is an artifact of another algorithm in the
machine generated test constants. By default the code splits the sum into blocks
of 10, 20 then 50 adjacent elements of the sum. It can also run on adjacent blocks
within categories.

By default, 500-digit arithmetic is used in the multipair PSLQ routine, and it
is presumed that an identity that holds to 500-digit arithmetic is in fact a true
mathematical identity, even though in a strict mathematical sense this cannot be
guaranteed. If a higher level of certitude is desired, the precision level can be in-
creased. However, Mathematica handles rational coefficients with exact, symbolic
arithmetic. Thus, if the relationship is valid, there are no numerical errors made
performing this substitution.

Relationships with too large a Euclidean norm are thrown out. The value is user
specified, with a low default value of 105. If a relation has large coefficients, then
applying the relation may cause rational coefficients to get very large (in number
of digits in the numerator and denominator). This is the rare case discussed in the
introduction where growth in rational coefficients may increase the complexity of
an expression according to Carette’s formalism. This can be avoided by setting the
bound lower, but then more relationships will be missed.

Note that all of the relationships in in Algorithm 1 could be found with multipair
PSLQ. The disadvantage is speed, since multipair PSLQ has significant overhead
compared to adding or subtracting two constants.

(4) The final portion of the code is a substitution package.
Mathematica uses objects called rules to perform a user specified substitution.

The user specifies two expressions, referred to as lhs and rhs in the Mathematica
literature. When the rule is applied to an expression, if a subpart of the expression
matches lhs, it is replaced with rhs. The package applies a list of rules to each term
in the sum, as shown in Algorithm 4.

Algorithm 4 Substitution
1: for i = 1:n do
2: for all rules do
3: Apply rule to αixi
4: end for
5: end for
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This routine may or may not lead to simpler expressions. It follows the users
request even if this adds terms to the sum.

This makes O(nk) attempts at substitutions, where k is the number of rules
provided. It operates on individual terms of the sum to maintain robustness on
very large sums. The Mathematica documentation pages have far more information
on the use of such substitutions. This is in contrast to built-in routines, which
the Mathematica documentation says act on “every subpart of your expression.”
Perhaps due to exponential growth in the number of terms in “every subpart” of a
sum, the built-in routine may run slowly. The routine here is strictly less powerful
than the built-in substitution package, but runs faster on large expressions.

The package does not include any rules by default, all must be user-specified.
Examples are included. Mathematica does not have any default rules, other than
what may be in Simplify or FullSimplify.

Remark 1 (Disclaimer). This combination of procedures can be very effective at remov-
ing and simplifying terms. The user must, however, be mindful to consider the difference
between numerical matches and true equality. Depending on the options used, numerical
comparisons may be used repeatedly as ‘truths’ in this package. Such output must, of
course not be taken as proof, only as experimental evidence. But in many applications
this may not matter, and in some others “knowledge is nine-tenths of a proof”. 3

Remark 2 (Precision). In many simplification algorithms of this type, incremental pre-
cision is used. We leave this decision to the user. If one is satisfied with 100 digit precision
for redundancy checking and decomplexification, these routines can be run at this level.
Precision can then be increased to 500 or desired level for multipair PSLQ, which typically
requires higher precision. 3

4. Examples

We now provide a few examples of the type of manipulations that the package can
usefully perform. Examples in this are run with the default configuration, using symbolic
and numerical comparisons with 500 digit arithmetic. Table 1 compares performance and
quality of simplification for SimplifySum, Simplify and FullSimplify for all the examples
in the section. These first examples are small; full scale results are discussed at some
length in Section 5.

Example 1 (Logarithms). The expression below contains six complex logarithms, some
of which are conjugates and some of which are linearly dependent. The constant is pre-
sented as

C1 : = −1
8
iπ log2

(
2
3
− 2i

3

)
+

1
8
iπ log2

(
2
3

+
2i
3

)
+

1
12
π2 log(−1− i)

+
1
12
π2 log(−1 + i) +

1
12
π2 log

(
1
3
− i

3

)
+

1
12
π2 log

(
1
3

+
i

3

)
. (5)
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Redundancy checking finds three conjugate pairs and removes them.

2 re
(
−1

8
iπ log2

(
2
3
− 2i

3

))
+ 2 re

(
1
12
π2 log(−1− i)

)
+ 2 re

(
1
12
π2 log

(
1
3
− i

3

))
(6)

Integer relation detection finds the identity

8 re
(
−1

8
iπ log2

(
2
3
− 2i

3

))
+ 12 re

(
1
12
π2 log(−1− i)

)
+ 6 re

(
1
12
π2 log

(
1
3
− i

3

))
= 0

(7)

The package applies it to obtain

2
3

re
(
−1

8
iπ log2

(
2
3
− 2i

3

))
+ re

(
1
12
π2 log

(
1
3
− i

3

))
. (8)

This in turn can be simplified by manually selecting the principal branch of log or using
FullSimplify.

Of course, correctly selecting branches require care, so the code does not perform this
particular simplification unless an appropriate rule is set or calls to the Mathematica
simplify functions are made.

For comparison, Simplify removes zero terms and returns

1
24
π

(
2π
(

log(−1− i) + log(−1 + i) + log
(

1
3
− i

3

)
+ log

(
1
3

+
i

3

))
(9)

−3i
(

log2

(
2
3
− 2i

3

)
− log2

(
2
3

+
2i
3

)))
.

FullSimplify, however, correctly handles the branches and reduces to a single term.

− 1
48
π2 log(18) (10)

This illustrates a weakness of the package. FullSimplify has a wider selection of trans-
formations. If it is sufficiently fast, the results are better. Table 1 shows the number of
terms obtained by Simplify and FullSimplify. Timing on larger expressions shows that
FullSimplify is frequently slow, as discussed in section 5. 3

Example 2 (Arctangents). To illustrate the problem consider the arctangent identity

π

2
− arctan

(√
5
)

= arctan

(
3−
√

5
4

)
+ arctan

(√
5− 2

)
,

which when expressed in terms of logarithms is

1
2
i

(
log
(

1− 1
5
i
√

5
)
− log

(
1 +

1
5
i
√

5
))

(11)

=
1
2
i

(
log
(

1− 3
4
i+

1
4
i
√

5
)
− log

(
1 +

3
4
i− 1

4
i
√

5
))

(12)

+
1
2
i
(

log
(

1 + 2 i− i
√

5
)
− log

(
1− 2 i+ i

√
5
))

+
1
4
i log

(
16 +

(√
5− 3

)2
)

. . .
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− 1
4
i log

(
16 +

(
3−
√

5
)2
)

+
1
4
i log

(
1 +

(
2−
√

5
)2
)
− 1

4
i log

(
1 +

(
−2 +

√
5
)2
)
.

Call (12), the right hand side of this identity, C2. If presented in just this form, the
user or FullSimplify might well find the simplifications, but if through intervening steps
the logarithms have been rearranged and manipulated, or additional terms are added, all
bets are off. Even if the expression is found, runtime may increase drastically depending
on the algorithms used. However, SimplifySum is robust to these changes. Redundancy
removal and decomplexification are not affected. Integer relation detection may produce
subtly different results. Because a particular element is removed, the a permutation may
alter which element is removed. Also, if integer relation detection is run on a subset of
elements, some relations may be missed. If integer relation detection is run on the entire
constant, this is not an issue.

Here, SimplifySum reduces the right hand side to

2 re

(
−1

2
i log

((
1 +

3i
4

)
− i
√

5
4

))
+ 2 re

(
1
2
i log

(
(1 + 2i)− i

√
5
))

,

which can be further reduced to arccot(
√

5), which is equal to the original expres-
sion by complementary angles, with FullSimplify. FullSimplify returns the equivalent
1/4

(
π − arctan

(
4
√

5
))

.
Consider now the same expression with additional log terms for a total of 23 elements,

called C3 and shown in (13). Also, suppose that the elements were permuted randomly.
Running SimplifySum reduced the sum to 11 terms (all logarithms in this case) in 0.94
seconds. This is a small runtime scaling compared to that of C2. Simplify reduces to
19 terms in 0.1 seconds, which is fast but ineffective. FullSimplify successfully finds a
relationship among the logarithms involving arctangents (though not precisely the form
above) and reduces the expression to 14 terms. However, it took 1803.4 seconds, or
approximately 30 minutes to produce the result. This illustrates the difficulties with
FullSimpilfy under permutations or modest numbers of additional terms.

C3 := re

„
−1

4
log2

„
−1

3
+ i

«
log

„
1

3
− i
««

+ 2 re

„
1

4
log

„
−1

3
+ i

«
log2

„
1

3
− i
««

(13)

+ re

„
−1

8
iπ log2

„
2

3
− 2i

3

««
− re

„
−1

8
iπ log2

„
1− i

3

««
+ 2 re

„
−1

8
iπ log2(1− 3i)

«
+ re

„
−1

4
log

„
1

2
− i

2

«
log2(2)

«
− 2 re

„
1

2
log(1− 2i) log2(2)

«
− 4 re

„
−1

4
log(1− 3i) log2(2)

«
+ re

„
1

12
π2 log(−1− i)

«
+ re

„
1

12
π2 log

„
1

3
− i

3

««
+ 2 re

„
−1

2
log

„
1

3
+
i

3

«
log

„
1

3
− i
«

log

„
2

3
− i

3

««
+ 2 re

„
1

2
log

„
1

3
− i

3

«
log
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iπ log(1− 3i) log(2− i)

«
+ re

 
1

4
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4

«
+
i
√

5

4

«
+

1

2
i log

“
(1 + 2i)− i

√
5
”

− 1

2
i log

“
(1− 2i) + i

√
5
”

+
1

4
i log

„
1 +

“
2−
√

5
”2
«
− 1

4
i log

„
16 +

“
3−
√

5
”2
«

+
1

4
i log

„
16 +

“√
5− 3

”2
«
− 1

4
i log

„
1 +

“√
5− 2

”2
«
.

Another technique is to apply FullSimplify to the reduced expression computed by
SimplifySum. This took 35.9 seconds and reduces the output to 8 terms. This illustrates
another point — FullSimplify is a powerful routine, and sometimes the best result comes
from applying SimplifySum and FullSimplify in combination. 3

Elaborate integrands can arise in high-end use of computer algebra packages. Many
of the following examples involve the polylogarithm Lin(z) :=

∑
k≥1 x

k/kn of order n.
(Note that Li1(x) = − log(1− x).)

Example 3 (Integrals I). Consider the following integral, which arose in connection to
the integral K1 in (Bailey et al., 2010a).∫ π/3

π/6

log
(

2 sin
(x

2

))
dx (14)

Mathematica evaluates the integral symbolically to

I1 :=
1

144

(
− 144i

(
Li2
(

6
√
−1
)
− Li2

(
3
√
−1
))

+ 19iπ2

+ 12π
(

log(2) + 2 log
(
1− 6
√
−1
)
− 2 log

(√
3− 1

)))
. (15)

Here, Mathematica has produced complex subexpressions in evaluating an expression
that is real. This is but one simple example of this phenomenon that occurs regularly in
computing integrals, including the following examples. After applying SimplifySum, we
have

re
(
−iLi2

(
6
√
−1
))

+ re
(
iLi2

(
3
√
−1
))
. (16)

In this case, the imaginary parts sum to zero and are removed, removing one term
entirely. PSLQ finds that three remaining terms sum to zero and are removed by zero
determination. In contrast, FullSimplify reduces the original expression to

1
16
i
(
16
(
Li2
(

3
√
−1
)
− Li2

(
6
√
−1
))

+ π2
)
, (17)

which has the disadvantage that it appears complex (though is also real) and has one
additional term.

We note that if the user or system is aware of the literature on logsine integrals or the
Clausen function, Cl2(θ) = Im Li2

(
eiθ
)

(Borwein et al., 2012; Lewin, 1981), he or she
will immediately reduce (16) to Cl2(π/3) − Cl2(π/6). The package does not make such
substitutions automatically, because this would move the simplification process to the
general situation of (Carette, 2004). If desired, the user can use the substitution package
to apply them. 3
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Number of terms SimplifySum Simplify FullSimplify

constant n (original) n time (s) n time (s) n time (s)

C1 6 2 0.024 6 0.008 1 0.034

C2 8 2 0.048 4 0.031 2 0.403

C3 23 11 0.948 19 0.100 14 1803.373

I1 6 2 0.508 6 0.026 3 4.112

Table 1. Performance on the four illustrative constants of Section 4

5. Results and Performance

Our tools were initially developed for simplification of constants arising in previous
work on box integrals performed by Bailey, Borwein and Crandall. The paper (Bailey
and Borwein, 2011) discusses the increasing importance and methodology of such ex-
perimental mathematics work. See (Bailey et al., 2010b) and (Borwein et al., 2010) for
much more detail on these integrals, their calculation and relevance. A family of integrals
crucial to this work is described next:

J(t) : =
∫

[0,1]2

log(t+ x2 + y2)
(1 + x2)(1 + y2)

dxdy. (18)

Specification of t ≥ 0 provides much more strenuous and interesting examples for this
kind of simplification. As explained in (Borwein et al., 2010; Borwein and Crandall, 2013),
for all algebraic t there is in principle a hypergeometric evaluation of J(t). For t = 0 one
may analytically obtain

J(0) =
π2

16
log 2− 7

8
ζ(3). (19)

For t = 1 the initial evaluation for this integral is 210 terms and 12,506 characters in
Mathematica.

A more challenging constant is J(3), also referred to as K5 in the literature (Borwein
et al., 2010). A computation in Mathematica returned 795 terms, most of which are
complex, and 59,040 characters. Our programs reduced this to 127 terms, all of which
are real, and 11,539 characters.

We divided J(3) to segregate the terms with occurrences of the polylogarithm Lin(z),
which appeared of order n ≤ 3. For instance, consider the terms from J(3) involving the
trilogarithm (Li3). These terms were extracted using the included function groupExpres-
sionsByFunctionCategories. Before simplification, we have 48 terms, all of which appear
complex. After simplification, the result is a much more manageable 13 real terms. Now
at the very least, the expression is ‘human readable’. We may note that these terms com-
prise mostly the real parts of complex terms. These can be further simplified manually
or using other simplification rules as will be discovered in (Lewin, 1981). As in Example
1 dealing with complex logarithms, care must be taken to take appropriate branches of
these functions to get correct results. The final form may be examined in (Borwein et al.,
2010).
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We observe that simple redundancies or branch issues such as illustrated in Example 3
can and will replicate and grow unmanageably in large expansions such as the J integrals.

Table 5 shows the performance in speed and simplification in the J integrals. Simplifi-
cation was run numerically and symbolically using 500 digit arithmetic throughout. Sums
were separated into dilog, trilog, and default categories for integer relation detection. Each
simplification was set to end after one hour. The results show that SimplifySum has sig-
nificant runtime scaling for large constants. However, it never times out and continues
to make reductions for very large expressions. Simplify runs quickly, but doesn’t reduce
the constant much. FullSimplify times out on all of these examples. We ran FullSimplify
for 24 hours on J(2), and still got no result.

SimplifySum Simplify FullSimplify

constant n (original) n time (s) n time (s) n time (s)

re(J(1)) 210 58 398.5 200 2.7 — —

J(2) 259 41 391.3 246 5.0 — —

J(3) (or K5) 795 176 1341.2 516 46.7 — —

J(4) 889 181 1460.3 546 58.4 — —

J(5) 735 164 1337.3 496 41.5 — —

J(6) 889 162 1474.4 546 65.1 — —

J(7) 889 191 1623.3 538 60.9 — —

Table 2. Performance on J integral constants of Section 5.

Perhaps the most striking closed form this family of integrals is that of J(2), derived
and discussed in (Borwein et al., 2010). This integral starts at about 889 elements and
reduces to only four simple terms:

J(2) =
π2

8
ln (2)− 7

48
ζ (3) +

11
24
πCl2

(π
6

)
− 29

24
πCl2

(
5π
6

)
, (20)

Cl2 is again the Clausen function Cl2(θ) :=
∑
n≥1 sin(nθ)/n2 (Cl2 is the simplest non-

elementary Fourier series). As in Example 3 it often arises and can be computed well
from Cl2(θ) = Im Li2(eiθ).

This result came from three paper-length studies on these integrals. This needed all the
tools we subsequently developed and a great deal of careful insertion of extra information
about real and complex dilogarithms and trilogarithms, and their Clausen functions, as
recorded in Lewin (1981). We challenge the reader to explore the derivation of this formula
using the included tools. Many of the algorithms discussed here were developed when
manually simplifying these constants.

6. Related Work

Tools such as SimplifySum may also presage a future when mathematics-rich manuscripts
can be automatically (or at least semiautomatically) checked for validity. For example,
we frequently check and correct identities in mathematical manuscripts by computing
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particular values on the LHS and RHS to high precision and comparing results—and
then if necessary use software to repair defects.

Remark 3. In much of our related work, we ultimately generate a significant number
of subtle formulas which end up as tabular data in a paper. While the formulas start
as output of algorithms such as SimplifySum and are in principle symbolically correct
and/or numerically validated identities, we realized than in the process of transcription
and prettifying, errors are always introduced. For example in (Bailey et al., 2010b), 200
formulas were collected, and 20 (or 10%) were found by our LaTeX to Mathematica
parser to be incorrect. A PSLQ based method was able to automatically correct 17 of
these formulas. Of the remaining three, two were easy to debug by hand, while the final
one transpired to be humanly generated nonsense. We describe the methods below. 3

As an example, in a study of “character sums” we wished to use the following result
derived in (Borwein et al., 2008):

∞∑
m=1

∞∑
n=1

(−1)m+n−1

(2m− 1)(m+ n− 1)3
(21)

?= 4 Li4

(
1
2

)
− 51

2880
π4 − 1

6
π2 log2(2) +

1
6

log4(2) +
7
2

log(2)ζ(3).

Here Li4(1/2) is again a polylogarithmic value. However, a subsequent computation to
check results disclosed that whereas the LHS evaluates to −0.872929289 . . ., the RHS
evaluates to 2.509330815 . . .. Puzzled, we computed the sum, as well as each of the terms
on the RHS (sans their coefficients), to 500-digit precision, then applied the multipair
PSLQ algorithm. Multipair PSLQ quickly found the following:

∞∑
m=1

∞∑
n=1

(−1)m+n−1

(2m− 1)(m+ n− 1)3
(22)

= 4 Li4

(
1
2

)
− 151

2880
π4 − 1

6
π2 log2(2) +

1
6

log4(2) +
7
2

log(2)ζ(3).

In other words, in the process of transcribing and ‘prettyfying’ (21) into the original
manuscript, “151” had become “51.”

It is quite possible that this error would have gone undetected and uncorrected had
we not been able to computationally check and correct such results. While any such error
may seem trivial, the reliability and integrity of tables and of resources like the Digital
Library of Mathematica Functions (Olver et al., 2012) demand such errors be identifiable
and correctible. The ability to correct may not always matter, but it can be crucial.

We have largely automated these tools to validate and correct expressions, contained
in a separate, in progress package titled VerifyEquality. We describe our code and
underlying heuristic in our final example, which arose in checking the paper (Bailey
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et al., 2010b) for accuracy. One integral explored is

∆4(−3) =
∫ 1

0

· · ·
∫ 1

0

(
(r1 − q1)2 + · · ·+ (r4 − q4)2

)−3/2
dr1 · · · dr4 dq1 · · · dq4. (23)

This evaluates numerically to ≈ 8.40809. The final closed form of the expression was
expressed in the paper as

−128
15

+
1
63
π − 8 log

(
1 +
√

2
)
− 32 log

(
1 +
√

3
)

+ 16 log 2 + 20 log 3

−8
5

√
2 +

32
5

√
3− 32

√
2 arctan

(
1√
8

)
− 96 Ti2

(
3− 2

√
2
)

+ 32G. (24)

Here G is the Catalan number and Ti2 is a generalized tangent value (another polylog)
(Lewin, 1981).

To check the accuracy of this and many like formulas, the TEX sourcecode for the
closed form was imported into Mathematica. Using the import features is faster and less
prone to transcription errors compared to typing the closed form in Mathematica format.
Then the formula itself was evaluated numerically.

In this case, the expression evaluated to ≈ −8.2970, indicating an error. Multipair
PSLQ was applied to the terms of the sum, which returned

−128
15

+
16
3
π − 8 log

(
1 +
√

2
)
− 32 log

(
1 +
√

3
)

+ 16 log 2 + 20 log 3

−8
5

√
2 +

32
5

√
3− 32

√
2 arctan

(
1√
8

)
− 96 Ti2

(
3− 2

√
2
)

+ 32G. (25)

This expression evaluates to the correct numerical value, and so indicated a transcription
error in the coefficient of π, which changed from “ 16

3 ” to “ 1
63”. Such errors are common

in human transcription and in prettifying of machine-generated expressions, and so we
seek to automate this process.

To accomplish this automation, VerifyEquality first imports the TEX sourcecode
for an equation directly from the manuscript using the built in parser. (The file will
need minor manual manipulation to display an equality which can be parsed into sides
that can be evaluated numerically.) The values are computed and compared. If they do
not numerically agree, then multipair PSLQ is run to try to re-extract the true intended
relationship. If this fails, the user is presented with the expression, which can be manually
checked for correct parsing. Then multipair PSLQ can be run again if desired.

A robust preliminary version is working, but it has some limitations. For example,
certain functions are not automatically interpreted correctly, especially those that are
not part of built-in routines. And differences in typing may cause unexpected parsing
errors.

For example, in (24) the term “16 log 2 + 20 log 3” omits parentheses of the argument
of the logarithms for readability. But the parser does not take this into account, and
instead assumes that l, o and g are variables. Upon import this expression becomes (16 ·
2+20 ·3) ·l ·o ·g. This error prevents the tool from being able to repair the relation — e.g.,
by manually changing to log(2) and log(3). But users cannot be expected to dig through
parsed expressions to notice such errors. Thus, improving such facilities is a necessary
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goal for full publication of this work. A further goal is to be able to automatically extract
formulas from a paper, eliminating the need for users to manually annotate TEX source
files.
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7. Appendix

7.1. Included Files and Building

Download the source (available from https://github.com/alexkaiser/SimplifySum).
Open Simplifysum.nb and evaluate all cells in the notebook. Two simple examples
are provided in Example.nb, and an example of using and writing rules is contained in
RuleList.nb. Further examples from this paper are included in ExampleConstants.nb
and scripts to compare various simplifications are in TimingComparisons.nb

7.2. Basic usage

The most basic usage of the functions is to call the supplied ‘wrapper’ function with
its default parameters unchanged. Name the constant that is to be simplified x. Then
call

simplifySum[x]
This performs the following steps:

(1) Sets working precision to 500 digits.
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(2) Removes terms that are equal, opposites or complex conjugates numerically and
symbolically. Performs the appropriate algebra symbolically to maintain equality
to the original sum.

(3) Converts complex terms that are numerically real to real datatypes.
(4) Checks whether remaining complex terms sum to zero and delete them if so.
(5) Check whether the imaginary part of remaining complex terms sum to zero and

make them real if so.
(6) Repeatedly runs PSLQ on adjacent terms of the sum, removing and replacing terms

each time a relationship is found. Removes all terms in the sum in the event of zero
determination.

(7) Checks accuracy and print a summary between each major step.
(8) Returns the new expression.

7.3. Advanced usage

As shown below, the function simplifySum supports a number of optional arguments
which can be customized to perform the desired combination of simplifications. The func-
tion header is specified as follows (the variables, types and their semantics are displayed
in Table 3).
simplifySum[ sum_,

digits_ : 500,
evalNumerically_ : True,
evalSymbolically_ : True,
checkNumericalReals_ : True,
checkSumOfComplex_ : True,
runPslq_ : True,
categoryNames_ : False,
simplifyWithRules_ : False,
ruleList_ : False ]

Additionally, there are two global variables which are used. The first is outputLevel.
If set to 0, then no output besides warnings and errors is printed. If set to 1, then basic
summaries of the computation are printed at each major step. If set to 2, then more
information about the sub-steps of the computation is printed, in particular, progress of
the redundancy checks and results of each application of multipair PSLQ. This is useful
to see that the code is still proceeding on in the case of a long computation. The second is
$MaxExtraPrecision, which is set to the large value of 1000 and should not be altered
without reason.

An illustrative code snippet follows:

Example 4 (Syntax). The following code was used to generate example 1.
C1 = (1/12)*Pi^2*Log[-1 - I] + (1/12)*Pi^2*Log[-1 + I] +

(1/12)*Pi^2*Log[1/3 - I/3] + (1/12)*Pi^2*Log[1/3 + I/3] -
(1/8)*I*Pi*Log[2/3 - (2*I)/3]^2 + (1/8)*I*Pi*Log[2/3 + (2*I)/3]^2

digits = 350;
evalNumerically = True;
evalSymbolically = False;
checkNumericalReals = True;
checkSumOfComplex = True;
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Variable Type Meaning

sum Sum The sum to simplify

digits Integer Number of digits of numerical precision.

Note that this must be large (300-500+) to
run multipair PSLQ successfully.

evalNumerically Boolean Perform numerical comparisons for equality,
opposites and conjugates.

evalSymbolically Boolean Perform symbolic comparisons for equality,
opposites and conjugates.

checkNumericalReals Boolean Set complex terms with real part numerically
zero to real.

checkSumOfComplex Boolean Remove complex terms if they sum to zero.

Make complex terms real if their imaginary
parts sum to zero.

runPslq Boolean Run multipair PSLQ to simplify with integer
relations.

categoryNames False If this variable is False, apply multipair
PSLQ in adjacent blocks.

List of Strings If this variable is a list of strings, separate
the array to categories.

simplifyWithRules Boolean Apply the user supplied list of rules.

ruleList List of rules List of Mathematica rule objects to apply (or
False if no rules).

Table 3. Variables, Types and Meanings

runPslq = True;
categoryNames = {"PolyLog[2,", "PolyLog[3,"} ;
simplifyWithRules = False;
ruleList = False;

simplifySum[ C1, digits, evalNumerically, evalSymbolically,
checkNumericalReals, checkSumOfComplex, runPslq,
categoryNames, simplifyWithRules, ruleList]

The variable ‘categoryNames’ is used to split the terms for application of multipair PSLQ.
When used, this variable is a list of strings. Each term in the sum will be converted to
Mathematica InputForm, then checked for substring matches with the terms in the list.
Any function that doesn’t match any supplied categories will be placed into a default
category.
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In this example, the categories are the ‘dilogarithm’ and ‘trilogarithm’, so those terms
will each have their own category, while all other terms such as ordinary logarithms or
any other known constants will be left in the default category.

The user should take care to consider name collisions, as a term will be placed only
in the first match found or the default. 3

7.4. Final comments

The user may also wish to call the functions individually. Each function has its usage is
documented in its its opening comments. Illustration of how to call individual functions
is included with function ‘simplifySum’.

Remark 4 (Simplification rules). If it is desired to simplify using or more user-defined
rules, a function that applies those rules to each term in the sum is included. Recall that
a Mathematica rule takes the following form:

old_expression :> new_expression /; condition
The condition parameter is optional.

One should consult the examples included with our package or Mathematica’s own
documentation on rules for more detail. As mentioned in section 3, the code here applies
rules to each element of the sum individually. If rules that effect more than one term in
a sum are desired, then use the built in functions which operate on more levels of the
subexpressions.

That said, Mathematica does not divulge much in the way of documentation on its
source code. A direct request for more detail led to the response below:

“The general idea behind the Simplify and FullSimplify heuristics is that they apply a
sequence of transformations, keeping the version of the expression that has the smallest
complexity found so far. This process is repeated at all subexpression levels.

There are a few thousand of transformations used (of course most of the transforma-
tions apply to relatively narrow classes of expressions). We do not have documentation
describing the transformations or the exact structure of the Simplify and FullSimplify
heuristics.”

An implementation in Maple or SAGE would thus be much more flexible. 3

8. Vitae

Can be supplied when and if needed.
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