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Marcos López de Prado ‡ Qiji Jim Zhu§

April 1, 2014

First version: September 2013

∗Lawrence Berkeley National Laboratory (retired), 1 Cyclotron Road, Berke-
ley, CA 94720, USA, and Research Fellow at the University of California,
Davis, Department of Computer Science. E-mail: david@davidhbailey.com; URL:
http://www.davidhbailey.com
†Laureate Professor of Mathematics at University of Newcastle, Callaghan NSW

2308, Australia, and a Fellow of the Royal Society of Canada, the Australian
Academy of Science and the AAAS. E-mail: jonathan.borwein@newcastle.edu.au; URL:
http://www.carma.newcastle.edu.au/jon
‡Senior Managing Director at Guggenheim Partners, New York, NY 10017, and Re-

search Affiliate at Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
E-mail: lopezdeprado@lbl.gov; URL: http://www.QuantResearch.info
§Professor, Department of Mathematics, Western Michigan University, Kalamazoo, MI

49008, USA. Email: zhu@wmich.edu; URL: http://homepages.wmich.edu/~zhu/

1



Abstract

Recent computational advances allow investment managers to me-
thodically search through thousands or even millions of potential op-
tions for a profitable investment strategy. In many instances, the re-
sulting strategy involves a pseudo-mathematical argument, which is
spuriously validated through a simulation of its historical performance
(also called backtest).

We prove that high performance is easily achievable after backtest-
ing a relatively small number of alternative strategy configurations, a
practice we denote “backtest overfitting.” The higher the number of
configurations tried, the greater is the probability that the backtest is
overfit. Because financial analysts rarely report the number of configu-
rations tried for a given backtest, investors cannot evaluate the degree
of overfitting in most investment claims and analysis.

The implication is that investors can be easily misled into allo-
cating capital to strategies that appear to be mathematically sound
and empirically supported by a backtest. This practice is particu-
larly pernicious, because due to the nature of financial time series,
backtest overfitting has a detrimental effect on the strategy’s future
performance.
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fitting, investment strategy, optimization, Sharpe ratio, minimum backtest
length, performance degradation.
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Another thing I must point out is that you cannot prove a vague theory
wrong. [...] Also, if the process of computing the consequences is
indefinite, then with a little skill any experimental result can be made
to look like the expected consequences.

Richard Feynman [1964]

1 Introduction

A backtest is a historical simulation of an algorithmic investment strategy.
Among other things, it computes the series of profits and losses that such
strategy would have generated, should that algorithm had been run over that
time period. Popular performance statistics, such as the Sharpe ratio or the
Information ratio, are used to quantify the backtested strategy’s return on
risk. Investors typically study those backtest statistics, and then allocate
capital to the best performing scheme.

With regards to the measured performance of a backtested strategy, we
have to distinguish between two very different readings: in-sample (IS) and
out-of-sample (OOS). The IS performance is the one simulated over the
sample used in the design of the strategy (also known as “learning period”
or “training set” in the machine learning literature). The OOS performance
is simulated over a sample not used in the design of the strategy (a.k.a.
“testing set”). A backtest is realistic when the IS performance is consistent
with the OOS performance.

When an investor receives a promising backtest from a researcher or
portfolio manager, one of her key problems is to assess how realistic that
simulation is. This is because, given any financial series, it is relatively
simple to overfit an investment strategy so that it performs well IS.

Overfitting is a concept borrowed from machine learning, and denotes the
situation when a model targets particular observations rather than a general
structure. For example, a researcher could design a trading system based on
some parameters that target the removal of specific recommendations that
she knows led to losses IS (a practice known as “data snooping”). After
a few iterations, the researcher will come up with “optimal parameters,”
which profit from features that are present in that particular sample but
may well be rare in the population.

Recent computational advances allow investment managers to method-
ically search through thousands or even millions of potential options for
a profitable investment strategy. In many instances, that search involves
a pseudo-mathematical argument, which is spuriously validated through a
backtest. For example, consider a time series of daily prices for a stock X.
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For every day in the sample, we can compute one average price of that stock
using the previous m observations x̄m, and another average price using the
previous n observations x̄n, where m < n. A popular investment strategy
called “crossing moving averages” consists in owning X whenever x̄m > x̄n.
Indeed, since the sample size determines a limited number of parameter
combinations that m and n can adopt, it is relatively easy to determine
the pair (m,n) that maximizes the backtest’s performance. There are hun-
dreds of such popular strategies, marketed to unsuspecting lay investors as
mathematically sound and empirically tested.

In the context of Econometric models several procedures have been pro-
posed to determine overfit in White [27], Romano et al. [23], Harvey et al.
[9]. These methods propose to adjust the p-values of estimated regression
coefficients to account for the multiplicity of trials. These approaches are
valuable for dealing with trading rules based on an econometric specification.

The machine learning literature has devoted significant effort to study
the problem of overfitting. Their proposed methods typically are not ap-
plicable to investment problems, for multiple reasons. First, these methods
often require explicit point forecasts and confidence bands over a defined
event horizon, in order to evaluate the explanatory power or quality of the
prediction (e.g., “E-mini S&P500 is forecasted to be around 1,600 with a
one-standard deviation of 5 index points at Friday’s close”). Very few in-
vestment strategies yield such explicit forecasts; instead, they provide qual-
itative recommendations (e.g., “buy” or “strong buy”) over an undefined
period until another such forecast is generated, with random frequency. For
instance, trading systems, like the crossing of moving averages explained ear-
lier, generate buy and sell recommendations with little or no indication as
to forecasted values, confidence on a particular recommendation or expected
holding period.

Second, even if a particular investment strategy relies on such a forecast-
ing equation, other components of the investment strategy may have been
overfitted, including entry thresholds, risk sizing, profit-taking, stop-loss,
cost of capital, and so on. In other words, there are many ways to overfit
an investment strategy other than simply tuning the forecasting equation.
Third, regression overfitting methods are parametric and involve a number
of assumptions regarding the underlying data which may not be easily as-
certainable. Fourth, some methods do not control for the number of trials
attempted.

To illustrate this point, suppose that a researcher is given a finite sample,
and told that she needs to come up with a strategy with a SR (Sharpe
Ratio, a popular measure of performance in the presence of risk) above
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2.0, based on a forecasting equation for which the AIC statistic (Akaike
Information Criterion, a standard of the regularization method) rejects the
null hypothesis of overfitting with a 95% confidence level (i.e. a false positive
rate of 5%). After only 20 trials, the researcher is expected to find one
specification that passes the AIC criterion. The researcher will quickly be
able to present a specification that not only (falsely) passes the AIC test but
it also gives a SR above 2.0. The problem is, AIC’s assessment did not take
into account the hundreds of other trials that the researcher neglected to
mention. For these reasons, commonly used regression overfitting methods
are poorly equipped to deal with backtest overfitting.

Although there are many academic studies that claim to have identified
profitable investment strategies, their reported results are almost always
based on IS statistics. Only exceptionally do we find an academic study
that applies the “hold-out” method or some other procedure to evaluate
performance OOS. Harvey, Liu and Zhu [10] argue that there are hundreds
of papers supposedly identifying hundreds of factors with explanatory power
over future stocks returns. They echo Ioannidis [13] in concluding that “most
claimed research findings are likely false”. Factor models are only the tip of
the iceberg.1 The reader is probably familiar with many publications solely
discussing IS performance.

This situation is, quite frankly, depressing, particularly because academic
researchers are expected to recognize the dangers and practice of overfitting.
One common criticism, of course, is the credibility problem of “holding-out”
when the researcher had access to the full sample anyway. Leinweber and
Sisk [15] present a meritorious exception. They proposed an investment
strategy in a conference, and announced that six months later they would
publish the results with the pure (yet to be observed) OOS data. They
called this approach “model sequestration,” which is an extreme variation
of “hold-out.”

1.1 OUR INTENTIONS

In this paper we shall show that it takes a relatively small number of trials
to identify an investment strategy with a spuriously high backtested perfor-
mance. We also compute the minimum backtest length (MinBTL) that an
investor should require given the number of trials attempted. Although in
our examples we always choose the Sharpe ratio to evaluate performance,

1We invite the readers to read specific instances of pseudo-mathematical financial ad-
vice at this website: http://www.m-a-f-f-i-a.org/. Also, Edesses [2007] provides nu-
merous examples.
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our methodology can be applied to any other performance measure.
We believe our framework to be helpful to the academic and investment

communities by providing a benchmark methodology to assess the relia-
bility of a backtested performance. We would feel sufficiently rewarded in
our efforts if at least this paper succeeded in drawing the attention of the
mathematical community regarding the widespread proliferation of journal
publications, many of them claiming profitable investment strategies on the
sole basis of IS performance. This is perhaps understandable in business
circles, but a higher standard is and should be expected from an academic
forum.

We would also like to raise the question of whether mathematical scien-
tists should continue to tolerate the proliferation of investment products that
are misleadingly marketed as mathematically sound. In the recent words of
Sir Andrew Wiles,

One has to be aware now that mathematics can be misused and
that we have to protect its good name. [29]

We encourage the reader to search the Internet for terms such as “stochas-
tic oscillators,” “Fibonacci ratios,” “cycles,” “Elliot wave,” “Golden ratio,”
“parabolic SAR,” “pivot point,” “momentum,” and others in the context of
finance. Although such terms clearly evoke precise mathematical concepts,
in fact, in almost all cases, their usage is scientifically unsound.

Historically scientists have led the way in exposing those who utilize
pseudoscience to extract a commercial benefit. As early as the 18th century,
physicists exposed the nonsense of astrologers. Yet mathematicians in the
21st century have remained disappointingly silent with the regards to those
in the investment community who, knowingly or not, misuse mathematical
techniques such as probability theory, statistics and stochastic calculus. Our
silence is consent, making us accomplices in these abuses.

The rest of our study is organized as follows: Section 2 introduces the
problem in a more formal way. Section 3 defines the concept of Minimum
Backtest Length (MinBTL). Section 4 argues how model complexity leads
to backtest overfitting. Section 5 analyzes overfitting in absence of com-
pensation effects. Section 6 studies overfitting in presence of compensation
effects. Section 7 exposes how backtest overfitting can be used to commit
fraud. Section 8 presents a typical example of backtest overfitting. Section
9 lists our conclusions. The mathematical appendices supply proofs of the
propositions presented throughout the paper.
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2 BACKTEST OVERFITTING

The design of an investment strategy usually begins with a prior or be-
lief that a certain pattern may help forecast the future value of a financial
variable. For example, if a researcher recognizes a lead-lag effect between
various tenor bonds in a yield curve, she could design a strategy that bets
on a reversion towards equilibrium values. This model might take the form
of a cointegration equation, a vector-error correction model or a system of
stochastic differential equations, just to name a few. The number of possible
model configurations (or trials) is enormous, and naturally the researcher
would like to select the one that maximizes the performance of the strategy.
Practitioners often rely on historical simulations (also called backtests) to
discover the optimal specification of an investment strategy. The researcher
will evaluate, among other variables, what are the optimal sample sizes, sig-
nal update frequency, entry and profit taking thresholds, risk sizing, stop
losses, maximum holding periods, etc.

The Sharpe ratio is a statistic that evaluates an investment manager or
strategy’s performance on the basis of a sample of past returns. It is defined
as the ratio between average excess returns (in excess of the rate of return
paid by a risk-free asset, such as a Government Note) and the standard de-
viation of the same returns. Intuitively, this can be interpreted as a “return
on risk” (or as William Sharpe put it, “return on variability”). But the stan-
dard deviation of excess returns may be a misleading measure of variability
when returns follow asymmetric or fat-tailed distributions, or returns are
not independent or identically distributed. Suppose that a strategy’s excess
returns (or risk premiums), rt, are independent and identically distributed
(IID) following a Normal law.

rt ∼ N (µ, σ2) (2.1)

where N represents a Normal distribution with mean µ and variance σ2.
The annualized Sharpe ratio (SR) can be computed as

SR =
µ

σ

√
q (2.2)

where q is the number of returns per year (see Lo [17] for a detailed derivation
of this expression). Sharpe ratios are typically expressed in annual terms
in order to allow for the comparison of strategies that trade with different
frequency. The great majority of financial models are built upon the IID
Normal assumption, which may explain why the Sharpe ratio has become
the most popular statistic for evaluating an investment’s performance.
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Since µ, σ are usually unknown, the true value SR cannot be known for
certain. Instead, we can estimate the Sharpe ratio as ŜR = µ̂

σ̂

√
q, where µ̂

and σ̂ are the sample mean and sample standard deviation. The inevitable
consequence is that SR calculations are likely to be the subject of substantial
estimation errors (see Bailey and López de Prado [2] for a confidence band,
and an extension of the concept of Sharpe Ratio beyond the IID Normal
assumption).

From Lo [17], we know that the distribution of the estimated annualized

Sharpe ratio ŜR converges asymptotically (as y →∞) to

ŜR
a−→ N

[
SR,

1 + SR2

2q

y

]
(2.3)

where y is the number of years used to estimate ŜR.2 As y increases without
bound, the probability distribution of ŜR approaches a Normal distribution

with mean SR and variance
1+SR2

2q

y . For a sufficiently large y, Eq. (2.3)

provides an approximation of the distribution of ŜR.
Even for a small number N of trials it is relatively easy to find a strategy

with a high Sharpe ratio IS, but which also delivers a null Sharpe ratio
OOS. To illustrate this point, consider N strategies with T = yq returns
distributed according to a Normal law with mean excess returns µ and with
standard deviation σ. Suppose that we would like to select the strategy with
optimal ŜR IS, based on one year of observations. A risk we face is choosing
a strategy with a high Sharpe ratio IS, but zero Sharpe ratio OOS. So we
ask the question, how high is the expected maximum Sharpe ratio IS among
a set of strategy configurations, where the true Sharpe ratio is zero?

Bailey and López de Prado [2] derived an estimate of the Minimum Track
Record Length (MinTRL) needed to reject the hypothesis that an estimated
Sharpe ratio is below a certain threshold (let’s say zero). MinTRL was de-
veloped to evaluate a strategy’s track record (a single realized path, N = 1).
The question we are asking now is different, because we are interested in
the backtest length needed to avoid selecting a skill-less strategy among N
alternative specifications. In other words, in this article we are concerned
with overfitting prevention when comparing multiple strategies, not in eval-
uating the statistical significance of a single Sharpe ratio estimate. Next, we

2Most performance statistics assume IID Normal returns, and so are normally dis-
tributed. In the case of the Sharpe ratio, several authors have proved that its asymptotic
distribution follows a Normal law even when the returns are not IID Normal. The same
result applies to the Information Ratio. The only requirement is that the returns be
ergodic. We refer the interested reader to Bailey and López de Prado [2].
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will derive the analogue to MinTRL in the context of overfitting, which we
will call Minimum Backtest Length (MinBTL), since it specifically addresses
the problem of backtest overfitting.

From Eq. (2.3), if µ = 0 and y = 1, then ŜR
a−→ N (0, 1). Note

that, because SR = 0, increasing q does not reduce the variance of the
distribution. The proof of the following proposition is left for the Appendix.

Proposition 2.1. Given a sample of IID random variables, xn ∼ Z, n =
1, . . . , N where Z is the CDF of the Standard Normal distribution, the ex-
pected maximum of that sample, E[maxN ] = E[max{xn}], can be approxi-
mated for a large N as

E[max
N

] ≈ (1− γ)Z−1
[
1− 1

N

]
+ γZ−1

[
1− 1

N
e−1
]

(2.4)

where γ ≈ 0.5772156649 . . . is the Euler-Mascheroni constant, and N >> 1.

An upper bound to Eq.(2.4) is
√

2 ln[N ] 3. Figure 1 plots, for various
values of N (x-axis), the expected Sharpe ratio of the optimal strategy IS.
For example, if the researcher tries only N = 10 alternative configurations
of an investment strategy, he or she is expected to find a strategy with a
Sharpe ratio IS of 1.57, despite the fact that all strategies are expected to
deliver a Sharpe ratio of zero OOS (including the “optimal” one selected
IS).

Proposition 2.1 has important implications. As the researcher tries a
growing number of strategy configurations, there will be a non-null proba-
bility of selecting IS a strategy with null expected performance OOS. Be-
cause the hold-out method does not take into account the number of trials
attempted before selecting a model, it cannot assess the representativeness
of a backtest.

3 MINIMUM BACKTEST LENGTH (MinBTL)

Let us consider now the case that µ = 0 but that y 6= 1. Then, we can still
apply Proposition 1, by re-scaling the expected maximum by the standard
deviation of the annualized Sharpe ratio, y−1/2. Thus, the researcher is
expected to find an “optimal” strategy with an IS annualized Sharpe ratio
of

E[max
N

] ≈ y−1/2
(

(1− γ)Z−1
[
1− 1

N

]
+ γZ−1

[
1− 1

N
e−1
])

(3.1)

3See Example 3.5.4 of Embrechts et al. [5] for a detailed treatment of the derivation
of upper bounds on the maximum of a Normal distribution.
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Figure 1: Overfitting a backtest results as the number of trials grows

Figure 1 provides a graphical representation of Proposition 2.1. The blue
(dotted) line shows the maximum of a particular set of N independent ran-
dom numbers, each following a Standard Normal distribution. The black
(continuous) line is the expected value of the maximum of that set of N
random numbers. The red (dashed) line is an upper bound estimate of that
maximum. The implication is that is it relatively easy to wrongly select a
strategy on the basis of a maximum Sharpe ratio when displayed IS.
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Eq. (3.1) says that the more independent configurations a researcher tries
(N), the more likely she is to overfit, and therefore the higher should the
acceptance threshold should be for the backtested result to be trusted. This
situation can be partially mitigated by increasing the sample size (y). By
solving Eq. (3.1) for y, we reach the following statement.

Theorem 3.1. The Minimum Backtest Length (MinBTL, in years) needed
to avoid selecting a strategy with an IS Sharpe ratio of E[maxN ] among N
independent strategies with an expected OOS Sharpe ratio of zero is

MinBTL ≈

(
(1− γ)Z−1

[
1− 1

N

]
+ γZ−1

[
1− 1

N e
−1]

E[maxN ]

)2

<
2 ln[N ]

E[maxN ]
2(3.2)

Eq. (3.2) tells us that MinBTL must grow as the researcher tries more
independent model configurations (N), in order to keep constant the ex-
pected maximum Sharpe ratio at a given level E[maxN ]. Figure 2 shows
how many years of backtest length (MinBTL) are needed so that E[maxN ]
is fixed at 1. For instance, if only 5 years of data are available, no more than
45 independent model configurations should be tried, or we are almost guar-
anteed to produce strategies with an annualized Sharpe ratio IS of 1, but an
expected Sharpe ratio OOS of zero. Note that Proposition 2.1 assumed the
N trials to be independent, which leads to a quite conservative estimate. If
the trials performed were not independent, the number of independent trials
N involved can be derived using a dimension-reduction procedure, such as
Principal Component Analysis.

We will examine this trade-off between N and T in greater depth later
in the paper, without requiring such strong assumption, but MinBTL gives
us a first glance at how easy is to overfit by merely trying alternative
model configurations. As an approximation, the reader may find helpful
to remember the upper bound to the minimum backtest length (in years),

MinBTL < 2 ln[N ]

E[maxN ]
2 .

Of course, a backtest may be overfit even if it is computed on a sample
greater than MinBTL. From that perspective, MinBTL should be considered
a necessary, non-sufficient condition to avoid overfitting. We leave to Bailey
et al. [1] the derivation of a more precise measure of backtest overfitting.

4 MODEL COMPLEXITY

How does the previous result relate to model complexity? Consider a one-
parameter model that may adopt two possible values (like a switch that

11



Figure 2: Minimum Backtest Length needed to avoid overfitting, as a func-
tion of the number of trials

Figure 2 shows the trade-off between the number of trials (N) and the
minimum backtest length (MinBTL) needed to prevent skill-less strategies
to be generated with a Sharpe ratio IS of 1. For instance, if only 5 years
of data are available, no more than 45 independent model configurations
should be tried. For that number of trials, the expected maximum SR IS
is 1, whereas the expected SR OOS is 0. After trying only 7 independent
strategy configurations, the expected maximum SR IS is 1 for a 2-year long
backtest, while the expected SR OOS is 0. The implication is that a backtest
which does not report the number of trials N used to identify the selected
configuration makes it impossible to assess the risk of overfitting.
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generates a random sequence of trades) on a sample of T observations. Over-
fitting will be difficult, because N = 2. Let’s say that we make the model
more complex, by adding 4 more parameters so that the total number of
parameters becomes 5, i.e. N = 25 = 32. Having 32 independent sequences
of random trades greatly increases the possibility of overfitting.

While a greater N makes overfitting easier, it makes perfectly fitting
harder. Modern supercomputers can only perform around 250 raw compu-
tations per second, or less than 258 raw computations per year. Even if a
trial could be reduced to a raw computation, searching N = 2100 will take
us 242 supercomputer-years of computation (assuming a 1 Pflop/s system,
capable of 1015 floating-point operations per second). Hence, a skill-less
brute force search is certainly impossible. While it is hard to perfectly fit a
complex skill-less strategy, Theorem 1 shows that there is no need for that.
Without perfectly fitting a strategy, or making it over-complex, a researcher
can achieve high Sharpe ratios. A relatively simple strategy with just 7 bi-
nomial independent parameters offers N = 27 = 128 trials, with an expected
maximum Sharpe ratio above 2.6 (see Figure 1).

We suspect, however, that backtested strategies that significantly beat
the market typically rely on some combination of valid insight, boosted by
some degree of overfitting. Since believing in such an artificially enhanced
high performance strategy will often also lead to over-leveraging, such over-
fitting is still very damaging. Most Technical Analysis strategies rely on
filters, which are sets of conditions that trigger trading actions, like the ran-
dom switches exemplified earlier. Accordingly, extra caution is warranted
to guard against overfitting in using Technical Analysis strategies, as well
as in complex non-parametric modeling tools, such as Neural Networks and
Kernel Estimators.

Here is a key concept that investors generally miss:

A researcher that does not report the number of trials N used to
identify the selected backtest configuration makes it impossible to
assess the risk of overfitting.

Because N is almost never reported, the magnitude of overfitting in
published backtests is unknown. It is not hard to overfit a backtest (indeed,
the previous theorem shows that it is hard not to), so we suspect that a large
proportion of backtests published in academic journals may be misleading.
The situation is not likely to be better among practitioners.

In our experience, overfitting is pathological within the financial industry,
where proprietary and commercial software is developed to estimate the
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combination of parameters that best fits (or more precisely, overfits) the
data. These tools allow the user to add filters without ever reporting how
such additions increase the probability of backtest overfitting. Institutional
players are not immune to this pitfall. Large mutual fund groups typically
discontinue and replace poorly performing funds, introducing survivorship
and selection bias. While the motivation of this practice may be entirely
innocent, the effect is the same as that of hiding experiments and inflating
expectations.

We are not implying that those technical analysts, quantitative researchers
or fund managers are “snake oil salesmen.” Most likely they genuinely be-
lieve that the backtested results are legitimate, or that adjusted fund offer-
ings better represent future performance. Hedge fund managers are often
unaware that most backtests presented to them by researchers and analysts
may be useless, and so they unknowingly package faulty investment propo-
sitions into products. One goal of this paper is to make investors, practi-
tioners and academics aware of the futility of considering backtest without
controlling for the probability of overfitting.

5 OVERFITTING IN ABSENCE OF COMPEN-
SATION EFFECTS

Regardless of how realistic the prior being tested is, there is always a com-
bination of parameters that is optimal. In fact, even if the prior is false,
the researcher is very likely to identify a combination of parameters that
happens to deliver an outstanding performance IS. But because the prior is
false, OOS performance will almost certainly underperform the backtest’s
results. As we have described, this phenomenon, by which IS results tend to
outperform the OOS results, is called overfitting. It occurs because a suffi-
ciently large number of parameters are able to target specific data points -
say by chance buying just before a rally and shorting a position just before
a sell-off – rather than triggering trades according to the prior.

To illustrate this point, suppose we generate N Gaussian random walks
by drawing from a Standard Normal distribution, each walk having a size
T . Each performance path mτ can be obtained as a cumulative sum of
Gaussian draws

∆mτ = µ+ σετ (5.1)

where the random shocks ετ are IID distributed ετ ∼ Z, τ = 1, . . . , T . Sup-
pose that each path has been generated by a particular combination of
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parameters, backtested by a researcher. Without loss of generality, assume
that µ = 0, σ = 1 and T = 1000, covering a period of one year (with about
4 observations per trading day). We divide these paths into two disjoint
samples of equal size 500, and call the first one IS and the second one OOS.

At the moment of choosing a particular parameter combination as op-
timal, the researcher had access to the IS series, not the OOS. For each
model configuration, we may compute the Sharpe ratio of the series IS, and
compare it with the Sharpe ratio of the series OOS. Figure 3 shows the
resulting scatter plot. The p-values associated with the intercept and the IS
performance (SR a priori) are respectively 0.6261 and 0.7469.

The problem of overfitting arises when the researcher uses the IS per-
formance (backtest) to choose a particular model configuration, with the
expectation that configurations that performed well in past will continue to
do so in future. This would be a correct assumption if the parameter con-
figurations were associated with a truthful prior, but this is clearly not the
case of the simulation above, which is the result of Gaussian random walks
without trend (µ = 0).

Figure 4 shows what happens when we select the model configuration
associated with the random walk with highest Sharpe ratio IS. The perfor-
mance of the first half was optimized IS, and the performance of the second
half is what the investor receives OOS. The good news is that under these
conditions, there is no reason to expect overfitting to induce negative per-
formance. This is illustrated in Figure 5, which shows how the optimization
causes the expected performance IS to range between 1.2 and 2.6, while the
OOS performance will range between -1.5 and 1.5 (i.e., around µ, which
in this case is zero). The p-values associated with the intercept and the
IS performance (SR a priori) are respectively 0.2146 and 0.2131. Selecting
an optimal model IS had no bearing on the performance OOS, which sim-
ply equals the zero mean of the process. A positive mean (µ > 0) would
lead to positive expected performance OOS, but such performance would
nevertheless be inferior to the one observed IS.

6 OVERFITTING IN PRESENCE OF COMPEN-
SATION EFFECTS

Multiple causes create compensation effects in practice, such as overcrowded
investment opportunities, major corrections, economic cycles, reversal of fi-
nancial flows, structural breaks, bubble bursts, etc. Optimizing a strategy’s
parameters (i.e., choosing the model configuration that maximizes the strat-
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Figure 3: Performance IS vs. OOS before introducing strategy selection

Figure 3 shows the relation between SR IS (x-axis) and SR OOS (y-axis),
for µ = 0, σ = 1, N = 1000, T = 1000. Because the process follows a random
walk, the scatter plot has a circular shape centered in the point (0,0). This
illustrates the fact that, in absence of compensation effects, overfitting IS
performance (x-axis) has no bearing on the OOS performance (y-axis), which
remains around zero.
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Figure 4: Performance IS vs. performance OOS for one path, after intro-
ducing strategy selection

Figure 4 provides a graphical representation of what happens when we select
the random walk with highest SR IS. The performance of the first half was
optimized IS, and the performance of the second half is what the investor
receives OOS. The good news is, in the absence of memory, there is no reason
to expect overfitting to induce negative performance.
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Figure 5: Performance degradation after introducing strategy selection, in
absence of compensation effects

Figure 5 illustrates what happens once we add a “model selection” proce-
dure. Now the SR IS ranges from 1.2 to 2.6, and it is centered around 1.7.
Although the backtest for the selected model generates the expectation of a
1.7 SR, the expected SR OOS is unchanged and lies around 0.
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egy’s performance IS) does not necessarily lead to improved performance
(compared to not optimizing) OOS, yet again leading to overfitting.

In some instances, when the strategy’s performance series lacks mem-
ory, overfitting leads to no improvement in performance OOS. However, the
presence of memory in a strategy’s performance series induces a compensa-
tion effect, which increases the chances for that strategy to be selected IS,
only to underperform the rest OOS. Under those circumstances, IS backtest
optimization is in fact detrimental to OOS performance.4

6.1 GLOBAL CONSTRAINT

Unfortunately, overfitting rarely has the neutral implications discussed in
the previous section. Our previous example was purposely chosen to exhibit
a globally unconditional behavior. As a result, the OOS data had no memory
of what occurred IS. Centering each path to match a mean µ removes one
degree of freedom.

∆mτ = ∆mτ + µ− 1

T

T∑
τ=1

∆mτ (6.1)

We may re-run the same Monte Carlo experiment as before, this time on
the re-centered variables ∆mτ . Somewhat scarily, adding this single global
constraint causes the OOS performance to be negative, even though the un-
derlying process was trendless. Moreover, a strongly negative linear relation
between performance IS and OOS arises, indicating that the more we opti-
mize IS, the worse is OOS performance. Figure 6 displays this disturbing
pattern. The p-values associated with the intercept and the IS performance
(SR a priori) are respectively 0.5005 and 0, indicating that the negative
linear relation between IS and OOS Sharpe ratios is statistically significant.

The following proposition is proven in the Appendix.

Proposition 6.1. Given two alternative configurations (A and B) of the
same model, where σAIS = σAOOS = σBIS = σBOOS imposing a global constraint
µA = µB implies that

SRAIS > SRBIS ⇔ SRAOOS < SRBOOS (6.2)

Recentering a series is one way to introduce memory into a process,
because some data points will now compensate for the extreme outcomes

4Bailey et al. [1] propose a method to determine the degree to which a particular
backtest may have been compromised by the risk of overfitting.
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Figure 6: Performance degradation as a result of strategy selection under
compensation effects (global constraint)

Adding a single global constraint causes the OOS performance to be neg-
ative, even though the underlying process was trendless. Also, a strongly
negative linear relation between performance IS and OOS arises, indicating
that the more we optimize IS, the worse will be the OOS performance of the
strategy.
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from other data points. By optimizing a backtest, the researcher selects a
model configuration that spuriously works well IS, and consequently is likely
to generate losses OOS.

6.2 SERIAL DEPENDENCE

But imposing a global constraint is not the only situation in which overfitting
actually is detrimental. To cite another (less restrictive) example, the same
effect happens if the performance series is serially conditioned, such as a
first-order autoregressive process.

∆mτ = (1− ϕ)µ+ (ϕ− 1)ϕmτ−1 + σετ (6.3)

or analogously,

mτ = (1− ϕ)µ+ ϕmτ−1 + σετ (6.4)

where the random shocks are again are IID distributed as ετ ∼ Z. The fol-
lowing proposition is proven in the Appendix. The number of observations
that it takes for a process to reduce its divergence from the long-run equi-
librium by half is known as the half-life period, or simply half-life (a familiar
physical concept introduced by Ernest Rutherford in 1907).

Proposition 6.2. The half-life period of a first-order autoregressive process
with autoregressive coefficient ϕ ∈ (0, 1) occurs at

τ = − ln[2]

ln[ϕ]
. (6.5)

For example, if ϕ = 0.995, it takes about 138 observations to retrace
half of the deviation from the equilibrium. This introduces another form of
compensation effect, just as we saw in the case of a global constraint. If we
re-run the previous Monte Carlo experiment, this time for the autoregressive
process with µ = 0, σ = 1, ϕ = 0.995, and plot the pairs of performance IS
vs. OOS, we obtain Figure 7.

The p-values associated with the intercept and the IS performance (SR
a priori) are respectively 0.4513 and 0, confirming that the negative linear
relation between IS and OOS Sharpe ratios is again statistically significant.
Such serial correlation is a well-known statistical feature, present in the
performance of most hedge fund strategies. Proposition 6.3 is proved in the
Appendix.

21



Figure 7: Performance degradation as a result of strategy selection under
compensation effects (first-order serial correlation)

Serially-correlated performance introduces another form of compensation
effects, just as we saw in the case of a global constraint. For example, if
ϕ = 0.995, it takes about 138 observations to recover half of the deviation
from the equilibrium. We have re-run the previous Monte Carlo experiment,
this time on an autoregressive process with µ = 0, σ = 1, ϕ = 0.995, and
plotted the pairs of performance IS vs. OOS.
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Proposition 6.3. Given two alternative configurations (A and B) of the
same model, where σAIS = σAOOS = σBIS = σBOOS and the performance series
follows the same first-order autoregressive stationary process,

SRAIS > SRBIS ⇔ SRAOOS < SRBOOS (6.6)

Proposition 6.3 reaches the same conclusion as Proposition 6.1 (a com-
pensation effect), without requiring a global constraint.

7 IS BACKTEST OVERFITTING A FRAUD?

Consider an investment manager who e-mails his stock market forecast for
the next month to 2nx prospective investors, where x and n are positive
integers. To half of them he predicts that markets will go up, and to the
other half that markets will go down. After the month passes, he drops from
his list the names to which he sent the incorrect forecast, and resend a new
forecast to the remaining 2n−1x names. He repeats the same procedure n
times, after which only x names remain. These x investors have witnessed
n consecutive infallible forecasts, and may be extremely tempted to give
this investment manager all of their savings. Of course, this is a fraudulent
scheme based on random screening: The investment manager is hiding that
for every one of the x successful witness, he has tried 2n unsuccessful ones
(see Harris [8, p. 473] for a similar example).

To avoid falling for this psychologically compelling fraud, a potential
investor needs to consider the economic cost associated with manufacturing
the successful experiments, and require the investment manager to produce
a number n for which the scheme is uneconomic. One caveat is, even if
n is too large for a skill-less investment manager, it may be too low for a
mediocre investment manager who uses this scheme to inflate his skills.

Not reporting the number of trials (N) involved in identifying a successful
backtest is a similar kind of fraud. The investment manager only publicizes
the model that works, but says nothing about all the failed attempts, which
as we have seen can greatly increase the probability of backtest overfitting.

An analogous situation occurs in medical research, where drugs are tested
by treating hundreds or thuosands of patients, however only the best out-
comes are publicized. The reality is that the selected outcomes may have
healed despite of (rather than thanks to) the treatment, or due to a placebo
effect (recall Theorem 1). Such behavior is unscientific—not to mention dan-
gerous and expensive—and has led to the launch of the alltrials.net project,
which demands that all results (positive and negative) for every experiment
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are made publicly available. A step forward in this direction is the recent
announcement by Johnson and Johnson that it will plans to open all of its
clinical test results to the public [14]. For related discussion of reproducibil-
ity in the context of mathematical computing, see Stodden, et al. [25].

Hiding trials appears to be standard procedure in financial research and
financial journals. As an aggravating factor, we know from Section 6 that
backtest overfitting typically has a detrimental effect on future performance,
due to the compensation effects present in financial series. Indeed, the cus-
tomary disclaimer “past performance is not an indicator of future results”
is too optimistic in the context for backtest overfitting. When investment
advisers do not control for backtest overfitting, good backtest performance
is an indicator of negative future results.

8 A PRACTICAL APPLICATION

Institutional asset managers follow certain investment procedures on a reg-
ular basis, such as rebalancing the duration of a fixed income portfolio
(PIMCO), rolling holdings on commodities (Goldman Sachs, AIG, JP Mor-
gan, Morgan Stanley), investing or divesting as new funds flow at the end of
the month (Fidelity, BlackRock), participating in the regular U.S. Treasury
Auctions (all major investment banks), de-levering in anticipation of pay-
roll, FOMC or GDP releases, tax-driven effects around the end of the year
and mid-April, positioning for electoral cycles, etc. There is a large num-
ber of instances where asset managers will engage in somewhat predictable
actions on a regular basis. It should come as no surprise that a very pop-
ular investment strategy among hedge funds is to profit from such seasonal
effects.

For example, a type of question often asked by hedge fund managers
follow the form: “Is there a time interval every when I would have
made money on a regular basis?” You may replace the blank space with a
word like day, week, month, quarter, auction, nonfarm payroll (NFP) release,
European Central Bank (ECB) announcement, presidential year, . . . . The
variations are as abundant as they are inventive. Doyle and Chen [4] study
the “weekday effect” and conclude that it appears to “wander”.

The problem with this line of questioning is that there is always a time
interval that is arbitrarily “optimal,” regardless of the cause. The answer to
one such questions is the title of a very popular investment classic, “Do not
sell stocks on Monday,” by Hirsch [12]. The same author wrote an almanac
for stock traders that reached its 45th edition in 2012, and is also a pro-
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ponent of the “Santa Claus Rally,” the quadrennial political/stock market
cycle, and investing during the “Best Six Consecutive Months” of the year,
November through April. While these findings may indeed be caused by
some underlying seasonal effect, it is easy to demonstrate that any random
data contains similar patterns. The discovery of a pattern IS typically has no
bearing OOS, yet again as a result of overfitting. Running such experiments
without controlling for the probability of backtest overfitting will lead the
researcher to spurious claims. OOS performance will disappoint, and the
reason will not be that “the market has found out the seasonal effect and
arbitraged away the strategy’s profits.” Rather, the effect was never there;
instead it was just a random pattern that gave rise to an overfitted trading
rule. We will illustrate this point with an example.

Example 8.1. Suppose that we would like to identify the optimal monthly
trading rule, given four customary parameters: Entry day, Holding period,
Stop loss and Side. Side defines whether we will hold long or short posi-
tions on a monthly basis. Entry day determines the business day of the
month when we enter a position. Holding period gives the number of days
that the position is held. Stop loss determines the size of the loss (as a
multiple of the series’ volatility) which triggers an exit for that month’s po-
sition. For example, we could explore all nodes that span the set {1, . . . , 22}
for Entry day, the set {1, . . . , 20} for Holding period, the set {0, . . . , 10} for
Stop loss, and {−1, 1} for Side. The parameter combinations involved form
a four-dimensional mesh of 8,800 elements. The optimal parameter com-
bination can be discovered by computing the performance derived by each
node.

First, we generated a time series of 1000 daily prices (about 4 years),
following a random walk. Figure 8 plots the random series, as well as the
performance associated with the optimal parameter combination: Entry day
= 11, Holding period = 4, Stop loss = -1 and Side = 1. The annualized
Sharpe ratio is 1.27.

Given the elevated Sharpe ratio, we could conclude that this strategy’s
performance is significantly greater than zero for any confidence level. In-
deed, the PSR-Stat is 2.83, which implies a less than 1% probability that
the true Sharpe ratio is below 0 5. Several studies in the practitioners and

5The Probabilistic Sharpe Ratio (or PSR) is an extension to the SR. Non-Normality
increases the error of the variance estimator, and PSR takes that into consideration when
determining whether a SR estimate is statistically significant. See Bailey and López de
Prado [2] for details.
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Figure 8: Backtested performance of a seasonal strategy (example 1)

We have generated a time series of 1000 daily prices (about 4 years), fol-
lowing a random walk. The PSR-Stat of the optimal model configuration is
2.83, which implies a less-than 1% probability that the true Sharpe ratio is
below 0. Consequently, we have been able to identify a plausible seasonal
strategy with a SR of 1.27 despite the fact that no true seasonal effect exists.
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academic literature report similar results, which are conveniently justified
with some ex-post explanation (“the posterior gives rise to a prior”). What
this analysis misses is an evaluation of the probability that this backtest has
been overfit to the data, which is the subject of Bailey et al. [1].

In this practical application we have illustrated how simple is to produce
overfit backtests when answering common investment questions, such as
the presence of seasonal effects. We refer the reader to Section 10.5 for
the implementation of this experiment in the Python language. Similar
experiments can be designed to demonstrate overfitting in the context of
other effects, such as trend-following, momentum, mean-reversion, event-
driven effects, etc. Given the facility with which elevated Sharpe ratios
can be manufactured IS, the reader would be well advised to remain highly
suspicious of backtests and of researchers who fail to report the number of
trials attempted.

9 CONCLUSIONS

While the literature on regression overfitting is extensive, we believe that
this is the first study to discuss the issue of overfitting in the context of
investment simulations (backtests), and its negative effect on OOS perfor-
mance. On the subject of regression overfitting, the great Enrico Fermi once
remarked (Mayer et al. [20]):

I remember my friend Johnny von Neumann used to say, with four
parameters I can fit an elephant, and with five I can make him wiggle
his trunk.

The same principle applies to backtesting, with some interesting pecu-
liarities. We have shown that backtest overfitting is difficult indeed to avoid.
Any perseverant researcher will always be able to find a backtest with a
desired Sharpe ratio, regardless of the sample length requested. Model com-
plexity is only one way that backtest overfitting is facilitated. Given that
most published backtests do not report the number of trials attempted,
many of them may be overfitted. In that case, if an investor allocates them
capital, performance will vary: It will be around zero if the process has no
memory, but it may be significantly negative if the process has memory. The
standard warning that “past performance is not an indicator of future re-
sults” understates the risks associated with investing on overfit backtests.
When financial advisors do not control for overfitting, positive backtested
performance will often be followed by negative investment results.
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We have derived the expected maximum Sharpe ratio as a function of
the number of trials (N) and sample length. This has allowed us to de-
termine the Minimum Backtest Length (MinBTL) needed to avoid selecting
a strategy with a given IS Sharpe ratio among N trials with an expected
OOS Sharpe ratio of zero. Our conclusion is that, the more trials a financial
analyst executes, the greater should be the IS Sharpe ratio demanded by
the potential investor.

We strongly suspect that such backtest overfitting is a large part of the
reason why so many algorithmic or systematic hedge funds do not live up
to the elevated expectations generated by their managers.

We would feel sufficiently rewarded in our efforts if at least this paper suc-
ceeded in drawing the attention of the mathematical community regarding
the widespread proliferation of journal publications, many of them claiming
profitable investment strategies on the sole basis of in-sample performance.
This is understandable in business circles, but a higher standard is and
should be expected from an academic forum.

A depressing parallel can be drawn between today’s financial academic
research and the situation denounced by economist and Nobel Laureate
Wassily Leontief writing in Science (see Leontief [1982]):

A dismal performance

. . . “What economists revealed most clearly was the extent to which
their profession lags intellectually.” This editorial comment by the lead-
ing economic weekly (on the 1981 annual proceedings of the American
Economic Association) says, essentially, that the “king is naked.” But
no one taking part in the elaborate and solemn procession of contem-
porary U.S. academic economics seems to know it, and those who do
don’t dare speak up

[. . .]

[E]conometricians fit algebraic functions of all possible shapes to es-
sentially the same sets of data without being able to advance, in any
perceptible way, a systematic understanding of the structure and the
operations of a real economic system

[. . .]

That state is likely to be maintained as long as tenured members of
leading economics departments continue to exercise tight control over
the training, promotion, and research activities of their younger faculty
members and, by means of peer review, of the senior members as well.

We hope that our distinguished colleagues will follow this humble at-
tempt with ever deeper and more convincing analysis. We did not write
this paper to settle a discussion. On the contrary, our wish is to ignite a
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dialogue among mathematicians, and a reflection among investors and reg-
ulators. We should do well also to heed Newton’s comment after he lost
heavily in the South seas bubble, see [21].

For those who had realized big losses or gains, the mania redistributed
wealth. The largest honest fortune was made by Thomas Guy, a sta-
tioner turned philanthropist, who owned £54,000 of South Sea stock
in April 1720 and sold it over the following six weeks for £234,000. Sir
Isaac Newton, scientist, master of the mint, and a certifiably rational
man, fared less well. He sold his £7,000 of stock in April for a profit of
100 percent. But something induced him to reenter the market at the
top, and he lost £20,000. “I can calculate the motions of the heavenly
bodies,” he said,“but not the madness of people.”

10 APPENDICES

10.1 PROOF OF PROPOSITION 2.1

Embrechts et al. [5, 138–147] show that the maximum value (or last order
statistic) in a sample of independent random variables following an expo-
nential distribution converges asymptotically to a Gumbel distribution. As
a particular case, the Gumbel distribution covers the Maximum Domain of
Attraction of the Gaussian distribution, and therefore it can be used to es-
timate the expected value of the maximum of several independent random
Gaussian variables.

To see how, suppose a sample of IID random variables, zn ∼ Z, n =
1, . . . , N , where Z is the CDF of the Standard Normal distribution. To
derive an approximation for the sample maximum, maxn = max{zn}, we
apply the Fisher-Tippet-Gnedenko theorem to the Gaussian distribution,
and obtain that

lim
N→∞

Prob

[
maxN −α

β
≤ x

]
= G[x] (10.1)

where

• G[x] = e−e
−x

is the CDF for the Standard Gumbel distribution.

• α = Z−1
[
1− 1

N

]
, β = Z−1

[
1− 1

N e
−1] − α, and Z−1 corresponds to

the inverse of the Standard Normal’s CDF.

The normalizing constants (α, β) are derived in Resnick [22] and Em-
brechts et al. [5]. The limit of the expectation of the normalized maxima
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from a distribution in the Gumbel Maximum Domain of Attraction (see
Proposition 2.1(iii) in Resnick [22]) is

lim
N→∞

E

[
maxN −α

β

]
= γ (10.2)

where γ is the Euler-Mascheroni constant, γ ≈ 0.5772156649 . . . Hence, for
N sufficiently large, the mean of the sample maximum of standard normally
distributed random variables can be approximated by

E[max
N

] ≈ α+ γβ = (1− γ)Z−1
[
1− 1

N

]
+ γZ−1

[
1− 1

N
e−1
]

(10.3)

where N > 1. Q.E.D.

10.2 PROOF OF PROPOSITION 6.1

Suppose two random samples (A and B) of the same process {∆mτ}, where
A andB are of equal size, and have means and standard deviations µA, µB, σA, σB.
A fraction δ of each sample is called IS, and the remainder is called OOS,
where for simplicity we have assumed that σAIS = σAOOS = σBIS = σBOOS . We
would like to understand the implications of a global constraint µA = µB.

First, we note that µA = δµAIS+(1−δ)µAOOS and µB = δµBIS+(1−δ)µBOOS .
Then, µAIS > µAOOS ⇔ µAIS > µA ⇔ µAOOS < µA. Likewise, µBIS > µBOOS ⇔
µBIS > µB ⇔ µBOOS < µB.

Second, because of the global constraint µA = µB, µAIS + (1−δ)
δ µAOOS =

µBIS + (1−δ)
δ µBOOS and µAIS − µBIS = (1−δ)

δ (µBOOS − µAOOS). Then, µAIS >
µBIS ⇔ µAOOS < µBOOS . We can divide this expression by σAIS > 0, with the
implication is that

SRAIS > SRBIS ⇔ SRAOOS < SRBOOS (10.4)

where we have denoted SRAIS =
µAIS
σA
IS

, etc. Note that we did not have to

assume that ∆mτ is IID, thanks to our assumption of equal standard devi-
ations. The same conclusion can be reached without assuming equality of
standard deviations, however the proof would be longer but no more reveal-
ing (the point of this proposition is the implication of global constraints).
Q.E.D.
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10.3 PROOF OF PROPOSITION 6.2

This proposition computes the half-life of a first-order autoregressive process.
Suppose a random variablemτ that takes values of a sequence of observations
τ ∈ {1, . . . ,∞}, where

mτ = (1− ϕ)µ+ ϕmτ−1 + σετ (10.5)

such that the random shocks are IID distributed as ετ ∼ N(0, 1).

lim
τ→∞

E0[mτ ] = µ

if and only if ϕ ∈ (−1, 1). In particular, from Bailey and López de Prado [3]
we know that the expected value of this process at a particular observation
τ is

E0[mτ ] = µ(1− ϕτ ) + ϕτm0 (10.6)

Suppose that the process is initialized or reset at some value m0 6= µ. We
ask the question, how many observations must pass before

E0[mτ ] =
µ+m0

2
? (10.7)

Inserting Eq. (10.7) into Eq. (10.6), and solving for τ , we obtain

τ =
ln[2]

ln[ϕ]
(10.8)

which implies the additional constraint that ϕ ∈ (0, 1). Q.E.D.

10.4 PROOF TO PROPOSITION 6.3

Suppose that we draw two samples (A and B) of a first-order autoregressive
process, and generate to subsamples of each. The first subsample is called
IS, and it is comprised of τ = 1, . . . , δT , and the second subsample is called
OOS, as it is comprised of τ = δT+1, . . . , T with δ ∈ (0, 1), and T an integer
multiple of δ. For simplicity, let us assume that σAIS = σAOOS = σBIS = σBOOS .
From Proposition 6.2, Eq. (10.5) we obtain

EδT [mT ]−mδT = (1− ϕT )(µ−mδT ) (10.9)

Because 1 − ϕT > 0, sigmaAIS = σBIS , SRAIS > SRBIS ⇔ mA
δT > mB

δT . This
means that the OOS of A begins with a seed which is greater than the seed
that initializes the OOS of B. Therefore, mA

δT > mB
δT ⇔ EδT [mA

T ]−mA
δT <

EδT [mB
T ]−mB

δT . Because σBIS = σBOOS , we conclude that

SRAIS > SRBIS ⇔ SRAOOS < SRBOOS (10.10)

Q.E.D.
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10.5 REPRODUCING THE RESULTS IN SECTION 9

Python code implementing the experiment described in Section 9 is lodged
at http://www.quantresearch.info/Software.htm and at
http://www.financial-math.org/software/.
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