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Abstract. A standard method for computing values of Bessel functions has been to use the well-known
ascending series for small argument, and to use an asymptotic series for large argument; with the choice of
the series changing at some appropriate argument magnitude, depending on the number of digits required. In
a recent paper, D. Borwein, J. Borwein, and R. Crandall [1] derived a series for an “exp-arc” integral which
gave rise to an absolutely convergent series for the J and I Bessel functions with integral order. Such series
can be rapidly evaluated via recursion and elementary operations, and provide a viable alternative to the
conventional ascending-asymptotic switching. In the present work, we extend the method to deal with Bessel
functions of general (non-integral) order, as well as to deal with the Y and K Bessel functions.
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1. Introduction

Bessel functions are amongst the most important and most commonly occurring objects in
mathematical physics. They arise as solutions to Bessel’s equation [3, Eq. 10.2.1], [14, p. 38]

z2 d2y

dz2 + z
dy

dz
+ (z2 − ν2)y = 0, (1.1)

which is a special case of Laplace’s equation under cylindrical symmetry. The ordinary Bessel
function of the first kind of order ν is the solution Jν(z) given by the ascending series [3,
Eq. 10.2.2], [14, p. 40]

Jν(z) :=
(z

2

)ν
∞∑

m=0

(−1)m(z/2)2m

m!Γ(ν + m + 1)
. (1.2)

It is clear that although (1.2) converges rapidly for small |z|, it is computationally ineffective
when |z/2|2 is much greater than ν. One approach to overcoming this difficulty is to use the
ascending series (1.2) for small |z|, and to use the asymptotic series below [3, Eq. 10.17.3],
[14, p. 199] for large |z|:

Jν(z) ∼
(

2
πz

)1/2
(

cos ω
∞∑

k=0

(−1)k p2k(ν)
(2z)2k

− sinω
∞∑

k=0

(−1)k p2k+1(ν)
(2z)2k+1

)
, (1.3)

where
ω := z − πν

2
− π

4
,
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and

pk(ν) :=
1
k!

k∏
m=1

4ν2 − (2m− 1)2

4
=

(1
2 − ν)k(1

2 + ν)k

k!
,

with the empty product that arises at k = 0 understood to be equal to 1 and

(a)n := a(a + 1) · · · (a + n− 1)

is the Pochhammer symbol. This approach is used in some texts on computation, for example
in S. Zhang and J. Jin [15, p. 161]. However, one of the major drawbacks of using the
asymptotic series (1.3) is that while it is known [14, p.206] that when 2N > ν − 1

2 , the error
from truncating the right-hand side of (1.3) at the N -th term is bounded by the absolute value
of the N +1-st term, the right-hand side of (1.3) is divergent for fixed z. Therefore, the use of
(1.3) imposes upon us a theoretical limit on the number of correct digits that can be obtained,
which in turn forces us to switch back to the ascending series (1.2) for very-high-precision
computations.

The theory is similarly limited for the second (linearly independent of Jν) solution of (1.1),
known as the ordinary Bessel function of the second kind Yν(z), defined by

Yν(z) :=
Jν(z) cos(νπ)− J−ν(z)

sin(νπ)
, (1.4)

for non-integral ν, and defined as the limit of the above expression at integral ν. In particular,
we have the following expression for Yn(z), where n is an integer [14, pp. 62, 64].

Yn(z) =
1
π

(
2(log(z/2) + γ)Jn(z)−

n−1∑
k=0

(n− k − 1)!(z/2)2k−n

k!

−
∞∑

k=0

(−1)k(z/2)2k+n(Hk + Hk+n)
k!(n + k)!

)
, (1.5)

where

Hk :=
k∑

j=1

1
j

is the k-th harmonic number. It also has an asymptotic expansion similar to (1.3).

Yν(z) ∼
(

2
πz

)1/2
(

sinω
∞∑

k=0

(−1)k p2k(ν)
(2z)2k

+ cos ω
∞∑

k=0

(−1)k p2k+1(ν)
(2z)2k+1

)
, (1.6)

with the same error bounds as indicated above.
Similar expansions exist for the modified Bessel functions Iν(z) and Kν(z). For complete-

ness, we state their definitions below.

Iν(z) := e−νπi/2Jν(iz) =
(z

2

)ν
∞∑

m=0

(z/2)2m

m!Γ(ν + m + 1)
, (1.7)

and

Kν(z) :=
π

2
I−ν(z)− Iν(z)

sin(νπ)
. (1.8)
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It should be noted, however, that there does exist a convergent asymptotic expansion for
Iν(z), due to Hadamard [14, p. 204].

Iν(z) =
ez

√
2πzΓ(ν + 1

2)

∞∑
n=0

(1
2 − ν)n

n!(2z)n
γ(ν + n + 1

2 , 2z), (1.9)

where

γ(a, z) := za

∫ 1

0
e−zssa−1ds

is the incomplete gamma function. One should observe that for large n, the summands in
(1.9) are of order O(n−ν−3/2) and so although the series converges absolutely, it only does so
algebraically (i.e., at polynomial rate) in the number of summands.

In his extensive research into the theory of Hadamard expansions, R. B. Paris ([4]–[11])
found several variants of (1.9) that converge much more rapidly. In particular, in [9], he
describes a general procedure for obtaining and accelerating Hadamard expansions that leads
to the following geometrically convergent (i.e., at geometric rate) version of (1.9) [12].

Iν(z) =
ez

√
2πz

∞∑
k=0

pk(ν)
(2z)k

P (k+ν+ 1
2 , z)+

e−z±πi(ν+
1
2)

√
2πz

∞∑
k=0

(−1)kpk(ν)
(2z)k

P (k+ν+ 1
2 ,−z), (1.10)

where

P (a, z) :=
γ(a, z)
Γ(a)

,

and the signs in the exponential are chosen depending on the sign of arg(z).
In this paper, we approach series expansions of Bessel functions from a different angle:

through the evaluation of “exp-arc” integrals. The use of exp-arc integrals was motivated by
the recent work of D. Borwein, J. Borwein, and R. Crandall [1] in which these integrals were
used to obtain explicit error bounds for the asymptotic expansions of Laguerre polynomials.
As a corollary of their results, they developed geometrically convergent series for the J and
I Bessel functions at integral order, whose summands can be computed recursively using
elementary operations. These series are redolent of the modified Hadamard series of Paris,
but do not follow as special cases. Their independence from the Paris modifications is both
theoretically and computationally interesting, and can be viewed as complementary to Paris’
investigations. We generalise these ideas to obtain exp-arc series for Bessel functions of non-
integral order and for the Bessel functions of the second kind.

At this point, perhaps a brief explanation of the term “exp-arc” is in order. Although
originally (in [1]) exp-arc stood for “exponential-arcsine”, in the present work we shall use the
term to indicate any of the functions

earcsin z, earcsinh z, earccos z, earccosh z.

Thus, an exp-arc integral is an integral involving a power of any of the above exp-arc functions.
The main idea here is to exploit the Taylor expansion of exp-arc functions to reduce exp-arc
integrals to sums whose summands can be computed recursively, as the Taylor coefficients of
exp-arc functions satisfy second-order linear recurrences.

The rest of the paper is outlined as follows. In Section 2, we use exp-arc integrals to prove
our series for Jν(z) in detail. In Section 3, we prove analogous formulas for the other three
Bessel functions mentioned above. Then in Section 4, we give an analysis of the effectiveness
of our series and derive explicit error bounds on the tails. Finally, in Section 5, we provide
some numerical calculations and compare our series with the traditional computation schemes.
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2. The Evaluation of Jν(z)

To obtain our series for the Bessel function J , we evaluate the following integral represen-
tation of Jν(z) [14, p. 176], valid for Re(z) > 0:

Jν(z) =
1
π

∫ π

0
cos(νt− z sin t)dt− sin(νπ)

π

∫ ∞

0
e−νt−z sinh tdt. (2.1)

The first integral has been dealt with in [1, Sec. 5]. We state the key result below.

Theorem 2.1 (Borwein-Borwein-Crandall). For any complex pair (p, q) and real numbers α,
β ∈ (−π, π), let

I(p, q, α, β) :=
∫ β

α
e−iqωep cos ωdω, (2.2)

and

r2m+1(ν) := ν

m∏
j=1

(
ν2 + (2j − 1)2

)
, r2m(ν) :=

m∏
j=1

(
ν2 + (2j − 2)2

)
. (2.3)

Then we have the absolutely convergent representation

I(p, q, α, β) =
iep

q

∞∑
k=0

rk+1(−2iq)
k!

∫ sin
β
2

sin
α
2

xke−2px2
dx. (2.4)

In particular, for the case where (α, β) = (−π/2, π/2), we have

I(p, q) := I(p, q,−π/2, π/2) =
2iep

q

∞∑
k=0

r2k+1(−2iq)
(2k)!

Bk(p), (2.5)

with

Bk(p) :=
∫ 1/

√
2

0
x2ke−2px2

dx =
1

2k+1
√

2

∫ 1

0
e−puuk−1

2 du

= − e−p

p2k+1
√

2
+
(

k − 1
2

)
Bk−1(p)

2
. (2.6)

From Theorem 2.1 we easily deduce that

1
π

∫ π

0
cos(νt− z sin t)dt =

1
2π

∫ π/2

−π/2
ei(νt−z cos t)eiνπ/2 + e−i(νt−z cos t)e−iνπ/2dt

=
1
2π

(
e−iνπ/2I(iz, ν) + eiνπ/2I(−iz,−ν)

)
=

1
2π

(
e−iνπ/2I(iz, ν) + eiνπ/2I(−iz, ν)

)
. (2.7)

Our goal, therefore, is to find a rapidly converging series for the second (infinite domain)
integral in (2.1). If we let s = sinh t so that dt = ds/

√
1 + s2, we find that, for Re(z) > 0,∫ ∞

0
e−νt−z sinh tdt =

∫ ∞

0

e−zse−ν arcsinh s

√
1 + s2

ds

= −1
ν

e−zse−ν arcsinh s

∣∣∣∣∞
0

− z

ν

∫ ∞

0
e−zse−ν arcsinh sds

=
1
ν
− z

ν

∫ ∞

0
e−zse−ν arcsinh sds (2.8)
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and we are led to consider the integral

F (z, ν) :=
∫ ∞

0
e−zse−ν arcsinh sds.

To compute F (z, ν), we fix a positive integer N , subdivide [0, N + 1
2 ] into short intervals, and

deal with the integral on each interval separately. To that end, for an integer k ≥ 0 define

Fk(z, ν) :=



∫ 1/2

0
e−zse−ν arcsinh sds, if k = 0,

∫ k+1/2

k−1/2
e−zse−ν arcsinh sds, if k > 0,

(2.9)

and let

F∞(z, ν) :=
∫ ∞

N+1/2
e−zse−ν arcsinh sds. (2.10)

For each k > 0, we shift the integral to [−1/2, 1/2] and expand the exp-arc factor as a power
series about zero, then integrate term-by-term. In an analogous way, for F∞ we expand
the exp-arc factor as a series at infinity and integrate term-by-term. Here, and throughout
the rest of this article, such interchanges are justified by Abel’s Limit Theorem [13, p. 425].
Since we are mainly interested in the computational aspect of the series, rather than explicit
expressions we aim for recurrence relations among the summands. Thus, we make use of the
following two lemmas.

Lemma 2.2. For each integer k ≥ 0 and any ν ∈ C, we may expand e−ν arcsinh(k+s) as a
power series about s = 0 with radius of convergence r = |i − k| =

√
k2 + 1. Moreover, the

coefficients an(k, ν) given by

e−ν arcsinh(k+s) =
∞∑

n=0

an(k, ν)sn

satisfy the recurrence relation

an+2(k, ν) =
1

k2 + 1

(
(ν2 − n2)an(k, ν)− k(n + 1)(2n + 1)an+1(k, ν)

(n + 1)(n + 2)

)
, (2.11)

with initial conditions

a0(k, ν) = (k +
√

k2 + 1)−ν , a1(k, ν) = −νa0(k, ν)√
k2 + 1

. (2.12)

Proof. Since e−ν arcsinh(k+s) is analytic everywhere except when k + s = ±iy, y ∈ R≥1, the
Taylor expansion exists with radius of convergence as stated above. To compute the an(k, ν),
let

fk(s) := e−ν arcsinh(k+s).

Then one easily verifies that fk(s) satisfies the differential equation

f ′′k (s) =
1

k2 + 1 + 2ks + s2

(
ν2fk(s)− (k + s)f ′k(s)

)
. (2.13)

Clearing denominators and equating coefficients of sn, we easily find that

n(n− 1)an + 2k(n + 1)nan+1 + (k2 + 1)(n + 2)(n + 1)an+2 = ν2an − k(n + 1)an+1 − nan.
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Rearranging, we obtain

(k2 + 1)(n + 2)(n + 1)an+2 = (ν2 − n2)an − k(n + 1)(2n + 1)an+1,

with a0 = fk(0) = (k +
√

k2 + 1)−ν and a1 = f ′k(0) =
−ν√
k2 + 1

(k +
√

k2 + 1)−ν . This is

equivalent to (2.11). �

Lemma 2.3. Recall that (a)n := a(a + 1) · · · (a + n − 1) is the Pochhammer symbol. For
ν ∈ C, the function sνe−ν arcsinh s has the expansion

sνe−ν arcsinh s =
∞∑

n=0

An(ν)
s2n

, (2.14)

where A0(ν) = 2−ν and for n ≥ 1,

An(ν) =
(−1)nν2−ν(ν + n + 1)n−1

22nn!
, (2.15)

provided that ν is not a negative integer. If ν is a negative integer, say ν = −m, m ∈ N, then
(2.15) is valid for 1 ≤ n < m, and An(−m) = (−1)m+1An−m(m) for n ≥ m. Note that this
expansion is valid for |s| > 1.

Proof. Let

g(s) := sνe−ν arcsinh s = sν
(
s +

√
1 + s2

)−ν

=
(
1 +

√
1 + s−2

)−ν

=

1 +
∑
k≥0

(
1/2
k

)
s−2k

−ν

.

When |s| > 1, we have |1 + s−2| < 2; so that
∣∣∣∑k≥1

(1/2
k

)
s−2k

∣∣∣ < 1. Therefore

g(s) = 2−ν

1 +
∑
k≥1

(
1/2
k

)
s−2k

2

−ν

= 2−ν
∑
m≥0

(
−ν

m

)∑
k≥1

(
1/2
k

)
1

2s2k

m

=
∑
n≥0

An(ν)
s2n

, (2.16)

for some constants An(ν) with A0(ν) = 2−ν . Let us find a recurrence for An(ν). Applying
(2.13) with k = 0 we find that

(1 + s2)
d2

ds2
(s−νg(s)) = ν2s−νg(s)− s

d

ds
(s−νg(s)).

Thus,

(2n− 2 + ν)(2n− 1 + ν)An−1 + (2n + ν)(2n + 1 + ν)An = ν2An − (2n + ν)An.

Rearranging, we find that

((2n + ν)2 − ν2)An = −(ν + 2n− 2)(ν + 2n− 1)An−1, (2.17)
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and so, when ν is not a negative integer, we have

An = −(ν + 2n− 2)(ν + 2n− 1)
4n(n + ν)

An−1. (2.18)

It is easy to verify that (2.15) solves this recurrence. If ν = −m, m ∈ N, then the left-hand
side of (2.17) is zero when n = m = −ν; thus, we need to find another expression for An(−m)
when n ≥ m. However, note that

∞∑
n=−m

An+m(−m)
s2n

+ (−1)m
∞∑

n=0

An(m)
s2n

= s2ms−mem arcsinh s + (−1)msme−m arcsinh s

= s2m
(
1 +

√
1 + s−2

)m
+ (−1)m

(
1 +

√
1 + s−2

)−m

= s2m
(
1 +

√
1 + s−2

)m
+ (−1)m

(
s2
(
−1 +

√
1 + s−2

))m

= sm
((

s +
√

s2 + 1
)m

+ (−1)m
(
−s +

√
s2 + 1

)m)
= sm

(
m∑

k=0

(
m

k

)
sk
(√

s2 + 1
)m−k

(1 + (−1)m−k)

)
is a polynomial in s where the smallest power of s is at least m. Therefore, we conclude that
all the terms in powers of s−2 (including the constant term) are zero, and thus An+m(−m) =
−(−1)mAn(m) for n ≥ 0, or equivalently, An(−m) = (−1)m+1An−m(m) for n ≥ m. �

We are now ready to write down our expression for Jν(z).

Theorem 2.4 (Exp-arc series for Jν). Let z, ν ∈ C with Re(z) > 0, and let N ∈ N. Then
we have, when ν 6= 0,

Jν(z) =
1
2π

(
e−iνπ/2I(iz, ν) + eiνπ/2I(−iz, ν)

)
+

z sin(νπ)
νπ

(
−1

z
+

∞∑
n=0

(
αn(z)an(0, ν) + βn(z)

N∑
k=1

e−kzan(k, ν)

)

+
∞∑

n=0

An(ν)In(N + 1
2 , z, ν)

)
, (2.19)

where I(p, q) is given by (2.5), an(k, ν) and An(ν) are given by Lemmas 2.2 and 2.3, while

αn(z) :=
∫ 1/2

0
e−zssnds = −e−z/2

2nz
+

n

z
αn−1(z), (2.20)

βn(z) :=
∫ 1/2

−1/2
e−zssnds =

(−1)nez/2 − e−z/2

2nz
+

n

z
βn−1(z), (2.21)

and

In(Θ, z, ν) :=
e−Θz

Θ2n+ν−1

∫ ∞

0
e−Θzs(1 + s)−2n−νds

=
1

(ν + 2n− 1)(ν + 2n− 2)

(
e−Θz(ν + 2n− 2−Θz)

Θ2n+ν−1
+ z2In−1(Θ, z, ν)

)
. (2.22)
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For the case ν = 0, we have

Jν(z) =
1
2π

(I(iz, 0) + I(−iz, 0)) . (2.23)

Proof. By (2.1), (2.7), and (2.8), it suffices to show that
N∑

k=0

Fk(z, ν)+F∞(z, ν) =
∞∑

n=0

(
αn(z)an(0, ν) + βn(z)

N∑
k=1

e−kzan(k, ν)

)
+

∞∑
n=0

An(ν)In(N+1
2 , z, ν).

For each k, we make a change of variable s 7→ k + s and expand e−ν arcsinh(k+s) as in Lemma
2.2. This yields

F0(z, ν) =
∫ 1/2

0
e−zs

∞∑
n=0

an(0, ν)snds =
∞∑

n=0

αn(z)an(0, ν),

and, for k ≥ 1,

Fk(z, ν) = e−kz

∫ 1/2

−1/2
e−zs

∞∑
n=0

an(k, ν)snds = e−kz
∞∑

n=0

an(k, ν)βn(z).

For F∞, we first expand e−ν arcsinh s as in Lemma 2.3 and then make a change of variable
s 7→ (N + 1

2)(1 + s). Thus

F∞(z, ν) = e−(N+1/2)z

∫ ∞

0
e−(N+1/2)zs

∞∑
n=0

An(ν)
(N + 1

2)2n+ν(1 + s)2n+ν
(N + 1

2)ds

=
∞∑

n=0

An(ν)In(N + 1
2 , z, ν).

The recurrence relations in (2.21) and (2.22) are easily obtained via integration by parts. �

3. The Y , I, and K Bessel Functions

Using our results from Section 2 we obtain similar evaluations for the Bessel function of
the second kind Yν(z), as well as for the modified Bessel functions Iν(z) and Kν(z). We make
use of the integral representations [14, pp. 178, 181]:

Yν(z) =
1
π

∫ π

0
sin(z sin t− νt) dt− 1

π

∫ ∞

0

(
eνt + e−νt cos(νπ)

)
e−z sinh t dt, (3.1)

Iν(z) =
1
π

∫ π

0
ez cos t cos(νt) dt− sin(νπ)

π

∫ ∞

0
e−z cosh t−νt dt, (3.2)

and

Kν(z) =
∫ ∞

0
e−z cosh t cosh(νt) dt =

1
2

∫ ∞

−∞
e−z cosh t−νt dt. (3.3)

We present our results below.

Theorem 3.1 (Exp-arc series for Yν). Let z, ν ∈ C− {0} with Re(z) > 0, and let N ∈ N.
Define

S(N, z, ν) :=
∞∑

n=0

(
αn(z)an(0, ν) + βn(z)

N∑
k=1

e−kzan(k, ν)

)
+

∞∑
n=0

An(ν)In(N + 1
2 , z, ν). (3.4)
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Then we have

Yν(z) =
1

2πi

(
e−iνπ/2I(iz, ν)− eiνπ/2I(−iz, ν)

)
+

z

νπ

(
1− cos(νπ)

z
+ S(N, z, ν) cos(νπ)− S(N, z,−ν)

)
. (3.5)

where I(p, q), an(k, ν), An(ν), αn(z), βn(z), and In(Θ, z, ν) are as in Theorem 2.4. When
ν = 0, we have

Y0(z) =
1

2πi
(I(iz, 0)− I(−iz, 0))

+ 2
∞∑

n=0

(
α2n(z)a∗2n(0) + βn(z)

N∑
k=1

e−kza∗n(k) + a∗2n(0)In(N + 1
2 , z, 1)

)
, (3.6)

where a∗n(k) satisfy

a∗n+1(k) = −
k(2n + 1)a∗n(k) + na∗n−1(k)

(k2 + 1)(n + 1)
,

with a∗0(k) = (1 + k2)−1/2 and a∗1(k) = ka∗0/(1 + k2).

Remark 3.2. One should note that when ν is a positive integer, the sum
∞∑

n=0

An(−ν)In(N + 1
2 , z,−ν)

in S(N, z,−ν) may be written as
ν∑

n=0

An(−ν)In(N + 1
2 , z,−ν) +

∞∑
n=0

(−1)ν+1An(ν)In(N + 1
2 , z, ν),

the infinite part of which cancels with the analogous sum in S(N, z, ν).

Proof of Theorem 3.1. The theorem follows immediately from (3.1) and the proof of Theorem
2.4 in the case where ν 6= 0. For Y0, note that the infinite integral becomes

2
∫ ∞

0
e−z sinh tdt = 2

∫ ∞

0

e−zs

√
1 + s2

ds.

If we set
1√

1 + (k + s)2
=

∞∑
n=0

a∗n(k)sn,

then since
d

ds

1√
1 + (k + s)2

= − k + s

1 + (k + s)2
1√

1 + (k + s)2
,

we find that

(k2 + 1)(n + 1)a∗n+1 + 2kna∗n + (n− 1)a∗n−1 = −ka∗n − a∗n−1.

Thus

a∗n+1 = −
k(2n + 1)a∗n + na∗n−1

(k2 + 1)(n + 1)
with a∗0 = (1 + k2)−1/2 and a∗1 = ka∗0/(1 + k2). Note also that a2n+1(0) = 0 and

1√
1 + s2

=
1

s
√

1 + s−2
=

1
s

∞∑
n=0

a∗n(0)
sn
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for |s| > 1. Therefore, for any N ∈ N we may write∫ ∞

0

e−zs

√
1 + s2

ds =

(∫ 1/2

0
+

N∑
k=1

e−ks

∫ k+1/2

k−1/2
+
∫ ∞

N+1/2

)
e−zs

√
1 + s2

ds

=
∞∑

n=0

(
a∗2n(0)α2n(z) +

N∑
k=1

e−kza∗n(k)βn(z) + a∗2n(0)
∫ ∞

N+1/2
e−zss−2n−1ds

)

=
∞∑

n=0

(
a∗2n(0)α2n(z) +

N∑
k=1

e−kza∗n(k)βn(z) + a∗2n(0)In(N + 1
2 , z, 1)

)
,

which, when combined with (3.1) and the proof of Theorem 2.4, proves (3.6). �

Theorem 3.3 (Exp-arc series for Iν and Kν). Under the same conditions as for Theorem
3.1, define

I ∗(z, ν) =
2ez

ν

∞∑
n=0

r2n+2(2iν)
(2n + 1)!

B
n+

1
2
(z), (3.7)

and

T (N, z, ν) :=
∞∑

n=0

(
2e−z

2n/2
an(0, 2ν)Bn+1

2
(z/2) + βn(−z)

N∑
k=2

e−kzbn(k, ν)

)

+
∞∑

n=0

(−1)nAn(ν)In(N + 1
2 , z, ν). (3.8)

where an(k, ν), βn(z), An(ν), and In(Θ, z, ν) are as in Theorem 2.4; bn(k, ν) satisfy

bn+2(k, ν) =
1

k2 − 1

(
(ν2 − n2)bn(k, ν) + k(n + 1)(2n + 1)bn+1(k, ν)

(n + 2)(n + 1)

)
(3.9)

with b0(k, ν) = (k +
√

k2 − 1)−ν and b1(k, ν) =
νb0√
k2 − 1

; rk(ν) is given by (2.3); and Bk(p)

is given by (2.6). Then we have

Iν(z) =
1
2π

(I(z, ν) + cos(νπ)I(−z, ν)− sin(νπ)I ∗(−z, ν))

+
z sin(νπ)

νπ

(
−e−z

z
+ T (N, z, ν)

)
, (3.10)

and

Kν(z) =
z

2ν
(T (N, z,−ν)− T (N, z, ν)) , (3.11)

where I(p, q) is given by (2.5). When ν = 0, we have

I0(z) =
1
2π

(I(z, 0) + I(−z, 0)) , (3.12)

and

K0(z) =
∞∑

n=0

(
√

2e−zd∗nBn(z/2) + βn(−z)
N∑

k=2

e−kzb∗n(k) + (−1)na∗2n(0)In(N + 1
2 , z, 1)

)
,

(3.13)
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where

d∗n := 2−n

(
−1/2

n

)
=

(−n + 1/2)
2n

d∗n−1,

and the b∗n(k) satisfy

b∗n+1(k) =
k(2n + 1)b∗n(k)− nb∗n−1(k)

(k2 − 1)(n + 1)
,

with b∗0 = (k2 − 1)−1/2 and b∗1 =
kb∗0

k2 − 1
, while a∗2n(0) is the same as in Theorem 3.1.

Remark 3.4. The reader may now be tempted to compare our series for Iν(z) with Paris’
formula (1.10). Indeed, for ν = m ∈ Z, our series looks like

Iν(z) =
1
2π

(I(z,m) + (−1)mI(−z.m)),

and both the summands of I as well as those of (1.10) have the form

(rising factorial)× (incomplete gamma)
power of z

.

However, there are several key differences between the exp-arc series and (1.10):

• Although the summands in both the exp-arc and Paris’ series involve incomplete
gamma functions that are recursively computable, Paris’ formula involves γ(k + ν +
1
2 ,±z) while our series only involve Bk(±z), which can be expressed in terms of
γ(1

2 ,±z). That is, our incomplete gamma evaluations are independent of ν.
• When ν is not an integer, our series adjusts for the above independence with the sums

T (N, z, ν). These sums involve βn(z) which, although technically is an incomplete
gamma function, is explicitly computable in closed form since it is the nth moment of
the exponential. Thus, the only integral with ν dependence is In(N + 1

2 , z, ν), which,
as we will see in the next section, can be ignored if one chooses a large enough N .

Proof. Since the proof is very similar to that of Theorems 2.4 and 3.1, we only highlight the
differences here and refer the reader to the Appendix for the details. Note that the integral
on [0, π] in (3.2) simplifies to∫ π

0
ez cos t cos(νt) dt =

1
2
I(z, ν) +

∫ π

π/2
ez cos t cos(νt) dt

=
1
2
(
I(z, ν) + eiνπI(−z, ν, 0, π/2) + e−iνπI(−z,−ν, 0, π/2)

)
.

Using (2.4) and combining the even (resp. odd) index terms into one sum, we obtain∫ π

0
ez cos t cos(νt) dt =

1
2

(
I(z, ν) + cos(νπ)I(−z, ν)− sin(νπ)

∞∑
n=0

2e−zr2n+2(2iν)
(2n + 1)!ν

B
n+

1
2
(−z)

)
.

Turning to the infinite integrals, after an integration by parts for ν 6= 0 as in the previous
theorems, it suffices to show that∫ ∞

1
e−zse−ν arccosh sds = T (N, z, ν)



12

for every N ∈ N. From the second order differential equation satisfied by e−ν arccosh s, it is
easy to see that, for k ≥ 2,

e−ν arccosh(k−s) =
∞∑

n=0

bn(k, ν)sn,

where bn(k, ν) are given by (3.9). It is also easy to verify that

sνe−ν arccosh s =
∞∑

n=0

(−1)nAn(ν)
s2n

.

Thus, applying these expansions and interchanging summation and integration, we find∫ ∞

3/2
e−zse−ν arccosh sds =

N∑
k=2

e−kz
∞∑

n=0

bn(k, ν)βn(−z) +
∞∑

n=0

(−1)nAn(ν)In(N + 3
2 , z, ν).

Now all that remains is to show that∫ 3/2

1
e−zse−ν arccosh sds =

∞∑
n=0

2e−z

2n/2
an(0, 2ν)Bn+1

2
(z/2).

To do this, we note that e−ν arccosh s does not have a power series at the point s = 1. However,
if we set u =

√
s− 1, then it can be verified that

e−ν arccosh s =
∞∑

n=0

an(0, 2ν)un,

and so ∫ 3/2

1
e−zse−ν arccosh sds =

∫ 1/
√

2

0
e−z(u2+1)

∞∑
n=0

an(0, 2ν)un2udu

= 2e−z
∞∑

n=0

2−n/2an(0, 2ν)B(n+1)/2(z/2).,

This completes the proof for the case where ν 6= 0. In the case where ν = 0, we now need
only to evaluate K0 and so we may follow the approach for the proof of (3.6). Expanding the
function (1+ s2)−1/2 at each integer k ≥ 2 as well as at ∞ gives us the sums involving b∗n and
An in (3.13), while expanding (s + 1)−1/2 as a series in u =

√
s− 1 gives the sum involving

d∗n. �

4. Effectiveness of these Series

We now turn our attention to the performance of our series in Theorems 2.4, 3.1, and 3.3.
These series can be separated into three parts: a pair of sums from the I function, a number
of sums involving the moments of the exponential (given by αn and βn), and a series involving
the incomplete gamma function arising from the tail of the infinite integrals. Let us consider
each of these separately. First, we look at the rate of convergence for the I sums.

Our series for Jν , Yν , and Iν involve terms of the form I(ikz, ν), which by Theorem 2.1 can
be expressed as

I(ikz, ν) = 4eikz
∞∑

n=0

cn(ν)Bn(ikz),
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where

cn(ν) :=
1

(2n)!

n∏
j=1

(
(2j − 1)2 − 4ν2

)
=

n∏
j=1

(
1− 1

2j
− 4ν2

(2j − 1)(2j)

)
,

with c0 := 1, and

Bn(ikz) =
1

2n+3/2

∫ 1

0
e−ikzuun−1/2du.

Thus it is clear that cn(ν) is bounded for fixed ν. In fact, it is easy to see that |cn(ν)| is
strictly decreasing for n ≥ 2|ν|2 − 1/2. It is also clear that for all n ≥ 1 we have

|Bn(ikz)| ≤ max(1, e−Re(ikz))
2n+3/2

.

Therefore, for fixed k the error when the I(ikz, ν) sum is truncated after M terms can be
bounded by ∣∣∣∣∣∣4eikz

∑
n≥M+1

cn(ν)Bn(ikz)

∣∣∣∣∣∣ ≤ |4eikz|
∑

n≥M+1

C(ν) max(1, e−Re(ikz))
2n+3/2

=
4C(ν)
2M+3/2

·max(eRe(ikz), 1) (4.1)

for some constant C(ν) depending only on ν.
Our series for Iν also contains terms of the form I ∗(−z, ν). By a similar argument as

above, there exists a constant C∗(ν) such that the tail of I ∗(−z, ν) when truncated after M
terms is bounded by∣∣∣∣∣∣2e−z

ν

∑
n≥M+1

r2n+2(2iν)
(2n + 1)!

Bn+1/2(−z)

∣∣∣∣∣∣ ≤ |2e−z|
∑

n≥M+1

C∗(ν) max(1, eRe(z))
2n+2

=
C∗(ν)
2M+1

·max(e−Re(z), 1). (4.2)

Now, let us consider the sums arising from the main contribution from the infinite exp-
arc integrals. In the case of the J and Y Bessel functions, these sums are of the form∑

an(0, ν)αn(z) and e−kz
∑

an(k, ν)βn(z), and in the case of the I and K Bessel func-
tions, they are of the form e−z

∑
21−n/2an(0, 2ν)B(n+1)/2(z/2) and e−kz

∑
bn(k, ν)βn(−z).

By (2.11), we deduce that, for n ≥ 1,

a2n(0, ν) =
1

(2n)!

n−1∏
k=0

(ν2 − (2k)2) =
(−1)n−1ν2

2n

n∏
k=2

(
1− 1

2k − 1
− ν2

(2k − 1)(2k − 2)

)
and

a2n+1(0, ν) = − ν

(2n + 1)!

n−1∏
k=0

(ν2 − (2k + 1)2) =
(−1)n+1ν

2n + 1
cn(ν/2).

Thus, we may conclude that for n > |ν|2/2, |nan(0, ν)| is decreasing, and that for all n ≥ 2
there is a constant C∗

0 (ν) such that

|an(0, ν)| ≤ C∗
0 (ν)
n

. (4.3)

For the more general sequences an(k, ν) with k ≥ 1, since the series
∑

an(k, ν)sn has radius
of convergence

√
k2 + 1, for sufficiently large n on using the root-test we have |an(k, ν)| <
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(k2 + 1)−n/2. Similarly, for each k > 2 we have |bn(k, ν)| < (k − 1)−n for sufficiently large n.
We may make explicit the meaning of “sufficiently large”—at the expense of somewhat worse
bounds—by using the recurrence relations (2.11) and (3.9). Note that when n > 1

3(|ν|2 + 4),

we have
∣∣∣ν2−(n−2)2

n(n−1)

∣∣∣ < 1. Thus in this range of n, we have

|an(k, ν)| < 2k + 1
k2 + 1

max(|an−2(k, ν)|, |an−1(k, ν)|),

and
|bn(k, ν)| < 2k + 1

k2 − 1
max(|bn−2(k, ν)|, |bn−1(k, ν)|).

We may conclude that there exist effectively computable constants C∗
k(ν) and D∗

k(ν) such
that when n > 1

3(|ν|2 + 4) we have

|an(k, ν)| <



(
3
2

)n

C∗
1 (ν), for k = 1,

(
2k + 1
k2 + 1

)n/2

C∗
k(ν), for k > 1,

and

|bn(k, ν)| <



(
5
3

)n

D∗
2(ν), for k = 2,

(
2k + 1
k2 − 1

)n/2

D∗
k(ν), for k > 2.

Note that we may choose the constants such that these inequalities hold for all n > 0. We
bound |αn(z)| and |βn(z)| trivially in the range Re(z) > 0, so that for all n > 0,

|αn(z)| < 1
2n+1

and |βn(±z)| < eRe(z)/2

2n
.

Finally, we turn our attention to the series arising from the tails of the infinite integrals:
that is, the sums

∞∑
n=0

(±1)nAn(ν)In(N + 1
2 , z,±ν).

Now, by (2.15) we have

|An| ≤
|ν2−ν |
n22n

(
V + 2n− 1

n− 1

)
<
|ν2−ν+V +2n−1|

n22n
=
|ν2V−ν−1|

n
,

where V := d|ν|e, the smallest integer greater than or equal to |ν|. Also, when Re(z) > 0, we
may trivially bound In(N + 1

2 , z, ν) by

|In(N + 1
2 , z, ν)| ≤ e−(N+

1
2)Re(z)

(N + 1
2)2n+Re(ν)−1

∫ ∞

0
e−(N+

1
2)Re(z)s(1 + s)−2n−Re(ν)ds,

which is bounded and monotonically decreasing as n increases. We can obtain a simpler
bound when 2n > Re(ν), since by [2, Thm 2.3] we have∣∣∣∣∫ ∞

0
e−zs(1 + s)a−1ds

∣∣∣∣ ≤ 1
|z|

(
1 +

∣∣∣∣ 1− a

1− Re(a)

∣∣∣∣)
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whenever Re(a− 1) < 0. Thus, we find that, whenever 2n > Re(ν),

|In(N + 1
2 , z, ν)| ≤ e−(N+

1
2)Re(z)

(N + 1
2)2n+Re(ν)−1

1
|(N + 1

2)z|

(
1 +

∣∣∣∣ 2n + ν

2n + Re(ν)

∣∣∣∣)

≤

2 + | Im(ν)
2n+Re(ν) |

(N + 1
2)Re(ν)

 e−(N+
1
2)Re(z)

|z|
1

(N + 1
2)2n

.

We summarize our discussion in the following theorem.

Theorem 4.1. Let z, ν ∈ C with Re(z) > 0. Then we obtain that:
(1) For each positive integer k there exist effectively computable constants C(ν), C∗(ν),

C∗
k(ν), D∗

k(ν) such that for any positive integer M ,∣∣∣∣∣4eikz
∑
n>M

cn(ν)Bn(ikz)

∣∣∣∣∣ ≤ 4C(ν)
2M+3/2

·max(eRe(ikz), 1), (4.4)∣∣∣∣∣2e−z

ν

∑
n>M

r2n+2(2iν)
(2n + 1)!

Bn+1/2(−z)

∣∣∣∣∣ = C∗(ν)
2M+1

·max(e−Re(z), 1). (4.5)∣∣∣∣∣∑
n>M

an(0, ν)αn(z)

∣∣∣∣∣ ≤ C∗
0 (ν)

M2M+1
, (4.6)∣∣∣∣∣e−z

∑
n>M

an(1, ν)βn(z)

∣∣∣∣∣ ≤ 3C∗
1 (ν)e−Re(z)/2

(
3
4

)M

(4.7)∣∣∣∣∣e−kz
∑
n>M

an(k, ν)βn(z)

∣∣∣∣∣ ≤ C∗
k(ν)e−(k−1

2 )Re(z)

×

(
1
2

√
2k + 1
k2 + 1

)M+1(
1− 1

2

√
2k + 1
k2 + 1

)−1

, (4.8)∣∣∣∣∣2e−z
∑
n>M

an(0, 2ν)
2n/2

B(n+1)/2(z/2)

∣∣∣∣∣ ≤ C∗
0 (2ν)e−Re(z)

M2M+1
, (4.9)∣∣∣∣∣e−z

∑
n>M

bn(2, ν)βn(−z)

∣∣∣∣∣ ≤ 5D∗
2(ν)e−Re(z)/2

(
5
6

)M

(4.10)∣∣∣∣∣e−kz
∑
n>M

bn(k, ν)βn(−z)

∣∣∣∣∣ ≤ D∗
k(ν)e−(k−1

2 )Re(z)

×

(
1
2

√
2k + 1
k2 − 1

)M+1(
1− 1

2

√
2k + 1
k2 − 1

)−1

. (4.11)

We also obtain that:
(2) For any positive integer N there exists an effectively computable constant C∞(ν) such

that for any positive integer M∣∣∣∣∣∑
n>M

(±1)nAn(ν)In(N + 1
2 , z,±ν)

∣∣∣∣∣ ≤ C∞(ν)e−(N+
1
2)Re(z)

|z|
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× 1
M(N + 1

2)2(M+1)

(
1− 1

(N + 1
2)2

)−1

. (4.12)

If, moreover, 2M > Re(ν) + 1 then we have the bound

|C∞(ν)| ≤ |ν2|ν||(2 + | Im(ν)|)
(2N + 1)Re(ν)

.

From Theorem 4.1 we can deduce the following bounds for the errors in computing Bessel
functions using the series in Theorems 2.4, 3.1, and 3.3. For simplicity of illustration, in the
next corollary we set N = 1 in each of the theorems, and truncate each infinite series at
n = M .

Corollary 4.2. Let z, ν ∈ C with Re(z) > 0. For each integer M > 0, set

IM (z, ν) := 4ez
M∑

n=0

cn(ν)Bn(z),

I ∗M (z, ν) := 2ez
M∑

n=0

r2n+2(2iν)
(2n + 1)!ν

B
n+

1
2
(z),

S∗(M, z, ν) :=
M∑

n=0

(
αn(z)an(0, ν) + e−zβn(z)an(1, ν) + An(ν)In(3

2 , z, ν)
)
,

T ∗(M, z, ν) :=
M∑

n=0

(
2e−z

2n/2
an(0, 2ν)Bn+1

2
(z/2) + (−1)nAn(ν)In(3

2 , z, ν)
)

,

C∞(ν) :=

∣∣∣∣∣ν2|ν|(2 + | Im(ν)|)
3Re(ν)

∣∣∣∣∣ . (4.13)

Then for any M with 2M > |Re(ν)|+1, the errors EJ , EY , EI , and EK from the truncation
of the exp-arc series after M terms at N = 1 defined by

EJ(M, z, ν) := Jν(z)− 1
2π

(
e−iνπ/2IM (iz, ν) + eiνπ/2IM (−iz, ν)

)
− z sin(νπ)

νπ

(
−1

z
+ S∗(M, z, ν)

)
, (4.14)

EY (M, z, ν) := Yν(z)− 1
2πi

(
e−iνπ/2IM (iz, ν)− eiνπ/2IM (−iz, ν)

)
− z

νπ

(
1− cos(νπ)

z
+ S∗(M, z, ν) cos(νπ)− S∗(M, z,−ν)

)
, (4.15)

EI(M, z, ν) := Iν(z)− 1
2π

(
IM (z, ν) + eπiνI ∗M (−z, ν) + e−πiνI ∗M (−z,−ν)

)
− z sin(νπ)

νπ

(
−e−z

z
+ T ∗(M, z, ν)

)
, (4.16)

EK(M, z, ν) := Kν(z)− z

2ν
(T ∗(M, z,−ν)− T ∗(M, z, ν)) , (4.17)

are bounded by
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|EJ(M, z, ν)| ≤ C(ν)
2M+1/2π

(
eIm(ν)π/2 max(e− Im(z), 1) + e− Im(ν)π/2 max(eIm(z), 1)

)
+
∣∣∣∣z sin(νπ)

νπ

∣∣∣∣
(

C∗
0 (ν)

M2M+1
+

3C∗
1 (ν)e−Re(z)/2

(4/3)M
+

5
9

C∞(ν)e−3Re(z)/2

M(9/4)M+1|z|

)
,

(4.18)

|EY (M, z, ν)| ≤ C(ν)
2M+1/2π

(
eIm(ν)π/2 max(e− Im(z), 1) + e− Im(ν)π/2 max(eIm(z), 1)

)
+
∣∣∣ z

νπ

∣∣∣ (C∗
0 (ν)| cos(νπ)|+ C∗

0 (−ν)
M2M+1

+
3 (C∗

1 (ν)| cos(νπ)|+ C∗
1 (−ν)) e−Re(z)/2

(4/3)M

+
5
9

(C∞(ν)| cos(νπ)|+ C∞(−ν)) e−3Re(z)/2

M(9/4)M+1|z|

)
, (4.19)

|EI(M, z, ν)| ≤ C(ν)eRe(z) + C∗(ν)| cos(νπ)|
2M+1/2π

+
C∗(−ν)| sin(νπ)|

2M+2π

+
∣∣∣∣z sin(νπ)

νπ

∣∣∣∣
(

C∗
0 (2ν)e−Re(z)

M2M+1
+

5
9

C∞(ν)e−3Re(z)/2

M(9/4)M+1|z|

)
, (4.20)

and

|EK(M, z, ν)| ≤
∣∣∣ z

2ν

∣∣∣((C∗
0 (2ν) + C∗

0 (−2ν)) e−Re(z)

M2M+1
+

5 (C∞(ν) + C∞(−ν)) e−3Re(z)/2

9M(9/4)M+1|z|

)
.

(4.21)

In consequence, as M tends to infinity, we have

|E(M, z, ν)| = Oν,z

(
1

2M

)
, (4.22)

where E(M, z, ν) denotes any of the functions EJ , EY , EI , or EK , and the notation Oν,z

indicates that the big-O constant depends on both ν and z.

Proof. As given above, the formulas for J, Y, I, and K are simply restatements of Theorems
2.4, 3.1, and 3.3 with N = 1 and truncation at M terms. The bounds for the errors follow
immediately upon application of Theorem 4.1. Specifically, (4.18) and (4.19) follow from
(4.4), (4.6), (4.7), and (4.12); (4.20) follows from (4.4), (4.9), and (4.12); and (4.21) follows
from (4.9) and (4.12).

The asymptotic (4.22) for the error is easily deduced from the fact that an(1, ν) = O(2−n/2)
as n tends to infinity, so that the (4/3)M in (4.18) and (4.19) may be replaced by 2M . �

We close this section with a few notes on the implementation of the series.

4.1. Notes on Implementation.
(1) First, we make a few remarks on the choice of N and the implementation of the S and

T sums. Actually, we limit our discussion to S(N, ν, z), since the case T (N, ν, z) is simi-
lar. For a fixed N , we have N+1 infinite sums of the form Sk := e−kz

∑
n an(k, ν)βn(z),

0 ≤ k ≤ N , and a sum S∞ :=
∑

n AnIn for the tail of the infinite integral. Note that
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for each k, the size of Sk is of the order O(e−(k−1/2)z), and that S∞ is of the order
O(e−(N+1/2)z). The O-constants are explicitly computable by Theorem 4.1, and thus
it is possible to determine at what point it becomes necessary to begin summing the
terms of Sk. Note also that as k increases, the rate of convergence of Sk also increases,
and fewer terms are needed. As well, if one chooses a large enough N , it is possible
to entirely avoid the error-function evaluation that is necessary in computing S∞.

(2) Second, we have stated our theorems for Re(z) > 0. To evaluate the Bessel functions
when Re(z) < 0, one should use the well-known formulas [3, Secs. 10.11, 10.34],

Jν(zemπi) = emνπiJν(z), Iν(zemπi) = emνπiIν(z),

Yν(zemπi) = e−mνπiYν(z) + 2i sin(mνπ) cot(νπ)Jν(z),

Kν(zemπi) = e−mνπiKν(z)− πi sin(mνπ) csc(νπ)Iν(z),

where m ∈ Z. For the details on how to choose m, see [14, p. 75]. Along the same
lines, it is useful to use the identities [3, Sec. 10.27]

Iν(z) = e−νπi/2Jν(iz),

−πiJν(z) = e−νπi/2Kν(−iz)− eνπi/2Kν(iz),
and

−πYν(z) = e−νπi/2Kν(−iz) + eνπi/2Kν(iz),
to evaluate Jν(z) and Yν(z) when Im(z) >> Re(z).

(3) We also mention that in each of the sums I and Sk, the summands consist of a
product of functions that depend only on ν and on functions that depend only on z.
This facilitates one-ν many-z or one-z many-ν computations by allowing us to pre-
compute either the coefficients an(k, ν) or the exponential moments βn(z). Note also
that all of these coefficients are either bounded or are converging to zero—as opposed
to the analogous functions found in the ascending series, where the dependence on z
diverges to ∞, or those in the asymptotic series, where the dependence on ν diverges
to ∞.

(4) Finally, we note that the integrals Bk(p) and In(Θ, z, ν) in our series (the terms that
cannot be evaluated in closed form) are expressible in terms of the incomplete gamma
function γ(a, z) and its complement Γ(a, z) := Γ(a) − γ(a, z). Since the incomplete
gamma functions have elegant continued-fraction representations, our results translate
to a continued-fraction computation scheme for the Bessel functions.

5. Numerical Results

To give a more realistic idea of the effectiveness of our theorems, we implemented Corollary
4.2 in Maple to compare it with the known ascending and asymptotic series. We remark that
in addition to providing the numerical data given in Tables 1 and 2, implementation of our
theorems have helped us troubleshoot the theorems themselves. Not only have we corrected
minor sign errors and typos, the computations also alerted us to more fundamental issues
such as the fact that recurrence (2.17) needs to be restarted at the index n = −ν if ν is a
negative integer.

Table 1 shows the absolute difference between the true value of Jν(z) and each of the values
of (1.2) and (1.3) when truncated at M terms, as well as the absolute error |EJ(M, z, ν)| given
by (4.14). In the case of (1.3), “truncated at M terms” means that both infinite sums are
truncated at M terms. The data show that the exp-arc series converges like 2−M as expected,
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Table 1. Comparison between various series for Jν(z).

Absolute value of the difference between the true value and
(ν, z) M Ascending Series (1.2) Asymptotic Series (1.3) Exp-arc Series (4.14)

10 104 10−13 103

ν = 12.3 50 10−39 10−5 10−17

z = 20 100 10−130 1051 10−33

150 10−242 10130 10−48

200 10−368 10223 10−64

10 1018 10−23 102

ν = 12.3 30 1017 10−41 10−10

z = 50 50 106 10−45 10−17

100 10−45 10−28 10−33

150 10−117 1011 10−48

10 1027 10−4 1013

ν = 12.3 50 1038 10−48 10−17

z = 75 + 57i 100 1014 10−59 10−33

120 10−2 10−56 10−39

150 10−31 10−47 10−48

200 10−89 10−20 10−64

giving one good digit approximately every three terms. Similar results can be seen in Table
2, where we compare the performance of the various series for the modified Bessel function
Iν(z). Although it seems that in the Jν(z) case the exp-arc series does not perform as well
as either the ascending series (1.2) or the asymptotic series (1.3) in their respective domains
of usefulness, both the exp-arc and Paris’ series for Iν(z) out-perform the ascending and
Hadamard series for sufficiently large argument z. The data also indicate that the accuracy
of the exp-arc series depends mainly on M , as the absolute errors do not seem to vary by
much across values of z and ν. One should also note the following.

• For large z and small ν, to compute beyond the digital limit of the asymptotic series us-
ing the ascending series requires higher precision arithmetic because of the cancellation

of large numbers from the initial terms. These terms are of size
(z/2)k

k!
(z/2)k+ν

Γ(k + ν + 1)
,

whose maximum occurs near k = z/2 if z >> ν. Compare this with the asymptotic

Jν(z) ∼
√

2
πz cos(z − πν

2 − π
4 ).

• Switching from the asymptotic to the ascending series to obtain higher precision results
requires that the computation using the asymptotic series be abandoned and the
calculation restarted from scratch using the ascending series.

• It is not always obvious when to use the ascending series and when to use the as-
ymptotic series, partly because it is not always obvious what amount of precision one
requires before one begins a computation.

• To fairly compare the amount of work involved in our methods to that of Paris [4] or
of the conventional ascending-asymptotic dichotomy depends on the context and on
a level of implementation detail beyond the scope of the present article. That said,
additional tabular comparison for the case of integer order is given in [1].
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Table 2. Comparison between various series for Iν(z).

Absolute value of the difference between the true value and
(ν, z) M Ascending (1.7) Hadamard (1.9) Paris (1.10) Exp-arc (4.16)

10 107 10−3 10−3 10−3

ν = 4.2 50 10−33 10−11 10−19 10−18

z = 20 100 10−122 10−12 10−36 10−33

150 10−232 10−13 10−52 10−49

200 10−357 10−14 10−68 10−64

10 1021 107 107 107

ν = 4.2 30 1019 10−9 10−9 10−9

z = 50 50 109 10−17 10−17 10−17

100 10−40 10−23 10−34 10−33

150 10−110 10−24 10−51 10−49

10 1032 1013 1013 1013

ν = 4.2 50 1039 10−20 10−17 10−18

z = 75 + 57i 100 1017 10−33 10−33 10−33

120 102 10−34 10−40 10−39

150 10−26 10−34 10−49 10−49

200 10−84 10−35 10−65 10−64

6. Conclusion

The exp-arc expansion developed herein provides a geometrically convergent middle-ground
between the asymptotic and ascending series that avoids the issues raised in the previous
section. It provides a uniform approach to evaluating Bessel functions that is universally
convergent, with explicitly computable error bounds. It is therefore easy to predict the number
of terms needed in our expansion to guarantee a given number of correct digits.

Appendix

As promised we provide the details for the proof of Theorem 3.3 below.

Proof of Theorem 3.3. We wish to evaluate the integrals (3.2) and (3.3) as infinite series in
the form of Theorem 3.3. As in the case for Jν and Yν , we express the integral on [0, π] in
terms of I. One easily finds that∫ π

0
ez cos t cos(νt) dt =

1
2
I(z, ν) +

∫ π

π/2
ez cos t cos(νt) dt

=
1
2
(
I(z, ν) + eiνπI(−z, ν, 0, π/2) + e−iνπI(−z,−ν, 0, π/2)

)
.

Now, by (2.4) we may write

I(−z,±ν, 0, π/2) =
ie−z

±ν

∞∑
k=0

rk+1(∓2iν)
k!

Bk/2(−z)

=
ie−z

±ν

( ∞∑
k=0

r2k+1(∓2iν)
(2k)!

Bk(−z) +
r2k+2(∓2iν)

(2k + 1)!
Bk+1/2(−z)

)
.
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Since r2k+1 is an odd function of ν and r2k+2 is an even function of ν, we find that

I(−z,±ν, 0, π/2) =
ie−z

ν

( ∞∑
k=0

r2k+1(2iν)
(2k)!

Bk(−z)± r2k+2(2iν)
(2k + 1)!

Bk+1/2(−z)

)
.

Thus, combining this with the expression for I(z, ν) in (2.5), we have

eπiνI(−z, ν, 0, π/2) + e−πiνI(−z,−ν, 0, π/2)

= cos(νπ)I(−z, ν)− 2 sin(νπ)
e−z

ν

∞∑
k=0

r2k+2(2iν)
(2k + 1)!

B
k+

1
2
(−z).

The remainder of the proof is focussed on evaluating the infinite integral. To that end, we
make the change of variable s = cosh t so that dt = ds√

s2−1
and obtain∫ ∞

0
e−z cosh te−νtdt =

∫ ∞

1

e−zse−ν arccosh s

√
s2 − 1

ds =
e−z

ν
− z

ν

∫ ∞

1
e−zse−ν arccosh sds.

Thus for fixed N ∈ N we may write∫ ∞

1
e−zse−ν arccosh sds =

N∑
k=1

Gk(z, ν) + G∞(z, ν),

where

Gk(z, ν) :=



∫ 3/2

1
e−zse−ν arccosh sds, for k = 1,

e−kz

∫ 1/2

−1/2
ezse−ν arccosh(k−s)ds, for k ≥ 2,

and

G∞(z, ν) :=
∫ ∞

N+1/2
e−zse−ν arccosh sds.

For each 2 ≤ k ≤ N , we expand e−ν arccosh(k−s) as a power series about s = 0, with radius of
convergence k − 1. Set

hk(s) := e−ν arccosh(k−s) =
∞∑

n=0

bn(k, ν)sn.

Then we easily find that

(s2 − 2ks + k2 − 1)h′′k(s) = ν2hk(s) + (k − s)h′k(s).

Equating coefficients, we get

n(n− 1)bn − 2kn(n + 1)bn+1 + (k2 − 1)(n + 2)(n + 1)bn+2 = ν2bn + k(n + 1)bn+1 − nbn,

and upon rearrangement we have

bn+2 =
(ν2 − n2)bn + k(n + 1)(2n + 1)bn+1

(k2 − 1)(n + 2)(n + 1)
,
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valid for n ≥ 2 with initial conditions b0 = (k +
√

k2 − 1)−ν and b1 = νb0/
√

k2 − 1. Thus we
easily deduce that, for k ≥ 2,

Gk(z, ν) =
∞∑

n=0

e−kzbn(k, ν)βn(−z). (6.1)

For G∞(z, ν), note that

sνe−ν arccosh s = sν
(
s +

√
s2 − 1

)−ν
=
(
1 +

√
1− s−2

)−ν

=
(
1 +

√
1 + (is)−2

)−ν

= (is)νe−ν arcsinh is. (6.2)

So by (2.16) we have

sνe−ν arccosh s =
∞∑

n=0

(−1)nAn(ν)
s2n

, (6.3)

where An(ν) are the same as in Lemma 2.3. Putting this into the expression for G∞ and
interchanging the order of summation and integration, we get that

G∞(z, ν) =
∞∑

n=0

(−1)nAn(ν)In(N + 1
2 , z, ν). (6.4)

The evaluation of G1(z, ν) requires more care, as e−ν arccosh s does not have a Taylor ex-
pansion about s = 1 in powers of s − 1. However, it does have an expansion in powers of
u :=

√
s− 1, valid for |u| <

√
2. This is because

e−ν arccosh s =
(
(s2 − 1)1/2 + s

)−ν

=
(
(s− 1)1/2(s + 1)1/2 + s

)−ν

=
(
u(u2 + 2)1/2 + u2 + 1

)−ν

is analytic and single-valued on |u| <
√

2, as u
√

u2 + 2 + u2 + 1 is never zero. Now we let

h(s) := e−ν arccosh s = e−ν arccosh(u2+1) =: H(u),

and expand

H(u) =
∞∑

n=0

dn(ν)un.

Since h(s) = h0(−s), we have that

(s2 − 1)h′′(s) = ν2h(s)− sh′(s).

Then we have

dH

du
=

dh

ds

ds

du
= 2u

dh

ds
,
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and

d2H

du2
=

d2h

ds2

(
ds

du

)2

+
dh

ds

d2s

du2

=
1

s2 − 1

(
ν2h− s

dh

ds

)(
ds

du

)2

+
dh

ds

d2s

du2
.

Therefore,

u2(u2 + 2)
d2H

du2
=
(

ν2H −
(

u2 + 1
2u

)
dH

du

)
(4u2) +

u2(u2 + 2)
2u

dH

du
× 2

= 4u2ν2H − u3 dH

du
.

Equating coefficients of un, we find that

n(n− 1)dn + 2(n + 2)(n + 1)dn+2 = 4ν2dn − ndn.

That is, for n ≥ 0,

dn+2 =
4ν2 − n2

2(n + 2)(n + 1)
dn, (6.5)

with d0 = 1 and d1 = −ν
√

2. Comparing (6.5) with (2.11), we see that dn = 2−n/2an(0, 2ν).
Inserting this back into the expression for G1, we obtain

G1(z, ν) =
∫ 3/2

1
e−zse−ν arccosh sds =

∫ 1/
√

2

0
e−z(u2+1)H(u)2udu

= 2e−z
∞∑

n=0

dn(ν)
∫ 1/

√
2

0
e−zu2

un+1du

= 2e−z
∞∑

n=0

2−n/2an(0, 2ν)B(n+1)/2(z/2), (6.6)

where Bk(p) is defined by (2.6). Combining Theorem 2.1, (3.2), (6.1), (6.4), and (6.6) yields
the series for Iν . Similarly, combining (3.3), (6.1), (6.4), and (6.6) yields the series for Kν .

Finally, we deal with the case ν = 0. The representation for I0(z) is obvious. For K0, we
have by (3.3),

K0(z) =
∫ ∞

0
e−z cosh tdt =

∫ ∞

1

e−zs

√
s2 − 1

ds

=
∫ 3/2

1

e−zs

√
s− 1

√
s + 1

ds +
N∑

k=2

e−kz

∫ k+1/2

k−1/2

ezs√
(k − s)2 − 1

ds

+
∫ ∞

N+1/2

e−zs

√
s2 − 1

ds.

If we let
1√

(k − s)2 − 1
=

∞∑
n=0

b∗n(k)sn,

then since
d

ds

1√
(k − s)2 − 1

=
k − s

(k − s)2 − 1
1√

(k − s)2 − 1
,
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we readily find that

(k2 − 1)(n + 1)b∗n+1 − 2knb∗n + (n− 1)b∗n−1 = kb∗n − b∗n−1,

and thus

b∗n+1 =
k(2n + 1)b∗n − nb∗n−1

(k2 − 1)(n + 1)
,

with b∗0 = (k2 − 1)−1/2 and b∗1 = kb∗0/(k2 − 1). Note also that

1√
s2 − 1

=
1

s
√

1 + (is)−2
=

∞∑
n=0

(−1)na∗2n(0)
s2n+1

.

Therefore, for each N ∈ N,∫ ∞

3/2

e−zs

√
s2 − 1

ds =
∞∑

n=0

(
βn(−z)

N∑
k=2

e−kzb∗n(k) + (−1)na∗2n(0)In(N + 1
2 , z, 1)

)
.

So, to prove (3.13), it remains to show that∫ 3/2

1

e−zs

√
s− 1

√
s + 1

ds =
√

2e−z
∞∑

n=0

d∗nBn(z/2).

To that end, we make a substitution u =
√

s− 1 and expand (u2 + 2)−1/2 as a series in u
about u = 0. That is,

1√
u2 + 2

=
1√
2

(
1 +

u2

2

)−1/2

=
1√
2

∞∑
n=0

(
−1/2

n

)
u2n

2n
,

valid for |u| <
√

2. Thus,∫ 3/2

1

e−zs

√
s− 1

√
s + 1

ds = e−z

∫ 1/
√

2

0

2e−zu2

√
u2 + 2

du

=
√

2e−z
∞∑

n=0

2−n

(
−1/2

n

)∫ 1/
√

2

0
e−zu2

u2n du

=
√

2e−z
∞∑

n=0

d∗nBn(z/2),

completing the proof. �
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