
Jonathan Borwein FRSC FAA FAAS http://www.carma.newcastle.edu.au/jon/ 

Laureate Professor         University of Newcastle, NSW 
  

Director, Centre for Computer Assisted Research Mathematics and Applications   

 
Revised 18-3-2013 

      CARMA OANT SEMINAR 
     Best approximation in  (reflexive) 

Banach space 
 
 

March 25, April  8, 15,…  of 2013 

Charles Darwin’s notes 

Alan Turing’s Enigma  

http://www.carma.newcastle.edu.au/jon/


ABSTRACT 
•  I will sketch some of the key results known about 

existence of best approximation in Banach space. 
• Nonsmooth analysis, renorming theory and Banach space 

geometry are crucial tools. 
• My main source is 

J.M. Borwein and S. Fitzpatrick, “Existence of nearest points in 
Banach spaces,” Canadian Journal of Mathematics, 61 (1989), 
702-720. 

which while twenty five years old has largely not been 
superseded (porosity is an exception): see 

J. P. Revalski and  N.V. Zhivkov: 
“Small sets in best approximation theory.” J. Global Opt, 50(1) (2011), 77-91; 
“Best approximation problems in compactly uniformly rotund spaces,”            
J. Convex Analysis, 19(4) (2012), 1153-1166. 
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SOME OPEN QUESTIONS 
•  I will also pose some of the main open questions 

including 
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Approximation  versus  Optimization 

  



Best approximations rely on the norm 
(isometric theory) 
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“Best Approximation Problems in (Reflexive) Banach Space” 

 

 

 

 

In Part I, we shall  

– explore the basic structure of the problem 

– introduce various analytic tools 

– produce some first results 
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Can. J. Math., Vol. XLI, No. 4, 1989, pp. 702-720 

EXISTENCE OF NEAREST POINTS IN 
BANACH SPACES 

JONATHAN M. BORWEIN AND SIMON FITZPATRICK 

1. Introduction. This paper makes a unified development of what the authors 
know about the existence of nearest points to closed subsets of (real) Banach 
spaces. Our work is made simpler by the methodical use of subderivatives. The 
results of Section 3 and Section 7 in particular are, to the best of our knowledge, 
new. In Section 5 and Section 6 we provide refined proofs of the Lau-Konjagin 
nearest point characterizations of reflexive Kadec spaces (Theorem 5.11, The-
orem 6.6) and give a substantial extension (Theorem 5.12). The main open 
question is: are nearest points dense in the boundary of every closed subset of 
every reflexive space? Indeed can a proper closed set in a reflexive space fail to 
have any nearest points? In Section 7 we show that there are some non-Kadec 
reflexive spaces in which nearest points are dense in the boundary of every 
closed set. 

If E is a real Banach space and C is a closed non-empty subset of E then the 
distance function dc is defined by 

dc(x):=M{\\x-z\\ :zeC}, 

and any z in C with dc(x) — \x — z\\ is a nearest point in C to x. If z G C 
and there is some x G E\C with z as its nearest point we call z a nearest point. 
Also B[x, a] and B(x1 a) denote respectively the closed and open balls around 
x of radius a ^ 0. 

Definition 1.1. (a) If every x G E\C has a nearest point in C, we call C 
proximinal. (b) If the set of points in E\C possessing nearest points in C is 
generic (contains a dense G^) we call C almost proximinal. (c) A sequence {zn} 
of elements in C is called a minimizing sequence in C for x if 

dc(x) = lim \\x — zn\\. 

Definition 1.2. L e t / be an extended real valued function/ defined on a 
Banach space with f(x) finite. Then / is Fréchet sub differ entiable at x with 
x* G E* belonging to the Fréchet sub differential at x,dFf(x), provided that 

y-* \b\\ 

Received September 1, 1988. The research of the first author was partially supported by NSERC. 
We would like to thank John Giles and the Department of Mathematics at the University of New-
castle, Australia, for their support and hospitality while this work was in progress. 
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BANACH SPACES 703 

THEOREM 1.3. [3] Letf be a lower semicontinuous function on a Banach space 
with equivalent Fréchet differentiable norm (in particular, E reflexive will do). 
Thenf is Fréchet subdiffer'entiable on a dense subset of its graph. 

For distance functions, Fréchet subdifferentiability has the following important 
consequences. 

PROPOSITION 1.4. Suppose that C is a closed non-empty subset of a Banach 
space and that x* G dFdc(x) for x G E/C. Then \\x*\\ = 1, and for each 
minimizing sequence {zn} in C for x 

dc(x) = lim(x*,x-zn). 
n—KX> 

Proof Suppose {zn} is a minimizing sequence in C for x while 0 < t < 1. 
We have 

dc(x + t(zn - x)) - dc(x) ^ ||* + t(zn - x) - zn\\ - dc(x) 

Û \\x + t(zn - x) - zn\\ - \\x-zn\\ + [\\x-zn\\ -dc(x)] 

= -f||* - zn\\ + [\\x - zn\\ - dc(x)], 

and, letting 

t„:=2-n + [\\x-zn\\-dc(x)]1'2, 

we have from Fréchet subdifferentiability that 

r . . dc(x + tn(zn - x)) - dcix) , * v > n 
hm mf {x , zn — x) ^ 0 

n—K» tn 

so that 

liminf[—||JC — zw|| + (JC*,ZW — x) + tn] ^ 0, 

and 

dc(x) — l im Ik ~ ZA\ = liminf(x*,x — zn). 

Now ||JC*|| ^ 1 since dc is 1-Lipschitz. It follows that 

dc(x) = lim ||JC — zn\\ ^ limsup(jc*,x — zn). 

Comparison of these last two inequalities shows that ||JC*|| = 1 and that 

dc(x) = lim(x*,x-zn). 
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704 J. M. BORWEIN AND S. FITZPATRICK 

2. Special classes of sets: weak compactness. The first class of closed sets 
which have many nearest points are those with weak compactness properties. 

LEMMA 2.1. Suppose that C is a closed subset of a Banach space E while 
x G E\C. If some minimizing sequence {zn} in C for x has a weak cluster point 
z which lies in C then z is a nearest point to x in C. 

Proof. By the weak lower semicontinuity of the norm we have 

dc(x) ^ ||JC — z\\ ^ liminf \\x — zn\\ ^ dc(x), 

so that z is a nearest point to x. 

We say that C is boundedly weakly compact provided that C fl£[0, r] is 
weakly compact for every r ^ 0. 

PROPOSITION 2.2. IfC is non-empty and boundedly weakly compact then C is 
proximinaL 

Proof. Suppose that x G E\C and let {zn} be a minimizing sequence in C 
for x. Then {zn} lies CH5[0, r] for some positive r, and so has a weak cluster 
point z belonging to C. By Lemma 2.1 z is a nearest point to x. 

As a consequence we have the following. 

PROPOSITION 2.3 Closed non-empty convex subsets of relexive Banach spaces 
are proximal. 

Proof. #[0, r] is weakly compact and closed convex sets are weakly closed. 

3. Special classes of sets: "Swiss cheese" in reflexive spaces. In this section 
we show that the complements of open convex sets in reflexive Banach spaces 
are not badly behaved, despite being far from weakly closed. The first lemma 
should be known but we include a proof. 

LEMMA 3.1. If C is a closed non-empty subset of a Banach space E such that 
E\C is convex then dc is concave on E\C. 

Proof. Let x and y belong to E\C and take 0 < t < 1. If xt:= tx + (1 — t)y 
and v lies in the open unit ball #(0,1) then a\— x + dc(x)v and b:= y + dc(y)v 
lie in E\C. By convexity ta + (\—t)bE E\C. That is, 

xt + [tdc(x) + (1 - t)dc(y)]v e E\C. 

Since v is arbitrary in Z?(0,1), 

dc(xt)^tdc(x) + (l-t)dc(y), 

as required. 
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BANACH SPACES 705 

THEOREM 3.2. If C is a closed non-empty subset of a reflexive Banach space 
E such that E\C is convex then C is almost proximinal. 

Proof. The lemma shows dc is concave on E\C. Since E is an Asplund 
space [1, 6] the continuous convex function —dc is Fréchet differentiable on 
a dense G& subset G of E\C. We show that each x G G has a nearest point 
in C. Let x* be the Fréchet (sub-)derivative of dc at x G G and let {zn} be 
any minimizing sequence in C for x. By reflexivity, we may take a weakly 
convergent subsequence with limit z. If z is in C then z is a nearest point to x 
by Lemma 2.1. Otherwise, by concavity of dc on E\C 

dc(z) — dc(x) ^ (JC*,z — JC) ^ limsup(jc*,z„ — JC) — —dc(x) 

where the last equality follows from Proposition 1.4. This shows that dc(z) ^ 0 
and that z is in C after all. 

COROLLARY (Swiss CHEESE LEMMA) 3.3. Let {Ua : a G A} be a collection of 
mutually disjoint open convex subsets of a reflexive Banach space. Then 

C := E\ U {Ua : a £ A} is almost proximinal if it is non-empty. 

Proof Using Theorem 3.2 it suffices to show that if x G Up has a nearest 
point v in the closed set e\Up (which contains C) then y EC. 

Failing that, y G Ua with a ^ (3. Since £/a and Up are disjoint and £/a is 
open, for small positive t the point z := to + (1 —f)? n e s m Ua\Up and so in 
E\Up. But ||JC — z|| < ||JC —y\\, so v was not a nearest point to x in E\Up. 

REMARKS 3.4. (i) A closed set is convex if and only if dc is convex, while an 
open set C is convex if and only if dx\c is concave on C. 

(i) By James' theorem [6, p. 63], in any non-reflexive space there are closed 
hyperplanes H so that no point of E\H has a nearest point in H. (See Theorem 
5.10.) This shows that Proposition 2.3 characterizes reflexive spaces. Also the 
Swiss cheese lemma characterizes reflexive spaces, letting U\ and £/2 be the 
open half spaces determined by H. 

4. Special classes of Banach spaces: finite dimensional spaces. For any 
closed non-empty subset C of a finite dimensional Banach space E and any point 
x G E\C there is a nearest point in C to x (by Proposition 2.2). Furthermore 
this characterizes finite dimensional Banach spaces. 

THEOREM 4.1. (a) In any infinite dimensional Banach space there is a closed 
non-empty set C and a point x G E\C so that x has no nearest point in C. 
(b) Consequently, a Banach space is finite dimensional if and only if every 
non-empty closed subset is proximinal. 

Proof, (a) Since the space is infinite dimensional we can find a sequence {xn} 
of norm one elements with H^ — xm\\ > 1/2 for n^ m [12]. Let 

C:= {(l+2-n)xn:n<EZ+}. 
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dc(z) — dc(x) ^ (JC*,z — JC) ^ limsup(jc*,z„ — JC) — —dc(x) 

where the last equality follows from Proposition 1.4. This shows that dc(z) ^ 0 
and that z is in C after all. 

COROLLARY (Swiss CHEESE LEMMA) 3.3. Let {Ua : a G A} be a collection of 
mutually disjoint open convex subsets of a reflexive Banach space. Then 

C := E\ U {Ua : a £ A} is almost proximinal if it is non-empty. 

Proof Using Theorem 3.2 it suffices to show that if x G Up has a nearest 
point v in the closed set e\Up (which contains C) then y EC. 

Failing that, y G Ua with a ^ (3. Since £/a and Up are disjoint and £/a is 
open, for small positive t the point z := to + (1 —f)? n e s m Ua\Up and so in 
E\Up. But ||JC — z|| < ||JC —y\\, so v was not a nearest point to x in E\Up. 

REMARKS 3.4. (i) A closed set is convex if and only if dc is convex, while an 
open set C is convex if and only if dx\c is concave on C. 

(i) By James' theorem [6, p. 63], in any non-reflexive space there are closed 
hyperplanes H so that no point of E\H has a nearest point in H. (See Theorem 
5.10.) This shows that Proposition 2.3 characterizes reflexive spaces. Also the 
Swiss cheese lemma characterizes reflexive spaces, letting U\ and £/2 be the 
open half spaces determined by H. 

4. Special classes of Banach spaces: finite dimensional spaces. For any 
closed non-empty subset C of a finite dimensional Banach space E and any point 
x G E\C there is a nearest point in C to x (by Proposition 2.2). Furthermore 
this characterizes finite dimensional Banach spaces. 

THEOREM 4.1. (a) In any infinite dimensional Banach space there is a closed 
non-empty set C and a point x G E\C so that x has no nearest point in C. 
(b) Consequently, a Banach space is finite dimensional if and only if every 
non-empty closed subset is proximinal. 

Proof, (a) Since the space is infinite dimensional we can find a sequence {xn} 
of norm one elements with H^ — xm\\ > 1/2 for n^ m [12]. Let 

C:= {(l+2-n)xn:n<EZ+}. 
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•  The Lau-Konjagin theorem 

– discuss norms in which nearest points exist densely 
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• to boundedly weakly locally compact sets 
• including the Stechkin conjecture 

– consider the case of the Radon-Nikodym property 
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Then C is closed and 

dc(0) = 1 < ||0 - (1 + 2~n)xn\\ for each n G Z+. 

Part (b) now follows. 

5. Reflexive Kadec spaces. We say that a Banach space E is (sequentially) 
Kadec provided that for each sequence {xn} in E which converges weakly to x 
with linv_+oo \\xn\\ — \\x\\ we have 

lim \\xn — x\\ = 0. 
n—KX> 

[Each Lp space (1 < p < oo) has this property, as does any l\(S) and any locally 
uniformly convex Banach space.] 

Lau [13] showed that nonempty closed subsets in reflexive Kadec spaces are 
almost proximinal. Konjagin [14] showed that in any non Kadec space there is 
a non-empty bounded closed set C such that points in E\C with nearest points 
in C are not dense in E\C. We will develop both of these results in detail. 

Definition 5.1. We modify the sets used by Lau so that it is easier to see they 
are open. This is helpful since we have access to Theorem 1.3. If C is a closed 
non-empty subset of a Banach space E and n G Z+ we define 

Ln(C) := {x G E\C: for some 8 > 0 and some x* G E* with ||x*|| = 1, 
inf {(**,* -z):zeC nB(x,dc(x) + 6)} > ( 1 - 2~n)dc(x)}. 

Also let 

L(C):=nnLn(C) 

and let 

Q(C) := {x G E\C: there exists x* G E* with ||JC*|| = 1, 
such that for each e > 0 there is S > 0 so that 
M{(x\x-z):z e C nB(x,dc(x) + 6)} > (I - e)dc(x)}. 

LEMMA 5.2. Each Ln(C) is open in E. 

Proof. Let x G Ln(C). Then there are x* G E* with \\x*\\ = 1 and 8 > 0 so 
that 

0 < r : = M{(x\x -z):z eC HB(x,dc(x)+8)} - (1 - 2~n)dc(x). 

Let A > 0 be such that A < 8/2 and A < r /2 and fix y with \\y - x\\ < A. For 
8* := 8 — 2A we have 

CnB(x,dc(x) + 8) DA:= C nB(y1dc(y) + 8*) 
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since dc is non-expansive. Hence if z G A then 

( i V - ^ r + ( l - 2 - % W , 

and 

{x%y-z)^T+(\-2-n)dc(y) 

+ {x\y-x) + {\-2-n)[dc(x)-dc(y)} 

^(l-2-n)dc(y)+T-2\\x-y\\ 

^(l-2-n)dc(y) + T-2\. 

Thus 

inf{(**,y - z):z G A} > (1 - 2 ~ V c W 

and B(x, X)\C lies in Ln(C), which shows L„(C) is open. 

LEMMA 5.3. If x G E\C and dFdc(x) ^ 0 rten JC G Q(C). 

Proof. Let x* G ^dcix). By Proposition 1.4, ||JC*|| = 1 and for each mini-
mizing sequence {zn} for x we have (x*,x — z„) —• dc(x). Thus for each e > 0 
there is £ > 0 so that whenever 

z eCnB(x,dc(x)+S) 

It follows that 

(x* ,x -z )>( l -£ /2 ) JcW. 

it follows that 

inf{(jc*,;c -z) :z e C nB(x,dc(x)+6)} > (1 - e)dc(x) 

as required. 

Next we have: 

LEMMA 5.4. In any Banach space E the set £l(C) always lies in L(C). 

Proof This follows directly from the definitions of the two sets. 

LEMMA 5.5. If E has an equivalent Fréchet differentiable renorm then £l(C) 
is dense in E\C. 

Proof By Theorem 1.3 the Lipschitz function dc(x) is Fréchet subdifferen-
tiable on a dense subset of E\C. Now Lemma 5.3 completes the proof. 

LEMMA 5.6. When E is reflexive Q.(C) = L(C). 
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Proof. By Lemma 5.4 we need to show that L(C) is contained in Q(C). Let 
x G L(C) = DnLn(C). Select x* with ||JC*|| = 1 and Sn > 0 so that 

M{(x*n,x -z):zeC DB(xJdc(x)+6n)} > ( 1 - 2~n)dc(x) 

and let x* be any weak* cluster point of {x*}. Let 

Kn := weak-cl[C nB(x,dc(x)+6n)] 

and observe that each Kn is weakly compact. Thus K := f)nKn is non-empty. For 
each z in K we have 

(x*n,x-z)^(l-2-n)dc(x) 

so that (JC*,JC — z) ^ dc(x). Since ||JC*|| ^ 1 and ||JC — z\\ ^ dc(x) we see that 
||JC*|| = 1 and 

(**,* - z) = dc(x) = ||x - z||. 

Now if e > 0 then K is contained in the weakly open set 

U(e) := {z : (x\x - z) > ( 1 - £/2)Jc(x)} 

and as the Kn are nested and weakly compact some Kn lies in U(e). This implies 
that 

inf{(jt*,jt-z):z e C nB(x,dc(x) + 6„)} >(l - e)dc(x) 

and JC* is as required. 

We have now completed the proof of the following result. 

THEOREM 5.7. If C is a closed non-empty subset of a reflexive Banach space 
E then £l(C) = L{C) is a dense Gs subset of E\C. 

COROLLARY 5.8. (Lau) If E is a reflexive Kadec space then for each closed 
non-empty set C in E the set of points ofE\C with nearest points in C contains 
the dense Gs subset Q(C) of E\C. 

Proof If x G Q,(C) and {zn} is a minimizing sequence in C for x then (by 
extracting a subsequence if necessary) we may assume that weak-lim,z_-+00z,1 = z 
exists. If JC* is the norm-1 functional guaranteed by the the definition of £l(C) 
then 

\\x — z\\ ^ (JC*,JC — z) = lim(x*,x — zn) ^ dc(x) — lim ||JC — zn\\. 

By weak lower semicontinuity of the norm, 

l i m | | x - z j ^ | | * - z | | . 
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It follows that ||* — z\\ = lim ||* — zn\\. Since * — zn converges weakly to * — z 
we may deduce from the Kadec property that zn converges in norm to z; which 
must then lie in C. Thus z is a nearest point in C for x (by Lemma 2.1). 

We turn next to describe Konjagin's construction. 

LEMMA 5.9. (i) If E is not a Kadec space one can find xn € E and x* G E* 
such that 

(a) x*(xn) = ||**|| = 1 = lim ||*„||, and 
n—>oo 

(b) inf | |*„-*J | >0 . 

(ii) If (a) and (b) hold and E is reflexive then E is not Kadec. 

Proof. Suppose E is not Kadec. Select yn converging weakly to y in E with 
\\yn\\ — lb|| — 1» but with yn — y not norm convergent to zero. Relabling if 
needed we may take \\yn — y\\ > e for all n. Let x* be a (norm-1) support 
functional for the unit ball at y and let 

zn:=yn/(x*,yn} 

(which may be assumed finite). Then zn tends weakly to y and 

**(zn) = 1 = ||**|| = lim||z„||, 
n—*oo 

while 

lim inf ||zn — y\\ > e for some e > 0. 
m—KX> 

Relabling again if needed we may assume \\zn — y\\ > e for all n. Now for each 
n, we have 

liminf ||zw-zOT11 ^ ||z„-;y|| > e 
n—>oo 

by weak lower semicontinuity of the norm. Thus for each n there is an integer 
m(n) > n such that 

\\zn —
 zm\\ > e for m ^ m(ri). 

Set n{\) := 1 and n(k+\):= m{n(k)) for each k. Then 
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Conversely if E is reflexive and (a) and (b) hold then there is a weakly 
convergent subsequence of {xn} with limit x. Now (a) shows that we have 

IIJCII ^ x*(x) = 1 = lim ||JC„||, 
n—«x> 

while (b) now contradicts the Kadec property. 

THEOREM 5.10. (Konjagin) Suppose that E is a Banach space which is not 
both reflexive and Kadec. Then there is a closed bounded non-empty set C in 
E and an open non-empty subset U of E\C such that 

(i) for each x G U there is no nearest point in C, 
(ii) dc is affine on U ; 

in particular 
(iii) dc is Fréchet differentiable on U. 

Proof. Case 1. E is not reflexive. By James' theorem [11] there is x* in E* 
with 1 = ||JC*|| > (x*,y) for each y in the closed unit ball. Let 

C := £[0,1] PI {x G E: (x*,x) = 0} 

and 

U := £[0,1/3] H{x eE: (x%x) > 0}. 

Then dc(x) = (jt*,Jt) for each x G U. Suppose a point x G U had a nearest 
point z EC. Then, since 0 G C, 

dc(x) = \\x-z\\^\\x-0\\ûl/3 and ||z|| S 2/3. 

In particular z would be a nearest point to x in ker x*, contradicting the fact 
that x* does not attain its norm. 

Case 2. E is not Kadec. By (i) of the last lemma we can select x* G E* and 
yn € E so that ||vn|| ^ 2 and for some 0 < 6 < 1 

**(v„) = 1 = ||x*|| = lim ||v„||, and inf \\yn-ym\\ ^ 6. 
n—>oo rt£m 

Set zn := (1 + 2~")v„ and define 

C := U„M„ where M„ := z„ + (5 [0,5/3] n { i G £ : (x*,x) = 0}). 

Then C is our desired set. First, C is norm closed: if n ^ m and z G Mw, 
H> G Mm we have 

| | z - w | | ^ | |y„-vm | | - | | y m - z m | | 
- Ib/i - z / i | | - | | z / n - ^ | | - Ik/i -W| | 
^ 6 - 21-* - 21-w - 6/3 - 6/3 > 6/9 
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for m ^ p and n^p,p sufficiently large. Since each Mn is closed and since 

c l (U M ") ={JM»i 

C is norm closed as the finite union of closed sets. Next let U := B (0,<5/9). For 
x in [/, we will show that dç(x) — 1 — (x*,x) but x has no nearest point in C. 
This will conclude the proof. If x G U set 

wn:=x + zn-(x*,x)yn. 

Then 

| K - z n | | S | | j c | | + 2 | | j c | | < « / 3 

while 

(x*,wn-zn) = 0. 

Thus w„ G Mn and 

dc(x) = liminf \\wn —x\\ 
n—+oo 

= liminf \\zn - (x*,x)yn\\ 
«—•oo 

= liminf[(l+2-")-(ar*,jc>]|b„|| 
n—>oo 

= 1-<*V) 

since (**,*) < 1. If, however, z € C then z G Mn for some « and 

(x*,z) = (x*,z,) = ( l + 2 - w ) > l . 

Thence 
||z — jt|| = ||.x*|| ||z — JC|| ^ (x*,z) — {x*,x) > 1 — (x*,x) 

and dc(x) = 1 — (x*,x) but no nearest point exists in C for U. 

Let us observe that, in the non-Kadec case, by translation we can arrange for 
dc to be linear on U. Also, observe that by taking only the tail of C, C may be 
supposed locally convex being made up of discrete translates of a fixed convex 
set. We gather up results as follows. 

THEOREM 5.11. (Lau-Konjagin) In any Banach space E the following condi­
tions are equivalent. 

(A) E is reflexive and Kadec. 
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(B) For each closed non-empty subset C of E, the set of points in E\C with 
nearest points in C is dense in E\C. 

(C) For each closed non-empty subset C of E, the set of points in E\C with 
nearest points in C is generic in E\C (i.e., C is almost proximinal). 

One consequence of Theorem 5.11 is that in any reflexive Kadec space there is 
a workable "proximal normal formula" [2]. It is also possible to generalize Lau's 
result to some sets in non-reflexive Kadec spaces. (See also [3].) Recall that a 
set C in a Banach space E is boundedly relatively weakly compact if #[0, r]C\C 
has a weakly compact closure for each positive r. It is equivalent to require that 
each bounded sequence in C possesses a weakly convergent subsequence with 
limit in E. (This is not entirely obvious.) Clearly every subset of a reflexive 
space and every subset of a weakly compact set possess this property. The next 
result is therefore a complete extension of Theorem 5.7. 

THEOREM 5.12. If C is a closed, boundedly relatively weakly compact, non­
empty subset of a Banach space E then £l(C) = L(C) is a dense G$ subset of 
E\C. 

From this exactly as in the proof of Corollary 5.8 we obtain a generalization 
of Lau's theorem. 

COROLLARY 5.13. Every closed, boundedly relatively weakly compact, non­
empty subset of a Kadec Banach space E is almost proximinal. Indeed Q.(C) is 
a dense G& subset of E\C with nearest points in C. 

To prove Theorem 5.12 we need a replacement for Lemma 5.5 (and the 
results it depended on). The factorization theorem of Davis, Figiel, Johnson, 
and Pelczynski provides an avenue. We will use it in the following form. 

THEOREM 5.14. [7] Let K be a weakly compact subset of a Banach space Y 
with Y = closed-span (K). Then there is a reflexive Banach space R and a one 
to one continuous linear mapping T:R —> Y such that T(B[0,1]) ~D K. 

Now we can show density of Q(C). 

LEMMA 5.15. IfC is a closed, boundedly relatively weakly compact, non-empty 
subset of a Banach space E then Q,(C) is dense in E\C. 

Proof. Let x0 G E\C and suppose dc(xo) > e > 0. Fix N > ||jt0|| + dc(xo) + 2e 
and let 

K := weak-cl[{(£[0:N] DC} U {JC0}]. 

Then K is weakly compact and if Y is the closed span of K, we can apply 
Theorem 5.14 to obtain a reflexive Banach space R and a one to one continuous 
linear mapping T.R-+Y such that T(B[071]) D K. Define fc:R —> [0,oo) by 
fc(u) := dc(Tu) for each u in R. 
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By Theorem 1.3 the Lipschitz function fc is Fréchet subdifferentiable on a 
dense subset on R. Thus there is a point of subdifferentiability v E R with 
y : = Tv E fl(jt0, e). Note that y is in E\C. Let v* E (ffciv) so that 

h m inf r—n ^ 0 
A-o ||A|| 

and hence 

A-0 ||A|| 

Next for M e /?, we have 

<v»^IN| 
on substituting ta for h in the previous expression and using the non-
expansiveness of dc. This shows v* = T*y* for some y* E Y* (by the Hahn-
Banach theorem). In particular (y*,Tu) ^ ||7w|| for each u E R. Since T has 
dense range this shows that \\y*\\ ^ 1. We extend y* to x* E E* with ||je*|| ^ 1 
and observe that 

H m i n f dc(y+tTh)-dc(y)-t(x*,Th) ^ Q 

(-^,11*1151+||»|| t 

so that 

liminf dc(y + t{k-y))-dc(y)-t(x%k-y) ^ Q 

(Since T(B[0, l]—v)DK—y.) Suppose now that {zn} is a minimizing sequence 
in C for y. By the construction of N, zn E K for large «. Also we may suppose 
that 

Then 

Thus 

\\y-Zn\\<dc(y) + 4-n. 

0 ^ limM[dc(y + 2"w(zn - j)) - dc(y)]2n - (x\ zn - y) 
«—KX) 

^ liminf[||j + 2-"(z„-j)-zfl|| - \\y -z„|| -4""]2" - (x*,z„ -y) 

= liminf[-||z„ -y\\ - (x*,zn-y)]. 
n—+oo 

liminf(x*,y -zn) ^ lim \\zn -y\\ = dc(y). 
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Thus 
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which again shows ||JC*|| ^ 1. Thus 

||JC*|| = 1 and lim (x*,y - zn) = dc(y). 
n—>oo 

As in Lemma 5.3, y G £l(C). Since \\y — xo\\ < e this establishes our density 
assertion. 

Proof, (of Theorem 5.12) By Lemmas 5.2 and 5.4, £l(C) is always contained 
in the G^ set L(C). We note that the proof of Lemma 5.6 holds unchanged for 
C boundedly relatively weakly compact. Thus Q(C) = L(C) is a G$ set in E\C. 
Finally 12(C) is dense in E\C by the last lemma. 

6. Uniqueness of nearest points. Having constructed the set Q(C) we can 
also use it to prove uniqueness results. The first is a reasonable new partial 
answer to Stechkin's question whether in every strictly convex Banach space 
the nearest points to a closed set are generically not multiple. (See also [3] and 
[10].) 

THEOREM 6.1. Let E be a strictly convex Banach space and let C be a non­
empty, boundedly relatively weakly compact, closed subset ofE. Then each point 
of the dense G$ subset Q(C) of E\C has at most one nearest point. 

Proof If x G Q(C) and y,z eC with ||JC - y\\ = \\x - z\\ = dc(x) > 0 then 
the functional x* guaranteed by the definition of Q(C) has ||JC*|| = 1 and 

x*(x —y) = x*(x — z) = dc(x) 

and 

\\(x-y) + (x-z)\\^x*(x-y)+x*(x-z) 

= 2dc(x) — \\x — y\\ + ||x — z\\. 

By strict convexity y — z as required. By Theorem 5.12, Q(C) is a dense G$ 
subset. 

Definition 6.2. A subset C of a Banach space E is almost Chebyshev provided 
there is a generic subset of E\C with unique nearest points in C. 

COROLLARY 6.3. Let E be a Kadec strictly convex Banach space and let C 
be a non-empty, boundedly relatively weakly compact, closed subset of E. Then 
each point of the dense G$ subset £l(C) of E\C has exactly one nearest point, 
and C is almost Chebyshev. 

Proof. Combine Corollary 5.13 and Theorem 6.1. 

Definition 6.4. A Banach space E is strongly convex provided it is reflexive, 
Kadec, and strictly convex. 
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COROLLARY 6.5. Every closed subset of a strongly convex Banach space is 
almost Chebyshev. 

It is of interest to note that Corollary 6.5 can be turned into various charac-
terizations of strongly convex spaces; many due to Konjagin. 

THEOREM 6.6. Let E be a Banach space. The following statements are equiv­
alent. 

(1) E is strongly convex. 
(2) The norm on E* is Freehet differentiate. 
(3) Every closed non-empty subset of E is almost Chebyshev. 
(4) For every closed non-empty subset C of E there is a dense set of points 

in E\C possessing unique nearest points. 

Proof. (1) => (3) by Corollary 6.5, while (3) => (4) is immediate. 
(4) =$. (l). If E is not strongly convex then either E is not both reflexive and 

Kadec, or E is not strictly convex. In the first case Theorem 5.11 applies. In the 
second case, let [a, b] be a closed non-trivial interval in the unit sphere of E. Take 
JC* G E* with ||JC*|| = 1 and {x*,(a + b)) = 2, so that (x*,a) = (x*,b) = 1. Then 
for C := kerx* and x € E\C there are always multiple nearest points. [Indeed y 
is a nearest point to x if and only if (JC*,J) = 0 and \\x — y\\ = |(**,jt)| = dc(x), 
which holds for x — (x*,x)c whenever c G [a, b]. ] 

(1) => (2). Since E is reflexive and strictly convex, E* is smooth. Let x* and 
x* G E*\{0} with x* —• x*. Then the corresponding Gateaux derivatives xn and 
x G E of the norm on E* satisfy xn —» x weakly. \\xn\\ = \\x\\ and E is Kadec 
xn —* x in norm. Thus the norm on E* is Fréchet differentiable at x*. 

(2) => (1). Here we use the fact that the norm on a Banach space X is 
Fréchet differentiable at x G X with derivative x* if and only if x strongly 
exposes the unit ball of X* at x* [6]. (See Definition 8.1.) Now suppose the 
norm on E* is Fréchet differentiable. Let F be a norm one support functional 
so (F,x*) — ||x*|| = 1 for some x* G X*. By smoothness F is the Fréchet 
derivative of the norm at x*. But then x* strongly exposes the unit ball of E** 
at F. Let {xa} be a net converging weak* to F with xa G E, \\xa\\ = 1. Thus 

(x*,xa)-+(F,x*) = l = \\x*l 

and in consequence xa converges to F in norm. Thus F lies in E. The Bishop-
Phelps theorem shows that the norm one support functionals are dense in the 
unit sphere. Hence E is reflexive. 

Next the smoothness of E* implies that E is strictly convex. Finally, to settle 
the Kadec property, let xn and x G E satisfy ||JCW|| = \\x\\ — 1 while nn —> x 
weakly. There is x* G E*, \\x*\\ = \\x\\ — 1 = (x*,x). Again x must be the 
Fréchet derivative of the norm at x*. But then x* strongly exposes the unit ball 
of E at x. Since (JC*,xn) —• (JC*, JC) = 1, this forces xn —-> x in norm as required. 

This completes the proof that (2) implies (1) and so the theorem. 

jon
Rectangle

jon
Rectangle



BANACH SPACES 715 

COROLLARY 6.5. Every closed subset of a strongly convex Banach space is 
almost Chebyshev. 

It is of interest to note that Corollary 6.5 can be turned into various charac-
terizations of strongly convex spaces; many due to Konjagin. 

THEOREM 6.6. Let E be a Banach space. The following statements are equiv­
alent. 

(1) E is strongly convex. 
(2) The norm on E* is Freehet differentiate. 
(3) Every closed non-empty subset of E is almost Chebyshev. 
(4) For every closed non-empty subset C of E there is a dense set of points 

in E\C possessing unique nearest points. 

Proof. (1) => (3) by Corollary 6.5, while (3) => (4) is immediate. 
(4) =$. (l). If E is not strongly convex then either E is not both reflexive and 

Kadec, or E is not strictly convex. In the first case Theorem 5.11 applies. In the 
second case, let [a, b] be a closed non-trivial interval in the unit sphere of E. Take 
JC* G E* with ||JC*|| = 1 and {x*,(a + b)) = 2, so that (x*,a) = (x*,b) = 1. Then 
for C := kerx* and x € E\C there are always multiple nearest points. [Indeed y 
is a nearest point to x if and only if (JC*,J) = 0 and \\x — y\\ = |(**,jt)| = dc(x), 
which holds for x — (x*,x)c whenever c G [a, b]. ] 

(1) => (2). Since E is reflexive and strictly convex, E* is smooth. Let x* and 
x* G E*\{0} with x* —• x*. Then the corresponding Gateaux derivatives xn and 
x G E of the norm on E* satisfy xn —» x weakly. \\xn\\ = \\x\\ and E is Kadec 
xn —* x in norm. Thus the norm on E* is Fréchet differentiable at x*. 

(2) => (1). Here we use the fact that the norm on a Banach space X is 
Fréchet differentiable at x G X with derivative x* if and only if x strongly 
exposes the unit ball of X* at x* [6]. (See Definition 8.1.) Now suppose the 
norm on E* is Fréchet differentiable. Let F be a norm one support functional 
so (F,x*) — ||x*|| = 1 for some x* G X*. By smoothness F is the Fréchet 
derivative of the norm at x*. But then x* strongly exposes the unit ball of E** 
at F. Let {xa} be a net converging weak* to F with xa G E, \\xa\\ = 1. Thus 

(x*,xa)-+(F,x*) = l = \\x*l 

and in consequence xa converges to F in norm. Thus F lies in E. The Bishop-
Phelps theorem shows that the norm one support functionals are dense in the 
unit sphere. Hence E is reflexive. 

Next the smoothness of E* implies that E is strictly convex. Finally, to settle 
the Kadec property, let xn and x G E satisfy ||JCW|| = \\x\\ — 1 while nn —> x 
weakly. There is x* G E*, \\x*\\ = \\x\\ — 1 = (x*,x). Again x must be the 
Fréchet derivative of the norm at x*. But then x* strongly exposes the unit ball 
of E at x. Since (JC*,xn) —• (JC*, JC) = 1, this forces xn —-> x in norm as required. 

This completes the proof that (2) implies (1) and so the theorem. 

jon
Highlight

jon
Highlight

jon
Highlight

jon
Highlight

jon
Highlight

jon
Rectangle

jon
Highlight

jon
Highlight



BANACH SPACES 715 

COROLLARY 6.5. Every closed subset of a strongly convex Banach space is 
almost Chebyshev. 

It is of interest to note that Corollary 6.5 can be turned into various charac-
terizations of strongly convex spaces; many due to Konjagin. 

THEOREM 6.6. Let E be a Banach space. The following statements are equiv­
alent. 

(1) E is strongly convex. 
(2) The norm on E* is Freehet differentiate. 
(3) Every closed non-empty subset of E is almost Chebyshev. 
(4) For every closed non-empty subset C of E there is a dense set of points 

in E\C possessing unique nearest points. 

Proof. (1) => (3) by Corollary 6.5, while (3) => (4) is immediate. 
(4) =$. (l). If E is not strongly convex then either E is not both reflexive and 

Kadec, or E is not strictly convex. In the first case Theorem 5.11 applies. In the 
second case, let [a, b] be a closed non-trivial interval in the unit sphere of E. Take 
JC* G E* with ||JC*|| = 1 and {x*,(a + b)) = 2, so that (x*,a) = (x*,b) = 1. Then 
for C := kerx* and x € E\C there are always multiple nearest points. [Indeed y 
is a nearest point to x if and only if (JC*,J) = 0 and \\x — y\\ = |(**,jt)| = dc(x), 
which holds for x — (x*,x)c whenever c G [a, b]. ] 

(1) => (2). Since E is reflexive and strictly convex, E* is smooth. Let x* and 
x* G E*\{0} with x* —• x*. Then the corresponding Gateaux derivatives xn and 
x G E of the norm on E* satisfy xn —» x weakly. \\xn\\ = \\x\\ and E is Kadec 
xn —* x in norm. Thus the norm on E* is Fréchet differentiable at x*. 

(2) => (1). Here we use the fact that the norm on a Banach space X is 
Fréchet differentiable at x G X with derivative x* if and only if x strongly 
exposes the unit ball of X* at x* [6]. (See Definition 8.1.) Now suppose the 
norm on E* is Fréchet differentiable. Let F be a norm one support functional 
so (F,x*) — ||x*|| = 1 for some x* G X*. By smoothness F is the Fréchet 
derivative of the norm at x*. But then x* strongly exposes the unit ball of E** 
at F. Let {xa} be a net converging weak* to F with xa G E, \\xa\\ = 1. Thus 

(x*,xa)-+(F,x*) = l = \\x*l 

and in consequence xa converges to F in norm. Thus F lies in E. The Bishop-
Phelps theorem shows that the norm one support functionals are dense in the 
unit sphere. Hence E is reflexive. 

Next the smoothness of E* implies that E is strictly convex. Finally, to settle 
the Kadec property, let xn and x G E satisfy ||JCW|| = \\x\\ — 1 while nn —> x 
weakly. There is x* G E*, \\x*\\ = \\x\\ — 1 = (x*,x). Again x must be the 
Fréchet derivative of the norm at x*. But then x* strongly exposes the unit ball 
of E at x. Since (JC*,xn) —• (JC*, JC) = 1, this forces xn —-> x in norm as required. 

This completes the proof that (2) implies (1) and so the theorem. 

jon
Highlight

jon
Highlight

jon
Rectangle

jon
Highlight

jon
Highlight



BANACH SPACES 715 

COROLLARY 6.5. Every closed subset of a strongly convex Banach space is 
almost Chebyshev. 

It is of interest to note that Corollary 6.5 can be turned into various charac-
terizations of strongly convex spaces; many due to Konjagin. 

THEOREM 6.6. Let E be a Banach space. The following statements are equiv­
alent. 

(1) E is strongly convex. 
(2) The norm on E* is Freehet differentiate. 
(3) Every closed non-empty subset of E is almost Chebyshev. 
(4) For every closed non-empty subset C of E there is a dense set of points 

in E\C possessing unique nearest points. 

Proof. (1) => (3) by Corollary 6.5, while (3) => (4) is immediate. 
(4) =$. (l). If E is not strongly convex then either E is not both reflexive and 

Kadec, or E is not strictly convex. In the first case Theorem 5.11 applies. In the 
second case, let [a, b] be a closed non-trivial interval in the unit sphere of E. Take 
JC* G E* with ||JC*|| = 1 and {x*,(a + b)) = 2, so that (x*,a) = (x*,b) = 1. Then 
for C := kerx* and x € E\C there are always multiple nearest points. [Indeed y 
is a nearest point to x if and only if (JC*,J) = 0 and \\x — y\\ = |(**,jt)| = dc(x), 
which holds for x — (x*,x)c whenever c G [a, b]. ] 

(1) => (2). Since E is reflexive and strictly convex, E* is smooth. Let x* and 
x* G E*\{0} with x* —• x*. Then the corresponding Gateaux derivatives xn and 
x G E of the norm on E* satisfy xn —» x weakly. \\xn\\ = \\x\\ and E is Kadec 
xn —* x in norm. Thus the norm on E* is Fréchet differentiable at x*. 

(2) => (1). Here we use the fact that the norm on a Banach space X is 
Fréchet differentiable at x G X with derivative x* if and only if x strongly 
exposes the unit ball of X* at x* [6]. (See Definition 8.1.) Now suppose the 
norm on E* is Fréchet differentiable. Let F be a norm one support functional 
so (F,x*) — ||x*|| = 1 for some x* G X*. By smoothness F is the Fréchet 
derivative of the norm at x*. But then x* strongly exposes the unit ball of E** 
at F. Let {xa} be a net converging weak* to F with xa G E, \\xa\\ = 1. Thus 

(x*,xa)-+(F,x*) = l = \\x*l 

and in consequence xa converges to F in norm. Thus F lies in E. The Bishop-
Phelps theorem shows that the norm one support functionals are dense in the 
unit sphere. Hence E is reflexive. 

Next the smoothness of E* implies that E is strictly convex. Finally, to settle 
the Kadec property, let xn and x G E satisfy ||JCW|| = \\x\\ — 1 while nn —> x 
weakly. There is x* G E*, \\x*\\ = \\x\\ — 1 = (x*,x). Again x must be the 
Fréchet derivative of the norm at x*. But then x* strongly exposes the unit ball 
of E at x. Since (JC*,xn) —• (JC*, JC) = 1, this forces xn —-> x in norm as required. 

This completes the proof that (2) implies (1) and so the theorem. 

jon
Rectangle

jon
Highlight

jon
Rectangle

jon
Highlight

jon
Rectangle

jon
Callout
The proof shows that in a strongly convex space the problems are generically well posed



716 J. M. BORWEIN AND S. FITZPATRICK 

Remark 6.7. It is clear that every reflexive locally uniformly convex space is 
strongly convex. The converse fails since the following renorm hi^) is strongly 
convex but not locally uniformly convex, as observed by Mark Smith [16]. Let 
|| • || be the original norm on I2. Define ||| • ||| by 

|||x|||2:=||7x||2 + (h | + ||^||)2 

where 

Tx:= (0,*2/2,.*3/3,..., *„//*,...) and Px := (0,x2,x3,.. . ,x„, . . .) . 

It is easy to verify that ||| ||| is strongly convex. It is not locally uniformly 
convex since 

IIHII-+llkilil = * and llki +^| | |—>2, 

but ||\e\ — en\\\ —> 2 not zero. 

7. Spaces where nearest points are dense. In this section we show that 
there are reflexive Banach spaces E which do not have the Kadec property but 
such that, nevertheless, for each closed non-empty subset C of E the set of 
nearest points in C to points of E\C is dense in the boundary of C. It is an 
open question as to whether all reflexive Banach spaces have the latter property. 

THEOREM 7.1. Let X be a reflexive Kadec space, Y a finite dimensional normed 
space and ||| • ||| a Riesz (lattice) norm on R2. Let E := X 0 7 in the norm 

||(*,>0||:=|ll(NUbll)lll-

For each closed non-empty subset C ofE the set of nearest points in C to points 
not in C is dense in the boundary of C. 

We will need the following lemma. 

LEMMA 7.2. Suppose E,X, Y, and C are as above. Suppose dc is Fréchet 
differentiable at u G E\C but u has no nearest point in C. Then 

{o}erD^c(4 

Proof Let u be as hypothesised. If (x*,y*) G dFdc(u) then, by Theorem 
1.4, |||Cx*,;y*)||| = 1 and for every minimizing sequence zn := (xn,yn) in C for 
u = (Xj y) we have 

((x*,y*),(xn-x,yn-y)) —> -dc(u). 
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differentiable at u G E\C but u has no nearest point in C. Then 

{o}erD^c(4 

Proof Let u be as hypothesised. If (x*,y*) G dFdc(u) then, by Theorem 
1.4, |||Cx*,;y*)||| = 1 and for every minimizing sequence zn := (xn,yn) in C for 
u = (Xj y) we have 

((x*,y*),(xn-x,yn-y)) —> -dc(u). 

jon
Rectangle

jon
Highlight

jon
Highlight

jon
Rectangle

jon
Rectangle



716 J. M. BORWEIN AND S. FITZPATRICK 
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Thus |||(||JC*||, 11̂*11)111* = 1 where ||| • |||* is the dual norm on R2, and 

dc(u)= lim lllfll*, - * | | , | b „ - j | | ) | | | 
n—KX) 

= \im((x*,x-xn) + (y*,y-yn)). 
n—KX> 

Extracting a subsequence we may and do assume that the sequences 
{(x*,x — xn)}, {\\xn — JC||}, and {yn} all converge. Then 

lim (x*,x-xn) + lim (y*,y-yn) = dc(u) 
n—+oo n—+oo 

= | | | ( l im| |x„-* | | , lim ||j„-^IDIH 
n—oo n—>oo 

= lll(lk*IUb*ll)IINII ( "m \\x„ -x\\, lim \\yn -y\\) \\\ 
\n—KX) n—Kx> / 

^ l l ^ H l i m l ^ - x l l + r i l l i m l ^ - y l l 
n—+oo n—*oo 

so that 

lim (JC*,JC — JC )̂ = ||JC*|| lim ||JCW — x\\ 
n—>oo n—+oo 

and 

l i m < / , ? - j „ > = | | / | | lim \\y„-y\\. 
n—+oo «—•oo 

If x* ^ 0 the Kadec property and reflexivity determine a norm convergent 
subsequence of {xn} with lim JC#. Since {yn} converges to some v#, (JC#, v#) lies 
in C and is a nearest point to u. This contradiction shows x* — 0 and the 
conclusion. 

/V00/. (of Theorem 7.1) Suppose z0 := (JCO, VO) is in the boundary of C and 
that e > 0 is such that U :— B(zo,e)\C contains no points with nearest points 
in C; this will happen if ZQ is a boundary point not in the closure of nearest 
points. By Lemma 7.2 we have {O}0F* D ^ddu) for every u in U (of course 
dFdc(u) = <j> is possible). In addition we have by [3], or [15] that 

{0} 0 7 * 2 weak*cl-conv{z*: z* G tfddu), u e U} D ddc(u). 

Now let (jt2,y) and (JCI, v) lie in #(z0,e) with 

M, := (tx{ + (1 - 0*2,j) Gf/ for all 0 < t < 1. 

By Lebourg's Mean-value theorem [5] 

dc(x\,y)-dc(x2,y) G {ddc(ut),(xx -x 2 , 0 ) ) . 
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718 J. M. BORWEIN AND S. FITZPATRICK 

But ddc(ut) annihilates (JCI — Jt2,0) SO that dc(x\,y) — ^cfe , j ) -
After some consideration of the case where (JCI,y) G C, it follows that on 

#(z0, e) the distance dc(x,y) depends only on y. In particular, if (x,y) G £(z0, e) 
then dc(x,y) = dc(xo,y) where z0 = (x0,yo). Now let (x,y) G £(z0,e/2) have 
minimizing sequence {(xn,yn)} from C. Then zo G C so we can assume 

||(*/i,;y») - (*,y)\\ = \\zo - (x,y)\\ < c/2 

and (xn,yn) G B(z0le). Thus 0 = dcfe,)^) = dc(x0,yn) so (x0 ,^) G C and 

dcC*o,)0 = dc(x,)0 = Km llfc^Ai) - (x,y)\\ 

^ l i m s u p | | ^ - j | | ^ | b # - j | | 

where j # is any cluster point of {yn}- Since (xo,y*) G C we have 

</c(*o,j)^ IK*»/) - ( * > , / ) | | = h*-y\\ ^dc{x^y) 

and (JCO,J#) is a nearest point to (xo,y), contrary to our assumption. Hence 
nearest points are dense in the boundary of C. 

REMARKS 7.3. (a) Choosing 

| | | ( ^ 0 | | | : = m a x { H , | r | } , y : = ^ 

and any infinite dimensional reflexive Kadec space forX, we obtain a non-Kadec 
reflexive space E to which Theorem 7.2 applies. If, specifically, X := kCZj+) it 
is easy to construct an explicit example of the set promised by the non-Kadec 
construction of Theorem 5.10. 

(b) Choosing X := /2(Z+), Y := R and ||| • ||| such that the unit ball is 

«U,.|||[0,1] := {(s, t): \t\ ^ 1 , | ^ 1 + ( 1 - t2)1'2} 

we obtain a uniformly smooth non-Kadec space to which Theorem 7.2 applies. 

8. Spaces with the Radon-Nikodym property. We refer the reader to [4] 
for the vast amount known about spaces with the Radon-Nikodym property. All 
we need here is one definition and one characterization. 

Definition 8.1. A functional x* G E* strongly exposes a subset C of E at 
x G clC if supzGc(**,z) — (x*,x) and 

lim diam{j G C:(x*,y) > sup(;c*,z) — a} — 0. 
«-̂ °+ zee 

A functional x* G E* strongly exposes a set C if it strongly exposes some point 
of the closure of C. This is equivalent to saying that 

lim diam{j G C: (x*,y) > sup(x*,z) — a} = 0. 
«—°+ zee 
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THEOREM 8.2. A Banach space E has the Radon-Nikodym property (RNP) if 
and only if for every bounded non-empty subset C ofE the set SE(C) of strongly 
exposing functional for C is dense in E*. In particular, reflexive spaces and 
duals of Asplund spaces have the RNP. 

For unbounded subsets of non-reflexive subspaces there are no general results 
on nearest points, as shown by the example of the closed hyperplane determined 
by a non-norm attaining functional (Remark 3.4). For bounded closed sets in 
spaces with the RNP we have a positive result. 

THEOREM 8.3. Let E be a Banach space with the Radon-Nikodym property 
and let C be a closed bounded non-empty subset of E. Then C is contained in 
the closed convex hull of its nearest points to points in E\C. In particular C 
possesses nearest points. 

Proof. If x G C does not lie in the convex hull of its nearest points we may 
separate by x* G E* to obtain 

(x*jx) > sup{(jt*,y): y is a nearest point in C}. 

Let K := C +£[0,1] and by Theorem 8.2 find y* G SE(K) with \\y*\\ = 1 such 
that 

(y*,x) > sup{(y*,y):y is a nearest point in C}. 

Then, a completeness argument shows that y* actually both strongly exposes C 
at z G C and strongly exposes #[0,1] at u with ||w|| ^ 1. Hence we have 

(y\z) = sup{(y\y):yeC} and (y\ u) = \\y*\\ = 1. 

Now z + u has a nearest point z G C. Indeed, for c G C 

\\(z + u) - c\\ ^ (y*, z + u-c)^ (y*, u) 

= 1 = ||w|| = ||(z + u) — u\\. 

However this contradicts 

(y*,z) ^ (y*,x) > sup{(y*,y):y is a nearest point in C}. 

For convex sets we state a deeper result of Edelstein [8]. 

THEOREM 8.4. Let E be a Banach space with the Radon-Nikodym property 
and let C be a non-empty closed, convex, bounded subset of E. Then the points 
in E\C which have nearest points in C are weakly dense in E\C. 

REMARKS 8.5. (i) We observe that outside of a space with the Radon-Nikodym 
property, Theorem 8.4 can go badly wrong. An example of Edelstein and Thomp-
son [9] shows that in CQ(Z+) with the supremum norm there is an equivalent ball 
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B such B has no nearest points in || H^. The sets C and B are called companion 
(anti-proximinal) bodies. The only known examples are in CQ and its isomorphs. 
Does the non-existence of companion bodies characterize RNP spaces? 

(ii) Let £ be a Banach space with the Radon-Nikodym property and let C 
be an arbitrary non-empty closed bounded subset of E. Are the points in E\C 
which have nearest points in C weakly dense in E\C1 
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“Best Approximation Problems in (Reflexive) Banach Space” 
 
 
 

In Part III, we shall  
– study Klee’s Chebysev question 

• discuss norms in which nearest points exist densely 

–  resolve the Euclidean case 
• giving four proofs of the Motzkin-Bunt Theorem 

– consider the Hilbert case 
• giving a partial result 
• discuss related examples, extensions and conjectures 
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Abstract This paper is a companion to a lecture given at the Prague Spring
School in Analysis in April 2006. It highlights four distinct variational meth-
ods of proving that a finite dimensional Chebyshev set is convex and hopes to
inspire renewed work on the open question of whether every Chebyshev set in
Hilbert space is convex.
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1 Introduction

Let us set some notation and definitions which are for the most part con-
sistent with those in [7,10,13,25]. For a nonempty set A in a Banach space
(X, ‖ · ‖) we consider the indicator function ιA(x) := 0 if x ∈ A and +∞
otherwise. The distance function dA(x) := infa∈A ‖x−a‖ and the radius function
rA(x) := supa∈A ‖x − a‖ are our main players. Note that rA is finite if and only
if A is bounded and then rA = rco A is a continuous convex function.

The variational problems we consider are to determine when and if dA and
rA attain their bounds. Specifically

PA(x) := argmin dA
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22 J. M. Borwein

and

FA(x) := argmax rA,

define the nearest point and farthest point operators, respectively. When PA(x) �=
∅ we say x admits best approximations or nearest points and call the elements of
PA(x) nearest points or proximal points. Worst approximation and farthest point
are correspondingly defined in terms of FA. A set is called proximal (sometimes
proximinal) if D(PA) = X and Chebyshev if PA is both everywhere defined and
single-valued. We try to reserve the symbols S for a Chebyshev set and E for a
Euclidean space. In that case especially, PA is often called the metric projection
on A, and we shall not always distinguish {PA(x)} and PA(x).

2 Concepts and tools

As we shall see, these two problems are wonderful testing grounds for nonlinear
and convex analysis. A fine variational tool is:

Theorem 1 (Basic Ekeland principle, [7,10,16,18]) Suppose the function
f : E �→ (g3) − ∞, ∞] is closed and the point x ∈ E satisfies f (x) < inf f + ε for
some real ε > 0. Then for any real λ > 0 there is a point v ∈ E satisfying the
conditions

(a) ‖x − v‖ ≤ λ,
(b) f (v) + (ε/λ)‖x − v‖ ≤ f (x), and
(c) v minimizes the function f (·) + (ε/λ)‖ · −v‖.

Usually (b) is decoupled to yield (a) and (b′) f (v) ≤ f (x), but we shall need
the full power of (b). Sadly, the short finite-dimensional proof in [7,10,18] does
not seem to produce (b).

Fact 2 (Projection, [13]) Let A be a closed set in a Hilbert space. Suppose that
a ∈ PA(x). Then PA(tx + (1 − t)a) = {a} for 0 < t < 1.

This clearly holds in any rotund Banach space – that is one with a strictly
convex unit ball.

Fact 3 (Chebyshev, [10,13,16]) Every Chebyshev set is closed and every closed
convex set in a rotund reflexive space is Chebyshev. In particular every non-empty
closed convex set in Hilbert space is Chebyshev.

Uniqueness requires only rotundity. A much deeper result is

Proposition 4 (Reflexivity, [13,16]) A space X is reflexive iff every closed convex
set C is proximinal iff every closed convex set has nearest points.

Proof In reflexive space every closed convex set is boundedly relatively weakly
compact. Since the norm is weakly lower semicontinuous the problem
minc∈C ‖x − c‖ is attained for all x ∈ X.
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6 2 Variational Principles

Fig. 2.1. Ekeland variational principle. Top cone: f(x0) − ε|x − x0|; Middle cone:
f(x1)− ε|x− x1|; Lower cone: f(y)− ε|x− y|.

a supporting hyperplane. Ekeland’s variational principle provides a kind of
approximate substitute for the attainment of a minimum by asserting that,
for any ε > 0, f must have a supporting cone of the form f(y) − ε‖x − y‖.
One way to see how this happens geometrically is illustrated by Figure 2.1.
We start with a point z0 with f(z0) < infX f + ε and consider the cone
f(z0)− ε‖x− z0‖. If this cone does not support f then one can always find a
point z1 ∈ S0 := {x ∈ X | f(x) ≤ f(z)− ε‖x− z‖)} such that

f(z1) < inf
S0

f +
1
2
[f(z0)− inf

S0
f ].

If f(z1)−ε‖x−z1‖ still does not support f then we repeat the above process.
Such a procedure either finds the desired supporting cone or generates a se-
quence of nested closed sets (Si) whose diameters shrink to 0. In the latter
case, f(y)−ε‖x−y‖ is a supporting cone of f , where {y} =

⋂∞
i=1 Si. This line

of reasoning works similarly in a complete metric space. Moreover, it also pro-
vides a useful estimate on the distance between y and the initial ε-minimum
z0.

2.1.2 The Basic Form

We now turn to the analytic form of the geometric picture described above –
the Ekeland variational principle and its proof.

Theorem 2.1.1 (Ekeland Variational Principle) Let (X, d) be a complete
metric space and let f : X → R ∪ {+∞} be a lsc function bounded from
below. Suppose that ε > 0 and z ∈ X satisfy

f(z) < inf
X

f + ε.
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Proximality and Chebyshev sets 23

If X is not reflexive, then the James theorem [15] guarantees the existence of
a norm-one linear functional f such that f (x) < 1 for all x ∈ BX , the unit ball.
It is an instructive exercise to determine that df −1(0)(x) is not attained unless
f (x) = 0. 
�

We shall see in Corollary 20 that there are non-reflexive spaces in which
each bounded closed set admits proximal points. The non-expansiveness of the
metric projection on a closed convex set in Hilbert space is standard and follows
from the necessary and sufficient condition

〈x − PC(x), c − x〉 ≤ 0

for all x ∈ C.
We will now be more precise and interpolate a notion which greatly strength-

ens the property of Fact 2. We call S ⊂ E a sun if, for each point x ∈ E, every
point on the ray PS(x) + R+(x − PS(x)) has nearest point PS(x).

Proposition 5 (Suns, [7,13,16]) In Hilbert space (i) a closed set C is convex iff
(ii) C is a sun iff (iii) the metric projection PC is nonexpansive.

Proof We sketch the proof. It is easy to see that (i) implies (ii); while (iii) implies
(i) is usually proved by a mean value argument. It remains to show (ii) implies
(iii). Denoting the segment between points y, z ∈ E by [y, z], one shows that
property (ii) implies

PS(x) = P[z,PS(x)](x) for all x ∈ E, z ∈ S,

which quickly yields (iii), [7,13]. 
�
In three-or-more dimensions, non-expansivity characterizes Euclidean space

amongst Banach spaces as do many other fundamental geometric properties
(see, for example, [2,13]).

A fundamental result of much independent use is

Proposition 6 (Characterization of Chebyshev sets, [7,13,16]) If E is Euclidean
then the following are equivalent.

1. S is Chebyshev.
2. PS is single-valued and continuous.
3. d2

S is everywhere Fréchet differentiable with ∇Fd2
S/2 = I − PS.

4. The Fréchet sub-differential ∂F(−d2
S)(x) is never empty.

Proof (1) ⇒ (2) follows by a compactness argument. (2) ⇒ (3) is nearly imme-
diate since I − PS is a continuous selection of ∂d2

S/2. (3) ⇒ (4). We will see a
proof of (4) ⇒ (1) in the next section. 
�

This all remains true assuming only the space to be finite dimensional with a
smooth and rotund norm – indeed many of implications remain true in Banach
space at least for ‘tame’ sets. The only really problematic step is (1) ⇒ (2).
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24 J. M. Borwein

A more flexible notion than that of a sun is that of an approximately convex
set, [7,16]. We call C ⊂ X approximately convex if, for any closed norm ball
D ⊂ X disjoint from C, there exists a closed ball D′ ⊃ D disjoint from C with
arbitrarily large radius. Immediate from the definitions, as illustrated in Fig. 1
we have

Proposition 7 Every sun is approximately convex.

Proposition 8 (Approximate convexity, [7,16]) Every convex set in a Banach
space is approximately convex. When the space is finite dimensional and the dual
norm is rotund every approximately convex set is convex.

Proof The first assertion follows easily from the Hahn–Banach theorem [10,
16,25].

Conversely, suppose C is approximately convex but not convex. Then there
exist points a, b ∈ C and a closed ball D centered at the point c := (a + b)/2
and disjoint from C. Hence, there exists a sequence of points x1, x2, . . . such that
the balls Br = xr + rB are disjoint from C and satisfy D ⊂ Br ⊂ Br+1 for all
r = 1, 2, . . ..

The set H := cl ∪r Br is closed and convex, and its interior is disjoint from C
but contains c. It remains to confirm that H is a half-space. Suppose the unit vec-
tor u lies in the polar set H◦. By considering the quantity 〈u, ‖xr − x‖−1(xr − x)〉
as r ↑ ∞, we discover H◦ must be a ray. This means H is a half-space. 
�

In �1 or �∞ norms this clearly fails as the righthand-side of Fig. 1 suggests. In
the first case consider {(x, y) : y ≤ |x|}. Vlasov [16, p. 242] shows dual rotundity
characterizes the coincidence of convexity and approximate convexity, [16].

Fig. 1 Suns and approximate convexity

jon
Rectangle

jon
Rectangle

jon
Highlight



24 J. M. Borwein

A more flexible notion than that of a sun is that of an approximately convex
set, [7,16]. We call C ⊂ X approximately convex if, for any closed norm ball
D ⊂ X disjoint from C, there exists a closed ball D′ ⊃ D disjoint from C with
arbitrarily large radius. Immediate from the definitions, as illustrated in Fig. 1
we have

Proposition 7 Every sun is approximately convex.

Proposition 8 (Approximate convexity, [7,16]) Every convex set in a Banach
space is approximately convex. When the space is finite dimensional and the dual
norm is rotund every approximately convex set is convex.

Proof The first assertion follows easily from the Hahn–Banach theorem [10,
16,25].

Conversely, suppose C is approximately convex but not convex. Then there
exist points a, b ∈ C and a closed ball D centered at the point c := (a + b)/2
and disjoint from C. Hence, there exists a sequence of points x1, x2, . . . such that
the balls Br = xr + rB are disjoint from C and satisfy D ⊂ Br ⊂ Br+1 for all
r = 1, 2, . . ..

The set H := cl ∪r Br is closed and convex, and its interior is disjoint from C
but contains c. It remains to confirm that H is a half-space. Suppose the unit vec-
tor u lies in the polar set H◦. By considering the quantity 〈u, ‖xr − x‖−1(xr − x)〉
as r ↑ ∞, we discover H◦ must be a ray. This means H is a half-space. 
�

In �1 or �∞ norms this clearly fails as the righthand-side of Fig. 1 suggests. In
the first case consider {(x, y) : y ≤ |x|}. Vlasov [16, p. 242] shows dual rotundity
characterizes the coincidence of convexity and approximate convexity, [16].

Fig. 1 Suns and approximate convexity

jon
Rectangle



24 J. M. Borwein

A more flexible notion than that of a sun is that of an approximately convex
set, [7,16]. We call C ⊂ X approximately convex if, for any closed norm ball
D ⊂ X disjoint from C, there exists a closed ball D′ ⊃ D disjoint from C with
arbitrarily large radius. Immediate from the definitions, as illustrated in Fig. 1
we have

Proposition 7 Every sun is approximately convex.

Proposition 8 (Approximate convexity, [7,16]) Every convex set in a Banach
space is approximately convex. When the space is finite dimensional and the dual
norm is rotund every approximately convex set is convex.

Proof The first assertion follows easily from the Hahn–Banach theorem [10,
16,25].

Conversely, suppose C is approximately convex but not convex. Then there
exist points a, b ∈ C and a closed ball D centered at the point c := (a + b)/2
and disjoint from C. Hence, there exists a sequence of points x1, x2, . . . such that
the balls Br = xr + rB are disjoint from C and satisfy D ⊂ Br ⊂ Br+1 for all
r = 1, 2, . . ..

The set H := cl ∪r Br is closed and convex, and its interior is disjoint from C
but contains c. It remains to confirm that H is a half-space. Suppose the unit vec-
tor u lies in the polar set H◦. By considering the quantity 〈u, ‖xr − x‖−1(xr − x)〉
as r ↑ ∞, we discover H◦ must be a ray. This means H is a half-space. 
�

In �1 or �∞ norms this clearly fails as the righthand-side of Fig. 1 suggests. In
the first case consider {(x, y) : y ≤ |x|}. Vlasov [16, p. 242] shows dual rotundity
characterizes the coincidence of convexity and approximate convexity, [16].

Fig. 1 Suns and approximate convexity

jon
Rectangle

jon
Rectangle

jon
Highlight

jon
Rectangle

jon
Rectangle



Proximality and Chebyshev sets 25

We shall also exploit unexpected relationships between convexity and
smoothness properties of dA and rA. For this we begin with:

Fact 9 (Fenchel conjugation, [7,16]) The convex conjugate of an extended real-
valued function f on a Banach space X is defined by

f ∗(x∗) := sup
x∈X

{〈x, x∗〉 − f (x)}

and is a convex, closed function (possibly infinite). Moreover, the biconjugate
defined on X∗ by

f ∗∗(x) := sup
x∗∈X∗

{〈x, x∗〉 − f ∗(x∗)}

agrees with f exactly when f is convex, proper and lower-semicontinuous.

Fact 9 is often a fine way of proving convexity of a function g by showing g
arises as a conjugate, see [7,10,25], even by computer [3]. A particularly good
tool is

Proposition 10 (Smoothness and biconjugacy, [20,28]) If f ∗∗ is proper in a
Banach space and f ∗ is everywhere Fréchet differentiable then f is convex.

Proof The general result may be found in [9,28]. Under stronger conditions in
a finite dimensional space E we shall prove more [7,19].

We consider an extended real valued function f that is closed and bounded
below and satisfies the growth condition

lim‖x‖�→∞
f (x)

‖x‖ = +∞,

along with a point x ∈ dom f . Then Carathéodory’s theorem [7]; Sect. 1.2] ensures
there exist points x1, x2, . . . , xm ∈ E and real λ1, λ2, . . . , λm > 0 satisfying

∑

i

λi = 1,
∑

i

λixi = x,
∑

i

λif (xi) = f ∗∗(x).

The definitional Fenchel–Young inequality, f (x) + f ∗(x∗) ≥ 〈x, x∗〉 valid for all
x, x∗, implies that

∂(f ∗∗)(x) =
⋂

i

∂f (xi).

Suppose now that the conjugate f ∗ is indeed everywhere differentiable.
If x ∈ ri (dom(f ∗∗)), we argue that xi = x for each i. We conclude that ri (epi (f ∗∗))
⊂ epi (f ), and use the fact that f is closed to deduce f = f ∗∗; and so f is convex.
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26 J. M. Borwein

We illustrate the duality for W := x �→ (1 − x2)2 in Fig. 2. The left hand
picture shows W and W∗∗, the right hand shows W∗.

We record next two lovely Hilbertian duality formulas:

Fact 11 (Hilbert duality, [7,19]) For any closed set A in a Hilbert space

(
ιA + ‖ · ‖2

2

)∗
= ‖ · ‖2 + d2

A

2
(1)

(
ι−A − ‖ · ‖2

2

)∗
= r2

A − ‖ · ‖2

2
. (2)

Each identity once known is an easy direct computation from the definitions.
We now turn to our final approach via inversive geometry. The self-inverse

map ι : E \ {0} �→ E defined by ι(x) = ‖x‖−2x is called the inversion in the
unit sphere. While this is meaningful in any Banach space it is nicest in Hilbert
space.

Fact 12 (Preservation of spheres, [1]) If D ⊂ E is a ball with 0 ∈ bd D, then
ι(D\{0}) is a halfspace disjoint from 0. Otherwise, for any point x ∈ E and radius
δ > ‖x‖,

ι((x + δB) \ {0}) = 1
δ2 − ‖x‖2 {y ∈ E : ‖y + x‖ ≥ δ}.

3 Proximality and Chebyshev sets in Euclidean space

We now describe four approaches to the following classic theorem.

Theorem 13 (Motzkin-Bunt, [1,7,13,16,19]) A finite dimensional Chebyshev
set is convex.

Fig. 2 A smooth nonconvex ‘W’ function and its nonsmooth conjugate
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Proximality and Chebyshev sets 27

Proof (1, via fixed point theory, [7,13]) By Proposition 5 it suffices to show S
is a sun. Suppose S is not a sun, so there is a point x �∈ S with nearest point
PS(x) =: x such that the ray L := x + R+(x − x) strictly contains

{z ∈ L | PS(z) = x}.

Hence by Fact 2 and the continuity of PS, the above set is a nontrivial closed
line segment [x, x0] containing x.

Choose a radius ε > 0 so that the ball x0 + εB is disjoint from S. The contin-
uous self map of this ball

z �→ x0 + ε
x0 − PS(z)

‖x0 − PS(z)‖
has a fixed point by Brouwer’s theorem. We then quickly derive a contradiction
to the definition of the point x0. We illustrate this construction in Fig. 3. 
�

Alternatively, via Proposition 8 it suffices to show S is approximately convex.
This method is the least coupled to Hilbert space.

Proof (2, via the variational principle, [7,16]) Suppose S is not approximately
convex. We claim that for each x �∈ S

lim sup
y→x

dS(y) − dS(x)

‖y − x‖ = 1. (3)

This is a consequence of the (Lebourg) mean-value for (Lipschitz) functions
[7,12], since all Fréchet (super-)gradients have norm-one off S.

Fig. 3 Failure of a sun
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28 J. M. Borwein

We now appeal to the Basic Ekeland principle of Proposition 1 as follows:
Consider any real α > dC(x). Fix reals σ ∈ (0, 1) and ρ satisfying

α − dC(x)

σ
< ρ < α − β.

By applying the Basic Ekeland variational principle to the function −dC+δx+ρB,
prove there exists a point v ∈ E satisfying the conditions

dC(x) + σ‖x − v‖ ≤ dC(v)

dC(z) − σ‖z − v‖ ≤ dC(v) for all z ∈ x + ρB.

We deduce ‖x − v‖ = ρ, and hence x + βB ⊂ v + αB. Thus, C is approximately
convex and Proposition 8 concludes this proof. 
�

We next consider two theorems that exploit conjugate duality.

Proof (3, via conjugate duality, [7,19]) First, d2
S is differentiable by Proposition

6. Now consider formula (1). The righthand side is clearly differentiable and
it suffices to appeal to Proposition 10 to deduce that ιS + ‖ · ‖2 is convex. A
fortiori, so is S. 
�

We may also deduce a ‘dual’ result about farthest points that we shall use in
our fourth proof.

Theorem 14 Suppose that every point in Euclidean space admits a unique far-
thest point in a set A. Then A is singleton.

Proof We leave it to the reader to deduce that r2
A is differentiable (and strictly

convex), [7, p. 226]. One way is to use the formula for the subgradient of a
convex max-function over a compact (convex) set [7, p. 129, Exercise 10], or
[10,12,20,25]. Uniqueness of the farthest point FA(x) then implies that

1
2

∂r2
A(x) = x − FA(x) = 1

2
∇r2

A(x).

Now consider formula (2). The righthand side is again clearly differentiable
and it an to appeal to Proposition 10 to shows that ι−A − ‖ · ‖2 is convex. As
−‖ · ‖ is strictly concave, A can not contain two points. 
�
Proof (4, via inversive geometry, [1,7]) Without loss of generality, suppose
0 �∈ C but 0 ∈ cl conv C. Consider any point x ∈ E. Fact 12 implies that the
quantity

ρ := inf{δ > 0 | ιC ⊂ x + δB}

satisfies ρ > ‖x‖. Now let z denote the unique nearest point in C to the point
(−x)/(ρ2 − ‖x‖2). and observe, again via Fact 12, that ι(z) is the unique fur-
thest point in ι(C) to x. By Theorem 14 the set ι(C) is a singleton which is not
possible. 
�
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Proximality and Chebyshev sets 29

4 Proximality and Chebyshev sets in infinite dimensions

In this section we make a discursive look at the subject in infinite dimensions.
In 1961, Klee [22] asked whether a Chebyshev set in Hilbert space must be
convex? The literature is large but a good start can be made by reading the
relevant parts of [13] and [16]. A comprehensive survey up to 1973 is given in
[26]. The cleanest partial answer yet known is:

Theorem 15 (Chebyshev sets, [1,9,13,16,22]) A weakly closed Chebyshev set in
Hilbert space is convex.

Proof Once we establish the Fréchet differentiability of d2
S the second and

third proofs need no change. To do this it suffices to argue that I − PS is still
norm-weak∗ continuous while x �→ ‖x − PS(x)‖ = dS(x) is continuous. We then
appeal to the fact that norm and weak convergence agree on spheres in Hilbert
space.

Asplund’s proof likewise holds – indeed, this was his proof of the theorem,
[1]. The first proof also extends as far as boundedly norm-compact sets via
Schauder’s fixed point theorem, albeit with a little more effort [10, p. 219]. 
�
Remark 16 (Generalizations) Indeed, the second proof actually shows Vlasov’s
(1970) result that in a Banach space with a rotund dual norm any Chebyshev
set with a continuous projection is convex as described in [5,16,17] since (3) will
hold under these hypotheses.

Asplund’s method [1] also yields the striking result that if there is a non-con-
vex Chebyshev set in Hilbert space there is also one that is the complement
of an open convex body – a so called Klee cavern. This is both surprising yet
consistent with Fig. 3 that we drew for the proof via Brouwer’s theorem.

While a sun in a smooth Banach space is known to be convex, [26], the
existence in a renorming of C[0, 1] of a disconnected non-Chebyshev sun, [23],
indicates the limitations of the first approach. 
�
Remark 17 (Counter-examples) Opinions differ about whether every (norm-
closed) Chebyshev set in Hilbert space is convex. Since there are even closed
sets of rotund reflexive space with discontinuous projections [11], in that level
of generality one must somehow establish the continuity of PS or avoid the
issue to show S is convex.

It is known that any non-convex Chebyshev set in Hilbert space must have a
badly discontinuous metric projection [27]. That paper uses monotone opera-
tors to show that H \ {x : ∇FdS(x) exists} is the countable union of nonconstant
Lipschitz curves. This is based on the fact that PS is maximal monotone if and
only if S is Chebyshev and PS is continuous. In the separable case Duda [14]
shows the the covering can be achieved by difference-convex surfaces.

It is also known that there is an example of a bounded non-convex Cheby-
shev set (actually it can be disconnected Chebyshev foam) in an incomplete
inner-product space, [13,21]. 
�

Recall that a norm is (sequentially) Kadec–Klee if weak and norm topologies
coincide (sequentially) on norm spheres.
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30 J. M. Borwein

Theorem 18 (Dense and generic proximality) Every closed set A in a Banach
space densely (equivalently generically) admits nearest points iff the norm is
Kadec–Klee and the space is reflexive.

Proof If (originally proved by Lau in [24]). We sketch the proof in [4,10]. Con-
sider a sub-derivative φ ∈ ∂F(−dA)(x), which by the smooth variational princi-
ple exists for a dense set in X \ A. Let (an) be a bounded minimizing sequence,
and use reflexivity to extract a subsequence (we use the same name) converging
weakly to z ∈ X. Since φ ∈ ∂F(−dA)(x) it is easy to show that φ‖ = 1 and that
φ(an −x) → dA(x). Thus, we see that ‖z−x‖ ≥ φ(z−x) = dA(x) ≥ lim ‖an −x‖
and by weak lower-semicontinuity of the norm ‖an −x‖ → ‖z−x‖. The Kadec–
Klee property then implies that an → z in norm and so z ∈ A. As ‖z−a‖ = dA(x)

we have shown the set of points with nearest points in A is dense. Showing gene-
ricity takes a little more effort.

Only if (originally due to Konjagin). We sketch the proof in [4]. We shall
construct a norm closed set A and a neighbourhood U within which no point
admits a best approximation in A. If the space is not reflexive we appeal to
Proposition 4.

In the reflexive setting, failure of the Kadec–Klee property means there must
be a weakly-null sequence (xn) with ‖xn‖ = 1 and with ‖xn − xm‖ ≥ 3ε > 0 (i.e,
the sequence is 3ε-separated). Let

A := ∩nxn + εBX .

It is routine to verify that in some neighbourhood U of zero there are no
points with PA(x) non-empty. 
�
Remark 19 (a) An easier version of the ‘if‘ argument exactly proves (4) ⇒ (1)

of Proposition 6.
(b) Konjagin’s construction produces a distance function dA which is Fréchet

differentiable (even affine) in a neighbourhood of zero but induces no best
approximations from that neighbourhood. Thus the geometry of the norm is
critical even in the presence of Fréchet derivatives. 
�
Corollary 20 (Existence of proximal points) A closed set C in a Banach space
X has a nonempty set of proximal points under any of the following conditions.

1. X is reflexive and the norm is (sequentially) Kadec–Klee, (Theorem 18).
2. X has the Radon Nikodym property [15] and C is bounded, [4].
3. X is norm closed and boundedly relatively weakly compact, [8].

This list is far from exhaustive. For instance

Example 21 (Norms with dense proximals, [4]) There is a class of reflexive
non-Kadec–Klee norms such that every nonempty closed set A densely pos-
sesses proximal points. Explicit examples are given in [4]. The counter-example
sketched in Theorem 18 is locally weakly-compact and convex and so admits
dense proximals. 
�
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Example 22 (Multiple caverns, [4]) Let us call the complement of finitely many
disjoint open convex bodies a multiple cavern. Using inversive geometry meth-
ods as above, one can show that in a reflexive space every multiple Klee cavern
admits proximal points. In [4] such sets were called Swiss cheese. 
�

Finally, I discuss two very useful additional properties of the distance func-
tion when the norm is uniformly Gâteaux differentiable as is the case in Hilbert
space and, after renorming, in every super-reflexive and every separable Banach
space, [5]. We say that ∂dA is minimal if it contains no smaller w∗-cusco – a norm
to w∗-upper semicontinuous mapping with non-empty w∗-compact images.

Remark 23 (Some additional properties of dA, [5]) A Banach space X is uni-
formly Gâteaux differentiable if and only if ∂dA is minimal for every closed
nonempty set A. This has lovely consequences for proximal normal formulas,
[6] (see [10] for the finite dimensional case). It relies on the fact that such norms
also characterize those spaces for which

∂−(−dA)(x) = ∂�(−dA)(x) = ∂o(−dA)(x),

that is the Dini, Clarke and Michel-Penot sub-differentials (see [7]) coincide for
all closed sets A, and hence that −dA is both Clarke and Michel-Penot regular,
[5]. 
�

5 Conclusion

I hope this discussion has whetted some readers’ appetites to attempt at least
one of the following open questions.

Question 1 Is every Chebyshev set in Hilbert space convex?

Question 2 Is every closed set in Hilbert space with unique farthest points a
singleton?

Question 3 Is every Chebyshev set in a rotund reflexive Banach space convex?

Question 4 Does every closed set in a reflexive Banach space admit a nearest
point? What about rotund smooth renormings of Hilbert space?

Question 5 Does every closed set in a reflexive Banach space admit proximal
normals at a dense set of boundary points?

And finally, I certainly hope I have made good advertisements for the power
of variational and nonsmooth analysis.

Acknowledgements Research was supported by NSERC and by the Canada Research Chair
Program.
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also characterize those spaces for which

∂−(−dA)(x) = ∂�(−dA)(x) = ∂o(−dA)(x),

that is the Dini, Clarke and Michel-Penot sub-differentials (see [7]) coincide for
all closed sets A, and hence that −dA is both Clarke and Michel-Penot regular,
[5]. 
�

5 Conclusion

I hope this discussion has whetted some readers’ appetites to attempt at least
one of the following open questions.

Question 1 Is every Chebyshev set in Hilbert space convex?

Question 2 Is every closed set in Hilbert space with unique farthest points a
singleton?

Question 3 Is every Chebyshev set in a rotund reflexive Banach space convex?

Question 4 Does every closed set in a reflexive Banach space admit a nearest
point? What about rotund smooth renormings of Hilbert space?

Question 5 Does every closed set in a reflexive Banach space admit proximal
normals at a dense set of boundary points?

And finally, I certainly hope I have made good advertisements for the power
of variational and nonsmooth analysis.

Acknowledgements Research was supported by NSERC and by the Canada Research Chair
Program.
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Happy Ending Problem 

 
 Named by Paul Erdős (1913-96) as it led to marriage of George Szekeres (1911- 28-8-2005) 
and Esther Klein (1910- 28-8-2005). Also Roger Eggelston and John Selfridge (1927-2010)  
Theorem. Any set of five points in the plane in general position[1] has a subset of four 
points that form the vertices of a convex quadrilateral. This was one of the original results 
that led to the development of Ramsey theory. 
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“Small Sets in Banach Space” 

 

 
 

 

In Part IV, we shall  

– study five concepts of small sets 

– all are closed under translation, countable union and 
inclusion 

• and can be used to do infinite dimensional analysis even 
though no Haar measure exists 

• for instance, if X is separable every real valued Lipschitz 
function is Gateaux differentiable except on a Haar null set  
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