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Abstract. Herein, with the aid of substantial symbolic computation, we solve previously open prob-
lems in the theory of n-dimensional box integrals Bn(s) := 〈|~r|s〉; ~r ∈ [0, 1]n. In particular we resolve
an elusive integral called K5 that previously acted as a �blockade� against closed-form evaluation in
n = 5 dimensions. In consequence we now know that Bn(integer) can be given a closed form for
n = 1, 2, 3, 4, 5. We also �nd the general residue at the pole at s = −n, this leading to new re-
lations and de�nite integrals�for example, we are able to give the �rst nontrivial closed forms for
6-dimensional box integrals and to show hyperclosure of B6(even). The Clausen function and its gen-
eralizations play a central role in these higher-dimensional evaluations. Our results provide stringent
test scenarios for symbolic-algebra simpli�cation methods.
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1 Background and Nomenclature

Recent papers by Bailey, Borwein, and Crandall [5, 6]�stemming from the historical work of Ander-
ssen et al. [1]�have exhibited new results on the computation and analysis of box integrals, these
being expectations of radius and separation, respectively, within an n-cube. We write formally
Bn(s) := 〈|~r|s〉, ∆n(s) := 〈|~r − ~q|s〉, with speci�c de�nitions

Bn(s) :=

∫
~r∈[0,1]n

|~r|s D~r (1.1)

=

∫ 1

0

· · ·
∫ 1

0

(
r2
1 + · · ·+ r2

n

)s/2
dr1 · · · drn,

∆n(s) :=

∫
~r,~q∈[0,1]n

|~r − ~q|s D~r D~q (1.2)

=

∫ 1

0

· · ·
∫ 1

0

(
(r1 − q1)2 + · · ·+ (rn − qn)2

)s/2
dr1 · · · drn dq1 · · · dqn.

Introduced in the work [6] is a useful function, a kind of generalized box integral:

Cm,0(s, a) :=

∫
~r∈[0,1]m

(a+ r2)s/2 D~r. (1.3)

Let us list some relevant known facts and interrelations amongst these functions. It is important
to observe that Bn(s),∆n(s) have well de�ned analytic continuations over the entire complex s-
plane, with Bn(s) having a solitary pole at s = −n and ∆n(s) having exactly n + 1 poles, at s =
−2n,−2n + 1, . . . ,−n. In particular, though something like B4(−5) does not converge as a literal
box integral, its value exists unambiguously, and is known in closed form, namely as a negative value
−
√

8 arctan(1/
√

8). References [5, 6] establish the analytic properties together with the following
results:

1. B,C relations:

Bn(s) =
n

n+ s
Cn−1,0(s, 1), (1.4)

Bn(−n− 1) = −nCn−2,0(1− n, 2),

Resn = nCn−1(−n, 1), (1.5)

where Resn := lim
ε→0

εBn(−n+ ε) is the residue of Bn at the solitary pole (s = −n).

2. Absolutely convergent analytic series for B, with pole at s = −n:

Bn(s) =
n1+s/2

s+ n

∑
k≥0

γn−1,k

(
2

n

)k
(1.6)

where the γm,k are certain �xed coe�cients de�ned by a recursion [15]:

(1 + 2k/m) γm,k = (k − 1− s/2) γm,k−1 + γm−1,k (1.7)

for m, k ≥ 1, this recursion being ignited by γ0,k := δ0,k, γm,0 := 1.

3. Recurrence relations:

C0,0(s, a) := as/2, (1.8)

Cn,0(s, 0) = Bn(s), (1.9)

asCm,0(s− 2, a) = (s+m)Cm,0(s, a)−mCm−1,0(s, a+ 1), (1.10)

(n+ s)(n+ s− 1)Bn(s) = s(n+ s− 2)Bn(s− 2) + n(n− 1)Cn−2,0(s, 2). (1.11)
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2 State of the box-integral art

We have enumerated some important relations; presently we summarize known results in regard to
speci�c dimensions.

To begin our summary, we note a recent de�nition of a class of closed forms. Following the
treatment [6] we de�ne a complex number to be hyperclosed if it belongs to the ring of hyperclosure.
This ring is built as follows (see [6] for more details). Consider generalized hypergeometric evaluations

x =
∑
n≥0

cnz
n, (2.1)

where z is algebraic, c0 is rational, and cn = p(n)
q(n) cn−1 where p and q are polynomials with integer

coe�cients. Then the ring of hyperclosure is generated by all such evaluations x under (+, ·). We say
that any element of the ring is hyperclosed. So for example, π, π+log(2+

√
7), Li2(1/

√
5)+(log 2)(log 3)

are all hyperclosed. Incidentally, lest one think the ring of hyperclosure is just too broad, note that
said ring is countable [6].

Known results on box integrals include:

1. Resolution of the ∆n: It was shown in the treatment [6, Theorem 7] that if all Bm(s) and all
residues Resm, are known for m ∈ [1, n], then ∆n(s) is known. In that previous treatment, a
form for the box residues is conjectured and some low-lying residues are given exactly. Happily,
in the present work we shall establish a closed form for all Resm with m ∈ N. Thus, the problem
of evaluating the ∆n evaporates entirely, being replaced by the problem of evaluating the Bn.

2. Hyperclosure in dimensions 1,2,3,4: It is known that for any integer k, all B1(k), B2(k),
B3(k), B4(k) are hyperclosed (exemplary closed forms appear in [6]). The same knowledge exists
for ∆n(k);n = 1, 2, 3, 4 by the arguments of the previous item.

3. Dimension 5: It has been shown in previous work that for integer k 6= −2,−4, the box integral
B5(k) is hyperclosed. The two exceptional k arguments have amounted to a �blockade��with
the obstacle amounting to a single, tough integral called K5, which integral we resolve below.
This resolution of K5 established hyperclosure of all B5(integer), and perforce all ∆5(integer).

4. Dimension 6: Previous to our present treatment, not a single nontrivial B6(integer) had been
evaluated in closed form. (We say �nontrivial" here because, of course, Bn(2h) for positive
integer h is trivially rational.) But we are able to exhibit later in this paper the closed form for
B6(−4), thus breaking the dimension-6 impasse. Moreover, using B6(−4) as a recursive pivot,
we now know that B6(even) are all hyperclosed. Virtually nothing is known, however, about
B6(odd).

5. Very high dimension: An algorithm has been discovered [15] that uses a series of the form
(1.6) to resolve D digits of a box integral Bn(s) in O(n2D) operations, where the implied big-O
constant depends only on s. D.H. Bailey has employed said algorithm to achieve a dimension-
1-million box value to 100 good decimals, the value starting out

B1000000(1) = 577.35021145457203997753408752036227457448125926146101942964 . . .

It is evident that the art of calculation of the Bn is vastly ahead of the corresponding symbolic
art.
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3 Complete resolution of box residues

The general box-residue evaluation can be e�ected as follows. For n dimensions, the residue will be

Resn := lim
δ→0+

δBn(−n+ δ) = lim
δ→0+

δ

∫
[0,1]n

r−n+δ D~r.

But the volume element is
D~r = rn−1 dr D~Ω,

where D~Ω is a suitable de�nition of solid angle for n-space. Thus the r integral inside is∫ R(~Ω)

0

1

r1−δ dr,

where R(~Ω) is the extent of radius from origin to the surface of the n-cube along direction ~Ω. The
integral is

1

δ
R(~Ω)δ,

which when multiplied by the outside factor δ can be taken to be 1. Thus, the residue comes down to
being a piece (an n-tant) of the surface area of the unit n-sphere, namely

Resn =
1

2n−1

πn/2

Γ(n/2)
. (3.1)

This knowledge of all box residues leads, as we shall see, to new closed forms.

Another application of the general residue value is as follows. One of the present authors (O-Y
C.) has conjectured that the pretty integral

In :=

∫
[0,π/4]n

dθ1 · · · dθn
(1 + sec2 θ1 + · · ·+ sec2 θn)1/2

is a rational multiple of πn. This conjecture arose via numerical computation, then observation
that the result matches sequence A002457 in Sloane's Online Encyclopedia [25]. Here we prove the
conjecture, giving as well the precise rational multiplier. First, it is a straightforward combinatorial
result, via polar coordinates on each pair of integration variables in (1.3), that

C2n,0(−2n− 1, 1) =
2n

(2n− 1)!!

n∑
k=0

(−1)k
(
n

k

)
Ik
πn−k

4n−k
.

But by relation (1.5), the left-hand side is just Res2n+1/(2n + 1), which is given by (3.1). We now
have

n∑
k=0

(−1)
k

(
n

k

)
Ik

(π/4)
k

=
1

2n+ 1
.

The global solution to this recurrence system can be resolved by consequence of the binomial transform
being an involution. We write{

n∑
k=0

(−1)
k

(
n

k

)
Ik

(π/4)
k

=
1

2n+ 1
, ∀n ∈ N

}
⇔

{(π
4

)n n∑
k=0

(−1)
k

(
n

k

)
1

2 k + 1
= In, ∀n ∈ N

}
,

Summing the �nite series on the right and simplifying we arrive that∫
[0,π/4]k

dθ1 · · · dθk
(1 + sec2 θ1 + · · ·+ sec2 θk)1/2

=
k!2

(2k + 1)!
πk. (3.2)
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4 Some key integrals

To overcome the aforementioned box-integral blockade at 5 dimensions, and to move beyond into
dimension-6 cases, we now establish closed forms for some key de�nite integrals. It is evident from
the B,C relations in Section 1 that box integrals Bn depend intimately on Cm,0 integrals. We are
thus interested in parameterized integrals Cm,0(s,A) where the parameter A is a positive integer.1

The most important instance for our present purposes can be developed via straightforward polar
integration as

C4,0(−4, A) = −J(A+ 2) +
1

16
π2 logA− π

2
G (4.1)

+
π

4
Im

(
Li2

(
i
(
A− 2

√
A+ 1 + 2

)
A

)
+ Li2

(
i
(
A+ 2

√
A+ 1 + 2

)
A

))
,

see also (11.13). Here J is in turn a highly di�cult integral we de�ne by

J(t) :=

∫
[0,1]2

log(t+ x2 + y2)

(1 + x2)(1 + y2)
dx dy.

We are interested in whether J(t) is hyperclosed for algebraic t; accordingly, we begin with a new,
fundamental result:

Lemma 4.1. For any complex parameter t with Re(t) ≥ 0, we have

J(t) = − log 2

2
Re

(
Li2

(
2√

t− 1 + 1

)
+ Li2

(
− 2√

t− 1− 1

))
+R(t), (4.2)

where

R(t) :=

∫ 1

0

log

(
1 + x

1− x

)(
x log t− x log(t+ x2 + 1)

t− 1− x2
(4.3)

+(t− 1)
x log(t+ x2 + 1)− x log t− x log(x2 + 1)

1− (t− 1)x2
+
x log(t+ x2 + 1)

x2 + 1
− x log(x2 + 1)

x2

)
dx,

with J interpreted at either of the special points t = 1, 2 via the limit of expression (4.2) for t :=
q + 1

1−iε , q = 0, 1 and ε→ 0+.

Proof: We evaluate the integral J(t) via a series of changes of variables. We begin by making
a change into polar coordinates (r, θ), and then applying partial fractions, and make the change of
variables x2 = sec2 θ − 1 and y = r2 to obtain

J(t) = 2

∫ π/4

0

dθ

∫ sec θ

0

rdr
log(t+ r2)

(1 + r2 cos2 θ)(1 + r2 sin2 θ)

= lim
δ→1

∫ δ

0

dx

1− x2

∫ x2+1

0

log(t+ y) dy

(
1

x2 + 1 + y
− 1

x−2 + 1 + y

)
.

The rest of the analysis (we omit many details here, to conserve space) employs the relations

d

dx
Li2(−x) = − log(1 + x)

x
and

d

dx
Li2(a/x) =

log(1− a
x )

x
, (4.4)

1We choose to keep the second subscript 0 on Cm,0 just for consistency with previous treatments such as [6].
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and the dilogarithm inversion relation

Li2(−x) + Li2(−1/x) = −π
2

6
− log2 x

2
, (4.5)

along with rather intricate integration-by-parts and partial fraction manipulations; all of this to obtain
�nally (4.2). QED

5 Overcoming the blockade at 5 dimensions

The integral known as K5, which appears in the relation

B5(−4) = −5K5 −
5

2
πG+

5

4
π2 log

(
1 +
√

2
)

+
5

2
πTi2

(
3− 2

√
2
)
,

was not resolved in [6]. Here Ti2 is the generalized tangent of order two [20]. The literature de�nition
can be cast as

K5 :=

∫ π/4

0

∫ π/4

0

log(1 + sec2 a+ sec2 b) da db

=

∫
[0,1]2

log(3 + x2 + y2)

(1 + x2)(1 + y2)
dx dy = J(3).

Thus if J(3) is hyperclosed, then so is B5(−4). One can see clearly now why we have focused on the
J integral.

With Lemma 4.1 we have reduced the problem of evaluating J(t), and perforce K5 = J(3), to that
of evaluating R(t). It will turn out that a necessary ingredient in our quest to pass the 5-dimensional
blockade will be the invocation of trilogarithms, which entities had not yet appeared in any previous
closed forms for box integrals. To this end, we invoke parameterized de�nite integrals, namely the
pair

F±(c) :=

∫ 1

0

log(1± x)

x+ c
dx, (5.1)

and the pair

G±(b, c) :=

∫ 1

0

log(1± x) log(x+ b)

x+ c
dx. (5.2)

The closed forms for these four integrals are rather stultifying; we have relegated the closed-form
displays to our Appendix I. The salient point being, we shall �nd that the remaining integral R(t)
can be cast as a superposition of F and G forms.

Theorem 5.1. J(t) is hyperclosed for algebraic t with Re(t) ≥ 0.

(An explicit closed form is indicated in the proof following, although as before the special points t = 0, 1
need be handled as limiting values (see Appendix II).)

Proof: We write R(t) as four de�nite integrals

R(t) = Y1 + Y2 + Y3 + Y4,
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with the Yn ordered as in the display of Lemma 4.1. To clarify, we have for example

Y3 :=

∫ 1

0

log

(
1 + x

1− x

)
x log(t+ x2 + 1)

x2 + 1
dx.

Taking this exemplary case, we have�upon log-expansion and partial-fractions�the following:

Y3 =

∫ 1

0

(log(1 + x)− log(1− x))
(
log
(
x+ i

√
t+ 1

)
+ log

(
x− i

√
t+ 1

)) 1

2

(
1

x+ i
+

1

x− i

)
dx.

But this means Y3 is a superposition of G+, G− evaluations�as is the case for each of the Yn below
if we also include F functions as needed:

Y1 =
1

2

(∑
G+

(
± i
√
t+ 1,±

√
t− 1

)
−
∑

G−
(
± i
√
t+ 1,±

√
t− 1

))
− log t

2

(∑
F+

(
±
√
t− 1

)
−
∑

F−
(
±
√
t− 1

))
,

Y2 = −1

2

(∑
G+

(
± i
√
t+ 1,±1/

√
t− 1

)
−
∑

G−
(
± i
√
t+ 1,± 1/

√
t− 1

))
+

1

2

(∑
G+

(
± i,±1/

√
t− 1

)
−
∑

G−
(
± i,± 1/

√
t− 1

))
+

log t

2

(∑
F+

(
±1/
√
t− 1

)
−
∑

F−
(
±1/
√
t− 1

))
,

Y3 =
1

2

(∑
G+

(
± i
√
t+ 1,±i

)
−
∑

G−
(
± i
√
t+ 1,± i

))
,

Y4 = −Gπ +
7

4
ζ(3).

with each sum for an F -function performed over sign choices ±, and for a G-function over all four

possible sign choices ±±. (One might object that Y2 in particular involves integration over a branch
singularity when t > 2, but in fact the integrand for Y2 can be seen to be �nite and di�erentiable;
that is, any branch-cut e�ects are cancelled in the given superposition for Y2.)

We therefore have a closed form based on the above closed forms for the Yn, namely

J(t) = − log 2

2
Re

(
Li2

(
2√

t− 1 + 1

)
+ Li2

(
− 2√

t− 1− 1

))
+ (R(t) = Y1 + Y2 + Y3 + Y4) .

For algebraic t this is a hyperclosed representation of J(t), being as our Appendix forms for F±, G±

are accordingly hyperclosed for such t. QED

Because K5 = J(3) has been the sole obstacle to 5-dimensional hyperclosure, we now have

Corollary 5.2. The integral K5 is hyperclosed, and therefore all box integrals B5(integer), perforce
∆5(integer) are hyperclosed.

The J integral at integer arguments other than t = 3 are interesting in their own right. Our
Appendix II discusses closed-form developments for these cases.
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5.1 A generalization of J

We conclude this portion of the paper by placing J(A) in a more general context. Recall that

B2n+1(−s) :=

∫
[0,1]2n+1

(x2
1 + · · ·+ x2

2n+1)−s/2 dx1 · · · dx2n+1 =
2n+ 1

2n+ 1 + s
C2n,0(−s, 1)

=
2n+ 1

2n+ 1 + s

∫
[0,1]2n

(1 + x2
1 + · · ·+ x2

2n)−s/2 dx1 · · · dx2n.

For general C2n,0, we may change pairs of variables into polar coordinates to obtain

C2n,0(−s,A) :=

∫
[0,1]2n

(A+ x2
1 + x2

2 + · · ·+ x2
2n)−s/2 dx1 · · · dx2n

=
2n

(2− s)(4− s) · · · (2n− s)

n∑
k=0

(−1)n−k
(
n

k

)
In,k(s,A)

πn−k

4n−k
,

where

In,k(s,A) :=

∫
[0,π/4]k

dθ1 · · · dθk
(A+ sec2 θ1 + · · ·+ sec2 θk)s/2−n

provided that s 6= 2, 4, . . . , 2n. The further change of variable x2
i = sec2 θi − 1 brings us back to the

unit k-cube so that

In,k(s,A) =

∫
[0,1]k

dx1

x2
1 + 1

· · · dxk
x2
k + 1

1

(A+ k + x2
1 + · · ·+ x2

k)s/2−n
.

In the case s = 2n, we �nd that

B2n+1(−2n) =
(−1)n−1

(2n− 1)(n− 1)!

n∑
k=0

(−1)n−k
(
n

k

)
πn−k

4n−k
Jk(k + 1) (5.3)

where J0(A) := 1 and for k ≥ 1 we have

Jk(A) :=

∫
[0,1]k

dx1

x2
1 + 1

· · · dxk
x2
k + 1

log(A+ x2
1 + · · ·+ x2

k) (5.4)

=

∫
[0,π/4]k

log
(
A+ tan2 θ1 + · · ·+ tan2 θk

)
dθ1 · · · dθk.

Moreover, Jk+1(A) =
∫ π/4

0
Jk
(
A+ tan2 u

)
du.

To illustrate,

J2(A) = J(A) =

∫ 1

0

∫ 1

0

log(A+ x2 + y2)

(1 + x2)(1 + y2)
dxdy,

and J2(3) = J(3) = K5, while a less di�cult version of Lemma 4.1 shows

J1(A) =

∫ π/4

0

log
(
A+ tan2 t

)
dt =

π

4
log(A− 1) +

(
θ − π

4

)
log

(√
A− 1√
A+ 1

)

+
1

2
Cl2 (θ)− 1

2
Cl2 (θ − π)−G.

where θ := arctan
(
A−1
2
√
A

)
= 2 arctan

(√
A−1√
A+1

)
.

Hence (5.3) and (5.4) show that B7(−6) is hyperclosed i� J3(4) is; and suggest that the evaluation
of B2n+1(−2n) can be achieved in terms of Clk for 2 ≤ k ≤ n+ 1.
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6 The concept of �expression entropy�

Though box integrals B5(integer) are now known to be hyperclosed, it is stultifying that the closed
form for something like B5(−6) occupies one line of typical typesetting, yet our initial closed form
for J(3) (essentially B5(−4)) from Theorem 5.1 had on the order of 105 characters. Furthermore,
di�erent symbolic languages2 would use di�ering character counts to express J(3).

We are motivated thus to introduce the notion of expression entropy�this will be the number of
binary bits inherent in an expression. And, we found a very simple practical means of measuring such
entropy. Namely: run an expression as a text �le, through an established entropy compressor.

For example, our initial J(3) expression, when entropy-compressed, reduced down to about 5 · 104

bits. Note that an initial 105 text characters is on the order of 106 bits, so this is signi�cant reduction.
One way to think of how expression entropy works is to consider that a good entropy compressor
will essentially not care whether dilogarithms are written out Li2(. . . ) or PolyLog[2, . . . ], since the
compressor is typically looking for common strings.

The reason why the expression-entropy concept is useful can be inferred from our Appendix
commentary�note that J(1), J(2), J(3), and J(4) each start out as many pages of text, and even
at current reductions J(4) still barely �ts on a single page. Yet J(2) has reduced to a single line. The
current work makes it abundantly clear that much work remains to be done regarding e�ective closed
forms. Both Maple and Mathematica were able to rapidly con�rm symbolic closed forms numerically
but unable to produce symbolically in every case humanly convenient expressions.

7 6-dimensional box integrals

7.1 B6(even)

For general dimension n, the recurrence (1.11) with s = −n+ 2 yields

2Bn(−n+ 2) = (−n+ 2)Resn + n(n− 1)Cn−2,0(2− n, 2).

Importantly, this reduces this box-integral Bn to an integral of dimension (n − 2). For example, the
previously unresolved B6(−4) can now be written using the known residue Res6 as

B6(−4) = −π
3

32
+ 15C4,0(−4, 2). (7.1)

From the knowledge (4.1) and Theorem 5.1, it follows that B6(−4) is hyperclosed.

But we can carry this 6-dimensional e�ort yet further. The recursion relations such as (1.10, 1.11)
give us the two key recursions

2sC4,0(s− 2, 2) = (s+ 4)C4,0(s, 2)− 4C3,0(s, 3), (7.2)

and

(s+ 6)(s+ 5)B6(s) = s(s+ 4)B6(s− 2) + 30C4,0(s, 2). (7.3)

2In our case, Maple and Mathematica were used extensively throughout our e�orts at expression reduction.
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These recursions contain enough magic to resolve all of the box integrals B6(even). Indeed, pivoting
on our knowledge of B6(−4) as given above, (7.2) leads us to

B6(−2) = −2

3
B6(−4)− π3

96
+ 5C3,0(−2, 3).

Happily, it turns out that the techniques used in our main Lemma 4.1 result in a closed form for
C3,0(−2, A) as displayed�and re�ned�in our Appendix 11.2. So now we know B6(−2,−4) are both
hyperclosed.

For the other direction away from B6(−4), we observe from (1.11) with s→ −6 that

B6(−8) = − π3

768
− 5

2
C4,0(−6, 2).

It turns out we do not need to labor on the development of the C evaluation here, because it is
elementary from the very de�nition (1.3) that

Cm,0(s,A) =
2

s+ 2

∂

∂A
Cm,0(s+ 2, A), (7.4)

so that

B6(−8) = − π3

768
+

5

4

∂

∂A
C4,0(−4, A)|A=2,

thus B6(−8) is hyperclosed. Indeed C4,0(−4, A) is hyperclosed by (4.1), while the derivative of a
hyperclosed expression with respect to one algebraic parameter is itself hyperclosed, via the de�nition
of generalized hypergeometric functions and of the ring of hyperclosure.

Further B6(−10,−12,−14, · · · ), can now be resolved recursively using (7.3) in tandem with (7.4)
with m = 4. This all leads to

Theorem 7.1. Every B6(even) is hyperclosed.

7.2 B6(odd)

In striking contrast to Theorem 7.1, we do not know a single B6(odd) in closed form. The best we
can do at the current juncture is to obtain forms with yet new kinds of dangling integrals, e.g.

B6(−7) = − π
2

√
8

+
√

8 π arctan

(
1√
2

)
− 8

∫ π/4

0

∫ π/4

0

dt du√
2 + sec2 t+ sec2 u

.

For general parameter A one has

∫ π/4

0

∫ π/4

0

dt du√
A+ sec2 t+ sec2 u

=

∫ 1

0

arctan

(√
A+1+y2√
A+3+y2

)
(1 + y2)

√
A+ 1 + y2

dy.

Interestingly, we do know that this dangling integral for A = 1 is equal to π2/30, on the basis of
(3.2); yet, we do not yet know the A = 2 evaluation which would yield B6(−7). It would surprise us
somewhat if resolutions of such elusive box integrals involve more than trilogarithmic terms, based on
heuristics we shall explore in Section 8.

Somewhat more can be said about B6(odd). By combining recursions (1.10, 1.11) one can deduce

360C2,0(s, 4) = − 6s2(s− 2)(s− 4)B6(s− 6) + (s− 2)s(s+ 2)(11s+ 18)B6(s− 4) (7.5)
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− (3 + s)(4 + s) {2s(3s+ 8)B6(s− 2)− (s+ 5)(s+ 6)B6(s)} .

We next observe that C2,0(s,A) is hyperclosed for odd integers s. We write

C2,0(s,A) =
2

s+ 2
M(s+ 2, A)− π

2

As/2+1

s+ 2
,

where M(s,A) :=
∫ π/4

0

(
A+ 1 + tan2 θ

)s/2
dθ. We have a recursion

M(s+ 2, A)−AM(s,A) = (A+ 1)
s/2

2F1

(
1

2
,−s

2
;

3

2
; − 1

A+ 1

)
,

so that the hyperclosure of all C2,0(odd, 4) is ignited by a single evaluation, say C2,0(−1, 4) =

4 arctan
(√

2
3

)
− π + log 5 − 2 log

(√
6− 1

)
. One might guess that because the C2,0(s, 4) on the

left of recursion (7.5) is thus hyperclosed, the B6(odd) should be determined by B6 at any three con-
secutive arguments. But this is not so: Sometimes the coe�cients in (7.5) vanish. By looking closely
at cases such as s = −1,−3,−5, ... one can establish

Theorem 7.2. If B6(−7) is hyperclosed then so are all of B6(−9,−11,−13, . . . ). If in addition
B6(−3,−5) are hyperclosed, then so are all B6(odd).

Therefore, resolution of allB6(integer) would follow from hyperclosure of the three entitiesB6(−3,−5,−7);
we remind ourselves we do not know a closed form for any one of these three.

8 Theory of hyperdegree

Based on previous box-integral research, together with the present treatment, an interesting pattern
emerges in regard to the �polylogarithmic degree" of various evaluations. We hereby de�ne hyperdegree
as a certain measure on the ring of hyperclosure, and mean this to be more general than polylogarithmic
degree. We shall speak heuristically in what follows, because it is very hard to produce rigorous
results in this area. One might say that in looking for hyperdegree patterns we are observing �evident
hyperdegree� without proof.3

To de�ne hyperdegree H(X) of a ring element X, we start with ring-generator evaluations (2.1)
and de�ne H(x) as the minimal degree of the denominator polynomial q(n), over all hypergeometric
expansions of x. For example (here z denotes an algebraic number)

H(z) = 0,

H(log z) ≤ 1,

H (Lin(z)) ≤ n.

Note that we use '≤' sometimes because there can be exceptions, e.g. log 1 = 0, and also because,
again, we cannot always prove exact hyperdegrees. Some isolated cases can be proven, such as

H(π) = 1,

whose proof is an instructive exercise. Generally speaking, when we obtain a closed form, we have an
upper bund on the hyperdegree H.

3For example, is the hyperdegree of ζ(5) equal to 5? Not if ζ(5) is rational!
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n H(Bn(even)) ≤ H(Bn(odd)) ≤
2 1 1
3 2 1
4 2 2
5 3 2
6 3 3 ?
7 4 ? 3 ?

n > 1 dn/2e ? bn/2c ?

Table 1: Known bounds on hyperdegrees for box integrals. All hyperdegree entries without '?' are
rigorous upper bounds (since we know the relevant closed forms). The immediate conjectures are that
H(B6(odd)) ≤ 3, that the hyperdegrees for B7 are 4, 3, and that for general dimension n > 1 we have
the indicated �oor, ceiling bounds.

Next we de�ne the hyperdegree of a ring element X, by using the symbology

X =
∑
j

(∏
k

xj,k

)
,

where the xj,k are an array�not necessarily rectangular�of generator evaluations, and both sum and
product here are �nite. We de�ne

H(X) := min
()

(
max
j

(∑
k

H(xj,k)

))

The meaning of min() means to take the minimum of all ring representations xj,k for X. (Such is
necessary to guard against resonances such as H(π2−π2) = 0, yet each component π2 has hyperdegree
2.) The point of the rather erudite notation can be intuitively expressed thus: The hyperdegree of
a ring element is the largest hyperdegree of an isolated product string, which is in turn (at most)
the sum of the hyperdegrees of the xj,k members of said string. With such notions�admittedly not
entirely rigorous�of hyperdegree, we have examples such as

H
(

1 + log 7− log 2 log2 3− π3 + Li3

(√
5− 2

))
≤ 3,

and this H probably is 3. A speci�c and relevant box-integral example is

H (B3(−2)) = H

(
−3G+

3

2
π log(1 +

√
2) + 3 Ti2(3− 2

√
2)

)
≤ 2.

The implications of hyperdegree theory for box integrals can be gleaned from Table 1, which table
uses results from [6] together with our new results on B5, B6. Note that the development of section
5.1 also adds substance to this conjecture.

9 Conclusion

Salient open issues include:

12



• Proof that some or all B6(odd) are hyper-closed.

• Evaluation of some Bn(s) for n ≥ 7; ideally of an in�nite family such as Bn(−n−1) or Bn+1(−n)
for n ≥ 6.

• A better understanding of the structure of such evaluations.

Each of these is relevant also to other physically motivated classes of integrals [7].

Finally, one of the largest challenges for such computer-assisted analysis is to automate the process
described in Appendices I and II so that results like (11.16) can be obtained by the computer with at
most limited human agency. The appendices provide invaluable test data for such projects�and one
such project is currently being undertaken.

Acknowledgements. We wish to thank D. Bailey and A. Kaiser for many useful discussions and
for computational con�rmation of some the results.
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10 Appendix I: The functions F± and G±

The F± integrals resolve as

F+(c) = −Li2
(

1

1− c

)
+ Li2

(
− 2

c− 1

)
+ log 2 log

(
c+ 1

c− 1

)
,

F−(c) = −Li2
(

1

c+ 1

)
.

It is already of interest that these two ± forms seem to di�er in complexity. In fact, trying an integrand
factor log(1 + sx) and expecting to take s = ±1 in a general integral involves a nontrivial limit for
the s = −1 case. All of this di�culty can be traced to the well known branch-cut peculiarity of the
dilogarithm Li2(z) on z ∈ (+1,+∞).

The G± integrals are far more intricate; and again, it is best to handle the ± cases separately. The
following exact analytic forms can be gleaned from fundamental trilogarithmic formulae such as [20,
Eq 8.111]. (It is again interesting that G− is evidently less complex than G+, although it is unclear
what further symbolic reductions might be possible for either G±.)

G−(b, c) = Li3

(
b

b− c

)
− Li3

(
b+ 1

b− c

)
− Li3

(
b(c+ 1)

b− c

)
− Li2(−b) log

(
b(c+ 1)

b− c

)
− Li2

(
b

b− c

)
log

(
b(c+ 1)

b− c

)
+ Li2

(
b+ 1

b− c

)
log

(
(b+ 1)(c+ 1)

b− c

)
− log b Li2

(
1

c+ 1

)
+ Li2

(
1

c+ 1

)
log

(
b(c+ 1)

b− c

)
+ Li2

(
b(c+ 1)

b− c

)
log

(
b(c+ 1)

b− c

)
− 1

6
log3

(
− (b+ 1)(c+ 1)

b− c

)
− 1

2
log2(b+ 1) log

(
(b+ 1)(c+ 1)

b− c

)
− 1

2
log(b+ 1) log2

(
b(c+ 1)

b− c

)
+

1

2
log(b+ 1) log2

(
(b+ 1)(c+ 1)

b− c

)
− 1

2
log c log2

(
b(c+ 1)

b− c

)
+

1

2
log

(
− (b+ 1)c

b− c

)
log2

(
b(c+ 1)

b− c

)
+

1

2
log(c+ 1) log2

(
b(c+ 1)

b− c

)
− 1

2
log

(
− (b+ 1)(c+ 1)

b− c

)
log2

(
(b+ 1)(c+ 1)

b− c

)
− 1

2
log c log2

(
b

b− c

)
+

1

2
log2

(
b

b− c

)
log

(
− c

b− c

)
+

1

2
log(c+ 1) log2

(
b

b− c

)
+

1

2
log2

(
− (b+ 1)(c+ 1)

b− c

)
log

(
(b+ 1)(c+ 1)

b− c

)
− 1

2
log2

(
b+ 1

b− c

)
log

(
c+ 1

c− b

)
− 1

6
π2 log

(
−c+ 1

b− c

)
− log

(
b

b− c

)
log

(
− c

b− c

)
log

(
b(c+ 1)

b− c

)
+ log

(
c

c+ 1

)
log

(
b

b− c

)
log

(
b(c+ 1)

b− c

)
+ log

(
b+ 1

b− c

)
log

(
(b+ 1)(c+ 1)

b− c

)
log

(
c+ 1

c− b

)
+ Li3(−b) +

1

6
log3(b+ 1)

+ Li3

(
1

c+ 1

)
.
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G+(b, c) =
1

2
log

(
− c

b− c

)
log2

(
b

b− c

)
− 1

2
log

(
c

c− 1

)
log2

(
b

b− c

)
− log

(
−b(c− 1)

b− c

)
log

(
− c

b− c

)
log

(
b

b− c

)
+ log

(
−b(c− 1)

b− c

)
log

(
c

c− 1

)
log

(
b

b− c

)
− 1

2
log(1− b) log2

(
−b(c− 1)

b− c

)
+

1

2
log2 2 log(1− b) +

1

2
log(1− b) log

(
− (b+ 1)(c− 1)

b− c

)
log

(
− (b+ 1)(c− 1)

4(b− c)

)
+

1

2
log2

(
−b(c− 1)

b− c

)
log

(
(b− 1)c

b− c

)
− 1

2
log2

(
−b(c− 1)

b− c

)
log

(
c

c− 1

)
− 1

2
log

(
− (b+ 1)(c− 1)

b− c

)
log

(
− (b+ 1)(c− 1)

4(b− c)

)
log

(
(b− 1)(c+ 1)

b− c

)
− 1

2
log2 2 log

(
(b− 1)(c+ 1)

b− c

)
+

1

2
log2

(
b+ 1

b− c

)
log

(
c+ 1

c− 1

)
+

1

2
log2

(
− (b+ 1)(c− 1)

b− c

)
log

(
c+ 1

c− 1

)
+ log 2 log

(
1 +

1

b

)
log

(
c+ 1

c− 1

)
+ log 2 log b log

(
c+ 1

c− 1

)
− log

(
b+ 1

b− c

)
log

(
− (b+ 1)(c− 1)

b− c

)
log

(
c+ 1

c− 1

)
− log 2 log

(
− (b+ 1)(c− 1)

b− c

)
log

(
c+ 1

c− 1

)
+

1

2
log2 2 log

(
c+ 1

c− 1

)
− 1

2
log2

(
b+ 1

b− c

)
log

(
c+ 1

c− b

)
+ log

(
b+ 1

b− c

)
log

(
− (b+ 1)(c− 1)

b− c

)
log

(
c+ 1

c− b

)
− log

(
−b(c− 1)

b− c

)
Li2(b) + log

(
− (b+ 1)(c− 1)

2(b− c)

)
Li2

(
b+ 1

2

)
− log b Li2

(
1

1− c

)
+ log

(
−b(c− 1)

b− c

)
Li2

(
1

1− c

)
− log

(
−b(c− 1)

b− c

)
Li2

(
b

b− c

)
+ log

(
− (b+ 1)(c− 1)

b− c

)
Li2

(
b+ 1

b− c

)
+ log

(
2 +

2

b

)
Li2

(
− 2

c− 1

)
+ log b Li2

(
− 2

c− 1

)
− log

(
− (b+ 1)(c− 1)

b− c

)
Li2

(
− 2

c− 1

)
− log

(
− (b+ 1)(c− 1)

b− c

)
Li2

(
− (b+ 1)(c− 1)

2(b− c)

)
+ log 2 Li2

(
− (b+ 1)(c− 1)

2(b− c)

)
+ log

(
−b(c− 1)

b− c

)
Li2

(
b− bc
b− c

)
+ Li3(b)− Li3

(
b+ 1

2

)
+ Li3

(
1

1− c

)
+ Li3

(
b

b− c

)
− Li3

(
b+ 1

b− c

)
− Li3

(
− 2

c− 1

)
+ Li3

(
− (b+ 1)(c− 1)

2(b− c)

)
− Li3

(
b− bc
b− c

)
.
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11 Appendix II: Explicit forms for J(n), 0 ≤ n ≤ 4, and C3,0(−2, A)

The easiest value of J is J(0) which we may obtain directly from the original integral form. We write

J(0) = 2

∫ 1

0

∫ a

0

log
(
a2 + b2

)
(1 + a2)(1 + b2)

db da (11.1)

= −
∫ 1

0

log2
(
c2+1

2

)
dc

1− c2
+
π2

16
log (2) +

7

4
ζ (3)− πG.

Moreover, ∫ 1

0

log2
(
c2+1

2

)
dc

1− c2
=

∞∑
k=1

2k
∑k−1
j=1 1/j(
2 k
k

)
k2

= −πG +
21

8
ζ(3),

so that

J(0) =
π2

16
log 2− 7

8
ζ(3). (11.2)

We can evaluate J(1) by much the same techniques as given above for J(3). We obtain�in the
limit�a ten-thousand character expression which with care reduces to:

J(1) =
9

8
π2 log 2− 3

2
Gπ − 1

2
log2 2 log 3 + log3 2− 7

16
π2 log 3

+ log2(1 +
√

2) log 2− log2(1 +
√

2) log 3− 2π arctan
√

2 log 2 + π arctan
√

2 log 3

+
1

2
π Im

{
Li2

(
2− i+ (1− i)

√
2
)

+ Li2

(
2− i− (1− i)

√
2
)}

+ Re

[(
iπ − 2i arctan

√
2 + 3 log 2− log 3

)
Li2

(
1

2
− 1

4
i
√

2

)
+
(

2iπ − 4i arctan
√

2 + 2 log 3− 4 log 2
)

Li2

(
1

2
− 1

2
i
√

2

)
+

(
3

4
iπ − i arctan

√
2 +

1

2
log 2− 1

2
log 3− log

(
1 +
√

2
)

Li2

(
1

2
− 3

2
i− i
√

2

))
+

(
−1

4
iπ + i arctan

√
2 +

1

2
log 2− 1

2
log 3 + log

(
1 +
√

2
))

Li2

(
1

2
− 3

2
i+ i
√

2

)
+2 Li3

(
1

2
− 1

4
i
√

2

)
− 4 Li3

(
1

2
− 1

2
i
√

2

)
+ Li3

(
1

2
− 3

2
i+ i
√

2

)
+ Li3

(
1

2
− 3

2
i− i
√

2

)
− 2 Li3 (1− i)

]
.

We re�ne this evaluation below. As we shall see the expression of the integral K5 = J(3) is similar
but signi�cantly more complex; the original expression being roughly four times as long.

11.1 Generalized Clausen functions and relatives

To further resolve J(1), J(2), J(3) and J(4) one has to consider complex polylogarithms and general-
ized Clausen functions.

Let us denote Cl2(r, θ) := Im Li2
(
reiθ

)
, as a counterpart to

Li2(r, θ) := Re Li2
(
reiθ

)
= −1

2

∫ r

0

log(1− 2r cos(θ) + r2)

r
dθ,
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so that Cl2(1, θ) = Cl2(θ) =
∑
n≥1

sin(nθ)
n2 . (We recall that Cl2 is a non-elementary Fourier series as

opposed to Li2(1, θ).) Then, see [20, A2.5.(1)], one obtains

Cl2(r, θ) =
1

2
Cl2(2ω) +

1

2
Cl2(2θ)− 1

2
Cl2(2ω + 2θ) + w log(r), (11.3)

where tan(ω) = r sin(θ)/(1− r cos(θ)).

Also for r > 0 and integer n, Li2(r, θ) = Li2(r, 2nπ± θ) and Cl2(r, θ) = −Cl2(r,−θ). Very usefully,
for 0 ≤ θ < 2π

Li2 (r, θ) + Li2 (1/r, θ) =
1

2
(π − θ)2 − 1

2
log2 (r)− π2

6
. (11.4)

We record the following useful Fourier series reductions:

Li2

(
tan

θ

2
, θ

)
=

θ2

4
+

1

2
Li2

(
tan2

(
θ

2

))
− 1

4
Li2

(
tan2

(
θ

2

))
(11.5)

Li2 (2 cos θ, θ) =
(π

2
− θ
)2

Li2 (cos θ, θ) =
1

4
Li2
(
cos2 θ

)
+

1

2

(π
2
− θ
)2

Li2 (sec θ, θ) =
5

24
π2 − 1

4
Li2
(
cos2 θ

)
− 1

2
log2 (cos θ)− π

2
θ

Li2

(
sec θ

2
, θ

)
=

π2

12
− 1

2
log2 (2 cos θ)− θ2

2
.

In particular, using the �nal formula we obtain

Li2

(√
6

4
, arctan

1√
2

)
=
π2

12
− 1

8
log2 8

3
− 1

2
arctan2 1√

2
,

and

Li2

(√
3

2
,
π

2
− arctan

1√
2

)
=
π2

12
− 1

8
log2 4

3
− 1

2

(
π

2
− arctan

1√
2

)2

.

Likewise, see [20, A2.6], we notate Li3(r, θ) := Re Li3
(
reiθ

)
so that in keeping with Lewin [20]

Cl3(θ) := Li3(1, θ). In particular [20, A2.5] gives various functional equations for Li2(r, θ) and [20,
A2.6] gives various functional equations for Li3(r, θ). If we use the generalized tangent T3(ρ) =∑
n≥0(−1)n ρ2n+1

(2n+1)3 then

Im Li3
(
reiθ

)
= T3(ρ)− T3(ρ, tan θ)

where ρ = r sin θ/(1 − r cos θ) de�nes T3(ρ, tan θ). Also for r > 0 we have Li3(r, θ) = −Li3(r,−θ).
Again, for 0 ≤ θ < 2π, we have

Li3 (r, θ)− Li3 (1/r, θ) = −1

6
log3 r +

3 (π − θ)2 − π2

6
log r. (11.6)

For example,

Li3

(√
2,
π

4

)
= Li3

(
1√
2
,
π

4

)
+

11π2

192
log 2− 1

48
log3 2 =

35

64
ζ (3) +

π2

32
log 2.
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We shall also exploit a consequence of the functional equation for the trilogarithm due to Landen
[20, A2.6 (7)]:

Li3 (x) + Li3 (1− x) + Li3

(
−x

1− x

)
= ζ(3) + ζ(2) log (1− x) +

1

2
log2 (1− x) log x+

1

6
log3 (1− x) .

(11.7)

This implies that for 0 ≤ ω ≤ 2π one has

Re Li3

(
1

2
+ iω

)
=

1

2
ζ (3)− 1

2
Cl3 (σ) +− 1

48
log3

(
1 + 4ω2

4

)
+

1

4

(
π2

6
− arctan2 (2ω)

)
log

(
1 + 4ω2

4

)
.

(11.8)

Here σ := arctan
(

4ω
4ω2−1

)
is the principle value in (−π, π].

The corresponding formula for the dilogarithm is

Re Li2

(
1

2
+ iω

)
=
π2

12
− 1

8
log2

(
1 + 4ω2

4

)
− 1

2
arctan2 (2ω) . (11.9)

11.2 A closed form for C3,0(−2, A)

We now have the requisite tools to produce an explicit closed form for C3,0(−2, A) as required to
establish hyperclosure of all B6(even). We recall that

C3,0(−2, A) =

∫
[0,1]3

dxdydz

A+ x2 + y2 + z2

The formula that comes out of our intricate integration, using the techniques behind Lemma 4.1, is
as below:

2C3,0(−2, A) =
3

2
log2 2 + log 2 log(A− 1)− π

√
A arctan

1√
A

(11.10)

+ Li2

(
−A− 1

2

)
+ Li2

(
− 2

A− 1

)
− Li2

(
−A− 1

4

)
− Li2

(
− 4

A− 1

)
(a)

+ 6 Im

[
Li2

(
1 + i

1 +
√
A+ 2

)
+ Li2

(
−1 + i

−1 +
√
A+ 2

)]
(b)

+ 2
√
ARe

[
Li2

(
(1 +

√
A)(
√
A+ i

√
A+ 2)

2(A+ 1)

)
− Li2

(
− (−1 +

√
A)(
√
A+ i

√
A+ 2)

2(A+ 1)

)

+ Li2

(
(1−

√
A)(1− i

√
A
√
A+ 2)

(A+ 1)2

)
− Li2

(
(1 +

√
A)(1 + i

√
A
√
A+ 2)

(A+ 1)2

)

+ Li2

(
(1 +

√
A)(1 + i

√
A)

A+ 1

)
− Li2

(
(1−

√
A)(1− i

√
A)

A+ 1

)]
(c).

We next rewrite the dilogarithmic terms of Li2(r, θ) and Cl2(r, θ) values. For (a) we appeal twice to
(11.4) with θ = π. We discover that

Li2

(
−A− 1

2

)
+ Li2

(
− 2

A− 1

)
− Li2

(
−A− 1

4

)
− Li2

(
− 4

A− 1

)
=

3

2
log2 2− log 2 log (A− 1) .
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We write (b) as

6 Im Li2

(
1 + i

1 +
√
A+ 2

)
+ 6 Im Li2

(
−1 + i

−1 +
√
A+ 2

)
= 6 Cl2

( √
2

1 +
√
A+ 2

,
π

4

)
− 6 Cl2

( √
2

−1 +
√
A+ 2

,
3π

4

)

= 6G− 3 Cl2

(π
2

+ κ
)
− 3 Cl2

(π
2
− κ
)

+ 3κ log

(√
A+ 2 + 1√
A+ 2− 1

)
where κ := 2 arctan

(
1√
A+2

)
.

Similarly (c) is actually three pairs of Li2(r, θ) values with equal angles and twisted moduli. Let

ν := arctan
(√

A
)
, η : arctan

(√
A(A+ 2)

)
, ω := arctan

(√
(A+ 2)/A

)
; note that 2ω + η = π.

Then putting everything together for A ≥ 1 we have:

C3,0(−2, A) =
1

2
log2 2− π2

8

√
A− π

2
κ
√
A+ 6G− 3 Cl2

(π
2

+ κ
)
− 3 Cl2

(π
2
− κ
)

+ 3κ log

(√
A+ 2 + 1√
A+ 2− 1

)

+
√
A

Li2

√2
(√

A+ 1
)

(A+ 1)
3/2

, ω

− Li2

√2
(√

A− 1
)

(A+ 1)
3/2

, ω

+ Li2

(√
A− 1

A+ 1
, π − η

)
(11.11)

−Li2

(√
A+ 1

A+ 1
, η

)
+ Li2

(√
A+ 1√
A+ 1

, π − ν

)
− Li2

(√
A− 1√
A+ 1

, ν

)}
.

This form is especially attractive when A = 1, so that κ = ω = η = π/3 and ν = π/4. On noting
that

4G = 3 Cl2

(π
6

)
+ 3 Cl2

(
5π

6

)
(11.12)

Li2

(√
2,
π

4

)
=

π2

16
, Li2

(
1,
π

4

)
=

11π2

192
, Li2

(
1,

3π

4

)
=

13π2

192

it reduces to 2C3,0(−2, 1) = B4(−2) = π log(2 +
√

3)− 2G+ π2/8 as obtained in [6].

We can similarly rework (4.1) as below:

C4,0(−4, A) =
π2

16
logA− π

2
G +

π

4
Cl2

(√
A+ 1 + 1√
A− 1

,
π

2

)
+
π

4
Cl2

(√
A− 1√
A+ 1

,
π

2

)
− J(A+ 2). (11.13)

This may again be further re�ned in terms of classical Clausen values.

11.3 The promised closed forms for J

J(1). With this notation in hand, on setting θ := arctan(1/
√

2) we may rewrite J(1) as follows

J(1) = 2θπ log
4

3
+
π2

16
log 3− 7π2

8
log 2− 1

2
log2 2 log 3 + log3 2− 3

2
Gπ + log2(1 +

√
2) log

2

3

+ 2Li3
(√

2,
π

4

)
+ log

8

3
Li2

(√
6

4
, θ

)
− 2 log

4

3
Li2

(√
3

2
,
π

2
− θ
)
+ 2θCl2

(√
6

4
, θ

)
+ 4θCl2

(√
3

2
,
π

2
− θ
)

+
π

2
Cl2

(√
6 +
√
3, θ
)
+
π

2
Cl2

(√
6−
√
3, θ
)
+
(π
4
+ θ
)
Cl2

(√
3 +

√
3√
2
,
π

4
+ θ

)
+

(
3π

4
+ θ

)
Cl2

(√
3−
√
3√
2
,
π

4
− θ
)
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+ 4Li3

(√
3

2
,
π

2
− θ
)
− 2Li3

(√
6

4
,
π

2
− θ
)
+ Li3

(√
3 +

√
3√
2
,
π

4
− θ
)
+ Li3

(√
3−
√
3√
2
,
π

4
− θ
)

+

(
1

2
log

2

3
− log(1 +

√
2)

)
Li2

(√
3 +

√
3√
2
,
π

4
+ θ

)
+

(
1

2
log

2

3
+ log(1 +

√
2) Li2

(√
3−
√
3√
2
,
π

4
− θ
))

.

Moreover, (11.3) allows for all Cl2 values to be expressed in terms of the classical Clausen function.
We have placed the terms at the top for which we have thus shown reduction to elementary constants
and classical polylogarithms or Clausen functions. Further simpli�cation is possible of terms such as

log 8
3 Li2

(√
6

4 , θ
)
and 2 log 4

3 Li2

(√
3

2 ,
π
2 − θ

)
.

We now opt to set λ := log(1 +
√

2) and θ := arctan
√

2. We eventually arrive at:

J(1) =
λ2

2
log

3

2
+
π

2

(π
2
− θ
)
λ+ πθ log

4

3
− 35

32
ζ (3)− 1

2
log3 2 +

1

4
log2 2 log 3 +

9π2

32
log

3

2

− π2

4
log 2 + 2 Li3

(√
6

4
, θ − π

4

)
− 4 Li3

(√
3

2
, θ

)
+ Li3

(
√

3−
√

3

2
, θ − π

4

)
+ Li3

(
√

3 +

√
3

2
, θ − 3π

4

)

+
θ

2
Cl2 (4θ − π) + (2 θ − π) Cl2 (4θ)− 3(2θ − π) Cl2 (2θ)− π

2
Cl2

(
2θ − π

2

)
+
π

2
Cl2

(
2θ +

π

2

)
−Gπ.

Each level of simpli�cation reveals more structure. We now note that each Li3 value is of the form
Li3( sec τ

2 , τ) where τ := θ + kπ
4 , 0 ≤ k ≤ 3. Each of these may be resolved by an application of (11.8).

This leads to:

J(1) =
π

2
Cl2

(
2θ − π

2

)
+
π

2
Cl2

(
2θ +

π

2

)
− θ

2
Cl2 (4θ − π) + (2 θ − π) Cl2 (4θ)− 3(2θ − π) Cl2 (2θ)

+ 2 Cl3 (2θ − π)− Cl3 (2θ)− 1

2
Cl3

(
2θ +

π

2

)
− 1

2
Cl3

(
2θ − π

2

)
−Gπ − 35

32
ζ (3) . (11.14)

J(2). Surprisingly J(2) is signi�cantly simpler�because of the speci�c angles engaged. Though
one has to carefully approach the removable singularity. This again leads to a very large symbolic
expression which reduces to:

J(2) =
1

108
Ψ

′
(

1

3

)√
3π +

1

108
Ψ

′
(

1

6

)
π
√

3− 2

81
π3
√

3 +

(
5

12
log(1 +

√
3) +

1

24
log 2

)
π2

− 53

48
ζ (3)−Gπ + Re Li3

(
1− i+

√
3 + i

√
3

2(
√

3 + 1)

)
+ Re Li3

(
1 + i−

√
3 + i

√
3

2(
√

3− 1)

)
− π

2
Im Li2

(
i+
√

3√
3− 1

)

+
5π

12
Im Li2

(
−1 + i+

√
3 + i

√
3

2(
√

3− 1)

)
− π

12
Im Li2

(
1 + i+

√
3− i

√
3

2(
√

3 + 1)

)
+
π

2
Im Li2

(
i+
√

3√
3 + 1

)
.

Again, the dilog terms can be nicely resolved as Clausen values and the trilogarithms can be manip-
ulated as above. This produces:

J(2) =
π

4

√
3L−3(2) +

5

12
π2 log(1 +

√
3) +

1

24
π2 log 2− 53

48
ζ(3)−Gπ (11.15)

+ Li3

(√
3− 1√

2
,
π

12

)
− Li3

(√
3 + 1√

2
,

5π

12

)
+
π

2
Cl2

(√
3− 1

2
,
π

6

)
− π

2
Cl2

(√
3 + 1

2
,
π

6

)

+
5π

12
Cl2

(√
3 + 1√

2
,

5π

12

)
− π

12
Cl2

(√
3− 1√

2
,
π

12

)
.
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Remarkably (11.15) reduces to a single line:

J(2) =
π2

8
log 2− 7

48
ζ(3) +

11

24
πCl2

(π
6

)
− 29

24
πCl2

(
5π

6

)
. (11.16)

We can use (11.12) to replace Cl2
(

5π
6

)
by 4

3G − Cl2
(
π
6

)
. We can also substitute Cl2

(
π
6

)
= G

3 +
3
√

3
16 L−3(2), where L−3(2) is the primitive L-series modulo 3. Thus, alternatively we have

J(2) =
5π

16

√
3L−3(2)− π

2
G− 7

48
ζ (3) +

π2

8
ln 2. (11.17)

.

J(3). Using the decomposition in Theorem 5.1, an explicit polylogarithmic form of K5 = J(3)
was obtained in Mathematica. Said expression was roughly 30000 characters long�or 62000 when
converted to a Maple expression. Either of these language forms comes down to about 50 kilobits of
�expression entropy," as discussed in Section 6. The challenge is to �nd a much smaller expression.
Write

J(3) = K5 = R5 + C5 + L5 (11.18)

where R5 are the real trilog and dilog terms terms, C5 are the pure Clausen terms, and L5 collects
the rest. Then, after a very large amount of symbolic work exploiting many formulas in Lewin [20],

on setting λ := log
(
1 +
√

2
)
, θ := arctan 2 and τ := arctan

√
2, we obtain for R5:

R5 = λ

(
Li2

(√
15

6
−
√
30

12
, θ + τ

)
− Li2

(√
15

6
+

√
30

12
, τ − θ

)
− 2Li2

(√
30

6
, θ + τ − π

))
+ 2λ

(
Li2

(√
10

3
, θ − τ

)
− Li2

(
2√
3
, τ +

3π

4

)
+ Li2

(
2√
3
, τ − π

4

)
+ Li2

(√
30

6
, τ − θ

)
− Li2

(
−
√
2− 1

2

))
+ 2λ

(
Li2

(√
10

6
+

√
5

6
, π − θ − τ

)
− Li2

(√
10

3
, θ + 2 τ − π

)
− Li2

(
1√
3
+

1√
6
, τ − π

4

))
+

1

2

(
Li2

(√
15

6
−
√
30

12
, θ + τ

)
+ Li2

(√
15

6
+

√
30

12
, τ − θ

))
log

(
24

5

)
− Li3

(√
10

6
−
√
5

6
, θ − 2 τ

)
− Li3

(√
10

6
+

√
5

6
, θ + 2 τ − π

)
− Li3

(√
15

6
−
√
30

12
, θ + τ

)
+ Li3

(√
15

6
+

√
30

12
, τ − θ

)
+ Li3

(
1√
3
− 1√

6
, τ − 3π

4

)
+ Li3

(
1√
3
+

1√
6
,
π

4
− τ
)
+ Li3

(√
10

6
,
π

4
− θ
)
+ Li3

(√
10

2
,
3π

4
− θ
)

− 2Li3

(√
5

2
, θ

)
+ Li3

(
−
√
2− 1

2

)
− Li3

(
2
√
2− 2

)
.

Likewise, the constant and pure logarithmic coe�cients L5 reduce to:

L5 = − 7

16
ζ (3)− 1

2
G π +

7

6
λ3 +

(
1

2
log 5− 1

2
log 3− 2 log 2

)
λ2 +

3π

2

(
log 2− 2

3
log 5 + log 3

)
τ,

+

(
θ2 − 3 τ2 + 3 (4 τ − π) θ − 23

48
π2 +

1

4
log2 2 +

3

4
log2 3− log 3 log 5 +

1

4
log2 5 +

(
3

2
log 3− log 5

)
log 2

)
λ

+

(
1

2
log 3− 1

2
log 5 +

3

2
log 2

)
θ2 − π

2

(
3

2
log 3 + log 2

)
θ −

(
7

2
log 2− 2 log 5 +

7

2
log 3

)
τ2

+ 3 log3 2 +
5

24
log3 3− 1

8
log3 5−

(
1

2
log 3 log 5 + 3 log2 2 +

3

8
log2 5

)
log 3
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+

(
11

8
log2 3− 9

4
log 3 log 5 +

9

8
log2 5− 25

8
log 2 log 5

)
log 2 +

(
23

6
log 5− log 2

)
π2

16

Also

C5 = θ

(
1

2
Cl2 (π − 4 θ) + 2 Cl2 (2 θ − π)− Cl2 (4 τ + 2 θ) + Cl2 (4 τ − 2 θ)− Cl2 (2 τ − 2 θ) + Cl2 (2 τ + 2 θ)

)
+

π

4

(
2Cl2 (2 θ − π)− 2Cl2

(π
2

+ 2 θ
)

+ Cl2

(π
2
− 2 θ

)
+ 9Cl2

(
2 τ − π

2

)
− 9Cl2

(
2τ +

π

2

)
+ Cl2 (4 τ − 2 θ)− Cl2 (4 τ + 2 θ)

)
..

Formula (11.18) was numerically checked to 200 decimal places. Given the �nal form for J(1), J(2)
it is suspected that J(3) can be further simpli�ed. Indeed, most of the Li3 terms are susceptible to
(11.8)�with consequent simpli�cation of L5.

J(4). For J(4) the corresponding expression has been reduced from roughly 100 kilobits of expression
entropy, down to expressions similar to but somewhat longer than those for J(3). We now use angles
arctan

√
5 and arctan

√
15 and noninteger logarithms log

(
1 +
√

3
)
and log

(
1 +
√

15
)
.

In each case the angles are coupled to those engaged in (11.11) for A− 1.
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