Continued Logarithms and Associated

 Continued FractionsJonathan M. Borwein CARMA

Scott B. Lindstrom
CARMA

Neil J. Calkin
Clemson University
Andrew Mattingly
IBM Australia

Revised 24-03-2016

Abstract

We investigate some connections between continued fractions and binary continued logarithms as introduced by Bill Gosper in 1972 and explore three generalizations (Type I, II and III) to base $b \geq 2$.

- We show convergence for each using equivalent forms of their corresponding continued fractions.
Experimentally, we obtain the distribution of Type I continued logs.
- Moreover, the exponent terms have finite arithmetic means for almost all real numbers. These logarithmic Khintchine constants, have a pleasing relationship with geometric means of the corresponding continued fraction terms.

Abstract

We investigate some connections between continued fractions and binary continued logarithms as introduced by Bill Gosper in 1972 and explore three generalizations (Type I, II and III) to base $b \geq 2$.

- We show convergence for each using equivalent forms of their corresponding continued fractions.
Experimentally, we obtain the distribution of Type I continued logs.
- Moreover, the exponent terms have finite arithmetic means for almost all real numbers. These logarithmic Khintchine constants, have a pleasing relationship with geometric means of the corresponding continued fraction terms.
- While the classical Khintchine constant is believed unrelated to known numbers, we find surprisingly that the Type I distribution and Khintchine numbers are elementary.
We also conjecture Type II - and III - distributions and associated Khintchine constants.

Outline

(3) Other Bases II and III

- Type II Construction
- Type II Properties
- Type II Distribution
- The Type II Ternary Case
- Type III Construction and Properties
4 The Role of Experimental Computation
- Experimental Discovery
- Quadratic Irrationals: a Method
- Quadratic Irrationals: Periodicity
(5) Conclusion
- Open Questions

Simple Continued Fractions

Given a positive real number x, write $a_{0}=\lfloor x\rfloor$ (floor),:

$$
x=\alpha_{0}+\{x\}
$$

(integer part plus fractional part). Terminate if $\{x\}=0$.
Otherwise, set $y=\frac{1}{\{x\}}$, and write $\alpha_{1}=\lfloor y\rfloor$ so that

$$
x=\alpha_{0}+\frac{1}{\alpha_{1}+\{y\}}
$$

If $\{y\}=0$, terminate. Otherwise continue in like fashion:

$$
x=\alpha_{0}+\frac{1}{\alpha_{1}+\frac{1}{\alpha_{2}+\ldots}}
$$

Example

- Lagrange: numbers with aperiodic decimal expansions may have periodic continued logarithms. For example (iff x is a quadratic irrationality):

$$
\sqrt{2}=1+\frac{1}{2+\frac{1}{2+\frac{1}{2+\ldots}}} .
$$

Example

- Lagrange: numbers with aperiodic decimal expansions may have periodic continued logarithms. For example (iff x is a quadratic irrationality):

$$
\sqrt{2}=1+\frac{1}{2+\frac{1}{2+\frac{1}{2+\ldots}}} .
$$

- Either the fraction never terminates, or the fractional part will at some point be zero, in which case

$$
x=\alpha_{0}+\frac{1}{\cdots+\frac{1}{\alpha_{n}}} .
$$

Continued Fractions: Another Perspective

Consider the dynamical system f on $[0, \infty)$:

$$
f(x)= \begin{cases}x-1 & \text { if } x \geq 1 \tag{1}\\ \frac{1}{x} & \text { if } 0<x<1 \\ \text { terminate } & \text { if } x=0\end{cases}
$$

Continued Fractions: Another Perspective

Consider the dynamical system f on $[0, \infty)$:

$$
f(x)= \begin{cases}x-1 & \text { if } x \geq 1 \tag{1}\\ \frac{1}{x} & \text { if } 0<x<1 \\ \text { terminate } & \text { if } x=0\end{cases}
$$

Count the number of times we encounter $x \rightarrow x-1$ before we either reciprocate or terminate. These counts are the α_{n}. We will denote by $\left[\alpha_{0} ; \alpha_{1} ; \ldots\right]_{\mathrm{cf}}$ the simple continued fraction

$$
x=\alpha_{0}+\frac{1}{\alpha_{1}+\frac{1}{\alpha_{2}+\frac{1}{\alpha_{3}+\ldots}}}
$$

Binary Continued Logarithms

Define a similar dynamical system g on $[1, \infty)$:

$$
g(x)= \begin{cases}x / 2 & \text { if } x \geq 2 \tag{2}\\ \frac{1}{x-1} & \text { if } 1<x<2 \\ \text { terminate } & \text { if } x=1\end{cases}
$$

Binary Continued Logarithms

Define a similar dynamical system g on $[1, \infty)$:

$$
g(x)= \begin{cases}x / 2 & \text { if } x \geq 2 \tag{2}\\ \frac{1}{x-1} & \text { if } 1<x<2 \\ \text { terminate } & \text { if } x=1\end{cases}
$$

We count how many times we divide by 2 before we subtract and reciprocate or terminate. This gives values $a_{0}, a_{1}, a_{2}, \ldots$.
We denote the binary continued logarithm of x by $\left[a_{0}, a_{1}, a_{2}, \ldots\right]_{\mathrm{cl}(2)}$ and may write

$$
\begin{equation*}
x=2^{a_{0}}+\frac{2^{a_{0}}}{2^{a_{1}}+\frac{2^{a_{1}}}{2^{a_{2}}+\ldots}} \tag{3}
\end{equation*}
$$

Example: $x=19$

We count how many times we divide by 2 .

$$
19 \rightarrow \frac{19}{2} \rightarrow \frac{19}{4} \rightarrow \frac{19}{8} \rightarrow \frac{19}{16}
$$

so $a_{0}=4$.

Example: $x=19$

We count how many times we divide by 2 .

$$
19 \rightarrow \frac{19}{2} \rightarrow \frac{19}{4} \rightarrow \frac{19}{8} \rightarrow \frac{19}{16}
$$

so $a_{0}=4$. Continuing, we obtain $19=[4,2,1,1]_{\mathrm{cl}(2)}$.

Example: $x=19$

We count how many times we divide by 2 .

$$
19 \rightarrow \frac{19}{2} \rightarrow \frac{19}{4} \rightarrow \frac{19}{8} \rightarrow \frac{19}{16}
$$

so $a_{0}=4$. Continuing, we obtain $19=[4,2,1,1]_{\mathrm{cl}(2)}$.
We may express this as:

$$
19=2^{4}+\frac{2^{4}}{2^{2}+\frac{2^{2}}{2^{1}+\frac{2^{1}}{2^{1}}}}
$$

Example: $x=19$

We count how many times we divide by 2 .

$$
19 \rightarrow \frac{19}{2} \rightarrow \frac{19}{4} \rightarrow \frac{19}{8} \rightarrow \frac{19}{16}
$$

so $a_{0}=4$. Continuing, we obtain $19=[4,2,1,1]_{\mathrm{cl}(2)}$.
We may express this as:

$$
19=2^{4}+\frac{2^{4}}{2^{2}+\frac{2^{2}}{2^{1}+\frac{2^{1}}{2^{1}}}}
$$

- The continued logarithm terms are the exponents on the continued fraction terms - hence much smaller.

Irregular continued fractions

Consider the continued fraction

$$
x=\alpha_{0}+\frac{\beta_{1}}{\alpha_{1}+\frac{\beta_{2}}{\alpha_{2}+\frac{\beta 3}{\alpha_{3}+\ldots}}} .
$$

Notation

We may, for the sake of simplicity, write with $\alpha_{j}, \beta_{j}>0$

$$
x=\alpha_{0}+\frac{\beta_{1}}{\alpha_{1}}+\frac{\beta_{2}}{\mid \alpha_{2}}+\frac{\beta_{3}}{\frac{\alpha_{3}}{\mid \alpha_{3}}+\ldots ~}
$$

Continued Fraction Recurrences |

Remark 1

Suppose x has the irregular continued fraction

$$
x=\alpha_{0}+\frac{\beta_{1}}{\sqrt[\alpha_{1}]{\mid \alpha_{2}}}+\frac{\beta_{2}}{\mid \alpha_{3}}+\frac{\beta_{3}}{\mid \alpha^{2}}+
$$

Let x_{n} be the nth approximant whose continued logarithm is

$$
x=\alpha_{0}+\frac{\beta_{1}}{\mid \alpha_{1}}+\frac{\beta_{2}}{\mid \alpha_{2}}+\cdots+\frac{\beta_{n}}{\mid \alpha_{n}}
$$

Continued Fraction Recurrences |

Remark 1

Suppose x has the irregular continued fraction

$$
x=\alpha_{0}+\frac{\beta_{1}}{\sqrt[\alpha_{1}]{\mid \alpha_{2}}}+\frac{\beta_{2}}{\mid \alpha_{3}}+\frac{\beta_{3}}{\mid \alpha^{2}}+
$$

Let x_{n} be the nth approximant whose continued logarithm is

$$
x=\alpha_{0}+\frac{\beta_{1}}{\mid \alpha_{1}}+\frac{\beta_{2}}{\mid \alpha_{2}}+\cdots+\frac{\beta_{n}}{\mid \alpha_{n}}
$$

Then $x_{n}=\frac{r_{n}}{s_{n}}$ where $r_{-1}=1, s_{-1}=0, r_{0}=\alpha_{0}, s_{0}=1$,
And

$$
\begin{aligned}
& r_{n+1}=\alpha_{n+1} r_{n}+\beta_{n+1} r_{n-1} \\
& s_{n+1}=\alpha_{n+1} s_{n}+\beta_{n+1} s_{n-1} .
\end{aligned}
$$

Corresponding Binary Continued Logarithm Recurrence

Remark 1 leads to:

Theorem 1 (Recursion for approximants)

Suppose x has continued logarithm $\left[a_{0}, a_{1}, a_{2}, \ldots\right]$. Let x_{n} be the nth continued logarithm approximant: the number whose continued logarithm is $\left[a_{0}, a_{1}, a_{2}, \ldots, a_{n}\right]_{\mathrm{cl}(2)}$. Then

$$
x_{n}=\frac{r_{n}}{s_{n}}
$$

where $r_{-1}=1, s_{-1}=0, r_{0}=2^{a_{0}}, s_{0}=1$, and

$$
\begin{aligned}
& r_{n+1}=2^{a_{n+1}} r_{n}+2^{a_{n}} r_{n-1} \\
& s_{n+1}=2^{a_{n+1}} s_{n}+2^{a_{n}} s_{n-1}
\end{aligned}
$$

Continued Fraction Recurrences II

Remark 2 (Determinant)

We also have that

$$
r_{n} s_{n-1}-r_{n-1} s_{n}=(-1)^{n+1} \prod_{k=1}^{n} \beta_{k}
$$

In the case of a simple continued fraction, of course, the product is always one.

Corresponding Binary Continued Logarithm Recurrence

Remark 2 leads to:

Theorem 2 (Continued Logarithm Differences)

Suppose x has continued logarithm $\left[a_{0}, a_{1}, a_{2}, \ldots\right]$. Let x_{n} be the nth continued logarithm approximant: the number whose continued logarithm is $\left[a_{0}, a_{1}, a_{2}, \ldots, a_{n}\right]_{\mathrm{cl}(2)}$.
Then $x_{n}=\frac{r_{n}}{s_{n}}$, where

$$
\frac{r_{n}}{s_{n}}-\frac{r_{n-1}}{s_{n-1}}=\frac{(-1)^{n+1} 2^{a_{0}+a_{1}+\ldots a_{n-1}}}{s_{n} s_{n-1}}
$$

Equivalent Continued Fractions

Two (irregular) continued fractions

$$
\begin{aligned}
x & =\alpha_{0}+\frac{\beta_{1}}{\mid \alpha_{1}}+\frac{\beta_{2}}{\mid \alpha_{2}}+\frac{\beta_{3}}{\mid \alpha_{3}}+\ldots \\
\text { and } \quad x^{\prime} & =\alpha_{0}^{\prime}+\frac{\beta_{1}^{\prime}}{\mid \alpha_{1}^{\prime}}+\frac{\beta_{2}^{\prime}}{\mid \alpha_{2}^{\prime}}+\frac{\beta_{3}^{\prime}}{\mid \alpha_{3}^{\prime}}+\ldots
\end{aligned}
$$

are equivalent if there exists a sequence of nonzero real numbers $\left\{c_{n}\right\}_{n=1}^{\infty}$ with $c_{0}=1$ such that

$$
\alpha_{n}^{\prime}=c_{n} \alpha_{n} \quad \text { and } \beta_{n}^{\prime}=c_{n} c_{n-1} \beta_{n}, \quad n=1,2, \ldots
$$

Equivalent Continued Fractions

Two (irregular) continued fractions

$$
\begin{aligned}
\quad x & =\alpha_{0}+\frac{\beta_{1}}{\mid \alpha_{1}}+\frac{\beta_{2}}{\mid \alpha_{2}}+\frac{\beta_{3}}{\mid \alpha_{3}}+\ldots \\
\text { and } \quad x^{\prime} & =\alpha_{0}^{\prime}+\frac{\beta_{1}^{\prime}}{\sqrt{\alpha_{1}^{\prime}}}+\frac{\beta_{2}^{\prime}}{\sqrt{\alpha_{2}^{\prime}}}+\frac{\beta_{3}^{\prime}}{\mid \alpha_{3}^{\prime}}+\ldots
\end{aligned}
$$

are equivalent if there exists a sequence of nonzero real numbers
$\left\{c_{n}\right\}_{n=1}^{\infty}$ with $c_{0}=1$ such that

$$
\alpha_{n}^{\prime}=c_{n} \alpha_{n} \quad \text { and } \beta_{n}^{\prime}=c_{n} c_{n-1} \beta_{n}, \quad n=1,2, \ldots
$$

- The c_{n} terms may be thought of as constants scaled by both numerators and denominators of successive terms.

Equivalent Binary Continued Logarithms

- The binary continued logarithm $\left[a_{0}, a_{1}, a_{2}, \ldots\right]_{\mathrm{cl}(2)}$ is equivalent to each of the two continued fractions below: the reduced form and the denominator reduced form respectively.

Reduced Form and Denominator Reduced Form

$$
\begin{aligned}
& 2^{a_{0}}+\frac{1}{\sqrt{2^{a_{1}-a_{0}}}+\frac{1}{2^{a_{2}-a_{1}+a_{0}}}+\cdots+\frac{1}{2^{\sum_{k=0}^{n}(-1)^{n-k} a_{k}}}+\ldots} \\
& 2^{a_{0}}+\frac{2^{-a_{1}+a_{0}}}{\frac{1}{\mid}+\frac{2^{-a_{2}}}{\sqrt{1}}+\frac{2^{-a_{3}}}{1}+\cdots+\frac{2^{-a_{n}}}{\frac{1}{1}}+\ldots}
\end{aligned}
$$

Equivalent Binary Continued Logarithms

- The binary continued logarithm $\left[a_{0}, a_{1}, a_{2}, \ldots\right]_{\mathrm{cl}(2)}$ is equivalent to each of the two continued fractions below: the reduced form and the denominator reduced form respectively.

Reduced Form and Denominator Reduced Form

$$
\begin{aligned}
& 2^{a_{0}}+\frac{1}{\sqrt{2^{a_{1}-a_{0}}}+\frac{1}{2^{a_{2}-a_{1}+a_{0}}}+\cdots+\frac{1}{2^{\sum_{k=0}^{n}(-1)^{n-k} a_{k}}}+\ldots} \\
& 2^{a_{0}}+\frac{2^{-a_{1}+a_{0}}}{\frac{1}{\mid}+\frac{2^{-a_{2}}}{\sqrt{1}}+\frac{2^{-a_{3}}}{\sqrt{1}}+\cdots+\frac{2^{-a_{n}}}{\frac{1}{1}}+\ldots}
\end{aligned}
$$

- The denominator reduced form shows finite termination for the binary continued logarithm of every rational.

Convergence Theory

Theorem 3 (Convergence)

Suppose that $\left\{\alpha_{n}\right\}_{n=1}^{\infty}$ and $\left\{\beta_{n}\right\}_{n=1}^{\infty}$ are real sequences such that $\alpha_{n}>0$ and $\beta_{n}>0$ for all n. The continued fraction

$$
x=\alpha_{0}+\frac{\beta_{1}}{\alpha_{1}}+\frac{\beta_{2}}{\sqrt{\alpha_{2}}}+\frac{\beta_{3}}{\alpha_{3}}+\ldots
$$

converges if $\sum_{n=1}^{\infty} \frac{\alpha_{n} \alpha_{n+1}}{\beta_{n+1}}=\infty$. If x_{n} is the nth approximant, then

$$
x_{0}<x_{2}<\cdots<x_{2 k}<\cdots<x<\cdots<x_{2 k+1}<\ldots x_{3}<x_{1}
$$

and so the limit is x whenever x_{n} converges. (Proof: see [6].)

Convergence Theory

Theorem 3 (Convergence)

Suppose that $\left\{\alpha_{n}\right\}_{n=1}^{\infty}$ and $\left\{\beta_{n}\right\}_{n=1}^{\infty}$ are real sequences such that $\alpha_{n}>0$ and $\beta_{n}>0$ for all n. The continued fraction

$$
x=\alpha_{0}+\frac{\beta_{1}}{\alpha_{1}}+\frac{\beta_{2}}{\sqrt{\alpha_{2}}}+\frac{\beta_{3}}{\alpha_{3}}+\ldots
$$

converges if $\sum_{n=1}^{\infty} \frac{\alpha_{n} \alpha_{n+1}}{\beta_{n+1}}=\infty$. If x_{n} is the nth approximant, then

$$
x_{0}<x_{2}<\cdots<x_{2 k}<\cdots<x<\cdots<x_{2 k+1}<\ldots x_{3}<x_{1}
$$

and so the limit is x whenever x_{n} converges. (Proof: see [6].)

- We used this result to show convergence for continued logarithms of all bases for both constructions later shown.

Gauss-Kuzmin Distribution for Continued Fractions

Theorem 4 (Gauss, Kuzmin, Lévy)

Let $\mathcal{M}(A)$ denote the Lebesgue measure of a set A. For $x \in(0,1)$ let $\alpha_{n}(x)$ denote the nth denominator term of the simple continued fraction for x. Then we have that

$$
\mathcal{P}(k):=\lim _{n \rightarrow \infty} \mathcal{M}\left(\left\{x: \alpha_{n+1}(x)=k\right\}\right)=\log _{2}\left(1+\frac{1}{k(k+2)}\right) .
$$

(For a proof, see [3, Theorem 3.23 (Gauss, Kuzmin, Lévy)].)

Khintchine Constant for Continued Fractions

Corollary 5 (Khintchine Constant)

For almost all real numbers x, where the α_{k} are the denominator values of a simple continued fraction for x,

$$
\begin{aligned}
\mathcal{K}=\lim _{n \rightarrow \infty} \sqrt[n]{\alpha_{1} \cdot \alpha_{2} \cdot \ldots \alpha_{n}} & =\prod_{k=1}^{\infty}\left(1+\frac{1}{k(k+2)}\right)^{\log _{2} k} \\
& =2.6854520010653 \ldots
\end{aligned}
$$

(Proof. See [3, Remark 3.6].)

- The extended numerical computation of \mathcal{K} is difficult directly from the definition, see [1].

Gauss-Kuzmin Distribution (GKD) for Binary Continued Logarithms

Theorem 6

For $x \in(0,1), \mathcal{M}(A)$ denoting the measure of a set A, and $\alpha_{n}(x)$ the nth continued logarithm term,

$$
\begin{aligned}
\mathcal{P}(k): & =\lim _{n \rightarrow \infty} \mathcal{M}\left(\left\{x \in(0,1): \alpha_{n}(x)=2^{k}\right\}\right) \\
& =\frac{\log \left(1+\frac{2^{k}}{\left(1+2^{k+1}\right)^{2}}\right)}{\log \left(\frac{4}{3}\right)} .
\end{aligned}
$$

This was recently proven in the seemingly entirely different context of random Fibonacci numbers [5].

Figure: GKD and continued logarithm distribution for three presumably aperiodic irrationals ($\pi, e, \sqrt{13}$) computed to one million terms.

The Binary Case
Other Bases I
Other Bases II and III The Role of Experimental Computation Conclusion

Continued Fractions
Continued Logarithms
Recurrences
Convergence and Equivalence
Gauss-Kuzmin Distribution and Khintchine Constant

Figure: Deviation from expectation for a selection of aperiodic numbers.

Khintchine Constant for Continued Logarithms

Remark 3 (Existence of Khintchine Logarithmic Constant)

As a consequence of Theorem 6, we obtain the existence of a constant $\mathcal{K} \mathcal{L}_{2}$, the predicted arithmetic mean of the continued logarithm terms. If $x=\left[a_{0}, a_{1}, \ldots\right]_{\mathrm{cl}(2)}$, then

$$
\begin{equation*}
\mathcal{K} \mathcal{L}_{2}:=\lim _{N \rightarrow \infty}\left(\frac{1}{N}\right) \sum_{k=0}^{N} a_{k} . \tag{4}
\end{equation*}
$$

Specifically: almost all numbers greater than one, satisfy

$$
\begin{equation*}
\mathcal{K} \mathcal{L}_{2}=\frac{\log \left(\frac{3}{2}\right)}{\log \left(\frac{4}{3}\right)}=1.4094208396532 \tag{5}
\end{equation*}
$$

Geometric and Arithmetic Means

- The predicted geometric mean of the first N continued fraction terms is just ' 2 ' raised to the arithmetic mean of the log terms - about 2.6563050580919

Geometric and Arithmetic Means

- The predicted geometric mean of the first N continued fraction terms is just ' 2 ' raised to the arithmetic mean of the log terms - about 2.6563050580919
- Indeed, if $\mathcal{K} \mathcal{L}_{2}$ denotes the arithmetic mean of the binary continued logarithm terms, the expected geometric mean of the continued fraction terms is

$$
\begin{equation*}
\mathcal{G}_{2}=\lim _{N \rightarrow \infty}\left(\prod_{k=0}^{N-1} 2^{\mathcal{K} \mathcal{L}_{2}}\right)^{\frac{1}{N}}=\lim _{N \rightarrow \infty}\left(2^{N \cdot \mathcal{K} \mathcal{L}_{2}}\right)^{\frac{1}{N}}=2^{\mathcal{K} \mathcal{L}_{2}} \tag{6}
\end{equation*}
$$

Geometric and Arithmetic Means

- The predicted geometric mean of the first N continued fraction terms is just '2' raised to the arithmetic mean of the log terms - about 2.6563050580919
- Indeed, if $\mathcal{K} \mathcal{L}_{2}$ denotes the arithmetic mean of the binary continued logarithm terms, the expected geometric mean of the continued fraction terms is

$$
\begin{equation*}
\mathcal{G}_{2}=\lim _{N \rightarrow \infty}\left(\prod_{k=0}^{N-1} 2^{\mathcal{K} \mathcal{L}_{2}}\right)^{\frac{1}{N}}=\lim _{N \rightarrow \infty}\left(2^{N \cdot \mathcal{K} \mathcal{L}_{2}}\right)^{\frac{1}{N}}=2^{\mathcal{K} \mathcal{L}_{2}} \tag{6}
\end{equation*}
$$

- Note that \mathcal{G}_{2}, unlike \mathcal{K} (presumably), is a (known) elementary constant.

Other Bases: The Challenge

- If we try to construct continued logarithms to a different base, say by dividing by ' 3 ' instead of by ' 2 ,' then we run into problems with the second type of map.

Other Bases: The Challenge

- If we try to construct continued logarithms to a different base, say by dividing by ' 3 ' instead of by ' 2 ,' then we run into problems with the second type of map.
- All we are guaranteed after the final division by three is that $x \in[1,3)$. The map

$$
x \rightarrow \frac{1}{x-1}
$$

takes this interval to $\left[\frac{1}{2}, \infty\right)$ rather than $[1, \infty)$.

Other Bases: The Challenge

- If we try to construct continued logarithms to a different base, say by dividing by ' 3 ' instead of by ' 2 ,' then we run into problems with the second type of map.
- All we are guaranteed after the final division by three is that $x \in[1,3)$. The map

$$
x \rightarrow \frac{1}{x-1}
$$

takes this interval to $\left[\frac{1}{2}, \infty\right)$ rather than $[1, \infty)$.

- A solution to this is the following: after dividing out powers of b, we replace the second map by

$$
x \rightarrow \frac{b-1}{x-1}
$$

Other Bases: Type I

We may describe the process with the following dynamical system.

Type I Dynamical System

$$
g_{b}(x)= \begin{cases}x / b & \text { if } x \geq b \tag{7}\\ \frac{b-1}{x-1} & \text { if } 1<x<b \\ \text { terminate } & \text { if } x=1\end{cases}
$$

Type I Construction

We may describe this construction in a manner analogous to our binary construction. Letting $x=y_{0}$, we have

$$
y_{0}=b^{a_{0}}+\left(y_{0}-b^{a_{0}}\right)=b^{a_{0}}+\frac{b-1}{\frac{b-1}{\left(y_{0}-b^{a_{0}}\right)}}=b^{a_{0}}+\frac{(b-1) \cdot b^{a_{0}}}{\frac{(b-1) \cdot b^{a_{0}}}{y_{0}-b^{a_{0}}}} .
$$

Type I Construction

We may describe this construction in a manner analogous to our binary construction. Letting $x=y_{0}$, we have

$$
y_{0}=b^{a_{0}}+\left(y_{0}-b^{a_{0}}\right)=b^{a_{0}}+\frac{b-1}{\frac{b-1}{\left(y_{0}-b^{a_{0}}\right)}}=b^{a_{0}}+\frac{(b-1) \cdot b^{a_{0}}}{\frac{(b-1) \cdot b^{a_{0}}}{y_{0}-b^{a_{0}}}} .
$$

Dividing the highest largest power of b out of the numerator and denominator of the lower fraction, we obtain

$$
y_{0}=b^{a_{0}}+\frac{(b-1) \cdot b^{a_{0}}}{\frac{b-1}{\frac{y_{0}}{b^{a_{0}}}-1}}=b^{a_{0}}+\frac{(b-1) \cdot b^{a_{0}}}{y_{1}} \text { where } y_{1}=\frac{b-1}{\frac{y_{0}}{b^{a_{0}}}-1} .
$$

We continue on in similar fashion.

Type I: Fractional Form

- The representation of this type of continued logarithm in continued fraction form is as follows:

Fractional Form

$$
x=b^{a_{0}}+\frac{(b-1) b^{a_{0}}}{b^{a_{1}}+\frac{(b-1) b^{a_{1}}}{b^{a_{2}}+\frac{(b-1) b^{a_{2}}}{b^{a_{3}}}+\ldots}} .
$$

Type I: Fractional Form

- The representation of this type of continued logarithm in continued fraction form is as follows:

Fractional Form

$$
x=b^{a_{0}}+\frac{(b-1) b^{a_{0}}}{b^{a_{1}}+\frac{(b-1) b^{a_{1}}}{b^{a_{2}}+\frac{(b-1) b^{a_{2}}}{b^{a_{3}}}+\ldots}} .
$$

- For $b=2$, this is just Gosper's original formulation

Type I: Example

Example 7

Consider $\frac{1233}{47}$ which has ternary continued logarithm $I_{3}\left(\frac{1233}{47}\right)=[2,0,3,1]_{\mathrm{cl}(3)}$. The corresponding continued fraction is as follows.

$$
\frac{1233}{47}=3^{2}+\frac{2 \cdot 3^{2}}{3^{0}+\frac{2 \cdot 3^{0}}{3^{3}+\frac{2 \cdot 3^{3}}{3^{1}}}}
$$

This example will be useful for comparing this Type I formulation of the base b logarithm with the Type II formulation given below. Specifically, compare this example with Example 9.

Type I: Convergence and Loss of Rational Finiteness

- With this formulation, rationals do not necessarily have finite continued logarithms.

Type I: Convergence and Loss of Rational Finiteness

- With this formulation, rationals do not necessarily have finite continued logarithms.
- Indeed, to base three, we have $I_{3}(2)=[0,0,0,0, \ldots]$.

Type I: Convergence and Loss of Rational Finiteness

- With this formulation, rationals do not necessarily have finite continued logarithms.
- Indeed, to base three, we have $I_{3}(2)=[0,0,0,0, \ldots]$.
- We still have convergence - the proof uses similar methods to the binary case.

Type I: Convergence and Loss of Rational Finiteness

- With this formulation, rationals do not necessarily have finite continued logarithms.
- Indeed, to base three, we have $I_{3}(2)=[0,0,0,0, \ldots]$.
- We still have convergence - the proof uses similar methods to the binary case.

Question 1 (Finite Termination)

Given an integer base b, and especially in the case of $b=3$, determine which rationals (indeed, even which integers) have finite continued logarithms to base b.

Type I: Distribution of Log Terms

Our binary Gauss-Kuzmin result has a natural extension to the general base b case. For almost any real number x, the expected probability of k being the continued logarithm exponent is
$\mathcal{P}_{b}(k)=\frac{\log \left(1+\frac{(b-1)^{3} \cdot b^{k}}{\left((b-1)+b^{k+1}\right)^{2}}\right)}{\log \left(\frac{b^{2}}{2 b-1}\right)}$.
(Also implicitly proven in [5].)

Figure: Distribution of the first 200, 000 terms of the base 5 continued logarithm for aperiodic \sqrt{n} for $n \leq 200$.

Type I: Khintchine Logarithmic Constant

Corollary 8 (Khintchine Constant $\mathcal{K} \mathcal{L}_{b}$)

For almost all real numbers exceeding $x>1$, where $x=\left[a_{0}, a_{1}, \ldots\right]_{\mathrm{cl}(b)}$, the arithmetic mean of the continued logarithm terms is given by

$$
\begin{aligned}
\mathcal{K} \mathcal{L}_{b}=\lim _{N \rightarrow \infty}\left(\frac{1}{N}\right) \sum_{k=0}^{N} a_{k} & =\frac{\log (b)}{\log \left(\frac{b^{2}}{2 b-1}\right)}-1 \\
& =-\frac{\log _{b}(2 b-1)-1}{\log _{b}(2 b-1)-2}
\end{aligned}
$$

Type I: Khintchine Logarithmic Constant

Corollary 8 (Khintchine Constant $\mathcal{K} \mathcal{L}_{b}$)

For almost all real numbers exceeding $x>1$, where $x=\left[a_{0}, a_{1}, \ldots\right]_{\mathrm{cl}(b)}$, the arithmetic mean of the continued logarithm terms is given by

$$
\begin{aligned}
\mathcal{K} \mathcal{L}_{b}=\lim _{N \rightarrow \infty}\left(\frac{1}{N}\right) \sum_{k=0}^{N} a_{k} & =\frac{\log (b)}{\log \left(\frac{b^{2}}{2 b-1}\right)}-1 \\
& =-\frac{\log _{b}(2 b-1)-1}{\log _{b}(2 b-1)-2} .
\end{aligned}
$$

- As with the binary case, $\mathcal{K} \mathcal{L}_{b}$ has an elementary closed form.

Other Base Possibilities

- The factor $b-1$ in the numerator of $\frac{b-1}{x-1}$ comes because when we divide by the final factor of b, we end up with a value in an interval of length $b-1$.

Other Base Possibilities

- The factor $b-1$ in the numerator of $\frac{b-1}{x-1}$ comes because when we divide by the final factor of b, we end up with a value in an interval of length $b-1$.
- We are not restricted to fixed bases. We could take the sequence $\omega_{n}=n$!, and our map becomes

$$
x \rightarrow \begin{cases}\frac{x}{n!} & \text { if } n!\leq x<(n+1)! \\ \frac{n}{x-1} & \text { if } x \in[1, n+1) \\ \text { terminate } & \text { if } x=1\end{cases}
$$

Other Base Possibilities

- The factor $b-1$ in the numerator of $\frac{b-1}{x-1}$ comes because when we divide by the final factor of b, we end up with a value in an interval of length $b-1$.
- We are not restricted to fixed bases. We could take the sequence $\omega_{n}=n!$, and our map becomes

$$
x \rightarrow \begin{cases}\frac{x}{n!} & \text { if } n!\leq x<(n+1)! \\ \frac{n}{x-1} & \text { if } x \in[1, n+1) \\ \text { terminate } & \text { if } x=1\end{cases}
$$

- If at the $k^{\text {th }}$ step we divide by m_{k} !, we could express the continued factorial logarithm as $\left[n_{0}, n_{1}, n_{2}, \ldots\right]_{!}$.

Other Base Possibilities

- Consider a strictly monotonic sequence $\omega_{n} \rightarrow \infty$.

Other Base Possibilities

- Consider a strictly monotonic sequence $\omega_{n} \rightarrow \infty$.
- Here ω_{n} corresponds to b^{n}, so that $\omega_{n+1} / \omega_{n}$ will play a role similar to that of b in the preceding sections).

Other Base Possibilities

- Consider a strictly monotonic sequence $\omega_{n} \rightarrow \infty$.
- Here ω_{n} corresponds to b^{n}, so that $\omega_{n+1} / \omega_{n}$ will play a role similar to that of b in the preceding sections).
- We can write down a corresponding type of continued logarithm, using the map

$$
x \rightarrow\left\{\begin{array}{ll}
\frac{x}{\omega_{n}} & \text { if } \omega_{n} \leq x<\omega_{n+1} \\
\frac{\left(\frac{\omega_{n+1}}{\omega_{n}}-1\right)}{x-1} & \text { if } x \in\left[1, \frac{\omega_{n+1}}{\omega_{n}}\right) \\
\text { terminate } & \text { if } x=1
\end{array} .\right.
$$

Other Base Possibilities

- Consider a strictly monotonic sequence $\omega_{n} \rightarrow \infty$.
- Here ω_{n} corresponds to b^{n}, so that $\omega_{n+1} / \omega_{n}$ will play a role similar to that of b in the preceding sections).
- We can write down a corresponding type of continued logarithm, using the map

$$
x \rightarrow\left\{\begin{array}{ll}
\frac{x}{\omega_{n}} & \text { if } \omega_{n} \leq x<\omega_{n+1} \\
\frac{\left(\frac{\omega_{n+1}}{\omega_{n}}-1\right)}{x-1} & \text { if } x \in\left[1, \frac{\omega_{n+1}}{\omega_{n}}\right) \\
\text { terminate } & \text { if } x=1
\end{array} .\right.
$$

- Note that the second map takes 1 to ∞, and sends $\omega_{n+1} / \omega_{n}$ to 1 .

Other Base Possibilities

- If for x we use the $n_{k}^{t h}$ map at the $k^{\text {th }}$ step, we can compactly represent this continued \log as $\left[n_{0}, n_{1}, n_{2}, \ldots\right]$.

Other Base Possibilities

- If for x we use the $n_{k}^{t h}$ map at the $k^{\text {th }}$ step, we can compactly represent this continued \log as $\left[n_{0}, n_{1}, n_{2}, \ldots\right]$.
- Refer to this for now as the continued logarithm with respect to the sequential base ω_{n}.

Other Base Possibilities

- If for x we use the $n_{k}^{t h}$ map at the $k^{\text {th }}$ step, we can compactly represent this continued \log as $\left[n_{0}, n_{1}, n_{2}, \ldots\right]$.
- Refer to this for now as the continued logarithm with respect to the sequential base ω_{n}.
- We could even complicate things even further, by taking a different sequence $\omega_{k, n}$ at each iteration k.
- We have not yet decided if this is worth naming.

Other Bases: Type II

We consider another natural construction for the base b continued logarithm. Fix $b=3$ and $x=89$.
Let $89=y_{0}$ and examine its base 3 expansion:

$$
y_{0}=1 \cdot 3^{4}+0 \cdot 3^{2}+2 \cdot 3^{1}+2 \cdot 3^{0} .
$$

Other Bases: Type II

We consider another natural construction for the base b continued logarithm. Fix $b=3$ and $x=89$.
Let $89=y_{0}$ and examine its base 3 expansion:

$$
y_{0}=1 \cdot 3^{4}+0 \cdot 3^{2}+2 \cdot 3^{1}+2 \cdot 3^{0}
$$

We set aside the trailing terms and use only the leading term to begin building a continued fraction in the usual way:

$$
y_{0}=1 \cdot 3^{4}+\left(y_{0}-1 \cdot 3^{4}\right)=1 \cdot 3^{4}+\frac{1}{\frac{1}{\left(y_{0}-1 \cdot 3^{4}\right)}}=1 \cdot 3^{4}+\frac{1 \cdot 3^{4}}{\frac{1 \cdot 3^{4}}{y_{0}-1 \cdot 3^{4}}} .
$$

Type II Construction

We set aside the trailing terms and use only the leading term to begin building a continued fraction in the usual way:

$$
y_{0}=1 \cdot 3^{4}+\left(y_{0}-1 \cdot 3^{4}\right)=1 \cdot 3^{4}+\frac{1}{\frac{1}{\left(y_{0}-1 \cdot 3^{4}\right)}}=1 \cdot 3^{4}+\frac{1 \cdot 3^{4}}{\frac{1 \cdot 3^{4}}{y_{0}-1 \cdot 3^{4}}} .
$$

Dividing the highest largest power of three out of the numerator and denominator of the lower fraction, we obtain

$$
y_{0}=1 \cdot 3^{4}+\frac{1 \cdot 3^{4}}{\frac{1}{\frac{y_{0}}{3^{4}}-1}}=1 \cdot 3^{4}+\frac{1 \cdot 3^{4}}{y_{1}} \text { where } y_{1}=\frac{1}{\frac{y_{0}}{3^{4}}-1}=\frac{81}{8}
$$

Type II Construction

Dividing the highest largest power of three out of the numerator and denominator of the lower fraction, we obtain

$$
y_{0}=1 \cdot 3^{4}+\frac{1 \cdot 3^{4}}{\frac{1}{\frac{y_{0}}{3^{4}}-1}}=1 \cdot 3^{4}+\frac{1 \cdot 3^{4}}{y_{1}} \text { where } y_{1}=\frac{1}{\frac{y_{0}}{3^{4}}-1}=\frac{81}{8}
$$

We repeat for y_{1} what we did for y_{0}, taking its base expansion

$$
y_{1}=1 \cdot 3^{2}+0 \cdot 3^{1}+1 \cdot 3^{0}+0 \cdot 3^{-1}+1 \cdot 3^{-2}+\ldots
$$

and likewise using its leading term to build the continued fraction

$$
y_{1}=1 \cdot 3^{2}+\frac{1 \cdot 3^{2}}{y_{2}} \text { where } y_{2}=\frac{1}{\frac{y_{1}}{3^{2}}-1}=8
$$

Type II Construction

Finally, we have

$$
y_{2}=2 \cdot 3^{1}+\frac{2 \cdot 3^{1}}{y_{3}} \text { where } y_{3}=\frac{2}{\frac{y_{2}}{3^{1}}-2}=3
$$

Type II Construction

Finally, we have

$$
y_{2}=2 \cdot 3^{1}+\frac{2 \cdot 3^{1}}{y_{3}} \text { where } y_{3}=\frac{2}{\frac{y_{2}}{3^{1}}-2}=3
$$

This yields the continued fraction

$$
89=1 \cdot 3^{4}+\frac{1 \cdot 3^{4}}{1 \cdot 3^{2}+\frac{1 \cdot 3^{2}}{2 \cdot 3^{1}+\frac{2 \cdot 3^{1}}{1 \cdot 3^{1}}}}=\left[1 \cdot 3^{4}, 1 \cdot 3^{2}, 2 \cdot 3^{1}, 1 \cdot 3^{1}\right]_{\mathrm{cl}(3)}
$$

Type II Construction

We may formalise this as a dynamical system:

Type II Dynamical System on $[1, \infty$)

$$
\begin{equation*}
x \mapsto g_{b}(x):=\frac{\left\lfloor b^{\left\{\log _{b} x\right\}}\right\rfloor}{\left\{b^{\left\{\log _{b} x\right\}}\right\}}=\frac{\left\lfloor b^{\left\{\log _{b} x\right\}}\right\rfloor}{b^{\left\{\log _{b} x\right\}}-\left\lfloor b^{\left\{\log _{b} x\right\}}\right\rfloor} . \tag{9}
\end{equation*}
$$

We associate to the sequence $y_{n+1}:=g_{b}\left(y_{n}\right)$ the Type II continued logarithm $\left[p_{0} \cdot b^{\mathrm{a}_{0}}, p_{1} \cdot b^{a_{1}}, p_{2} \cdot b^{a_{2}}, \ldots\right]_{\mathrm{cl}(b)}$ where

$$
p_{n}:=\left\lfloor b^{\left\{\log _{b} y_{n}\right\}}\right\rfloor, \quad a_{n}=\left\lfloor\log _{b} y_{n}\right\rfloor .
$$

Type II Construction

We may formalise this as a dynamical system:
Type II Dynamical System on $[1, \infty$)

$$
\begin{equation*}
x \mapsto g_{b}(x):=\frac{\left\lfloor b^{\left\{\log _{b} x\right\}}\right\rfloor}{\left\{b^{\left\{\log _{b} x\right\}}\right\}}=\frac{\left\lfloor b^{\left\{\log _{b} x\right\}}\right\rfloor}{b^{\left\{\log _{b} x\right\}}-\left\lfloor b^{\left\{\log _{b} x\right\}}\right\rfloor} . \tag{9}
\end{equation*}
$$

We associate to the sequence $y_{n+1}:=g_{b}\left(y_{n}\right)$ the Type II continued logarithm $\left[p_{0} \cdot b^{a_{0}}, p_{1} \cdot b^{a_{1}}, p_{2} \cdot b^{a_{2}}, \ldots\right]_{\mathrm{cl}(b)}$ where

$$
p_{n}:=\left\lfloor b^{\left\{\log _{b} y_{n}\right\}}\right\rfloor, \quad a_{n}=\left\lfloor\log _{b} y_{n}\right\rfloor .
$$

- With finite termination if some y_{n} is integer.

Type II Fractional Representation

The continued logarithm with this construction has a continued fraction which contains more number theory than the Type I construction.

Type II: Corresponding Continued Fraction

$$
\begin{equation*}
x=p_{0} \cdot b^{a_{0}}+\frac{p_{0} \cdot b^{a_{0}}}{p_{1} \cdot b^{a_{1}}+\frac{p_{1} \cdot b^{a_{1}}}{p_{2} \cdot b^{a_{2}}+\ldots}} \tag{10}
\end{equation*}
$$

where each p_{n} is an integer in the interval $[1, b-1]$, and each $a_{n} \geq 0$ is integer.

Type II Distribution

Figure: Type II probability function for $2 \leq b \leq 5$.

A Type II Example

Example 9

Let $b=3$ and $x=\frac{1233}{47}$.

$$
x=2 \cdot 3^{2}+\frac{2 \cdot 3^{2}}{2 \cdot 3^{0}}
$$

$$
1 \cdot 3^{2}+\frac{1 \cdot 3^{2}}{1 \cdot 3^{1}+\frac{1 \cdot 3^{1}}{1 \cdot 3^{0}+\frac{1 \cdot 3^{0}}{2 \cdot 3^{0}+\frac{2 \cdot 3^{0}}{1 \cdot 3^{1}+\frac{1 \cdot 3^{1}}{1 \cdot 3^{1}}}}} \text { }}
$$

This is the same number used for Example 7.

Type II Properties

We obtain different properties.
(1) Still reduces to Gosper's binary case

Type II Properties

We obtain different properties.
(1) Still reduces to Gosper's binary case
(2) Finite termination for all rationals

Type II Properties

We obtain different properties.
(1) Still reduces to Gosper's binary case
(2) Finite termination for all rationals
(3) Fractional representation contains a greater variety of entries

Type II Properties

We obtain different properties.
(1) Still reduces to Gosper's binary case
(2) Finite termination for all rationals
(3) Fractional representation contains a greater variety of entries
(9) Originally we could not identify the type II distribution.

Type II Properties

We obtain different properties.
(1) Still reduces to Gosper's binary case
(2) Finite termination for all rationals
(3) Fractional representation contains a greater variety of entries
(1) Originally we could not identify the type II distribution.

- We returned in early 2016 with Jason Lynch. This led to the discovery of a recursive closed form.

Type II Equivalence

Lemma 10 (Equivalence)

The Type II continued logarithm $\left[p_{0} \cdot b^{a_{0}}, p_{1} \cdot b^{a_{1}}, p_{2} \cdot b^{a_{2}}, \ldots\right]_{\mathrm{cl}(b)}$ is equivalent to the denominator reduced continued fraction

$$
\begin{equation*}
p_{0} \cdot b^{a_{0}}+\frac{p_{0} \cdot p_{1}^{-1} \cdot b^{-a_{1}+a_{0}}}{1}+\frac{p_{2}^{-1} \cdot b^{-a_{2}}}{1}+\frac{p_{3}^{-1} \cdot b^{-a_{3}}}{1}+\ldots \tag{11}
\end{equation*}
$$

- This equivalence was instrumental in showing finiteness of this continued logarithm formation for all rationals in all bases.

Type II Distribution

We conjecture that the distribution of log terms for $b \geq 2$ is given by a recursive process based on the binary case.

Figure: Non-monotonic distribution for Type II ternary logarithm.

Type II Distribution

- Originally we could not identify the Type II distribution. We returned to this in early 2016 with Jason Lynch.

Theorem 11 (Type II distribution)

Let X be the limiting distribution of the terms $p_{n} b^{a_{n}}$ in a Type II continued logarithm base b. Then

$$
\mathcal{P}\left(X=p b^{k}\right)=\mu_{b}\left(1+p^{-1} b^{-k}\right)-\mu_{b}\left(1+(p+1)^{-1} b^{-k}\right) .
$$

Here $\mu_{b}^{(n)}(\alpha)$ denotes measure of $\left\{y \in(1,2): x_{n}<\alpha\right\}, x_{n}$ is the $n t h$ tail of the corresponding continued fraction, and $\mu_{b}=\lim _{n \rightarrow \infty} \mu_{b}^{n}$.

- \mathcal{P} is a indeed a probability density function.
- We then sought a recursive form for the μ_{b} functions.

Finding the Type II Recursion

- We obtain good
convergence of $\mu_{b}^{n}(x)$ - as described in the next section - after around 10 iterations.
- The graphics for μ_{b} show it is piecewise smooth, this ultimately lead to our conjectured recursion.

Figure: Type II $\mu_{b}^{10}(x)$ for $2 \leq b \leq 5$.

Type II Conjectured Recursion

We conjecture the following form for the μ_{b} function:

Conjectured Recursion

$$
\begin{aligned}
& \mu_{2}(x)=\frac{\log \frac{2 x}{x+1}}{\log \frac{4}{3}} \\
& \mu_{b}(x)= \begin{cases}c_{b} \mu_{b-1}(x) & 1 \leq x \leq \frac{b}{b-1} \\
d_{b}\left(\mu_{b-1}(x)-1\right)+1 & \frac{b}{b-1}<x \leq 2\end{cases}
\end{aligned}
$$

where

$$
d_{b}=\frac{c_{b} \mu_{b-1}\left(\frac{b}{b-1}\right)-1}{\mu_{b-1}\left(\frac{b}{b-1}\right)}
$$

Example: Type II Distribution

We provide the explicit distribution for the case $b=3$.

- As $1+1 /\left(p b^{k}\right)>b /(b-1)$ iff $p b^{k}<b-1$ iff

$$
1 \leq p \leq b-1, k=0
$$

Example 12 (\mathcal{P} for $b=3$)

The conjectured recursion leads to:

$$
\mathcal{P}\left(p \cdot 3^{k}\right) \stackrel{?}{=} \mu_{3}\left(1+\left(p \cdot 3^{k}\right)^{-1}\right)-\mu_{3}\left(1+\left((p+1) 3^{k}\right)^{-1}\right)
$$

where

$$
\mu_{3}(x)= \begin{cases}\frac{c_{3}}{\log \left(\frac{4}{3}\right)} \log \left(\frac{2 x}{x+1}\right) & 1 \leq x \leq \frac{3}{2} \\ 1 & x=2\end{cases}
$$

Type II Ternary Distribution Example

- This allows us to simplify to

Probability for $b=3$

$$
\mathcal{P}\left(p \cdot 3^{k}\right)= \begin{cases}1-\frac{c_{3}}{\log \left(\frac{4}{3}\right)} \log \left(\frac{6}{5}\right) & p \cdot 3^{k}=1 \tag{12}\\ \frac{c_{3}}{\log \left(\frac{4}{3}\right)} \log \left(\frac{\left(p 3^{k}+1\right)\left(2(p+1) 3^{k}+1\right)}{\left(2 p 3^{k}+1\right)\left((p+1) 3^{k}+1\right)}\right) & \text { otherwise }\end{cases}
$$

- From this, we may compute a nearly "closed form" for the corresponding Khintchine constant $\mathcal{K} \mathcal{L}_{3}$.

Type II Ternary Distribution Example

- This allows us to simplify to

Probability for $b=3$

$$
\mathcal{P}\left(p \cdot 3^{k}\right)= \begin{cases}1-\frac{c_{3}}{\log \left(\frac{4}{3}\right)} \log \left(\frac{6}{5}\right) & p \cdot 3^{k}=1 \tag{12}\\ \frac{c_{3}}{\log \left(\frac{4}{3}\right)} \log \left(\frac{\left(p 3^{k}+1\right)\left(2(p+1) 3^{k}+1\right)}{\left(2 p 3^{k}+1\right)\left((p+1) 3^{k}+1\right)}\right) & \text { otherwise }\end{cases}
$$

- From this, we may compute a nearly "closed form" for the corresponding Khintchine constant $\mathcal{K} \mathcal{L}_{3}$.
- We originally conjectured $c_{b}=(1+1 / b)^{2 / 3}$.

Type II Ternary Distribution Example

- This allows us to simplify to

Probability for $b=3$

$$
\mathcal{P}\left(p \cdot 3^{k}\right)= \begin{cases}1-\frac{c_{3}}{\log \left(\frac{4}{3}\right)} \log \left(\frac{6}{5}\right) & p \cdot 3^{k}=1 \tag{12}\\ \frac{c_{3}}{\log \left(\frac{4}{3}\right)} \log \left(\frac{\left(p 3^{k}+1\right)\left(2(p+1) 3^{k}+1\right)}{\left(2 p 3^{k}+1\right)\left((p+1) 3^{k}+1\right)}\right) & \text { otherwise }\end{cases}
$$

- From this, we may compute a nearly "closed form" for the corresponding Khintchine constant $\mathcal{K} \mathcal{L}_{3}$.
- We originally conjectured $c_{b}=(1+1 / b)^{2 / 3}$.
- Now we doubt this.

Numerical confirmation?

- First 4 bars in each group show 10,000 terms for $e, \pi, e \cdot \pi$ and e^{π}. Blue line (dots at vertices) is the average. The last two show 100,000 terms for π, e^{π}. Green line is the theoretical distribution.
- Comparing 2nd to 5 th bar (π to 10,000 vs 100,000 terms), the experimental distribution is trending in right direction (towards green line). Similarly, for bars 4 and 6.

Figure: Type II $k=1,2,3$ for $b=3$.

Expressing the Ternary Khintchine Constant

- Peeling off the first term gives a relatively rapidly convergent series for $\mathcal{K} \mathcal{L}_{3}=\log _{3} \mathcal{G}_{3}$ as two sums of logs.

A series for $\mathcal{K} \mathcal{L}_{3}$

$$
\begin{align*}
\mathcal{K} \mathcal{L}_{3} \stackrel{?}{=} \frac{\left(\frac{4}{3}\right)^{\frac{2}{3}}}{\log \left(\frac{4}{3}\right)}\left[\log \left(\frac{21}{20}\right) \frac{\log 2}{\log 3}\right. & +\sum_{k=1}^{\infty} \log \left(1+\frac{1}{2 \cdot 3^{k}+1}\right) \tag{13}\\
& \left.+\frac{\log 2}{\log 3} \sum_{k=1}^{\infty} \log \left(1+\frac{3^{k}}{\left(3^{k+1}+1\right)\left(4 \cdot 3^{k}+1\right)}\right)\right]
\end{align*}
$$

Expressing the Ternary Khintchine Constant

- Peeling off the first term gives a relatively rapidly convergent series for $\mathcal{K} \mathcal{L}_{3}=\log _{3} \mathcal{G}_{3}$ as two sums of logs.

A series for $\mathcal{K} \mathcal{L}_{3}$

$$
\begin{align*}
\mathcal{K} \mathcal{L}_{3} \stackrel{?}{=} \frac{\left(\frac{4}{3}\right)^{\frac{2}{3}}}{\log \left(\frac{4}{3}\right)}\left[\log \left(\frac{21}{20}\right) \frac{\log 2}{\log 3}\right. & +\sum_{k=1}^{\infty} \log \left(1+\frac{1}{2 \cdot 3^{k}+1}\right) \tag{13}\\
& \left.+\frac{\log 2}{\log 3} \sum_{k=1}^{\infty} \log \left(1+\frac{3^{k}}{\left(3^{k+1}+1\right)\left(4 \cdot 3^{k}+1\right)}\right)\right]
\end{align*}
$$

- Numerically: $\mathcal{K} L_{3}=1.11819495094889835 \ldots$

$$
\mathcal{G}_{3}=3.41597416937408551 \ldots
$$

Expressing the Ternary Khintchine Constant

- Peeling off the first term gives a relatively rapidly convergent series for $\mathcal{K} \mathcal{L}_{3}=\log _{3} \mathcal{G}_{3}$ as two sums of logs.

A series for $\mathcal{K} \mathcal{L}_{3}$

$$
\begin{align*}
\mathcal{K} \mathcal{L}_{3} \stackrel{?}{=} \frac{\left(\frac{4}{3}\right)^{\frac{2}{3}}}{\log \left(\frac{4}{3}\right)}\left[\log \left(\frac{21}{20}\right) \frac{\log 2}{\log 3}\right. & +\sum_{k=1}^{\infty} \log \left(1+\frac{1}{2 \cdot 3^{k}+1}\right) \tag{13}\\
& \left.+\frac{\log 2}{\log 3} \sum_{k=1}^{\infty} \log \left(1+\frac{3^{k}}{\left(3^{k+1}+1\right)\left(4 \cdot 3^{k}+1\right)}\right)\right]
\end{align*}
$$

- Numerically: $\mathcal{K} L_{3}=1.11819495094889835 \ldots$

$$
\mathcal{G}_{3}=3.41597416937408551 \ldots
$$

- Also the first sum in (13) is $\sum_{n=1}^{\infty} \frac{\sum_{k=1}^{\infty} 1 /\left(3^{k}+1\right)^{n}}{n 2^{n}}$ and the second is $\sum_{n=1}^{\infty} \frac{\sum_{k=1}^{\infty} 1 /\left(23^{k}+1\right)^{n}}{n 2^{n}}-\sum_{n=1}^{\infty} \frac{\sum_{k=1}^{\infty} 1 /\left(33^{k}+1\right)^{n}}{n 2^{n}}$.

Discovering the Type III Fraction

- Our difficulties in resolving the Type II distribution led us to investigate other options.
- This led to the discovery of a Type III generalization
- This Type III construction retains the best qualities of both the Type I and Type II constructions, namely:
(1) Finite termination for rationals
(2) Distribution has an elementary closed form
(3) An explicit Khintchine constant

Discovering the Type III Fraction

- Our difficulties in resolving the Type II distribution led us to investigate other options.
- This led to the discovery of a Type III generalization
- This Type III construction retains the best qualities of both the Type I and Type II constructions, namely:
(1) Finite termination for rationals
(2) Distribution has an elementary closed form
(3) An explicit Khintchine constant
- For such reasons, perhaps this ought to be called the Type 0 continued logarithm or the natural continued logarithm.

Type III Construction

Where $p_{0} \cdot b^{a_{0}}$ is the leading term of the base b expansion of y_{0}, set

$$
y_{0}=p_{0} \cdot b^{a_{0}}+\left(y_{0}-p_{0} \cdot b^{a_{0}}\right)=p_{0} \cdot b^{a_{0}}+\frac{1}{\frac{1}{\left(y_{0}-p_{0} \cdot b^{a_{0}}\right)}}=b^{a_{0}}+\frac{b^{a_{0}}}{\frac{b^{a_{0}}}{y_{0}-p_{0} \cdot b^{a_{0}}}} .
$$

If $y_{n}-p_{n} b^{a_{n}}=0$ then terminate. Otherwise, set

$$
y_{n+1}=\frac{b^{a_{n}}}{y_{n}-p_{n} b^{a_{n}}}
$$

The corresponding continued logarithm is of the form

$$
y_{0}=p_{0} b^{a_{0}}+\frac{b^{a_{0}}}{p_{1} b^{a_{1}}+\frac{b^{a_{1}}}{p_{2} b^{a_{2}}+\frac{b^{a_{2}}}{\ddots}}}
$$

Type III: A Probability Distribution

- The probability distribution was discovered by a similar recursive process to that of the Type II continued logarithm.
- Surprisingly, it turns out to be elementary. Let $\mu_{b}=\lim _{n \rightarrow \infty} \mu_{b}^{(n)}$ denote the limiting distribution. Then

$$
\begin{equation*}
\mu_{b}(x)=\frac{\log \frac{x+b-1}{b x}}{\log \frac{b+1}{2 b}} \tag{14}
\end{equation*}
$$

Type III: A Probability Distribution

- The probability distribution was discovered by a similar recursive process to that of the Type II continued logarithm.
- Surprisingly, it turns out to be elementary. Let $\mu_{b}=\lim _{n \rightarrow \infty} \mu_{b}^{(n)}$ denote the limiting distribution. Then

$$
\begin{equation*}
\mu_{b}(x)=\frac{\log \frac{x+b-1}{b x}}{\log \frac{b+1}{2 b}} \tag{14}
\end{equation*}
$$

Type III distribution

For $p=1,2, \ldots, b-1$ and $k=0,1, \ldots$

$$
\begin{aligned}
\mathcal{P}\left(X=p \cdot b^{k}\right) & =\mu_{b}\left(1+p^{-1} b^{-1}\right)-\mu_{b}\left(1+(p+1)^{-1} b^{-k}\right) \\
& =\frac{1}{\log \frac{b+1}{2 b}}\left(\log \frac{1+p^{-1} b^{-k-1}}{1+p^{-1} b^{-k}}-\log \frac{1+(p+1)^{-1} b^{-k-1}}{1+(p+1)^{-1} b^{-k}}\right)
\end{aligned}
$$

Type III: Distribution (still non-monotonic)

Figure: Type III probability function for $2 \leq b \leq 5$

A Surprising Result: Type III Khintchine Constant

Type III Khinchine Constant

For $b=2,3, \cdots$ the Type III constant is given by

$$
\mathcal{K} \mathcal{L}_{b}=\frac{1}{\log _{b} \frac{b+1}{2 b}} \sum_{p=2}^{b} \log _{b}\left(1+\frac{1}{p}\right) \log _{b}\left(1-\frac{1}{p}\right) .
$$

A Surprising Result: Type III Khintchine Constant

Type III Khinchine Constant

For $b=2,3, \cdots$ the Type III constant is given by

$$
\mathcal{K} \mathcal{L}_{b}=\frac{1}{\log _{b} \frac{b+1}{2 b}} \sum_{p=2}^{b} \log _{b}\left(1+\frac{1}{p}\right) \log _{b}\left(1-\frac{1}{p}\right) .
$$

- Using Maple and the Inverse Symbolic Calculator, we found that the limit of the geometric constants $\mathcal{G} 3_{b}:=b^{\mathcal{K} \mathcal{L}_{b}}$ turns out to be exactly Khintchine's original constant $2.685452001065306445 \ldots$. . (Proven by [1, Lemma 1a].)
- Moreover $\mathcal{G} 3_{3}=8 / 3$.
- As b goes to infinity the distribution converges to the classical Gauss-Kuzmin distribution.

Finding the Functional Relation

- We next indicate the experimental mathematics [2] process used to find the Type I base b distribution. Similar more subtle steps led to discovery of the Type II and III distributions.
- Let $x \in \mathbb{R}, x>1$ have the (aperiodic) continued logarithm $\left[a_{0}, a_{1}, \ldots\right]_{\mathrm{cl}(2)}$. Let x_{n} be the nth tail of the equivalent denominator reduced continued fraction. Then we have

$$
\begin{equation*}
x=2^{a_{0}} \cdot\left(1+\frac{2^{-a_{1}}}{1+\frac{2^{-a_{2}}}{\cdots+\frac{2^{-a_{n}}}{x_{n}}}}\right) . \tag{15}
\end{equation*}
$$

Finding the Functional Relation

Consider the Lebesgue measure $\mu_{n}(\zeta)$ of $\left\{x \in(1,2): x_{n}<\zeta\right\}$. Setting $x_{n-1}=1+\frac{2^{-a_{n}}}{x_{n}}$ it follows that $x_{n}<x$ if and only if

$$
\frac{2^{-a_{n}}}{x_{n-1}-1}<x \text { which is just } x_{n-1}>1+\frac{2^{-a_{n}}}{x}
$$

Finding the Functional Relation

Consider the Lebesgue measure $\mu_{n}(\zeta)$ of $\left\{x \in(1,2): x_{n}<\zeta\right\}$. Setting $x_{n-1}=1+\frac{2^{-a_{n}}}{x_{n}}$ it follows that $x_{n}<x$ if and only if

$$
\frac{2^{-a_{n}}}{x_{n-1}-1}<x \text { which is just } x_{n-1}>1+\frac{2^{-a_{n}}}{x} .
$$

But, in order to produce the term, a_{n}, we must have $x_{n-1}<1+2^{-a_{n}}$.

Finding the Functional Relation

Consider the Lebesgue measure $\mu_{n}(\zeta)$ of $\left\{x \in(1,2): x_{n}<\zeta\right\}$. Setting $x_{n-1}=1+\frac{2^{-a_{n}}}{x_{n}}$ it follows that $x_{n}<x$ if and only if

$$
\frac{2^{-a_{n}}}{x_{n-1}-1}<x \text { which is just } x_{n-1}>1+\frac{2^{-a_{n}}}{x}
$$

But, in order to produce the term, a_{n}, we must have $x_{n-1}<1+2^{-a_{n}}$. Combining these two inequalities, we obtain

$$
1+\frac{2^{-a_{n}}}{x}<x_{n-1}<1+2^{-a_{n}} .
$$

Thus $\mu_{0}(x)=x-1$ and

Finding the Functional Relation

Consider the Lebesgue measure $\mu_{n}(\zeta)$ of $\left\{x \in(1,2): x_{n}<\zeta\right\}$.
Setting $x_{n-1}=1+\frac{2^{-a_{n}}}{x_{n}}$ it follows that $x_{n}<x$ if and only if

$$
\frac{2^{-a_{n}}}{x_{n-1}-1}<x \text { which is just } x_{n-1}>1+\frac{2^{-a_{n}}}{x}
$$

But, in order to produce the term, a_{n}, we must have
$x_{n-1}<1+2^{-a_{n}}$. Combining these two inequalities, we obtain

$$
1+\frac{2^{-a_{n}}}{x}<x_{n-1}<1+2^{-a_{n}} .
$$

Thus $\mu_{0}(x)=x-1$ and

$$
\begin{equation*}
\mu_{n}(x)=\sum_{k=0}^{\infty}\left(\mu_{n-1}\left(1+2^{-k}\right)-\mu_{n-1}\left(1+\frac{2^{-k}}{x}\right)\right) . \tag{16}
\end{equation*}
$$

Finding the Closed Form

(1) We investigated the form of $\mu(x)$ by iterating the recurrence relation in Equation (16) at points evenly spaced in [1, 2].

[^0]
Finding the Closed Form

(1) We investigated the form of $\mu(x)$ by iterating the recurrence relation in Equation (16) at points evenly spaced in [1, 2].
(2) We began with $\mu_{0}(x)=x-1$, fitting a spline to these points at each iteration.

[^1]
Finding the Closed Form

(1) We investigated the form of $\mu(x)$ by iterating the recurrence relation in Equation (16) at points evenly spaced in [1, 2].
(2) We began with $\mu_{0}(x)=x-1$, fitting a spline to these points at each iteration.
(3) We found good convergence of $\mu(x)$ after 10 iterations. ${ }^{1}$

[^2]
Finding the Closed Form

(1) We investigated the form of $\mu(x)$ by iterating the recurrence relation in Equation (16) at points evenly spaced in [1, 2].
(2) We began with $\mu_{0}(x)=x-1$, fitting a spline to these points at each iteration.
(3) We found good convergence of $\mu(x)$ after 10 iterations. ${ }^{1}$
(We used the 101 data points to seek the best fit to a function of the form

$$
\mu(x)=C \log _{2}\left(\frac{a x+b}{c x+d}\right)
$$

where C, a, b, c, and d are constants to be determined by the fitting process.

[^3]
Finding the Closed Form

- To meet the boundary conditions, it is necessary that

$$
\begin{aligned}
\mu(1) & =0 \\
\mu(2) & =1 \\
d & =a+b-c \\
C & =\frac{1}{\log _{2}\left(\frac{2 a+b}{a+b+c}\right)} .
\end{aligned}
$$

Finding the Closed Form

- To meet the boundary conditions, it is necessary that

$$
\begin{aligned}
\mu(1) & =0 \\
\mu(2) & =1 \\
d & =a+b-c \\
C & =\frac{1}{\log _{2}\left(\frac{2 a+b}{a+b+c}\right)} .
\end{aligned}
$$

- Motivated by the case of a simple continued fraction, we had originally considered the form $C \log _{2}(a x+b)$ and, when that failed, we considered a superposition of two such terms.
- To eliminate any common factor between the numerator and denominator of $\frac{a x+b}{c x+d}$, we set $c=1$, leaving the functional form to be fitted as

$$
\begin{equation*}
\mu(x)=\frac{\log _{2}\left(\frac{a x+b}{x+a+b-1}\right)}{\log _{2}\left(\frac{2 a+b}{a+b+1}\right)} . \tag{17}
\end{equation*}
$$

- To eliminate any common factor between the numerator and denominator of $\frac{a x+b}{c x+d}$, we set $c=1$, leaving the functional form to be fitted as

$$
\begin{equation*}
\mu(x)=\frac{\log _{2}\left(\frac{a x+b}{x+a+b-1}\right)}{\log _{2}\left(\frac{2 a+b}{a+b+1}\right)} \tag{17}
\end{equation*}
$$

- Mathematica gives the output

$$
a->0.49999983502291956 ،, b->0.5000002651575332 ،
$$

- To eliminate any common factor between the numerator and denominator of $\frac{a x+b}{c x+d}$, we set $c=1$, leaving the functional form to be fitted as

$$
\begin{equation*}
\mu(x)=\frac{\log _{2}\left(\frac{a x+b}{x+a+b-1}\right)}{\log _{2}\left(\frac{2 a+b}{a+b+1}\right)} . \tag{17}
\end{equation*}
$$

- Mathematica gives the output

$$
a->0.49999983502291956^{\prime}, b->0.5000002651575332 ،
$$

- This result suggests candidate values of $a=\frac{1}{2}$ and $b=\frac{1}{2}$.
- To eliminate any common factor between the numerator and denominator of $\frac{a x+b}{c x+d}$, we set $c=1$, leaving the functional form to be fitted as

$$
\begin{equation*}
\mu(x)=\frac{\log _{2}\left(\frac{a x+b}{x+a+b-1}\right)}{\log _{2}\left(\frac{2 a+b}{a+b+1}\right)} \tag{17}
\end{equation*}
$$

- Mathematica gives the output

$$
a->0.49999983502291956^{\prime}, b->0.5000002651575332 ،
$$

- This result suggests candidate values of $a=\frac{1}{2}$ and $b=\frac{1}{2}$.
- Thus we obtained

$$
\begin{equation*}
\mu_{2}(x)=\mu(x)=\frac{\log \left(\frac{2 x}{x+1}\right)}{\log \left(\frac{4}{3}\right)} . \tag{18}
\end{equation*}
$$

Binary Probability Distribution

This suggested the probability distribution

$$
\begin{aligned}
\mathcal{P}(X=k) & =\mu\left(1+2^{-k}\right)-\mu\left(1+2^{-k-1}\right) \\
& =\frac{\log \left(1+\frac{2^{k}}{\left(2^{2+1}+1\right)^{2}}\right)}{\log \left(\frac{4}{3}\right)} .
\end{aligned}
$$

We then computed the mean:
$E(X)=\sum_{k=0}^{\infty} k \cdot \mathcal{P}(X=k)=1.4094208397 \ldots$.

k	$\mathcal{P}(X=k)$
0	$0.3662394210 \ldots$
1	$0.2675211579 \ldots$
2	$0.1675533738 \ldots$
3	$0.0949153712 \ldots$
4	$0.0507000346 \ldots$
5	$0.0262283498 \ldots$
6	$0.0133430145 \ldots$
7	$0.0067299284 \ldots$

Figure: Distribution of first eight binary continued logarithm terms.

Quadratic Irrationals

- We recall the Euler-Lagrange theorem, that for simple continued fractions, x has an ultimately periodic simple continued fraction if and only if x is a quadratic irrational. See for example [3, Thm 2.48].

Quadratic Irrationals

- We recall the Euler-Lagrange theorem, that for simple continued fractions, x has an ultimately periodic simple continued fraction if and only if x is a quadratic irrational. See for example [3, Thm 2.48].
- For continued logarithms, it becomes clear that \sqrt{n} sometimes has a nice periodic continued logarithm but not always.

Quadratic Irrationals

- We recall the Euler-Lagrange theorem, that for simple continued fractions, x has an ultimately periodic simple continued fraction if and only if x is a quadratic irrational. See for example [3, Thm 2.48].
- For continued logarithms, it becomes clear that \sqrt{n} sometimes has a nice periodic continued logarithm but not always.
- For example, $\sqrt{13}$ appears to be aperiodic, as do $\sqrt{14}$ and $\sqrt{15}$. However, $\sqrt{17}$, has a nice continued logarithm (periodic constant).

Quadratic Irrationals

- We recall the Euler-Lagrange theorem, that for simple continued fractions, x has an ultimately periodic simple continued fraction if and only if x is a quadratic irrational. See for example [3, Thm 2.48].
- For continued logarithms, it becomes clear that \sqrt{n} sometimes has a nice periodic continued logarithm but not always.
- For example, $\sqrt{13}$ appears to be aperiodic, as do $\sqrt{14}$ and $\sqrt{15}$. However, $\sqrt{17}$, has a nice continued logarithm (periodic constant).
- Similarly, $\sqrt{19}, \sqrt{21}$ and $\sqrt{23}$ are likewise periodic. We again find aperiodic \sqrt{n} for n values
$31,35,39,41,43,46,47,55,57,59,61,62,63,67,71,79,85$, $91,94,97,99,101,103,106,107,109,113,114,115,116,119$, and so on.

Quadratic Irrationals: Method

- As for simple continued fractions, we exploit a method of computation of continued logarithms of quadratic irrationals which uses integer arithmetic only.

Quadratic Irrationals: Method

- As for simple continued fractions, we exploit a method of computation of continued logarithms of quadratic irrationals which uses integer arithmetic only.
- Even in the case of aperiodic surds (e.g., $\sqrt{13}$) this method is roughly an order of magnitude faster than a conventional approach using fixed-precision, floating-point arithmetic.

Quadratic Irrationals: Method

- As for simple continued fractions, we exploit a method of computation of continued logarithms of quadratic irrationals which uses integer arithmetic only.
- Even in the case of aperiodic surds (e.g., $\sqrt{13}$) this method is roughly an order of magnitude faster than a conventional approach using fixed-precision, floating-point arithmetic.
- This method applies to the Type I base b continued logarithm.

Quadratic Irrationals: Method of Computation

- Recall the dynamical system g on $[1, \infty)$:

$$
g(x)= \begin{cases}x / b & \text { if } x \geq b \tag{19}\\ \frac{b-1}{x-1} & \text { if } x=b \\ \text { terminate } & \text { if } x=1\end{cases}
$$

Quadratic Irrationals: Method of Computation

- Recall the dynamical system g on $[1, \infty)$:

$$
g(x)= \begin{cases}x / b & \text { if } x \geq b \tag{19}\\ \frac{b-1}{x-1} & \text { if } x=b \\ \text { terminate } & \text { if } x=1\end{cases}
$$

- We consider the general case

$$
\begin{equation*}
x=\frac{p}{q}(c+d \sqrt{n}) \tag{20}
\end{equation*}
$$

where p, q, c, d and n are all integers with $p, q>0$ and $n>1$.

Quadratic Irrationals: Method of Computation

- Recall the dynamical system g on $[1, \infty)$:

$$
g(x)= \begin{cases}x / b & \text { if } x \geq b \tag{19}\\ \frac{b-1}{x-1} & \text { if } x=b \\ \text { terminate } & \text { if } x=1\end{cases}
$$

- We consider the general case

$$
\begin{equation*}
x=\frac{p}{q}(c+d \sqrt{n}) \tag{20}
\end{equation*}
$$

where p, q, c, d and n are all integers with $p, q>0$ and $n>1$.

- To implement this dynamical system efficiently, there are two cases to be considered.

Case I: $d=0$

- Arises when x is a rational p / q or n is a square.

Case I: $d=0$

- Arises when x is a rational p / q or n is a square.
- In the former case, start with $p=c p, c=1, d=0$. In the latter case, set $p=c+d \sqrt{n}, c=1$, and $d=0$.

Case I: $d=0$

- Arises when x is a rational p / q or n is a square.
- In the former case, start with $p=c p, c=1, d=0$. In the latter case, set $p=c+d \sqrt{n}, c=1$, and $d=0$.
- Henceforth, we may ignore c and d since $x=p / q$.

Case I: $d=0$

- Arises when x is a rational p / q or n is a square.
- In the former case, start with $p=c p, c=1, d=0$. In the latter case, set $p=c+d \sqrt{n}, c=1$, and $d=0$.
- Henceforth, we may ignore c and d since $x=p / q$.
- From this simplified definition it follows that

$$
\begin{array}{lll}
x \geq b & \text { iff } & p \geq b q \\
x=1 & \text { iff } & p=q . \tag{21}
\end{array}
$$

Case I continued

Given the current value of x, represented by integers (p, q), we evaluate $g(x)$, represented by integers (p^{\prime}, q^{\prime}), as follows.

$$
\begin{align*}
& p^{\prime}=p, \quad \text { for } x \geq b \\
& q^{\prime}=b q \\
& p^{\prime}=q, \quad \text { for } 1<x<b \tag{22}\\
& q^{\prime}=p-q
\end{align*} \quad .
$$

Case II: $d \neq 0$

- The way these tests are performed depends on the sign of d and the sign of $b q-c p$ or $q-c p$ as follows:

Condition	d	$b q-c p$	True iff
$x \geq b$	+	+	$n d^{2} p^{2} \geq(b q-c p)^{2}$
	+	-	Always
	-	+	Never
	-	-	$n d^{2} p^{2} \leq(b q-c p)^{2}$
Condition	d	$q-c p$	True iff
$x=1$	+	+	$n d^{2} p^{2}=(q-c p)^{2}$
	+	-	Never
	-	+	Never
	-	-	$n d^{2} p^{2}=(q-c p)^{2}$

Case II: $d \neq 0$

- The way these tests are performed depends on the sign of d and the sign of $b q-c p$ or $q-c p$ as follows:

Condition	d	$b q-c p$	True iff
$x \geq b$	+	+	$n d^{2} p^{2} \geq(b q-c p)^{2}$
	+	-	Always
	-	+	Never
	-	-	$n d^{2} p^{2} \leq(b q-c p)^{2}$
Condition	d	$q-c p$	True iff
$x=1$	+	+	$n d^{2} p^{2}=(q-c p)^{2}$
	+	-	Never
	-	+	Never
	-	-	$n d^{2} p^{2}=(q-c p)^{2}$

- The above depends on p, q being positive, so, at each iteration, the sign of c and d should be reversed as needed. $=131 / 159$

Case II continued

Given the current value of x, represented by integers (p, q, c, d), we evaluate $g(x)$, represented by integers ($p^{\prime}, q^{\prime}, c^{\prime}, d^{\prime}$), as follows.

$$
\begin{array}{ll}
p^{\prime}=p, & \text { for } x \geq b \\
q^{\prime}=b q & \\
c^{\prime}=c & \\
d^{\prime}=d & \\
p^{\prime}=(b-1) q, & \text { for } 1<x<b \\
q^{\prime}=(c p-q)^{2}-n d^{2} p^{2} & \\
c^{\prime}=c p-q & \\
d^{\prime}=-d p &
\end{array}
$$

Periodicity of Quadratics

- Our study is principally focused on binary continued logarithms.

Periodicity of Quadratics

- Our study is principally focused on binary continued logarithms.
- We computed 200, 000 terms for $2 \leq n \leq 50,000,20,000$ terms up to two million, and 2,000 terms for $n \leq 1.2 \cdot 10^{9}$.

Periodicity of Quadratics

- Our study is principally focused on binary continued logarithms.
- We computed 200,000 terms for $2 \leq n \leq 50,000,20,000$ terms up to two million, and 2,000 terms for $n \leq 1.2 \cdot 10^{9}$.
- The longest period found was 293 for $n=16,813,731$.

Periodicity of Quadratics

- Our study is principally focused on binary continued logarithms.
- We computed 200, 000 terms for $2 \leq n \leq 50,000,20,000$ terms up to two million, and 2,000 terms for $n \leq 1.2 \cdot 10^{9}$.
- The longest period found was 293 for $n=16,813,731$.
- While we might be missing some periodic roots with very long periods, we should have detected any with periods up to 3,000 for $n<2,000,000$ and periods up to 600 thereafter.

Method of Detection

- We compute the first 10,000 terms for \sqrt{n} for $n \leq 2,000,000$.

Method of Detection

- We compute the first 10,000 terms for \sqrt{n} for $n \leq 2,000,000$.
- Starting at the last term, we compare to previous terms until there is a mismatch, then last two terms to previous two, etc.

Method of Detection

- We compute the first 10,000 terms for \sqrt{n} for $n \leq 2,000,000$.
- Starting at the last term, we compare to previous terms until there is a mismatch, then last two terms to previous two, etc.
- If we found a sequence of repeating terms that covered the last two thirds of the entire sequence, we were confident we had found a periodic case.

Method of Detection

- We compute the first 10,000 terms for \sqrt{n} for $n \leq 2,000,000$.
- Starting at the last term, we compare to previous terms until there is a mismatch, then last two terms to previous two, etc.
- If we found a sequence of repeating terms that covered the last two thirds of the entire sequence, we were confident we had found a periodic case.
- In other words, the prefix had to be shorter than 3,333 terms and the maximum detectable period is 3,333 .
- For $2,000,000<n<12 \cdot 10^{8}$, we only computed 2,000 terms, so the upper limit on the period detectable is now 666 .

Method of Detection

- We compute the first 10,000 terms for \sqrt{n} for $n \leq 2,000,000$.
- Starting at the last term, we compare to previous terms until there is a mismatch, then last two terms to previous two, etc.
- If we found a sequence of repeating terms that covered the last two thirds of the entire sequence, we were confident we had found a periodic case.
- In other words, the prefix had to be shorter than 3,333 terms and the maximum detectable period is 3,333 .
- For $2,000,000<n<12 \cdot 10^{8}$, we only computed 2,000 terms, so the upper limit on the period detectable is now 666 .
- We conjecture that for periodic clogs of \sqrt{n} the prefix has exactly two terms. If so, 10, 000 computed terms would detect periods up to 4, 999
- as mentioned, we found no period greater than 300 for any n in the range studied.

A Possible Upper Boundary of Growth

- The $\{n$, period $\}$-tuples that appear to define the upper boundary of growth, for n values less than one thousand, are

$$
\{2,1\},\{23,20\},\{37,26\},\{167,66\},\{531,134\},\{819,178\} .
$$

A Possible Upper Boundary of Growth

- The $\{n$, period $\}$-tuples that appear to define the upper boundary of growth, for n values less than one thousand, are $\{2,1\},\{23,20\},\{37,26\},\{167,66\},\{531,134\},\{819,178\}$.
- These are consistent with an upper bound on growth of $1.4 \cdot n^{1 / 2.27} \log n$
- but this seems an overestimate for larger n.

Density of Periodics

- It appears that the number of periodic quadratics is small and can largely be explained by ad hoc arguments, as in the case of 5,17,....

Density of Periodics

- It appears that the number of periodic quadratics is small and can largely be explained by ad hoc arguments, as in the case of 5,17,....
- This has been checked by looking at the first 200, 000 terms for n up to 50, 000.

Density of Periodics

- It appears that the number of periodic quadratics is small and can largely be explained by ad hoc arguments, as in the case of 5,17,....
- This has been checked by looking at the first 200, 000 terms for n up to 50, 000.
- While there are 237 periodic roots for $n \leq 1000$, there are only 1,262 periodic roots in the first 50,000.

Figure: Density of periodic binary continued logs for $2 \leq \sqrt{n} \leq 50,000$.

Aperiodic Case

- In every aperiodic case tested, \sqrt{n} appears to satisfy the limiting distribution of Theorem 6 .

Aperiodic Case

- In every aperiodic case tested, \sqrt{n} appears to satisfy the limiting distribution of Theorem 6 .
- This leads to the conjecture that

Each \sqrt{n} is either eventually periodic or obeys the limiting distribution and the corresponding Khintchine constant.

Period Length

- The period length seems tied to the fundamental solution of the corresponding Pell equation as with simple continued fractions [7].

Period Length

- The period length seems tied to the fundamental solution of the corresponding Pell equation as with simple continued fractions [7].
- The period can vary widely in length as also true of the simple continued fraction.

Figure: Distributionof periods of binary continued logs of periodic \sqrt{n} up to 5,000 .

- We have also observed - and can presumably prove by the classical method - that the continued logarithm of a periodic integer square root is palindromic (after an initial segment).
- We have also observed - and can presumably prove by the classical method - that the continued logarithm of a periodic integer square root is palindromic (after an initial segment).
- For $\sqrt{10}$ we have

$$
[1,0,0,1, \overline{1,0,1}, 1,0,1, \ldots]_{\mathrm{cl}(2)}
$$

- We have also observed - and can presumably prove by the classical method - that the continued logarithm of a periodic integer square root is palindromic (after an initial segment).
- For $\sqrt{10}$ we have

$$
[1,0,0,1, \overline{1,0,1}, 1,0,1, \ldots]_{\mathrm{cl}(2)}
$$

- For $\sqrt{11}$ we have

$$
[1,0,0,0,3,0,0,1, \overline{1,0,0,3,0,0,1}, \ldots]_{\mathrm{cl}(2)} .
$$

Open Questions I

Question 2

Are there any nice representations for elementary or special functions arising from continued logarithms in a manner analogous to the irregular continued fraction for $\tan ^{-1}$ [3]?

Question 3

Are there nice homographic methods to implement arithmetic to a single base b for either the Type I or Type II continued logarithms?

Question 4

Are there nice homographic methods to implement arithmetic to a sequential base a_{n} ? Are there nice homographic methods to implement arithmetic between two different types of bases, returning the result with respect to a third type of base?

Open Questions II

Question 5

Can one characterise when the binary log of a quadratic irrational - or just of \sqrt{n} - is eventually periodic?

Question 6

Can one bound the maximum length of a period in the periodic case of \sqrt{n} using of the fundamental solution to the corresponding Pell equation as in the continued fraction case [7]? Can one thereby prove that $\sqrt{13}$ say is aperiodic.

Question 7

Can one find a complete closed form for the Gauss-Kuzmin distribution for continued logarithms of Type II for $b \geq 4$?

Open Questions III

Question 8

Can we rigorously prove the validity of our conjectured recursion for the distributions for Type II base b continued logarithms?

Question 9

Is there a closed form for the Khintchine constants resulting from the conjectured recursion for the distributions for Type II base b continued logarithms?

Thank You

References |

[1] David H. Bailey, Jonathan M. Borwein, and Richard E. Crandall. "On the Khintchine constant," Math of Computation, 66 (1997), 417-431.
[2] J.M. Borwein and D. H. Bailey, Maths by Experiment, AK Peters, 2ed, 2008.
[3] Jonathan M. Borwein, Alf van der Poorten, Jeff Shallit, and Wadim Zudilin. Neverending Fractions, AustMS Lecture Series, Cambridge Univ Press, 2014.
[4] Bill Gosper. "Continued Fraction Arithmetic." Perl Paraphernalia. Accessed 10.14.15. http://perl.plover.com/classes/cftalk/INFO/gosper.txt.
[5] Dan Lascu. "A Gauss-Kuzmin Theorem for Continued Fractions Associated with Nonpositive Integer Powers of an Integer $\mathrm{M} \geq 2$." The Scientific World Journal (2014), 1-8.
[6] Paul Loya. Amazing and Aesthetic Aspects of Analysis: The Incredible Infinite. To appear UTM series, Springer-Verlag.

References II

[7] Ralph G. Stanton, C. Sudler Jr., and Hugh C. Williams. "An Upper Bound for the Period of the Simple Continued Fraction for \sqrt{D}." Pacific Journal of Mathematics, 67 (1976), 525-36.

[^0]: ${ }^{1}$ Much more rapid for continued logarithms than simple continued fractions (Wirsing).

[^1]: ${ }^{1}$ Much more rapid for continued logarithms than simple continued fractions (Wirsing).

[^2]: ${ }^{1}$ Much more rapid for continued logarithms than simple continued fractions (Wirsing).

[^3]: ${ }^{1}$ Much more rapid for continued logarithms than simple continued fractions (Wirsing).

