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Abstract

We investigate some connections between continued fractions and
binary continued logarithms as introduced by Bill Gosper in 1972
and explore three generalizations (Type I, II and III) to base b ≥ 2.

We show convergence for each using equivalent forms of their
corresponding continued fractions.

Experimentally, we obtain the distribution of Type I continued logs.

Moreover, the exponent terms have finite arithmetic means for
almost all real numbers. These logarithmic Khintchine
constants, have a pleasing relationship with geometric means
of the corresponding continued fraction terms.

While the classical Khintchine constant is believed unrelated
to known numbers, we find surprisingly that the Type I
distribution and Khintchine numbers are elementary.

We also conjecture Type II – and III – distributions and associated
Khintchine constants.
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Simple Continued Fractions

Given a positive real number x , write a0 = bxc (floor),:

x = α0 + {x}

(integer part plus fractional part). Terminate if {x} = 0.
Otherwise, set y = 1

{x} , and write α1 = byc so that

x = α0 +
1

α1 + {y}

If {y} = 0, terminate. Otherwise continue in like fashion:

x = α0 +
1

α1 +
1

α2 + . . .

.
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Example

Lagrange: numbers with aperiodic decimal expansions may
have periodic continued logarithms. For example (iff x is a
quadratic irrationality):

√
2 = 1 +

1

2 +
1

2 +
1

2 + . . .

.

Either the fraction never terminates, or the fractional part will
at some point be zero, in which case

x = α0 +
1

· · ·+
1

αn

.
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Continued Fractions: Another Perspective

Consider the dynamical system f on [0,∞):

f (x) =


x − 1 if x ≥ 1
1
x if 0 < x < 1

terminate if x = 0.

(1)

Count the number of times we encounter x → x − 1 before we
either reciprocate or terminate. These counts are the αn. We will
denote by [α0;α1; . . . ]cf the simple continued fraction

x = α0 +
1

α1 +
1

α2 +
1

α3 + . . .

.
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Binary Continued Logarithms

Define a similar dynamical system g on [1,∞):

g(x) =


x/2 if x ≥ 2
1

x−1 if 1 < x < 2

terminate if x = 1.

(2)

We count how many times we divide by 2 before we subtract and
reciprocate or terminate. This gives values a0, a1, a2, . . . .
We denote the binary continued logarithm of x by
[a0, a1, a2, . . . ]cl(2) and may write

x = 2a0 +
2a0

2a1 +
2a1

2a2 + . . .

. (3)
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Example: x = 19

We count how many times we divide by 2.

19→ 19

2
→ 19

4
→ 19

8
→ 19

16

so a0 = 4.

Continuing, we obtain 19 = [4, 2, 1, 1]cl(2).
We may express this as:

19 = 24 +
24

22 +
22

21 +
21

21

.

The continued logarithm terms are the exponents on the
continued fraction terms – hence much smaller.
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Irregular continued fractions

Consider the continued fraction

x = α0 +
β1

α1 +
β2

α2 +
β3

α3 + . . .

.

Notation

We may, for the sake of simplicity, write with αj , βj > 0

x = α0 +
β1
α1

+
β2
α2

+
β3
α3

+ . . . .
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Continued Fraction Recurrences I

Remark 1

Suppose x has the irregular continued fraction

x = α0 +
β1
α1

+
β2
α2

+
β3
α3

+ . . .

Let xn be the nth approximant whose continued logarithm is

x = α0 +
β1
α1

+
β2
α2

+ · · ·+ βn
αn

.

Then xn = rn
sn

where r−1 = 1, s−1 = 0, r0 = α0, s0 = 1,

And rn+1 = αn+1rn + βn+1rn−1

sn+1 = αn+1sn + βn+1sn−1.
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Corresponding Binary Continued Logarithm Recurrence

Remark 1 leads to:

Theorem 1 (Recursion for approximants)

Suppose x has continued logarithm [a0, a1, a2, . . . ]. Let xn be the
nth continued logarithm approximant: the number whose
continued logarithm is [a0, a1, a2, . . . , an]cl(2). Then

xn =
rn
sn

where r−1 = 1, s−1 = 0, r0 = 2a0 , s0 = 1, and

rn+1 = 2an+1rn + 2anrn−1

sn+1 = 2an+1sn + 2ansn−1.
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Continued Fraction Recurrences II

Remark 2 (Determinant)

We also have that

rnsn−1 − rn−1sn = (−1)n+1
n∏

k=1

βk .

In the case of a simple continued fraction, of course, the product is
always one.
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Corresponding Binary Continued Logarithm Recurrence

Remark 2 leads to:

Theorem 2 (Continued Logarithm Differences)

Suppose x has continued logarithm [a0, a1, a2, . . . ]. Let xn be the
nth continued logarithm approximant: the number whose
continued logarithm is [a0, a1, a2, . . . , an]cl(2).
Then xn = rn

sn
, where

rn
sn
− rn−1

sn−1
=

(−1)n+12a0+a1+...an−1

snsn−1
.
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Equivalent Continued Fractions

Two (irregular) continued fractions

x = α0 +
β1
α1

+
β2
α2

+
β3
α3

+ . . .

and x ′ = α′0 +
β′1
α′1

+
β′2
α′2

+
β′3
α′3

+ . . .

are equivalent if there exists a sequence of nonzero real numbers
{cn}∞n=1 with c0 = 1 such that

α′n = cnαn and β′n = cncn−1βn, n = 1, 2, . . . .

The cn terms may be thought of as constants scaled by both
numerators and denominators of successive terms.
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Equivalent Binary Continued Logarithms

The binary continued logarithm [a0, a1, a2, . . . ]cl(2) is
equivalent to each of the two continued fractions below: the
reduced form and the denominator reduced form respectively.

Reduced Form and Denominator Reduced Form

2a0 +
1

2a1−a0
+

1

2a2−a1+a0
+ · · ·+

1

2
∑n

k=0(−1)n−kak
+ . . .

2a0 +
2−a1+a0

1
+

2−a2

1
+

2−a3

1
+ · · ·+ 2−an

1
+ . . .

The denominator reduced form shows finite termination for
the binary continued logarithm of every rational.
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Convergence Theory

Theorem 3 (Convergence)

Suppose that {αn}∞n=1 and {βn}∞n=1 are real sequences such that
αn > 0 and βn > 0 for all n. The continued fraction

x = α0 +
β1
α1

+
β2
α2

+
β3
α3

+ . . .

converges if
∑∞

n=1
αnαn+1

βn+1
=∞. If xn is the nth approximant, then

x0 < x2 < · · · < x2k < · · · < x < · · · < x2k+1 < . . . x3 < x1

and so the limit is x whenever xn converges. (Proof: see [6].)

We used this result to show convergence for continued
logarithms of all bases for both constructions later shown.
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Gauss-Kuzmin Distribution for Continued Fractions

Theorem 4 (Gauss, Kuzmin, Lévy)

LetM(A) denote the Lebesgue measure of a set A. For x ∈ (0, 1)
let αn(x) denote the nth denominator term of the simple continued
fraction for x . Then we have that

P(k) := lim
n→∞
M ({x : αn+1(x) = k}) = log2

(
1 +

1

k(k + 2)

)
.

(For a proof, see [3, Theorem 3.23 (Gauss, Kuzmin, Lévy)].)
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Khintchine Constant for Continued Fractions

Corollary 5 (Khintchine Constant)

For almost all real numbers x , where the αk are the denominator
values of a simple continued fraction for x ,

K = lim
n→∞

n
√
α1 · α2 · . . . αn =

∞∏
k=1

(
1 +

1

k(k + 2)

)log2 k

= 2.6854520010653 . . . .

(Proof. See [3, Remark 3.6].)

The extended numerical computation of K is difficult directly
from the definition, see [1].
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Gauss-Kuzmin Distribution (GKD) for Binary Continued Logarithms

Theorem 6

For x ∈ (0, 1),M(A) denoting the measure
of a set A, and αn(x) the nth continued
logarithm term,

P(k) : = lim
n→∞
M
(
{x ∈ (0, 1) : αn(x) = 2k}

)
=

log
(

1 + 2k

(1+2k+1)2

)
log(43)

.

This was recently proven in the seemingly
entirely different context of random
Fibonacci numbers [5].

Figure: GKD and
continued logarithm
distribution for three
presumably aperiodic
irrationals (π, e,

√
13)

computed to one
million terms.
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Figure: Deviation from expectation for a selection of aperiodic numbers.
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Khintchine Constant for Continued Logarithms

Remark 3 (Existence of Khintchine Logarithmic Constant)

As a consequence of Theorem 6, we obtain the existence of a
constant KL2, the predicted arithmetic mean of the continued
logarithm terms. If x = [a0, a1, . . . ]cl(2), then

KL2 := lim
N→∞

(
1

N

) N∑
k=0

ak . (4)

Specifically: almost all numbers greater than one, satisfy

KL2 =
log
(
3
2

)
log
(
4
3

) = 1.4094208396532. (5)
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Geometric and Arithmetic Means

The predicted geometric mean of the first N continued
fraction terms is just ‘2’ raised to the arithmetic mean of the
log terms – about 2.6563050580919 . . . .

Indeed, if KL2 denotes the arithmetic mean of the binary
continued logarithm terms, the expected geometric mean of
the continued fraction terms is

G2 = lim
N→∞

(
N−1∏
k=0

2KL2

) 1
N

= lim
N→∞

(
2N·KL2

) 1
N

= 2KL2 (6)

Note that G2, unlike K (presumably), is a (known) elementary
constant.
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Other Bases: The Challenge

If we try to construct continued logarithms to a different base,
say by dividing by ‘3’ instead of by ‘2,’ then we run into
problems with the second type of map.

All we are guaranteed after the final division by three is that
x ∈ [1, 3). The map

x → 1

x − 1

takes this interval to [12 ,∞) rather than [1,∞).

A solution to this is the following: after dividing out powers of
b, we replace the second map by

x → b − 1

x − 1
.
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say by dividing by ‘3’ instead of by ‘2,’ then we run into
problems with the second type of map.

All we are guaranteed after the final division by three is that
x ∈ [1, 3). The map

x → 1

x − 1

takes this interval to [12 ,∞) rather than [1,∞).

A solution to this is the following: after dividing out powers of
b, we replace the second map by

x → b − 1

x − 1
.

37 / 159



The Binary Case
Other Bases I

Other Bases II and III
The Role of Experimental Computation

Conclusion

Construction
Basic Properties
Distributions and Khintchine Constants
Other Possibilities

Other Bases: The Challenge

If we try to construct continued logarithms to a different base,
say by dividing by ‘3’ instead of by ‘2,’ then we run into
problems with the second type of map.

All we are guaranteed after the final division by three is that
x ∈ [1, 3). The map

x → 1

x − 1

takes this interval to [12 ,∞) rather than [1,∞).

A solution to this is the following: after dividing out powers of
b, we replace the second map by

x → b − 1

x − 1
.

38 / 159



The Binary Case
Other Bases I

Other Bases II and III
The Role of Experimental Computation

Conclusion

Construction
Basic Properties
Distributions and Khintchine Constants
Other Possibilities

Other Bases: Type I

We may describe the process with the following dynamical system.

Type I Dynamical System

gb(x) =


x/b if x ≥ b
b−1
x−1 if 1 < x < b

terminate if x = 1

. (7)
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Type I Construction

We may describe this construction in a manner analogous to our
binary construction. Letting x = y0, we have

y0 = ba0 + (y0 − ba0) = ba0 +
b − 1

b − 1

(y0 − ba0)

= ba0 +
(b − 1) · ba0

(b − 1) · ba0
y0 − ba0

.

Dividing the highest largest power of b out of the numerator and
denominator of the lower fraction, we obtain

y0 = ba0 +
(b − 1) · ba0

b − 1
y0
ba0 − 1

= ba0 +
(b − 1) · ba0

y1
where y1 =

b − 1
y0
ba0 − 1

.

We continue on in similar fashion.
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Type I: Fractional Form

The representation of this type of continued logarithm in
continued fraction form is as follows:

Fractional Form

x = ba0 +
(b − 1)ba0

ba1 +
(b − 1)ba1

ba2 +
(b − 1)ba2

ba3 + . . .

.

For b = 2, this is just Gosper’s original formulation
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Type I: Example

Example 7

Consider 1233
47 which has ternary continued logarithm

l3(123347 ) = [2, 0, 3, 1]cl(3). The corresponding continued fraction is
as follows.

1233

47
= 32 +

2 · 32

30 +
2 · 30

33 +
2 · 33

31

.

This example will be useful for comparing this Type I formulation
of the base b logarithm with the Type II formulation given below.
Specifically, compare this example with Example 9.
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Type I: Convergence and Loss of Rational Finiteness

With this formulation, rationals do not necessarily have finite
continued logarithms.

Indeed, to base three, we have l3(2) = [0, 0, 0, 0, . . . ].

We still have convergence — the proof uses similar methods
to the binary case.

Question 1 (Finite Termination)

Given an integer base b, and especially in the case of b = 3,
determine which rationals (indeed, even which integers) have finite
continued logarithms to base b.
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Type I: Distribution of Log Terms

Our binary Gauss-Kuzmin result
has a natural extension to the
general base b case. For almost
any real number x , the expected
probability of k being the
continued logarithm exponent is

Pb(k) =
log
(

1 + (b−1)3·bk
((b−1)+bk+1)2

)
log( b2

2b−1)
.

(Also implicitly proven in [5].)

Figure: Distribution of the first
200, 000 terms of the base 5
continued logarithm for aperiodic√
n for n ≤ 200.
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Type I: Khintchine Logarithmic Constant

Corollary 8 (Khintchine Constant KLb)

For almost all real numbers exceeding x > 1, where
x = [a0, a1, . . . ]cl(b), the arithmetic mean of the continued
logarithm terms is given by

KLb = lim
N→∞

(
1

N

) N∑
k=0

ak =
log(b)

log
(

b2

2b−1

) − 1

= − logb (2 b − 1)− 1

logb (2 b − 1)− 2
.

As with the binary case, KLb has an elementary closed form.
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Other Base Possibilities

The factor b − 1 in the numerator of b−1
x−1 comes because

when we divide by the final factor of b, we end up with a
value in an interval of length b − 1.

We are not restricted to fixed bases. We could take the
sequence ωn = n!, and our map becomes

x →


x
n! if n! ≤ x < (n + 1)!
n

x−1 if x ∈ [1, n + 1)

terminate if x = 1

.

If at the kth step we divide by mk !, we could express the
continued factorial logarithm as [n0, n1, n2, . . . ]!.

52 / 159



The Binary Case
Other Bases I

Other Bases II and III
The Role of Experimental Computation

Conclusion

Construction
Basic Properties
Distributions and Khintchine Constants
Other Possibilities

Other Base Possibilities

The factor b − 1 in the numerator of b−1
x−1 comes because

when we divide by the final factor of b, we end up with a
value in an interval of length b − 1.

We are not restricted to fixed bases. We could take the
sequence ωn = n!, and our map becomes

x →


x
n! if n! ≤ x < (n + 1)!
n

x−1 if x ∈ [1, n + 1)

terminate if x = 1

.

If at the kth step we divide by mk !, we could express the
continued factorial logarithm as [n0, n1, n2, . . . ]!.

53 / 159



The Binary Case
Other Bases I

Other Bases II and III
The Role of Experimental Computation

Conclusion

Construction
Basic Properties
Distributions and Khintchine Constants
Other Possibilities

Other Base Possibilities

The factor b − 1 in the numerator of b−1
x−1 comes because

when we divide by the final factor of b, we end up with a
value in an interval of length b − 1.

We are not restricted to fixed bases. We could take the
sequence ωn = n!, and our map becomes

x →


x
n! if n! ≤ x < (n + 1)!
n

x−1 if x ∈ [1, n + 1)

terminate if x = 1

.

If at the kth step we divide by mk !, we could express the
continued factorial logarithm as [n0, n1, n2, . . . ]!.

54 / 159



The Binary Case
Other Bases I

Other Bases II and III
The Role of Experimental Computation

Conclusion

Construction
Basic Properties
Distributions and Khintchine Constants
Other Possibilities

Other Base Possibilities

Consider a strictly monotonic sequence ωn →∞.

Here ωn corresponds to bn, so that ωn+1/ωn will play a role
similar to that of b in the preceding sections).

We can write down a corresponding type of continued
logarithm, using the map

x →


x
ωn

if ωn ≤ x < ωn+1(
ωn+1
ωn
−1
)

x−1 if x ∈ [1, ωn+1

ωn
)

terminate if x = 1

.

Note that the second map takes 1 to ∞, and sends ωn+1/ωn

to 1.
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Other Base Possibilities

If for x we use the nthk map at the kth step, we can compactly
represent this continued log as [n0, n1, n2, . . . ].

Refer to this for now as the continued logarithm with respect
to the sequential base ωn.

We could even complicate things even further, by taking a
different sequence ωk,n at each iteration k .

We have not yet decided if this is worth naming.
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Other Bases: Type II

We consider another natural construction for the base b continued
logarithm. Fix b = 3 and x = 89.
Let 89 = y0 and examine its base 3 expansion:

y0 = 1 · 34 + 0 · 32 + 2 · 31 + 2 · 30.

We set aside the trailing terms and use only the leading term to
begin building a continued fraction in the usual way:

y0 = 1 ·34+(y0−1 ·34) = 1 ·34+
1

1

(y0 − 1 · 34)

= 1 ·34+
1 · 34

1 · 34

y0 − 1 · 34

.
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Type II Construction

We set aside the trailing terms and use only the leading term to
begin building a continued fraction in the usual way:

y0 = 1 ·34+(y0−1 ·34) = 1 ·34+
1

1

(y0 − 1 · 34)

= 1 ·34+
1 · 34

1 · 34

y0 − 1 · 34

.

Dividing the highest largest power of three out of the numerator
and denominator of the lower fraction, we obtain

y0 = 1 · 34 +
1 · 34

1
y0
34
− 1

= 1 · 34 +
1 · 34

y1
where y1 =

1
y0
34
− 1

=
81

8
.
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Type II Construction

Dividing the highest largest power of three out of the numerator
and denominator of the lower fraction, we obtain

y0 = 1 · 34 +
1 · 34

1
y0
34
− 1

= 1 · 34 +
1 · 34

y1
where y1 =

1
y0
34
− 1

=
81

8
.

We repeat for y1 what we did for y0, taking its base expansion

y1 = 1 · 32 + 0 · 31 + 1 · 30 + 0 · 3−1 + 1 · 3−2 + . . .

and likewise using its leading term to build the continued fraction

y1 = 1 · 32 +
1 · 32

y2
where y2 =

1
y1
32
− 1

= 8.
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Type II Construction

Finally, we have

y2 = 2 · 31 +
2 · 31

y3
where y3 =

2
y2
31
− 2

= 3.

This yields the continued fraction

89 = 1 · 34 +
1 · 34

1 · 32 +
1 · 32

2 · 31 +
2 · 31

1 · 31

= [1 · 34, 1 · 32, 2 · 31, 1 · 31]cl(3).

(8)
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Type II Construction

We may formalise this as a dynamical system:

Type II Dynamical System on [1,∞)

x 7→ gb(x) :=
bb{logb x}c
{b{logb x}}

=
bb{logb x}c

b{logb x} − bb{logb x}c
. (9)

We associate to the sequence yn+1 := gb(yn) the Type II continued
logarithm [p0 · ba0 , p1 · ba1 , p2 · ba2 , . . . ]cl(b) where

pn := bb{logb yn}c, an = blogb ync.

With finite termination if some yn is integer.
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Type II Fractional Representation

The continued logarithm with this construction has a continued
fraction which contains more number theory than the Type I
construction.

Type II: Corresponding Continued Fraction

x = p0 · ba0 +
p0 · ba0

p1 · ba1 +
p1 · ba1

p2 · ba2 + . . .

(10)

where each pn is an integer in the interval [1, b − 1], and each
an ≥ 0 is integer.
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Type II Distribution

Figure: Type II probability function for 2 ≤ b ≤ 5.
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A Type II Example

Example 9

Let b = 3 and x = 1233
47 .

x = 2 ·32 +
2 · 32

2 · 30 +
2 · 30

1 · 32 +
1 · 32

1 · 31 +
1 · 31

1 · 30 +
1 · 30

2 · 30 +
2 · 30

1 · 31 +
1 · 31

1 · 31

This is the same number used for Example 7.

72 / 159



The Binary Case
Other Bases I

Other Bases II and III
The Role of Experimental Computation

Conclusion

Type II Construction
Type II Properties
Type II Distribution
The Type II Ternary Case
Type III Construction and Properties

Type II Properties

We obtain different properties.

1 Still reduces to Gosper’s binary case

2 Finite termination for all rationals

3 Fractional representation contains a greater variety of entries
4 Originally we could not identify the type II distribution.

We returned in early 2016 with Jason Lynch. This led to the
discovery of a recursive closed form.
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Type II Equivalence

Lemma 10 (Equivalence)

The Type II continued logarithm [p0 · ba0 , p1 · ba1 , p2 · ba2 , . . . ]cl(b)
is equivalent to the denominator reduced continued fraction

p0 · ba0 +
p0 · p−11 · b−a1+a0

1
+

p−12 · b−a2
1

+
p−13 · b−a3

1
+ . . . .

(11)

This equivalence was instrumental in showing finiteness of this
continued logarithm formation for all rationals in all bases.
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Type II Distribution

We conjecture that the distribution of log terms for b ≥ 2 is given
by a recursive process based on the binary case.

Figure: Non-monotonic distribution for Type II ternary logarithm.
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Type II Distribution

Originally we could not identify the Type II distribution. We
returned to this in early 2016 with Jason Lynch.

Theorem 11 (Type II distribution)

Let X be the limiting distribution of the terms pnb
an in a Type II

continued logarithm base b. Then

P(X = pbk) = µb(1 + p−1b−k)− µb(1 + (p + 1)−1b−k).

Here µ
(n)
b (α) denotes measure of {y ∈ (1, 2) : xn < α}, xn is the

nth tail of the corresponding continued fraction, and µb = lim
n→∞

µnb.

P is a indeed a probability density function.

We then sought a recursive form for the µb functions.
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Finding the Type II Recursion

We obtain good
convergence of µnb(x) – as
described in the next section
– after around 10 iterations.

The graphics for µb show it
is piecewise smooth, this
ultimately lead to our
conjectured recursion.

Figure: Type II µ10
b (x) for 2 ≤ b ≤ 5.
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Type II Conjectured Recursion

We conjecture the following form for the µb function:

Conjectured Recursion

µ2(x) =
log 2x

x+1

log 4
3

µb(x) =

{
cbµb−1(x) 1 ≤ x ≤ b

b−1
db(µb−1(x)− 1) + 1 b

b−1 < x ≤ 2

where

db =
cbµb−1

(
b

b−1

)
− 1

µb−1

(
b

b−1

) .
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Example: Type II Distribution

We provide the explicit distribution for the case b = 3.

As 1 + 1/(pbk) > b/(b − 1) iff pbk < b − 1 iff
1 ≤ p ≤ b − 1, k = 0:

Example 12 ( P for b = 3)

The conjectured recursion leads to:

P(p · 3k)
?
= µ3

(
1 + (p · 3k)−1

)
− µ3

(
1 + ((p + 1)3k)−1

)
where

µ3(x) =


c3

log( 4
3)

log
(

2x
x+1

)
1 ≤ x ≤ 3

2

1 x = 2
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Type II Ternary Distribution Example

This allows us to simplify to

Probability for b = 3

P(p · 3k) =


1− c3

log( 4
3)

log
(
6
5

)
p · 3k = 1

c3
log( 4

3)
log

(
(p3k+1)(2 (p+1)3k+1)
(2 p3k+1)((p+1)3k+1)

)
otherwise

(12)

From this, we may compute a nearly “closed form” for the
corresponding Khintchine constant KL3.

We originally conjectured cb = (1 + 1/b)2/3.

Now we doubt this.
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Numerical confirmation? a Gibbs phenomenon or failure?

First 4 bars in each group show
10, 000 terms for e, π, e · π and
eπ. Blue line (dots at vertices)
is the average. The last two
show 100, 000 terms for π, eπ.
Green line is the theoretical
distribution.

Comparing 2nd to 5th bar (π to
10, 000 vs 100, 000 terms), the
experimental distribution is
trending in right direction
(towards green line). Similarly,
for bars 4 and 6. Figure: Type II k = 1, 2, 3 for b = 3.
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Expressing the Ternary Khintchine Constant

Peeling off the first term gives a relatively rapidly convergent
series for KL3 = log3 G3 as two sums of logs.

A series for KL3

KL3
?
=

(
4
3

) 2
3

log
(
4
3

) [log(21

20

)
log 2

log 3
+
∞∑
k=1

log

(
1 +

1

2 · 3k + 1

)
(13)

+
log 2

log 3

∞∑
k=1

log

(
1 +

3k

(3k+1 + 1)(4 · 3k + 1)

)]

Numerically: KL3 = 1.11819495094889835...

G3 = 3.41597416937408551...

Also the first sum in (13) is
∑∞

n=1

∑∞
k=1 1/(3k+1)

n

n2n and the

second is
∑∞

n=1

∑∞
k=1 1/(2 3k+1)

n

n2n −
∑∞

n=1

∑∞
k=1 1/(3 3k+1)

n

n2n .
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Discovering the Type III Fraction

Our difficulties in resolving the Type II distribution led us to
investigate other options.

This led to the discovery of a Type III generalization

This Type III construction retains the best qualities of both
the Type I and Type II constructions, namely:

1 Finite termination for rationals
2 Distribution has an elementary closed form
3 An explicit Khintchine constant

For such reasons, perhaps this ought to be called the Type 0
continued logarithm or the natural continued logarithm.
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Type III Construction

Where p0 · ba0 is the leading term of the base b expansion of y0, set

y0 = p0·ba0+(y0−p0·ba0) = p0·ba0+
1

1

(y0 − p0 · ba0)

= ba0+
ba0

ba0

y0 − p0 · ba0

.

If yn − pnb
an = 0 then terminate. Otherwise, set

yn+1 =
ban

yn − pnban

The corresponding continued logarithm is of the form

y0 = p0b
a0 +

ba0

p1ba1 +
ba1

p2ba2 +
ba2

. . .
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Type III: A Probability Distribution

The probability distribution was discovered by a similar
recursive process to that of the Type II continued logarithm.
Surprisingly, it turns out to be elementary. Let

µb = limn→∞ µ
(n)
b denote the limiting distribution. Then

µb(x) =
log x+b−1

bx

log b+1
2b

. (14)

.

Type III distribution

For p = 1, 2, . . . , b − 1 and k = 0, 1, . . .

P(X = p · bk) = µb

(
1 + p−1b−1

)
− µb

(
1 + (p + 1)−1b−k

)
=

1

log b+1
2b

(
log

1 + p−1b−k−1

1 + p−1b−k
− log

1 + (p + 1)−1b−k−1

1 + (p + 1)−1b−k

)
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Type III: Distribution (still non-monotonic)

Figure: Type III probability function for 2 ≤ b ≤ 5
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A Surprising Result: Type III Khintchine Constant

Type III Khinchine Constant

For b = 2, 3, · · · the Type III constant is given by

KLb =
1

logb
b+1
2b

b∑
p=2

logb

(
1 +

1

p

)
logb

(
1− 1

p

)
.

Using Maple and the Inverse Symbolic Calculator, we found
that the limit of the geometric constants G3b := bKLb turns
out to be exactly Khintchine’s original constant
2.685452001065306445 . . . . (Proven by [1, Lemma 1a].)

Moreover G33 = 8/3.

As b goes to infinity the distribution converges to the classical
Gauss-Kuzmin distribution.
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Finding the Functional Relation

We next indicate the experimental mathematics [2] process
used to find the Type I base b distribution. Similar more subtle
steps led to discovery of the Type II and III distributions.

Let x ∈ R, x > 1 have the (aperiodic) continued logarithm
[a0, a1, ...]cl(2). Let xn be the nth tail of the equivalent
denominator reduced continued fraction. Then we have

x = 2a0 ·


1 +

2−a1

1 +
2−a2

· · ·+
2−an

xn


. (15)
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Finding the Functional Relation
Consider the Lebesgue measure µn(ζ) of {x ∈ (1, 2) : xn < ζ}.
Setting xn−1 = 1 + 2−an

xn
it follows that xn < x if and only if

2−an

xn−1 − 1
< x which is just xn−1 > 1 +

2−an

x
.

But, in order to produce the term, an, we must have
xn−1 < 1 + 2−an . Combining these two inequalities, we obtain

1 +
2−an

x
< xn−1 < 1 + 2−an .

Thus µ0(x) = x − 1 and

µn(x) =
∞∑
k=0

(
µn−1

(
1 + 2−k

)
− µn−1

(
1 +

2−k

x

))
. (16)
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Finding the Closed Form

1 We investigated the form of µ(x) by iterating the recurrence
relation in Equation (16) at points evenly spaced in [1, 2].

2 We began with µ0(x) = x − 1, fitting a spline to these points
at each iteration.

3 We found good convergence of µ(x) after 10 iterations.1

4 We used the 101 data points to seek the best fit to a function
of the form

µ(x) = C log2

(
ax + b

cx + d

)
where C , a, b, c , and d are constants to be determined by the
fitting process.

1Much more rapid for continued logarithms than simple continued fractions
(Wirsing).
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Finding the Closed Form

To meet the boundary conditions, it is necessary that

µ(1) = 0

µ(2) = 1

d = a + b − c

C =
1

log2

(
2a+b
a+b+c

) .

Motivated by the case of a simple continued fraction, we had
originally considered the form C log2 (ax + b) and, when that
failed, we considered a superposition of two such terms.
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To eliminate any common factor between the numerator and
denominator of ax+b

cx+d , we set c = 1, leaving the functional
form to be fitted as

µ(x) =
log2

(
ax+b

x+a+b−1

)
log2

(
2a+b
a+b+1

) . (17)

Mathematica gives the output

a− > 0.49999983502291956‘, b− > 0.5000002651575332‘

This result suggests candidate values of a = 1
2 and b = 1

2 .

Thus we obtained

µ2(x) = µ(x) =
log
(

2x
x+1

)
log
(
4
3

) . (18)
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Binary Probability Distribution

This suggested the probability distribution

P(X = k) = µ
(

1 + 2−k
)
− µ

(
1 + 2−k−1

)

=

log

(
1 + 2k

(2k+1+1)
2

)
log
(
4
3

) .

We then computed the mean:

E (X ) =
∞∑
k=0

k · P(X = k) = 1.4094208397 . . . .

k P(X = k)

0 0.3662394210. . .

1 0.2675211579. . .

2 0.1675533738. . .

3 0.0949153712. . .

4 0.0507000346. . .

5 0.0262283498. . .

6 0.0133430145. . .

7 0.0067299284. . .

.

Figure: Distribution
of first eight binary
continued logarithm
terms.
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Quadratic Irrationals

We recall the Euler-Lagrange theorem, that for simple
continued fractions, x has an ultimately periodic simple
continued fraction if and only if x is a quadratic irrational.
See for example [3, Thm 2.48].

For continued logarithms, it becomes clear that
√
n sometimes

has a nice periodic continued logarithm but not always.

For example,
√

13 appears to be aperiodic, as do
√

14 and√
15. However,

√
17, has a nice continued logarithm (periodic

constant).

Similarly,
√

19,
√

21 and
√

23 are likewise periodic. We again
find aperiodic

√
n for n values

31, 35, 39, 41, 43, 46, 47, 55, 57, 59, 61, 62, 63, 67, 71, 79, 85,
91, 94, 97, 99, 101, 103, 106, 107, 109, 113, 114, 115, 116, 119,
and so on.
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Quadratic Irrationals: Method

As for simple continued fractions, we exploit a method of
computation of continued logarithms of quadratic irrationals
which uses integer arithmetic only.

Even in the case of aperiodic surds (e.g.,
√

13) this method is
roughly an order of magnitude faster than a conventional
approach using fixed-precision, floating-point arithmetic.

This method applies to the Type I base b continued logarithm.
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Quadratic Irrationals: Method of Computation

Recall the dynamical system g on [1,∞):

g(x) =


x/b if x ≥ b
b − 1

x − 1
if x = b

terminate if x = 1.

(19)

We consider the general case

x =
p

q
(c + d

√
n) (20)

where p, q, c , d and n are all integers with p, q > 0 and n > 1.

To implement this dynamical system efficiently, there are two
cases to be considered.
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Case I: d = 0

Arises when x is a rational p/q or n is a square.

In the former case, start with p = cp, c = 1, d = 0. In the
latter case, set p = c + d

√
n, c = 1, and d = 0.

Henceforth, we may ignore c and d since x = p/q.

From this simplified definition it follows that

x ≥ b iff p ≥ bq
x = 1 iff p = q.

(21)
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Case I continued

Given the current value of x , represented by integers (p, q), we
evaluate g(x), represented by integers (p′, q′), as follows.

p′ = p, for x ≥ b
q′ = bq

p′ = q, for 1 < x < b
q′ = p − q

(22)
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Case II: d 6= 0

The way these tests are performed depends on the sign of d
and the sign of bq − cp or q − cp as follows:

Condition d bq − cp True iff

x ≥ b + + nd2p2 ≥ (bq − cp)2

+ − Always
− + Never
− − nd2p2 ≤ (bq − cp)2

Condition d q − cp True iff

x = 1 + + nd2p2 = (q − cp)2

+ − Never
− + Never
− − nd2p2 = (q − cp)2

The above depends on p, q being positive, so, at each
iteration, the sign of c and d should be reversed as needed.
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Case II continued

Given the current value of x , represented by integers (p, q, c , d),
we evaluate g(x), represented by integers (p′, q′, c ′, d ′), as follows.

p′ = p, for x ≥ b
q′ = bq
c ′ = c
d ′ = d

p′ = (b − 1)q, for 1 < x < b
q′ = (cp − q)2 − nd2p2

c ′ = cp − q
d ′ = −dp
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Periodicity of Quadratics

Our study is principally focused on binary continued
logarithms.

We computed 200, 000 terms for 2 ≤ n ≤ 50, 000, 20, 000
terms up to two million, and 2, 000 terms for n ≤ 1.2 · 109.

The longest period found was 293 for n = 16, 813, 731.

While we might be missing some periodic roots with very long
periods, we should have detected any with periods up to
3, 000 for n < 2, 000, 000 and periods up to 600 thereafter.
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Method of Detection

We compute the first 10, 000 terms for
√
n for n ≤ 2, 000, 000.

Starting at the last term, we compare to previous terms until
there is a mismatch, then last two terms to previous two, etc.

If we found a sequence of repeating terms that covered the
last two thirds of the entire sequence, we were confident we
had found a periodic case.
In other words, the prefix had to be shorter than 3, 333 terms
and the maximum detectable period is 3, 333.

For 2, 000, 000 < n < 12 · 108, we only computed 2, 000 terms,
so the upper limit on the period detectable is now 666.

We conjecture that for periodic clogs of
√
n the prefix has

exactly two terms. If so, 10, 000 computed terms would detect
periods up to 4, 999

as mentioned, we found no period greater than 300 for any n
in the range studied.
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A Possible Upper Boundary of Growth

The {n,period}-tuples that appear to define the upper
boundary of growth, for n values less than one thousand, are

{2, 1}, {23, 20}, {37, 26}, {167, 66}, {531, 134}, {819, 178}.

These are consistent with an upper bound on growth of
1.4 · n1/2.27 log n

but this seems an overestimate for larger n.
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Density of Periodics

It appears that the number
of periodic quadratics is
small and can largely be
explained by ad hoc
arguments, as in the case of
5,17,. . . .

This has been checked by
looking at the first 200, 000
terms for n up to 50, 000.

While there are 237 periodic
roots for n ≤ 1000, there are
only 1, 262 periodic roots in
the first 50,000.

Figure: Density of periodic binary
continued logs for
2 ≤
√
n ≤ 50, 000.
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explained by ad hoc
arguments, as in the case of
5,17,. . . .

This has been checked by
looking at the first 200, 000
terms for n up to 50, 000.

While there are 237 periodic
roots for n ≤ 1000, there are
only 1, 262 periodic roots in
the first 50,000.

Figure: Density of periodic binary
continued logs for
2 ≤
√
n ≤ 50, 000.
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Aperiodic Case

In every aperiodic case tested,
√
n appears to satisfy the

limiting distribution of Theorem 6.

This leads to the conjecture that

Each
√
n is either eventually periodic or obeys the limiting

distribution and the corresponding Khintchine constant.
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Period Length

The period length
seems tied to the
fundamental solution
of the corresponding
Pell equation as with
simple continued
fractions [7].

The period can vary
widely in length as
also true of the simple
continued fraction.

Figure: Distributionof periods of binary
continued logs of periodic

√
n up to 5, 000.
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√
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We have also observed – and can presumably prove by the
classical method – that the continued logarithm of a periodic
integer square root is palindromic (after an initial segment).

For
√

10 we have

[1, 0, 0, 1, 1, 0, 1, 1, 0, 1, . . .]cl(2).

For
√

11 we have

[1, 0, 0, 0, 3, 0, 0, 1, 1, 0, 0, 3, 0, 0, 1, . . .]cl(2).
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Open Questions I

Question 2

Are there any nice representations for elementary or special
functions arising from continued logarithms in a manner analogous
to the irregular continued fraction for tan−1 [3]?

Question 3

Are there nice homographic methods to implement arithmetic to a
single base b for either the Type I or Type II continued logarithms?

Question 4

Are there nice homographic methods to implement arithmetic to a
sequential base an? Are there nice homographic methods to
implement arithmetic between two different types of bases,
returning the result with respect to a third type of base?
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Open Questions II

Question 5

Can one characterise when the binary log of a quadratic irrational
– or just of

√
n – is eventually periodic?

Question 6

Can one bound the maximum length of a period in the periodic
case of

√
n using of the fundamental solution to the corresponding

Pell equation as in the continued fraction case [7]? Can one
thereby prove that

√
13 say is aperiodic.

Question 7

Can one find a complete closed form for the Gauss-Kuzmin
distribution for continued logarithms of Type II for b ≥ 4?
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Open Questions III

Question 8

Can we rigorously prove the validity of our conjectured recursion
for the distributions for Type II base b continued logarithms?

Question 9

Is there a closed form for the Khintchine constants resulting from
the conjectured recursion for the distributions for Type II base b
continued logarithms?
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