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General themes

Define a canonical convexity not an axiomatic one (a family
closed under ∩ and directed ∪)

Should yield known results in a real vector space.

Many known results hold assuming only an additive structure.

Integer programming is harder than convex programming.

More reasons why?

4 / 87



Convex analysis on groups: Part I
Convex analysis on groups: Part II

General themes

A mathematician is a person who can
find analogies between theorems; a
better mathematician is one who can
see analogies between proofs and the
best mathematician can notice
analogies between theories.
(Stefan Banach, 1892–1945)

See www-history.mcs.st-andrews.ac.uk/Quotations/Banach.html

5 / 87

www-history.mcs.st-andrews.ac.uk/Quotations/Banach.html


Convex analysis on groups: Part I
Convex analysis on groups: Part II

Research started in 1982 1993 Status
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Definition (Convex sets in vector spaces)

If X is a vector space, A ⊆ X is convex if x1, . . . , xn ∈ A, αi > 0,∑n
i=1 αi = 1 =⇒

∑n
i=1 αixi ∈ A.

If αi ∈ Q, write αi = mi
m . Then

∑n
i=1 αi = 1⇐⇒

∑n
i=1mi = m.

Monoid = additive semigroup with unit.

Definition (Convex sets in monoids/groups)

If X is a monoid, A ⊆ X is convex if x1, . . . , xn ∈ A,
m1, . . . ,mn,m ∈ N,

mx =
∑n

i=1mixi , m =
∑n

i=1mi =⇒ x ∈ A.

Definition (Convex hull)

For A ⊆ X , conv(A) is the smallest convex set that contains A.
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Convex functions

Definition (Convex functions on vector spaces)

If X is a vector space, f : X → R is convex if
f (x) ≤

∑n
i=1 αi f (xi )

whenever x =
∑n

i=1 αixi , αi > 0,
∑n

i=1 αi = 1;
f is concave if −f is convex.

Definition (Convex functions on monoids or groups)

If X is a monoid, f : X → R is convex if
mf (x) ≤

∑n
i=1mi f (xi )

whenever mx =
∑n

i=1mixi , m =
∑n

i=1mi ;
f is concave if −f is convex.

This can be done more generally for X a (semi-)module, range
[−∞,+∞] or an ordered group ...
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Some basic properties

Many properties extend. Some do not without ‘divisibility’ or other
restrictions.

Example: three slopes lemma

If X is a monoid, f : X → R is convex, m,m1,m2 ∈ N,
x , x1, x2 ∈ X are such that mx = m1x1 + m2x2, then

f (x)− f (x1)

m2
≤ f (x2)− f (x1)

m1 + m2
≤ f (x2)− f (x)

m1
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Semidivisible monoids & groups

Often we want to solve the equation
mx =

∑n
i=1mixi ,

for x , at least for some m ∈ N.

Definition (Divisible or semidivisible monoids & groups)

A monoid/group X is p-semidivisible if pX = X . It is semidivisible
if it is p-semidivisible for some prime p, and X is divisible if it is
p-semidivisible for every p.

Equivalently, p-semidivisible iff for each x ∈ X there is y ∈ X so that
x = py .
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Examples

Finite groups

For every x ∈ X , there is m such that mx = 0 =⇒ conv({0}) = X .
The only convex sets are X is and ∅.

Circle group

If X = R/Z, conv({x}) =
{
x + y

∣∣ y ∈ Q
}

=⇒ no convex
singletons in X .

Integer lattice Zd

For A ⊆ Zd then convZd (A) = convRd (A) ∩ Zd . Likewise for other
integer lattices.
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Examples

Arctan semigroup

Let X = [0,∞) with the addition

a⊕ b =
a + b

1 + ab
(so 0⊕ b = b, 1⊕ b = 1).

If a, b 6= 0 then
1

a
⊕ 1

b
= a⊕ b.

Thus, if a 6= 1, then 1
a ∈ conv({a}), and so {0}, {1} is are the only

convex singletons. Also X is 3-semidivisible but not 2-semidivisible.
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Examples

Hyperbolic group

Let X be the (commutative) matrices of the form

e itM(θ) = e it
[

cosh(θ) sinh(θ)
sinh(θ) cosh(θ)

]
, t, θ ∈ R

with matrix multiplication. Then X is divisible since(
e

it
n M(θ/n)

)n
= e itM(θ).

Let Xp be the subgroup of matrices of the form e
2π`
p M(θ) for

θ ∈ R, 0 ≤ ` ≤ p − 1. Then nX = X ⇐⇒ p - n.
If f : R→ R is convex then F : X → R given by
F
(
e itM(θ)

)
= f (θ) is convex =⇒ can produce many convex

functions on X , Xp.
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Interpolation of convex functions

f : X → R is subadditive if f (x + y) ≤ f (x) + f (y).

Theorem (Kaufman, 1966)

Suppose X is a monoid, f ,−g : X → R are subadditive, and g ≤ f .
Then there exists an additive a : X → R such that g ≤ a ≤ f .

This is a monoid version of famous 1953 result by Mazur-Orlicz.

f : X → R is (generalised) affine if it is both convex and concave.

Theorem

Suppose X is a semidivisible monoid, f ,−g : X → R convex, and
g ≤ f . Then there exists an affine a : X → R such that g ≤ a ≤ f .
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Picture: interpolation of subadditive/convex functions

Convex case Subadditive case
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Interpolation theorem: idea of proof

If f = g we are done. If g(x0) < f (x0) we can replace one of the
two by a ‘better’ function.

We continue the process until f = g (might be transfinite).
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Example: nondivisible case

Failure in the nondivisible case

X = Z2, f (x) = 5dA(x)− 1 is and g = −5dB(x) + 1.

(0, 0)

A

B

f ,−g is are convex, g ≤ f , but there is no affine a s.t. g ≤ a ≤ f .
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Extended real-valued functions

Sandwich holds if f , g : X → [−∞,∞] with a generalised affine if
mX is divisible for some m ∈ N or one of the functions is finite.

The condition mX is divisible for some m ∈ N is satisfied by the
hyperbolic group, arctan semigroup...

But not every group satisfies it. For example
X = X2 × X3 × X5 × . . . , Xp the pth hyperbolic group.

If X is a group and either f or g is everywhere finite and the other
is somewhere finite, then the affine separator is finite.
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Extended real-valued functions

In general there is no finite affine separation

In X = R, take g(x) =

{√
x x ≥ 0

−∞ x < 0
, f (x) = −g(−x). Then any

affine separator must be 0 at 0 and ±∞ elsewhere.
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Example: separation in meet semilattice

(X ,∧) is a meet semilattice: X is divisible since x ∧ x = x .

This monoid does not embed in any group.

If C ⊆ X , conv(C ) is the semilattice generated by C .

The above interpolation theorem, or Kaufman’s result, (via
Stone’s lemma) implies that disjoint sub-semilattices lie in
partitioning sub-semilattices.
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Directional derivative and subgradient

Definition (Directional derivative)

fx(h) = inf
{
n
(
f (x + g)− f (x)

) ∣∣ ng = h
}

If f is convex : n
(
f (x + g)− f (x)

)
is decreasing in n.

Recall, in a VS: fx(h) = inf
{
1
t

(
f (x + th)− f (x)

∣∣ t > 0
)}

.

Definition (Subgradient)

∂f (x) =
{
a : X → R

∣∣ f (x) + a(h) ≤ f (x + h), a additive
}

Theorem (Max formula)

If X is a semidivisible group and f : X → R is convex

fx(h) = max
{
a(h)

∣∣ a ∈ ∂f (x)
}
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) ∣∣ ng = h
}

If f is convex : n
(
f (x + g)− f (x)

)
is decreasing in n.

Recall, in a VS: fx(h) = inf
{
1
t

(
f (x + th)− f (x)

∣∣ t > 0
)}

.

Definition (Subgradient)

∂f (x) =
{
a : X → R

∣∣ f (x) + a(h) ≤ f (x + h), a additive
}

Theorem (Max formula)

If X is a semidivisible group and f : X → R is convex

fx(h) = max
{
a(h)

∣∣ a ∈ ∂f (x)
}
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Max formula for sublinear functions and consequences

Theorem (Max formula)

If X is a semidivisible group and f : X → R convex

fx(h) = max
{
a(h)

∣∣ a ∈ ∂f (x)
}

Definition (Sublinear function)

We say f : X → R is sublinear if f is subadditive and
f (nx) = nf (x) for all n ∈ N.

Note: sublinear =⇒ convex (‘additive’ does not).

If f is sublinear, then the max formula holds without any
semidivisibility assumption.
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Using the extended version of our sandwich theorem we arrive at:

Theorem (Hahn-Banach for groups)

Suppose X is a group and Y ⊆ X is a subgroup, f : X → R is
sublinear and h : Y → R is additive such that h ≤ f on Y .

Then there exists h̄ : X → R is additive such that h̄ ≤ f is and
h̄ = h on Y .

This extends when R is replaced by an order complete ordered
group.
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Additive dual group and conjugate function

Define the additive dual of a group:

X ∗ =
{
ϕ : X → R

∣∣ ϕ is additive
}
.

Definition (Conjugate function)

Given f : X → R, define f ? : X ∗ → R be

f ?(ϕ) = sup
x∈X

{
ϕ(x)− f (x)

}
.

Can define a conjugate function if we replace R by another group
Y , assuming that Y has some partial ordering.
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Weak and strong Fenchel-Rockafellar duality

Theorem (Fenchel-Young inequality)

Let f : X → R. Then for every x ∈ X and ϕ ∈ X ∗,

f (x) + f ?(ϕ) ≥ ϕ(x).

Equality holds if and only if ϕ ∈ ∂f (x).

Theorem (Weak and strong Fenchel duality)

Let f : X1 → R, g : X2 → R and T : X1 → X2 additive. Let

P = inf
x∈X1

{
f (x) + g(Tx)

}
, D = sup

ϕ∈X∗

{
− f ?(T ∗ϕ)− g?(ϕ)

}
.

Then P ≥ D (weak duality). If X is semidivisible and f and g are
convex, then P = D (strong duality).
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Weak and strong Fenchel duality – remarks

Theorem (Weak and strong Fenchel duality)

Let f : X1 → R, g : X2 → R and T : X1 → X2 additive. Let

P = inf
x∈X1

{
f (x) + g(Tx)

}
, D = sup

ϕ∈X∗

{
− f ?(T ∗ϕ)− g?(ϕ)

}
.

Then P ≥ D (weak duality). If X is semidivisible and f and g are
convex, then P = D (strong duality).

Weak duality follows from Fenchel-Young inequality. Strong duality
follows from the max principle.

In general, can replace R by a group with some partial ordering.
Can also add a maximal element in the range. In such case, need
to deal with the core of the domain (as in the vector space setting).
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Convex optimisation, the value function

Consider the constrained problem

v(b) = inf
{
f (x)

∣∣ g1(x) ≤ b1, . . . , gk(x) ≤ bk
}
.

The function v is the value function.

Proposition (Subadditive/sublinear value function)

If f , g1, . . . , gk are subadditive, then v is subadditive. If X is
p-semidivisible and ∀x , f (px) = pf (x), gj(px) = pgj(x) = gj(px),
1 ≤ j ≤ k then v(pb) = pv(b). This also implies that v is convex.

No homogeneity in the nondivisible case X = Z

v(b) = inf
{
− x

∣∣ 2x ≤ b, x ∈ Z
}

= −
⌈
b

2

⌉
, b ∈ R.

f (x) = −x , g(x) = 2x are homogeneous, but v is not.
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Subgradient of the maximum function

Value function

v(b) = inf
{
f (x)

∣∣ g1(x) ≤ b1, . . . , gk(x) ≤ bk
}
.

An important special case yields:

Theorem (Subgradient of max function)

Suppose X is a semidivisible group and f1, . . . , fk : X → R are
convex. Let g(x) = max1≤i≤k fi (x). Then

∂g(x) = conv
( ⋃

fi (x)=g(x)

∂fi (x)
)
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Convex optimisation on groups

Subgradient of max function

∂g(x) = conv
( ⋃

fi (x)=g(x)

∂fi (x)
)
, g = max

1≤i≤k
fi
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Future Directions

Convexity on non-commutative groups.

More constructions of convex functions on groups.

Applications in integer (non-divisible) programming.

One of our original goals.
Generalise role of b·c in non-divisible case.
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Thank you
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Topological groups

Definition (Topological group)

A group which is also a topological space such that the group
operations are continuous.

Topological monoid: enough that the addition is continuous.

Definition (Local convexity)

If there is a basis for the topology that contains only convex sets.
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Rational dilation of sets

Sum of a set

mA =
{
a1 + · · ·+ am

∣∣ a1, . . . , am ∈ A
}
.

Definition (Rational dilation)

m

`
A =

{
x ∈ X

∣∣ `x ∈ mA
}
.

Proposition (Monotonicity of dilations)

Suppose X is a monoid, C ⊆ X convex and 0 ∈ C . Then
q1C ⊆ q2C

whenever 0 ≤ q1 ≤ q2.
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Gauge functional

Using monotonicity of the dilations, we can define a
group-theoretic version of the gauge functional.

Definition (Gauge function)

ρC (x) = inf{q ∈ Q+ | x ∈ qC}.

Proposition

If X is a monoid and C ⊆ X is convex, then ρC is sublinear.

So far we did not use topological properties of the group.

The gauge function will be used as a control function in the
proof of the KM theorem.
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Hahn-Banach in topological groups

Previous version of Hahn-Banach: used only algebraic
structure.

In topological groups: we want a continuous separator.

Proposition (Continuity of ρC )

If X is a topological group, C ⊆ X convex, 0 ∈ intC , then ρC is
continuous (on domain). If X is connected, ρC is everywhere finite.

Theorem (Hahn-Banach strict separation in topological groups)

Let X be a connected locally convex topological group with C ⊆ X
closed and convex and x0 /∈ C . Then there exists ϕ : X → R
continuous and additive such that

sup
c∈C

ϕ(c) < ϕ(x0).
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No strict separation between sets

Theorem (Hahn-Banach strict separation in topological groups)

Let X be a connected, locally convex topological group with
C ⊆ X closed and convex and x0 /∈ C . Then there exists
ϕ : X → R continuous and additive such that

sup
c∈C

ϕ(c) < ϕ(x0).

In vector spaces, if D is a compact convex set with
C ∩ D = ∅, use 0 6∈ C − D (closed) to obtain separation
between C and D.

Does not work in arbitrary groups. Take X = Z2 with
C = {(0, 1), (2, 0)}, D = {(0, 2), (1, 0)}, then C − D is not
convex (note: additive preimages are convex).
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Extreme points

Definition (Extreme point)

When X is a monoid and C ⊆ X , x ∈ C is an extreme point of C
if mx =

∑n
i=1mixi , m =

∑n
i=1mi , xi ∈ C =⇒ x = x1 = · · · = xn.

Let E(C ) be the collection of all extreme points of C .

Theorem (Krein-Milman in topological groups)

Suppose X is a semidivisible, locally convex, connected topological
group, and C ⊆ X is convex and compact. Then

C = conv(E(C )).

Semidivisibility is needed to guarantee that E(C ) 6= ∅ (base case).

A semilattice is a non-connected semigroup, but still KM type
results exist (Poncet ’14 or via Stone’s lemma).
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Example

Positive hyperbolic group

Let X be the collection of 2× 2 matrices of the form

M(θ) =

[
cosh(θ) sinh(θ)
sinh(θ) cosh(θ)

]
.

Previously studied e itM(θ). Addition: matrix multiplication.
Topology: R4 topology. X is connected, locally convex and
divisible (actually a Q-module).

If C ⊆ X is compact and convex, E(C ) = {M(α),M(β)} where,

α = inf{θ|M(θ) ∈ C}, β = sup{θ|M(θ) ∈ C}.

By KM, C = conv(M(α, β)) = M([α, β]), a curve in R4.
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Another example

σ-algebra with symmetric difference

(Ω,F , µ) a measure space. For A,B ∈ F , let

A + B = A4B.

Under this operation get a (2n − 1)-semidivisible but not
2n-semidivisible group (A4A = ∅, A4A4A = A).

For example, taking µ Lebesgue measure on [0, 1], F the Borel
sets and the psuedo-metric

dµ(A,B) = µ(A4B),

get a connected topological group which is not locally convex: take
many small sets in a neighbourhood of ∅ and the convex hull can
have full measure.
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Milman’s converse

The converse proof needs the property that the convex hull of
finite unions of compact sets are compact.

This is not always the case:

If X = Q, A = {0}, B = {1}, then conv
(
A ∪ B

)
= [0, 1] ∩Q

which is not convex.

Theorem (Milman’s converse)

Suppose X ilocally convex group such that the convex hull of finite
unions of compact sets is always compact. Suppose also that
C ⊆ X is compact and such that conv(C ) is compact. Then

E
(
conv(C )

)
⊆ C .
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Minimax theorem in arbitrary spaces

Definition (Convex-like function)

Let X be any set. We say f : X → R is convex-like if ∀x , y ∈ X ,
∀µ ∈ [0, 1], ∃z ∈ X such that

f (z) ≤ µf (x) + (1− µ)f (y);
f is concave-like if −f is convex-like.

f : X × Y → R is convex-concave-like if f (·, y) is convex-like
∀y ∈ Y is and f (x , ·) is concave-like ∀x ∈ X .

Theorem (Fan ‘53, Borwein-Zhuang ‘86)

Let X ,Y be non-empty, f : X × Y → R convex-concave-like.
Suppose X is compact and f (·, y) is lower semicontinuous ∀y ∈ Y .
Then

min
x∈X

sup
y∈Y

f (x , y) = sup
y∈Y

min
x∈X

f (x , y).
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Proposition (Convex-like on monoids)

Suppose X is a semidivisible topological monoid such that for
every x1, x2 ∈ X , conv({x1, x2}) is precompact. Assume f : X → R
is convex and lower semicontinuous. Then f is convex-like.

As a result, we immediately get:

Theorem (Minimax theorem for monoids)

Let X be compact and convex in a semidivisible topological
monoid, and Y be a subset of semidivisible topological monoid
such that conv({y1, y2}) is precompact ∀y1, y2 ∈ Y .
Suppose f : X × Y → R is such that f (·, y) is convex and lower
semicontinuous, f (x , ·) is concave and upper semicontinuous
∀x ∈ X , ∀y ∈ Y . Then

min
x∈X

sup
y∈Y

f (x , y) = sup
y∈Y

min
x∈X

f (x , y).
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Minimax theorem: example

Minimax in the positive hyperbolic group

Choose again the positive hyperbolic group X of 2× 2 matrices of
the form

M(θ) =

[
cosh(θ) sinh(θ)
cosh(θ) sinh(θ)

]
, θ ∈ R,

with matrix multiplication.
If Λ : θ 7→ M(θ), then for α, β ∈ R

conv({M(α),M(β)} ⊆ Λ([α, β])
which is compact =⇒ if C ⊆ X is convex and compact, every
f : C × X → R is as above will satisfy the minimax theorem.
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Future directions

More convex analysis (differentiation, variational principle,
monotone operators ...).

A unified approach to Krein-Milman that includes semilattices.

Examples of semidivisible connected locally convex topological
groups which are not divisible (if any).

Everything else.
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Thank you

Algebra is generous; she often gives more

than is asked of her.
(Jean d´Alembert, 1717–1783)
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