
A computational mathematics view of space, time and complexity

David H. Bailey∗ Jonathan M. Borwein†

January 12, 2016

Abstract

Modern computational mathematics requires a philosophical perspective largely at odds
with that of traditional mathematics, since current computational mathematics (as distinct
from computer science) is by its very nature is discrete, not continuous, and tied to the real
world in ways that the more theoretical branches of mathematics (and computer science)
often are not. Indeed, computational mathematics provides a means to escape the trap
feared by John von Neumann when he wrote,

[T]here is a grave danger that the subject [of mathematics] will develop along the
line of least resistance, that the stream so far from its source [in empirical reality]
will separate into a multitude of insignificant branches, and that the discipline
will become a disorganized mass of details and complexities.

But even a computational approach to mathematics has limits, not the least of which
are the uncertainties of errors in hardware, software and algorithms that inevitably are part-
and-parcel with computation, although there are ways to limit these uncertainties.

In our chapter, bulwarked by concrete examples, we will try to situate past, present and
future mathematical views of space, time, infinity and certainty within a computational con-
text in which, for example, error due to quantum effects begins to compete with traditional
sources of logical and numerical inaccuracy. We shall also argue that traditional taxonomies
of complexity and completeness are not only outmoded but actually destructive of progress.

1 Historical perspective of computational mathematics

In traditional pegagogy, mathematics is taught as a sequence of axioms, definitions, theorems
and proofs, entirely similar in style to Euclid’s 2300-year-old Elements. While we in no way
wish to disparage the axiomatic approach (and any serious mathematician surely must master
it), there are downsides to an overly pedantic focus on purely formal methods.

To begin with, a purely axiomatic approach is historically dishonest, because the real
work of mathematical discovery throughout history has almost always involved numerical
and algebraic experimentation, from which insight is gained and hypotheses formulated.

∗Lawrence Berkeley National Laboratory (retired), Berkeley, CA 94720, and University of California, Davis,
Davis, CA 95616, USA. E-mail: david@davidhbailey.com.
†CARMA, University of Newcastle, Callaghan, NSW 2308, Australia. E-mail: jon.borwein@gmail.com.

1

Only later were these hypotheses turned into precisely worded theorems and proofs that we
read today in journals and textbooks.

Carl Fredrich Gauss, arguably the 19th century’s greatest mathematician, explained that
his way of arriving at mathematical truths was through “systematic experimentation” [15].
When just 14 or 15 years old, after computing long tables of prime numbers he conjectured
that the number of primes less than n is, for large n, approximately n/ log n, which is now
known as the prime number theorem [10, pg. 13]. On another occasion, while examining
tables of integrals provided by James Stirling, he noticed that the reciprocal of one integral
agreed numerically with a limit of the arithmetic-geometric mean iteration. This purely
computational observation led Gauss to discover and develop elliptic and modular function
theory [10, pg. 13].

Indeed many great mathematicians from Archimedes and Galileo — who apparently said
“All truths are easy to understand once they are discovered; the point is to discover them.”
— to Gauss, Poincaré, and Lennard Carleson, have emphasized how much it helps to “know”
the answer.

More importantly, the axiomatic approach fails to train mathematicians, pure or applied,
in the real work of 21st century mathematical discovery, which, more than in any previous
era, involves substantial amounts of computational experimentation. Although some of the
older generation still say that “real mathematicians don’t compute,” the majority of research
mathematicians today are fluent and accustomed to using a variety of computational tools,
such as the commercial products Maple and Mathematica, as well as any number of custom-
written tools for both symbolic and numeric computing.

This synergy between humans and computers has produced a new set of mathematical
results that would not have been possible (or at least not likely) to have been discovered in
an earlier era. As a single example, out of many that could be listed, in 1996 the following
formula for π (known as the “BBP” formula [2]) was discovered by a computer program:

π =

∞∑
k=0

1

16k

(
4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

)
. (1)

This formula has the remarkable property that it permits one to calculate, by means of
a surprisingly simple algorithm, binary or base-16 digits of π beginning at an arbitrary
starting position, without needing to compute any of the digits before the specified position.
The numerical computation that led to the discovery of (1) certainly does not constitute a
rigorous proof of this identity, but once discovered numerically, the proof turned out to be a
relatively simple exercise of calculus [10, pg. 118].

We are hardly the first to observe that discovery is often the more important part of
proof. Two millennia ago, Archimedes wrote, in the Introduction to his long-lost and recently
reconstituted Method manuscript,

For it is easier to supply the proof when we have previously acquired, by the
method, some knowledge of the questions than it is to find it without any previous
knowledge.

Similarly, as 2006 Abel Prize winner Lennart Carleson described in his 1966 International
Congress of Mathematics speech on his positive resolution of Luzin’s 1913 conjecture, only
after many years of seeking a counterexample, he finally decided none could exist. He
expressed the importance of this confidence as follows [14]:

2

The most important aspect in solving a mathematical problem is the conviction
of what is the true result. Then it took two or three years using the techniques
that had been developed during the past 20 years or so [to prove the result].

2 Reliability of computations

Computing in mathematics (or in any other discipline) raises troubling questions about the
reliability of computation. After all, there are many possible sources of error:

• The underlying formulas or algorithms used might be incorrectly deduced or incorrectly
transcribed from underlying theory.

• Computer programs implementing these formulas and algorithms, which often employ
highly sophisticated techniques to accelerate the computation (e.g., FFTs, parallel
programming constructs, etc.), are certainly prone to error.

• Mathematical and scientific computing relies heavily on floating-point calculations,
and the results of these calculations may be numerically unreliable, especially when
performed on a parallel computer system with uncertain order of operations.

• All computers rely on a vast infrastructure of system software and compilers that
inevitably contains errors.

• Hardware errors can and do occur, particularly in large-scale, long-running calculations.
Even quantum-level errors are now expected to be a factor in future computation.

So why should anyone believe the results of calculations? The answer is that most
important calculations are checked with one or more independent calculations done using a
different algorithm, software package, precision level, hardware system or all of the above.

For example, floating-point calculations, as mentioned above, often give slightly different
results when run on a different computer system or one with a different number of processors.
Indeed, ensuring reproducibility of floating-point results is a growing challenge in computing
in general and mathematical and scientific computing in particular [5]. But there are rela-
tively simple ways to ensure reproducibility, such as by changing the default rounding mode
(to see what difference this makes in the results), or by employing software-based higher
precision. Although one cannot guarantee absolute integrity in this way, if two calculations
using high-precision arithmetic agree to many digits beyond the level required to discover
the phenomena in the first place, this is a pretty strong confirmation that the computation
is numerically sound (although see below in Section 3).

As a related example, 21st century mathematicians, continuing a centuries-old tradition,
have computed large numbers of digits of constants such as π, in an effort to explore the long-
standing unanswered question of whether and why these digit expansions are statistcially
random in a certain sense [1]. As of the present date, the state-of-the-art in this regard is
the computation of over 10 trillion base-16 digits and 12.1 trillion decimal digits of π, by
Alexander Yee and Shigeru Kondo [24]. Their main computation employed the following
formula, due to David and Gregory Chudnovsky [10, pg. 108]:

1

π
= 12

∞∑
k=0

(−1)k (6k)!(13591409 + 545140134k)

(3k)! (k!)3 6403203k+3/2
. (2)

3

Using this formula, they computed 10,048,832,487,050 base-16 digits of π. Then, in a sep-
arate computation, they directly computed 64 base-16 digits of π, beginning at position
10,048,832,487,013, using the following variant of the “BBP” formula [10, pg. 124]:

π =
1

64

∞∑
k=0

(−1)k

1024k

(
256

10k + 1
+

1

10k + 9
− 64

10k + 3
− 4

10k + 5
− 4

10k + 7
− 32

4k + 1
− 1

4k + 3

)
.

In both calculations, the slightest error at any stage almost certainly renders the final results
to be utterly and wholly incorrect. Here are the two corresponding sets of results:

d9ae13df df0c64d9 49bacf10 f55ae963 254699a8 bb24624b d47aea96 8016b052

d9ae13df cf0c64d9 49bacf10 f55ae963 254699a8 bb24624b d47aea96 8016b052

Needless to say, the final results dramatically agree, thus confirming (in a convincing but
heuristic sense) that both sets of results are almost certainly correct.

This raises the following question: What is more securely established, the assertion that
the base-16 digits of π in positions 10, 048, 832, 487, 043 through 10, 048, 832, 487, 050 are
8016b052, or the final theorem(s) of some very difficult work of mathematics that required
hundreds or thousands of pages, that relied on many results quoted from other sources, and
that (as is frequently the case) only a relative handful of mathematicians besides the author
can or have carefully read in detail? When is computation more reliable than proof?

As another example, when one uses a credit card to purchase an item online, it is quite
likely that the underlying software generates two pseudorandom prime numbers. To establish
that a generated integer is prime, one could use the provable polynomial-time algorithm
recently discovered by three Indian mathematicians [11, pg. 302], but in practice the Monier-
Rabin probabilistic primality test is used instead [11, pg. 301].

The Monier-Rabin algorithm is not a “provable” test, in the sense of an absolute guarantee
of primality. But if the integer has 500 or more bits (as is typical in e-commerce) and
passes this test once, then we may argue that the ‘probability’ that it is not prime is less
than 1.6 × 10−24. If it passes the test five times, then the probability is much less than
10−100. Note that such tiny probabilities are inconceivably smaller than the chance that an
undetected hardware error glitch or quantum-mechanical fluke occurs during the calculation,
not to mention the possibility of a computer program bug or a human mathematical error
in deriving, transcribing or applying the test. Given these realities, what is the point of
distinguishing between a “provable” primality test (performed either by a human or by a
computer) and a probabilistic primality test (performed by a computer)?

Such considerations have led a growing number of mathematicians to now regard com-
putation as on a par with formal reasoning, provided calculations are double-checked by
sufficiently rigorous tests. They have also drawn into question the value, from a practical
point of view, of pursuing algorithms whose only advantage over other algorithms is that
they are “provably correct.”

3 Finite computations

Computation, by its very definition, is a decidedly finite and discrete process. There is
no place in real-world scientific or mathematical computing for actual infinities, nor can
computation deal directly with the uncountably infinite and continuous real line (or 2-D or
3-D space). It is true that symbolic mathematical software can represent infinity, and can,

4

for example, symbolically evaluate the integral of a function over an infinite interval, but
beneath the symbolic processing, the software and the computer it runs on are, of course,
discrete, finite entities.

While in some cases the integral of a function over an infinite interval can be computed
symbolically, evaluation over some finite interval may well not be possible symbolically and
will require numerical computation to obtain a concrete answer. As Stanislaw Ulam once
said, “The infinite we shall do right away. The finite may take a little longer.” [17]. On the
other hand, the space of functions that can be numerically integrated to any desired accuracy
is far vaster than the space of functions that can be symbolically integrated in closed form.
Similarly, the space of ordinary and partial differential equations (which are a mainstay of
applied mathematics) that can be numerically solved to any desired accuracy is far vaster
than the space of such equations that can be analytically solved by symbolic processing.

It is true that one cannot abolutely rely on numerical computations. For example, con-
sider the innocent-looking integral [4]∫ ∞

0

cos(2x)

∞∏
n=1

cos
(x
n

)
dx = (3)

0.392699081698724154807830422909937860524645434187231595926812285162 . . .

One might first be tempted to think that is equal to π/8, namely

π

8
= 0.392699081698724154807830422909937860524646174921888227621868074038 . . . ,

but note that while two values agree for 42 digits, they differ beginning in the 43rd digit;
they are not equal. As it turns out, the integral (3) is merely the first term of a very rapidly
convergent series; if two terms are taken, the sum is π/8 to over 500 digits; if three are taken,
the sum is π/8 to over 8,000 digits.

A related example if the following. Consider the following “identity” [3]:

∞∑
n=−∞

sinc(n) sinc(n/3) sinc(n/5) sinc(n/7) · · · sinc(n/p)

?
=

∫ ∞
−∞

sinc(x) sinc(x/3) sinc(x/5) sinc(x/7) · · · sinc(x/p) dx, (4)

where sinc x means (sinx)/x. Provably, the following is true: This identity is precisely valid
for prime p among the first at least 10176 primes; but stops holding after some larger prime.
Thereafter the sum is less than the integral, but they differ by much less than 10−100.

In short, numerical coincidence is no guarantee of mathematical certainty. On the other
hand, when is a mathematical identity “close enough for government work”? When can one
for all practical purposes replace the infinities in the above formulas with some large finite
values? Many mathematicians are quite content, say, with 100-digit agreement, to conclude
that the apparent result is worth seeking a proof for, or at least understanding why the
near-identity holds.

4 A finite universe

As mentioned above, much mathematics from calculus forward (with the exception of finite
and/or discrete algebraic structures) assumes a continuous, complete, infinite space, so, for

5

example, we can subdivide the real line ad infinitum, the limits of convergent sequences are
actual points in the real line, and if a continuous real function is positive for one argument
and negative for another, then there is at least one real point between these two arguments
for which the function is exactly zero. Since the nineteenth century a careful development
of countably infinite limiting processes has been central to mathematical analysis.

But, one can ask, is nature, at the most basic, fundamental level, really like this?
From several lines of research, the answer appears to be “no.” For example, the Beken-

stein bound, derived from quantum theory by Israeli theoretical physicist Jacob Bekenstein
in 1981, places an upper limit on the number of quantum states that can be contained within
a volume [8]. For a sphere with mass m kg and radius R meters, the limit is

I ≤ 2πcRm

h̄ log 2
≈ 2.577 · 1043mR, (5)

where c is the speed of light and h̄ is Planck’s constant. Thus, for example, at most 2.6×1042

bits of information are sufficient to perfectly recreate any human brain down to the quantum
level [9].

But one can also apply the Bekenstein bound to the entire observable universe. If this is
done, one obtains approximately 10123 bits, so that the maximum number of quantum states
is some 1010

123

[22, pg. 108]. These reckonings are tightly connected with the “holographic
principle,” in which the information within a sphere is inevitably limited to the information
that can be held on its boundary [16]. Whatever these values are, they are finite — the real
universe is not the same as the infinite, continuous space of classical mathematics.

We may then ask how many digits of π can be stored in the known universe? Surely
it cannot be more than the total number of quantum states, which while enormous is still
finite.

Along this line, physicist Max Tegmark, in his recent book Our Mathematical Universe:
My Quest for the Ultimate Nature of Reality [21], argues that at its most fundamental level,
our universe is not merely described by a mathematical structure; it is a mathematical
structure. He points out that only a mathematical structure, defined by axioms and rela-
tions, can qualify for a description of reality that is completely free from human (or even
extraterrestrial) baggage. He further proposes two additional hypothesis [21, pg. 267]:

• Computable Universe Hypothesis: Our external physical reality is a mathematical struc-
ture defined by computable functions.

• Finite Universe Hypothesis: Our external physical reality is a finite mathematical struc-
ture.”

These two hypotheses are explored in Chapter 12 of his book. But whichever of these one
is more inclined to accept, both suggest that fundamental physical reality is discrete, not
continuous.

5 Theoretical versus practical

As we noted above, computational mathematics, if performed with suitably rigorous double-
checks, can produce results that are arguably as reliable, in a practical sense, as formal
proofs in many cases, or at least can be thought of as another avenue to approach secure
mathematical knowledge.

6

But there is one other advantage of modern computational mathematics: It provides a
means to escape the trap feared by John von Neumann when he wrote in 1947,

As a mathematical discipline travels far from its empirical source, or still more, if
it is a second and third generation only indirectly inspired by “reality” it is beset
with very grave dangers. It becomes more and more pure aestheticizing, more and
more purely l’art pour l’art. This need need not be bad if the field is surrounded
by correlated subjects which have still closer empirical connections, or if the
discipline is under the influence of men with exceptionally well-developed taste.
But there is a grave danger that the subject will develop along the line of least
resistance, that the stream so far from its source will separate into a multitude
of insignificant branches, and that the discipline will become a disorganized mass
of details and complexities. In other words, at a great distance form its empirical
source, or after much abstract inbreeding, a mathematical subject is in danger of
degeneration. [18, pg. 291]

Modern computational mathematics provides a medium of communication between the-
oretical and applied mathematics, and a route to empirical reality. What we can compute,
we can be fairly certain has some tangible existence and some tangible possibility of leading
to greater understanding of both the corpus of modern mathematics and also the universe
around us.

For example, one can argue that the traditional hierarchy of rational, algebraic, elemen-
tary and “advanced” functions was driven by a pre-computer age. Exponentials, logarithms,
sines and cosines are all considered “elementary,” yet the elliptic integral functions

K(x) :=

∫ 1

0

dt√
(1− t2)(1− x2t2)

E(x) :=

∫ 1

0

√
1− x2t2√
1− t2

dt

are, from a computational point of view, simpler and easier to compute. This is because
these functions can be quickly evaluated by quadratically convergent arithmetic-geometric
mean calculations, and so for high precision calculations they are faster to compute than the
“elementary” functions. Indeed, K admits of a quadratic transformation

K (k) = (1 + k1) K (k1) , k1 :=
1−
√

1− k2

1 +
√

1− k2
, (6)

as was known already to Landen, Legendre and Gauss. To compute K(π/6) = 1.699075885 . . .
to five places requires using (6) only twice and then estimating the resultant integral by π/2.
A third step gives the ten-digit precision shown.

In fact, the elementary functions can be computed from the elliptic functions. For exam-
ple, the logarithm to high precision can be computed as an approximation of K [12, 10, 11].
Explicitly, [12, Algorithm 7.1] gives for 1/2 < x < 1 and n > 3 that∣∣∣∣log (x)−K′

(
1

10n

)
+ K′

(x

10n

)∣∣∣∣ ≤ n

102(n−1)
, (7)

where K′(x) = K(
√

1− x2).

7

The same can be said of algebraic functions. Even in the case of cubic algebraic numbers,
in practice it is usually more efficient to numerically solve the underlying polynomial, using
Newton iterations, than to use the closed form for a solution due to Cardano; for higher-
degree polynomials it is almost always faster to use numerical methods (and hardly any
analytic solutions exist).

Thus, perhaps the traditional taxonomy of functions and their computational complexity
needs to be re-thought in the computer age.

Along this line, it is interesting to compare theoretical mathematics with the field of
theoretical computer science. On one hand, some remarkable and significant results have
been produced in the field. We now know that there are some computations that are simply
not possible — for example, we know that it is not possible to infallibly determine, by means
of a finite computer program running on a real computer, whether or not another computer
program has an infinite loop (this is a result originally due to Turing). It cannot, because
such a program cannot perform this diagnosis on itself.

Similarly, the P = NP? problem is as intriguing as it is far-reaching. This problem is
described as follows by the Clay Mathematics Institute, which has offered a US$1,000,000
prize for its resolution:

Suppose that you are organizing housing accommodations for a group of four
hundred university students. Space is limited and only one hundred of the stu-
dents will receive places in the dormitory. To complicate matters, the Dean has
provided you with a list of pairs of incompatible students, and requested that
no pair from this list appear in your final choice. This is an example of what
computer scientists call an NP-problem, since it is easy to check if a given choice
of one hundred students proposed by a coworker is satisfactory (i.e., no pair taken
from your coworker’s list also appears on the list from the Dean’s office), however
the task of generating such a list from scratch seems to be so hard as to be com-
pletely impractical. Indeed, the total number of ways of choosing one hundred
students from the four hundred applicants is greater than the number of atoms
in the known universe!

Some problems now known to be in the category NP -complete (and thus presumed to
be not solvable in reasonable computer time) include [20]:

• The traveling salesman problem. Given a list of cities and distances between each pair,
find the shortest route that visits each city exactly once and returns to the start.

• The knapsack problem. Given a set of items, each with a weight (or size) and a value,
find how many of each item to include in a collection so that the total weight is less
than a specified maximum weight, and the total value is as great as possible.

• The subgraph isomorphism problem. Given two graphs, determine whether one contains
a subgraph that is isomorphic to the other.

However, these lines of research have only had muted impact on the real world of math-
ematical and scientific computing. The main difficulty is that NP -complete considerations
are driven by a worst-case analysis of a measure that does not reflect practical usage. After
all, providing O(n) bounds on the cost, polynomial or otherwise, does not say much if we
do not know the size of the high-order coefficients of the polynomial. At a minimum, one
must distinguish between questions of the possibility or impossibility of solving the most

8

general form of these problems and the practical difficulty of obtaining satisfactory practical
solutions to real-world versions of these problems.

For example, while the traveling salesman problem is known to beNP -complete, problems
of this general type are solved routinely, every day, in both scientific research and private
industry. Airlines, for example, use sophisticated computer programs running on highly
parallel computer systems to schedule their aircraft, logistics and staff to the ever-changing
requirements of their passenger-destination load. This is done using linear or semidefinite
programming techniques, which are special cases of mathematical optimization. They are
known to have effective algorithms in P , while the classical simplex method, which is still
heavily used, does not lie in P .

Relatedly Goemans and Williamson showed for the NP -hard ‘min-cut/max-flow’ problem
that a randomized version of a semidefinite relaxation after dualization — which being
a semidefinite program can be solved approximately in polynomial time — has expected
performance exceeding 0.87856% of the exact solution [13, §3.3].

Even the navigation software now incorporated into virtually all smartphones performs
computations of this type to find a shortest-time route. For that matter, the C, C++,
Fortran and Java compilers that are used countless times every day by software programmers
routinely employ similar algorithms to schedule instructions for optimal performance of the
generated code.

It is important to note that in real-world applications, certainly including airline schedul-
ing, navigation and compilers, it is not necessary to find the absolutely optimal solution —
a solution that is reasonably close to an optimal solution is entirely satisfactory. In this
regards, the theoretical problems addressed, say, in studies of NP -complete problems, are of
a different class and not really applicable.

Similar considerations apply to other arenas of computer science. In parallel computing,
for example, thousands of papers have been written presenting algorithms for the parallel
random access (PRAM) model of computing. This model presumes that each of n processors
can either perform one arithmetic operation or read from or write to any location in a shared
memory. However, scientists performing scientific computations on parallel computer systems
have not found this body of research very useful, because the model does not match very
well the characteristics of real parallel computers. Instead, virtually all computers at the
present and foreseeable future time employ a cache memory system, wherein data access to
anything but local registers requires many more clock periods than arithmetic operations;
and accesses to data in a remote memory node requires many times more clock periods than
accessing data in the local node. For these reasons, today most performance analysis and
tuning of algorithms and applications are today targeted to more realistic models, such as
the logP model developed by researchers at the University of California, Berkeley [19] and
the roofline model developed by Samuel Williams [23].

A related issue in parallel computing is that for many problems of practical, everyday
interest, in mathematical, scientific or even business applications, considerations of massive
parallelism are moot, because the problem to be solved simply does not possess sufficient
concurrency to justify parallel processing (a consequence of Amdahl’s Law [6, pg. 348]),
particularly when the ever-present software and hardware overhead of coordinating large
numbers of parallel processors is considered. It is true that some applications do possess
very high levels of concurrency; many such applications are running on large-scale parallel
supercomputers operated by universities and government laboratories. But for the vast
majority of applications, only modest levels of parallelism can be efficiently exploited; and

9

for still others, only single-threaded execution makes practical sense.
One final item that should be mentioned is the ineluctable fact that mathematicians,

scientists and others who are using computers today in their research often do their work
via heavy-duty software layers, such as the mathematical software environments Maple and
Mathematica. In such environments it is often not possible to know what algorithms are
really being performed “under the hood.” This fact considerably complicates any attempts
by the user to employ advanced algorithms.

6 Conclusion

We have observed that computational mathematics is a more honest representation of math-
ematics, in that it does not hide or obscure the experimental processes by which a mathe-
matical hypothesis is discovered. Only later are such discoveries turned into the polished,
axiomatic expositions that we read in textbooks.

We have also observed that computational mathematics leads to interesting and impor-
tant considerations of reliability — how to define and arrive at secure mathematical knowl-
edge, given that computation is inherently subject to errors of many types, ranging from
programming errors to submicroscopic glitches rooted in quantum mechanics. Yet we have
also seen that suitably chosen validity tests can mitigate these errors, turning questionable
calculations into extremely reliable mathematical and scientific assertions. Indeed, at some
point, computations are arguably as reliable, if not more so, than formal reasoning.

Additionally, there is considerable evidence that a computational approach to mathe-
matics permits the field to escape the trap, originally highlighted by John von Neumann, of
becoming so isolated from the richer empirical world of modern science that it becomes both
sterile and irrelevant. And even in computer science, connections to real-world mathematical
and scientific computations can help focus research in the field in useful directions and help
it avoid similar traps of isolation and irrelevance.

While we have discussed current computer architecture and not advanced quantum com-
puting, we are relatively sure that even such advances will not entirely change the situation.

Finally, an expanded reliance on computation in mathematics does need to guard against
a diminution in the reliability of the mathematical corpus. Proofs still need to be developed
when possible and heuristics need to be clearly labeled.

10

References

[1] David H. Bailey, Jonathan M. Borwein, Cristian S. Calude, Michael J. Dinneen,
Monica Dumitrescu and Alex Yee, “An empirical approach to the normality of pi,”
Experimental Mathematics, 21 (2012), 375–384.

[2] David H. Bailey and Peter B. Borwein and Simon Plouffe, “On the rapid computation
of various polylogarithmic constants,” Mathematics of Computation, 66 (1997),
903–913.

[3] David H. Bailey and Jonathan M. Borwein, “Exploratory experimentation and
computation,” Notices of the American Mathematical Society, 58 (Nov 2011),
1410–1419.

[4] David H. Bailey, Jonathan M. Borwein, Vishal Kapoor and Eric Weisstein, “Ten
problems in experimental mathematics,” American Mathematical Monthly, 113 (June
2006), 481–509.

[5] David H. Bailey, Jonathan M. Borwein and Victoria Stodden, “Facilitating
reproducibility in scientific computing: Principles and practice,” in Harald
Atmanspacher and Sabine Maasen, eds, Reproducibility: Principles, Problems,
Practices, John Wiley and Sons, New York, to appear, 2016.

[6] David H. Bailey, Lin-Wang Wang, Hongzhang Shan, Zhengji Zhao, Juan Meza, Erich
Strohmaier and Byounghak Lee, “Tuning an electronic structure code,” in David
H. Bailey, Robert F. Lucas and Samuel W. Williams, ed., Performance Tuning of
Scientific Applications, CRC Press, 2011.

[7] Robert Baillie, David Borwein, and Jonathan Borwein, “Some sinc sums and
integrals,” American Mathematical Monthly, 115 (2008), 888–901.

[8] Jacob D. Bekenstein, “Universal upper bound on the entropy-to-energy ratio for
bounded systems,” Physical Review D, 23 (15 Jan 1981), 287–298.

[9] “Bekenstein bound,” Wikipedia, viewed 8 Jan 2016,
https://en.wikipedia.org/wiki/Bekenstein_bound.

[10] Jonathan M. Borwein and David H. Bailey, Mathematics by Experiment: Plausible
Reasoning in the 21st Century, A. K. Peters Ltd., Natick, MA, 2004. Second edition,
2008.

[11] Jonathan M. Borwein, David H. Bailey and Roland Girgensohn, Experimentation in
Mathematics: Computational Paths to Discovery, A. K. Peters Ltd., Natick, MA, 2004.

[12] Jonathan M. Borwein and Peter B. Borwein, Pi and the AGM: A Study in Analytic
Number Theory and Computational Complexity, John Wiley, New York, 1987,
paperback 1998.

[13] Jonathan M. Borwein and Jon D. Vanderwerff, Convex Functions: Constructions,
Characterizations and Counterexamples, Cambridge University Press, London, 2010.

[14] “Lennart Axel Edvard Carleson,” University of St. Andrews, Scotland,
http://www-groups.dcs.st-and.ac.uk/history/Biographies/Carleson.html.

[15] David Epstein and Sylvio Levy, “Experimentation and proof in mathematics. Notices
of the American Mathematical Society, June, 1995.

11

[16] “Holographic principle,” Wikipedia, viewed 8 Jan 2016,
https://en.wikipedia.org/wiki/Holographic_principle.

[17] Des MacHale, Comic Sections: Book of Mathematical Jokes, Humour, Wit and
Wisdom, Boole Press, Ltd., New York, 1993.

[18] Morris Kline, Mathematics: The Loss of Certainty, Oxford University Press, London,
1980.

[19] David Culler, Richard Karp, David Patterson, Abhijit Sahay, Klaus E. Schauser,
Eunice Santos, Ramesh Subramonian and Thorsten von Eicken, “LogP: Towards a
realistic model of parallel computation,” Proceedigns of the Fourth ACM SIGPLAN
Symmposium on Principles and Practice of Parallel Programming, May 1993, San
Diego, CA.

[20] “P versus NP problem,” Wikipedia, viewed 10 Jan 2016,
https://en.wikipedia.org/wiki/P_versus_NP_problem.

[21] Max Tegmark, Our Mathematical Universe: My Quest for the Ultimate Nature of
Reality, Knopf, New York, 2014.

[22] Alex Vilenkin, Many Words in One: The Search for Other Universe, Hill and Wang,
New York, 2006.

[23] Samuel W. Williams, “The roofline model,” in David H. Bailey, Robert F. Lucas and
Samuel W. Williams, ed., Performance Tuning of Scientific Applications, CRC Press,
2011.

[24] Alexander J. Yee and Shigeru Kondo, “12.1 trillion digits of pi, and we’re out of disk
space,” http://www.numberworld.org/misc_runs/pi-12t/.

12

