

Newcastle
AMSI-AG Room

Some of my Favourite Convexity Results

Jon Borwein, frsc
www.cs.dal.ca/~jborwein Canada Research Chair, Dalhousie Laureate Professor, Newcastle

"Harald Bohr is reported to have remarked "Most analysts

 spend half their time hunting through the literature for inequalities they want to use, but cannot prove." (D.J.H. Garling)Review of Michael Steele's The Cauchy Schwarz Master Class in the MAA Monthly, June-July 2005, 575-579.

Harald Bohr 1887-1951

The Bohrs

- One Nobel Prize
- Nils (1885-1962)
- Physics (1922)
- One Olympic Medal
- Harald (1887-1951)
- Soccer (1908)

Abstract of Convexity Talk I

In honour of my friend Boris Mordhukovich

We met in 1990. He said
"How old are you?"
I said "39 and you?"
He replied "48."
I left thinking he was 48 and he thinking I was 51.

Some years later Terry
Rockafellar corrected our cultural misconnect.

What was it?

Abstract of Convexity Talk II

This is a revised version of a talk given in March and in June 2007 to celebrate Tony Thompson's $70^{\text {th }}$ birthday and Jon Thompson's $65^{\text {th }}$

The three have a lot in common

- Substantial white beards
- Great energy and commitment
- Many contributions to the community
- I like them each enormously
- They are all older than me

G'day from Newcastle, Oz

Please pass on my best wishes to Boris. I have fond memories of his generous help as a reviewer to my first paper in JOTA many years ago. He was a great friend to Alex Rubinov and is of course a fine mathematician. Pass on my birthday greetings!

Barney Glover

Abstract of Convexity Talk

I offer various examples of convexity appearing (often unexpectedly) over the years in my research.

Each example illustrates either the power of convexity, or of modern symbolic computation, or of both ...

PUB:

$$
f_{\mathcal{A}}(x):=\sup _{A \in \mathcal{A}}\|A(x)\|
$$

Proof. Isc and p.w. bounded is finite hence continuous and so the linear operators are uniformly bounded.

I start with a brief advert for computer-assisted mathematics and collaborative tools.

Drive

D-Drive's Nova Scotia location lends us unusual freedom when interacting globally. Many cities around the world are Dalhousie Distributed close enough in a chronological sense to comfortably Research Institute and Virtual Environment accommodate real-time collaboration.

C2C Seminar: Example from SFU

- running biweekly since 2005, Ontario joined on 25/09/07. Chile this year

Local Presentation
Remote Presentation Speaker Remote Audience Presentation SlidesLocal Camera Placement

Solving Checkers: one of top 10 Science breakthroughs of 2007

Experimental Mathodology

1. Gaining insight and intuition
2. Discovering new relationships
3. Visualizing math principles
4. Testing and especially falsifying conjectures
5. Exploring a possible result to see if it merits formal proof
6. Suggesting approaches for formal proof
7. Computing replacing lengthy hand derivations
8. Confirming analytically derived results

\square
any people regard mathematics as the crown jewel of the sciences. Yet math has historically lacked one of the defining trappings of science: laboratory equipment. Physicists have their particle accelerators; biologists, their electron microscopes; and astronomers, their telescopes. Mathematics, by contrast, concerns not the physical landscape but an idealized, abstract world. For exploring that world, mathematicians have traditionally had only their Now,
instrument that they have been
missing. Sophisticated software is missing. Sophisticated software is ther and deeper into the mathematical universe. They're calculating the number pi with
mind-boggling precision, for instance, or discovering patterns in the contours of beautifull, infi-
nite chains of spheres that arise out of the geometry of knots. Experiments in the computer lab are leading mathematicians to dis--
coveries and insightsthat they might coveries and insights that they might
never have reached by traditional means. "Pretty much every [mathematical 1 field has been transtormed
by it", says Richard Crandall, a mathbyit,"says Richard Crandall, a math-
cmatician at Reed Collegc in Portcmatician at Reed College in Port-
Jand, Ore. "Instrad of just being a nand, Ore. Tustcad tool, the computer is becoming more like a garden shovel that turns over rocks, and you find things underncath:" At the same time, the new work is raising unsettling questions about
how to rezard experimental results

Thave some of the excitement that Leonardo of Pisa must have felt when he encountered Arabic arithmetic. It suddenly made cer-
tain celculations flabbergastingly easy;", Borwein says. "That's what I think is happening with computer experimentation today:"
EXPERIMENTERS OF OLD In one sense, math experiments are nothing new: Despite their field's reputation as a purely deductive science, the great mathematiciuns over the centuries have never limited themselves to formal reasoning and proof. For instance, in 1666 , sheer curiosity and lore of numbers lec lsand
Newton to calculate directy the first 16 digits of the number pi, later writing. Tam ashamed to tell you to how many figures I carried these computations, having no other business st the time" ried these computations, having no other business at the time"
Carl Friedrich Gauss, one of the towering figures of 19th-cencovered new mathematical results byexperimenting with numbers and looking for patterns. When Gauss
was a teenager, for instance, his was a teenager, for instance, his
experiments led him to one of the experiments led him to one of the
most important conjectures in the most important conjectures in the
history of number theory: that the number of prime numbers less than a number x is roughly equal to x. divided by the logarithm of. .a. Gauss often discovered resuits
experimentally long before he could experimentally long before he could
prove them formally. Once, be comprovethem formally: Once, be com-
plained. "I have the esult, but I do not yet know how to get it.
In the case of the prime number
not yet
Inow
theorem, Gauss later refined his conjjecture but never did figure out how to prove it. It took more than a up with a proof.
up wike today's mathematicians,
Like
math experimentersin the late 19th century used computers-but in thoss dass, the word deferred topeo-
ple with a spexial fuility for calco:

Comparing $-y^{2} \ln (y)$ (red) to $y-y^{2}$ and $y^{2}-y^{4}$

Illathemetice by Enperiment

SECDID EDITION

F|xaerimental matematics is here to stro: The reater whin wants to get an irmoturfon to this eaxiting aronath to roing mathematis can to mon teterer than [7is arck|"
-Mrines of the Anseman MMrhamerical Society
"let ma cuit to the chase: Ejervmathematics litcary ren iires a onoy at this honk Fuervsumeriscr nt higher degree stitents reavies a mpy in thair thalf Welmime

-Marhematical Rivicius
 isw itege and ways to orave theri.

Using examples that thily rerresert the experimental methadilnay this fork aravidas the histaring crntekt of, ard rationale hetind, experimente matherratics. It shross haw taris, the use advansed comaution techrology [miffes mathematicians with ar amazing, arevin usly unimeginable "abaratoy"" in which asampias can he analpad, new ideas taster, ann nattens discomeren.

 indicetan of tha, gowis dat this sactend ect tan centains over ane hurrirud

Frr thse inerestet in further examples and insights, the brok Fxpmermentarinn

BORIIIEII BAIIFY

Interactive Proofs

The Perko Pair 10_{161} and 10_{162}

 are two adjacent 10-crossing knots (1900)

- first shown to be the same by Ken Perko in 1974
- and beautifully made dynamic in KnotPlot (open source)

Outline of Convexity Talk

A. Generalized Convexity of Volumes (Bohr-Mollerup).
B. Coupon Collecting and Convexity.
C. Convexity of Spectral Functions.
D. Madelung's Constant for Salt.

The talk ends when I do

There are three bonus tracks!

Generalized Convexity of Volumes

A. Generalized Convexity of Gamma (Bohr-Mollerup).
Γ is usually defined for $\operatorname{Re}(x)>0$ as

$$
\begin{equation*}
\Gamma(x):=\int_{0}^{\infty} e^{-t} t^{x-1} d t \tag{1}
\end{equation*}
$$

Theorem 1 (Bohr-Mollerup) 「 is the unique function $f:(0, \infty) \rightarrow(0, \infty)$ such that:
(a) $f(1)=1$; (b) $f(x+1)=x f(x)$;
(c) f is log-convex $(x \rightarrow \log (f(x))$ is convex).

- Application is often automatable in a computer algebra system, as we now illustrate:

Generalized Convexity of Volumes

A. Generalized Convexity of Gamma (Beta function). The β-function is defined by

$$
\begin{equation*}
\beta(x, y):=\int_{0}^{1} t^{x-1}(1-t)^{y-1} d t \tag{1}
\end{equation*}
$$

for $\operatorname{Re}(x), \operatorname{Re}(y)>0$. As is often established using polar coordinates and double integrals

$$
\begin{equation*}
\beta(x, y)=\frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)} \tag{2}
\end{equation*}
$$

Proof Use $f:=x \rightarrow \beta(x, y) \Gamma(x+y) / \Gamma(y)$. (a) and (b) are easy. For (c) we show f is log-convex via Hölder's inequality. Thus $f=\Gamma$ as required.

- Γ is hyper-transcendental as is ζ.

Generalized Convexity of Volumes

A. Convexity of Volumes (Blaschke-Santalo inequality).

For a convex body C in R^{n} its polar is

$$
C^{\circ}:=\left\{y \in R^{n}:\langle y, x\rangle \leq 1 \text { for all } x \in C\right\} .
$$

Denoting n-dimensional Euclidean volume of $S \subseteq R^{n}$ by $V_{n}(S)$, Blaschke-Santalo says $V_{n}(C) V_{n}\left(C^{\circ}\right) \leq V_{n}(E) V_{n}\left(E^{\circ}\right)=V_{n}^{2}\left(B_{n}(2)\right)$ (1)
where maximality holds (only) for any ellipsoid E and $B_{n}(2)$ is the Euclidean unit ball.

Question How to explain cases of this as convexity estimates?

Generalized Convexity of Volumes

A. Convexity of Volumes (Dirichlet Formulae).

The volume of the ball in the $\|\cdot\|_{p}$-norm, $V_{n}(p)$, was first determined by Dirichlet

$$
V_{n}(p)=2^{n} \frac{\Gamma\left(1+\frac{1}{p}\right)^{n}}{\Gamma\left(1+\frac{n}{p}\right)} .
$$

When $p=2$,

$$
V_{n}=2^{n} \frac{\Gamma\left(\frac{3}{2}\right)^{n}}{\Gamma\left(1+\frac{n}{2}\right)}=\frac{\Gamma\left(\frac{1}{2}\right)^{n}}{\Gamma\left(1+\frac{n}{2}\right)},
$$

is more concise than that usually recorded. Maple code derives this formula as an iterated integral for arbitrary p and fixed n.

1, 2 AND ∞-BALLS IN R²

Generalized Convexity of Volumes

A. Convexity of Volumes (Ease of Drawing Pictures).

$\log \Gamma(x)$

$\log V_{a}(1 / x)$ for $a=4 / 3,3$

Discover the formula for $\sum_{n \geq 1} V_{n}(2)$

Generalized Convexity of Volumes

A. Convexity of Volumes ('mean' log-convexity).

Theorem $2[(\mathbf{H}, \mathbf{A})$ log-concavity] The funcsion $V_{\alpha}(p):=2^{\alpha} \Gamma\left(1+\frac{1}{p}\right)^{\alpha} / \Gamma\left(1+\frac{\alpha}{p}\right)$ satisfies

$$
\begin{equation*}
V_{\alpha}(p)^{\lambda} V_{\alpha}(q)^{1-\lambda}<V_{\alpha}\left(\frac{1}{\frac{\lambda}{p}+\frac{1-\lambda}{q}}\right) \tag{1}
\end{equation*}
$$

for all $\alpha>1$, if $p, q>1, p \neq q$, and $\lambda \in(0,1)$.
$\alpha=n, \frac{1}{p}+\frac{1}{q}=1$ with $\lambda_{1}=\lambda_{2}=1 / 2$ recovers the p-norm case of Blaschke-Santalo; and the lower bound. This extends to substitution norms. Q. How far can one take this?
"HERES WITERE YOU WADE YOUR MISTAKE."

Outline of Convexity Talk

A. Generalized Convexity of Volumes (Bohr-Mollerup).
B. Coupon Collecting and Convexity.
C. Convexity of Spectral Functions.
D. Madelung's Constant for Salt.

The talk ends when I do

Coupon Collecting and Convexity

B. The origin of the problem.

Consider a network objective function p_{N} :
$p_{N}(q):=\sum_{\sigma \in S_{N}}\left(\prod_{i=1}^{N} \frac{q_{\sigma(i)}}{\sum_{j=i}^{N} q_{\sigma(j)}}\right)\left(\sum_{i=1}^{N} \frac{1}{\sum_{j=i}^{N} q_{\sigma(j)}}\right)$,
summed over all N ! permutations; so a typical term is

$$
\left(\prod_{i=1}^{N} \frac{q_{i}}{\sum_{j=i}^{N} q_{j}}\right)\left(\sum_{i=1}^{N} \frac{1}{\sum_{j=i}^{n} q_{j}}\right)
$$

For example, with $N=3$ this is
$q_{1} q_{2} q_{3}\left(\frac{1}{q_{1}+q_{2}+q_{3}}\right)\left(\frac{1}{q_{2}+q_{3}}\right)\left(\frac{1}{q_{3}}\right)\left(\frac{1}{q_{1}+q_{2}+q_{3}}+\frac{1}{q_{2}+q_{3}}+\frac{1}{q_{3}}\right)$.
This arose as the objective function in a 1999 PhD on coupon collection. Ian Affleck wished to show p_{N} was convex on the positive orthant. I hoped not!

Coupon Collecting and Convexity

B. Doing What is Easy.

First, we try to simplify the expression for p_{N}.
The partial fraction decomposition gives:

$$
\begin{aligned}
p_{1}\left(x_{1}\right) & =\frac{1}{x_{1}}, \\
p_{2}\left(x_{1}, x_{2}\right) & =\frac{1}{x_{1}}+\frac{1}{x_{2}}-\frac{1}{x_{1}+x_{2}}, \\
p_{3}\left(x_{1}, x_{2}, x_{3}\right) & =\frac{1}{x_{1}}+\frac{1}{x_{2}}+\frac{1}{x_{3}}-\frac{1}{x_{1}+x_{2}}-\frac{1}{x_{2}+x_{3}}-\frac{1}{x_{1}+x_{3}} \\
& +\frac{1}{x_{1}+x_{2}+x_{3}} .
\end{aligned}
$$

Partial fractions are an arena in which computer algebra is hugely useful. Try performing the third case in (1) by hand. It is tempting to predict the "same" pattern will hold for $N=4$. This is easy to confirm (by computer) and so we are led to:

Coupon Collecting and Convexity

B. A Very Convex Integrand. (Is there a direct proof?)

A year later, Omar Hijab suggested re-expressing p_{N} as the joint expectation of Poisson distributions. This leads to:
If $x=\left(x_{1}, \cdots, x_{n}\right)$ is a point in the positive orthant R_{+}^{n}, then
$p_{N}(x)=\left(\prod_{i=1}^{n} x_{i}\right) \int_{R_{+}^{n}} e^{-\langle x, y\rangle} \max \left(y_{1}, \cdots, y_{n}\right) d y$,
where $\langle x, y\rangle=x_{1} y_{1}+\cdots+x_{n} y_{n}$ is the Euclidean inner product.

Now $y_{i} \rightarrow x_{i} y_{i}$ and standard techniques show $1 / p_{N}$ is concave, as the integrand is. [We can now ignore probability if we wish!] Q. "inclusion-exclusion" convexity: OK for $1 / \mathrm{g}(\mathrm{x})>0, \mathrm{~g}$ concave.

Goethe's One Nice Comment About Us

"Mathematicians are a kind of Frenchmen:

whatever you say to them they translate into their own language, and right away it is something entirely different."
(Johann Wolfgang von Goethe)
Maximen und Reflexionen, no. 1279

Outline of Convexity Talk

A. Generalized Convexity of Volumes (Bohr-Mollerup).
B. Coupon Collecting and Convexity.
C. Convexity of Spectral Functions.
D. Madelung's Constant for Salt.

The talk ends when I do

Convexity of Spectral Functions

C. Eigenvalues of symmetric matrices (Lewis and Davis). $\lambda(S)$ lists decreasingly the (real, resp. non-negative) eigenvalues of a (symmetric, resp. PSD) n-by-n matrix S. The Fenchel conjugate is the convex closed function given by

$$
f^{*}(x):=\sup _{y}\langle y, x\rangle-f(y)
$$

Theorem (Spectral conjugacy) If $f: R^{n} \mapsto$ $[-\infty, \infty]$ is a symmetric function, it satisfies the formula $(f \circ \lambda)^{*}=f^{*} \circ \lambda$.
Corollary [Davis/Lewis] Suppose $f: R^{n} \mapsto$ $[-\infty, \infty]$ is symmetric. Then the "spectral function" $f \circ \lambda$ is closed and convex (resp. differentiable) if and only if f is closed and convex (resp. differentiable).

Convexity of Spectral Functions

C. Three Amazing Examples (Lewis).
I. Log Determinant Let $\operatorname{lb}(x):=-\log \left(x_{1} x_{2} \cdots x_{n}\right)$ which is clearly symmetric and convex. The corresponding spectral function is $S \mapsto-\log \operatorname{det}(S)$.
II. Sum of Eigenvalues Ranging over permutations, let $f_{k}(x):=\max _{\pi}\left\{x_{\pi(1)}+x_{\pi(2)}+\right.$ $\left.\cdots+x_{\pi(k)}\right\}$. This is clearly symmetric and convex. The corresponding spectral function is $\sigma_{k}(S):=\lambda_{1}(S)+\lambda_{2}(S)+\cdots \lambda_{k}(S)$.
In particular the largest eigenvalue, σ_{1}, is a continuous convex function of S and is differentiable if and only if the eigenvalue is simple.

Convexity of Spectral Functions

C. Three Amazing Examples (Lewis).
III. k-th Largest Eigenvalue The k-th largest eigenvalue may be written as

$$
\mu_{k}(S)=\sigma_{k}(S)-\sigma_{k-1}(S)
$$

In particular, this represents μ_{k} as the difference of two convex continuous, hence locally Lipschitz, functions of S and so we discover the very difficult result that for each $k, \mu_{k}(S)$ is a locally Lipschitz function of S.

- Hard analogues exist for singular values, hyperbolic polynomials, Lie algebras, etc. $\begin{gathered}\text { Trace class } \\ \text { operators }\end{gathered}$

Convexity of Barrier Functions

C. A Fourth Amazing Example (Nesterov \& Nemirovskii). IV Self-concordant Barrier Functions Let A be a nonempty open convex set in R^{N}. Define, for $x \in A$,

$$
F(x):=\lambda_{N}\left((A-x)^{o}\right),
$$

where λ_{N} is N-dimensional Lebesque measure and $(A-x)^{o}$ is the polar set. Then F is an essentially Fréchet smooth, log-convex, barrier function for A.

- Central to modern interior point methods.
- The orthant yields $\operatorname{lb}(x):=-\sum_{k=1}^{N} \log x_{k}$.
- Hilbert space analog? (JB-JV, CUP, 2008)

"He was very big in Vienna."

Outline of Convexity Talk

A. Generalized Convexity of Volumes (Bohr-Mollerup).
B. Coupon Collecting and Convexity.
C. Convexity of Spectral Functions.
D. Madelung's Constant for Salt.

The talk ends when I do

D. Madelung's Constant: David Borwein CMS Career Award

This polished solid silicon bronze sculpture is inspired by the work of David Borwein, his sons and colleagues, on the conditional series above for salt, Madelung's constant. This series can be summed to uncountably many constants; one is Madelung's constant for electro-chemical stability of sodium chloride. (Convexity is hidden here too!)
This constant is a period of an elliptic curve, a real surface in four dimensions. There are uncountably many ways to imagine that surface in three dimensions; one has negative gaussian curvature and is the tangible form of this sculpture. (As described by the artist.)

Peter Borwein in front of Helaman Ferguson's work

CMS Meeting
December 2003 SFU Harbour Centre

Ferguson uses high tech tools and micro engineering at NIST to build monumental math sculptures

D. Madelung's Constant

$$
\begin{aligned}
& M_{3}(s):=\sum_{n, m, p}^{\prime} \frac{(-1)^{n+m+p}}{\left\{n^{2}+m^{2}+p^{2}\right\}^{s}} \\
& M_{2}(s):=\sum_{n, m}^{\prime} \frac{(-1)^{n+m}}{\left\{n^{2}+m^{2}\right\}^{s}}
\end{aligned}
$$

In many texts, the potential, $M_{3}(1 / 2)$, is 'added' over increasing spheres: $\sum_{n=1}^{\infty}(-1)^{n} r_{3}(n) / \sqrt{n}$ but $r_{3}(n) / \sqrt{n} \nrightarrow 0$! $\left[r_{3}(n)\right.$ is $\#$ of reps. of n as sum of 3 squares.]
The sum over increasing cubes does converge to the value chemists expect (by Mellin transform methods): -1.74756459... - needs a solar-system size crystal to be realistic!

$$
M_{2}(1 / 2)=\sum_{n=1}^{\infty}(-1)^{n} r_{2}(n) / \sqrt{n}
$$

Now if M_{2} is `added` over spheres (ℓ^{2} balls) the n -th term tends to zero and the sum agrees with that over increasing squares (ℓ^{∞}) but the sum over increasing diamonds (ℓ^{\prime}) diverges-Riemann sum!
\checkmark For C a closed convex symmetric body set

$$
M_{C}(s):=\lim _{N \rightarrow \infty} \sum_{n, m \in N C}^{\prime} \frac{(-1)^{n+m}}{\left(n^{2}+m^{2}\right)^{s}}
$$

$$
M_{C}(s)=\lim _{N \rightarrow \infty} \sum_{n, m \in N C}^{\prime} \frac{(-1)^{n+m}}{\left(n^{2}+m^{2}\right)^{s}}
$$

Theorem (BBP, 1998) $M_{C}(s)$ exists, is ana-

 lytic and is independent of C for $\operatorname{Re}(s)>1 / 2$. [In \mathbf{R}^{k} this holds for $\operatorname{Re}(s)>(k-1) / 2$.] 1. $\operatorname{Re}(s)>1$ needed for absolute convergence. 2. $M_{\left\{\|\cdot\|_{2} \leq 1\right\}}(s)=-4 \zeta(s)\left(1-2^{1-s}\right) L_{-4}(s)$ converges precisely for $\operatorname{Re}(s)>1 / 4$. This relies on correctness of the wonderful exact determinadion of the average size of $r_{2}(n)$ [Cappell and Shaneson,2007]: the number of lattice points in a circle of radius \sqrt{t} is $\pi t+O\left(t^{1 / 4+\varepsilon}\right)$ (best possible).

Three Bonus Track Follows

A. Generalized Convexity of Volumes (Bohr-Mollerup).
B. Coupon Collecting and Convexity.
C. Convexity of Spectral Functions.
D. Madelung's Constant for Salt.
E. Entropy and NMR.
F. Inequalities and the Maximum Principle.
G. Trefethen's $4^{\text {th }}$ Digit Challenge Problem.

E. CONVEX CONJUGATES and NMR (MRI)

The Hoch and Stern information measure in complex N-space is $H(z):=\sum_{j=1}^{N} h\left(z_{j} / b\right)$ where h is convex and given (for scaling b) by

$$
h(z):=|z| \ln \left(|z|+\sqrt{1+|z|^{2}}\right)-\sqrt{1+|z|^{2}}
$$

for quantum theoretic (NMR) reasons. Recall the FenchelLegendre conjugate

$$
f^{*}(y)=\sup _{x}\langle x, y\rangle-f(x)
$$

Our symbolic convex analysis package produced

$$
h^{*}(z)=\cosh (|z|)
$$

Compare the Shannon entropy $z \ln (z)-z$ whose conjugate is $\exp (z)$.

I'd never have tried by hand!
Effective dual algorithms are now possible!

Knowing `Closed Forms' Helps

For example

$$
(\exp \exp)^{*}(y)=y \ln (y)-y\left\{W(y)+W(y)^{-1}\right\}
$$

where Maple or Mathematica recognize the complex Lambert W function given by

Thus, the conjugate's series is:

$$
-1+(\ln (y)-1) y-\frac{1}{2} y^{2}+\frac{1}{3} y^{3}-\frac{3}{8} y^{4}+\frac{8}{15} y^{5}+O\left(y^{6}\right) .
$$

The literature is all in the last decade since W got a name!

WHAT is ENTROPY?

Despite the narrative force that the concept of entropy appears to evoke in everyday writing, in scientific writing entropy remains a thermodynamic quantity and a mathematical formula that numerically quantifies disorder. When the American scientist Claude Shannon found that the mathematical formula of Boltzmann defined a useful quantity in information theory, he hesitated to name this newly discovered quantity entropy because of its philosophical baggage. The mathematician John Von Neumann encouraged Shannon to go ahead with the name entropy, however, since "no one knows what entropy is, so in a debate you will always have the advantage."

The American Heritage Book of English Usage, p. 158

Information Theoretic Characterizations Abound

Theorem. Up to a positive scalar multiple

$$
H(\vec{p})=-\sum_{k=1}^{N} p_{k} \log p_{k}
$$

is the unique continuous function on finite probabilities such that [a.] Uncertainly grows:

$$
H(\overbrace{\frac{1}{n}, \frac{1}{n}, \cdots, \frac{1}{n}}^{n})
$$

increases with n.
[b.] Subordinate choices are respected: for distributions $\overrightarrow{p_{1}}$ and $\overrightarrow{p_{2}}$ and $0<p<1$,

$$
H\left(p \overrightarrow{p_{1}},(1-p) \overrightarrow{p_{2}}\right)=p H\left(\overrightarrow{p_{1}}\right)+(1-p) H\left(\overrightarrow{p_{2}}\right)
$$

F. Inequalities and the Maximum Principle

- Consider the two means

$$
\mathcal{L}^{-1}(x, y):=\frac{x-y}{\ln (x)-\ln (y)}
$$

and

$$
\mathcal{M}(x, y):=\sqrt[\frac{3}{2}]{\frac{x^{\frac{2}{3}}+y^{\frac{2}{3}}}{2}}
$$

A conformal function estimated reduced to

$$
\mathcal{L}(\mathcal{M}(x, 1), \sqrt{x})>\mathcal{L}(x, 1)>\mathcal{L}(\mathcal{M}(x, 1), 1)
$$

for $0<x<1$. tight

We first discuss showing

$$
\mathcal{E}(x):=\mathcal{L}(\mathcal{M}(x, 1), \sqrt{x})-\mathcal{L}(x, 1)>0 .
$$

I. Numeric/Symbolic Methods

- $\lim _{x \rightarrow 0^{+}} \mathcal{E}(x)=\infty$.
- Newton-like iteration shows that $\mathcal{E}(x)>0$ on [0.0, 0.9].

When we make each step effective.
This is hardest for the integral.

- Taylor series shows $\mathcal{E}(x)$ has 4 zeroes at 1 .

$$
=\frac{7}{51840}(x-1)^{4}-\frac{7}{20736}(x-1)^{5}+O\left((x-1)^{6}\right)
$$

- Maximum Principle shows there are no more zeroes inside $C:=\left\{z:|z-1|=\frac{1}{4}\right\}$:

$$
\frac{1}{2 \pi i} \int_{C} \frac{\mathcal{E}^{\prime}}{\mathcal{E}}=\#\left(\mathcal{E}^{-1}(0) ; C\right)
$$

II. Graphic/Symbolic Methods

Consider the opposite (cruder) inequality

$$
\wedge:=\mathcal{L}(x, 1)-\mathcal{L}(\mathcal{M}(x, 1), 1)>0
$$

We may observe that it holds since:

- \mathcal{M} is a mean;
- $\mathcal{L}(x, 1)$ decreases with x.

- There is an algorithm (Collins) for universal algebraic inequalities.

F. Nick Trefethen's 100 Digit/100 Dollar Challenge, Problem 4 (SIAM News, 2002)

\# 4. What is the global minimum of the function

$$
\begin{gathered}
\exp (\sin (50 x))+\sin \left(60 e^{y}\right)+\sin (70 \sin x) \\
+\sin (\sin (80 y))-\sin (10(x+y))+\left(x^{2}+y^{2}\right) / 4 ?
\end{gathered}
$$

- no bounds are given.

... HDHD Challenge, Problem 4

- This model has been numerically solved by LGO, MathOptimizer, MathOptimizer Pro, TOMLAB /LGO, and the Maple GOT (by Janos Pinter who provide the pictures).
- The solution found agrees to 10 places with the announced solution (the latter was originally based (provably) on a huge grid sampling effort, interval analyisis and local search).

$$
\begin{gathered}
x^{\star} \sim(-0.024627 \ldots, 0.211789 \ldots) \\
f^{\star} \sim-3.30687 \ldots
\end{gathered}
$$

Close-up picture near global solution: the problem still looks rather difficult ... Mathematica 6 can solve this by "zooming"!

See lovely SIAM solution book by Bornemann, Laurie, Wagon and Waldvogel and my Intelligencer Review at http://users.cs.dal.ca/~jborwein/digits.pdf

Enigma
J.M. Borwein and D.H. Bailey, Mathematics by Experiment: Plausible Reasoning in the 21st Century A.K. Peters, 2003-2008.
J.M. Borwein, D.H. Bailey and R. Girgensohn, Experimentation in Mathematics: Computational Paths to Discovery, A.K. Peters, 2004. [Active CDs 2006]
J.M. Borwein and A.S. Lewis, Convex Analysis and Nonlinear Optimization. Theory and Examples, CMS-Springer, Second extended edition, 2005.
J.M. Borwein and J.D. Vanderwerff, Convex functions, constructions, characterizations and counterexamples, CUP, 2009.
"The object of mathematical rigor is to sanction and legitimize the conquests of intuition, and there was never any other object for it."

- J. Hadamard quoted at length in E. Borel, Lecons sur la theorie des fonctions, 1928.

