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Abstract

Advances over the past fifteen years have lead to a rich current
theory of difference convex functions. I shall describe the state of
our knowledge and highlight some open questions.

• A fine survey of the subject two decades ago is:

J.-B. Hiriart-Urruty: “From convex opti-
mization to nonconvex optimization. Nec-
essary and sufficient conditions for global
optimality.”

Nonsmooth optimization and related topics (Erice, 1988), 219–239,
Ettore Majorana Internat. Sci. Ser. Phys. Sci., 43, Plenum, New
York, 1989.
Available at www.carma.newcastle.edu.au/jon/dc-hu.pdf.
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Definition (DC functions)

Let X be a normed linear space. A function f : X → R is
delta-convex (or DC) (on an open Ω) if there exist convex
continuous functions f1, f2 on X such that f = f1 − f2 (on Ω).

• Can typically assume f1, f2 ≥ 0 by adding affine minorants.

Conjecture

Delta-convex functions first appeared in the paper:

• H. Busemann and W. Feller, “Krümmungseigenschaften
Konvexer Flächen.” Acta Math. 66 (1936), 1–47.
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DC mappings between Euclidean spaces

Definition (DC mappings between Euclidean spaces)

A mapping F = (F1, . . . , Fm) : Rn → Rm is DC if all the
components F1, . . . , Fm are DC functions.

• f : [a, b]→ R is DC if and only if f is absolutely continuous
(AC) and f ′ has bounded variation (BV) – precisely a
difference of two nondecreasing functions.

A fundamental and still instructive paper is:

• P. Hartman, “On functions representable as a difference of
convex functions.” Pacific J. Math. 9 (1959), 707–713.

• Hartman proves local DC is global DC in Euclidean space.
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Definition (DC mappings with infinite dimensional range)

Let X,Y be normed linear spaces. We say that F : X → Y is DC
(on an open Ω) if there exists a continuous convex control function
f̃ : X → R such that

y∗ ◦ F + f̃

is convex (on Ω) for all y∗ ∈ Y ∗, with ‖y∗‖ = 1.

This is a clever scalarization definition — even for real valued
functions — by

• L. Veselý, L. Zaj́ıček, “Delta-convex mappings between
Banach spaces and applications.” Dissertationes Math.
(Rozprawy Mat.) 289 (1989), 52 pp.
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Order DC mappings

Recall that F : Ω ⊂ X 7→ Y is S-convex (order-convex) when

EpiS(F ) := {(x, y) : F (x) ∈ y + S, x ∈ Ω}

is convex and S ⊂ Y us a convex cone.

• If G = F1 − F2 with F1, F2 both S-convex, we say G is S-DC
or order-DC.

Theorem (Order Convexity)

Suppose S is a convex cone whose dual S+ has nonempty interior.

• Then every S-DC operator is DC. (Can vary the S.)

• In particular, RN+ -DC and DC coincide in RN .

M. Bačák, J. Borwein On delta-convex functions
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Structural properties

Theorem (Structure)

The real-valued DC functions on an open set form a subspace of
locally Lipschitz functions and:

1 a vector space;

2 an algebra (closed under multiplication);

3 a lattice (closed under finite maxima/minima).

Indeed, much more is true:
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Mixing properties — ‘convex under switching’

Theorem (Mixing, Veselý-Zaj́ıček, 2001)

Let g1, g2, . . . , gn be DC on Ω. Any continuous selection σ with

σ(x) ∈ {g1(x), g2(x), . . . , gn(x)}

for all x ∈ Ω is also a DC function.
In particular, each piecewise linear and continuous function is DC.

A nice (partial) converse is:

Theorem (Absoluteness)

Let f be continuous, real-valued. Then |f | is DC if and only if f is.

• This converse fails for ‖f‖.
M. Bačák, J. Borwein On delta-convex functions
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M. Bačák, J. Borwein On delta-convex functions



Basic structure of DC functions
Examples of DC functions

Finer structure of DC functions
Negative results

Distance functions

Mixing properties — ‘convex under switching’

Theorem (Mixing, Veselý-Zaj́ıček, 2001)
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Nash equilibria
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Further operator theory

Examples of DC functions

We now present various examples of DC functions arising naturally:

• Polynomials in several variables

• Variational analysis

• Non-cooperative game theory

• Spectral theory

• Operator theory

M. Bačák, J. Borwein On delta-convex functions
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Polynomials in several variables

Theorem (Polynomials)

Polynomials on RN are DC: each polynomial p can be decomposed
as p = q − r where r, q are nonnegative convex functions.

- Hence, DC functions are dense uniformly in C(Ω) for compact Ω —

there are too many of them.

• Easy induction: x2n−1 = (x+)
2n−1 − (x−)

2n−1
and x2n are

DC in an algebra (Structure Thm), as positive convex squares
are convex and: ±2fg = (|f |+ |g|)2 − |f |2 − |g|2.

Conjecture

There is a concise explicit determinantal decomposition in RN .

• I found one 35 years ago but have lost it!

M. Bačák, J. Borwein On delta-convex functions
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as p = q − r where r, q are nonnegative convex functions.

- Hence, DC functions are dense uniformly in C(Ω) for compact Ω —

there are too many of them.

• Easy induction: x2n−1 = (x+)
2n−1 − (x−)

2n−1
and x2n are

DC in an algebra (Structure Thm), as positive convex squares
are convex and: ±2fg = (|f |+ |g|)2 − |f |2 − |g|2.

Conjecture

There is a concise explicit determinantal decomposition in RN .

• I found one 35 years ago but have lost it!
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Variational analysis

Definition

A function f : X → R is paraconvex if there is λ ≥ 0 such that
f + λ

2‖ · ‖
2 is continuous and convex; −f is paraconcave.

Example

Clearly, paraconvex and paraconcave functions are ‘very’ DC.

• On Hilbert space, locally paraconvex = lower-C2.

(L) f,−λ2 ‖ · ‖
2 (R) f + λ

2 ‖ · ‖
2
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Non-cooperative game theory

n-player games Player i has:

• pure strategies (πiα)α

• mixed strategies Si = convex combination

• pay-off function pi(π1α1 , . . . , πiαi , . . . , πnαn)

Definition (Equilibrium)

An n-tuple s = (s1, . . . , sn), where si ∈ Si, is an equilibrium point
of the game if for each 1 ≤ i ≤ n we have

pi(s) = max
ti∈Si

pi(s1, . . . , si−1, ti, si+1, . . . , sn).
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Theorem (Nash, 1951)

Assuming convexity of all ti 7→ pi(s1, . . . , si−1, ti, si+1, . . . , sn),
every Nash game admits an equilibrium point.

Sketch of Nash’s proof.

Denote piα(s) := pi(s, πiα), and define DC functions
ϕiα(s) := max {0, piα(s)− pα(s)} i = 1, . . . , n.

Define T : s 7→ s′ componentwise by

s′i :=
si +

∑
α ϕiαπiα

1 +
∑

α ϕiαπiα
.

Equilibria are fixed points of T, which exist (Brouwer).

• T is DC as a DC ratio (not so useful; only in Euclidean space).
• Convexity insures T is a self-map.
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M. Bačák, J. Borwein On delta-convex functions



Basic structure of DC functions
Examples of DC functions

Finer structure of DC functions
Negative results

Distance functions

Polynomials in several variables
Variational analysis
Nash equilibria
Eigenvalues
Further operator theory

Theorem (Nash, 1951)

Assuming convexity of all ti 7→ pi(s1, . . . , si−1, ti, si+1, . . . , sn),
every Nash game admits an equilibrium point.

Sketch of Nash’s proof.

Denote piα(s) := pi(s, πiα), and define DC functions
ϕiα(s) := max {0, piα(s)− pα(s)} i = 1, . . . , n.

Define T : s 7→ s′ componentwise by

s′i :=
si +

∑
α ϕiαπiα

1 +
∑

α ϕiαπiα
.

Equilibria are fixed points of T, which exist (Brouwer).

• T is DC as a DC ratio (not so useful; only in Euclidean space).
• Convexity insures T is a self-map.
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Spectral theory in finite dimensions

Denote by SN the set of real symmetric N by N matrices.

Theorem (Lewis, 1995)

The kth-largest eigenvalue function

λk : A→ λk(A)

is DC on the space of symmetric matrices SN . Indeed,

λk = σk − σk−1

where σk, the sum of the k largest eigenvalues, is convex for all k.

• Try proving directly that λk is locally Lipschitz.
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The 3× 3 case

There are three eigenvalues: λ1, λ2, λ3, and Trace = λ1 + λ2 + λ3.
Now λ1(A) = λMAX(A) = max‖x‖=1〈Ax, x〉 is convex
(Rayleigh-Ritz) and λ3 = λMIN = −λMAX(−·) is concave (R-R).
Then

λ2 = Trace−λ1 − λ3
is a DC decomposition.

One-D and two-D cross-sections of λ2
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Spectral theory in infinite dimensions

Denote by Bsa the self-adjoint bounded linear operators on `2C.

Definition (Schatten classes)

A ∈ Bsa belongs to the 0-Schatten class if it is compact, and
belongs to the p-Schatten class, Bp, for p ∈ [1,+∞), if

‖A‖p := (Trace (|A|p))1/p <∞,

where |A| := (A∗A)1/2.

• Then B2 is the Hilbert-Schmidt operators — a Hilbert space
— and B1 is the trace class or nuclear operators.
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Spectral theory in infinite dimensions

Consider positive operators such that 〈Ax, x〉 ≥ 0 for all x ∈ `2C.

Theorem (B-Z, 2005)

For p ∈ {0} ∪ [1,+∞) the kth-largest eigenvalue function
λk : A→ λk(A) is DC on the set of positive operators of
p-Schatten class.

Example

Despite not living on the nuclear operators — as induced by∑
i ti − log(1 + ti) — we have :

A 7→ Trace(A)− log det(I +A)

is a convex barrier on B2, for {A : I +A ≥ 0}.
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Further operator theory

Let X be a Banach space. Each symmetric bounded linear operator
T : X → X∗ generates a quadratic form on X by x 7→ 〈Tx, x〉.

• When is a quadratic form DC?

• X is a UMD space if this holds for all symmetric T?

Theorem (Kalton-Konyagin-Veselý, 2008)

The quadratic form
x 7→ 〈Tx, x〉

is DC if and only if T is a UMD operator (this has a Walsh-Paley
martingale-based definition).
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The quadratic form
x 7→ 〈Tx, x〉

is DC if and only if T is a UMD operator (this has a Walsh-Paley
martingale-based definition).
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Further operator theory

• All UMD spaces are super-reflexive;

• Wp and Bp — and so Lp is UMD — for 1 < p <∞. Hence:

Proposition

Let T be a symmetric bounded linear operator on a Hilbert space.
Then the function x 7→ 〈Tx, x〉 is DC on X.

• Alternative proof: Clearly 〈T ·, ·〉 is C1,1, which in Hilbert
spaces implies DC.

• A stronger result: 〈T ·, ·〉 is a difference of two nonnegative

quadratic forms (necessarily convex): T = |T |+T
2 − |T |−T2 .

- “X is type (DCQ)” ⇐ type p ≥ 2; `p(p < 2) is not (DCQ).
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Finer structure of DC functions

JMB and MB
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Differentiability properties

• The Clarke subdifferential on RN .

Theorem (Euclidean properties)

Let f : Rn → R be DC with a decomposition f = f1 − f2. Then,

1 ∂Cf(x) ⊂ ∂Cf1(x)− ∂Cf2(x) for all x ∈ Rn;

2 ∂Cf reduces to ∇f a.e. on Rn; so a.e. strictly differentiable;

3 f has a second-order Taylor expansion a.e. on Rn.

Proof of 1.

(f − g)o(x;h)≤ (f)o(x;h) + (−g)o(x;h) = (f)
′
(x;h) + (−g)

′
(x;h).

(Find a minimal decomposition with equality?)

• ∂Cf(x) need not be singleton when f is differentiable at x ∈ Rn
i.e., DC need not be regular
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Differentiability properties

Theorem (Banach properties, Veselý-Zaj́ıček, 2001)

Let X be a Banach space and A ⊂ X an open convex subset.
Suppose f : A→ R is locally DC.

1 All one-sided directional derivatives of f exist on A.

2 If X is Asplund, then f is strictly Fréchet differentiable
everywhere on A excepting a set of the first category.

3 If X is weak Asplund, then f is strictly Gâteaux differentiable
everywhere on A excepting a set of the first category.

M. Bačák, J. Borwein On delta-convex functions



Basic structure of DC functions
Examples of DC functions

Finer structure of DC functions
Negative results

Distance functions

Differentiability
Composition of DC mappings
Toland duality

Differentiability properties

Theorem (Banach properties, Veselý-Zaj́ıček, 2001)
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Let X be a Banach space and A ⊂ X an open convex subset.
Suppose f : A→ R is locally DC.

1 All one-sided directional derivatives of f exist on A.

2 If X is Asplund, then f is strictly Fréchet differentiable
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Differentiability of the control function.

Proposition (Veselý-Zaj́ıček, 2001)

Let X be a normed linear space and A ⊂ X open and convex.
Suppose f : A→ R is DC on A with a control function f̃ .

1 If f̃ is Fréchet differentiable at x ∈ A, then f is strictly
Fréchet differentiable at x.

2 If f̃ is Gâteaux differentiable at x ∈ A, then f is Gâteaux
differentiable at x.

Recall: f is DC if and only if there exists a continuous convex
function f̃ such that both ±f + f̃ are convex:

f̃ = control function
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Composition of DC mappings

Theorem (Hartman, 1959)

Let A ⊂ Rm be convex and either open or closed. Let B ⊂ Rn be
convex and open. If F : A→ B and g : B → R are DC, then g ◦F
is a locally DC function on A.

Theorem (Veselý, Zaj́ıček, 1987, 2009)

Let X,Y be normed linear spaces, A ⊂ X a convex set, and
B ⊂ Y open convex. If F : A→ B and g : B → R are locally DC,
then g ◦ F is locally DC on A.
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Toland duality, 1978

For a function f : X → (−∞,∞] on a Banach space X define its
conjugate function by

f∗(x∗) := sup
x∈X
{〈x∗, x〉 − f(x)} x∗ ∈ X∗.

Theorem (Ellaia and Hiriart-Urruty, 1986)

Let X be a Banach space, h : X → R be convex continuous, and
g : X → (−∞,∞] any function. Then for each x∗ ∈ dom g∗,

(g − h)∗(x∗) = sup
y∗∈domh∗

{g∗(x∗ + y∗)− h∗(y∗)}

• This statement — or various critical point consequences — is
now called Toland duality.
Toland is the new Director of the Newton Institute
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Toland duality

Corollary

Let X be a Banach space, h : X → R be convex continuous, and
g : X → (−∞,∞] any function. Then

inf
x∈X

g(x)− h(x) = inf
x∗∈domh∗

h∗(x∗)− g∗(x∗). (1)

Corollary

If we assume both g, h are continuous convex, and so g − h is DC
on X, we arrive at (1) along with

sup
x∈X

g(x)− h(x) = sup
x∗∈dom g∗

h∗(x∗)− g∗(x∗).
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Counterexamples to composition

• A composition of DC functions that is not DC:

Example (Hartman, 1959)

The composition of DC functions need not be DC even in R.
Consider

f : (0, 1)→ [0, 1) : x 7→ |x− 1/2|,

and
g : [0, 1)→ R : y 7→ 1−√y.

Then g ◦ f is not DC at 1/2.

• Note: 0 6∈ int[0, 1).
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M. Bačák, J. Borwein On delta-convex functions



Basic structure of DC functions
Examples of DC functions

Finer structure of DC functions
Negative results

Distance functions

Composition of DC mappings
Finite vs infinite dimensions
Differentiability

Counterexamples to composition

• A composition of DC functions that is not DC:

Example (Hartman, 1959)

The composition of DC functions need not be DC even in R.
Consider

f : (0, 1)→ [0, 1) : x 7→ |x− 1/2|,

and
g : [0, 1)→ R : y 7→ 1−√y.

Then g ◦ f is not DC at 1/2.

• Note: 0 6∈ int[0, 1).
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Counterexamples to composition, I

Figure: g ◦ f = 1−
√
| · −1/2| is not DC around 1/2.

• One-sided derivatives of g ◦ f infinite at 1/2 (DC have finite limits).

• Failure of openness constraint qualification (CQ) is to blame.
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M. Bačák, J. Borwein On delta-convex functions



Basic structure of DC functions
Examples of DC functions

Finer structure of DC functions
Negative results

Distance functions

Composition of DC mappings
Finite vs infinite dimensions
Differentiability

Counter-examples to composition, II

What follows is a very general method of constructing composition
counter-examples:

Theorem (Veselý-Zaj́ıček, 2009)

Let X,Y be infinite-dimensional normed linear spaces. Let A ⊂ X
and B ⊂ Y be convex with A open.
Suppose g : B → R is unbounded on some bounded subset of B.
Then there exists a DC mapping F : A→ B such that g ◦ F is not
DC on A.

• We give a fairly concrete realization of F and g in our paper.
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M. Bačák, J. Borwein On delta-convex functions



Basic structure of DC functions
Examples of DC functions

Finer structure of DC functions
Negative results

Distance functions

Composition of DC mappings
Finite vs infinite dimensions
Differentiability

Finite vs infinite dimensions

Theorem (Veselý, Zaj́ıček, 2009)

Let X be a normed linear space and A ⊂ X open convex set.
Then the following are equivalent.

1 X is infinite-dimensional.

2 There is a positive DC function f on A such that 1/f is not
DC on A.

3 There is a locally DC function on A which is not DC on A.
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Finite vs infinite dimensions and reflexivity

• Reciprocals of convex functions yield a striking variant.

Theorem (Holický et al, 2007)

X is reflexive (resp. finite dim.) if and only if every positive
continuous convex (resp. DC) function on X has 1/f DC.

• Another striking limiting example is:

Theorem (Kopecká-Malý, 1990)

There exists a function on `2 which is DC on each bounded convex
subset of `2 but is not DC on `2.
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Counterexamples to differentiability theorems

Theorem (Kopecká, Malý, 1990)

There exists a DC function on R2 which is strictly Fréchet
differentiable at the origin but which does not admit a control
function that is Fréchet differentiable at the origin.

Theorem (Pavlica, 2005)

There exists a DC function on R2 which belongs to the class C1
but does not admit a control function that is Fréchet differentiable
at the origin.
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Theorem (Pavlica, 2005)

There exists a DC function on R2 which belongs to the class C1
but does not admit a control function that is Fréchet differentiable
at the origin.

M. Bačák, J. Borwein On delta-convex functions



Basic structure of DC functions
Examples of DC functions

Finer structure of DC functions
Negative results

Distance functions

Distance functions
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Distance functions: positive results
Observation (Asplund, 1969)

d2C is paraconcave and so DC for C ⊂ X closed in Hilbert space:

d2C(x) = − sup
c∈C
−‖x− c‖2 = ‖x‖2 − [sup

c∈C
2〈x, c〉 − ‖c‖2].

• The smooth variational principle produces:

Theorem (Borwein 1991, Borwein-Zhu, 2005)

For C ⊂ X closed in Hilbert space, dC is locally DC on X \ C
while ∂CdC is a minimal CUSCO on X.

• Asplund’s result and the B-Z theorem allows proximal analysis
on Hilbert space to be done without Rademacher’s theorem.
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Distance functions: negative results

Example (Borwein-Moors, 1997)

There is a closed set C ⊂ R2 with dC not (locally) DC on R2.
Proof: Let C := C1 × C1 ⊂ R2 for C1 ⊂ [0, 1] be a Cantor set of
positive measure.
dC is not strictly differentiable anywhere on bd(C) = C.
So dC is not locally DC; as DC functions are a.e. strictly Fréchet.

• In particular, the operation
√
· does not preserve DC.

• dC is a very rich tool for building counter-examples.

Question

If the norm on a Banach space X is sufficiently nice, is d2C DC
locally for all closed sets C on X (dC on X \ C)?
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M. Bačák, J. Borwein On delta-convex functions



Basic structure of DC functions
Examples of DC functions

Finer structure of DC functions
Negative results

Distance functions

Distance functions: negative results

Example (Borwein-Moors, 1997)

There is a closed set C ⊂ R2 with dC not (locally) DC on R2.
Proof: Let C := C1 × C1 ⊂ R2 for C1 ⊂ [0, 1] be a Cantor set of
positive measure.
dC is not strictly differentiable anywhere on bd(C) = C.
So dC is not locally DC; as DC functions are a.e. strictly Fréchet.
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