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Abstract

From previously established results in [2] we develop a simple proof of
Keith Ball’s expression in [1] for the volume of the intersection of an (n− 1)-
dimensional hyperplane with an n-dimensional cube, as well as a simple proof
of the formula given by Frank and Riede in [5] for that volume.

In our study in [2] of sinc integrals over a decade ago we established results—some
of which were recapitulated in [4]—that lead by differentiation, as we now show, to
a simple proof of K. Ball’s formula in [1] for the volume of the intersection of an
(n− 1)-dimensional hyperplane with an n-dimensional cube (Ball’s original proof is
itself quite direct), as well as a simple proof of the formula given very recently for
that volume by Frank and Riede in [5].

We proved the following theorem in [2, Theorem 2, Remarks 1]. To assist in
reading this note, we sketch that proof below.

Theorem 1. Suppose that b > 0 and ak > 0 for k = 1, 2, . . . , n. For each of the 2n

ordered n-tuples γ := (γ1, γ2, . . . , γn) ∈ {−1, 1}n define

βγ = βγ(b) := b+
n∑
k=1

γkak, εγ :=
n∏
k=1

γk.

Then∫ ∞
0

(
n∏
k=1

sinc(akx)

)
sinc(bx) dx =

π

2n+1n! ba1a2 · · · an

∑
γ∈{−1,1}n

εγβ
n
γ sgn(βγ)

=
π

2n+1b
Voln(Pn), (1)
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where sinc(t) := sin(t)/t and Pn = Pn(b) is the central polyhedral slab given by

Pn := {(x1, x2, · · · , xn)
∣∣− b ≤ n∑

k=1

akxk ≤ b,−1 ≤ xk ≤ 1 for k = 1, 2, . . . , n}

Here and subsequently Volm denotes the m-dimensional volume for any positive in-
teger m and sgn the sign of a real number.

Proof. From first principles we have

sin(bx)
n∏
k=1

sin(akx) =
1

(2i)n+1
(eibx − e−ibx)

n∏
k=1

(eiakx − e−iakx)

=
1

(2i)n+1

∑
γ∈{−1,1}n

εγ
(
eiβγx − (−1)ne−iβγx

)
=

1

2n

∑
γ∈{−1,1}n

εγ cos
(
βγx−

π

2
(n+ 1)

)
,

Hence ∫ ∞
0

(
n∏
k=1

sin(akx)

x

)
sin(bx)

x
dx =

1

2n

∫ ∞
0

x−n−1cn(x) dx,

where cn(x) :=
∑

γ∈{−1,1}n εγ cos
(
βγx− π

2
(n+ 1)

)
. Because cn(x) is an entire func-

tion, bounded for all real x, with a zero of order n+ 1 at x = 0, we can legitimately
integrate the right-hand side by parts n times to get∫ ∞

0

(
n∏
k=1

sin(akx)

x

)
sin(bx)

x
dx =

1

2nn!

∫ ∞
0

dx

x

∑
γ∈{−1,1}n

εγβ
n
γ sin(βγx)

=
1

2nn!

∑
γ∈{−1,1}n

εγβ
n
γ

∫ ∞
0

sin(βγx)

x
dx

=
π

2

1

2nn!

∑
γ∈{−1,1}n

εγβ
n
γ sgn(βγ),

from which the first identity in (1) follows.
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For the proof of the second identity in (1) we use standard Fourier analysis (for
details see [2]) to write∫ ∞

0

(
n∏
k=1

sinc(akx)

)
sinc(bx) dx =

π

b

1

2na1a2 · · · an

∫ min(sn,b)

0

χa1 ∗ χa2 ∗ · · · ∗ χan dx

=
π

2n+1b
Voln(Pn), (2)

where sn := a1+a2+ · · ·+an, χa is the characteristic function of the interval (−a, a),
and ∗ indicates convolution. That is

f1 ∗ f2(x) =

∫ ∞
−∞

f1(x− t)f2(t) dt.

A key element in this analysis is the foundational fact that the Fourier cosine trans-

form of χa is χ̂a = a
√

2
π
sinc(ax). That is

1√
2π

∫ ∞
−∞

χa(t) cos(xt) dt = a

√
2

π
sinc(ax).

The first equality in (2) is then a consequence of careful inductive application of
Parseval’s identity in the form ∫

R
f g =

∫
R
f̂ ĝ

with f(x) := sinc(bx) and g(x) :=
∏n

k=1 sinc(akx). See also [3, Lemma 3] where a
more general result is established in extenso.

The final equality in (2) is now accessible. With µn := min(sn, b), we appeal to
Fubini’s theorem to write the n-fold convolution as a multiple integral and obtain:∫ min(sn,b)

0

χa1 ∗ χa2 ∗ · · · ∗ χan dx

=
1

2

∫
Rn

(χa1(x1)χa2(x2) · · ·χan(xn)χµn(x1 + x2 + · · ·+ xn)) dx1 dx2 · · · dxn

=
a1a2 · · · an

2

∫
Rn

(χ1(x1)χ1(x2) · · ·χ1(xn)χµn(a1x1 + a2x2 + · · ·+ anxn)) dx1 dx2 · · · dxn

=
a1a2 · · · an

2

∫
[−1,1]n

χµn(a1x1 + a2x2 + · · ·+ anxn) dx1 dx2 · · · dxn

= a1a2 · · · an
Voln(Pn)

2
.

A comparison to (2) shows that this is the desired evaluation.
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The central slab with |2x+ y + z| ≤ 2/3, |x| ≤ 1, |y| ≤ 1, |z| ≤ 1.

It is necessary to treat proofs of results like Theorem 1 with some care. We
recently showed in [4] how purely formal application of Fourier analysis techniques
led to a result that was almost always wrong – the requisite side conditions rarely
all applied at the same time.

From Theorem 1 we will deduce the following theorem, the first conclusion of
which is Ball’s identity proved in [1] and restated as [5, Theorem 1] and the second
conclusion is [5, Theorem 2].

Theorem 2. Suppose that the same assumptions hold as in Theorem 1. Let Cn :=
[−1, 1]n be the n-dimensional hypercube and, for all real c, let

H(c) := {(x1, x2, · · · , xn)
∣∣ n∑
k=1

akxk = c}

be the (n− 1)-dimensional hyperplane. Then

Voln−1(Cn ∩H(b)) =
2n−1|a|
π

∫ ∞
−∞

(
n∏
k=1

sin(akx)

akx

)
cos(bx) dx

=
|a|

2(n− 1)! a1 a2 · · · an

∑
γ∈{−1,1}n

εγβ
n−1
γ sgn(βγ), (3)

where |a| :=
√
a21 + a22 + · · ·+ a2n.
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Proof. It follows from (1) that, for fixed n,

T (b) :=b

∫ ∞
−∞

(
n∏
k=1

sinc(akx)

)
sinc(bx) dx

=
π

2nn! a1a2 · · · an

∑
γ∈{−1,1}n

εγβ
n
γ sgn(βγ)

=
π

2n
Vn(b), (4)

where
Vn(b) := Voln(Pn(b))

is the n-dimensional volume of the part of the hypercube Cn lying between the
parallel hyperplanes H(±b). Now the distance d(ε) between the parallel hyperplanes
H(c+ ε) and H(c) with ε > 0 is given by d(ε) = ε/|a|. It follows that

Vn
′(b) = lim

ε→0

Vn(b+ ε)− Vn(b)

ε
=

2

|a|
Voln−1(Cn ∩H(b)). (5)

Here we have used the fact that Vn(b + ε) exceeds Vn(b) by the volume of the two
parallel strips—each volume being approximately equal to d(ε)Voln−1(Cn ∩ H(b)).
Differentiating (4) partially with respect to b and applying (5) yields

T ′(b) =

∫ ∞
−∞

(
n∏
k=1

sinc(akx )

)
cos(bx) dx

=
π

2n(n− 1)!a1a2 · · · an

∑
γ∈{−1,1}n

εγβ
n−1
γ sgn(βγ)

=
π

2n−1|a|
Voln−1(Cn ∩H(b)), (6)

from which the desired conclusion (3) follows.

This recaptures both Theorem 1 and Theorem 2 in [5].

Remark 1. An extension of Theorem 1 to more general polyhedra is given in [3].
In principle it can be similarly used to compute the (n − k)-dimensional volume of
the intersection of k hyperplanes with the unit n-cube. ♦
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Remark 2. There is large literature on the volumes of slices, slabs and the like
which goes back to the 19th century. Some seminal results, similar to Theorem 1,
relating volumes appeared in George Pólya’s 1912 PhD thesis and were published in
[7]. They were established by complex analytic methods. ♦

Remark 3. Various related sinc integral evaluations appeared on the Cambridge
tripos [2, 8]. Much of this literature is very nicely recapitulated in [6] which also
provides an explicit combinatorial formula for the volume of slices and thence of
slabs. Finally we mention that [2] and [4] record various of the striking and originally
unexpected identities lying in Theorem 1. These results have gotten a life of their
own1 ♦

Acknowledgment. We want to thank Armin Straub for carefully reading the orig-
inal draft of this note and for pointing out an error therein which we were able to
correct. We also wish to thank the referees for their careful and thoughtful review
of the manuscript.

1See, for instance, http://en.wikipedia.org/wiki/Borwein_integral and http://

mathworld.wolfram.com/BorweinIntegrals.html.
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