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Abstract. Lists, challenges and competitions have a long and primarily lus-
trous history in mathematics. Consider the Hilbert and the Millennium prob-
lems. This is the story of a recent highly successful challenge. The book under
review also makes it clear that with the continued advance of computing power
and accessibility, the view that “real mathematicians don’t compute” has little
traction, especially for a newer generation of mathematicians who may readily
take advantage of the maturation of computational packages such as Maple,
Mathematica and Matlab.

1. Numerical Analysis Then and Now

Emphasizing quite how great an advance positional notation was, Ifrah writes:
A wealthy (15th Century) German merchant, seeking to provide his son

with a good business education, consulted a learned man as to which

European institution offered the best training. “If you only want him to be

able to cope with addition and subtraction,” the expert replied, “then any

French or German university will do. But if you are intent on your son

going on to multiplication and division – assuming that he has sufficient

gifts – then you will have to send him to Italy. (Georges Ifrah1)

1.1. Archimedes method. George Phillips has accurately called Archimedes the
first numerical analyst [2, pp. 165–169]. In the process of obtaining his famous
estimate 3 + 10/71 < π < 3 + 1/7, he had to master notions of recursion without
computers, interval analysis without zero or positional arithmetic, and trigonometry
without any of our modern analytic scaffolding ... Two millennia later, the same
estimate can be obtained by a computer algebra system [3].

Example 1. A modern computer algebra system can tell one that

0 <

∫ 1

0

(1− x)4x4

1 + x2
dx =

22
7
− π,(1.1)

since the integral may be interpreted as the area under a positive curve.
We are though no wiser as to why! If, however, we ask the same system to

compute the indefinite integral, we are likely to be told that
∫ t

0

· = 1
7

t7 − 2
3

t6 + t5 − 4
3

t3 + 4 t− 4 arctan (t) .

Date: April 16, 2005.
1From page 577 of The Universal History of Numbers: From Prehistory to the Invention of

the Computer, translated from French, John Wiley, 2000.

1



2 JONATHAN M. BORWEIN

Then (1.1) is now rigourously established by differentiation and an appeal to New-
ton’s Fundamental theorem of calculus. ¤

While there were many fine arithmeticians over the next 1500 years, Ifrah’s
anecdote above shows how little had changed, other than to get worse, before the
Renaissance. By the 19th Century, Archimedes had finally been outstripped both
as a theorist, and as an (applied) numerical analyst, see [7].

In 1831, Fourier’s posthumous work on equations showed 33 figures of

solution, got with enormous labour. Thinking this is a good opportunity to

illustrate the superiority of the method of W. G. Horner, not yet known in

France, and not much known in England, I proposed to one of my classes,

in 1841, to beat Fourier on this point, as a Christmas exercise. I received

several answers, agreeing with each other, to 50 places of decimals. In

1848, I repeated the proposal, requesting that 50 places might be exceeded:

I obtained answers of 75, 65, 63, 58, 57, and 52 places. (Augustus De

Morgan2)
De Morgan seems to have been one of the first to mistrust William Shanks’s epic

computations of Pi—to 527, 607 and 727 places [2, pp. 147–161], noting there were
too few sevens. But the error was only confirmed three quarters of a century later in
1944 by Ferguson with the help of a calculator in the last pre-computer calculations
of π—though until around 1950 a “computer” was still a person and ENIAC was
an “Electronic Numerical Integrator and Calculator” [2, pp. 277–281] on which
Metropolis and Reitwiesner computed Pi to 2037 places in 1948 and confirmed that
there were the expected number of sevens.

Reitwiesner, then working at the Ballistics Research Laboratory, Aberdeen Prov-
ing Ground in Maryland, starts this article [2, pp. 277–281] with

Early in June, 1949, Professor John von Neumann expressed an in-

terest in the possibility that the ENIAC might sometime be employed to

determine the value of π and e to many decimal places with a view to

toward obtaining a statistical measure of the randomness of distribution

of the digits.

The paper notes that e appears to be too random—this is now proven—and ends
by respecting an oft-neglected ‘best-practice’:

Values of the auxiliary numbers arccot 5 and arccot 239 to 2035D ... have

been deposited in the library of Brown University and the UMT file of

MTAC.

1.2. The 20th century’s Top Ten. The digital computer, of course, greatly
stimulated both the appreciation of and need for algorithms and for algorithmic
analysis. At the beginning of this century, Sullivan and Dongarra could write
“Great algorithms are the poetry of computation,” when they compiled a list of
the 10 algorithms having “the greatest influence on the development and practice
of science and engineering in the 20th century”.3 Chronologically ordered, they are:

2Quoted by Adrian Rice in “What Makes a Great Mathematics Teacher?” on page 542 of The
American Mathematical Monthly, June-July 1999.

3From “Random Samples”, Science page 799, February 4, 2000. The full article appeared in
the January/February 2000 issue of Computing in Science & Engineering.
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#1. 1946: The Metropolis Algorithm for Monte Carlo. Through the
use of random processes, this algorithm offers an efficient way to stumble
toward answers to problems that are too complicated to solve exactly.

#2. 1947: Simplex Method for Linear Programming. An elegant solution
to a common problem in planning and decision-making.

#3. 1950: Krylov Subspace Iteration Method. A technique for rapidly
solving the linear equations that abound in scientific computation.

#4. 1951: The Decompositional Approach to Matrix Computations. A
suite of techniques for numerical linear algebra.

#5. 1957: The Fortran Optimizing Compiler. Turns high-level code into
efficient computer-readable code.

#6. 1959: QR Algorithm for Computing Eigenvalues. Another crucial matrix
operation made swift and practical.

#7. 1962: Quicksort Algorithms for Sorting. For the efficient handling of
large databases.

#8. 1965: Fast Fourier Transform. Perhaps the most ubiquitous algorithm
in use today, it breaks down waveforms (like sound) into periodic compo-
nents.

#9. 1977: Integer Relation Detection. A fast method for spotting simple
equations satisfied by collections of seemingly unrelated numbers.

#10. 1987: Fast Multipole Method. A breakthrough in dealing with the com-
plexity of n-body calculations, applied in problems ranging from celestial
mechanics to protein folding.

I observe that eight of these ten winners appeared in the first two decades of
serious computing, and that Newton’s method was apparently ruled ineligible for
consideration4. Most of the ten are multiply embedded in every major mathematical
computing package.

Just as layers of software, hardware and middleware have stabilized, so have their
roles in scientific and especially mathematical computing. When I first taught the
simplex method thirty years ago, the texts concentrated on ‘Y2K’-like tricks for
limiting storage demands. Now serious users and researchers will often happily run
large-scale problems in Matlab and other broad spectrum packages, or rely on
NAG library routines embedded in Maple.

While such out-sourcing or commoditization of scientific computation and nu-
merical analysis is not without its drawbacks, I think the analogy with automo-
bile driving in 1905 and 2005 is apt. We are now in possession of mature—not
to be confused with ‘error-free’—technologies. We can be fairly comfortable that
Mathematica is sensibly handling round-off or cancelation error, using reasonable
termination criteria and the like. Below the hood, Maple is optimizing polyno-
mial computations using tools like Horner’s rule, running multiple algorithms when
there is no clear best choice, and switching to reduced complexity (Karatsuba or
FFT-based) multiplication when accuracy so demands. Though, it would be nice
if all vendors allowed as much peering under the bonnet as Maple does.

Example 2. The number of additive partitions of n, p(n), is generated by

P (q) = 1 +
∑

n≥1

p(n)qn =
∏

n≥1

(1− qn)−1.(1.2)

4It would be interesting to construct a list of the ten most influential earlier algorithms.
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Thus p(5) = 7 since

5 = 4 + 1 = 3 + 2 = 3 + 1 + 1 = 2 + 2 + 1 = 2 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1,

as we ignore “0” and permutations. Additive partitions are less tractable than
multiplicative ones as there is no analogue of unique prime factorization nor the
corresponding structure. Partitions provide a wonderful example of why Keith
Devlin calls mathematics “the science of patterns”.

Formula (1.2) is easily seen by expanding (1− qn)−1 and comparing coefficients.
A modern computational temperament leads to:

Question: How hard is p(n) to compute—in 1900 (for MacMahon the “father of
combinatorial analysis”) or in 2000 (for Maple or Mathematica)?

Answer: The computation of p(200) = 3972999029388 took MacMahon months
and intelligence. Now, however, we can use the most naive approach: Comput-
ing 200 terms of the series for the inverse product in (1.2) instantly produces
the result using either Mathematica or Maple. Obtaining the result p(500) =
2300165032574323995027 is not much more difficult, using the Maple code
N:=500; coeff(series(1/product(1-q^n,n=1..N+1),q,N+1),q,N);

1.3. Euler’s Pentagonal number theorem. Fifteen years ago computing P (q)
in Maple, was very slow, while taking the series for the reciprocal of the series for
Q(q) =

∏
n≥1(1− qn) was quite manageable! Why? Clearly the series for Q must

have special properties. Indeed it is lacunary:

Q(q) = 1− q − q2 + q5 + q7 − q12 − q15 + q22 + q26 − q35 − q40 + q51 + q57

− q70 − q77 + q92 + O
(
q100

)
.(1.3)

This lacunarity is now recognized automatically by Maple, so the platform works
much better, but we are much less likely to discover Euler’s gem:

∞∏
n=1

(1− qn) =
∞∑

n=−∞
(−1)nqn(3n+1)/2.

If we do not immediately recognize these pentagonal numbers, then Sloane’s on-
line Encyclopedia of Integer Sequences,5 again comes to the rescue with abundant
references to boot.

This sort of mathematical computation is still in its reasonably early days but
the impact is palpable—and no more so than in the contest and book under present
review.

2. About the Contest

For a generation Nick Trefethen has been at the vanguard of developments in
scientific computation, both through his own research, on topics such as pseudo-
spectra, and through much thoughtful and vigorous activity in the community. In
a 1992 essay “The Definition of Numerical Analysis”6. Trefethen engagingly demol-
ishes the conventional definition of Numerical Analysis as ‘the science of rounding
errors’. He explores how this hyperbolic view emerged and finishes by writing:

5A fine model for of 21st century data-bases, it is available at
www.research.att.com/~njas/sequences

6SIAM News, November 1992.
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I believe that the existence of finite algorithms for certain problems, to-

gether with other historical forces, has distracted us for decades from a

balanced view of numerical analysis. Rounding errors and instability are

important, and numerical analysts will always be the experts in these sub-

jects and at pains to ensure that the unwary are not tripped up by them.

But our central mission is to compute quantities that are typically uncom-

putable, from an analytical point of view, and to do it with lightning speed.

For guidance to the future we should study not Gaussian elimination and

its beguiling stability properties, but the diabolically fast conjugate gradi-

ent iteration, or Greengard and Rokhlin’s O(N) multipole algorithm for

particle simulations, or the exponential convergence of spectral methods

for solving certain PDEs, or the convergence in O(N) iteration achieved

by multigrid methods for many kinds of problems, or even Borwein and

Borwein’s7 magical AGM iteration for determining 1,000,000 digits of π

in the blink of an eye. That is the heart of numerical analysis.

In the January 2002 issue of SIAM News, Nick Trefethen, by then of Oxford
University, presented ten diverse problems used in teaching modern graduate nu-
merical analysis students at Oxford University, the answer to each being a certain
real number. Readers were challenged to compute ten digits of each answer, with a
$100 prize to the best entrant. Trefethen wrote, “If anyone gets 50 digits in total,
I will be impressed.”

And he was, a total of 94 teams, representing 25 different nations, submitted
results. Twenty of these teams received a full 100 points (10 correct digits for each
problem). They included the late John Boersma working with Fred Simons and
others, Gaston Gonnet (a Maple founder) and Robert Israel, a team containing
Carl Devore, and the current authors variously working alone and with others.
These results were much better than expected, but an originally anonymous donor,
William J. Browning, provided funds for a $100 award to each of the twenty perfect
teams. The present author, David Bailey8 and Greg Fee entered, but failed to
qualify for an award.9

2.1. The Ten Challenge Problems.
The purpose of computing is insight, not numbers. (Richard Hamming10)

The ten problems are:

#1. What is limε→0

∫ 1

ε
x−1 cos(x−1 log x) dx?

#2. A photon moving at speed 1 in the x-y plane starts at t = 0 at (x, y) =
(1/2, 1/10) heading due east. Around every integer lattice point (i, j) in
the plane, a circular mirror of radius 1/3 has been erected. How far from
the origin is the photon at t = 10?

#3. The infinite matrix A with entries a11 = 1, a12 = 1/2, a21 = 1/3, a13 =
1/4, a22 = 1/5, a31 = 1/6, etc., is a bounded operator on `2. What is ||A||?

7As in many cases this eponomy is inaccurate, if flattering, and really should be to Gauss-
Brent-Salamin.

8Bailey wrote the introduction to the book under review.
9We took Nick at his word and turned in 85 digits! We thought that would be a good enough

entry and returned to other activities.
10In Numerical Methods for Scientists and Engineers, 1962.
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#4. What is the global minimum of the function exp(sin(50x)) + sin(60ey) +
sin(70 sin x) + sin(sin(80y))− sin(10(x + y)) + (x2 + y2)/4?

#5. Let f(z) = 1/Γ(z), where Γ(z) is the gamma function, and let p(z) be
the cubic polynomial that best approximates f(z) on the unit disk in the
supremum norm || · ||∞. What is ||f − p||∞?

#6. A flea starts at (0, 0) on the infinite 2-D integer lattice and executes a
biased random walk: At each step it hops north or south with probability
1/4, east with probability 1/4 + ε, and west with probability 1/4− ε. The
probability that the flea returns to (0, 0) sometime during its wanderings is
1/2. What is ε?

#7. Let A be the 20000×20000 matrix whose entries are zero everywhere except
for the primes 2, 3, 5, 7, · · · , 224737 along the main diagonal and the number
1 in all the positions aij with |i − j| = 1, 2, 4, 8, · · · , 16384. What is the
(1, 1) entry of A−1.

#8. A square plate [−1, 1]× [−1, 1] is at temperature u = 0. At time t = 0 the
temperature is increased to u = 5 along one of the four sides while being
held at u = 0 along the other three sides, and heat then flows into the plate
according to ut = ∆u. When does the temperature reach u = 1 at the
center of the plate?

#9. The integral I(a) =
∫ 2

0
[2 + sin(10α)]xα sin(α/(2 − x)) dx depends on the

parameter α. What is the value α ∈ [0, 5] at which I(α) achieves its maxi-
mum?

#10. A particle at the center of a 10 × 1 rectangle undergoes Brownian motion
(i.e., 2-D random walk with infinitesimal step lengths) till it hits the bound-
ary. What is the probability that it hits at one of the ends rather than at
one of the sides?

Answers correct to 40 digits to the problems are available at
http://web.comlab.ox.ac.uk/oucl/work/nick.trefethen/hundred.html

Quite full details on the contest and the now substantial related literature are
beautifully recorded on Bornemann’s website

http://www-m8.ma.tum.de/m3/bornemann/challengebook/
which accompanies The Siam 100-digit Challenge: A Study In High-accuracy Nu-
merical Computing which, for brevity, I shall call The Challenge.

3. About the Book and Its Authors

Success in solving these problems requires a broad knowledge of mathematics
and numerical analysis, together with significant computational effort, to obtain
solutions and ensure correctness of the results. The strengths and limitations of
Maple, Mathematica, Matlab (The 3Ms), and other software tools such as PARI
or GAP, are strikingly revealed in these ventures. Almost all of the solvers relied in
large part on one or more of these three packages, and while most solvers attempted
to confirm their results, there was no explicit requirement for proofs to be provided.
In December 2002, Keller wrote:

To the Editor:
Recently, SIAM News published an interesting article by Nick Trefethen
(July/August 2002, page 1) presenting the answers to a set of problems
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he had proposed previously (January/February 2002, page 1). The an-
swers were computed digits, and the clever methods of computation were
described.
I found it surprising that no proof of the correctness of the answers was
given. Omitting such proofs is the accepted procedure in scientific com-
puting. However, in a contest for calculating precise digits, one might
have hoped for more.

Joseph B. Keller, Stanford University

In my view Keller’s request for proofs as opposed to compelling evidence of
correctness is, in this context, somewhat unreasonable and even in the long-term
counter-productive, [3, 4]. Nonetheless, the authors of The Challenge have made
a complete and cogent response to Keller and much much more. The interest
generated by the contest has with merit extended to The Challenge, which has
already received reviews in places such as Science where mathematics is not often
seen.

Different readers, depending on temperament, tools and training will find the
same problem more or less interesting and more or less challenging. The book
is arranged so the ten problems can be read independently. In all cases multiple
solution techniques are given, background, mathematics, implementation details—
variously in each of the 3Ms or otherwise—and extensions are discussed. All in a
highly readable and engaging way.

Each problem has its own chapter with its own lead author. The four authors:
Folkmar Bornemann, Dirk Laurie, Stan Wagon, and Jörg Waldvogel come from
four countries on three continents and did not know each other as they worked
on the book, though Dirk did visit Jörge and Stan visited Folkmar as they were
finishing their manuscript. This illustrates the growing power of the collaboration,
networking and the grid—both human and computational.

3.1. Some High Spots. As we saw Joseph Keller raised the question of proof. On
careful reading of the book, one may discover proofs of correctness for all problems
except for #1, #3 and #5. For problem #5 one difficulty is to develop a robust
interval implementation for both complex number computation and, more impor-
tantly, for the Gamma function. While error bounds for #1 may be out of reach,
an analytic solution to #3 seems to this reviewer tantalizingly close.

The authors ultimately provided 10,000-digit solutions to nine of the problems.
They say that this improved their knowledge on several fronts as well as being
‘cool’. When using Integer Relation Methods, ultrahigh precision computations are
often needed, [3]. One (and only one) problem remains totally intractable11—at
time of press getting more than 300 digits for #3 was impossible.

3.2. Some Surprises. According to the authors12, they were surprised by the
following, listed by problem:

#1. The best algorithm for 10,000 digits was the trusty trapezoidal rule—a not
uncommon personal experience of mine.

11If only by the authors new 10,000 digits gold-standard.
12Stan Wagon, private communication.
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#2. Using interval arithmetic with starting intervals of size smaller than 10−5000,
one can still find the position of the particle at time 2000 (not just time ten),
which makes a fine exercise for very high-precision interval computation.

#4. Interval analysis algorithms can handle similar problems in higher dimen-
sions. As a foretaste of future graphic tools, one can solve this problem
using current adaptive 3-D plotting routines which can catch all the bumps.
As an optimizer by background this was the first problem my group solved
using a damped Newton method.

#5. While almost all canned optimization algorithms failed, differential evolu-
tion, a relatively new type of evolutionary algorithm worked quite well.

#6 This problem has an almost-closed form in terms of elliptic integrals and
leads to a study of random walks on hypercubic lattices, and Watson inte-
grals, [3, 4, 5].

#9. The maximum parameter is expressible in terms of a MeijerG function.
While this was not common knowledge among the contestants, Mathematica
and Maple both will figure this out. This is another measure of the changing
environment. It is usually a good idea—and not at all immoral—to data-
mine13 and find out what your favourite one of the 3Ms knows about your
current object of interest. For example, Maple tells one that:

The Meijer G function is defined by the inverse

Laplace transform

MeijerG([as,bs],[cs,ds],z)

/

1 | GAMMA(1-as+y) GAMMA(cs-y) y

= ------ O ------------------------- z dy

2 Pi I | GAMMA(bs-y) GAMMA(1-ds+y)

/

L

where

as = [a1,...,am], GAMMA(1-as+y) = GAMMA(1-a1+y) ... GAMMA(1-am+y)

bs = [b1,...,bn], GAMMA(bs-y) = GAMMA(b1-y) ... GAMMA(bn-y)

cs = [c1,...,cp], GAMMA(cs-y) = GAMMA(c1-y) ... GAMMA(cp-y)

ds = [d1,...dq], GAMMA(1-ds+y) = GAMMA(1-d1+y) ... GAMMA(1-dq+y)

Another excellent example of how packages are changing mathematics is the
Lambert W function, [4], whose properties and development are very nicely de-
scribed in a recent article by Brian Hayes, [8], Why W?

3.3. Two Big Surprises. I finish this section by discussing in more detail the two
problems whose resolution most surprised the authors.

Problem #7, whose principal author was Bornemann, is entitled: Too Large
to be Easy, Too Small to Be Hard. Not so long ago a 20,000 × 20,000 matrix
was large enough to be hard. Using both congruential and p-adic methods, Dumas,
Turner and Wan obtained a fully symbolic answer, a rational with a 97,000-digit
numerator and like denominator. Wan has reduced the time to obtain this to about

13“By its own count, Wal-Mart has 460 terabytes of data stored on Teradata mainframes,
made by NCR, at its Bentonville headquarters. To put that in perspective, the Internet has less
than half as much data ...,” Constance Hays, “What Wal-Mart Knows About Customers’ Habits,”
New York Times, Nov. 14, 2004. Mathematicians also need databases.
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15 minutes on one machine, from using many days on many machines. While p-adic
analysis is susceptible to parallelism it is less easily attacked than are congruential
methods; the need for better parallel algorithms lurks below the surface of much
modern computational mathematics.

The surprise here, though, is not that the solution is rational, but that it can
be explicitly constructed. The chapter, like the others offers an interesting menu
of numeric and exact solution strategies. Of course, in any numeric approach ill-
conditioning rears its ugly head while the use of sparsity and other core topics come
into play.

My personal favourite, for reasons that may be apparent, is:
Problem #10: Hitting the Ends. Bornemann starts the chapter by exploring

Monte-Carlo methods, which are shown to be impracticable. He then reformulates
the problem deterministically as the value at the center of a 10 × 1 rectangle of
an appropriate harmonic measure of the ends, arising from a 5-point discretization
of Laplace’s equation with Dirichlet boundary conditions. This is then solved by
a well chosen sparse Cholesky solver. At this point a reliable numerical value of
3.837587979 ·10−7 is obtained. And the posed problem is solved numerically to the
requisite 10 places.

But this is only the warm up. We proceed to develop two analytic solutions,
the first using separation of variables on the underlying PDE on a general 2a× 2b
rectangle. We learn that

p(a, b) =
4
π

∞∑
n=0

(−1)n

2n + 1
sech

(
π(2n + 1)

2
ρ

)
(3.4)

where ρ := a/b. A second method using conformal mappings, yields

arccot ρ = p(a, b)
π

2
+ arg K

(
eip(a,b)π

)
(3.5)

where K is the complete elliptic integral of the first kind. It will not be apparent to
a reader unfamiliar with inversion of elliptic integrals that (3.4) and (3.5) encode
the same solution—though they must as the solution is unique in (0, 1)—and each
can now be used to solve for ρ = 10 to arbitrary precision.

Bornemann finally shows that, for far from simple reasons, the answer is

p =
2
π

arcsin (k100) ,(3.6)

where

k100 :=
((

3− 2
√

2
)(

2 +
√

5
)(
−3 +

√
10

)(
−
√

2 + 4
√

5
)2

)2

a simple composition of one arcsin and a few square roots. No one anticipated a
closed form like this.

Let me show how to finish up. An apt equation is [5, (3.2.29)] showing that
∞∑

n=0

(−1)n

2n + 1
sech

(
π(2n + 1)

2
ρ

)
=

1
2

arcsin k,(3.7)

exactly when kρ2 is parametrized by theta functions in terms of the so called nome,
q = exp(−πρ), as Jacobi discovered. We have

kρ2 =
θ2
2(q)

θ2
3(q)

=
∑∞

n=−∞ q(n+1/2)2

∑∞
n=−∞ qn2 q := e−πρ.(3.8)
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Comparing (3.7) and (3.4) we see that the solution is

k100 = 6.02806910155971082882540712292 . . . · 10−7

as asserted in (3.6) The explicit form now follows from classical nineteenth century
theory as discussed in [1, 5]. In fact k210 is the singular value sent by Ramanujan
to Hardy in his famous letter of introduction [2, 5]—if only Trefethen had asked for
a
√

210× 1 box, or even better a
√

15×√14 one.
Alternatively, armed only with the knowledge that the singular values are always

algebraic we may finish with an au courant proof: numerically obtain the minimal
polynomial from a high precision computation with (3.8) and recover the surds, [4].

Example 3. Maple allows the following

> Digits:=100:with(PolynomialTools):
> k:=s->evalf(EllipticModulus(exp(-Pi*sqrt(s)))):
> p:=latex(MinimalPolynomial(k(100),12)):
> ’Error’,fsolve(p)[1]-evalf(k(100)); galois(p);

-106
Error, 4 10

"8T9", {"D(4)[x]2", "E(8):2"}, "+", 16, {"(4 5)(6 7)", "(4 8)(1 5)(2
6)(3 7)", "(1 8)(2 3)(4 5)(6 7)", "(2 8)(1 3)(4 6)(5 7)"}

which finds the minimal polynomial for k100, checks it to 100 places, tells us the
galois group, and returns a latex expression ‘p’ which sets as:

p( X) = 1 − 1658904 X − 3317540 X 2 + 1657944 X 3 + 6637254 X 4

+ 1657944 X 5 − 3317540 X 6 − 1658904 X 7 + X 8,

and is self-reciprocal : it satisfies p(x) = x8p(1/x). This suggests taking a square
root and we discover y =

√
k100 satisfies

1− 1288 y + 20 y2 − 1288 y3 − 26 y4 + 1288 y5 + 20 y6 + 1288 y7 + y8.

Now life is good. The prime factors of 100 are 2 and 5 prompting:

subs(_X=z,[op(((factor(p,{sqrt(2),sqrt(5)}))))]))

This yields four quadratic terms, the desired one being

q = z2+322 z−228 z
√

2+144 z
√

5−102 z
√

2
√

5+323−228
√

2+144
√

5−102
√

2
√

5.

For security,

w:=solve(q)[2]: evalf[1000](k(100)-w^2);

gives a 1000-digit error check of 2.20226255 · 10−998.
We leave it to the reader to find, using one of the 3Ms, the more beautiful form

of k100 given above in (3.6). ¤

Considering also the many techniques and types of mathematics used, we have a
wonderful advert for multi-field, multi-person, multi-computer, multi-package col-
laboration.
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4. Concrete Constructive Mathematics

Elsewhere Kronecker said “In mathematics, I recognize true scientific

value only in concrete mathematical truths, or to put it more pointedly,

only in mathematical formulas.” ... I would rather say “computations”

than “formulas”, but my view is essentially the same. (Harold M. Ed-

wards, [6, p.1])

Edwards comments elsewhere in his recent Essays on Constructive Mathematics
that his own preference for constructivism was forged by experience of computing
in the fifties, when computing power was as he notes “trivial by today’s standards”.
My own similar attitudes were cemented primarily by the ability in the early days
of personal computers to decode—with the help of APL—exactly the sort of work
by Ramanujan which finished #10.

The Siam 100-Digit Challenge: A Study In High-accuracy Numerical Computing
is a wonderful and well-written book full of living mathematics by lively mathe-
maticians. It shows how far we have come computationally and hints tantalizingly
at what lies ahead. Anyone who has been interested enough to finish this review,
and had not yet read the book, is strongly urged to buy and plunge in—computer in
hand— to this fine advertizement for constructive mathematics 21st century style.
I would equally strongly suggest a cross-word solving style—pick a few problems
from the list given and try them before peeking at the answers and extensions given
in The Challenge. Later, use it to illustrate a course or just or in for a refresher;
and be pleasantly reminded that challenging problems rarely have only one path to
solution and usually reward study.
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