

Effective Error Bounds for Euler-MacLaurin based Numerical Quadrature

Jonathan Borwein, FRSC www.cs.dal.ca/~jborwein \square Canada Research Chair in Collaborative Technology

Joint work with David Bailey, Lawrence Berkeley
The purpose of computing is insight not numbers
(Richard Hamming 1962)
हns
$\frac{\text { DALHOUSIE }}{\text { Inspiring Minds }}$

ABSTRACT

206 based integration schemes with the intention of deriving accurate and economic estimations of the error

- These schemes typically provide very high-precision results (hundreds or thousands of digits), in reasonable run time, even when the integrand function has a blow-up singularity or infinite derivative at an endpoint
- Heretofore, researchers using these schemes have relied mostly on ad hoc error estimation schemes to project the estimated error of the present iteration
- In this paper, we seek to develop some more rigorous, yet highly usable schemes to estimate these errors

INTRODUCTION

In the past few years, computation of definite integrals to high precision has become a key tool in experimental math.

- It is often possible to recognize an unknown definite integral if its numerical value is known to extremely high precision
- High precision is required since integer relation searches of n terms with d-digit coefficients require at least dn-digit precision for both input data and relation searching.
- Such computation often requires highly parallel implementation
- One computation below, required nearly one hour on 1024 cpus, and the PSLQ integer relation search in another required 44 hours on 32 cpus. Moreover, such extreme computations provide excellent tests of HPC systems
- for example, we identified a difficulty with differing processor speeds on the Virginia Tech system with these calculations

OUTLINE

- Experimental Mathematics
- Rationale
- Examples of need for quadrature etc
- Extreme Quadrature
- Theory
- Implementation
- Examples

The C2C Experience

Fully Interactive multi-way audio and visual
Given good bandwidth audio is much harder
The closest thing to being in the same room

Jonathan Borwein, Dalhousie University

High Quality Presentations

Mathematical Visualization
Uwe Glaesser, Simon Fraser University Semantic Blueprints of Discrete Dynamic Systems

Peter Borwein, IRMACS
The Riemann Hypothesis

Arvind Gupta, MITACS

The Protein Folding Problem
Przemyslaw Prusinkiewicz, University of Calgary Computational Biology of Plants

Karl Dilcher, Dalhousie University
Fermat Numbers, Wieferich and Wilson Primes
 in Mathematies

Jonathan M. Borwalh David H. Bailey Roland Brigensohn

Produced with tha asslatangin of Misen 4

The reader who wants to get an introduction to this excitih approach to doing mathematics can do no better than the -Notices of

I do not think that I have had the good forture to read two entertaining and informative mathematics texts.
-Australian Mathematical Societ,
This Experiments in Mathematics CD contains the full text of b matics by Experiment: Plausible Reasoning th the 21st Century : mentation in Mathematics: Computational Paths to Discovery searchable form. The CD includes several "smart" enhancemer

- Hyperlinks for all cross references
- Hyperlinks for all Internet URLs
- Hyperlinks to bibliographic references
- Enhanced search function, which assists one with a search particular mathematical formula or expression.

These enhancements significantly improve the usability of thes reader's experience with the material.

A K Peters, Ltd.

I do not think that I have had the good fortune to read two more entertaining and informative mathematics texts."

-Gazette of the Australian Mathematical Society
Experimental Mathematics in Action
David H. Bailey, Jonathan M. Borwein, Neil Calkin, Roland Girgensohn, Russell Luke, Victor Moll

The emerging field of experimental mathematics has expanded to encompass a wide range of studies, all unified by the aggressive utilization of modern computer technology in mathematical research. This volume presents a number of case studies of experimental mathematics in action, together with some high level perspectives.

Specific case studies include:
-- analytic evaluation of integrals by means of symbolic and numeric computing techniques
-- evaluation of Apery-like summations
-- finding dependencies among high-dimension vectors (with applications to factoring large integers)
.- inverse scattering (reconstruction of physical objects based on electromagnetic or acoustic scattering)
-- investigation of continuous but nowhere differentiable functions.
In addition to these case studies, the book includes some background on the computational techniques used in these analyses.

September 2006; ISBN 1-56881-271-X; Hardcover; Approx. 200 pp.; \$39.00

Mathematics by Experiment: Plausible Reasoning in the 21st Century Jonathan Borwein, David Bailey

". . . experimental mathematics is here to stay. The reader who wants to get an introduction to this exciting approach to doing mathematics can do no better than [this book]."

- Notices of the AMS

ISBN 1-56881-211-6; Hardcover; 298 pp.; \$45.00

Experimentation in Mathematics: Computational Paths to Discovery Jonathan Borwein, David Bailey, Roland Girgensohn
"These are such fun books to read! Actually, calling them books does not do them justice. They have the liveliness and feel of great Web sites, with their bite-size fascinating factoids and their many humanand math-interest stories and other gems. But do not be fooled by the lighthearted, immensely entertaining style. You are going to learn more math (experimental or otherwise) than you ever did from any two single volumes. Not only that, you will learn by osmosis how to become an experimental mathematician."

- American Scientist

Ehperimentation manthematics

Experimental Mathodology

1. Gaining insight and intuition
2. Discovering new relationships
3. Visualizing math principles
4. Testing and especially falsifying conjectures
5. Exploring a possible result to see if it merits formal proof
6. Suggesting approaches for formal proof
7. Computing replacing lengthy hand derivations
8. Confirming analytically derived results

WARMUP Computational Proof

Suppose we know that $1<\mathrm{N}<10$ and that N is an integer

- computing \mathbf{N} to 1 significant place with a certificate will prove the value of N . Euclid's method is basic to such ideas.

Likewise, suppose we know α is algebraic of degree d and length λ (coefficient sum in absolute value)
If P is polynomial of degree D \& length L EITHER $P(\alpha)=0$ OR •

Example (MAA, April 2005). Prove that

$$
\begin{aligned}
& |P(\alpha)| \geq \frac{1}{L^{d-1} \lambda^{D}} \\
& y^{2} d y=\pi
\end{aligned}
$$

Proof. Purely qualitative analysis with partial fractions and arctans shows the integral is $\pi \beta$ where β is algebraic of degree much less than 100 (actually 6), length much less than $100,000,000$. With $P(x)=x-1 \quad(D=1, L=2, d=6, \lambda=?)$, this means checking the identity to 100 places is plenty of PROOF.
A fully symbolic Maple proof followed. QED

$$
|\beta-1|<1 /(32 \lambda) \mapsto \beta=1
$$

Jan 2006

The following integrals arise in Ising theory of mathematical physics:

$$
C_{n}=\frac{4}{n!} \int_{0}^{\infty} \cdots \int_{0}^{\infty} \frac{1}{\left(\sum_{j=1}^{n}\left(u_{j}+1 / u_{j}\right)\right)^{2}} \frac{d u_{1}}{u_{1}} \cdots \frac{d u_{n}}{u_{n}}
$$

Richard Crandall showed that this can be transformed to a 1-D integral:

$$
C_{n}=\frac{2^{n}}{n!} \int_{0}^{\infty} t K_{0}^{n}(t) d t
$$

where K_{0} is a modified Bessel function. We then computed 400-digit numerical values, from which these results were found (and proven):

$$
\begin{aligned}
C_{3} & =\mathrm{L}_{-3}(2)=\sum_{n \geq 0}\left(\frac{1}{(3 n+1)^{2}}-\frac{1}{(3 n+2)^{2}}\right) \\
C_{4} & =14 \zeta(3) \quad \begin{array}{r}
\text { - via PSLQ and the Inverse } \\
\lim _{n \rightarrow \infty} C_{n}
\end{array}=2 e^{-2 \gamma} \quad \begin{array}{r}
\text { Calculator to which we now turn }
\end{array}
\end{aligned}
$$

Fast Arithmetic (Complexity Reduction in Action)

Multiplication

■ Karatsuba multiplication (200 digits +) or Fast Fourier Transform
(FFT)
... in ranges from 100 to 1,000,000,000,000 digits

- The other operations
via Newton's method $\quad \times, \div \sqrt{ }$.
- Elementary and special functions via Elliptic integrals and Gauss AGM

For example:

Karatsuba replaces one 'times' by many 'plus'

$$
\begin{aligned}
& \left(a+c \cdot 10^{N}\right) \times\left(b+d \cdot 10^{N}\right) \\
= & a b+(a d+b c) \cdot 10^{N}+c d \cdot 10^{2 N} \\
= & a b+\underbrace{\{(a+c)(b+d)-a b-c d\}}_{\text {three multiplications }} \cdot 10^{N}+c d \cdot 10^{2 N}
\end{aligned}
$$

FFT multiplication of multi-billion digit numbers reduces centuries to minutes. Trillions must be done with Karatsuba!

A Colour and an Inverse Calculator (1995)

Inverse Symbolic Computation

Archimedes: $223 / 71<\pi<22 / 7$ Inferring mathematical structure from numerical data

- Mixes large table lookup, integer relation methods and intelligent preprocessing - needs micro-parallelism
- It faces the "curse of exponentiality"
- Implemented as Recognize in Mathematica

Inverse symbolic calculator

A guided proof followed on asking why Maple could compute the answer so fast.

The answer is Gonnet's Lambert's W which solves $\mathrm{W} \exp (\mathrm{W})=\mathrm{x}$

W's Riemann surface

Donald Knuth* asked for a closed form evaluation of:

$$
\sum_{k=1}^{\infty}\left\{\frac{k^{k}}{k!e^{k}}-\frac{1}{\sqrt{2 \pi k}}\right\}=-0.084069508727655 \ldots
$$

* ARGUABLY WE ARE DONE

evalf(Sum(k^k/k!/exp(k)-1/sqrt(2*Pi*k),k=1..infinity),16)

'Simple Lookup' fails; 'Smart Look up' gives:

Maple output:
 The ISC is the Inverse Symbolic Calculator, a set of dedicated to thecialized tables of mathematical cons dedicated to the identification of real numberical constants a way to produce identities with functionsers. It also serves as is one of the main ongoing projects at the C and real numbers. It Experimental and Constructive Mats the Centre for

BOLIC CALCULATOR

The PSLQ Integer Relation Algorithm

Let $\left(x_{n}\right)$ be a vector of real numbers. An integer relation algorithm finds integers $\left(a_{n}\right)$ such that

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=0
$$

- At the present time, the PSLQ algorithm of mathematician-sculptor Helaman Ferguson is the best-known integer relation algorithm.
- PSLQ was named one of ten "algorithms of the century" by Computing in Science and Engineering.
- High precision arithmetic software is required: at least $\mathrm{d} \times \mathrm{n}$ digits, where d is the size (in digits) of the largest of the integers a_{k}.

An Immediate Use
To see if a is algebraic of degree N, consider $\left(1, a, a^{2}, \ldots, a^{N}\right)$

Application of PSLQ: Bifurcation Points in Chaos Theory

$B_{3}=3.54409035955 \ldots$ is third bifurcation point of the logistic iteration of chaos theory:

$$
x_{n+1}=r x_{n}\left(1-x_{n}\right)
$$

i.e., B_{3} is the smallest r such that the iteration exhibits 8way periodicity instead of 4-way periodicity.
In 1990, a predecessor to PSLQ found that B_{3} is a root of the polynomial

$$
\begin{aligned}
0= & 4913+2108 t^{2}-604 t^{3}-977 t^{4}+8 t^{5}+44 t^{6}+392 t^{7} \\
& -193 t^{8}-40 t^{9}+48 t^{10}-12 t^{11}+t^{12}
\end{aligned}
$$

Recently B_{4} was identified as the root of a 256-degree polynomial by a much more challenging computation.
These results have subsequently been proven formally.

- The proofs use Groebner basis techniques
- Another useful part of the HPM toolkit

PSLQ and Zeta

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}
$$

$\begin{aligned} & \text { 1. via PSLQ to } \\ & 50,000 \text { digits }\end{aligned}=\frac{\pi^{2}}{6}, \zeta(4)=\frac{\pi^{4}}{90}, \zeta(6)=\frac{\pi^{6}}{945}$,. (250 terms)

2005 Bailey, Bradley \& JMB discovered and proved - in Maple - three equivalent binomial identities

$$
\stackrel{\text { erms }}{\mathcal{Z}(x)}=3 \sum_{\substack{k=1 \\
\infty} \frac{1}{\left(\begin{array}{l}
k \\
k \\
k
\end{array}\right)\left(k^{2}-x^{2}\right)} \prod_{n=1}^{k-1} \prod_{\infty} \frac{4 x^{2}-n^{2}}{x^{2}-n^{2}}}
$$

$$
=\sum_{k=0}^{\infty} \zeta(2 k+2) x^{2 k}=\sum_{n=1}^{\infty} \frac{1}{n^{2}-x^{2}}
$$

2. reduced as hoped

$$
3 n^{2} \sum_{k=n+1}^{2 n} \frac{\prod_{m=n+1}^{k-1} \frac{4 n^{2}-m^{2}}{n^{2}-m^{2}}}{\binom{2 k}{k}\left(k^{2}-n^{2}\right)}=\frac{1}{\binom{2 n}{n}}-\frac{1}{\binom{3 n}{n}}
$$

$$
3 F_{2}\left(\begin{array}{c}
3 n, n+1,-n \\
2 n+1, n+1 / 2
\end{array} ; \frac{1}{4}\right)=\frac{\binom{2 n}{n}}{\binom{3 n}{n}}
$$

3. was easily computer proven (Wilf-Zeilberger) MAA: human proof?

Extreme Quadrature. Ising Susceptibility Integrals

Bailey, Crandall and I are currently studying:
$D_{n}:=\frac{4}{n!} \int_{0}^{\infty} \cdots \int_{0}^{\infty} \frac{\prod_{i<j}\left(\frac{u_{i}-u_{j}}{u_{i}+u_{j}}\right)^{2}}{\left(\sum_{j=1}^{n}\left(u_{j}+1 / u_{j}\right)\right)^{2}} \frac{d u_{1}}{u_{1}} \cdots \frac{d u_{n}}{u_{n}}$.
The first few values are known: $D_{1}=2, D_{2}=2 / 3$, while

$$
D_{3}=8+\frac{4}{3} \pi^{2}-27 L_{-3}(2)
$$

and

$$
D_{4}=\frac{4}{9} \pi^{2}-\frac{1}{6}-\frac{7}{2} \zeta(3)
$$

\checkmark Computer Algebra Systems can (with help) find the first 3
$\checkmark D_{4}$ is a remarkable 1977 result due to McCoy--Tracy--Wu

TANH-SINH QUADRATURE

- is the fastest known high-precision scheme, particularly if one counts time for computing abscissas and weights
- has been successfully used for quadrature calculations up to 20,000-digit precision
- works well for functions with blow-up singularities or infinite derivatives at endpoints, and is well-suited for highly parallel implementation
- At present, these schemes rely on ad-hoc methods to estimate the error at any given stage
- one can simply continue until two iterations give the same result (except for the last few digits)
- but this nearly doubles overall run time, which is an issue for large quadrature computations attempted on highly parallel computers
- Also, while one can readily compute very high-precision values with these methods, mathematicians often require "certificates"
- rigorous guarantees that the approximation error cannot exceed a given level
- Hence we seek much more accurate and rigorous, yet readily computable error bounds for this class of quadrature methods

Quadrature and the EulerMaclaurin Formula

Atkinson's version of the Euler-Maclaurin formula. For $m>0$ integer, assume h evenly divides a and b, while $f(x)$ is at least ($2 m+2$)times continuously differentiable on $[a, b]$. Then

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & =h \sum_{j=a / h}^{b / h} f(j h)-\frac{h}{2}[f(a)+f(b)] \\
- & \sum_{i=1}^{m} \frac{h^{2 i} B_{2 i}}{(2 i)!}\left[D^{2 i-1} f(b)-D^{2 i-1} f(a)\right]+E(h, m)
\end{aligned}
$$

where B_{j} denotes the j-th Bernoulli number, D denotes the differentiation operator, and the error is

$$
E(h, m)=\frac{(a-b) B_{2 m+2} D^{2 m+2} f(\xi)}{(2 m+2)!} h^{2 m+2}
$$

where $\xi \in(a, b)$.

- Suppose $f(t)$ and all derivatives are zero at the endpoints (as for a smooth, bell-shaped function). Then the 2nd and 3rd terms of the E-M formula are zero.
- For such functions, the error in a simple step-function approximation with interval h, is simply $E(h, m)$ and is less than a constant (independent of h) times $\mathrm{h}^{2 \mathrm{~m}+2}$. Thus, the error goes to zero more rapidly than any fixed power of h.
- This leads to state-of-the-art numerical integration schemes: transform $F(x)$ on $[-1,1]$ to an integral of $\mathbf{f}(\mathbf{t})=F(\mathbf{g}(\mathbf{t})) \mathbf{g}^{\prime}(\mathbf{t})$ on $(-\infty, \infty)$, via the change of variable $\mathrm{x}=\mathrm{g}(\mathrm{t})$ for any monotonic infinitely-differentiable function such that $g(x)$ goes $+/-1$ as x goes to $+/-\infty$, while $g^{\prime}(x)$ and higher derivatives rapidly approach zero for large arguments. With $x_{j}:=g(h j)$ and w_{j} : = $\mathrm{g}^{\prime}(\mathrm{hj})$, for $\mathrm{h}>0$, we have

$$
\begin{aligned}
\int_{-1}^{1} F(x) d x & =\int_{-\infty}^{\infty} F(g(t)) g^{\prime}(t) d t \\
& =h \sum_{j=-\infty}^{\infty} w_{j} F\left(x_{j}\right)+E(h)
\end{aligned}
$$

- Even if $F(x)$ has an infinite derivative or integrable singularity at endpoint(s) the resulting integrand will be a smooth bell-shaped function for which the prior E-Ma argument applies. Thus, the error $E(h)$ drops very rapidly as h shrinks

Quadrature for a Bell-shaped Function

Various Choices

Various functions work well in practice

$\checkmark \mathrm{g}(\mathrm{t}):=\tanh (\mathrm{t})$ gives rise to tanh quadrature

$\checkmark g(t):=\operatorname{erf}(t)$ gives rise to "error function" or erf quadrature
$\checkmark \mathrm{g}(\mathrm{t}):=\tanh (\pi / 2 \cdot \sinh \mathrm{t})$ or $\mathrm{g}(\mathrm{t}):=\tanh (\sinh \mathrm{t})$ gives rise to tanh-sinh quadrature [Takahasi, 1977] (The cheap doubly exponential winner)

For functions to be integrated on $(-\infty, \infty)$ one can just use $g(t):=\sinh t$, $g(t):=\sinh (\pi / 2 \cdot \sinh t)$ or $g(t):=\sinh (\sinh t)$.
"Quadratic convergence" becomes apparent --- the number of correct digits is approximately doubled when h is halved. Table 1 shows this for the following test problems

QUADRATIC CONVERGENCE of erf

2006

$$
\mathbf{e 2}: \int_{0}^{1} t^{2} \arctan t d t=(\pi-2+2 \log 2) / 12
$$

$$
\text { e4 : } \int_{0}^{1} \frac{\arctan \left(\sqrt{2+t^{2}}\right)}{\left(1+t^{2}\right) \sqrt{2+t^{2}}} d t=5 \pi^{2} / 96
$$

$$
\text { e6 : } \int_{0}^{1} \sqrt{1-t^{2}} d t=\pi / 4
$$

$$
\mathbf{e 8}: \int_{0}^{1} \log t^{2} d t=2
$$

$$
\text { e10 : } \int_{0}^{\pi / 2} \sqrt{\tan t} d t=\pi \sqrt{2} / 2
$$

$$
\begin{aligned}
& \text { e12 : } \int_{0}^{\infty} \frac{e^{-t}}{\sqrt{t}} d t=\sqrt{\pi} \\
& \mathbf{e 1 4}: \int_{0}^{\infty} e^{-t} \cos t d t=1 / 2
\end{aligned}
$$

h	$\mathbf{e 2}$	$\mathbf{e 4}$	$\mathbf{e 6}$	$\mathbf{e 8}$						
1	10^{-2}	10^{-5}	10^{-3}	10^{-3}						
$1 / 2$	10^{-6}	10^{-6}	10^{-8}	10^{-10}						
$1 / 4$	10^{-13}	10^{-12}	10^{-17}	10^{-21}						
$1 / 8$	10^{-26}	10^{-25}	10^{-34}	10^{-43}						
$1 / 16$	10^{-52}	10^{-51}	10^{-68}	10^{-87}						
$1 / 32$	10^{-104}	10^{-102}	10^{-134}	10^{-173}						
$1 / 64$	10^{-206}	10^{-204}	10^{-266}	10^{-348}						
$1 / 128$	10^{-411}	10^{-409}	10^{-529}	10^{-696}						
$1 / 256$	10^{-821}	10^{-819}	10^{-1056}	10^{-1392}						
h						$\mathbf{e 1 0}$			$\mathbf{e 1 2}$	$\mathbf{e 1 4}$
1	10^{-3}	10^{-1}	10^{-1}							
$1 / 2$	10^{-8}	10^{-3}	10^{-2}							
$1 / 4$	10^{-16}	10^{-6}	10^{-3}							
$1 / 8$	10^{-33}	10^{-11}	10^{-5}							
$1 / 16$	10^{-66}	10^{-20}	10^{-10}							
$1 / 32$	10^{-132}	10^{-37}	10^{-19}							
$1 / 64$	10^{-264}	10^{-70}	10^{-37}							
$1 / 128$	10^{-527}	10^{-132}	10^{-68}							
$1 / 256$	10^{-1053}	10^{-249}	10^{-128}							

Table 1. 'QUADERF' errors at successive values of h

Estimates of the Error Term

A standard estimate of the error term: If a 2π-periodic function $\mathrm{f}(\mathrm{z})$ is analytic in a strip $|\mathrm{Im}(\mathrm{z})|<\mathrm{c}$, the error in a trapezoidal (or step function) approx to the integral is bounded by

$$
E(h) \leq \frac{4 \pi M}{e^{c N}-1}
$$

where N is the number of evaluation points, $\mathrm{h}=2 \pi / \mathrm{N}$, and M is a bound on $|f|$ on the complex strip

- This is interesting as it begins to explain quadratic convergence
- It is not very practical, because it requires locating complex singularities and finding a maximum on a complex strip

Doing Better

2006

What's more, the resulting estimate is not very accurate. Consider

$$
\int_{-1}^{1} \frac{d t}{1+t^{2}}=\frac{\pi}{2}
$$

Transform by $x=\tanh (4 \sinh t)$ so, to a tolerance of 10^{-35}, f and a few derivatives are 0 at the endpoints of $[-\pi, \pi]$

The new function has a pole at 0.19763359 i .
For $\mathrm{c}=0.197, \mathrm{M}=790, \mathrm{~N}=64, \mathrm{~h}=2 \pi / 64$
\checkmark we obtain the estimate 3.32×10^{-2}
By contrast, the inexpensive error estimate we introduce below with $\mathrm{m}=1$, gives 2.01832×10^{-5}
Actual error in a trapezoidal approx to the integral to ten digits, is $\underline{2.0183003673 \times 10^{-5}}$

Doing Better

2006

To derive more accurate error bounds, we need to better understand the error term in the Euler-Maclaurin formula. To that end, we state two alternate forms of the error term

Theorem 1. The error in the Euler-Maclaurin formula is

$$
\begin{aligned}
& E(h, m)=2(-1)^{m-1}\left(\frac{h}{2 \pi}\right)^{2 m} \times \\
& \sum_{k=1}^{\infty} \frac{1}{k^{2 m}} \int_{a}^{b} \cos [2 k \pi(t-a) / h] D^{2 m} f(t) d t
\end{aligned}
$$

\checkmark For many integrands, even the first term here is an excellent approximation to the error. In other words, we consider

$$
\begin{aligned}
E_{1}(h, m)= & 2(-1)^{m-1}\left(\frac{h}{2 \pi}\right)^{2 m} \times \\
& \int_{a}^{b} \cos [2 \pi(t-a) / h] D^{2 m} f(t) d t
\end{aligned}
$$

Doing Better

Theorem 2. Suppose $f(t)$ is defined on $[a, b]$, with $f(a)=f(b)=0$ and f is $2 m$-times cont. differentiable on [a,b], with $D^{k} f(a)=D^{k} f(b)$ $=0$ for $1 \leq k \leq 2 \mathrm{~m}$. Also h divides a and b . Let these conditions also hold with $m+n$ replacing m. Then

$$
\begin{aligned}
E(h, m)= & h(-1)^{m-1}\left(\frac{h}{2 \pi}\right)^{2 m} \sum_{j=a / h}^{b / h} D^{2 m} f(j h) \\
+ & 2(-1)^{n-1}\left(\frac{h}{2 \pi}\right)^{2 m+2 n} \sum_{k=1}^{\infty}\left(\frac{1}{k^{2 n}}+\frac{(-1)^{m}}{k^{2 m+2 n}}\right) \times \\
& \int_{a}^{b} \cos [2 k \pi(t-a) / h] D^{2 m+2 n} f(t) d t
\end{aligned}
$$

\checkmark Theorem 2 suggests using

$$
E_{2}(h, m)=h(-1)^{m-1}\left(\frac{h}{2 \pi}\right)^{2 m} \sum_{j=a / h}^{b / h} D^{2 m} f(j h)
$$

Doing Better

Corollary 1 Under the hypotheses of Theorem 1 one has

$$
\begin{aligned}
& \left|E(h, m)-E_{1}(h, m)\right| \leq \\
& \quad 2(\zeta(2 m)-1)\left(\frac{h}{2 \pi}\right)^{2 m} \int_{a}^{b}\left|D^{2 m} f(t)\right| d t .
\end{aligned}
$$

\checkmark This bound can be used, for instance, to establish a rigorous "certificate" of the estimate $E_{1}(h, m)$, and thus (after computation of $E_{1}(h, m)$) of the quadrature itself
\checkmark Other useful bounds can be derived. In particular, we mirror Corollary 1:
Corollary 2. Under the hypotheses of Theorem 2 with $\mathrm{n}=1$

$$
\begin{aligned}
\left|E(h, m)-E_{2}(h, m)\right| & \leq \\
& 2\left[\zeta(2 m)+(-1)^{m} \zeta(2 m+2)\right] \times \\
& \left(\frac{h}{2 \pi}\right)^{2 m} \int_{a}^{b}\left|D^{2 m} f(t)\right| d t
\end{aligned}
$$

- This highlights what is gained by using $E_{2}(h, m)$ rather than $E_{1}(h, m)$
- Note this is particularly advantageous when m is odd

Implementations and Tests

F_{2} above and F_{3} below

Tables 2 through 5 include computational analysis of $E_{2}(h, m)$, using test functions

$$
\begin{array}{ll}
\mathbf{f} 1 & : F_{1}(t)=1 /\left(1+t^{2}+t^{4}+t^{6}\right) \\
\mathbf{f} 2: & F_{2}(t)=\left(1-t^{4}\right)^{1 / 2} \\
\mathbf{f 3}: & F_{3}(t)=\left(1-t^{2}\right)^{-1 / 2} \\
\mathbf{f 4}: & F_{4}(t)=(1+t)^{2} \sin (2 \pi /(1+t))
\end{array}
$$

with interval of integration. $[-1,1]$. The tanh-sinh rule was used for quadrature. In problems $\mathrm{f} 1, \mathrm{f} 2$ and f4, 400-digit arithmetic was employed. In problem f3, 1100-digit arithmetic was used, although 550-digit arithmetic suffices here if one employs a "secondary epsilon" technique described in [4]. Note that $F_{2}(t)$ has an infinite derivative at the endpoints, and $F_{3}(t)$ has a blow-up singularity at the endpoints, while $F_{4}(t)$ represents a worst case for these methods, since it is highly oscillatory near -1 . In particular, while the first two derivatives of the transformed function $f_{4}(t)$ tend to zero with large positive and negative arguments, the third and higher derivatives do not. (See Figure 1.)

Implementations and Tests

2806

h	$E(h)$	$\left\|E(h)-E_{2}(h, 1)\right\|$	$\left\|E(h)-E_{2}(h, 2)\right\|$	$\left\|E(h)-E_{2}(h, 3)\right\|$	$\left\|E(h)-E_{2}(h, 4)\right\|$
$1 / 1$	-9.38039×10^{-5}	2.00740×10^{-7}	1.00302×10^{-6}	4.20595×10^{-6}	1.69621×10^{-5}
$1 / 2$	6.69591×10^{-8}	1.17622×10^{-15}	5.88109×10^{-15}	2.47006×10^{-14}	9.99785×10^{-14}
$1 / 4$	-3.92072×10^{-16}	2.48852×10^{-32}	1.24426×10^{-31}	5.22589×10^{-31}	2.11524×10^{-30}
$1 / 8$	-8.29506×10^{-33}	2.17847×10^{-66}	1.08924×10^{-65}	4.57479×10^{-65}	1.85170×10^{-64}
$1 / 16$	-7.26158×10^{-67}	4.51319×10^{-135}	2.25659×10^{-134}	9.47769×10^{-134}	3.83621×10^{-133}
$1 / 32$	$-1.50440 \times 10^{-135}$	3.19951×10^{-272}	1.59976×10^{-271}	6.71897×10^{-271}	2.71958×10^{-270}
$1 / 64$	1.06650×10^{-272}	4.25792×10^{-546}	2.12896×10^{-545}	8.94163×10^{-545}	3.61923×10^{-544}

Table 4. Results for $F_{3}(t)=\left(1-t^{2}\right)^{-1 / 2}$ on $[-1,1]$.

h	$E(h)$	$\left\|E(h)-E_{2}(h, 1)\right\|$
$1 / 1$	-6.45859×10^{-1}	3.54091×10^{0}
$1 / 2$	2.54145×10^{-2}	7.23759×10^{-1}
$1 / 4$	-1.69389×10^{-2}	1.00104×10^{-1}
$1 / 8$	-8.84080×10^{-3}	1.37392×10^{-2}
$1 / 16$	1.08078×10^{-3}	8.85166×10^{-4}
$1 / 32$	-2.39628×10^{-4}	8.44565×10^{-5}
$1 / 64$	-4.87134×10^{-5}	3.42934×10^{-5}

Table 5. Results for $F_{4}(t)=(1+$ $t)^{2} \sin (2 \pi /(1+t))$ on $[-1,1]$.

Fig 1. Test function F_{4}

Implementations and Tests

2006

h	$E(h)$	$\left\|E(h)-E_{2}(h, 1)\right\|$	$\left\|E(h)-E_{2}(h, 2)\right\|$	$\left\|E(h)-E_{2}(h, 3)\right\|$	$\left\|E(h)-E_{2}(h, 4)\right\|$
$1 / 1$	5.34967×10^{-3}	9.81980×10^{-4}	4.77454×10^{-3}	1.87712×10^{-2}	6.48879×10^{-2}
$1 / 2$	-3.36641×10^{-4}	1.12000×10^{-7}	5.60084×10^{-7}	2.35316×10^{-6}	9.53208×10^{-6}
$1 / 4$	-3.73280×10^{-8}	1.67517×10^{-16}	8.37583×10^{-16}	3.51785×10^{-15}	1.42389×10^{-14}
$1 / 8$	5.58389×10^{-17}	2.29357×10^{-32}	1.14679×10^{-31}	4.81651×10^{-31}	1.94954×10^{-30}
$1 / 16$	-7.64525×10^{-33}	2.07256×10^{-64}	1.03628×10^{-63}	4.35237×10^{-63}	1.76167×10^{-62}
$1 / 32$	-6.90852×10^{-65}	7.23441×10^{-129}	3.61721×10^{-128}	1.51923×10^{-127}	6.14925×10^{-127}
$1 / 64$	$-2.41147 \times 10^{-129}$	9.08805×10^{-259}	4.54403×10^{-258}	1.90849×10^{-257}	7.72485×10^{-257}

Table 2. Results for $F_{1}(t)=1 /\left(1+t^{2}+t^{4}+t^{6}\right)$
on $[-1,1]$.

h	$E(h)$	$\left\|E(h)-E_{2}(h, 1)\right\|$	$\left\|E(h)-E_{2}(h, 2)\right\|$	$\left\|E(h)-E_{2}(h, 3)\right\|$	$\left\|E(h)-E_{2}(h, 4)\right\|$
$1 / 1$	2.92136×10^{-2}	4.12347×10^{-5}	2.06449×10^{-4}	8.69796×10^{-4}	3.54584×10^{-3}
$1 / 2$	1.37266×10^{-5}	3.40342×10^{-11}	1.70174×10^{-10}	7.14758×10^{-10}	2.89332×10^{-9}
$1 / 4$	1.13445×10^{-11}	1.60476×10^{-21}	8.02380×10^{-21}	3.36999×10^{-20}	1.36405×10^{-19}
$1 / 8$	5.34920×10^{-22}	1.06920×10^{-41}	5.34599×10^{-41}	2.24532×10^{-40}	9.08818×10^{-40}
$1 / 16$	3.56399×10^{-42}	1.36460×10^{-81}	6.82298×10^{-81}	2.86565×10^{-80}	1.15991×10^{-79}
$1 / 32$	4.54865×10^{-82}	6.34476×10^{-161}	3.17238×10^{-160}	1.33240×10^{-159}	5.39305×10^{-159}
$1 / 64$	2.11492×10^{-161}	3.89818×10^{-319}	1.94909×10^{-318}	8.18618×10^{-318}	3.31345×10^{-317}

Table 3. Results for $F_{2}(t)=\left(1-t^{4}\right)^{1 / 2}$ on
$[-1,1]$.

A QFT Physics Example

David Broadhurst and I found the following conjectural identity in (1996):

$$
\begin{aligned}
I= & \frac{24}{7 \sqrt{7}} \int_{\pi / 3}^{\pi / 2} \log \left|\frac{\tan t+\sqrt{7}}{\tan t-\sqrt{7}}\right| d t \stackrel{?}{=} L_{-7}(2) \\
= & \sum_{n=0}^{\infty}\left[\frac{1}{(7 n+1)^{2}}+\frac{1}{(7 n+2)^{2}}-\frac{1}{(7 n+3)^{2}}\right. \\
& \left.+\frac{1}{(7 n+4)^{2}}-\frac{1}{(7 n+5)^{2}}-\frac{1}{(7 n+6)^{2}}\right] .
\end{aligned}
$$

This is one of 998 such identities arising out of studies in quantum field theory, in analysis of the volume of ideal tetrahedra in hyperbolic space. Such studies are currently of substantial interest to mathematical physicists, topologists and knot theorists Note the integrand has a nasty internat singularity at $\mathrm{t}=\arctan \left(7^{1 / 2}\right)$.

Implementation and Timing

\checkmark run at Virginia Tech

\checkmark originally ONLY 800 fold speedup
\checkmark using a stridingTanh-Sinh
\checkmark all operations need FFT's and reduced complexity algorithms
\checkmark certified to 50 digits but correct to 19,995 places

CPUs	Init	Integral \#1	Integral \#2	Total	Speedup
1	${ }^{*} 190013$	${ }^{*} 1534652$	${ }^{*} 1026692$	${ }^{*} 2751357$	1.00
16	12266	101647	64720	178633	15.40
64	3022	24771	16586	44379	62.00
256	770	6333	4194	11297	243.55
1024	199	1536	1034	2769	993.63

Parallel run times (in seconds) and speedup ratios for the 20,000-digit problem

LBNL's High-Precision Software (ARPREC and QD)

- Low-level routines written in C++.
- C++ and F-90 translation modules permit use with existing programs with only minor code changes.
- Double-double (32 digits), quad-double, (64 digits) and arbitrary precision (>64 digits) available.
- Special routines for extra-high precision (>1000 dig).
- Includes common math functions: sqrt, cos, exp, etc.
- PSLQ, root finding, numerical integration.
- An interactive "Experimental Mathematician's Toolkit" employing this software is also available.
Available at: http://www.experimentalmath.info

Authors: Xiaoye Li, Yozo Hida, Brandon Thompson and DHB.

An Ising Susceptibility Integral (bis)

2006
Bailey, Crandall and I are currently studying:
$D_{n}:=\frac{4}{n!} \int_{0}^{\infty} \cdots \int_{0}^{\infty} \frac{\prod_{i<j}\left(\frac{u_{i}-u_{j}}{u_{i}+u_{j}}\right)^{2}}{\left(\sum_{j=1}^{n}\left(u_{j}+1 / u_{j}\right)\right)^{2}} \frac{d u_{1}}{u_{1}} \cdots \frac{d u_{n}}{u_{n}}$.
The first few values are known: $D_{1}=2, D_{2}=2 / 3$, while

$$
D_{3}=8+\frac{4}{3} \pi^{2}-27 L_{-3}(2)
$$

and

$$
D_{4}=\frac{4}{9} \pi^{2}-\frac{1}{6}-\frac{7}{2} \zeta(3)
$$

\checkmark Computer Algebra Systems can (with help) find the first 3
\checkmark D_4 is a remarkable 1977 result due to McCoy--Tracy--Wu

An Extreme Ising Quadrature

2006 Recently Tracy asked for help 'experimentally' evaluating D_{5}

Using `PSLQ` this entails being able to evaluate a five dimensional integral to at least 50 or 100 places so that one can search for combinations of 6 to10 constants

\checkmark Monte Carlo methods can certainly not do this
\checkmark We are able to reduce D_{5} to a horrifying several-page-long 3-D symbolic integral!
\checkmark A 256 cpu `tanh-sinh' computation at LBNL providod 500_digits in 18.2 hours on "Bassi", an IBM Power5 system: A FIRST $0.00248460576234031547995050915390974963506067 / 64248 / 51615870769$ 216182213785691543575379268994872451201870687211063925205118620 699449975422656562646708538284124500116682230004545703268769738 489615198247961303552525851510715438638113696174922429855780762 804289477702787109211981116063406312541360385984019828078640186 930726810988548230378878848758305835125785523641996948691463140 911273630946052409340088716283870643642186120450902997335663411 372761220240883454631501711354084419784092245668504608184468...

Conclusions

We have derived two estimates of the error in Euler-Maclaurin-based quadrature, one of which is particularly simple to implement, since it only involves summation of derivatives of the transformed function, at the same abscissas as the quadrature calculation itself.

It appears, from our results in several test problems, that the simplest instance of these estimates, namely $\mathrm{E}_{2}(\mathrm{~h}, 1)$, is not only adequate, but in fact very accurate once h is even modestly small.

What is more, the difference between this estimate and the actual error can be bounded with an easily computed formula, thus permitting some "certificates" of quadrature values computed using Euler-Maclaurin-based schemes.

REFERENCES

2006

1. David H. Bailey and Jonathan M. Borwein, `Effective Error Bounds for Euler-Maclaurin-Based Quadrature Schemes," HPCS06 IEEE Proceedings, 2006, in press.
2. D.H. Bailey, J.M. Borwein and R.E. Crandall, '`Integrals of the Ising Class," submitted May 2006.
3. J.M. Borwein, D.H. Bailey and R. Girgensohn, with the assistance of M. Macklem, Experiments in Mathematics CD, A.K. Peters Ltd, 2006. Interactive version of Mathematics by Experiment: Plausible Reasoning in the 21st Century and Experimentation in Mathematics: Computational Paths to Discovery, AKP, 2003/4. (See www.experimentalmath.info)
4. David Bailey and Jonathan Borwein, `'Highly parallel, high precision integration," submitted July 2005. [D-drive Preprint 294]
