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The purpose of computing is insight not numbers       
(Richard Hamming 1962)



► We analyze the behavior of  Euler-Maclaurin-
based integration schemes with the intention of deriving 
accurate and economic estimations of the error 

► These schemes typically provide very high-precision 
results (hundreds or thousands of digits), in reasonable run 
time, even when the integrand function has a blow-up 
singularity or infinite derivative at an endpoint

►Heretofore, researchers using these schemes have relied mostly on 
ad hoc error estimation schemes to project the estimated error of the 
present iteration

►In this paper, we seek to develop some more rigorous, yet 
highly usable schemes to estimate these errors

ABSTRACT



INTRODUCTION

► In the past few years, computation of definite integrals to 
high precision has become a key tool in experimental math.

►It is often possible to recognize an unknown definite integral if its 
numerical value is known to extremely high precision

►High precision is required since integer relation searches of n 
terms with d-digit coefficients require at least dn-digit precision for 
both input data and relation searching. 

►Such computation often requires highly parallel implementation

►One computation below, required nearly one hour on 1024 
cpus, and the PSLQ integer relation search in another required 44 
hours on 32 cpus. Moreover, such extreme computations provide 
excellent tests of HPC systems

► for example, we  identified a difficulty with differing processor speeds on 
the Virginia Tech system with these calculations



OUTLINEOUTLINE

► Experimental Mathematics
►Rationale
►Examples of need for quadrature etc 

► Extreme Quadrature
►Theory
►Implementation
►Examples
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“Computers are 
useless, they can 

only give answers.”
Pablo Picasso 

Experimental  Mathodology

Comparing –y2ln(y) (red) to y-y2 and y2-y4

1. Gaining insight and intuition

2. Discovering new relationships

3. Visualizing math principles

4. Testing and especially falsifying 
conjectures

5. Exploring a possible result to see 
if  it merits formal proof

6. Suggesting approaches for 
formal proof

7. Computing replacing lengthy 
hand derivations

8. Confirming analytically derived 
results

Science News 
2004



Example (MAA, April 2005). Prove that 

Proof.  Purely qualitative analysis with partial fractions and 
arctans shows the integral is π β where β is algebraic of degree 
much less than 100 (actually 6), length much less than 
100,000,000.With P(x)=x-1 (D=1,L=2, d=6, λ=?), this means 
checking the identity to 100 places is plenty of PROOF. 

A fully symbolic Maple proof followed. QED

Suppose we know that 1<N<10 and that N  is an integer
- computing N to 1 significant place with a certificate will       

prove the value of N. Euclid’s method is basic to such ideas.

Likewise, suppose we know α is algebraic of degree d and length λ
(coefficient sum  in absolute value)

If P is polynomial of degree D & length L EITHER P(α) = 0 OR

WARMUPWARMUP Computational Proof



Ising Integrals (Jan 2006)

- via PSLQ and the Inverse 
Calculator to which we now turn



Multiplication
Karatsuba multiplication (200 digits +) or Fast Fourier Transform  

(FFT)
… in ranges from 100 to 1,000,000,000,000 digits

• The other operations
via Newton’s method

• Elementary and special functions
via Elliptic integrals and  Gauss AGM 

For example:

Karatsuba 
replaces one 

‘times’ by 
many ‘plus’

FFT multiplication of multi-billion digit numbers reduces centuries 
to minutes. Trillions must be done with Karatsuba!

Fast Arithmetic
(Complexity Reduction in Action)



identify(sqrt(2.)+sqrt(3.))

A Colour and an Inverse 
Calculator (1995)

Input of π

Inverse Symbolic Computation

3.14626437

Inferring mathematical structure from numerical dataInferring mathematical structure from numerical data
Mixes large table lookup, integer relation methods and 

intelligent preprocessing – needs micro-parallelism
It faces the “curse of exponentiality”
Implemented as Recognize in Mathematica

and identify in Maple



Knuth’s Problem
We can know the answer firstA guided proof 

followed on 
asking why
Maple could 
compute the 

answer so fast.

The answer is 
Gonnet’s

Lambert’s W
which solves

W exp(W)  = x

W’s Riemann
surface

* ARGUABLY WE ARE DONE

ISC is shown  on next slide

“instrumentation”



ENTERING

‘Simple Lookup’ fails; 
‘Smart Look up’ gives:

evalf(Sum(k^k/k!/exp(k)-1/sqrt(2*Pi*k),k=1..infinity),16)

= K



An Immediate Use

To see if a is algebraic of degree N, consider  (1,a,a2,…,aN)

Integer Relation 
Methods

Combinatorial optimization for pure mathematics (also LLL)



• The proofs use Groebner basis techniques

• Another useful part of the HPM toolkit



3. was easily computer proven
(Wilf-Zeilberger)                   

MAA: human proof?

2

PSLQ and Zeta

Riemann 
(1826-66)

Euler 
(1707-73)

3

1
2005 Bailey, Bradley  

& JMB discovered 
and proved - in Maple 

- three equivalent
binomial identities

1. via PSLQ to 
50,000 digits
(250 terms)

2. reduced
as hoped



Extreme Quadrature.                
Ising Susceptibility Integrals

Bailey, Crandall and I are currently studying:

The first few values are known: D1=2, D2= 2/3, while

Computer Algebra Systems can (with help) find the first 3

D4 is a remarkable 1977 result due to McCoy--Tracy--Wu



TANH-SINH QUADRATURE

► is the fastest known high-precision scheme, particularly if one 
counts time for computing abscissas and weights

► has been successfully used for quadrature calculations up to 20,000-digit 
precision
► works well for functions with blow-up singularities or infinite derivatives at 
endpoints, and is well-suited for highly parallel implementation

►At present, these schemes rely  on ad-hoc methods to estimate 
the error at any given stage

► one can simply continue until two iterations give the same result (except for the 
last few digits)
►but this nearly doubles overall run time, which is an issue for large quadrature 
computations attempted on highly parallel computers

►Also, while one can readily compute very high-precision values 
with these methods, mathematicians often require “certificates”

► rigorous guarantees that the approximation error cannot exceed a given level

►Hence we seek much more accurate and rigorous, yet readily 
computable error bounds for this class of quadrature methods



Quadrature and the Euler-
Maclaurin Formula

Atkinson's version of the Euler-Maclaurin formula.  For m > 0 
integer, assume h evenly divides a and b, while f(x) is at least (2 m +2)-
times continuously differentiable on [a, b]. Then

where Bj denotes the j-th Bernoulli number, D denotes the differentiation 
operator, and the error is 

where ξ ∈ (a, b).



► Suppose   f(t) and all derivatives are zero at the endpoints 
(as for a smooth, bell-shaped function).   Then the 2nd and 3rd 

terms of the E-M formula are zero.  
► For such functions, the error in a simple step-function 

approximation with interval h, is simply E(h,m)  and  is less than a 
constant (independent of h) times h2m+2. Thus,  the error goes to zero 

more rapidly than any fixed power of h. 

►This leads to state-of-the-art numerical integration schemes: transform 
F(x) on   [-1, 1] to an integral of f(t) = F(g(t))g'(t) on   (-∞, ∞), via the 
change of variable x = g(t) for any monotonic infinitely-differentiable 
function such  that g(x) goes +/-1 as x goes to +/-∞, while  g'(x) and higher 
derivatives rapidly approach zero for large arguments. With xj := g(hj) and 
wj: = g'(hj), for h> 0, we have

• Even if F(x) has an infinite derivative or integrable singularity at  endpoint(s) the 
resulting integrand will be a smooth bell-shaped function for which the prior E-Ma 
argument applies. Thus, the error E(h) drops very rapidly as h shrinks  



Quadrature for a Bell-shaped 
Function



Various Choices

Various functions work well in practice

g(t) := tanh(t) gives rise to tanh quadrature

g(t) := erf(t) gives rise to ``error function'' or erf quadrature

g(t) := tanh(π/2 · sinh t)  or g(t) := tanh (sinh t) gives rise to 
tanh-sinh quadrature [Takahasi, 1977]  

(The cheap doubly exponential winner)
For functions to be integrated on (-∞, ∞) one can just use g(t) := sinh t,          
g(t) := sinh (π/2 · sinh t) or g(t) := sinh (sinh t).

``Quadratic convergence'' becomes apparent --- the number of 
correct digits is approximately doubled when h is halved. Table 1 
shows this for the following test problems



QUADRATIC CONVERGENCE of erf



Estimates of the     
Error Term

A standard estimate of the error term: If a  2π-periodic function 
f(z) is analytic in a strip |Im(z)| < c, the error in a trapezoidal (or 
step function) approx to the integral is bounded by

where N is the number of evaluation points, h = 2 π / N, and M 
is a bound on |f| on the complex strip

This is interesting as it begins to explain quadratic convergence

It is not very practical, because it requires  locating complex singularities and 
finding a maximum on a complex strip



Doing Better

By contrast, the inexpensive error estimate we 
introduce below with m = 1, gives 2.01832 × 10-5

Actual error in a trapezoidal approx to the integral to ten 
digits, is 2.0183003673 × 10-5

What's more, the resulting estimate is not very accurate. 
Consider 

Transform by x = tanh(4sinh t) so, to a tolerance of 10-35, f and a 
few derivatives are 0 at the endpoints of    [-π,π]

The new function has a pole at 0.19763359 i. 
For c = 0.197,  M = 790,  N = 64, h = 2 π / 64 

we obtain the estimate 3.32 × 10-2



Doing Better

For many integrands, even the first term here is an excellent approximation to 
the error. In other words, we consider

To derive more accurate error bounds, we need to better 
understand the error term in the Euler-Maclaurin formula. To 
that end, we state two alternate forms of the error term 

Theorem 1. The error in the Euler-Maclaurin formula is



We introduce a second approximation  
first discovered because of a `bug' in our program

Theorem 2.  Suppose f(t) is defined on [a,b], with f(a) = f(b) = 0 
and f is 2m-times cont. differentiable on [a,b], with Dk f(a) = Dk f(b) 
= 0 for 1 · k · 2m.  Also h divides a and b.  Let these conditions 
also hold with m+n replacing m. Then

Doing Better

Theorem 2 suggests using



Corollary 1 Under the hypotheses of Theorem 1 one has

This bound can be used, for instance, to establish a rigorous ``certificate'' of the 
estimate E1(h,m), and thus (after computation of E1(h,m)) of the quadrature itself

Other useful bounds can be derived. In particular, we mirror Corollary 1:

Corollary 2. Under the hypotheses of Theorem 2 with n=1

Doing Better

• This highlights what is gained by using  E2(h,m) rather than E1(h,m)
• Note this is particularly advantageous when m is odd



Implementations and Tests

F2 above and F3 below



Implementations and Tests

Fig 1. Test function F4



Implementations and Tests



A QFT Physics Example
David Broadhurst  and I found the following conjectural identity in (1996):

This is one of 998 such identities arising out 
of studies in quantum field theory, in 
analysis of the volume of ideal tetrahedra in 
hyperbolic space. Such studies are currently 
of substantial interest to mathematical 
physicists, topologists and knot theorists. 
Note the integrand has a nasty internal 
singularity at t = arctan (71/2).



Implementation and Timing

run at Virginia Tech

originally ONLY 800 fold speedup

using a stridingTanh-Sinh

all operations need FFT’s and reduced complexity 
algorithms

certifiedcertified to 50 digits but correct to 19,995 places



4b. An Ising Integral
Bailey, Crandall and I are currently studying:



An Ising Susceptibility Integral (bis)

Bailey, Crandall and I are currently studying:

The first few values are known: D1=2, D2= 2/3, while

Computer Algebra Systems can (with help) find the first 3

D_4 is a remarkable 1977 result due to McCoy--Tracy--Wu



An Extreme Ising Quadrature 
Recently Tracy asked for help ‘experimentally’ evaluating D5

Using `PSLQ` this entails  being able to evaluate a five 
dimensional integral to at least 50 or 100 places so that one 
can search for combinations of 6 to10 constants

Monte Carlo methods can certainly not do this
We are able to reduce D5 to a horrifying several-page-long 3-D 

symbolic integral !
A 256 cpu `tanh-sinh’ computation at LBNL provided 500 digits in 18.2 

hours on ``Bassi", an IBM Power5 system: 
0.00248460576234031547995050915390974963506067764248751615870769
216182213785691543575379268994872451201870687211063925205118620
699449975422656562646708538284124500116682230004545703268769738
489615198247961303552525851510715438638113696174922429855780762
804289477702787109211981116063406312541360385984019828078640186
930726810988548230378878848758305835125785523641996948691463140
911273630946052409340088716283870643642186120450902997335663411
372761220240883454631501711354084419784092245668504608184468...

A  FIRST



We have derived two estimates of the error in Euler-
Maclaurin-based quadrature, one of which is particularly 
simple to implement, since it only involves summation of 
derivatives of the transformed function, at the same 
abscissas as the quadrature calculation itself. 

It appears, from our results in several test problems, that 
the simplest instance of these estimates, namely E2(h,1),
is not only adequate, but in fact very accurate once h is 
even modestly small.

What is more, the difference between this estimate and the 
actual error can be bounded with an easily computed 
formula, thus permitting some ``certificates'' of quadrature 
values computed using Euler-Maclaurin-based schemes.

Conclusions
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