Meetings with Computer Algebra and Special Functions

A Ramanujan Style Talk

Jonathan M. Borwein FRSC FAA FAAAS

Laureate Professor \& Director of CARMA, Univ. of Newcastle this talk: http://carma.newcastle.edu.au/jon/evims.pdf

Prepared for
JonFest DownUnder, Nov 29, 30 and Dec 1, 2011
Revised Nov 20, 2012 for eViMS (23-25 November, 2012)
COMPANION PAPER AND SOFTWARE: http://carma.newcastle.edu.au/jon/wmi-paper.pdf

Contents. We will cover some of the following:

(1) 2. Introduction and Three Elementary Examples
10. Archimedes and PI
17. A1st Century postst ript $]$ Sinc fundtions
36. What is that number?
42. Lambert W
47. What is that continued fraction?
(3) 54. More Advanced Examples
55. What is that probability?
61. What is that limit, II?
66. What is that transition value?
(4) 68. Current Research and Cona tipns
68. What is that expectation?
72. What is that density?
75. Part II and Conclusions?
2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions
11. Archimedes and Pi
18. A 21st Century postscript
28. Sinc functions

Abstract

It is not knowledge, but the act of learning, not possession but the act of getting there, which grants the greatest enjoyment. When I have clarified and exhausted a subject, then I turn away from it, in order to go into darkness again; (Carl Friedrich Gauss, 1777-1855)

- I display roughly a dozen examples where computational
experimentation, computer algebra and special function theory
have lead to pleasing or surprising results.
- In the style of Ramanujan, very few proofs are given but may be found in the references.

2. Introduction and Three Elementary Examples
3. Three Intermediate Examples 54. More Advanced Examples
4. Current Research and Conclusions

Abstract

It is not knowledge, but the act of learning, not possession but the act of getting there, which grants the greatest enjoyment. When I have clarified and exhausted a subject, then I turn away from it, in order to go into darkness again; (Carl Friedrich Gauss, 1777-1855)

- I display roughly a dozen examples where computational experimentation, computer algebra and special function theory have lead to pleasing or surprising results.

In the style of Ramanujan, very few proofs are given but may
be found in the references.

- Much of this work requires extensive symbolic, numeric and graphic computation. It makes frequent use of the new NIST Handbook of Mathematical Functions and related tools such as gfun.

Abstract

It is not knowledge, but the act of learning, not possession but the act of getting there, which grants the greatest enjoyment. When I have clarified and exhausted a subject, then I turn away from it, in order to go into darkness again; (Carl Friedrich Gauss, 1777-1855)

- I display roughly a dozen examples where computational experimentation, computer algebra and special function theory have lead to pleasing or surprising results.
- In the style of Ramanujan, very few proofs are given but may be found in the references.
- Much of this work requires extensive symbolic, numeric and graphic computation. It makes frequent use of the new NIST Handbook of Mathematical Functions and related tools such as gfun.

My intention is to show off the interplay between symbolic,
numeric and graphic computing while exploring the various topicíarma in my title

Abstract

It is not knowledge, but the act of learning, not possession but the act of getting there, which grants the greatest enjoyment. When I have clarified and exhausted a subject, then I turn away from it, in order to go into darkness again; (Carl Friedrich Gauss, 1777-1855)

- I display roughly a dozen examples where computational experimentation, computer algebra and special function theory have lead to pleasing or surprising results.
- In the style of Ramanujan, very few proofs are given but may be found in the references.
- Much of this work requires extensive symbolic, numeric and graphic computation. It makes frequent use of the new NIST Handbook of Mathematical Functions and related tools such as gfun.
My intention is to show off the interplay between symbolic,
numeric and graphic computing while exploring the various topifarma in my title.

Abstract

It is not knowledge, but the act of learning, not possession but the act of getting there, which grants the greatest enjoyment. When I have clarified and exhausted a subject, then I turn away from it, in order to go into darkness again; (Carl Friedrich Gauss, 1777-1855)

- I display roughly a dozen examples where computational experimentation, computer algebra and special function theory have lead to pleasing or surprising results.
- In the style of Ramanujan, very few proofs are given but may be found in the references.
- Much of this work requires extensive symbolic, numeric and graphic computation. It makes frequent use of the new NIST Handbook of Mathematical Functions and related tools such as gfun.
My intention is to show off the interplay between symbolic, numeric and graphic computing while exploring the various topicsarma in my title.

2. Introduction and Three Elementary Examples
3. Three Intermediate Examples 54. More Advanced Examples
4. Current Research and Conclusions
5. Archimedes and Pi
6. A 21st Century postscript
7. Sinc functions

Mathodology

Experimental Mathodology

1. Gaining insight and intuition
2. Discovering new relationships
3. Visualizing math principles
4. Testing and especially falsifying conjectures
5. Exploring a possible result to see if it merits formal proof
6. Suggesting approaches for formal proof
7. Computing replacing lengthy hand derivations
8. Confirming analytically derived results
9. Introduction and Three Elementary Examples
10. Three Intermediate Examples 54. More Advanced Examples
11. Current Research and Conclusions
12. Archimedes and Pi
13. A 21st Century postscript
14. Sinc functions

. . Visual Theorems: Reflect-Reflect-Average

To find a point on a sphere and in an affine subspace

> Briefly, a visual theorem is the graphical or visual output from a computer program - usually one of a family of such outputs - which the eye organizes into a coherent, identifiable whole and which is able to inspire mathematical questions of a traditional nature or which contributes in some way to our understanding or enrichment of some mathematical or real world situation - Chandler Davis, 1993, p. 333

. . Visual Theorems: Reflect-Reflect-Average

To find a point on a sphere and in an affine subspace
Briefly, a visual theorem is the graphical or visual output from a computer program - usually one of a family of such outputs - which the eye organizes into a coherent, identifiable whole and which is able to inspire mathematical questions of a traditional nature or which contributes in some way to our understanding or enrichment of some mathematical or real world situation. - Chandler Davis, 1993, p. 333.
2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions
11. Archimedes and Pi
18. A 21st Century postscript
28. Sinc functions

Congratulations to NIST

http://dlmf.nist.gov/

MCHUMOR.com by T. McCracken

handbook in 21C dress

DDMF: INRIA's way of the

Special Functions in the $21^{\text {st }}$ Century: Theory \& Applications

April 6-8, 2011 Washington, DC

Objectives. The conference will provide a forum for the exchange of expertise, experience and insights among world leaders in the subject of special functions. Participants will include expert authors editors and validators of the recently pubished NIST Handbook of Mathematical Functions and Digita Library of Mathemaical Functions (DLMF). It will also provide an opportunity for DLMF users to interac with its creators and to explore potential areas of fruifful future developments.

Special Recognition of Professor Frank W. J. Olver. This conference is dedicated to Professor Olver in light of his seminal contributons to the advancement of special functions, especially
asymptotic analysis and as Mathematics Editor of the DLMF.
Plenary Speakers
Richard Askey, University of Wisconsin
Michael Berry, University of Bristol
Naini Joshi University of Sydney Australia-
Leonard Maximon, George Washington University
William Reinhardt. University of Washington
Roderick Wong, City University of Hong Kong

Fw.s. otver
Call for Contributed Talks (25 Minutes)
Abstracts may be submitted to Daniel. Lozier@nist.gov until March 15, 2011
Registration and Financial Assistance. Registration fee: $\$ 120$. Courtesy of SLAM, limited travel support is available for US-based postdoc and early career researchers. Courtesy of City University of Hong Kong and NIST, partial support is available for others in cases of need. Submit all requests for financial assistance to Daniel.Lozier(o)nist.gov.
Venue. Renaissance Washington Dupont Circle Hotel, 1143 New Hampshire Avenue NW, Washington DC, 20037 USA. The conference rate is $\$ 259$, avalilable until March 15. Refreshments are supplied
courtesy of University of Maryland.

Organizing Committee. Daniel Lozier, NIST, Gaithersburg, Maryland; Adri Olde Daalhuis, University of Edinburgh; Nico Temme, CWI, Amsterdam; Roderick Wong, City University of Hong Kong

To register online for the conference, and reserve a room at the conference hotel, see http://math.nist.gov/-DLozier/SF21
NS
2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions
11. Archimedes and Pi
18. A 21st Century postscript
28. Sinc functions

Congratulations to NIST

```
http://dlmf.nist.gov/
```

McFIUMOR.com by т. McCracken

DLMF: NIST is still a 19C handbook in 21C dress. DDMF: INRIA's way of the future?

Special Functions in the $21^{\text {st }}$ Century: Theory \& Applications

April 6-8, 2011 Washington, DC

Objectives. The conference will provide a forum for the exchange of expertise, experience and insights among world leaders in the subject of special functions. Participants will include expert authors, editors and validators of the recently published NIST Handbook of Mathematical Functions and Digital Library of Mathematal Functions (DLMF). It will also provide an opportunity for DLMF users to interac with its creators and to explore potential areas of fruifful future developments.

Special Recognition of Professor Frank W. J. Olver. This conference is dedicated to Professor Olver in light of his seminal conasymptotic analysis and as Mathematics Editor of the DLMF.
Plenary Speakers
Richard Askey, University of Wisconsin
Michael Berry, University of Bristol
Nalini Joshi, University of Sydney, Australia
Leonard Maximon, George Washington University
William Reinhardt University of Washington
Roderick Wong. City University of Hong Kong

Call for Contributed Talks (25 Minutes)
Abstracts may be submitted to Daniel.Lozier@nist.gov until March 15, 2011.
Registration and Financial Assistance. Registration fee: $\$ 120$. Courtesy of SIAM, limited travel support is available for US-based postdoc and early career researchers. Courtesy of City University of Hong Kong and NIST, partial support is available for others in cases of need. Submit all requests for financial assistance to Daniel.Lozier(i)nist.gov.
Venue. Renaissance Washington Dupont Circle Hotel, 1143 New Hampshire Avenue NW, Washington DC, 20037 USA. The conference rate is $\$ 259$, avalilable until March 15. Refreshments are supplied
courtesy of University of Maryland.

Organizing Committee. Daniel Lozier, NIST, Gaithersburg, Maryland; Adri Olde Daalhuis, Univer sity of Edinburgh; Nico Temme, CWI, Amsterdam; Roderick Wong, City University of Hong Kong

To register online for the conference, and reserve a room at the conference hotel, see http://math.nist.gov/-DLozier/SF21
NS CARMA
2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions
11. Archimedes and Pi
18. A 21st Century postscript
28. Sinc functions

DLMF and DDMF

http://ddmf.msr-inria.inria.fr/

Fipes 314 |Fion ien

5.4 Special Valuen and Extrema

540 Ganens Fanction
141
$\mathrm{nH}-\mathrm{t} \quad \mathrm{ot}-\mathrm{H}+\mathrm{H}$

This is mase ist of DOUF

* Depan bour merce gube onle
fremen mive
More pe Be prowect
 - DCur siontrion lial
- Atise en Ne propel en Cuszoto

- Luid metelynerth

Tyameroutera
Themane cime
Tre meme cotinger

- The murse ypobolc cesecar
- Toe lay vietion ef the bationd

The mierie secie
The mese wed

- Tie Ary laction of ter mecrind knd
- The Mpebosc cosire megil
- Ne iosise neipy
- Tre vowre
:The epolotision ingul
- The conplimentiry mor Inctom
- The coevinertiary mor Ny
- The magnary wna hicilon
:The maroe Mopebole cotariger
*Te iverse Mipebolic moset
- The nemin lipebole are
- De whe +iovsole larourt
- The mpurtotecoser
- Me vipeoeve
- The ilogiter
- Tremonote mentes
- The mes viegw
: Tre $=$
- The enporester
- The opotern

2. Introduction and Three Elementary Examples
3. Three Intermediate Examples 54. More Advanced Examples
4. Current Research and Conclusions
5. Archimedes and Pi
6. A 21st Century postscript
7. Sinc functions

Related Work and References

(1) This describes joint research with many collaborators over many years - especially DHB and REC.
(2) Earlier results are to be found in the books:

- Mathematics by Experiment with DHB (2004-08) and

Experimentation in Mathematics with DHB \& RG (2005)

- The Computer as Crucible with Keith Devlin (2008).
www. carma.newcastle.edu.au/~jb616/papers.html\#BOOKS.
(3) Recent results surveyed with AS in Theor. Comp Sci 2012:
- http://carma.newcastle.edu.au/jon/wmi-paper.pdf
(4) Exploratory experimentation: with DHB, AMS Notices Nov11
- http://carma.newcastle.edu.au/jon/expexp.pdf What are closed forms: with REC, AMS Notices Jan13
- http://carma.newcastle.edu.au/jon/closed.pdf
(5) This talk and related talks are housed at www. carma.
newcastle.edu. au/~jb616/papers.html\#TALKS

2. Introduction and Three Elementary Examples
3. Three Intermediate Examples 54. More Advanced Examples
4. Current Research and Conclusions
5. Archimedes and Pi
6. A 21st Century postscript
7. Sinc functions

Related Work and References

(1) This describes joint research with many collaborators over many years - especially DHB and REC.
(2) Earlier results are to be found in the books:

- Mathematics by Experiment with DHB (2004-08) and Experimentation in Mathematics with DHB \& RG (2005)
- The Computer as Crucible with Keith Devlin (2008). www.carma.newcastle.edu.au/~jb616/papers.html\#BOOKS.
(3) Recent results surveyed with AS in Theor. Comp Sci 2012:
- http://carma.newcastle.edu.au/jon/wmi-paper.pdf
(4) Exploratory experimentation: with DHB, AMS Notices Nov11
- http://carma.newcastle.edu.au/jon/expexp.pdf What are closed forms: with REC, AMS Notices Jan13
- httn://carma newcastle edu au/jon/closed ndf
(5) This talk and related talks are housed at WWW. carma. newcastle.edu. au/~jb616/papers.html\#TALKS

Related Work and References

(1) This describes joint research with many collaborators over many years - especially DHB and REC.
(2) Earlier results are to be found in the books:

- Mathematics by Experiment with DHB (2004-08) and Experimentation in Mathematics with DHB \& RG (2005)
- The Computer as Crucible with Keith Devlin (2008). www.carma.newcastle.edu.au/~jb616/papers.html\#BOOKS.
(3) Recent results surveyed with AS in Theor. Comp Sci 2012:
- http://carma.newcastle.edu.au/jon/wmi-paper.pdf
(4) Exploratory experimentation: with DHB, AMS Notices Nov11
- http://carma.newcastle.edu.au/jon/expexp.pdf What are closed forms: with REC, AMS Notices Jan13
- http://carma.newcastle.edu.au/jon/closed.pdf
(5) This talk and related talks are housed at www. carma. newcastle.edu. au/~jb616/papers.html\#TALKS

Related Work and References

(1) This describes joint research with many collaborators over many years - especially DHB and REC.
(2) Earlier results are to be found in the books:

- Mathematics by Experiment with DHB (2004-08) and Experimentation in Mathematics with DHB \& RG (2005)
- The Computer as Crucible with Keith Devlin (2008). www.carma.newcastle.edu.au/~jb616/papers.html\#BOOKS.
(3) Recent results surveyed with AS in Theor. Comp Sci 2012:
- http://carma.newcastle.edu.au/jon/wmi-paper.pdf
(4) Exploratory experimentation: with DHB, AMS Notices Nov11
- http://carma.newcastle.edu.au/jon/expexp.pdf What are closed forms: with REC, AMS Notices Jan13
- http://carma.newcastle.edu.au/jon/closed.pdf
(5) This talk and related talks are housed at www. carma. newcastle.edu.au/~jb616/papers.html\#TALKS

2. Introduction and Three Elementary Examples
3. Three Intermediate Examples 54. More Advanced Examples
4. Current Research and Conclusions
5. Archimedes and Pi
6. A 21st Century postscript
7. Sinc functions

Some of my Current Collaborators (Straub, Borwein and Wan)

2. Introduction and Three Elementary Examples 35. Three Intermediate Examples
54. More Advanced Examples
68. Current Research and Conclusions
11. Archimedes and Pi
18. A 21 st Century postscript
28. Sinc functions

La plus ça change, I

COSMOLOGY MARCHES ON

2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions
11. Archimedes and Pi
18. A 21st Century postscript
28. Sinc functions

1. What is that Integral?

(Bailey and Crandall)
did you ever wonder
...why the digits
of pi look random?

Question

Remark (Kondo-Yee, 2011.)

Pi now computed to ten trillion decimal places. First four trillion
hex digits appear very normal base 16 (Exp. Maths, in press)
See http://carma.newcastle.edu.au/jon/normality.pdf
2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions
11. Archimedes and Pi
18. A 21st Century postscript
28. Sinc functions

1. What is that Integral?

(Bailey and Crandall)

Question

$$
\begin{equation*}
\int_{0}^{1} \frac{(1-x)^{4} x^{4}}{1+x^{2}} d x=? ? ? \tag{1}
\end{equation*}
$$

Remark (Kondo-Yee, 2011.)

Pi now computed to ten trillion decimal places. First four trillion hex digits appear very normal base 16 (Exp. Maths, in press) See http://carma.newcastle.edu.au/jon/normality.pdf
2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples 68. Current Research and Conclusions
11. Archimedes and Pi
18. A 21st Century postscript
28. Sinc functions

1. What is that Integral?

did you ever WOnOCl
...why the digits
of pi look random?
(Bailey and Crandall)

Question

$$
\begin{equation*}
\int_{0}^{1} \frac{(1-x)^{4} x^{4}}{1+x^{2}} d x=? ? ? \tag{1}
\end{equation*}
$$

Remark (Kondo-Yee, 2011.)
Pi now computed to ten trillion decimal places. First four trillion hex digits appear very normal base 16 (Exp. Maths, in press).
See http://carma.newcastle.edu.au/jon/normality.pdf.
2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions
11. Archimedes and Pi
18. A 21st Century postscript
28. Sinc functions

Let's be Clear: π Really is not $\frac{22}{7}$

Even Maple or Mathematica 'knows' this since

$$
\begin{equation*}
0<\int_{0}^{1} \frac{(1-x)^{4} x^{4}}{1+x^{2}} d x=\frac{22}{7}-\pi \tag{2}
\end{equation*}
$$

though it would be prudent to ask 'why' it can perform the integral and 'whether' to trust it?

Assume we trust it. Then the integrand is strictly positive on $(0,1)$, and the answer in (2) is an area and so strictly positive, despite millennia of claims that π is $22 / 7$.

- Accidentally, 22/7 is one of the early continued fraction approximation to π. These commence:

2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions

Let's be Clear: π Really is not $\frac{22}{7}$

Even Maple or Mathematica 'knows' this since

$$
\begin{equation*}
0<\int_{0}^{1} \frac{(1-x)^{4} x^{4}}{1+x^{2}} d x=\frac{22}{7}-\pi \tag{2}
\end{equation*}
$$

though it would be prudent to ask 'why' it can perform the integral and 'whether' to trust it?

Assume we trust it. Then the integrand is strictly positive on $(0,1)$, and the answer in (2) is an area and so strictly positive, despite millennia of claims that π is $22 / 7$.

- Accidentally, 22/7 is one of the early continued fraction
approximation to π. These commence:

2. Introduction and Three Elementary Examples
3. Three Intermediate Examples 54. More Advanced Examples
4. Current Research and Conclusions

Let's be Clear: π Really is not $\frac{22}{7}$

Even Maple or Mathematica 'knows' this since

$$
\begin{equation*}
0<\int_{0}^{1} \frac{(1-x)^{4} x^{4}}{1+x^{2}} d x=\frac{22}{7}-\pi \tag{2}
\end{equation*}
$$

though it would be prudent to ask 'why' it can perform the integral and 'whether' to trust it?

Assume we trust it. Then the integrand is strictly positive on $(0,1)$, and the answer in (2) is an area and so strictly positive, despite millennia of claims that π is $22 / 7$.

- Accidentally, $22 / 7$ is one of the early continued fraction approximation to π. These commence:

$$
3, \frac{22}{7}, \frac{333}{106}, \frac{355}{113}, \ldots
$$

2. Introduction and Three Elementary Examples
3. Three Intermediate Examples 54. More Advanced Examples
4. Current Research and Conclusions
5. Archimedes and Pi
6. A 21st Century postscript
7. Sinc functions

Archimedes Method circa 1800 CE

As discovered - by Schwabb, Pfaff, Borchardt, Gauss - in the 19th century, this becomes a simple recursion:

Algorithm (Archimedes)

Set $a_{0}:=2 \sqrt{3}, b_{0}:=3$. Compute

$$
\begin{align*}
a_{n+1} & =\frac{2 a_{n} b_{n}}{a_{n}+b_{n}} \tag{H}\\
b_{n+1} & =\sqrt{a_{n+1} b_{n}} \tag{G}
\end{align*}
$$

These tend to π, error decreasing by a factor of four at each step.

- The greatest mathematician (scientist) to live before the

Enlightenment. To compute π Archimedes had to invent many subjects - including numerical and interval analysis.
2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions
11. Archimedes and Pi
18. A 21st Century postscript
28. Sinc functions

Archimedes Method circa 1800 CE

As discovered - by Schwabb, Pfaff, Borchardt, Gauss - in the 19th century, this becomes a simple recursion:

Algorithm (Archimedes)

Set $a_{0}:=2 \sqrt{3}, b_{0}:=3$. Compute

$$
\begin{align*}
a_{n+1} & =\frac{2 a_{n} b_{n}}{a_{n}+b_{n}} \tag{H}\\
b_{n+1} & =\sqrt{a_{n+1} b_{n}} \tag{G}
\end{align*}
$$

These tend to π, error decreasing by a factor of four at each step.

- The greatest mathematician (scientist) to live before the Enlightenment. To compute π Archimedes had to invent many subjects - including numerical and interval analysis.

2. Introduction and Three Elementary Examples
3. Three Intermediate Examples 54. More Advanced Examples
4. Current Research and Conclusions
5. Archimedes and Pi
6. A 21st Century postscript
7. Sinc functions

Archimedes Method circa 1800 CE

As discovered - by Schwabb, Pfaff, Borchardt, Gauss - in the 19th century, this becomes a simple recursion:

Algorithm (Archimedes)

Set $a_{0}:=2 \sqrt{3}, b_{0}:=3$. Compute

$$
\begin{align*}
a_{n+1} & =\frac{2 a_{n} b_{n}}{a_{n}+b_{n}} \tag{H}\\
b_{n+1} & =\sqrt{a_{n+1} b_{n}} \tag{G}
\end{align*}
$$

These tend to π, error decreasing by a factor of four at each step.

- The greatest mathematician (scientist) to live before the Enlightenment. To compute π Archimedes had to invent many subjects - including numerical and interval analysis.

2. Introduction and Three Elementary Examples
3. Three Intermediate Examples 54. More Advanced Examples
4. Current Research and Conclusions

Archimedes Method circa 1800 CE

As discovered - by Schwabb, Pfaff, Borchardt, Gauss - in the 19th century, this becomes a simple recursion:

Algorithm (Archimedes)

Set $a_{0}:=2 \sqrt{3}, b_{0}:=3$. Compute

$$
\begin{align*}
a_{n+1} & =\frac{2 a_{n} b_{n}}{a_{n}+b_{n}} \tag{H}\\
b_{n+1} & =\sqrt{a_{n+1} b_{n}} \tag{G}
\end{align*}
$$

These tend to π, error decreasing by a factor of four at each step.

- The greatest mathematician (scientist) to live before the Enlightenment. To compute π Archimedes had to invent many subjects - including numerical and interval analysis.

Proving π is not $\frac{22}{7}$

In this case, the indefinite integral provides immediate reassurance. We obtain
$\int_{0}^{\mathrm{t}} \frac{x^{4}(1-x)^{4}}{1+x^{2}} d x=\frac{1}{7} t^{7}-\frac{2}{3} t^{6}+t^{5}-\frac{4}{3} t^{3}+4 t-4 \arctan (t)$
as differentiation easily confirms, and the fundamental theorem of calculus proves (2).

One can take this idea a bit further. Note that

Proving π is not $\frac{22}{7}$

In this case, the indefinite integral provides immediate reassurance.
We obtain
$\int_{0}^{\mathrm{t}} \frac{x^{4}(1-x)^{4}}{1+x^{2}} d x=\frac{1}{7} t^{7}-\frac{2}{3} t^{6}+t^{5}-\frac{4}{3} t^{3}+4 t-4 \arctan (t)$
as differentiation easily confirms, and the fundamental theorem of calculus proves (2).
One can take this idea a bit further. Note that

$$
\begin{equation*}
\int_{0}^{1} x^{4}(1-x)^{4} d x=\frac{1}{630} . \tag{3}
\end{equation*}
$$

ונונונונו
2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions

... Going Further

Hence
$\frac{1}{2} \int_{0}^{1} x^{4}(1-x)^{4} d x<\int_{0}^{1} \frac{(1-x)^{4} x^{4}}{1+x^{2}} d x<\int_{0}^{1} x^{4}(1-x)^{4} d x$.

Archimedes: 223/71 < $n<22 / 7$
Combine this with (2) and (3) to derive:

$$
223 / 71<22 / 7-1 / 630<\pi<22 / 7-1 / 1260<22 / 7
$$

and so re-obtain Archimedes' famous

$$
3 \frac{10}{71}<\pi<3 \frac{10}{70}
$$

2. Introduction and Three Elementary Examples
3. Three Intermediate Examples 54. More Advanced Examples 68. Current Research and Conclusions
4. Archimedes and Pi
5. A 21st Century postscript
6. Sinc functions

Aesthetics and the Colour Calculator

11. A Colour and an Inverse Calculator (1995 \& 2007)

Inverse Symbolic Computation

Inferring mathematical structure from numerical data

Mathematics and Beauty 2006

* Mixes large table lookup, integer relation methods and intelliget preprocessing - needs micro-parallelism
- It faces the "curse of exponentiality"
- Implemented as identify in Maple 9.5

2. Introduction and Three Elementary Examples
3. Three Intermediate Examples 54. More Advanced Examples
4. Current Research and Conclusions
5. Archimedes and Pi
6. A 21st Century postscript
7. Sinc functions

Never Trust Secondary References

- See Dalziel in Eureka (1971), a Cambridge student journal.
- Integral (2) was on the 1968 Putnam, an early 60's Sydney exam, and traces back to 1944 (Dalziel)

Leonhard Euler (1737-1787), William Kelvin (1824-1907) and Augustus De Morgan (1806-1871)

I have no satisfaction in formulas unless I feel their arithmetical magnitude.-Baron William Thomson Kelvin

In Lecture 7 (7 Oct 1884), of his Baltimore Lectures on Molecular Dynamics and the Wave Theory of Light.
2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions
11. Archimedes and Pi
18. A 21st Century postscript
28. Sinc functions

Never Trust Secondary References

- See Dalziel in Eureka (1971), a Cambridge student journal.
- Integral (2) was on the 1968 Putnam, an early 60's Sydney exam, and traces back to 1944 (Dalziel).

Leonhard Euler (1737-1787), William Kelvin (1824-1907) and Augustus De Morgan (1806-1871)

I have no satisfaction in formulas unless I feel their arithmetical magnitude. Baron William Thomson TKelvin

In Lecture 7 (7 Oct 1884), of his Baltimore Lectures on Molecular Dynamics and the Wave Theory of Light.
2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions
11. Archimedes and Pi
18. A 21st Century postscript
28. Sinc functions

Never Trust Secondary References

- See Dalziel in Eureka (1971), a Cambridge student journal.
- Integral (2) was on the 1968 Putnam, an early 60's Sydney exam, and traces back to 1944 (Dalziel).

Leonhard Euler (1737-1787), William Kelvin (1824-1907) and Augustus De Morgan (1806-1871)

I have no satisfaction in formulas unless I feel their arithmetical magnitude.-Baron William Thomson Kelvin

In Lecture 7 (7 Oct 1884), of his Baltimore Lectures on Molecular Dynamics and the Wave Theory of Light.

- Archimedes, Huygens, Riemann, De Morgan, and many others had similar sentiments.

2. Introduction and Three Elementary Examples
3. Three Intermediate Examples 54. More Advanced Examples
4. Current Research and Conclusions
5. Archimedes and Pi
6. A 21st Century postscript
7. Sinc functions

Never Trust Secondary References

- See Dalziel in Eureka (1971), a Cambridge student journal.
- Integral (2) was on the 1968 Putnam, an early 60's Sydney exam, and traces back to 1944 (Dalziel).

Leonhard Euler (1737-1787), William Kelvin (1824-1907) and Augustus De Morgan (1806-1871)

I have no satisfaction in formulas unless I feel their arithmetical magnitude.-Baron William Thomson Kelvin

In Lecture 7 (7 Oct 1884), of his Baltimore Lectures on Molecular Dynamics and the Wave Theory of Light.

- Archimedes, Huygens, Riemann, De Morgan, and many others had similar sentiments.

2. Introduction and Three Elementary Examples
3. Three Intermediate Examples 54. More Advanced Examples
4. Current Research and Conclusions
5. Archimedes and Pi
6. A 21st Century postscript
7. Sinc functions

2. BBP Digit Extraction Formulas

IBM ${ }^{\circledR}$ SYSTEM BLUE GENE $/$ P

SOLUTION

Expanding the limits of
breakthrough scence

Algorithm (What We Did, January to March 2011)

Dave Bailey, Andrew Mattingly (L) and Glenn Wightwick (R) of IBM Australia, and I obtained and confirmed on a 4-rack BlueGene/P system at IBM's Benchmarking Centre in Rochester, Minn, USA:
(1) 106 digits of π^{2} base 2 at the ten trillionth place base 64
(2) 94 digits of π^{2} base 3 at the ten trillionth place base 729
(3) $\mathbf{1 4 1}$ digits of G base 2 at the ten trillionth place base 4096

[^0]11. Archimedes and Pi 18. A 21st Century postscript 28. Sinc functions

2. BBP Digit Extraction Formulas

IBM ${ }^{\text {® }}$ SYSTEM BLUE GENE ${ }^{\text {/ } / P ~}$

SOLUTION

Expanding the limits of
breakthrough science

Algorithm (What We Did, January to March 2011)
Dave Bailey, Andrew Mattingly (L) and Glenn Wightwick (R) of IBM Australia, and I obtained and confirmed on a 4-rack BlueGene/P system at IBM's Benchmarking Centre in Rochester, Minn, USA:
(1) 106 digits of π^{2} base 2 at the ten trillionth place base 64
(2) 94 digits of π^{2} base 3 at the ten trillionth place base 729
(3) $\mathbf{1 4 1}$ digits of G base $\mathbf{2}$ at the ten trillionth place base 4096

- G is Catalan's constant. The full computation suite took about 1500 cpu years.
- Notices of the AMS, in Press: http://www.carma.newcastle.edu.au/~jb616/bbp-bluegene.pdf

2. Introduction and Three Elementary Examples
3. Three Intermediate Examples 54. More Advanced Examples
4. Current Research and Conclusions
5. Archimedes and Pi
6. A 21st Century postscript
7. Sinc functions

What BBP Does?

Prior to 1996, most folks thought to compute the d-th digit of π, you had to generate the (order of) the entire first d digits.

- This is not true, at least for hex (base 16) or binary (base 2) digits of π. In 1996, P. Borwein, Plouffe, and Bailey found an algorithm for individual hex digits of π. It produces:
a modest-length string hex or binary digits of π, beginning at an any position, using no prior bits;
(1) is implementable on any modern computer;
(2) requires no multiple precision software;
(3) requires very little memory; and has
(4) a computational cost growing only slightly faster than the digit position.

2. Introduction and Three Elementary Examples
3. Three Intermediate Examples 54. More Advanced Examples
4. Current Research and Conclusions
5. Archimedes and Pi
6. A 21st Century postscript
7. Sinc functions

What BBP Does?

Prior to 1996, most folks thought to compute the d-th digit of π, you had to generate the (order of) the entire first d digits.

- This is not true, at least for hex (base 16) or binary (base 2) digits of π. In 1996, P. Borwein, Plouffe, and Bailey found an algorithm for individual hex digits of π. It produces:
- a modest-length string hex or binary digits of π, beginning at an any position, using no prior bits;
(1) is implementable on any modern computer;
(2) requires no multiple precision software;
(3) requires very little memory; and has
(4) a computational cost growing only slightly faster than the digit position.

2. Introduction and Three Elementary Examples
3. Three Intermediate Examples 54. More Advanced Examples
4. Current Research and Conclusions

What BBP Does?

Prior to 1996, most folks thought to compute the d-th digit of π, you had to generate the (order of) the entire first d digits.

- This is not true, at least for hex (base 16) or binary (base 2) digits of π. In 1996, P. Borwein, Plouffe, and Bailey found an algorithm for individual hex digits of π. It produces:
- a modest-length string hex or binary digits of π, beginning at an any position, using no prior bits;
(1) is implementable on any modern computer;
(2) requires no multiple precision software;
(3) requires very little memory; and has
(4) a computational cost growing only slightly faster than the digit position.

2. Introduction and Three Elementary Examples
3. Three Intermediate Examples 54. More Advanced Examples
4. Current Research and Conclusions

What BBP Does?

Prior to 1996, most folks thought to compute the d-th digit of π, you had to generate the (order of) the entire first d digits.

- This is not true, at least for hex (base 16) or binary (base 2) digits of π. In 1996, P. Borwein, Plouffe, and Bailey found an algorithm for individual hex digits of π. It produces:
- a modest-length string hex or binary digits of π, beginning at an any position, using no prior bits;

What BBP Does?

Prior to 1996, most folks thought to compute the d-th digit of π, you had to generate the (order of) the entire first d digits.

- This is not true, at least for hex (base 16) or binary (base 2) digits of π. In 1996, P. Borwein, Plouffe, and Bailey found an algorithm for individual hex digits of π. It produces:
- a modest-length string hex or binary digits of π, beginning at an any position, using no prior bits;
(1) is implementable on any modern computer;
(2) requires no multiple precision software;
(3) requires very little memory; and has
(4) a computational cost growing only slightly faster than the digit position.

2. Introduction and Three Elementary Examples
3. Three Intermediate Examples 54. More Advanced Examples
4. Current Research and Conclusions
5. Archimedes and Pi
6. A 21st Century postscript
7. Sinc functions

What BBP Is? Reverse Engineered Mathematics

This is based on the following then new formula for π :

$$
\begin{equation*}
\pi=\sum_{i=0}^{\infty} \frac{1}{16^{i}}\left(\frac{4}{8 i+1}-\frac{2}{8 i+4}-\frac{1}{8 i+5}-\frac{1}{8 i+6}\right) \tag{5}
\end{equation*}
$$

- The millionth hex digit (four millionth binary digit) of π can be found in under 30 secs on a fairly new computer in Maple (not $\mathrm{C}++$) and the billionth in $\mathbf{1 0}$ hrs.
Equation (5) was discovered numerically using integer relation methods over months in our Vancouver lab, CECM. It arrived in the coded form:

2. Introduction and Three Elementary Examples
3. Three Intermediate Examples 54. More Advanced Examples
4. Current Research and Conclusions
5. Archimedes and Pi
6. A 21st Century postscript
7. Sinc functions

What BBP Is? Reverse Engineered Mathematics

This is based on the following then new formula for π :

$$
\begin{equation*}
\pi=\sum_{i=0}^{\infty} \frac{1}{16^{i}}\left(\frac{4}{8 i+1}-\frac{2}{8 i+4}-\frac{1}{8 i+5}-\frac{1}{8 i+6}\right) \tag{5}
\end{equation*}
$$

- The millionth hex digit (four millionth binary digit) of π can be found in under 30 secs on a fairly new computer in Maple (not $\mathbf{C}++$) and the billionth in $\mathbf{1 0}$ hrs.

Equation (5) was discovered numerically using integer relation methods over months in our Vancouver lab, CECM. It arrived in the coded form

2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions

What BBP Is? Reverse Engineered Mathematics

This is based on the following then new formula for π :

$$
\begin{equation*}
\pi=\sum_{i=0}^{\infty} \frac{1}{16^{i}}\left(\frac{4}{8 i+1}-\frac{2}{8 i+4}-\frac{1}{8 i+5}-\frac{1}{8 i+6}\right) \tag{5}
\end{equation*}
$$

- The millionth hex digit (four millionth binary digit) of π can be found in under 30 secs on a fairly new computer in Maple (not $\mathbf{C}++$) and the billionth in $\mathbf{1 0}$ hrs.
Equation (5) was discovered numerically using integer relation methods over months in our Vancouver lab, CECM. It arrived in the coded form:

2. Introduction and Three Elementary Examples
3. Three Intermediate Examples 54. More Advanced Examples
4. Current Research and Conclusions

What BBP Is? Reverse Engineered Mathematics

This is based on the following then new formula for π :

$$
\begin{equation*}
\pi=\sum_{i=0}^{\infty} \frac{1}{16^{i}}\left(\frac{4}{8 i+1}-\frac{2}{8 i+4}-\frac{1}{8 i+5}-\frac{1}{8 i+6}\right) \tag{5}
\end{equation*}
$$

- The millionth hex digit (four millionth binary digit) of π can be found in under 30 secs on a fairly new computer in Maple (not $\mathbf{C}++$) and the billionth in $\mathbf{1 0}$ hrs.
Equation (5) was discovered numerically using integer relation methods over months in our Vancouver lab, CECM. It arrived in the coded form:

$$
\pi=4{ }_{2} \mathrm{~F}_{1}\left(1, \frac{1}{4} ; \frac{5}{4},-\frac{1}{4}\right)+2 \tan ^{-1}\left(\frac{1}{2}\right)-\log 5
$$

where ${ }_{2} \mathrm{~F}_{1}(1,1 / 4 ; 5 / 4,-1 / 4)=0.955933837 \ldots$ is a Gauss hypergeometric function.
2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions
11. Archimedes and Pi 18. A 21st Century postscript 28. Sinc functions

Edge of Computation Prize Finalist

Edge The Third Culture

Home \begin{tabular}{c}

About
Edge

 \left\lvert\,

Features Edge Editions Press

The Reality

Club

\quad

Third

Cutture

$\quad\right.$ Digerati

Edge
Search

\hline
\end{tabular}

THE \$100,000 EDGE OF COMPUTATION SCIENCE PRIZE

For individual scientific work, extending the computational idea, performed, published, or newly applied within the past ten years.

The Edge of Computation Science Prize, established by Edge Foundation, Inc., is a $\$ 100,000$ prize initiated and funded by science philanthropist Jeffrey Epstein.

- BBP was the only mathematical finalist (of about 40) for the
first Edge of Computation Science Prize
Along with founders of Google, Netscane, Celera and many brilliant thinkers
- Won by David Deutsch - discoverer of Quantum ComputKCARMA
J.M. Borwein Meetings with Special Functions

2. Introduction and Three Elementary Examples
3. Three Intermediate Examples 54. More Advanced Examples
4. Current Research and Conclusions
5. Archimedes and Pi
6. A 21st Century postscript
7. Sinc functions

Edge of Computation Prize Finalist

Edge The Third Culture

Home	About Edge	Features	Edge Editions	Press	The Reality Club	Third Culture	Digerati	Edge Search

THE $\$ 100,000$ EDGE OF COMPUTATION SCIENCE PRIZE

For individual scientific work, extending the computational idea, performed, published, or newly applied within the past ten years.

The Edge of Computation Science Prize, established by Edge Foundation, Inc., is a $\$ 100,000$ prize initiated and funded by science philanthropist Jeffrey Epstein.

- BBP was the only mathematical finalist (of about 40) for the first Edge of Computation Science Prize

- Won by David Deutsch - discoverer of Quantum Comput CARMA

2. Introduction and Three Elementary Examples
3. Three Intermediate Examples 54. More Advanced Examples
4. Current Research and Conclusions
5. Archimedes and Pi
6. A 21st Century postscript
7. Sinc functions

Edge of Computation Prize Finalist

Edge The Third Culture

Home	About Edge	Features	Edge Editions	Press	The Reality Club	Third Culture	Digerati	Edge Search

THE $\$ 100,000$ EDGE OF COMPUTATION SCIENCE PRIZE

For individual scientific work, extending the computational idea, performed, published, or newly applied within the past ten years.

The Edge of Computation Science Prize, established by Edge Foundation, Inc., is a $\$ 100,000$ prize initiated and funded by science philanthropist Jeffrey Epstein.

- BBP was the only mathematical finalist (of about 40) for the first Edge of Computation Science Prize
- Along with founders of Google, Netscape, Celera and many brilliant thinkers, ...

2. Introduction and Three Elementary Examples
3. Three Intermediate Examples 54. More Advanced Examples
4. Current Research and Conclusions
5. Archimedes and Pi
6. A 21st Century postscript
7. Sinc functions

Edge of Computation Prize Finalist

Edge The Third Culture

Home \begin{tabular}{c}

About
Edge

$|$

Features Edge Editions

 Press

The Reality
Club

Third

Cutture

\quad Digerati

Edge
Search

\hline
\end{tabular}

THE \$100,000 EDGE OF COMPUTATION SCIENCE PRIZE

For individual scientific work, extending the computational idea, performed, published, or newly applied within the past ten years.

The Edge of Computation Science Prize, established by Edge Foundation, Inc., is a $\$ 100,000$ prize initiated and funded by science philanthropist Jeffrey Epstein.

- BBP was the only mathematical finalist (of about 40) for the first Edge of Computation Science Prize
- Along with founders of Google, Netscape, Celera and many brilliant thinkers, ...
- Won by David Deutsch - discoverer of Quantum Computinfar.RMA

2. Introduction and Three Elementary Examples
3. Three Intermediate Examples 54. More Advanced Examples
4. Current Research and Conclusions
5. Archimedes and Pi
6. A 21st Century postscript
7. Sinc functions

π^{2} base 2 or base 3

Remarkably, both formulas below have the needed digit-extraction properties:

$$
\begin{aligned}
\pi^{2}= & \frac{9}{8} \sum_{k=0}^{\infty} \frac{1}{2^{6 k}} \times \\
& \left\{\frac{16}{(6 k+1)^{2}}-\frac{24}{(6 k+2)^{2}}-\frac{8}{(6 k+3)^{2}}-\frac{6}{(6 k+4)^{2}}+\frac{1}{(6 k+5)^{2}}\right\}
\end{aligned}
$$

2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions
11. Archimedes and Pi
18. A 21st Century postscript
28. Sinc functions

π^{2} base 2 or base 3

Remarkably, both formulas below have the needed digit-extraction properties:

$$
\left.\left.\left.\begin{array}{rl}
\pi^{2}= & \frac{9}{8} \sum_{k=0}^{\infty} \frac{1}{2^{6 k}} \times \\
& \left\{\frac{16}{(6 k+1)^{2}}\right.
\end{array}\right) \frac{24}{(6 k+2)^{2}}-\frac{8}{(6 k+3)^{2}}-\frac{6}{(6 k+4)^{2}}+\frac{1}{(6 k+5)^{2}}\right\}\right\}
$$

2. Introduction and Three Elementary Examples
3. Three Intermediate Examples 54. More Advanced Examples
4. Current Research and Conclusions

π^{2} base 2 (with DHB \& IBM, 2011)

Base-64 digits of π^{2} beginning at position 10 trillion. The first run produced base- 64 digits from position $10^{12}-1$. It required an average of 253,529 secs per thread, divided into seven partitions of 2048 threads. The total cost was

$$
7 \cdot 2048 \cdot 253529=3.6 \times 10^{9} \quad \text { CPU-secs } .
$$

Each IBM Blue Gene P system rack features 4096 cores, so the total cost is $\mathbf{1 0 . 3}$ "rack-days." The second run, producing digits starting from position 10^{12}, took the same time (within a few minutes).
The two resulting base-8 digit strings are
$75|60114505303236475724500005743262754530363052416350634| 573227604$
$x x^{1} 601145053032364757245000057432627545303630524163506341220210566$
(each pair of base-8 digits corresponds to a base-64 digit)
Digits in agreement are delimited by |. Note that 53 consecutive base- 8
CARMA digits (159 binary digits) agree.
2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions

π^{2} base 2 (with DHB \& IBM, 2011)

Base-64 digits of π^{2} beginning at position 10 trillion. The first run produced base- 64 digits from position $10^{12}-1$. It required an average of 253,529 secs per thread, divided into seven partitions of 2048 threads. The total cost was

$$
7 \cdot 2048 \cdot 253529=3.6 \times 10^{9} \quad \text { CPU-secs } .
$$

Each IBM Blue Gene P system rack features 4096 cores, so the total cost is $\mathbf{1 0 . 3}$ "rack-days." The second run, producing digits starting from position 10^{12}, took the same time (within a few minutes). The two resulting base-8 digit strings are
$75|60114505303236475724500005743262754530363052416350634| 573227604$ $x x|60114505303236475724500005743262754530363052416350634| 220210566$ (each pair of base-8 digits corresponds to a base-64 digit). Digits in agreement are delimited by |. Note that 53 consecutive base- 8 digits (159 binary digits) agree.
2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions
11. Archimedes and Pi
18. A 21st Century postscript
28. Sinc functions

π^{2} base three

Base-729 digits of π^{2} beginning at position 10 trillion.
Now the two runs each required an average of 795,773 seconds per thread, similarly subdivided as above, so that the total cost was

$$
6.5 \times 10^{9} \mathrm{CPU} \text {-secs }
$$

or 18.4 "rack-days" for each run.

- Each rack-day is approximately 11.25 years of serial computing time on one core.
The two resulting base-9 digit string are
$001|12264485064548583177111135210162856048323453468| 10565567635862$
$x x x|12264485064548583177111135210162856048323453468| 04744867134524$
(each triplet of base-9 digits corresponds to one base-729 digit)
CARMA
Note that 47 consecutive base-9 digits (94 base-3 digits) agree.
J.M. Borwein

Meetings with Special Functions
2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions
11. Archimedes and Pi
18. A 21st Century postscript
28. Sinc functions

π^{2} base three

Base-729 digits of π^{2} beginning at position 10 trillion.
Now the two runs each required an average of 795,773 seconds per thread, similarly subdivided as above, so that the total cost was

$$
6.5 \times 10^{9} \mathrm{CPU} \text {-secs }
$$

or 18.4 "rack-days" for each run.

- Each rack-day is approximately 11.25 years of serial computing time on one core.
The two resulting base-9 digit strings are
$001|12264485064548583177111135210162856048323453468| 10565567635862$
ruxl12264185064518583177111135210162856018323453168|04714867131521
(each triplet of base-9 digits corresponds to one base-729 digit)
CARMA

2. Introduction and Three Elementary Examples
3. Three Intermediate Examples 54. More Advanced Examples
4. Current Research and Conclusions

π^{2} base three

Base-729 digits of π^{2} beginning at position 10 trillion. Now the two runs each required an average of 795,773 seconds per thread, similarly subdivided as above, so that the total cost was

$$
6.5 \times 10^{9} \mathrm{CPU} \text {-secs }
$$

or 18.4 "rack-days" for each run.

- Each rack-day is approximately 11.25 years of serial computing time on one core.
The two resulting base- 9 digit strings are
$001|12264485064548583177111135210162856048323453468| 10565567635862$
$x x x|12264485064548583177111135210162856048323453468| 04744867134524$
(each triplet of base-9 digits corresponds to one base-729 digit). Note that 47 consecutive base- 9 digits (94 base- 3 digits) agree.

2. Introduction and Three Elementary Examples
3. Three Intermediate Examples 54. More Advanced Examples
4. Current Research and Conclusions
5. Archimedes and Pi
6. A 21st Century postscript
7. Sinc functions

But not π^{2} base 10 or π base 3 :

Trojan horses

Be skeptical. Almqvist-Guillera (2011) discovered:

$$
\frac{1}{\pi^{2}} \stackrel{?}{=} \frac{32}{3} \sum_{n=0}^{\infty} \frac{(6 n)!}{(n!)^{6}} \frac{\left(532 n^{2}+126 n+9\right)}{10^{6 n+3}} .
$$

- It will not work base-10 because of the factorial term 7hang (2011) discovered and proved

2. Introduction and Three Elementary Examples
3. Three Intermediate Examples 54. More Advanced Examples
4. Current Research and Conclusions
5. Archimedes and Pi
6. A 21st Century postscript
7. Sinc functions

But not π^{2} base 10 or π base 3 :

Trojan horses

Be skeptical. Almqvist-Guillera (2011) discovered:

$$
\frac{1}{\pi^{2}} \stackrel{?}{=} \frac{32}{3} \sum_{n=0}^{\infty} \frac{(6 n)!}{(n!)^{6}} \frac{\left(532 n^{2}+126 n+9\right)}{10^{6 n+3}} .
$$

- It will not work base-10 because of the factorial term.

Zhang (2011) discovered and proved

2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions
11. Archimedes and Pi
18. A 21st Century postscript
28. Sinc functions

But not π^{2} base 10 or π base 3 :

Trojan horses

Be skeptical. Almqvist-Guillera (2011) discovered:

$$
\frac{1}{\pi^{2}} \stackrel{?}{=} \frac{32}{3} \sum_{n=0}^{\infty} \frac{(6 n)!}{(n!)^{6}} \frac{\left(532 n^{2}+126 n+9\right)}{10^{6 n+3}} .
$$

- It will not work base-10 because of the factorial term.

Zhang (2011) discovered and proved:

$$
\begin{aligned}
\pi=\frac{2}{177147} \sum_{n=0}^{\infty}\left(\frac{2}{3}\right)^{12 n} & \times\left\{\frac{177147}{24 n+1}+\frac{118098}{24 n+2}+\frac{78732}{24 n+5}+\frac{104976}{24 n+6}+\frac{52488}{24 n+7}\right. \\
& +\frac{23328}{24 n+10}+\frac{23328}{24 n+11}-\frac{15552}{24 n+13}-\frac{10368}{24 n+14}-\frac{6912}{24 n+17} \\
& \left.-\frac{9216}{24 n+18}-\frac{4608}{24 n+19}-\frac{2048}{24 n+22}-\frac{2048}{4 n+23}\right\} .
\end{aligned}
$$

- It will not work base-3 because of the 2 .

2. Introduction and Three Elementary Examples
3. Three Intermediate Examples 54. More Advanced Examples
4. Current Research and Conclusions
5. Archimedes and Pi
6. A 21st Century postscript
7. Sinc functions

But not π^{2} base 10 or π base 3 :

Trojan horses

Be skeptical. Almqvist-Guillera (2011) discovered:

$$
\frac{1}{\pi^{2}} \stackrel{?}{=} \frac{32}{3} \sum_{n=0}^{\infty} \frac{(6 n)!}{(n!)^{6}} \frac{\left(532 n^{2}+126 n+9\right)}{10^{6 n+3}} .
$$

- It will not work base-10 because of the factorial term.

Zhang (2011) discovered and proved:

$$
\begin{aligned}
\pi=\frac{2}{177147} \sum_{n=0}^{\infty}\left(\frac{2}{3}\right)^{12 n} & \times\left\{\frac{177147}{24 n+1}+\frac{118098}{24 n+2}+\frac{78732}{24 n+5}+\frac{104976}{24 n+6}+\frac{52488}{24 n+7}\right. \\
& +\frac{23328}{24 n+10}+\frac{23328}{24 n+11}-\frac{15552}{24 n+13}-\frac{10368}{24 n+14}-\frac{6912}{24 n+17} \\
& \left.-\frac{9216}{24 n+18}-\frac{4608}{24 n+19}-\frac{2048}{24 n+22}-\frac{2048}{4 n+23}\right\} .
\end{aligned}
$$

- It will not work base-3 because of the 2 .

11. Archimedes and Pi
12. A 21st Century postscript
13. Sinc functions

Two Sporadic Rational Gems

Gourevich 2001

$$
\frac{2^{5}}{\pi^{3}} \stackrel{?}{=} \sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}^{7}}{(1)_{n}^{7}}\left(1+14 n+76 n^{2}+168 n^{3}\right)\left(\frac{1}{2}\right)^{6 n}
$$

where $a_{n}:=a(a+1) \cdots(a+n-1)$ so that $(1)_{n}=n$!
Cullen 2010
$\frac{2^{11}}{\pi^{4}} \stackrel{?}{=} \sum_{n=0}^{\infty} \frac{\left(\frac{1}{4}\right)_{n}\left(\frac{1}{2}\right)_{n}^{7}\left(\frac{3}{4}\right)_{n}}{(1)_{n}^{9}}\left(21+466 n+4340 n^{2}+20632 n^{3}+43680 n^{4}\right)\left(\frac{1}{2}\right)^{12 n}$
11. Archimedes and Pi
18. A 21st Century postscript
28. Sinc functions

Two Sporadic Rational Gems

Gourevich 2001

$$
\frac{2^{5}}{\pi^{3}} \stackrel{?}{=} \sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}^{7}}{(1)_{n}^{7}}\left(1+14 n+76 n^{2}+168 n^{3}\right)\left(\frac{1}{2}\right)^{6 n}
$$

where $a_{n}:=a(a+1) \cdots(a+n-1)$ so that $(1)_{n}=n$!
Cullen 2010
$\frac{2^{11}}{\pi^{4}} \stackrel{?}{=} \sum_{n=0}^{\infty} \frac{\left(\frac{1}{4}\right)_{n}\left(\frac{1}{2}\right)_{n}^{7}\left(\frac{3}{4}\right)_{n}}{(1)_{n}^{9}}\left(21+466 n+4340 n^{2}+20632 n^{3}+43680 n^{4}\right)\left(\frac{1}{2}\right)^{1}$

I rediscovered and confirmed both to $\mathbf{1 0 , 0 0 0}$ digits while preparing the slide! As follows....
2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions
11. Archimedes and Pi
18. A 21st Century postscript
28. Sinc functions

Two Sporadic Rational Gems

Discovering and validating Cullen's formula in Maple:

```
> Digits:=100:r:=n->p(1/4,n)*p(3/4,n)*p(1/2,n)^(7)/n!^(9);
> S4:=k-> Sum(r(n)*n^k/2^(12*n),n=0..infinity);
> normal(combine(Pslq(1/Pi^4,[seq(S4(k),k=0..4)],50)));
```

$$
\begin{gathered}
r=n \rightarrow \frac{p\left(\frac{1}{4}, n\right) p\left(\frac{3}{4}, n\right) p\left(\frac{1}{2}, n\right)^{\gamma}}{n!^{9}} \\
S 4:=k \rightarrow \sum_{n=0}^{\infty} \frac{r(n) n^{k}}{2^{12 n}}
\end{gathered}
$$

[2048, 21, 466, 4340, 20632, 43680] "Enor is", -1.98710^{-58}, "checking to", 60 , places

$$
\frac{1}{\pi^{4}}=\sum_{n=0}^{\infty} \frac{1}{2048} \frac{p\left(\frac{1}{2}, n\right)^{7} p\left(\frac{1}{4}, n\right) p\left(\frac{3}{4}, n\right) 2^{-12 n}\left(466 n+4340 n^{2}+20632 n^{3}+43680 n^{4}+21\right)}{n!^{9}}
$$

- Confirming the value of the sum to 10,000 places is near instant and 100,000 places took 21.35 secs.

2. Introduction and Three Elementary Examples
3. Three Intermediate Examples 54. More Advanced Examples
4. Current Research and Conclusions
5. Archimedes and Pi
6. A 21st Century postscript
7. Sinc functions

Two Sporadic Rational Gems

Discovering and validating Cullen's formula in Maple:

```
> Digits:=100:r:=n->p(1/4,n)*p(3/4,n)*p(1/2,n)^(7)/n!^(9);
> S4:=k-> Sum(r(n)*n^k/2^(12*n),n=0..infinity);
> normal(combine(Pslq(1/Pi^4,[seq(S4(k),k=0..4)],50)));
```

$$
\begin{gathered}
r:=n \rightarrow \frac{p\left(\frac{1}{4}, n\right) p\left(\frac{3}{4}, n\right) p\left(\frac{1}{2}, n\right)^{\gamma}}{n!^{9}} \\
S 4:=k \rightarrow \sum_{n=0}^{\infty} \frac{r(n) n^{k}}{2^{12 n}}
\end{gathered}
$$

[2048, 21, 466, 4340, 20632, 43680] "Enor is", -1.98710^{-58}, "checking to", 60 , places

$$
\frac{1}{\pi^{4}}=\sum_{n=0}^{\infty} \frac{1}{2048} \frac{p\left(\frac{1}{2}, n\right)^{7} p\left(\frac{1}{4}, n\right) p\left(\frac{3}{4}, n\right) 2^{-12 n}\left(466 n+4340 n^{2}+20632 n^{3}+43680 n^{4}+21\right)}{n!^{9}}
$$

- Confirming the value of the sum to 10,000 places is near instant and 100,000 places took 21.35 secs.

2. Introduction and Three Elementary Examples
3. Three Intermediate Examples 54. More Advanced Examples
4. Current Research and Conclusions
5. Archimedes and Pi
6. A 21st Century postscript
7. Sinc functions

3. What is that Sequence?

$\left(\operatorname{sinc}(x):=\frac{\sin x}{x}\right)$.

For $n=0,1,2, \ldots$ set

$$
J_{n}:=\int_{-\infty}^{\infty} \operatorname{sinc} x \cdot \operatorname{sinc}\left(\frac{x}{3}\right) \cdots \operatorname{sinc}\left(\frac{x}{2 n+1}\right) \mathrm{d} x
$$

Then - as Maple and Mathematica confirm - we have:

$$
\begin{aligned}
J_{0} & =\int_{-\infty}^{\infty} \operatorname{sinc} x \mathrm{~d} x=\pi \\
J_{1} & =\int_{-\infty}^{\infty} \operatorname{sinc} x \cdot \operatorname{sinc}\left(\frac{x}{3}\right) \mathrm{d} x=\pi \\
& \vdots \\
J_{6} & =\int_{-\infty}^{\infty} \operatorname{sinc} x \cdot \operatorname{sinc}\left(\frac{x}{3}\right) \cdots \operatorname{sinc}\left(\frac{x}{13}\right) \mathrm{d} x=\pi .
\end{aligned}
$$

2. Introduction and Three Elementary Examples
3. Three Intermediate Examples 54. More Advanced Examples
4. Current Research and Conclusions
5. Archimedes and Pi
6. A 21st Century postscript
7. Sinc functions

$$
\pi, \pi, \pi, \pi, \pi, \pi, ?
$$

The really obvious pattern - see Corollary below - is confounded by

$$
\begin{aligned}
J_{7} & =\int_{-\infty}^{\infty} \operatorname{sinc} x \cdot \operatorname{sinc}\left(\frac{x}{3}\right) \cdots \operatorname{sinc}\left(\frac{x}{15}\right) \mathrm{d} x \\
& =\frac{467807924713440738696537864469}{467807924720320453655260875000} \pi<\pi
\end{aligned}
$$

where the fraction is approximately $0.99999999998529 \ldots$
1912 G. Pólya showed that given the slab
inside the hypercube $C^{n}=\left[-\frac{1}{2}, \frac{1}{2}\right]^{n}$ cut off by the hyperplanes $\langle k, x\rangle= \pm \theta / 2$, then

2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions

```
\pi,\pi,\pi,\pi,\pi,\pi,\pi,?
```

The really obvious pattern - see Corollary below - is confounded by

$$
\begin{aligned}
J_{7} & =\int_{-\infty}^{\infty} \operatorname{sinc} x \cdot \operatorname{sinc}\left(\frac{x}{3}\right) \cdots \operatorname{sinc}\left(\frac{x}{15}\right) \mathrm{d} x \\
& =\frac{467807924713440738696537864469}{467807924720320453655260875000} \pi<\pi,
\end{aligned}
$$

where the fraction is approximately 0.99999999998529
1912 G. Pólya showed that given the slab

$$
S_{k}(\theta):=\left\{x \in R^{n}:|\langle k, x\rangle| \leq \theta / 2, x \in C^{n}\right\}
$$

inside the hypercube $C^{n}=\left[-\frac{1}{2}, \frac{1}{2}\right]^{n}$ cut off by the hyperplanes
$\langle k, x\rangle= \pm \theta / 2$, then

$$
\begin{equation*}
\operatorname{Vol}_{n}\left(S_{k}(\theta)\right)=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\sin (\theta x)}{x} \prod_{j=1}^{n} \frac{\sin \left(k_{j} x\right)}{k_{j} x} \mathrm{~d} x \tag{6}
\end{equation*}
$$

2. Introduction and Three Elementary Examples
3. Three Intermediate Examples 54. More Advanced Examples
4. Current Research and Conclusions
5. Archimedes and Pi
6. A 21st Century postscript
7. Sinc functions
$\pi, \pi, \pi, \pi, \pi, \pi, \pi$, ? has gone viral

- Also http://www.tumblr.com/tagged/ the-borwein-integral-is-the-troll-of-calculus
- There is even a movie:
http://www.qwiki.com/embed/Borwein_integral.

2. Introduction and Three Elementary Examples
3. Three Intermediate Examples 54. More Advanced Examples
4. Current Research and Conclusions
5. Archimedes and Pi
6. A 21st Century postscript
7. Sinc functions

Mathematics is becoming Hybrid: and none to soon

5529 [1967, 1015; 1968, 914]. Proposed by D. S. Milrinovic, University of Belgrade, Yugaslavia

Evaluate

$$
\text { Evaluation of } \int_{-\infty}^{\infty} \prod_{j=1}^{\infty} \frac{\sin k_{j}\left(x-a_{j}\right)}{x-a_{j}} d x,
$$

with $k_{j}, a_{j}, j=1,2, \cdots, n$ real numbers.
Note. The published solution for this problem is in error. Murray S. Klamkin remarks that it is to be expected that the given integral depend on all the k 's and be symmetric in k_{f}, a_{f}. The formula obtained in the solution

$$
I=\pi \prod_{j=1}^{\infty} \frac{\sin k_{j}\left(a_{j-1}-a_{j}\right)}{a_{j-1}-a_{j}}
$$

does not involve k_{1} and is not symmetric as required. ($k_{1}=0$ must imply $I=0$.)
Accordingly the solution is withdrawn and we urge our readers to reconsider the problem.

1968 A 'solved' MAA problem.
1971 Withdrawn.
May 2011 Seemed still 'open'? (JSTOR).
Oct 2011 (MAA, Aug-Sept 2012): a fine symbolic/numeric/graphic (SNaG) challenge:
http: //carma. newcastle. edu. au/jon/
2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions
11. Archimedes and Pi
18. A 21st Century postscript
28. Sinc functions

Mathematics is becoming Hybrid: and none to soon

5329 [1967, 1015; 1968, 914]. Proposed by D. S. Mïtrinovil, University of Belgrade, Yugoslavia

Evaluate

$$
\text { Evaluation of } \int_{-\infty}^{\infty} \prod_{j=1}^{\infty} \frac{\sin k_{k}\left(x-a_{j}\right)}{x-a_{j}} d x \text {, }
$$

with $k_{j}, a_{j}, j=1,2, \cdots, n$ real numbers.
Note. The published solution for this problem is in error. Murray S. Klamkin remarks that it is to be expected that the given integral depend on all the k 's and be symmetric in k_{f}, a_{g}. The formula obtained in the solution

$$
I=\pi \prod_{j=1}^{\dot{ }} \frac{\sin k_{f}\left(a_{j-1}-a_{j}\right)}{a_{j-1}-a_{j}}
$$

does not involve k_{1} and is not symmetric as required. ($k_{1}=0$ must imply $I=0$.)
Accordingly the solution is withdrawn and we urge our readers to reconsider the problem.

1968 A ‘solved' MAA problem.

1971 Withdrawn.
May 2011 Seemed still ‘open'? (JSTOR).
Oct 2011 (MAA, Aug-Sept 2012): a fine symbolic/numeric/graphic (SNaG) chal
 lenge:
http://carma.newcastle.edu. au/jon/
2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions
11. Archimedes and Pi
18. A 21st Century postscript
28. Sinc functions

Mathematics is becoming Hybrid:

and none to soon

5529 [1967, 1015; 1968, 914]. Proposed by D. S. Mitrinovil, University of Belgrade, Yugoslavia

Evaluate

$$
\text { Evaluation of } \int_{-\infty}^{\infty} \prod_{j=1}^{\infty} \frac{\sin k_{k}\left(x-a_{j}\right)}{x-a_{j}} d x \text {, }
$$

with $k_{j}, a_{j}, j=1,2, \cdots, n$ real numbers.
Note. The published solution for this problem is in error. Murray S. Klamkin remarks that it is to be expected that the given integral depend on all the k 's and be symmetric in k_{f}, a_{g}. The formula obtained in the solution

$$
I=\pi \prod_{j=1}^{\dot{ }} \frac{\sin k_{j}\left(a_{j-1}-a_{j}\right)}{a_{j-1}-a_{j}}
$$

does not involve k_{1} and is not symmetric as required. ($k_{1}=0$ must imply $I=0$.)
Accordingly the solution is withdrawn and we urge our readers to reconsider the problem.

1968 A 'solved' MAA problem.
1971 Withdrawn.
May 2011 Seemed still 'open'? (JSTOR).
Oct 2011 (MAA, Aug-Sept 2012): a fine symbolic/numeric/graphic (SNaG) challenge:
http://carma.newcastle.edu.au/jon/ sink.pdf and below:
2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions
11. Archimedes and Pi
18. A 21st Century postscript
28. Sinc functions

What has happened to J_{7} ?

The fact that $J_{0}=J_{1}=\cdots=J_{6}=\pi$ follows from:

Corollary (Simplest Case)

Suppose $k_{1}, k_{2}, \ldots, k_{n}>0$ and there is an index ℓ such that

$$
k_{\ell}>\frac{1}{2} \sum k_{i}
$$

Then, the original solution to the MONTHLY problem is valid:

$$
I_{n}=\int_{-\infty}^{\infty} \prod_{i=1}^{n} \frac{\sin \left(k_{i}\left(x-a_{i}\right)\right)}{x-a_{i}} \mathrm{~d} x=\pi \prod_{i \neq \ell} \frac{\sin \left(k_{i}\left(a_{\ell}-a_{i}\right)\right)}{a_{\ell}-a_{i}} .
$$

2. Introduction and Three Elementary Examples
3. Three Intermediate Examples 54. More Advanced Examples
4. Current Research and Conclusions

What has happened to J_{7} ?

Theorem (First bite, DB-JB 1999)

Denote $K_{m}=k_{0}+k_{1}+l, \cdots+k_{m}$. If $2 k_{j} \geq k_{n}>0$ for $j=0,1, \ldots, n-1$ and $K_{n}>2 k_{0} \geq K_{n-1}$ then

$$
\begin{equation*}
\int_{-\infty}^{\infty} \prod_{j=0}^{n} \frac{\sin \left(k_{j} x\right)}{x} \mathrm{~d} x=\pi k_{1} k_{2} \cdots k_{n}-\frac{\pi}{2^{n-1} n!}\left(K_{n}-2 k_{0}\right)^{n} . \tag{7}
\end{equation*}
$$

But if $2 k_{0}>K_{n}$ the integral evaluates to $\pi k_{1} k_{2} \cdots k_{n}$.
The theorem makes it clear that the pattern that $J_{n}=\pi$ for $n=0,1, \ldots, 6$ breaks for J_{7} because

2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions

What has happened to J_{7} ?

Theorem (First bite, DB-JB 1999)

Denote $K_{m}=k_{0}+k_{1}+l, \cdots+k_{m}$. If $2 k_{j} \geq k_{n}>0$ for $j=0,1, \ldots, n-1$ and $K_{n}>2 k_{0} \geq K_{n-1}$ then

$$
\begin{equation*}
\int_{-\infty}^{\infty} \prod_{j=0}^{n} \frac{\sin \left(k_{j} x\right)}{x} \mathrm{~d} x=\pi k_{1} k_{2} \cdots k_{n}-\frac{\pi}{2^{n-1} n!}\left(K_{n}-2 k_{0}\right)^{n} . \tag{7}
\end{equation*}
$$

But if $2 k_{0}>K_{n}$ the integral evaluates to $\pi k_{1} k_{2} \cdots k_{n}$.
The theorem makes it clear that the pattern that $J_{n}=\pi$ for $n=0,1, \ldots, 6$ breaks for J_{7} because

$$
\frac{1}{3}+\frac{1}{5}+\ldots+\frac{1}{15}>1
$$

whereas all earlier partial sums are less than 1 .
2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions
11. Archimedes and Pi
18. A 21st Century postscript
28. Sinc functions

Other Surprises

Theorem (Baillie-Borwein-Borwein, MAA 2008)

Suppose that $k_{1}, k_{2}, \ldots, k_{n}>0$. If $k_{1}+k_{2}+\ldots+k_{n}<2 \pi$ then

$$
\begin{equation*}
\int_{-\infty}^{\infty} \prod_{j=1}^{n} \operatorname{sinc}\left(k_{j} x\right) \mathrm{d} x=\sum_{m=-\infty}^{\infty} \prod_{j=1}^{n} \operatorname{sinc}\left(k_{j} m\right) \tag{8}
\end{equation*}
$$

As a consequence, with $k_{j}=\frac{1}{2 j+1}$

Corollary

2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions
11. Archimedes and Pi
18. A 21st Century postscript
28. Sinc functions

Other Surprises

Theorem (Baillie-Borwein-Borwein, MAA 2008)

Suppose that $k_{1}, k_{2}, \ldots, k_{n}>0$. If $k_{1}+k_{2}+\ldots+k_{n}<2 \pi$ then

$$
\begin{equation*}
\int_{-\infty}^{\infty} \prod_{j=1}^{n} \operatorname{sinc}\left(k_{j} x\right) \mathrm{d} x=\sum_{m=-\infty}^{\infty} \prod_{j=1}^{n} \operatorname{sinc}\left(k_{j} m\right) \tag{8}
\end{equation*}
$$

As a consequence, with $k_{j}=\frac{1}{2 j+1}$:

Corollary

$$
\begin{equation*}
\int_{-\infty}^{\infty} \prod_{j=0}^{n} \operatorname{sinc}\left(\frac{x}{2 j+1}\right) \mathrm{d} x \geq \sum_{m=-\infty}^{\infty} \prod_{j=0}^{n} \operatorname{sinc}\left(\frac{m}{2 j+1}\right) \tag{9}
\end{equation*}
$$

with equality iff $n=1,2, \ldots, 7,8, \ldots, 40248$.
2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions
11. Archimedes and Pi
18. A 21st Century postscript
28. Sinc functions

Other Surprises

The difficulty lies, not in the new ideas, but in escaping the old ones, which ramify, for those brought up as most of us have been, into every corner of our minds. (John Maynard Keynes, 1883-1946)

Example (What is equality?)

- An entertaining example takes the reciprocals of primes $2,3,5, \ldots$ using the Prime Number theorem one estimates that the sinc integrals equal the sinc sums until the number of products is about 10^{176}
- That of course makes it rather unlikely to find by mere testing an example where the two are unequal.
- Even worse for the naive tester is the fact that the discrepancy between integral and sum is always less than $10^{-10^{86}}$ smaller if the Riemann hypothesis is true.

Other Surprises

The difficulty lies, not in the new ideas, but in escaping the old ones, which ramify, for those brought up as most of us have been, into every corner of our minds. (John Maynard Keynes, 1883-1946)

Example (What is equality?)

- An entertaining example takes the reciprocals of primes $2,3,5, \ldots$ using the Prime Number theorem one estimates that the sinc integrals equal the sinc sums until the number of products is about 10^{176}.
- That of course makes it rather unlikely to find by mere testing an example where the two are unequal.
- Even worse for the naive tester is the fact that the discrepancy between integral and sum is always less than $10^{-10^{86}}$ smaller if the Riemann hypothesis is true.

How to Judge a new Scientific Claim

YEAH. WHEN THERES A NEWS STORY ABOUT A STUDY ONERTURNING ALL OF PHYSICS, I USED TO URGE CAUTON, REMND PEOPLE THAT EXPERTS ARENT ALL STUPID, AND END UP IN POINTLESS ARSUMENTS ABCUT GquLEO.

THATS MEAN.

IT PROVIDES A GOCD INCOME, AND IF I'A EVER WRONG, ILL BE TOO EXCITED ABOUT THE NEW PRYSICS TO NOTICE THE LOSS.

Was the problem and solution the 'GPS'

- See http://experimentalmath.info/blog/2011/11/mathematics-and-scientific-fraud/, http://experimentalmath.info/blog/2011/06/
quick-tests-for-checking-whether-a-new-math-result-is-plausible/ and http://experimentalmath.info/blog/2011/06/has-the-3n1-conjecture-been-proved/

2. Introduction and Three Elementary Examples
3. Three Intermediate Examples 54. More Advanced Examples
4. Current Research and Conclusions
5. What is that number?
6. Lambert W
7. What is that continued fraction?

4. What is that Number?

1995: Andrew Granville emailed and challenged me to identify:

$$
\begin{equation*}
\alpha:=1.4331274267223 \ldots \tag{10}
\end{equation*}
$$

I think this was a test I could have failed.

- | asked Maple for its continued fraction
- In conventional concise notation I was rewarded with

- Even those unfamiliar with continued fractions, will agree the representation in (11) has structure not apparent from (10)! - I reached for a good book on continued fractions and found

2. Introduction and Three Elementary Examples
3. Three Intermediate Examples 54. More Advanced Examples
4. Current Research and Conclusions
5. What is that number?
6. Lambert W
7. What is that continued fraction?

4. What is that Number?

1995: Andrew Granville emailed and challenged me to identify:

$$
\begin{equation*}
\alpha:=1.4331274267223 \ldots \tag{10}
\end{equation*}
$$

I think this was a test I could have failed.

- I asked Maple for its continued fraction.
- In conventional concise notation I was rewarded with

- Even those unfamiliar with continued fractions, will agree the representation in (11) has structure not apparent from (10)! - I reached for a good book on continued fractions and found

CARMA
2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions
37. What is that number?
43. Lambert W
48. What is that continued fraction?

4. What is that Number?

1995: Andrew Granville emailed and challenged me to identify:

$$
\begin{equation*}
\alpha:=1.4331274267223 \ldots \tag{10}
\end{equation*}
$$

I think this was a test I could have failed.

- I asked Maple for its continued fraction.
- In conventional concise notation I was rewarded with

$$
\begin{equation*}
\alpha=[1,2,3,4,5,6,7,8,9,10,11, \ldots] . \tag{11}
\end{equation*}
$$

- Even those unfamiliar with continued fractions, will agree the representation in (11) has structure not apparent from (10)! - I reached for a good book on continued fractions and found

4. What is that Number?

1995: Andrew Granville emailed and challenged me to identify:

$$
\begin{equation*}
\alpha:=1.4331274267223 \ldots \tag{10}
\end{equation*}
$$

I think this was a test I could have failed.

- I asked Maple for its continued fraction.
- In conventional concise notation I was rewarded with

$$
\begin{equation*}
\alpha=[1,2,3,4,5,6,7,8,9,10,11, \ldots] . \tag{11}
\end{equation*}
$$

- Even those unfamiliar with continued fractions, will agree the representation in (11) has structure not apparent from (10)!
- | reached for a good book on continued fractions and found

4. What is that Number?

1995: Andrew Granville emailed and challenged me to identify:

$$
\begin{equation*}
\alpha:=1.4331274267223 \ldots \tag{10}
\end{equation*}
$$

I think this was a test I could have failed.

- I asked Maple for its continued fraction.
- In conventional concise notation I was rewarded with

$$
\begin{equation*}
\alpha=[1,2,3,4,5,6,7,8,9,10,11, \ldots] . \tag{11}
\end{equation*}
$$

- Even those unfamiliar with continued fractions, will agree the representation in (11) has structure not apparent from (10)!
- I reached for a good book on continued fractions and found

$$
\begin{equation*}
\alpha=\frac{I_{1}(2)}{I_{0}(2)} \tag{12}
\end{equation*}
$$

where I_{0} and I_{1} are Bessel functions of the first kind.
2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions
37. What is that number?
43. Lambert W
48. What is that continued fraction?

What is that Number?

Actually, I remembered that all arithmetic continued fractions arise in such fashion, but as we shall see one now does not need to.

In 2011 there are at least three "zero-knowledge" strategies:
(1) Given (11), type "arithmetic progression", "continued fraction" into Google.
(2) Type " $1,4,3,3,1,2,7,4,2$ " into Sloane's Encyclopedia of Integer Sequences. ${ }^{1}$
(3) Type the decimal digits of α into the Inverse Symbolic Calculator. ${ }^{2}$

illustrate the results of each strategy

[^1]2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions
37. What is that number?
43. Lambert W
48. What is that continued fraction?

What is that Number?

Actually, I remembered that all arithmetic continued fractions arise in such fashion, but as we shall see one now does not need to.

In 2011 there are at least three "zero-knowledge" strategies:
(1) Given (11), type "arithmetic progression", "continued fraction" into Google.
(2. Type "1, 4, 3, 3, 1, 2, 7, 4, 2" into Sloane's Encyclopedia of Integer Sequences. ${ }^{1}$
(3) Type the decimal digits of α into the Inverse Symbolic Calculator. ${ }^{2}$
illustrate the results of each strategy

[^2] was newly web-accessible in the same year, 1995

What is that Number?

Actually, I remembered that all arithmetic continued fractions arise in such fashion, but as we shall see one now does not need to.

In 2011 there are at least three "zero-knowledge" strategies:
(1) Given (11), type "arithmetic progression", "continued fraction" into Google.
(2) Type "1, 4, 3, 3, 1, 2, 7, 4, 2" into Sloane's Encyclopedia of Integer Sequences. ${ }^{1}$
(3) Type the decimal digits of α into the Inverse Symbolic Calculator. ${ }^{2}$

I illustrate the results of each strategy.

[^3]2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions
37. What is that number?
43. Lambert W
48. What is that continued fraction?

What is that Number?

1. On Oct 15, 2008, on typing "arithmetic progression", "continued fraction" into Google, the first 3 hits were:

Continued Fraction Constant - from Wolfram MathWorld

- 3 visits - 14/09/07Perron (1954-57) discusses continued fractions having terms even more general than the arithmetic progression and relates them to various special functions. ... mathworld.wolfram. com/ContinuedFractionConstanthtml - 31k

HAKMEM - CONTINUED FRACTIONS -- DRAFT, NOT YET PROOFED The value of a continued fraction with partial quotients increasing in anithmetic progression is I (2/D) A/D [A+D, A+2D, A+3D, ... www.inwap.com/pdp10/hbaker/hakmem/cf.html - 25k -

On simple continued fractions with partial quotients in arithmetic ... 0 . This means that the sequence of partial quotients of the continued fractions under. investigation consists of finitely many arithmetic progressions (with ...
www.springerlink.com/index/COVXH713662G1815.pdf - by P Bundschuh - 1998

Moreover the MathWorld entry includes

CARMA

What is that Number?

2. Typing the first few digits into Sloane's interface results in the response shown in the Figure on the next slide.

- In this case we are even told what the series representations of the requisite Bessel functions are.
- We are given sample code (in this entry in Mathematica), and we are lead to many links and references.
- The site is well moderated.
- Note also that this strategy only became viable after May 14th 2001 when the sequence was added to the database which now contains in excess of 158,000 entries.

2. Introduction and Three Elementary Examples
3. Three Intermediate Examples 54. More Advanced Examples 68. Current Research and Conclusions
4. What is that number?
5. Lambert W
6. What is that continued fraction?

Sloane's Online Encyclopedia (OEIS)

\square
Mat latriger Sequancos nejearew
Greetings from The On-Line Encyclopedia of Integer Sequancest

```
14,3,3,1,2,7,4,2
seach

Search: 1, 4, 3, 3, 1, 2, 7, 4,2
Dsplaying 1.1 of 1 results found.
Format: long I chat I intomal I teat Sotirnlwance I refoperkes I havier Nighlight on I off adxapg 1 Deamal representason of conterued fracton \(1,2,3,4,5,5,7, \ldots\)
\(1,4,3,3,1,2,7,4,2,6,7,2,2,2,1,1,7,5,3,2,1,7,1,3,3,4,5,5\), \(7,7,3,9,9,1,3,2,0,4,3,1,5,1,2,7,6,7,9,0,5,9,3,0,5,2,3,4\), 1. 4, 4, 2, 3, 6, 3, 6, 3, 9, 4, 3, 0, 2, 1, 8, 3, 2, 5, 4, 1, 7, 2, 9, 0, 0, 1, 3.

6, 5, 0, 3, 7, 2, 6, 4, 3, 5, 7, 8, 6, 1, 1, 4, 5, 5, 9, 5, 0 (istic cocsighition)
OFET 1.2
comer The value of thas continued frwation is the ratio of two Bespef fubetioust lieaseli \((0,2) /\) Mesael \(2(1,2)=8070910 / \mathrm{A} 09 \mathrm{f} 799\). Or, aquavalently, to the ratio of the zumat 2 un_\{n=0..inf) 1/(n/n') and
 comi, Jan 312003
PGMEA 1/A052119.
EXAME Ca1. 433127426722311758317183455775 ...

MAHEMATGA
Realfigital PronContinuedFraction! Pange! 44]1, 10, 1101 [[1]] (* Or *) PealDagats[ sesselif0, 21/Beaselifi, 21, 10, 110] 1[11]
 ( \(\mathrm{n}, \mathrm{D}, \mathrm{In} 5 \sin 2 \mathrm{y}\) y) ], 10, [10] [[11]
clossers
Cf. A052119, 1001053 .
 80609929 2051000
Sequence in context; 1016099 s060973 1090200 this_mequence 1829624 A019925 A073871
strwore
anaz, eary, bonn
Autrea
Robert G. itilaan v [rgin (AT) EgaN. ©oan), Hay 142001

\section*{What is that Number?}
3. If one types the decimal representation of \(\alpha\) into the Inverse Symbolic Calculator (ISC) it returns:

Best guess: \(\operatorname{BesI}(0,2) / \operatorname{Bes} I(1,2)\)
- Most of the functionality of the ISC is built into the identify function in versions of Maple starting with version 9.5.
- For example,
> identify(4.45033263602792)
returns
\[
\sqrt{3}+e .
\]
- As always, the experienced user will be able to extract more from this tool than the novice for whom the ISC will often produce more.

\section*{5. What is that Limit?}

MAA Problem 10832, 2000 (Donald E. Knuth): Evaluate
\[
S=\sum_{k=1}^{\infty}\left(\frac{k^{k}}{k!e^{k}}-\frac{1}{\sqrt{2 \pi k}}\right) .
\]

Solution: Using Maple, we easily produced the approximation
\[
S \approx-0.08406950872765599646
\]
"Smart Lookup" in the Inverse Symbolic Calculator, yielded
\[
\begin{equation*}
S \approx-\frac{2}{3}-\frac{1}{\sqrt{2 \pi}} \zeta\left(\frac{1}{2}\right) \tag{13}
\end{equation*}
\]
- Calculations to higher precision (50 decimal digits) confirmed this approximation. Thus within a few minutes we "knew" tberma answer.

\section*{What is that Limit?}

Why should such an identity hold and be provable?
- One clue was provided by the surprising speed with which Maple was able to calculate a high-precision value of this slowly convergent infinite sum.
- Evidently, the Maple software knew something that we did not. Peering under the covers, we found that Maple was using the Lambert \(W\) function, which is the functional inverse of \(w(z)=z e^{z}\).
- Another clue was the appearance of \(\zeta(1 / 2)\) in the discovered identity, together with an obvious allusion to Stirling's formula in the problem.
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions

\section*{What is that Limit?}

\section*{This led us to}

\section*{Conjecture}
\[
\begin{equation*}
\sum_{k=1}^{\infty}\left(\frac{1}{\sqrt{2 \pi k}}-\frac{(1 / 2)_{k-1}}{(k-1)!\sqrt{2}}\right) \stackrel{?}{=} \frac{1}{\sqrt{2 \pi}} \zeta\left(\frac{1}{2}\right), \tag{14}
\end{equation*}
\]
where \((x)_{n}:=x(x+1) \cdots(x+n-1)\).
- Maple successfully evaluated this summation, to the RHS.

We now needed to establish that
\[
\sum_{k=1}^{\infty}\left(\frac{k^{k}}{k!e^{k}}-\frac{(1 / 2)_{k-1}}{(k-1)!\sqrt{2}}\right)=-\frac{2}{3}
\]

\title{
35. Three Intermediate Examples
} 54. More Advanced Examples
68. Current Research and Conclusions
37. What is that number?
43. Lambert W
48. What is that continued fraction?

\section*{What is that Limit?}

We noted the presence of the Lambert \(W\) function,
\[
\begin{equation*}
W(z)=\sum_{k=1}^{\infty} \frac{(-k)^{k-1} z^{k}}{k!} \tag{15}
\end{equation*}
\]

Since
\[
\sum_{k=1}^{\infty} \frac{(1 / 2)_{k-1} z^{k-1}}{(k-1)!}=\frac{1}{\sqrt{1-z}}
\]
an appeal to Abel's limit theorem showed it sufficed to prove:

\section*{Conjecture}

\section*{What is that Limit?}

We noted the presence of the Lambert \(W\) function,
\[
\begin{equation*}
W(z)=\sum_{k=1}^{\infty} \frac{(-k)^{k-1} z^{k}}{k!} \tag{15}
\end{equation*}
\]

Since
\[
\sum_{k=1}^{\infty} \frac{(1 / 2)_{k-1} z^{k-1}}{(k-1)!}=\frac{1}{\sqrt{1-z}}
\]
an appeal to Abel's limit theorem showed it sufficed to prove:

\section*{Conjecture}
\[
\lim _{z \rightarrow 1}\left(\frac{d W(-z / e)}{d z}+\frac{1}{\sqrt{2-2 z}}\right) \stackrel{?}{=} \frac{2}{3}
\]
- Again, Maple can be coaxed to establish the identity.

\section*{What is that Limit?}

\section*{Final thoughts.}
- The above manipulations took considerable human ingenuity, in addition to symbolic manipulation and numerical discovery.
- A challenge for the next generation of mathematical computing software, is to more completely automate this class of operations.
- E.g., Maple does not recognize \(W\) from its Maclaurin series (15).


Figure: \(W\) on the real line
37. What is that number?
43. Lambert W
48. What is that continued fraction?

\section*{6. What is that Continued fraction?}

The Ramanujan AGM continued fraction
\[
\mathcal{R}_{\eta}(a, b)=\frac{a}{\eta+\frac{b^{2}}{\eta+\frac{4 a^{2}}{\eta+\frac{9 b^{2}}{\eta+.}}}}
\]
enjoys attractive algebraic properties such as a striking arithmetic-geometric mean relation \& elegant links with elliptic-function theory.
- The fraction presented a serious computational challenge, which we could not resist.
37. What is that number?
43. Lambert W
48. What is that continued fraction?

\section*{5. What is that Continued fraction? The AG fraction.}

Figure: Yellow cardioid in which everything works

\section*{Theorem (AG continued fraction)}

For \(\eta>0\) and complex \(a, b\) the fraction \(\mathcal{R}_{\eta}\) converges and satisfies:
\[
\mathcal{R}_{\eta}\left(\frac{a+b}{2}, \sqrt{a b}\right)=\frac{\mathcal{R}_{\eta}(a, b)+\mathcal{R}_{\eta}(b, a)}{2}
\]
if and only if \(a / b \in \mathcal{H}\) the cardioid given by
\[
\mathcal{H}:=\left\{z \in \mathcal{C}:\left|\frac{2 \sqrt{z}}{1+z}\right|<1\right\} .
\]
2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions
37. What is that number?
43. Lambert W
48. What is that continued fraction?

\section*{What is that Continued fraction?}

\section*{A hidden fractal}


Figure: The modulus of \(\theta_{3}(q)\)

\title{
35. Three Intermediate Examples 54. More Advanced Examples
}
68. Current Research and Conclusions
37. What is that number?
43. Lambert W
48. What is that continued fraction?

\section*{What is that Continued fraction?}

Theorem (For \(a>0\) )
\[
\begin{aligned}
\mathcal{R}_{1}(a, a) & =\int_{0}^{\infty} \frac{\operatorname{sech}\left(\frac{\pi x}{2 a}\right)}{1+x^{2}} d x \\
& =2 a \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{1+(2 k-1) a} \\
& =\frac{1}{2}\left(\psi\left(\frac{3}{4}+\frac{1}{4 a}\right)-\psi\left(\frac{1}{4}+\frac{1}{4 a}\right)\right) \\
& =\frac{2 a}{1+a} F\left(\frac{1}{2 a}+\frac{1}{2}, 1 ; \frac{1}{2 a}+\frac{3}{2} ;-1\right) \quad \text { (Gauss c.f.) } \\
& =2 \int_{0}^{1} \frac{t^{1 / a}}{1+t^{2}} d t \\
& =\int_{0}^{\infty} e^{-x / a} \operatorname{sech}(x) d x
\end{aligned}
\]
37. What is that number?

\section*{What is that Continued fraction? \\ Closed forms, 2.}
- This is deduced from a Riemann sum via an elliptic integral/theta-function formula.
- For \(a=p / q\) rational we obtain an explicit closed form. Special cases include
\[
\mathcal{R}(1)=\log 2 \quad \text { and } \quad \mathcal{R}\left(\frac{1}{2}\right)=2-\frac{\pi}{2} .
\]
- Originally, we could not compute 4 digits of these values! Now have fast methods in all of \(\mathcal{C}^{2}\).
- For \(a\) with strictly positive (or negative) real part \(\mathcal{R}(a):=\mathcal{R}_{1}(a)\) exists and is holomorphic.
- \(\mathcal{R}(r i)(r \neq 0)\) behaves chaotically with 4-fold bifurcation.
- Find a closed form for \(\mathcal{R}(a, b)\) for some \(a \neq b\) ?

\section*{What is that Continued fraction? \\ Closed forms, 2.}
- This is deduced from a Riemann sum via an elliptic integral/theta-function formula.
- For \(a=p / q\) rational we obtain an explicit closed form. Special cases include
\[
\mathcal{R}(1)=\log 2 \quad \text { and } \quad \mathcal{R}\left(\frac{1}{2}\right)=2-\frac{\pi}{2} .
\]
- Originally, we could not compute 4 digits of these values! Now have fast methods in all of \(\mathcal{C}^{2}\).
- For \(a\) with strictly positive (or negative) real part \(\mathcal{R}(a):=\mathcal{R}_{1}(a)\) exists and is holomorphic.
- \(\mathcal{R}(r i)(r \neq 0)\) behaves chaotically with 4-fold bifurcation.
- Find a closed form for \(\mathcal{R}(a, b)\) for some \(a \neq b\) ?
37. What is that number?
43. Lambert W
48. What is that continued fraction?

\section*{What is that Continued fraction?}

Closed forms, 3.
The first sech-integral for \(\mathcal{R}(a)\) and the even Euler numbers
\[
E_{2 n}:=(-1)^{n} \int_{0}^{\infty} \operatorname{sech}(\pi x / 2) x^{2 n} d x
\]
yield
\[
\mathcal{R}(a) \sim \sum_{n \geq 0} E_{2 n} a^{2 n+1}
\]
giving an asymptotic series of zero radius of convergence. Here the \(E_{2 n}\) commence \(1,-1,5,-61,1385,-50521,2702765 \ldots\) Moreover, for the asymptotic error, we have:
\[
\left|\mathcal{R}(a)-\sum_{n=1}^{N-1} E_{2 n} a^{2 n+1}\right| \leq\left|E_{2 N}\right| a^{2 N+1}
\]
- It is a classic theorem of Borel that for every real sequence \(\left(a_{n}\right)\) there is a \(C^{\infty}\) function \(f\) on \(R\) with \(f^{(n)}(0)=a_{n}\).
37. What is that number?
43. Lambert W
48. What is that continued fraction?

\section*{What is that Continued fraction?}

Closed forms, 3.
The first sech-integral for \(\mathcal{R}(a)\) and the even Euler numbers
\[
E_{2 n}:=(-1)^{n} \int_{0}^{\infty} \operatorname{sech}(\pi x / 2) x^{2 n} d x
\]
yield
\[
\mathcal{R}(a) \sim \sum_{n \geq 0} E_{2 n} a^{2 n+1}
\]
giving an asymptotic series of zero radius of convergence. Here the \(E_{2 n}\) commence \(1,-1,5,-61,1385,-50521,2702765 \ldots\) Moreover, for the asymptotic error, we have:
\[
\left|\mathcal{R}(a)-\sum_{n=1}^{N-1} E_{2 n} a^{2 n+1}\right| \leq\left|E_{2 N}\right| a^{2 N+1}
\]
- It is a classic theorem of Borel that for every real sequence \(\left(a_{n}\right)\) there is a \(C^{\infty}\) function \(f\) on \(R\) with \(f^{(n)}(0)=a_{n}\).
- Who knew they could be so explicit?
2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions
37. What is that number?
43. Lambert W
48. What is that continued fraction?

\section*{What is that Continued fraction? \\ Visual Dynamics}

Six months after these discoveries we had a beautiful proof using genuinely new dynamical results:

\section*{Theorem (Divergence of \(R\) )}

Consider the linearised dynamical system \(t_{0}:=t_{1}:=1\)

html and originally in
37. What is that number?
43. Lambert W
48. What is that continued fraction?

\section*{What is that Continued fraction?}

\section*{Visual Dynamics}

Six months after these discoveries we had a beautiful proof using genuinely new dynamical results:

\section*{Theorem (Divergence of \(\mathcal{R}\) )}

Consider the linearised dynamical system \(t_{0}:=t_{1}:=1\) :
\[
t_{n} \hookleftarrow \frac{1}{n} t_{n-1}+\omega_{n-1}\left(1-\frac{1}{n}\right) t_{n-2}
\]
where \(\omega_{n}=a^{2}, b^{2}\) for \(n\) even, odd resp. (or is more general). Then \(\sqrt{n} t_{n}\) is bounded \(\Leftrightarrow \mathcal{R}_{1}(a, b)\) diverges.

Numerically all we learned is that \(t_{n} \rightarrow 0\) slowly.
Pictorially we saw more (in Cinderella):
http://carma.newcastle.edu.au/jon/dynamics.
37. What is that number?
43. Lambert W
48. What is that continued fraction?

\section*{What is that Continued fraction?}

\section*{Visual Dynamics}

Six months after these discoveries we had a beautiful proof using genuinely new dynamical results:

\section*{Theorem (Divergence of \(\mathcal{R}\) )}

Consider the linearised dynamical system \(t_{0}:=t_{1}:=1\) :
\[
t_{n} \hookleftarrow \frac{1}{n} t_{n-1}+\omega_{n-1}\left(1-\frac{1}{n}\right) t_{n-2}
\]
where \(\omega_{n}=a^{2}, b^{2}\) for \(n\) even, odd resp. (or is more general). Then \(\sqrt{n} t_{n}\) is bounded \(\Leftrightarrow \mathcal{R}_{1}(a, b)\) diverges.

Numerically all we learned is that \(t_{n} \rightarrow 0\) slowly.
Pictorially we saw more (in Cinderella):
http://carma.newcastle.edu. au/jon/dynamics.

\section*{What is that Continued fraction?}

\section*{Visual Dynamics}

Six months after these discoveries we had a beautiful proof using genuinely new dynamical results:

\section*{Theorem (Divergence of \(\mathcal{R}\) )}

Consider the linearised dynamical system \(t_{0}:=t_{1}:=1\) :
\[
t_{n} \hookleftarrow \frac{1}{n} t_{n-1}+\omega_{n-1}\left(1-\frac{1}{n}\right) t_{n-2},
\]
where \(\omega_{n}=a^{2}, b^{2}\) for \(n\) even, odd resp. (or is more general). Then \(\sqrt{n} t_{n}\) is bounded \(\Leftrightarrow \mathcal{R}_{1}(a, b)\) diverges.

Numerically all we learned is that \(t_{n} \rightarrow 0\) slowly. Pictorially we saw more (in Cinderella):
http://carma.newcastle.edu.au/jon/dynamics. html and originally in Maple.

\section*{La plus ça change, II}

YOU WANT YOUR COUSIN TO SEND YOU A FILE? EASY.
HE CAN EMAIL IT TO-... OH, IT's 25 MB? HMM...
DO EITHER OF YOU HAVE AN FTP SERVER? NO, RIGHT: IF YOU HAD WEB HOSTING, YOU COULD UPLOAD IT...

HMM. WE COULD TRY ONE OF THOSE MEGASHAREUPLCAD STES, BUT THEV RE FLAKY AND FULL OF DELAYS AND PORN POPUPS.

HOW ABOUT AIM DIRECT CONNECT? ANYONE STLL USE THAT? 1
OH, WAIT, DROPBOX! IT'S THIS RECENT STARTUP FROM A FEW YEARS BACK THAT SYNCS FOLDERS BETWEEN COMPUTERS. YOU JUST NEED TO MAKE AN ACLOUNT, INSTALL THE-


I LIKE HOW WE'VE HAD THE INTERNET FOR DECADES, YET "SENDING FILES" IS SOMETHING EARLY ADOPTERS ARE STILL FIGURING OUT HOW TO DO.
2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions
56. What is that probability?
62. What is that limit, II?
67. What is that transition value?

\section*{7. What is that Probability?}


Brymachen yn
eracienge

\section*{Question (SIAM 100 digit challenge, 2003)}
[\#10.] A particle at the center of a \(10 \times 1\) rectangle undergoes Brownian motion (i.e., 2-D random walk with infinitesimal step lengths) till it hits the boundary. What is the probability that it hits at one of the ends rather than at one of the sides?

\footnotetext{
- J.M. Borwein, "The SIAM 100 Digit Challenge," Extended review, Mathematical Intelligencer, 27 (4) (2005), 40-48. See http://carma.newcastle.edu.au/jon/digits.pdf.
- See also: http://www-m3.ma.tum.de/m3old/bornemann/challengebook/index.htm1
- Image is a walk on the first two billion bits of Pi: see http://carma.newcastle.edu.au/walks/.
}
2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions
56. What is that probability?
62. What is that limit, II?
67. What is that transition value?

\section*{7. What is that Probability?}


\section*{Question (SIAM 100 digit challenge, 2003)}
[\#10.] A particle at the center of a \(10 \times 1\) rectangle undergoes Brownian motion (i.e., 2-D random walk with infinitesimal step lengths) till it hits the boundary. What is the probability that it hits at one of the ends rather than at one of the sides?
- J.M. Borwein, "The SIAM 100 Digit Challenge," Extended review, Mathematical Intelligencer, 27 (4) (2005), 40-48. See http://carma.newcastle.edu.au/jon/digits.pdf.
- See also: http://www-m3.ma.tum.de/m3old/bornemann/challengebook/index.html.
- Image is a walk on the first two billion bits of Pi: see http://carma.newcastle.edu.au/walks/.
2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions
56. What is that probability?
62. What is that limit, II?
67. What is that transition value?

\section*{What is that Probability?}

\section*{Bornemann's solution, 1.}

\section*{Problem \#10: Hitting the Ends.}
(1) Monte-Carlo methods are impracticable.
(2) Reformulate deterministically as the value at the center of a \(10 \times 1\) rectangle of an appropriate harmonic measure of the ends, arising from a 5-point discretization of Laplace's equation with Dirichlet boundary conditions
(3) Solved with a well chosen snarse Cholesky solver
4) A reliable numerical value of \(3.837587979 \cdot 10^{-7}\)
is obtained. And the posed problem is solved numerically to the requisite ten places.
2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions
56. What is that probability?
62. What is that limit, II?
67. What is that transition value?

\section*{What is that Probability?}

\section*{Bornemann's solution, 1.}

\section*{Problem \#10: Hitting the Ends.}
(1) Monte-Carlo methods are impracticable.
(2) Reformulate deterministically as the value at the center of a
\(10 \times 1\) rectangle of an appropriate harmonic measure of the
ends, arising from a 5-point discretization of Laplace's
equation with Dirichlet boundary conditionsSolved with a well chosen sparse Cholesky solver
(A) A reliable numerical value of

is obtained. And the posed problem is solved numerically to
the requisite ten nlaces
2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions
56. What is that probability?
62. What is that limit, II?
67. What is that transition value?

\section*{What is that Probability?}

\section*{Bornemann's solution, 1.}

\section*{Problem \#10: Hitting the Ends.}
(1) Monte-Carlo methods are impracticable.
(2) Reformulate deterministically as the value at the center of a \(10 \times 1\) rectangle of an appropriate harmonic measure of the ends, arising from a 5-point discretization of Laplace's equation with Dirichlet boundary conditions.
(3) Solved with a well chosen sparse Cholesky solver
(4) A reliable numerical value of
is obtained. And the posed problem is solved numerically to the requisite ten places
2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions
56. What is that probability?
62. What is that limit, II?
67. What is that transition value?

\section*{What is that Probability?}

\section*{Bornemann's solution, 1.}

\section*{Problem \#10: Hitting the Ends.}
(1) Monte-Carlo methods are impracticable.
(2) Reformulate deterministically as the value at the center of a \(10 \times 1\) rectangle of an appropriate harmonic measure of the ends, arising from a 5-point discretization of Laplace's equation with Dirichlet boundary conditions.
(3) Solved with a well chosen sparse Cholesky solver.
4) A reliable numerical value of
is obtained. And the posed problem is solved numerically to the requisite ten places

\section*{What is that Probability?}

\section*{Bornemann's solution, 1.}

\section*{Problem \#10: Hitting the Ends.}
(1) Monte-Carlo methods are impracticable.
(2) Reformulate deterministically as the value at the center of a \(10 \times 1\) rectangle of an appropriate harmonic measure of the ends, arising from a 5-point discretization of Laplace's equation with Dirichlet boundary conditions.
(3) Solved with a well chosen sparse Cholesky solver.
(4) A reliable numerical value of
\[
3.837587979 \cdot 10^{-7}
\]
is obtained. And the posed problem is solved numerically to the requisite ten places.

\section*{What is that Probability?}

\section*{Bornemann's solution, 1.}

\section*{Problem \#10: Hitting the Ends.}
(1) Monte-Carlo methods are impracticable.
(2) Reformulate deterministically as the value at the center of a \(10 \times 1\) rectangle of an appropriate harmonic measure of the ends, arising from a 5-point discretization of Laplace's equation with Dirichlet boundary conditions.
(3) Solved with a well chosen sparse Cholesky solver.
(4) A reliable numerical value of
\[
3.837587979 \cdot 10^{-7}
\]
is obtained. And the posed problem is solved numerically to the requisite ten places.

This is only the warm up.
2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions
56. What is that probability?
62. What is that limit, II?
67. What is that transition value?

\section*{What is that Probability?}

\section*{Bornemann's solution, 2.}

We develop two analytic solutions - which must agree - on a general \(2 a \times 2 b\) rectangle:
(1) Via separation of variables on the underlying PDE


2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions
56. What is that probability?
62. What is that limit, II?
67. What is that transition value?

\section*{What is that Probability?}

\section*{Bornemann's solution, 2.}

We develop two analytic solutions - which must agree - on a general \(2 a \times 2 b\) rectangle:
(1) Via separation of variables on the underlying PDE
\[
\begin{equation*}
p(a, b)=\frac{4}{\pi} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} \operatorname{sech}\left(\frac{\pi(2 n+1)}{2} \rho\right) \tag{16}
\end{equation*}
\]
where \(\rho:=a / b\).
(2) Using conformal mappings, yields

2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions
56. What is that probability?
62. What is that limit, II?
67. What is that transition value?

\section*{What is that Probability?}

\section*{Bornemann's solution, 2.}

We develop two analytic solutions - which must agree - on a general \(2 a \times 2 b\) rectangle:
(1) Via separation of variables on the underlying PDE
\[
\begin{equation*}
p(a, b)=\frac{4}{\pi} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} \operatorname{sech}\left(\frac{\pi(2 n+1)}{2} \rho\right) \tag{16}
\end{equation*}
\]
where \(\rho:=a / b\).
(2) Using conformal mappings, yields
\[
\begin{equation*}
\operatorname{arccot} \rho=p(a, b) \frac{\pi}{2}+\arg \mathrm{K}\left(e^{i p(a, b) \pi}\right) \tag{17}
\end{equation*}
\]
where \(K\) is the complete elliptic integral of the first kind.
2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions
56. What is that probability?
62. What is that limit, II?
67. What is that transition value?

\section*{What is that Probability?}

\section*{Bornemann's solution, 3.}

Now (3.2.29)] in Pi\&AGM shows that
\[
\begin{equation*}
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} \operatorname{sech}\left(\frac{\pi(2 n+1)}{2} \rho\right)=\frac{1}{2} \arcsin k_{\rho} \tag{18}
\end{equation*}
\]
exactly when \(k_{\rho^{2}}\) is parameterized by theta functions as follows.
- As Jacobi discovered via the nome, \(q=\exp (-\pi \rho)\)
- Comparing (18) and (16) we see that the solution is \(\frac{2}{\pi} \arcsin \left(K_{100}\right)\),
2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions
56. What is that probability?
62. What is that limit, II?
67. What is that transition value?

\section*{What is that Probability?}

\section*{Bornemann's solution, 3.}

Now (3.2.29)] in Pi\&AGM shows that
\[
\begin{equation*}
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} \operatorname{sech}\left(\frac{\pi(2 n+1)}{2} \rho\right)=\frac{1}{2} \arcsin k_{\rho} \tag{18}
\end{equation*}
\]
exactly when \(k_{\rho^{2}}\) is parameterized by theta functions as follows.
- As Jacobi discovered via the nome, \(q=\exp (-\pi \rho)\) :
\[
k_{\rho^{2}}=\frac{\theta_{2}^{2}(q)}{\theta_{3}^{2}(q)}=\frac{\sum_{n=-\infty}^{\infty} q^{(n+1 / 2)^{2}}}{\sum_{n=-\infty}^{\infty} q^{n^{2}}} \quad q:=e^{-\pi \rho}
\]
- Comparing (18) and (16) we see that the solution is

2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions
56. What is that probability?
62. What is that limit, II?
67. What is that transition value?

\section*{What is that Probability? Bornemann's solution, 3.}

Now (3.2.29)] in Pi\&AGM shows that
\[
\begin{equation*}
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} \operatorname{sech}\left(\frac{\pi(2 n+1)}{2} \rho\right)=\frac{1}{2} \arcsin k_{\rho} \tag{18}
\end{equation*}
\]
exactly when \(k_{\rho^{2}}\) is parameterized by theta functions as follows.
- As Jacobi discovered via the nome, \(q=\exp (-\pi \rho)\) :
\[
k_{\rho^{2}}=\frac{\theta_{2}^{2}(q)}{\theta_{3}^{2}(q)}=\frac{\sum_{n=-\infty}^{\infty} q^{(n+1 / 2)^{2}}}{\sum_{n=-\infty}^{\infty} q^{n^{2}}} \quad q:=e^{-\pi \rho}
\]
- Comparing (18) and (16) we see that the solution is
\[
\begin{aligned}
p & =\frac{2}{\pi} \arcsin \left(k_{100}\right), \\
k_{100} & =6.02806910155971082882540712292 \ldots \cdot 10^{-7} \text { CARMA }
\end{aligned}
\]
2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions
56. What is that probability?
62. What is that limit, II?
67. What is that transition value?

\section*{What is that Probability?}

\section*{Bornemann's solution, 4.}
- Classical nineteenth century modular function theory tells us all rational singular values \(k_{n}\) are algebraic (solvable).
- Now, we can hunt in books or obtain the solution automatically in Maple: Thence
- No one anticipated a closed form like this, except perhaps a few harmonic analysts.

For what boundaries can one emulate this?
- In fact \(k_{210}\) was sent by Ramanujan to Hardy in his famous letter of introduction - if only Trefethen had asked for a \(\sqrt{210} \times 1\) box, or even better a \(\sqrt{15} \times \sqrt{14}\) one.
2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions
56. What is that probability?
62. What is that limit, II?
67. What is that transition value?

\section*{What is that Probability?}

\section*{Bornemann's solution, 4.}
- Classical nineteenth century modular function theory tells us all rational singular values \(k_{n}\) are algebraic (solvable).
- Now, we can hunt in books or obtain the solution automatically in Maple: Thence
\[
k_{100}:=\left((3-2 \sqrt{2})(2+\sqrt{5})(-3+\sqrt{10})(-\sqrt{2}+\sqrt[4]{5})^{2}\right)^{2}
\]
- No one anticipated a closed form like this, except perhaps a few harmonic analysts.
- For what boundaries can one emulate this?
- In fact \(k_{210}\) was sent by Ramanujan to Hardy in his famous letter of introduction - if only Trefethen had asked for a \(\sqrt{210} \times 1\) box, or even better a \(\sqrt{15} \times \sqrt{14}\) one.
2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions
56. What is that probability?
62. What is that limit, II?
67. What is that transition value?

\section*{What is that Probability?}

\section*{Bornemann's solution, 4.}
- Classical nineteenth century modular function theory tells us all rational singular values \(k_{n}\) are algebraic (solvable).
- Now, we can hunt in books or obtain the solution automatically in Maple: Thence
\[
k_{100}:=\left((3-2 \sqrt{2})(2+\sqrt{5})(-3+\sqrt{10})(-\sqrt{2}+\sqrt[4]{5})^{2}\right)^{2}
\]
- No one anticipated a closed form like this, except perhaps a few harmonic analysts.
- For what boundaries can one emulate this?
- In fact \(k_{210}\) was sent by Ramanujan to Hardy in his famous letter of introduction - if only Trefethen had asked for a \(\sqrt{210} \times 1\) box, or even better a \(\sqrt{15} \times \sqrt{14}\) one.

\section*{What is that Probability?}

\section*{Bornemann's solution, 4.}
- Classical nineteenth century modular function theory tells us all rational singular values \(k_{n}\) are algebraic (solvable).
- Now, we can hunt in books or obtain the solution automatically in Maple: Thence
\[
k_{100}:=\left((3-2 \sqrt{2})(2+\sqrt{5})(-3+\sqrt{10})(-\sqrt{2}+\sqrt[4]{5})^{2}\right)^{2}
\]
- No one anticipated a closed form like this, except perhaps a few harmonic analysts.
- For what boundaries can one emulate this?
- In fact \(k_{210}\) was sent by Ramanujan to Hardy in his famous letter of introduction - if only Trefethen had asked for a \(\sqrt{210} \times 1\) box, or even better a \(\sqrt{15} \times \sqrt{14}\) one.
2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions

\section*{56. What is that probability?}
62. What is that limit, II?
67. What is that transition value?

\section*{What is that Probability?}

\section*{A taste of Ramanujan}


Srinivasa Ramanujan (1887-1920)

\section*{MODULAR FUNCTIONS AND APPROXIMATIONS TO PI}

A modular function is a function, \(\lambda(q)\), that can be related through an algebraic expression called a modular equation to the same function expressed in terms of the same variable, \(q\). raised to an integral power: \(\lambda\left(q^{p}\right)\). The integral power, \(p\), determines the "order" of the modular equation. An example of a modular function is
\[
\lambda(q)-16 q \prod_{n=1}^{\infty}\left(\frac{1+q^{2 n}}{1+q^{2 n-1}}\right)^{8} .
\]

Its associated seventh-order modular equation, which relates \(\lambda(q)\) to \(\lambda\left(q^{7}\right)\), is given by
\[
\partial x(q) \lambda\left(q^{2}\right)+x[1-\lambda(q))\left[1-\lambda\left(q^{\prime}\right)\right]=1 .
\]

Singular values are solutions of modular equations that must also satisfy additional conditions. One class of singular values corresponds to computing a sequence of values, \(k_{p}\), where
\[
k_{p}=\sqrt{\lambda(e-N d)}
\]
and \(p\) takes integer values. These values have the curious property that the logarithmic expression
\[
\frac{-2}{\sqrt{p}} \log \left(\frac{k_{p}}{4}\right)
\]
coincides with many of the first digits of pi. The number of digits the expression has in common with pi increases with larger values of \(p\).

Ramanujan was unparalleled in his ability to calculate these singular values. One of his most famous is the value when \(p\) equals 210 , which was included in his original letter to G.H. Hardy. It is
\[
k_{210}=(\sqrt{2}-1)^{2}(2-\sqrt{3})(\sqrt{7}-\sqrt{6})^{2}\left(8-3 \sqrt{7}(\sqrt{10}-3)^{2}(\sqrt{15}-\sqrt{14})(4-\sqrt{15})^{2}(6-\sqrt{35}) .\right.
\]

This number, when plugged into the logarithmic expression, agrees with pi through the first 20 decimal places. In comparison, \(k_{2^{40}}\) yields a number that agrees with pi through more than one million digits.

Applying this general approach, Ramanujan constructed a number of remarkable series for pi, including the one shown in the illustration on the preceding page. The general approach also underlies the two-step, iterative algorithms in the top illustration on the opposite page. In each iteration the first step (calculating \(y_{n}\) ) corresponds to computing one of a sequence of singular values by solving a modular equation of the appropriate order; the second step (calculating \(\alpha_{n}\) ) is tantamount to taking the logarithm of the singular value.
2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions
56. What is that probability?
62. What is that limit, II?
67. What is that transition value?

\section*{8. What is that Limit, II?}

Consider:
\[
\begin{aligned}
C_{n} & :=\frac{4}{n!} \int_{0}^{\infty} \cdots \int_{0}^{\infty} \frac{1}{\left(\sum_{j=1}^{n}\left(u_{j}+1 / u_{j}\right)\right)^{2}} \frac{\mathrm{~d} u_{1}}{u_{1}} \cdots \frac{\mathrm{~d} u_{n}}{u_{n}} \\
D_{n} & :=\frac{4}{n!} \int_{0}^{\infty} \cdots \int_{0}^{\infty} \frac{\prod_{i<j}\left(\frac{u_{i}-u_{j}}{u_{i}+u_{j}}\right)^{2}}{\left(\sum_{j=1}^{n}\left(u_{j}+1 / u_{j}\right)\right)^{2}} \frac{\mathrm{~d} u_{1}}{u_{1}} \cdots \frac{\mathrm{~d} u_{n}}{u_{n}} \\
E_{n} & :=2 \int_{0}^{1} \cdots \int_{0}^{1}\left(\prod_{1 \leq j<k \leq n} \frac{u_{k}-u_{j}}{u_{k}+u_{j}}\right)^{2} \mathrm{~d} t_{2} \mathrm{~d} t_{3} \cdots \mathrm{~d} t_{n}
\end{aligned}
\]
where (in the last line) \(u_{k}=\prod_{i=1}^{k} t_{i}\).
- The \(D_{n}\) integrals arise in the Ising model (showing ferromagnetic temperature driven phase shifts)
- The \(C_{n}\) have tight connections to quantum field theory. A

\section*{8. What is that Limit, II?}

Consider:
\[
\begin{aligned}
& C_{n}:=\frac{4}{n!} \int_{0}^{\infty} \cdots \int_{0}^{\infty} \frac{1}{\left(\sum_{j=1}^{n}\left(u_{j}+1 / u_{j}\right)\right)^{2}} \frac{\mathrm{~d} u_{1}}{u_{1}} \cdots \frac{\mathrm{~d} u_{n}}{u_{n}} \\
& D_{n}:=\frac{4}{n!} \int_{0}^{\infty} \cdots \int_{0}^{\infty} \frac{\prod_{i<j}\left(\frac{u_{i}-u_{j}}{u_{i}+u_{j}}\right)^{2}}{\left(\sum_{j=1}^{n}\left(u_{j}+1 / u_{j}\right)\right)^{2}} \frac{\mathrm{~d} u_{1}}{u_{1}} \cdots \frac{\mathrm{~d} u_{n}}{u_{n}} \\
& E_{n}:=2 \int_{0}^{1} \cdots \int_{0}^{1}\left(\prod_{1 \leq j<k \leq n} \frac{u_{k}-u_{j}}{u_{k}+u_{j}}\right)^{2} \mathrm{~d} t_{2} \mathrm{~d} t_{3} \cdots \mathrm{~d} t_{n}
\end{aligned}
\]
where (in the last line) \(u_{k}=\prod_{i=1}^{k} t_{i}\).
- The \(D_{n}\) integrals arise in the Ising model (showing ferromagnetic temperature driven phase shifts)
- The

\section*{8. What is that Limit, II?}

Consider:
\[
\begin{aligned}
& C_{n}:=\frac{4}{n!} \int_{0}^{\infty} \cdots \int_{0}^{\infty} \frac{1}{\left(\sum_{j=1}^{n}\left(u_{j}+1 / u_{j}\right)\right)^{2}} \frac{\mathrm{~d} u_{1}}{u_{1}} \cdots \frac{\mathrm{~d} u_{n}}{u_{n}} \\
& D_{n}:=\frac{4}{n!} \int_{0}^{\infty} \cdots \int_{0}^{\infty} \frac{\prod_{i<j}\left(\frac{u_{i}-u_{j}}{u_{i}+u_{j}}\right)^{2}}{\left(\sum_{j=1}^{n}\left(u_{j}+1 / u_{j}\right)\right)^{2}} \frac{\mathrm{~d} u_{1}}{u_{1}} \cdots \frac{\mathrm{~d} u_{n}}{u_{n}} \\
& E_{n}:=2 \int_{0}^{1} \cdots \int_{0}^{1}\left(\prod_{1 \leq j<k \leq n} \frac{u_{k}-u_{j}}{u_{k}+u_{j}}\right)^{2} \mathrm{~d} t_{2} \mathrm{~d} t_{3} \cdots \mathrm{~d} t_{n}
\end{aligned}
\]
where (in the last line) \(u_{k}=\prod_{i=1}^{k} t_{i}\).
- The \(D_{n}\) integrals arise in the Ising model (showing ferromagnetic temperature driven phase shifts)
- The \(C_{n}\) have tight connections to quantum field theory. Als Carma \(E_{n} \leq D_{n} \leq C_{n}\) and \(E_{n} \sim D_{n}\).
2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions
56. What is that probability?
62. What is that limit, II?
67. What is that transition value?

\section*{What is that Limit, II?}

\section*{A discovery}
- Fortunately, the \(C_{n}\) can be written as one-dim integrals:
\[
C_{n}=\frac{2^{n}}{n!} \int_{0}^{\infty} p K_{0}^{n}(p) \mathrm{d} p,
\]
where \(K_{0}\) is the modified Bessel function.
- Computing \(C_{n}\) to 1000 -digit (overkill) accuracy, we identified
\(C_{3}=\mathrm{L}_{-3}(2):=\sum_{n \geq 0}\left(\frac{1}{(3 n+1)^{2}}-\frac{1}{(3 n+2)^{2}}\right), \quad C_{4}=\frac{7}{12} \zeta(3)\),
- Here \(\zeta\) is Riemann zeta. In particular
\(C_{1024}=0.63047350337438679612204019271087890435458707871273\)
is the limit value to that precision. The ISC returned
2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions

\section*{What is that Limit, II?}

\section*{A discovery}
- Fortunately, the \(C_{n}\) can be written as one-dim integrals:
\[
C_{n}=\frac{2^{n}}{n!} \int_{0}^{\infty} p K_{0}^{n}(p) \mathrm{d} p,
\]
where \(K_{0}\) is the modified Bessel function.
- Computing \(C_{n}\) to 1000-digit (overkill) accuracy, we identified
\[
C_{3}=\mathrm{L}_{-3}(2):=\sum_{n \geq 0}\left(\frac{1}{(3 n+1)^{2}}-\frac{1}{(3 n+2)^{2}}\right), \quad C_{4}=\frac{7}{12} \zeta(3),
\]
- Here \(\zeta\) is Riemann zeta. In particular \(C_{1024}=0.63047350337438679612204019271087890435458707871273 \ldots\), is the limit value to that precision. The ISC returned
\[
\lim _{n \rightarrow \infty} C_{n}=2 e^{-2 \gamma}
\]
where \(\gamma\) is Euler's constant. (Now proven.)
2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions
56. What is that probability?
62. What is that limit, II?
67. What is that transition value?

\section*{7. What is that Limit, II?}

\section*{Sterner stuff I.}

For \(D_{5}, E_{5}\), we could integrate one variable symbolically.

2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions
56. What is that probability?
62. What is that limit, II?
67. What is that transition value?

\section*{What is that Limit, II?}

\section*{Sterner stuff, II.}
- Nonetheless, we obtained 240-digits or more on a highly parallel computer system - impossible without a dimension reduction, and needed for reliable \(D_{5}, E_{5}\) hunts.
- We give the integral in extenso to show the difference between a humanly accessible answer and one a computer finds useful.
In this way, we produced the following evaluations:


\section*{What is that Limit, II?}

\section*{Sterner stuff, II.}
- Nonetheless, we obtained 240-digits or more on a highly parallel computer system - impossible without a dimension reduction, and needed for reliable \(D_{5}, E_{5}\) hunts.
- We give the integral in extenso to show the difference between a humanly accessible answer and one a computer finds useful. In this way, we produced the following evaluations:
\[
\begin{aligned}
D_{2} & =1 / 3, \quad D_{3}=8+4 \pi^{2} / 3-27 \mathrm{~L}_{-3}(2), \quad D_{4}=4 \pi^{2} / 9-1 / 6-7 \zeta(3) / 2, \\
E_{2} & =6-8 \log 2, \quad E_{3}=10-2 \pi^{2}-8 \log 2+32 \log ^{2} 2, \\
E_{4} & =22-82 \zeta(3)-24 \log 2+176 \log ^{2} 2-256\left(\log ^{3} 2\right) / 3+16 \pi^{2} \log 2 \\
& -22 \pi^{2} / 3
\end{aligned}
\]

For \(D_{2}, D_{3}, D_{4}\), these confirmed known analytic (physics) results. Also:

\(\square\)

\section*{What is that Limit, II?}

\section*{Sterner stuff, II.}
- Nonetheless, we obtained 240-digits or more on a highly parallel computer system - impossible without a dimension reduction, and needed for reliable \(D_{5}, E_{5}\) hunts.
- We give the integral in extenso to show the difference between a humanly accessible answer and one a computer finds useful. In this way, we produced the following evaluations:
\[
\begin{aligned}
D_{2} & =1 / 3, \quad D_{3}=8+4 \pi^{2} / 3-27 \mathrm{~L}_{-3}(2), \quad D_{4}=4 \pi^{2} / 9-1 / 6-7 \zeta(3) / 2 \\
E_{2} & =6-8 \log 2, \quad E_{3}=10-2 \pi^{2}-8 \log 2+32 \log ^{2} 2, \\
E_{4} & =22-82 \zeta(3)-24 \log 2+176 \log ^{2} 2-256\left(\log ^{3} 2\right) / 3+16 \pi^{2} \log 2 \\
& -22 \pi^{2} / 3
\end{aligned}
\]

For \(D_{2}, D_{3}, D_{4}\), these confirmed known analytic (physics) results. Also:
\(E_{5} \stackrel{?}{=} 42-1984 \operatorname{Li}_{4}(1 / 2)+189 \pi^{4} / 10-74 \zeta(3)-1272 \zeta(3) \log 2-40 \log 2\)
\(+40 \pi^{2} \log ^{2} 2-62 \pi^{2} / 3+40\left(\pi^{2} \log 2\right) / 3+88 \log ^{4} 2+464 \log ^{2} 2\), (19)
where \(\mathrm{Li}_{4}\) denotes the quadra-logarithm.
2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions
56. What is that probability?
62. What is that limit, II?
67. What is that transition value?

\section*{What is that Limit, II?}

I only understand things through examples and then gradually make them more abstract. I don't think it helped Grothendieck in the least to look at an example. He really got control of the situation by thinking of it in absolutely the most abstract possible way. It's just very strange. That's the way his mind worked.
(David Mumford, 2004)
(1) The form in (19) for \(E_{5}\) was confirmed to 240-digit accuracy.
(2) This is 180 digits beyond the level that could be ascribed to numerical round-off; thus we are quite confident in this result.
(3) We tried but failed to recognize \(D_{5}\) in terms of similar constants as described in the paper.
(4) The 500-digit numerical value is accessible \({ }^{3}\) if anyone wishes to try to find a closed form; or in the manner of the hard sciences to confirm our data values.

\footnotetext{
http://crd.lbl.gov/~dhbailey/dhbpapers/ising-data.pdf
}
2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions
56. What is that probability?
62. What is that limit, II?
67. What is that transition value?

\section*{What is that Limit, II?}

I only understand things through examples and then gradually make them more abstract. I don't think it helped Grothendieck in the least to look at an example. He really got control of the situation by thinking of it in absolutely the most abstract possible way. It's just very strange. That's the way his mind worked.
(David Mumford, 2004)
(1) The form in (19) for \(E_{5}\) was confirmed to 240-digit accuracy.
(2) This is 180 digits beyond the level that could be ascribed to numerical round-off; thus we are quite confident in this result.
(3) We tried but failed to recognize \(D_{5}\) in terms of similar constants as described in the paper.
(4) The 500 -digit numerical value is accessible \({ }^{3}\) if anyone wishes to try to find a closed form; or in the manner of the hard sciences to confirm our data values.

\footnotetext{
http://crd.lbl.gov/~dhbailey/dhbpapers/ising-data.pdf
}

\section*{What is that Limit, II?}

I only understand things through examples and then gradually make them more abstract. I don't think it helped Grothendieck in the least to look at an example. He really got control of the situation by thinking of it in absolutely the most abstract possible way. It's just very strange. That's the way his mind worked.
(David Mumford, 2004)
(1) The form in (19) for \(E_{5}\) was confirmed to 240-digit accuracy.
(2) This is 180 digits beyond the level that could be ascribed to numerical round-off; thus we are quite confident in this result.
(3) We tried but failed to recognize \(D_{5}\) in terms of similar constants as described in the paper.
(a) The 500 -digit numerical value is accessible \({ }^{3}\) if anyone wishes to try to find a closed form; or in the manner of the hard sciences to confirm our data values.

\section*{What is that Limit, II?}

I only understand things through examples and then gradually make them more abstract. I don't think it helped Grothendieck in the least to look at an example. He really got control of the situation by thinking of it in absolutely the most abstract possible way. It's just very strange. That's the way his mind worked.
(David Mumford, 2004)
(1) The form in (19) for \(E_{5}\) was confirmed to 240-digit accuracy.
(2) This is 180 digits beyond the level that could be ascribed to numerical round-off; thus we are quite confident in this result.
(3) We tried but failed to recognize \(D_{5}\) in terms of similar constants as described in the paper.
(4) The 500-digit numerical value is accessible \({ }^{3}\) if anyone wishes to try to find a closed form; or in the manner of the hard sciences to confirm our data values.
\({ }^{3}\) http://crd.lbl.gov/~dhbailey/dhbpapers/ising-data.pdf.

\section*{9. What is that Transition value?}

\section*{Example (Weakly coupling oscillators)}

In an important analysis of coupled Winfree oscillators, Quinn, Rand, and Strogatz looked at an \(N\)-oscillator scenario whose bifurcation phase offset \(\phi\) is implicitly defined, with a conjectured asymptotic behavior: \(\sin \phi \sim 1-c_{1} / N\),; and with experimental estimate \(c_{1}=0.605443657 \ldots\). We derived the exact value of this "QRS constant':
\(c_{1}\) is the unique zero of the Hurwitz zeta \(\zeta(1 / 2, z / 2)\) for \(z \in(0,2)\).
- We were able to prove the conjectured behavior. Moreover, we sketched the higher-order asymptotic behavior; something that would have been impossible without discovery of an analytic formula.

\section*{9. What is that Transition value?}

\section*{Example (Weakly coupling oscillators)}

In an important analysis of coupled Winfree oscillators, Quinn, Rand, and Strogatz looked at an \(N\)-oscillator scenario whose bifurcation phase offset \(\phi\) is implicitly defined, with a conjectured asymptotic behavior: \(\sin \phi \sim 1-c_{1} / N\),; and with experimental estimate \(c_{1}=0.605443657 \ldots\). We derived the exact value of this "QRS constant':
\(c_{1}\) is the unique zero of the Hurwitz zeta \(\zeta(1 / 2, z / 2)\) for \(z \in(0,2)\).
- We were able to prove the conjectured behavior. Moreover, we sketched the higher-order asymptotic behavior; something that would have been impossible without discovery of an analytic formula.
2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions
56. What is that probability?
62. What is that limit, II?
67. What is that transition value?

\section*{What is that Transition value?}

\section*{PRL 101, 084103 (2008) PHYSICAL REVIEW LETTERS}


FIG. 1 (coler online). Snapshot of a chimera state, obtained by numerical integration of (1) with \(\beta-0.1, A-0.2\), and \(N_{1}-\) \(N_{1}-1024\). (a) Synchrovized popelation.. (b) Desynchronized \(N_{1}-\) 1024. (a) Synchroaized popelation. (b) Desynchronized
populataion. (c) Density of desynchronized phases precticted by population. (c) Density of desynchronized phases precicted by
Eq. (6) and (12) (smooth curve) agrees with observed histo-


Fig. 2 (color online). Order paranseter \(r\) versus time. In all hree parrels, \(N_{1}-N_{2}-128\) and \(\beta-0.1\). (a) \(A-0.2\) : stable chimera; (b) \(A-028\) : breathing chimera; (c) \(A-0.35\) : long.
period breather. Numerical integration began from an initial condition close to the chimeri state, and plots shown begin after Mlowing a transient time of 2000 units
- Does this deserve to be called a closed form?
- Resoundingly 'yes', unless all inverse functions such as that in Bornemann's probability are to be eschewed.
- Such QRS constants are especially interesting in light of recent work by Strogatz, Lang et al on chimera - coupled systems which self-organize in part and remain disorganized elsewhere. - Now numerical limits still need a closed form.
- Often, the need for high accuracy computation drives development of effective analytic expressions which in turn shed substantial light on the subject being studied
2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions
56. What is that probability?
62. What is that limit, II?
67. What is that transition value?

\section*{What is that Transition value?}


FIG. 1 (color online). Snapshot of a chimera state, obtained by numerical integration of (1) with \(\beta-0.1, A-0.2\), and \(N_{1}-\) \(\mathrm{N}_{2}-1024\). (a) Symachrovixed population. (b) Desynchronized population. (c) Density of desynchonized phases precticted by Eq. (6) and (12) (smooth curve) agrees with observed histo-

G. 2 (color online). Orter paramater \(r\) versus time. In in invee pancls, \(N_{1}-N_{2}-128\) and \(\beta-01\). (a) \(A-02\) : stable himera; (b) \(A-028\) : breathing chimera; (c) \(A=0.35\) : long-
(criod breather. Numerical integration bezan fomm an initial condition close to the chimeris state, and plots shown begin after lowing a transient time of 2000 units
- Does this deserve to be called a closed form?
- Resoundingly 'yes', unless all inverse functions such as that in Bornemann's probability are to be eschewed.
- Such QRS constants are especially interesting in light of recent work by Strogatz, Lang et al on chimera - coupled systems which self-organize in part and remain disorganized elsewhere - Now numerical limits still need a closed form
- Often, the need for high accuracy computation drives development of effective analytic expressions which in turn shed substantial light on the subject being studied
2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions
56. What is that probability?
62. What is that limit, II?
67. What is that transition value?

\section*{What is that Transition value?}

\section*{Chimera}


FIG. 1 (color online). Snapshot of a chimera state, obtained by numerical integration of (1) with \(\beta-0.1, A-0.2\), and \(N_{1}-\) numencal integrion of
\(N_{1}-1024\). (a) Synchrovixed poppulation. (b) Desynchronized
peq. population. (c) Density of desynchronized phases predicted by
Eq. (6) and (12) (smooth curve) agrees with observed histo-

.G. 2 (color online). Ortier parameer \(r\) versus time. In three parels, \(N_{1}-N_{2}-128\) and \(\beta-01\). (a) \(A-022\) stable chineras (b) \(A-028\) : breathing chinger; (c) \(A-0.35\) : longperiod breather. Numencal integration began from an instial
condition close to the chimera state, and plots shown begin affer allowing a transient time of 2000 units
- Does this deserve to be called a closed form?
- Resoundingly 'yes', unless all inverse functions such as that in Bornemann's probability are to be eschewed.
- Such QRS constants are especially interesting in light of recent work by Strogatz, Lang et al on chimera - coupled systems which self-organize in part and remain disorganized elsewhere.
- Now numerical limits still need a closed form.
- Often, the need for high accuracy computation drives development of effective analytic expressions which in turn shed substantial light on the subject being studied.

\section*{What is that Transition value?}


FIG. 1 (color online). Snapshot of a chimera state, obtained by numerical integration of (1) with \(\beta-01, A-0.2\), and \(N_{1}-\)
\(N_{2}-1024\). (a) Symachrocixed population. (b) Desynchronized \(\mathrm{N}_{1}-102\). (a) Syychronized popuatation. (b) Desynchronized population. (c) Density of desynchronized phases preciected by
Eq. (6) and (12) (smooth curve) agrees with observed histo-

M. 2 (colos online). Order parameter \(r\) versus time. In ial
 chinera; (b) \(A-028\) : breathing chinera; (c) \(A=0.35\) : longcondition close to the chimera state, and plots shown begin after allowing a transient time of 2000 units.
- Does this deserve to be called a closed form?
- Resoundingly 'yes', unless all inverse functions such as that in Bornemann's probability are to be eschewed.
- Such QRS constants are especially interesting in light of recent work by Strogatz, Lang et al on chimera - coupled systems which self-organize in part and remain disorganized elsewhere.
- Now numerical limits still need a closed form.
- Often, the need for high accuracy computation drives development of effective analytic expressions which in turn shed substantial light on the subject being studied.
2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions
69. What is that expectation?
73. What is that density?

\section*{10. What is that Expectation? Box integrals}
- There is much recent research on calculation of expected distances of points inside a hypercube to the hypercube
- or expected distances between points in a hypercube, etc.
- Some expectations \(\langle | \vec{r}\left\rangle\right.\) for random \(\vec{r} \in[0,1]^{n}\) are
- Box integrals are not just a mathematician's curiosity - they are heing used to assess randomness of (rat) hrain synanses nositioned within a parallelepiped. But now we (B-Crandall-Rose) wish to use

\section*{10. What is that Expectation? \\ Box integrals}
- There is much recent research on calculation of expected distances of points inside a hypercube to the hypercube
- or expected distances between points in a hypercube, etc.
- Some expectations \(\langle | \vec{r}\left\rangle\right.\) for random \(\vec{r} \in[0,1]^{n}\) are

\section*{Example}
\(n=2 \quad \frac{\sqrt{2}}{3}+\frac{1}{3} \log (1+\sqrt{2})\).
\(n=3 \quad \frac{1}{4} \sqrt{3}-\frac{1}{24} \pi+\frac{1}{2} \log (2+\sqrt{3})\).
\(n=4 \frac{2}{5}-\frac{G}{10}+\frac{3}{10} \mathrm{Ti}_{2}(3-2 \sqrt{2})+\log 3-\frac{7 \sqrt{2}}{10} \arctan \left(\frac{1}{\sqrt{8}}\right)\).
- Box integrals are not just a mathematician's curiosity - they are
being used to assess randomness of (rat) brain synapses positioned
within a parallelepiped. But now we (B-Crandall-Rose) wish to use CARMA
Cantor Boxes.

\section*{10. What is that Expectation?}

Box integrals
- There is much recent research on calculation of expected distances of points inside a hypercube to the hypercube
- or expected distances between points in a hypercube, etc.
- Some expectations \(\langle | \vec{r}\left\rangle\right.\) for random \(\vec{r} \in[0,1]^{n}\) are

\section*{Example}
\[
\begin{aligned}
& n=2 \quad \frac{\sqrt{2}}{3}+\frac{1}{3} \log (1+\sqrt{2}) . \\
& n=3 \frac{1}{4} \sqrt{3}-\frac{1}{24} \pi+\frac{1}{2} \log (2+\sqrt{3}) . \\
& n=4 \frac{2}{5}-\frac{G}{10}+\frac{3}{10} \mathrm{Ti}_{2}(3-2 \sqrt{2})+\log 3-\frac{7 \sqrt{2}}{10} \arctan \left(\frac{1}{\sqrt{8}}\right) .
\end{aligned}
\]
- Box integrals are not just a mathematician's curiosity - they are being used to assess randomness of (rat) brain synapses positioned within a parallelepiped. But now we (B-Crandall-Rose) wish to use CARMA \(^{\text {CAR }}\) Cantor Boxes.
2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions
69. What is that expectation?
73. What is that density?
76. Part II and Conclusions?

\section*{What is that Expectation?}





Figure : \(B\left(2, C_{2}(1)\right)\) (top-left) average squared distance of a carpet point from origin; \(\Delta\left(2, C_{1}(1)\right)\) (top-right) expected squared separation of two carpet points. Below corresponding quantities over unit square. As distance increases, colour shifts to violet end of visible spectrum)
2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions
69. What is that expectation?
73. What is that density?
76. Part II and Conclusions?

\section*{What is that Dimension?}

A very recent result is that every box integral \(\left.\left.\langle | \vec{r}\right|^{n}\right\rangle\) for integer \(n\), and dimensions \(1,2,3,4,5\) are "hyperclosed".
- Five-dimensional box integrals have been especially difficult, depending on knowledge of a hyperclosed form for a single definite integral \(J(3)\), where

- BCC (2011) proved hyperclosure of \(J(t)\) for algebraic \(t \geq 0\) Thus \(\left.\left.\langle | \vec{r}\right|^{-2}\right\rangle\) for \(\vec{r} \in[0,1]^{5}\) can be written in explicit form
involving a \(10^{5}\)-character symbolic \(J(3)\)
- We reduced the 5 -dim box value to "only" \(10^{4}\) characters.

CARMA

\section*{J.M. Borwein}

\section*{What is that Dimension?}

A very recent result is that every box integral \(\left.\left.\langle | \vec{r}\right|^{n}\right\rangle\) for integer \(n\), and dimensions \(1,2,3,4,5\) are "hyperclosed".
- Five-dimensional box integrals have been especially difficult, depending on knowledge of a hyperclosed form for a single definite integral \(J(3)\), where
\[
\begin{equation*}
J(t):=\int_{[0,1]^{2}} \frac{\log \left(t+x^{2}+y^{2}\right)}{\left(1+x^{2}\right)\left(1+y^{2}\right)} \mathrm{d} x \mathrm{~d} y . \tag{20}
\end{equation*}
\]
- BCC (2011) proved hyperclosure of \(J(t)\) for algebraic \(t \geq 0\). Thus \(\left.\left.\langle | \vec{r}\right|^{-2}\right\rangle\) for \(\vec{r} \in[0,1]^{5}\) can be written in explicit form involving a \(10^{5}\)-character symbolic \(J(3)\)

\section*{What is that Dimension?}

Hyperclosure, 1.
A very recent result is that every box integral \(\left.\left.\langle | \vec{r}\right|^{n}\right\rangle\) for integer \(n\), and dimensions \(1,2,3,4,5\) are "hyperclosed".
- Five-dimensional box integrals have been especially difficult, depending on knowledge of a hyperclosed form for a single definite integral \(J(3)\), where
\[
\begin{equation*}
J(t):=\int_{[0,1]^{2}} \frac{\log \left(t+x^{2}+y^{2}\right)}{\left(1+x^{2}\right)\left(1+y^{2}\right)} \mathrm{d} x \mathrm{~d} y . \tag{20}
\end{equation*}
\]
- BCC (2011) proved hyperclosure of \(J(t)\) for algebraic \(t \geq 0\). Thus \(\left.\left.\langle | \vec{r}\right|^{-2}\right\rangle\) for \(\vec{r} \in[0,1]^{5}\) can be written in explicit form involving a \(10^{5}\)-character symbolic \(J(3)\).
- We reduced the 5-dim box value to "only" \(10^{4}\) characters. ©CARMA

\section*{What is that Dimension?}

Hyperclosure, 1.
A very recent result is that every box integral \(\left.\left.\langle | \vec{r}\right|^{n}\right\rangle\) for integer \(n\), and dimensions \(1,2,3,4,5\) are "hyperclosed".
- Five-dimensional box integrals have been especially difficult, depending on knowledge of a hyperclosed form for a single definite integral \(J(3)\), where
\[
\begin{equation*}
J(t):=\int_{[0,1]^{2}} \frac{\log \left(t+x^{2}+y^{2}\right)}{\left(1+x^{2}\right)\left(1+y^{2}\right)} \mathrm{d} x \mathrm{~d} y . \tag{20}
\end{equation*}
\]
- BCC (2011) proved hyperclosure of \(J(t)\) for algebraic \(t \geq 0\). Thus \(\left.\left.\langle | \vec{r}\right|^{-2}\right\rangle\) for \(\vec{r} \in[0,1]^{5}\) can be written in explicit form involving a \(10^{5}\)-character symbolic \(J(3)\).
- We reduced the 5 -dim box value to "only" \(10^{4}\) characters. CARMA
2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions
69. What is that expectation?
73. What is that density?
76. Part II and Conclusions?

\section*{What is that Dimension?}

\section*{Hyperclosure, 2.}

A companion integral \(J(2)\) also starts out with about \(10^{5}\) characters but reduces stunningly to a only a few dozen characters:
- \(\mathrm{Cl}_{2}(\theta):=\sum_{n>1} \sin (n \theta) / n^{2}\) a simple non-elementary Fourier series)

Thomas Clausen (1801-1885) learned to read at 12 . He computed \(\pi\) to 247 places in 1847 using a Machin formula

- Automating such reductions requires a sophisticated simplification scheme plus a very large and extensible knowledge base.
- With Alex Kaiser we are designing software to automate this process and to use before submission of any equation-rich paper
http://www. carma.newcastle. edu. au/jon/auto.pdf
2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions
69. What is that expectation?
73. What is that density?
76. Part II and Conclusions?

\section*{What is that Dimension?}

\section*{Hyperclosure, 2.}

A companion integral \(J(2)\) also starts out with about \(10^{5}\) characters but reduces stunningly to a only a few dozen characters:
\[
\begin{equation*}
J(2)=\frac{\pi^{2}}{8} \log 2-\frac{7}{48} \zeta(3)+\frac{11}{24} \pi \mathrm{Cl}_{2}\left(\frac{\pi}{6}\right)-\frac{29}{24} \pi \mathrm{Cl}_{2}\left(\frac{5 \pi}{6}\right) \tag{21}
\end{equation*}
\]
- \(\mathrm{Cl}_{2}(\theta):=\sum_{n \geq 1} \sin (n \theta) / n^{2}\) a simple non-elementary Fourier series).

Thomas Clausen (1801-1885) learned to read at 12 He computed \(\pi\) to 247 places in 1847 using a Machin formula

- Automating such reductions requires a sophisticated simplification scheme plus a very large and extensible knowledge base.
- With Alex Kaiser we are designing software to automate this process
http://www. carma.newcastle.edu. au/jon/auto.pdf

\section*{What is that Dimension?}

\section*{Hyperclosure, 2.}

A companion integral \(J(2)\) also starts out with about \(10^{5}\) characters but reduces stunningly to a only a few dozen characters:
\[
\begin{equation*}
J(2)=\frac{\pi^{2}}{8} \log 2-\frac{7}{48} \zeta(3)+\frac{11}{24} \pi \mathrm{Cl}_{2}\left(\frac{\pi}{6}\right)-\frac{29}{24} \pi \mathrm{Cl}_{2}\left(\frac{5 \pi}{6}\right) \tag{21}
\end{equation*}
\]
- \(\mathrm{Cl}_{2}(\theta):=\sum_{n \geq 1} \sin (n \theta) / n^{2}\) a simple non-elementary Fourier series).

Thomas Clausen (1801-1885) learned to read at 12. He computed \(\pi\) to \(\mathbf{2 4 7}\) places in 1847 using a Machin formula.

- Automating such reductions requires a sophisticated simplification
scheme plus a very large and extensible knowledge base.
- With Alex Kaiser we are designing software to automate this process
and to use before submission of any equation-rich paper:
http://www. carma.newcastle. edu. au/jon/auto.pdf

\section*{What is that Dimension?}

\section*{Hyperclosure, 2.}

A companion integral \(J(2)\) also starts out with about \(10^{5}\) characters but reduces stunningly to a only a few dozen characters:
\[
\begin{equation*}
J(2)=\frac{\pi^{2}}{8} \log 2-\frac{7}{48} \zeta(3)+\frac{11}{24} \pi \mathrm{Cl}_{2}\left(\frac{\pi}{6}\right)-\frac{29}{24} \pi \mathrm{Cl}_{2}\left(\frac{5 \pi}{6}\right) \tag{21}
\end{equation*}
\]
- \(\mathrm{Cl}_{2}(\theta):=\sum_{n \geq 1} \sin (n \theta) / n^{2}\) a simple non-elementary Fourier series).

Thomas Clausen (1801-1885) learned to read at 12. He computed \(\pi\) to \(\mathbf{2 4 7}\) places in 1847 using a Machin formula.

- Automating such reductions requires a sophisticated simplification scheme plus a very large and extensible knowledge base.
- With Alex Kaiser we are designing software to automate this process and to use before submission of any equation-rich paper: http://www.carma.newcastle.edu.au/jon/auto.pdf
2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions
69. What is that expectation?
73. What is that density?
76. Part II and Conclusions?

\section*{11. What is that Density?}

Current work with Straub, Wan and Zudilin looks at classical short uniform random walks in the plane:




- Radial densities \(p_{n}\) of a random planar walk especially \(p_{3}, p_{4}, p_{5}\) (as above with \(p_{6}\) )
- Expectations and moments \(W_{n}(s)\)

This led Straub and JMB to make detailed study of:
- Mahler Measures \(\mu(P)\) and logsin integrals
\(-u\left(1+x_{1}+\cdots x_{m-1}\right)=W_{n}^{\prime}(0)\) is known for \(n=3,4,5,6\)
- Multiple Mahler measures like \(\mu_{n}(1+x+y)\) and QFT.
- The next presentation describes what we know. Hidden below the surface is much use of Meijer-G functions.
2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions
69. What is that expectation?
73. What is that density?
76. Part II and Conclusions?

\section*{11. What is that Density?}

Current work with Straub, Wan and Zudilin looks at classical short uniform random walks in the plane:




- Radial densities \(p_{n}\) of a random planar walk especially \(p_{3}, p_{4}, p_{5}\) (as above with \(p_{6}\) )
- Expectations and moments \(W_{n}(s)\)

This led Straub and JMB to make detailed study of:
- Mahler Measures \(\mu(P)\) and logsin integrals
\(-u\left(1+x_{1}+\cdots x_{m-1}\right)=W_{n}^{\prime}(0)\) is known for \(n=3,4,5,6\)
- Multiple Mahler measures like \(\mu_{n}(1+x+y)\) and QFT.
- The next presentation describes what we know. Hidden below the surface is much use of Meijer-G functions.
69. What is that expectation?
73. What is that density?
76. Part II and Conclusions?

\section*{11. What is that Density?}

Current work with Straub, Wan and Zudilin looks at classical short uniform random walks in the plane:



- Radial densities \(p_{n}\) of a random planar walk.
- Expectations and moments \(W_{n}(s)\).

This led Straub and JMB to make detailed study of:
- Mahler Measures \(\mu(P)\) and logsin integrals
\(-\mu\left(1+x_{1} \perp \ldots x_{n-1}\right)=1 \boldsymbol{T}^{\prime}(n)\) is known for \(n=3,4,5,6\)
- Multiple Mahler measures like \(\mu_{n}(1+x+y)\) and QFT.
- The next presentation describes what we know. Hidden below the
69. What is that expectation?
73. What is that density?
76. Part II and Conclusions?

\section*{11. What is that Density?}

Current work with Straub, Wan and Zudilin looks at classical short uniform random walks in the plane:




- Radial densities \(p_{n}\) of a random planar walk.
- especially \(p_{3}, p_{4}, p_{5}\) (as above with \(p_{6}\) ).
- Expectations and moments \(W_{n}(s)\).

This led Straub and JMB to make detailed study of:
- Mahler Measures \(\mu(P)\) and logsin integrals
\(-\ldots\left(1+x_{1}+\cdots x_{n-1}\right)=I T^{\prime}(0)\) is known for \(n=3,4,5,6\)
- Multiple Mahler measures like \(\mu_{n}(1+x+y)\) and QFT
- The next presentation describes what we know. Hidden below the
69. What is that expectation?
73. What is that density?
76. Part II and Conclusions?

\section*{11. What is that Density?}

Current work with Straub, Wan and Zudilin looks at classical short uniform random walks in the plane:




- Radial densities \(p_{n}\) of a random planar walk.
- especially \(p_{3}, p_{4}, p_{5}\) (as above with \(p_{6}\) ).
- Expectations and moments \(W_{n}(s)\).

This led Straub and JMB to make detailed study of:
- Mahler Measures \(\mu(P)\) and logsin integrals
\(-\mu\left(1+x_{1}+\cdots x_{n-1}\right)=1 \pi^{\prime}(0)\) is known for \(n=3,4,5,6\)
- Multiple Mahler measures like \(\mu_{n}(1+x+y)\) and QFT.
- The next presentation describes what we know. Hidden below the
69. What is that expectation?
73. What is that density?
76. Part II and Conclusions?

\section*{11. What is that Density?}

Current work with Straub, Wan and Zudilin looks at classical short uniform random walks in the plane:




- Radial densities \(p_{n}\) of a random planar walk.
- especially \(p_{3}, p_{4}, p_{5}\) (as above with \(p_{6}\) ).
- Expectations and moments \(W_{n}(s)\).

This led Straub and JMB to make detailed study of:
- Mahler Measures \(\mu(P)\) and logsin integrals
\(-\mu\left(1+x_{1}+\cdots x_{n-1}\right)=1 \pi^{\prime}(0)\) is known for \(n=3,4,5,6\)
- Multiple Mahler measures like \(\mu_{n}(1+x+y)\) and QFT.
- The next presentation describes what we know. Hidden below the

\section*{11. What is that Density?}

Current work with Straub, Wan and Zudilin looks at classical short uniform random walks in the plane:




- Radial densities \(p_{n}\) of a random planar walk.
- especially \(p_{3}, p_{4}, p_{5}\) (as above with \(p_{6}\) ).
- Expectations and moments \(W_{n}(s)\).

This led Straub and JMB to make detailed study of:
- Mahler Measures \(\mu(P)\) and logsin integrals
\(\iota\left(1+x_{1}+\cdots x_{n-1}\right)=W_{n}(0)\) is known for \(n=3,4,5,6\).
- Multiple Mahler measures like \(\mu_{n}(1+x+y)\) and QFT
- The next presentation describes what we know. Hidden below the surface is much use of Meijer-G functions.

\section*{11. What is that Density?}

Current work with Straub, Wan and Zudilin looks at classical short uniform random walks in the plane:




- Radial densities \(p_{n}\) of a random planar walk.
- especially \(p_{3}, p_{4}, p_{5}\) (as above with \(p_{6}\) ).
- Expectations and moments \(W_{n}(s)\).

This led Straub and JMB to make detailed study of:
- Mahler Measures \(\mu(P)\) and logsin integrals
\[
-\mu\left(1+x_{1}+\cdots x_{n-1}\right)=W_{n}^{\prime}(0) \text { is known for } n=3,4,5,6 .
\]
- Multiple Mahler measures like \(\mu_{n}(1+x+y)\) and QFT.
- The next presentation describes what we know. Hidden below the surface is much use of Meijer-G functions.

\section*{11. What is that Density?}

Current work with Straub, Wan and Zudilin looks at classical short uniform random walks in the plane:




- Radial densities \(p_{n}\) of a random planar walk.
- especially \(p_{3}, p_{4}, p_{5}\) (as above with \(p_{6}\) ).
- Expectations and moments \(W_{n}(s)\).

This led Straub and JMB to make detailed study of:
- Mahler Measures \(\mu(P)\) and logsin integrals
\[
-\mu\left(1+x_{1}+\cdots x_{n-1}\right)=W_{n}^{\prime}(0) \text { is known for } n=3,4,5,6 .
\]
- Multiple Mahler measures like \(\mu_{n}(1+x+y)\) and QFT.
- The next presentation describes what we know. Hidden below the surface is much use of Meijer-G functions.

\section*{11. What is that Density?}

Current work with Straub, Wan and Zudilin looks at classical short uniform random walks in the plane:




- Radial densities \(p_{n}\) of a random planar walk.
- especially \(p_{3}, p_{4}, p_{5}\) (as above with \(p_{6}\) ).
- Expectations and moments \(W_{n}(s)\).

This led Straub and JMB to make detailed study of:
- Mahler Measures \(\mu(P)\) and logsin integrals
\[
-\mu\left(1+x_{1}+\cdots x_{n-1}\right)=W_{n}^{\prime}(0) \text { is known for } n=3,4,5,6 .
\]
- Multiple Mahler measures like \(\mu_{n}(1+x+y)\) and QFT.
- The next presentation describes what we know. Hidden below the surface is much use of Meijer-G functions.
2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions
69. What is that expectation?
73. What is that density?
76. Part II and Conclusions?

\section*{Visualising Three Step Walks}


CARMA

\section*{Moments of a Four Step Walk}

Theorem (Meijer-G form for \(W_{4}\) )
For \(\operatorname{Re} s>-2\) and \(s\) not an odd integer
\[
W_{4}(s)=\frac{2^{s}}{\pi} \frac{\Gamma\left(1+\frac{s}{2}\right)}{\Gamma\left(-\frac{s}{2}\right)} G_{44}^{22}\left(\left.\begin{array}{c}
1, \frac{1-s}{2}, 1,1  \tag{22}\\
\frac{1}{2}-\frac{s}{2},-\frac{s}{2},-\frac{s}{2}
\end{array} \right\rvert\, 1 .\right.
\]


\section*{Moments of a Four Step Walk}

Theorem (Meijer-G form for \(W_{4}\) )
For \(\operatorname{Re} s>-2\) and \(s\) not an odd integer
\[
W_{4}(s)=\frac{2^{s}}{\pi} \frac{\Gamma\left(1+\frac{s}{2}\right)}{\Gamma\left(-\frac{s}{2}\right)} G_{44}^{22}\left(\left.\begin{array}{c}
1, \frac{1-s}{2}, 1,1  \tag{22}\\
\frac{1}{2}-\frac{s}{2},-\frac{s}{2},-\frac{s}{2}
\end{array} \right\rvert\, 1 .\right.
\]

2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions
69. What is that expectation?
73. What is that density?
76. Part II and Conclusions?

\section*{Part II (as time permits) and Conclusions}

Part II Hypergeometric evaluations of the densities of short random walks
http://carma.newcastle.edu.au/jon/densities-as.pdf

\section*{Conclusions}
(1) We still lack a complete accounting of \(\mu_{n}(1+x+y)\) and are trying to resolve "the crisis of the 6th root in QFT."
(2) Our log-sine and MZV algorithms uncovered many, many errors in the literature - old and new.
(3) We are also filling gaps such as:
- Euler sum values like \(\zeta(\overline{2 n+1}, 1)\) in terms of \(\operatorname{Ls}_{2 n}^{(2 n-3)}(\pi\)
(4) Automated simplification, validation and correction tools are more and more important.
(5) As are projects like the DDMF (INRIA's dynamic dictionary)
2. Introduction and Three Elementary Examples
35. Three Intermediate Examples 54. More Advanced Examples
68. Current Research and Conclusions
69. What is that expectation?
73. What is that density?
76. Part II and Conclusions?

\section*{Part II (as time permits) and Conclusions}

Part II Hypergeometric evaluations of the densities of short random walks
http://carma.newcastle.edu.au/jon/densities-as.pdf
Conclusions
(1) We still lack a complete accounting of \(\mu_{n}(1+x+y)\) and are
trying to resolve "the crisis of the 6th root in QFT."
2. Our log-sine and MZV algorithms uncovered many, many
errors in the literature - old and new
(3) We are also filling gaps such as:
- Euler sum values like \(\zeta(\overline{2 n+1}, 1)\) in terms of \(\operatorname{Ls} s^{(2 n-3)}(\pi\)
(4) Automated simplification, validation and correction tools are more and more important.
(5) As are projects like the DDNF (INRIA's dynamic dictionary)

\section*{Part II (as time permits) and Conclusions}

Part II Hypergeometric evaluations of the densities of short random walks
http://carma.newcastle.edu.au/jon/densities-as.pdf

\section*{Conclusions}
(1) We still lack a complete accounting of \(\mu_{n}(1+x+y)\) and are trying to resolve "the crisis of the 6th root in QFT."
2. Our log-sine and MZV algorithms uncovered many, many errors in the literature - old and new
(3) We are also filling gaps such as:
- Euler sum values like \(\zeta(\overline{2 n+1}, 1)\) in terms of \(\operatorname{Ls}_{2 n}^{(2 n-3)}(\pi\)
(4) Automated simplification, validation and correction tools are more and more important.
(5) As are projects like the DDMF (INRIA's dynamic dictionary)

\section*{Part II (as time permits) and Conclusions}

Part II Hypergeometric evaluations of the densities of short random walks
http://carma.newcastle.edu.au/jon/densities-as.pdf

\section*{Conclusions}
(1) We still lack a complete accounting of \(\mu_{n}(1+x+y)\) and are trying to resolve "the crisis of the 6th root in QFT."
(2) Our log-sine and MZV algorithms uncovered many, many errors in the literature - old and new.
(3) We are also filling gaps such as:
- Euler sum values like \(\zeta(\overline{2 n+1}, 1)\) in terms of \(\operatorname{Ls}_{2 n}^{(2 n-3)}(\pi)\)
(4) Automated simplification, validation and correction tools are more and more important.
(5) As are projects like the DDMF (INRIA's dynamic dictionary)

\section*{Part II (as time permits) and Conclusions}

Part II Hypergeometric evaluations of the densities of short random walks
http://carma.newcastle.edu.au/jon/densities-as.pdf

\section*{Conclusions}
(1) We still lack a complete accounting of \(\mu_{n}(1+x+y)\) and are trying to resolve "the crisis of the 6th root in QFT."
(2) Our log-sine and MZV algorithms uncovered many, many errors in the literature - old and new.
(3) We are also filling gaps such as:
- Euler sum values like \(\zeta(\overline{2 n+1}, 1)\) in terms of \(\operatorname{Ls}_{2 n}^{(2 n-3)}(\pi)\).
(4) Automated simplification, validation and correction tools are more and more important.
(3) As are proiects like the DDMF (INRIA's dynamic dictionary)

\section*{Part II (as time permits) and Conclusions}

Part II Hypergeometric evaluations of the densities of short random walks
http://carma.newcastle.edu.au/jon/densities-as.pdf

\section*{Conclusions}
(1) We still lack a complete accounting of \(\mu_{n}(1+x+y)\) and are trying to resolve "the crisis of the 6th root in QFT."
(2) Our log-sine and MZV algorithms uncovered many, many errors in the literature - old and new.
(3) We are also filling gaps such as:
- Euler sum values like \(\zeta(\overline{2 n+1}, 1)\) in terms of \(\mathrm{Ls}_{2 n}^{(2 n-3)}(\pi)\).
(4) Automated simplification, validation and correction tools are more and more important.
(5) As are projects like the DDMF (INRIA's dynamic dictionary).

\section*{Part II (as time permits) and Conclusions}

Part II Hypergeometric evaluations of the densities of short random walks
http://carma.newcastle.edu.au/jon/densities-as.pdf

\section*{Conclusions}
(1) We still lack a complete accounting of \(\mu_{n}(1+x+y)\) and are trying to resolve "the crisis of the 6th root in QFT."
(2) Our log-sine and MZV algorithms uncovered many, many errors in the literature - old and new.
(3) We are also filling gaps such as:
- Euler sum values like \(\zeta(\overline{2 n+1}, 1)\) in terms of \(\mathrm{Ls}_{2 n}^{(2 n-3)}(\pi)\).
(4) Automated simplification, validation and correction tools are more and more important.
(5) As are projects like the DDMF (INRIA's dynamic dictionary).
(6) Thank you!```


[^0]:    $G$ is Catalan's constant. The full computation suite took about 1500 cpu years.
    Notices of the AMS, in Press: http://www.carma.newcastle.edu.au/~jb616/bbp-bluegene.pdf

[^1]:    See http://www.research.att.com/~njas/sequences/
    ²The Inverse Symbolic Calculator http://isc.carma.newcastle. edu. ©CARMA was newly web-accessible in the same year, 1995

[^2]:    See http://www.research.att. com/~njas/sequences/
    ${ }^{2}$ The Inverse Symbolic Calculator http://isc.carma.newcastle. edu. CCARMA

[^3]:    ${ }^{1}$ See http://www.research.att. com/~njas/sequences/.
    ${ }^{2}$ The Inverse Symbolic Calculator http://isc.carma.newcastle. edu. anARMA was newly web-accessible in the same year, 1995.

