Exploratory Experimentation and Computation

Colloquium April 15, 2010

THE UNVERSTY OF ADELAIDE AUSTRALA

Director CARMA (Computer Assisted Research Mathematics and Applications) Laureate Professor University of Newcastle, NSW
"[I]ntuition comes to us much earlier and with much less outside influence than formal arguments which we cannot really understand unless we have reached a relatively high level of logical experience and sophistication."
"In the first place, the beginner must be convinced that proofs deserve to be studied, that they have a purpose, that they are interesting."

George Polya (1887-1985)

Where I now live

ABSTRACT

Jonathan M. Borwein

Newcastle

Abstract: The mathematical research community is facing a great challenge to re-evaluate the role of proof in light of the growing power of current computer systems, of modern mathematical computing packages, and of the growing capacity to data-mine on the Internet. Add to that the enormous complexity of many modern capstone results such as the Poincaré conjecture, Fermat's last theorem, and the Classification of finite simple groups. As the need and prospects for inductive mathematics blossom, the requirement to ensure the role of proof is properly founded remains undiminished. I shall look at the philosophical context with examples and then offer some of five bench-marking examples of the opportunities and challenges we face. (Related paper with DHB)

[^0]
OUTLINE

I. Working Definitions and Five Examples of:

- Discovery
- Proof (and of Mathematics)
- Digital-Assistance
- Experimentation (in Maths and in Science)
II. (Some of) Five Numbers:
" $p(n)$
- $\quad \pi$
- $\quad \phi(\mathrm{n})$
- $\quad \zeta(3)$
- $1 / \pi$ "Keynes distrusted intellectual rigour of the Ricardian type as likely to get in the way of original thinking and saw that it was not uncommon to hit on a valid conclusion before finding a logical path to it."
- Sir Alec Cairncross, 1996
III. A Cautionary Finale
IV. Making Some Tacit Conclusions Explicit
"Mathematical proofs like diamonds should be hard and clear, and will be touched with nothing but strict reasoning." - John Locke

For a long time, pencil and pape, were considered the only tools
needed by a mathematician (some inight add the waste basket). As needed by a mathematician (some right add the waste basket). As
in many other areas, computers play an increasingly important role in many other areas, computers play an increasingly ymporant role
in mathematics and have vasty expan ded and legtimized the role in matiematcs and have vasty expal ded and legtitived the role
of experimentation in mathematics. Hew can a mathematician use a computer as a tool? What about as mc e than just a tool, but as a collaborator?
Keith Devilin and Jonathan Borwein, two vell-known mathematicians with expertise in dififerent mathematic 11 specialies but with
a common interest in experimentation in mativematics, have joined arces to create this introduction to experimental mathematics. They cover a variety of topics and examples to give the reader a good
sense of the current state of play in the rapidly gre ving new field of ense of the current state of play in the rapidly grc ving new field of experimental mathematics. The witing is clear and he explanations
are enhanced by relevant historical facts and storie. of mathematicians and their encounters with the field over time.

THE COMPUTER AS CRUCIBLE
 AN INTRODUCTION TO EXPERIMENTAL MATHEMATICS

Jonathan Borwein
 Keith Devein

with illustrations by \mathcal{K} ar \mathcal{H}. Hofmann

Contents

AK Peters 2008 Japan \& Germany 2010

Preface

1 What Is Experimental Mathematics?
2 What Is the Quadrillionth Decimal Place of π ?
3 What Is That Number?
4 The Most Important Function in Mathematics 39
5 Evaluate the Following Integral 49
6 Serendipity
7 Calculating π
8 The Computer Knows More Math Than You Do 81
9 Take It to the Limit
10 Danger! Always Exercise Caution When Using the Computer
11 Stuff We Left Out (Until Now) 115
Answers and Reflections 131
Final Thought 149
Additional Reading and References 151
Index

Cookbook Mathematics

数学を生み出す魔法のるつぼ
 実験数学への招待

O＇REILLY＇
オライリージャハン
Jonathan Borwein Keith Devlin伊知地宏 䚿

著訳

PART I. PHILOSOPHY, PSYCHOLOGY, ETC

'This is the essence of science. Even though I do not understand quantum mechanics or the nerve cell membrane, I trust those who do. Most scientists are quite ignorant about most sciences but all use a shared grammar that allows them to recognize their craft when they see it. The motto of the Royal Society of London is 'Nullius in verba' : trust not in words. Observation and experiment are what count, not opinion and introspection. Few working scientists have much respect for those who try to interpret nature in metaphysical terms. For most wearers of white coats, philosophy is to science as pornography is to sex: it is cheaper, easier, and some people seem, bafflingly, to prefer it. Outside of psychology it plays almost no part in the functions of the research machine." - Steve Jones

From his 1997 NYT BR review of Steve Pinker's How the Mind Works.

WHAT is a DISCOVERY?

"discovering a truth has three components. First, there is the independence requirement, which is just that one comes to believe the proposition concerned by one's own lights, without reading it or being told. Secondly, there is the requirement that one comes to believe it in a reliable way. Finally, there is the requirement that one's coming to believe it involves no violation of one's epistemic state. ...
In short, discovering a truth is coming to believe it in an independent, reliable, and rational way."

Marcus Giaquinto, Visual Thinking in Mathematics. An Epistemological Study, p. 50, OUP 2007

[^1]
Galileo was not alone in this view

"I will send you the proofs of the theorems in this book. Since, as I said, I know that you are diligent, an excellent teacher of philosophy, and greatly interested in any mathematical investigations that may come your way, I thought it might be appropriate to write down and set forth for you in this same book a certain special method, by means of which you will be enabled to recognize certain mathematical questions with the aid of mechanics. I am convinced that this is no less useful for finding proofs of these same theorems.

For some things, which first became clear to me by the mechanical method, were afterwards proved geometrically, because their investigation by the said method does not furnish an actual demonstration. For it is easier to supply the proof when we have previously acquired, by the method, some knowledge of the questions than it is to find it without any previous knowledge." - Archimedes (287-212 BCE)

Archimedes to Eratosthenes in the introduction to The Method in
Mario Livio's, Is God a Mathematician? Simon and Schuster, 2009

The n-dimensional integral

$$
W_{n}(s):=\int_{0}^{1} \int_{0}^{1} \cdots \int_{0}^{1}\left|\sum_{k=1}^{n} e^{2 \pi x_{k} i}\right|^{s} d x_{1} d x_{2} \cdots d x_{n}
$$

occurs in the study of uniform random walks in the plane.
$W_{n}(1)$ is the expected distance moved after n
 steps.

$$
\begin{align*}
& W_{1}(1)=1 \quad W_{2}(1)=\frac{4}{\pi} \quad \text { Pearson (1906) } \\
& W_{3}(1) \stackrel{?}{=} \frac{3}{16} \frac{2^{1 / 3}}{\pi^{4}} \Gamma^{6}\left(\frac{1}{3}\right)+\frac{27}{4} \frac{2^{2 / 3}}{\pi^{4}} \Gamma^{6}\left(\frac{2}{3}\right) . \tag{1}
\end{align*}
$$

We proved the formula below for $2 k$ (it counts abelian squares) and numerically observed it was half-true at $\mathrm{k}=1 / 2$. We confirmed (1) to175 digits well before proof (my seminar) $W_{3}(2 k)={ }_{3} F_{2}\left(\left.\begin{array}{c}\frac{1}{2},-k,-k \\ 1,1\end{array} \right\rvert\, 4\right)$ and $W_{3}\left(1 \not \underset{=}{=} \operatorname{Re}_{3} F_{2}\binom{\frac{1}{2},-\frac{1}{2}, \left.-\frac{1}{2} \right\rvert\, 4}{1,1}\right.$

WHAT is MATHEMATICS?

MATHEMATICS, n . a group of related subjects, including algebra, geometry, trigonometry and calculus, concerned with the study of number, quantity, shape, and space, and their interrelationships, applications, generalizations and abstractions.

- This definition, from my Collins Dictionary has no mention of proof, nor the means of reasoning to be allowed (vidé Giaquinto). Webster's contrasts:

INDUCTION, n. any form of reasoning in which the conclusion, though supported by the premises, does not follow from them necessarily.
and

DEDUCTION, n. a. a process of reasoning in which a conclusion follows necessarily from the premises presented, so that the conclusion cannot be false if the premises are true.
b. a conclusion reached by this process.
"If mathematics describes an objective world just like physics, there is no reason why inductive methods should not be applied in mathematics just the same as in physics." - Kurt Gödel (in his 1951 Gibbs Lecture) echoes of Quine

WHAT is a PROOF?

"PROOF, n. a sequence of statements, each of which is either validly derived from those preceding it or is an axiom or assumption, and the final member of which, the conclusion , is the statement of which the truth is thereby established. A direct proof proceeds linearly from premises to conclusion; an indirect proof (also called reductio ad absurdum) assumes the falsehood of the desired conclusion and shows that to be impossible. See also induction, deduction, valid."

Borowski \& JB, Collins Dictionary of Mathematics
INDUCTION, n. 3. (Logic) a process of reasoning in which a general conclusion is drawn from a set of particular premises, often drawn from experience or from experimental evidence. The conclusion goes beyond the information contained in the premises and does not follow necessarily from them. Thus an inductive argument may be highly probable yet lead to a false conclusion; for example, large numbers of sightings at widely varying times and places provide very strong grounds for the falsehood that all swans are white.
"No. I have been teaching it all my life, and I do not want to have my ideas upset." - Isaac Todhunter (1820-1884) recording Maxwell's response when asked whether he would like to see an experimental demonstration of conical refraction.

Decide for yourself

WHAT is DIGITAL ASSISTANCE?

- Use of Modern Mathematical Computer Packages

- Symbolic, Numeric, Geometric, Graphical, ...
- Use of More Specialist Packages or General Purpose Languages
- Fortran, C++, CPLEX, GAP, PARI, MAGMA, ...
- Use of Web Applications
- Sloane's Encyclopedia, Inverse Symbolic Calculator, Fractal Explorer, Euclid in Java, Weeks' Topological Games, Polymath (Sci. Amer.), ...
- Use of Web Databases
- Google, MathSciNet, ArXiv, JSTOR, Wikipedia, MathWorld, Planet Math, DLMF, MacTutor, Amazon, ..., Kindle Reader, Wolfram Alpha (??)
- All entail data-mining ["exploratory experimentation" and "widening technology" as in pharmacology, astrophysics, biotech, ... (Franklin)]
- Clearly the boundaries are blurred and getting blurrier
- Judgments of a given source's quality vary and are context dependent
> "Knowing things is very 20th century. You just need to be able to find things."- Danny Hillis on how Google has already changed how we think in Achenblog, July 12008

Exploratory Experimentation

Franklin argues that Steinle's "exploratory experimentation" facilitated by "widening technology", as in pharmacology, astrophysics, medicine, and biotechnology, is leading to a reassessment of what legitimates experiment; in that a "local model" is not now prerequisite. Hendrik Sørenson cogently makes the case that experimental mathematics (as 'defined' below) is following similar tracks:
"These aspects of exploratory experimentation and wide instrumentation originate from the philosophy of (natural) science and have not been much developed in the context of experimental mathematics. However, I claim that e.g. the importance of wide instrumentation for an exploratory approach to experiments that includes concept formation is also pertinent to mathematics."
In consequence, boundaries between mathematics and the natural sciences and between inductive and deductive reasoning are blurred and getting more so.

1b. A Colour and an Inverse Calculator (1995 \& 2007)

Inverse Symbolic Computation

Archimedes: $223 / 71<\pi<22 / 7$

Inferring mathematical structure from numerical data

- Mixes large table lookup, integer relation methods and intelligent preprocessing - needs micro-paraillelism
- It faces the "curse of exponentiality"
- Implemented as identify in Maple 9.5

InVERSE SYMBOLICCOLCULATOR

Mathematics and Beauty

1428571
4285714
2857142
8571428
5714285

Mathematics

and Beauty

Aesthetic Approaches to Teaching Children

Nathalie Sinclair
Foreword by William Higginson
"This is an exceptionally important book. ... It could be the starting point for many cognitive, social, and educational benefits.
-From the Foreword by William Higginson,
Queen's University, Canada
"In a time of much sterile math teaching and grimly utilitarian school reform, this elegant and beautiful book brings to life a whole new vision. ... Nathalie Sinclair makes a brilliant case for rethinking math instruction so that an aesthetically rich learning environment becomes the path to meaning, intellectual journeys, and-dare we say the word?-pleasure." - Joseph Featherstone,

Michigan State University

In this innovative book, Nathalie Sinclair makes a compelling case for the inclusion of the aesthetic in the teaching and learning of mathematics. Using a provocative set of philosophical, psychological, mathematical, technological, and educational insights, she illuminates how the materials and approaches we use in the mathematics classroom can be enriched for the benefit of all learners. While ranging in scope from the young learner to the professional mathematician, there is a particular focus on middle school, where negative feelings toward mathematics frequently begin. Offering specific recommendations to help teachers evoke and nurture their students' aesthetic abilities, this book:

- Features powerful episodes from the classroom that show students in the act of developing a sense of mathematical aesthetics.
- Analyzes how aesthetic sensibilities to qualities such as connectedness, fruitfulness, apparent simplicity, visual appeal, and surprise are fundamental to mathematical inquiry.
- Includes examples of mathematical inquiry in computer-based learning environments, revealing some of the roles they play in supporting students' aesthetic inclinations.
Nathalie Sinclair is an assistant professor in the Department of Mathematics at Michigan State University.

ALSO OF INTEREST-
Improving Access to Mathematics: Diversity and Equity in the Classroom Na'ilah Suad Nasir and Paul Cobb, Editors 2007/Paper and cloth

Photo of fern by John Spavin Photo of nautilus by Peter Werner

FACHERS $\begin{array}{ll}\text { Teachers College } \\ \text { Columbia University }\end{array}$ Columbia University
New York, NY 10027 www.tcpress.com

Background photo of cabbage by Piero Marsiaj

1c. Exploring Combinatorial Matrices (1993-2008)

In the course of studying multiple zeta values we needed to obtain the closed form partial fraction decomposition for

$$
\frac{1}{x^{s}(1-x)^{t}}=\sum_{j \geq 0} \frac{a_{j}^{s, t}}{x^{j}}+\sum_{j \geq 0} \frac{b_{j}^{s, t}}{(1-x)^{j}}
$$

$$
a_{j}^{s, t}=\binom{s+t-j-1}{s-j}
$$

This was known to Euler but is easily discovered in Maple.
We needed also to show that $M=A+B-C$ is invertible where the n by n matrices A, B, C respectively had entries

$$
(-1)^{k+1}\binom{2 n-j}{2 n-k}, \quad(-1)^{k+1}\binom{2 n-j}{k-1}, \quad(-1)^{k+1}\binom{j-1}{k-1}
$$

Thus, A and C are triangular and B is full.
After messing with many cases I thought to ask for M's minimal polynomial

$$
\begin{array}{ll}
>\text { linalg[minpoly] }(\mathrm{M}(12), \mathrm{t}) ; & -2+t+t^{2} \\
>\operatorname{linalg}[\text { minpoly }](\mathrm{B}(20), \mathrm{t}) ; & -1+t^{3} \\
>\operatorname{linalg}[\text { minpoly }](\mathrm{A}(20), \mathrm{t}) ; & -1+t^{2} \\
>\operatorname{linalg}[\text { minpoly }](\mathrm{C}(20), \mathrm{t}) ; & -1+t^{2}
\end{array}
$$

$$
M(6)=\left[\begin{array}{cccccc}
1 & -22 & 110 & -330 & 660 & -924 \\
0 & -10 & 55 & -165 & 330 & -462 \\
0 & -7 & 36 & -93 & 162 & -210 \\
0 & -5 & 25 & -56 & 78 & -84 \\
0 & -3 & 15 & -31 & 35 & -28 \\
0 & -1 & 5 & -10 & 10 & -6
\end{array}\right]
$$

The Matrices Conquered

Once this was discovered proving that for all $\mathrm{n}>2$

$$
A^{2}=I, \quad B C=A, \quad C^{2}=I, \quad C A=B^{2}
$$

is a nice combinatorial exercise (by hand or computer). Clearly then

$$
B^{3}=B \cdot B^{2}=B(C A)=(B C) A=A^{2}=I
$$

and the formula

$$
M^{-1}=\frac{M+I}{2}
$$

is again a fun exercise in formal algebra; as is confirming that we have discovered an amusing presentation of the symmetric group S_{3}.

- characteristic and minimal polynomials --- which were rather abstract for me as a student --- now become members of a rapidly growing box of symbolic tools, as do many matrix decompositions, etc ...
- a typical matrix has a full degree minimal polynomial digestive processes involved?" - Oliver Heaviside (1850-1925)

Changing User Experience and Expectations

What is attention? (Stroop test, 1935)

1. Say the color represented by the word.
2. Say the color represented by the font color.

High (young) multitaskers perform \#2 very easily. They are great at suppressing information.

http://www.snre.umich.edu/eplab/demos/st0/stroop program/stroopgraphicnonshockwave.gif

Acknowledgements: Cliff Nass, CHIME lab, Stanford (interference and twitter?)

Experimental Mathodology

1. Gaining insight and intuition
2. Discovering new relationships
3. Visualizing math principles
4. Testing and especially falsifying conjectures
5. Exploring a possible result to see if it merits formal proof
6. Suggesting approaches for formal proof
7. Computing replacing lengthy hand derivations
8. Confirming analytically derived results

2004

M
any people regard mathematics as the crown jewel of the sciences. Yet math has historically lacked one of the defining trappings of science: laboratory equipment. Physicists have their particle accelerators; biologists, their electron microscopes; and astronomers, their telescopes. Mathematics, by contrast, concerns not the physical landscape but an idealized, abstract world. For exploring that world, mathematicians have traditionally had only their Now, instrument that they have been
missing. Sophisticated software is enabling researchers to travel further and deeper into the mathematical universe. They're calculating the number pi with
mind-boggling precision, for mind-boggling precision, for
instance, or discovering patterns
in the contours of beuutifil) infinite chains of spheres that arise out of the geometry of knots. Experiments in the computer lab are leading mathematicians to dis-
coveries and insights that they might coveries and insights that they might means. "Pretty much every [mathematical 7 field has becen transtormed
by it," says Richard Crandall, a mathby it", says Richard Crandall, a math-
ematician at Reed Collcge in Portematician at Reed Collcge in Port-
land, Ore. -Instrad of just being a number-crunching tool, the comden shovel that tums over rocks, and you find things underncath. At the same time, the new work is raising unsettling questions about

"I have some of the excitement that Leonardo of Pisa must have felt when he encountered Arabic arithmetic. It suddenly made cer-
tain celculations flabbergastingly easy" Boryein says. "That's what I think is happening with computer' experimentation today."
EXPERIMENTERS OF OLD In one sense, math experiments are nothing new. Despite their fields reputation as a purely deductive science, the great mathematicians over the centuries have never limited themselves to formal reasoning and proof. For instance, in 1666 , sheer curiosity and lore of numbers led Lsaac
Newton to calculate directly the first 16 digits of the number pi, later writing, T Tam ashamed to tell you to how many figures I carried these computations, having no other business at the time" Carl Friedrich Gauss, one of the towering figures of 19th-century mathematics, habitually disby experimenting with numbers and looking for patterns. When Gauss was a teenager, for instance, his experiments led him to one of the
most important conjectures in the most important conjectures in the
history of number theory: that the history of number theory: that the
number of prime numbers less than a number x is roughly equal to x divided by the logarithm of .i: $^{\text {a }}$ Gauss often discovered results experimentally long before he could
prove them formally. Once, be comprove them formally: Once, he com-
plained, "I have the ecsult, but I do not yet know how to ger it:" In the case of the prime number theorem, Gauss later refined his conjecture but never did figure out how to prove it. It took more than a ecntury for mather
up with a proof.
Like today's mathematicians,
Luth a proot. math experimenters in the late 19th century used computers but in those davs, the word referred to people with a special faility for calcu-

Comparing $-y^{2} \operatorname{In}(y)$ (red) to $y-y^{2}$ and $y^{2}-y^{4}$

1d. What is that number? (1995-2009)

In 1995 or so Andrew Granville emailed me the number

$$
\alpha:=1.433127426722312 \ldots
$$

and challenged me to identify it (our inverse calculator was new in those days).

Changing representations, I asked for its continued fraction? It was

$$
\begin{equation*}
[1,2,3,4,5,6,7,8,9,10,11, \ldots] \tag{1}
\end{equation*}
$$

I reached for a good book on continued fractions and found the answer

$$
\alpha=\frac{I_{0}(2)}{I_{1}(2)}
$$

where I_{0} and I_{1} are Bessel functions of the first kind. (Actually I knew that all arithmetic continued fractions arise in such fashion).

In 2010 there are at least three other strategies:

- Given (1), type "arithmetic progression", "continued fraction" into Google
- Type "1,4,3,3,1,2,7,4,2" into Sloane's Encyclopaedia of Integer Sequences I illustrate the outcomes on the next few slides:

In Google on October 152008 the first three hits were

Continued Fraction Constant -- from Wolfram MathWorld

- 3 visits - 14/09/07Perron (1954-57) discusses continued fractions having terms even more general than the arithmetic progression and relates them to various special functions. ... mathworld.wolfram.com/ContinuedFractionConstant.html - 31k

HAKMEM -- CONTINUED FRACTIONS -- DRAFT, NOT YET PROOFED

The value of a continued fraction with partial quotients increasing in arithmetic progression is I (2/D) A/D [A+D, A+2D, A+3D, www.inwap.com/pdp10/hbaker/hakmem/cf.html - 25k -

On simple continued fractions with partial quotients in arithmetic ...
0 . This means that the sequence of partial quotients of the continued fractions under. investigation consists of finitely many arithmetic progressions (with ...
www.springerlink.com/index/C0VXH713662G1815.pdf - by P Bundschuh - 1998

Moreover the MathWorld entry includes

$$
[A+D, A+2 D, A+3 D, \ldots]=\frac{I_{A / D}\left(\frac{2}{D}\right)}{I_{1+A / D}\left(\frac{2}{D}\right)}
$$

(Schroeppel 1972) for real A and $D \neq 0$.

In the Integer Sequence Data Base

AT\＆T Integer Sequences research

Greetings from The On－Line Encyclopedia of Integer Sequences！

```
1,4,3,3,1,2,7,4,2
Search

Search： \(1,4,3,3,1,2,7,4,2\) Displaying 1－1 of 1 results found

Format：long｜short｜internal｜text Sort：relevance｜references｜number Highlight：on｜off A060997 Decimal representation of continued fraction 1，2，3，4，5，6，7，．．．
\(1,4,3,3,1,2,7,4,2,6,7,2,2,3,1,1,7,5,8,3,1,7,1,8,3,4,5,5\),
\(7,7,5,9,9,1,8,2,0,4,3,1,5,1,2,7,6,7,9,0,5,9,8,0,5,2,3,4\),
\(3,4,4,2,8,6,3,6,3,9,4,3,0,9,1,8,3,2,5,4,1,7,2,9,0,0,1,3\),
\(6,5,0,3,7,2,6,4,3,5,7,8,6,1,1,4,6,5,9,5,0\)（list；cons；graph；listen）
OFSET 1,2
COMMENT The value of this continued fraction is the ratio of two Bessel functions：BesselI（0，2）／BesselI（1，2）＝4070910／4096789．Or， equivalently，to the ratio of the sums：sum＿\｛n＝0．．inf \(\} 1 /(n!n!\}\) and sum＿\｛ \(n=0\) ．．inf \(\} n /(n!n!\} .-\) Mark Hudson（mrmarkhudson（AT）hotmail． comi，Jan 312003
FORMULA \(1 / \underline{\text { an } 052119 . ~}\)
EXAMPLE C＝1．433127426722311758317183455775 ．．
MATHEMATICA RealDigits［ FromContinuedFraction［ Range［ 44］］，10，110］［［1］］
（＊Or＊）RealDigits［ Bessell［0，2］／Bessell［1，2］，10，110］［［1］］
（＊Or＊）RealDigits［ Sum［1／（n！n！\}, \{n, 0, Infinity\}] / Sum[n/(n!n!\}, \(\{\mathrm{n}, 0, \operatorname{Infinity}\}], 10,110]\)［［1］］

ROSSREFS a 001053 Adjacent sequences： \(\mathbf{A 0 6 0 9 9 4}\) A060995 \＄060996 this＿sequence \(\mathbf{\alpha 0 6 0 9 9 8}\)人060999 \(\mathbf{\alpha 0 6 1 0 0 0}\) Sequence in context：A016699 \(\mathbf{\alpha 0 6 0 3 7 3 ~} \mathbf{A 0 9 0 2 8 0}\) this＿sequence A 129624人019975 人073871

The Inverse Calculator returns
－We show the ISC on another number next
－Most functionality of ISC is built into＂identify＂ in Maple．
－There＇s also Wolfram \(\alpha\)
KEYWORD cons，easy，no nn

AJTHOR Robert \(G\) ．Wilson \(v\)（rgwv（AT）rghv．com）May 142001
＂The price of metaphor is eternal vigilance．＂－Arturo Rosenblueth \＆Norbert Wiener quoted by R．C．Leowontin，Science p．1264，Feb 16， 2001 ［Human Genome Issue］．

Calculator (ISC) uses a combination of lookup tables and integer relation algorithms in order to associate with a user-defined, truncated decimal expansion (represented as a floating point expression) a closed form representation for the real number.

accepts either floating point expressions or correct Maple syntax as input. However, for

Standard lookup results for 12.587886229548403854
\(\exp (1)+\mathrm{Pi}^{2} 2\) Maple syntax requiring too long for
evaluation, a timeout has been implemented.

Visit

Jon Borwein's
Webpage

David Bailey's Webpage

Math Resources Portal

- ISC+ now runs at CARMA
- Less lookup \& more algorithms than 1995

The Dev Team: Nathan Singer, Andrew Shouldice, Lingyun Ye, Tomas Daske, Peter Dobcsanyi, Dante Manna, O-Yeat Chan, Jon Borwein

\section*{1e. Phase Reconstruction}

Projectors and Reflectors: \(\mathrm{P}_{\mathrm{A}}(\mathrm{x})\) is the metric projection or nearest point and \(R_{A}(x)\) reflects in the tangent: \(x\) is red


Veit Elser, Ph.D.
2007 Elser solving Sudoku with reflectors


2008 Finding exoplanet
Fomalhaut in Piscis with projectors
projection (black) and reflection (blue) of point (red) on boundary (blue) of ellipse (yellow)
"All physicists and a good many quite respectable mathematicians are contemptuous about proof." G. H. Hardy (1877-1947)

\section*{Interactive exploration in CINDERELLA}

The simplest case is of a line A of height h and the unit circle B . With \(z_{n}:=\left(x_{n}, y_{n}\right)\) the iteration becomes
\[
x_{n+1}:=\cos \theta_{n}, y_{n+1}:=y_{n}+h-\sin \theta_{n}, \quad\left(\theta_{n}:=\arg z_{n}\right)
\]

A Cinderella picture of two steps from (4.2,-0.51) follows:


\title{
Computer Algebra + Interactive Geometry the Grief is in the GUI
}

\section*{This picture is worth 100,000 ENIACs}

Eckert \& Mauchly (1946)


The number of ENIACS needed to store the 20 Mb TIF file the Smithsonian sold me

The past

\section*{Projected Performance}

\section*{Projected Performance Development}


\section*{THE REAL COST OF NEW APPLE PRODUCTS (ACCOUNTING FOR INFLATION)}


\section*{The Apple Index}


Only two years ago, Jobs contemptuously predicted that the Kindle would flop: "It doesn't matter how good or bad the product is," he told The New York Times, because "the fact is that people don't read anymore. Forty percent of the people in the U.S. read one book or less last year. The whole conception is flawed at the top because people don't read anymore." (Alan Deutschman)

In Steve Jobs: Flip-Flopper, Daily Beast 1/26/2010.

\section*{The Rest is Software}
"It was my luck (perhaps my bad luck) to be the world chess champion during the critical years in which computers challenged, then surpassed, human chess players. Before 1994 and after 2004 these duels held little interest." - Garry Kasparov, 2010


\section*{PART II MATHEMATICS}
"The question of the ultimate foundations and the ultimate meaning of mathematics remains open: we do not know in what direction it will find its final solution or even whether a final objective answer can be expected at all. 'Mathematizing' may well be a creative activity of man, like language or music, of primary originality, whose historical decisions defy complete objective rationalisation." - Hermann Weyl

In "Obituary: David Hilbert 1862 - 1943," RSBIOS, 4, 1944, pp. 547-553; and American Philosophical Society Year Book, 1944, pp. 387-395, p. 392.

\section*{Ila. The Partition Function (1991-2009)}

Consider the number of additive partitions, \(\mathrm{p}(\mathrm{n})\), of n . Now
\[
5=4+1=3+2=3+1+1=2+2+1=2+1+1+1=1+1+1+1+1
\]
so \(p(5)=7\). The ordinary generating function discovered by Euler is
\[
\sum_{n=0}^{\infty} p(n) q^{n}=\prod_{k=1}^{\infty}\left(1-q^{k}\right)^{-1}
\]
(Use the geometric formula for \(1 /\left(1-q^{k}\right)\) and observe how powers of \(q^{n}\) occur.)
The famous computation by MacMahon of \(p(200)=3972999029388\) done symbolically and entirely naively using (1) on an Apple laptop took 20 min in 1991, and about 0.17 seconds in 2009. Now it took 2 min for \(p(2000)=4720819175619413888601432406799959512200344166\)

In 2008, Crandall found \(p\left(10^{9}\right)\) in 3 seconds on a laptop, using the Hardy-Ramanujan-Rademacher 'finite' series for \(p(n)\) with FFT methods.
Such fast partition-number evaluation let Crandall find probable primes \(p(1000046356)\) and \(p(1000007396)\). Each has roughly 35,000 digits.

When does easy access to computation discourages innovation: would Hardy and Ramanujan have still discovered their marvellous formula for \(\mathrm{p}(\mathrm{n})\) ?


Illb. The computation of Pi (1986-2009)

BB4: Pi to 2.59 trillion places in 21 steps
\[
y_{1}=\frac{1-\sqrt[4]{1-y_{0}^{4}}}{1+\sqrt[4]{1-y_{0}^{4}}}, a_{1}=a_{0}\left(1+y_{1}\right)^{4}-2^{3} y_{1}\left(1+y_{1}+y_{1}^{2}\right) \quad y_{11}=\frac{1-\sqrt[4]{1-y_{10}}}{1+\sqrt[4]{1-y_{10}}}, a_{11}=a_{10}\left(1+y_{11}\right)^{4}-2^{23} y_{11}\left(1+y_{11}+y_{11}^{2}\right)
\]
\[
y_{2}=\frac{1-\sqrt[4]{1-y_{1}^{4}}}{1+\sqrt[4]{1-y_{1}^{4}}}, a_{2}=a_{1}\left(1+y_{2}\right)^{4}-2^{5} y_{2}\left(1+y_{2}+y_{2}^{2}\right) \quad y_{12}=\frac{1-\sqrt[4]{1-y_{11^{4}}}}{1+\sqrt[4]{1-y_{11}{ }^{4}}}, a_{12}=a_{11}\left(1+y_{12}\right)^{4}-2^{25} y_{12}\left(1+y_{12}+y_{12}^{2}\right)
\]
\[
y_{3}=\frac{1-\sqrt[4]{1-y_{2}{ }^{4}}}{1+\sqrt[4]{1-y_{2}^{4}}}, a_{3}=a_{2}\left(1+y_{3}\right)^{4}-2^{7} y_{3}\left(1+y_{3}+y_{3}^{2}\right) \quad y_{13}=\frac{1-\sqrt[4]{1-y_{12}{ }^{4}}}{1,}, a_{12}=a_{12}\left(1+y_{12}\right)^{4}-9^{27} \mu_{0}\left(1+u_{12}+y_{13}{ }^{2}\right)
\]
\[
y_{4}=\frac{1-\sqrt[4]{1-y_{3}^{4}}}{1+\sqrt[4]{1-y_{4}^{4}}}, a_{4}=
\]


A random walk on a million digits of Pi

\section*{Moore' s Law Marches On}

1986: It took Bailey 28 hours to compute \(\mathbf{2 9 . 3 6}\) million digits on 1 cpu of the then new CRAY-2 at NASA Ames using (BB4). Confirmation using another BB quadratic algorithm took 40 hours.

This uncovered hardware and software errors on the CRAY. 2009 Takahashi on 1024 cores of a 2592 core Appro Xtreme X3 system 1.649 trillion digits via (Salamin-Brent) took 64 hours 14 minutes with 6732 GB of main memory, and (BB4) took 73 hours 28 minutes with 6348 GB of main memory.

The two computations differed only in the last 139 places. Fabrice Bellard (Dec 2009) 2.7 trillion places on a 4 core desktop in 133 days after 2.59 trillion by Takahashi (April)
"The most important aspect in solving a mathematical problem is the conviction of what is the true result. Then it took 2 or 3 years using the techniques that had been developed during the past 20 years or so." - Leonard Carleson (Lusin's problem on p.w. convergence of Fourier series in Hilbert space)

\section*{II c. Guiga and Lehmer (1932-2009)}

As another measure of what changes over time and what doesn't, consider two conjectures regarding Euler's totient \(\phi(\mathrm{n})\) which counts positive numbers less than and relatively prime to \(n\).

Giuga's conjecture (1950) n is prime if and only if
\[
\mathcal{G}_{n}:=\sum_{k=1}^{n-1} k^{n-1} \equiv(n-1) \bmod n .
\]

Counterexamples are Carmichael numbers (rare birds only proven infinite in 1994) and more: if a number \(n=p_{1} \cdots p_{m}\) with \(m>1\) prime factors \(p_{i}\) is a counterexample to Giuga's conjecture then the primes are distinct and satisfy
\[
\sum_{i=1}^{m} \frac{1}{p_{i}}>1
\]
and they form a normal sequence: \(p_{i} \neq 1\) mod \(p_{j}\)
( 3 rules out \(7,13,19,31, \ldots\) and 5 rules out 11, 31, \(41, \ldots\) )

\section*{Guiga's Conjecture (1951-2009)}

With predictive experimentally-discovered heuristics, we built an efficient algorithm to show (in several months in 1995) that any counterexample had 3459 prime factors and so exceeded \(10^{13886} \rightarrow 10^{14164}\) in a 5 day desktop 2002 computation.

The method fails after 8135 primes---my goal is to exhaust it.
2009 While preparing this talk, I obtained almost as good a bound of \(\mathbf{3 0 5 0}\) primes in under \(\mathbf{1 1 0}\) minutes on my notebook and a bound of \(\mathbf{3 4 8 6}\) primes in \(\mathbf{1 4}\) hours: using Maple not as before \(\mathrm{C}_{++}\)which being compiled is faster but in which the coding is much more arduous.
One core of an eight-core MacPro obtained 3592 primes and so exceeds 16673 digits in \(\mathbf{1 3 . 5}\) hrs in Maple. (Now running on 8 cores.)

\section*{Lehmer's Conjecture (1932-2009)}

A tougher related conjecture is Lehmer's conjecture (1932) n is prime if and only if
\[
\phi(n) \mid(n-1)
\]

He called this "as hard as the existence of odd perfect numbers." Again, prime factors of counterexamples form a normal sequence, but now there is little extra structure.

In a 1997 SFU M.Sc. Erick Wong verified this for \(\mathbf{1 4}\) primes, using normality and a mix of PARI, C++ and Maple to press the bounds of the 'curse of exponentiality.'

The related \(\phi(\mathrm{n}) \mid(\mathrm{n}+1)\) is has 8 solutions with at most 7 factors (6 factors is due to Lehmer). Recall \(F_{n}:=2^{2^{n}}+1\) the Fermat primes. The solutions are 2, 3, 3.5, 3.5.17, 3.5.17.257, 3.5.17.257.65537 and a rogue pair: 4919055 and 6992962672132095 , but 8 factors seems out of sight.

Lehmer "couldn"t" factor 6992962672132097 \(=73 \times 95794009207289\). If prime, a \(9^{\text {th }}\) would exist: \(\phi(\mathrm{n}) \mid(\mathrm{n}+1)\) and \(\mathrm{n}+2\) prime \(\Rightarrow \mathrm{N}:=\mathrm{n}(\mathrm{n}+2)\) satisfies \(\phi(\mathrm{N}) \mid(\mathrm{N}+1)\)

"Vacuums, black holes, antimatter - it's the elusive and intangible which appeals to me."

\section*{II d. Apéry-Like Summations}

The following formulas for \(\zeta(\mathrm{n})\) have been known for many decades:
(a) \(\zeta(2)=3 \sum_{k=1}^{\infty} \frac{1}{k^{2}\binom{2 k}{k}}\),
(b) \(\zeta(3)=\frac{5}{2} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^{3}\binom{2 k}{k}}\),
(c) \(\zeta(4)=\frac{36}{17} \sum_{k=1}^{\infty} \frac{1}{k^{4}\binom{2 k}{k}}\).

These results have led many to speculate that

The RH in Maple

\[
Q_{5}:=\zeta(5) / \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^{5}\binom{2 k}{k}}
\]
might be some nice rational or algebraic value.
Sadly, PSLQ calculations have established that if \(Q_{5}\) satisfies a polynomial with degree at most 25, then at least one coefficient has 380 digits.
"He (Gauss) is like the fox, who effaces his tracks in the sand with his tail." - Niels Abel (1802-1829)

\section*{Two more things about \(\zeta(5)\)}
\[
\begin{array}{r}
\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^{5}\binom{2 k}{k}}=2 \zeta(5)-\frac{4}{3} L^{5}+\frac{8}{3} L^{3} \zeta(2)+4 L^{2} \zeta(3) \\
+80 \sum_{n>0}\left(\frac{1}{(2 n)^{5}}-\frac{L}{(2 n)^{4}}\right) \rho^{2 n}
\end{array}
\]

Here \(\rho:=\frac{\sqrt{5}-1}{2}\) and \(L:=\log \rho\)
(JMB-Broadhurst-Kamnitzer, 2000). Also, there is a simpler Ramanujan series for \(\zeta(4 n+1)\). In particular:
\[
\zeta(5)=\frac{1}{294} \pi^{5}+\frac{2}{35} \sum_{k=1}^{\infty} \frac{1}{\left(1+e^{2 k \pi}\right) k^{5}}+\frac{72}{35} \sum_{k=1}^{\infty} \frac{1}{\left(1-e^{2 k \pi}\right) k^{5}},
\]
and \(\zeta(5)-\pi^{5} / 294=-0.0039555 \ldots\).

\section*{Nothing New under the Sun}

Margo Kondratieva found a formula of Markov in 1890:
\[
\begin{aligned}
\sum_{n=1}^{\infty} \frac{1}{(n+a)^{3}}= & \frac{1}{4} \sum_{n=0}^{\infty} \frac{(-1)^{n}(n!)^{6}}{(2 n+1)!} \\
& \times \frac{\left(5(n+1)^{2}+6(a-1)(n+1)+2(a-1)^{2}\right)}{\prod_{k=0}^{n}(a+k)^{4}}
\end{aligned}
\]

Note: Maple establishes this identity as
\(-1 / 2 \Psi(2, a)=-1 / 2 \Psi(2, a)-\zeta(3)+5 / 4{ }_{4} F_{3}([1,1,1,1],[3 / 2,2,2],-1 / 4)\)
Hence
\[
\zeta(4)=-\sum_{m=1}^{\infty} \frac{(-1)^{m-1}}{\binom{2 m}{m} m^{4}}+\frac{10}{3} \sum_{m=1}^{\infty} \frac{(-1)^{m-1} \sum_{k=1}^{m} \frac{1}{k}}{\binom{2 m}{m} m^{3}} .
\]
- The case a=0 above is Apéry's formula for \(\zeta(3)\) !


\section*{Two Discoveries: 1995 and 2005}
- Two computer-discovered generating functions
" (1) was 'intuited' by Paul Erdös (1913-1996)
- and (2) was a designed experiment
" was proved by the computer (Wilf-Zeilberger)
- and then by people (Wilf included)
- What about \(4 \mathrm{k}+1\) ?

\[
\begin{align*}
& \sum_{k=0}^{\infty} \zeta(4 k+3) x^{4 k}=\frac{5}{2} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^{3}\binom{2 k}{k}\left(1-x^{4} / k^{4}\right)} \prod_{m=1}^{k-1}\left(\frac{1+4 x^{4} / m^{4}}{1-x^{4} / m^{4}}\right)  \tag{1}\\
& \sum_{k=0}^{\infty} \zeta(2 k+2) x^{2 k}=3 \sum_{k=1}^{\infty} \frac{1}{k^{2}\binom{2 k}{k}\left(1-x^{2} / k^{2}\right)} \prod_{m=1}^{k-1}\left(\frac{1-4 x^{2} / m^{2}}{1-x^{2} / m^{2}}\right)
\end{align*}
\]

\title{
Apéry summary
}
\[
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}
\]
\(\zeta(2)=\frac{\pi^{2}}{6}, \zeta(4)=\frac{\pi^{4}}{90}, \zeta(6)=\frac{\pi^{6}}{945}, \cdot\)
\[
\mathcal{Z}(x)=3 \sum_{k=1}^{\infty} \frac{1}{\binom{2 k}{k}\left(k^{2}-x^{2}\right)} \prod_{n=1}^{k-1} \frac{4 x^{2}-n^{2}}{x^{2}-n^{2}}
\]

2005 Bailey, Bradley \& JMB discovered and proved - in 3Ms - three equivalent binomial identities

\[
=\sum_{k=0}^{\infty} \zeta(2 k+2) x^{2 k}=\sum_{n=1}^{\infty} \frac{1}{n^{2}-x^{2}}
\]
\[
=\frac{1-\pi x \cot (\pi x)}{2 x^{2}}
\]
\[
3 n^{2} \sum_{k=n+1}^{2 n} \frac{\prod_{m=n+1}^{k-1} \frac{4 n^{2}-m^{2}}{n^{2}-m^{2}}}{\binom{2 k}{k}\left(k^{2}-n^{2}\right)}=\frac{1}{\binom{n}{n}}-\frac{1}{\binom{3 n}{n}}
\]
\[
{ }_{3} F_{2}\left(\begin{array}{c}
3 n, n+1,-n \\
2 n+1, n+1 / 2
\end{array} ; \frac{1}{4}\right)=\frac{\binom{2 n}{n}}{\binom{3 n}{n}}
\]
3. was easily computer proven (Wilf-

Zeilberger) (now 2 human proofs)


\section*{II e: Ramanujan-Like Identities}
\begin{tabular}{|c|c|}
\hline  & \begin{tabular}{l}
Truly novel series for \(1 / \pi\), based on elliptic integrals, were discovered by Ramanujan around 1910. One is:
\[
\begin{equation*}
\frac{1}{\pi}=\frac{2 \sqrt{2}}{9801} \sum_{k=0}^{\infty} \frac{(4 k)!(1103+26390 k)}{(k!)^{4} 396^{4 k}} \tag{1}
\end{equation*}
\] \\
Each term of (1) adds 8 correct digits. Gosper used (1) by the computation of a then-record 17 million digits of the c.f. for \(\pi\) in 1985completing the first proof of (1).
\end{tabular} \\
\hline
\end{tabular}

A little later David and Gregory Chudnovsky found the following variant, which lies in \(Q(\sqrt{-163})\) rather than \(Q(\sqrt{58})\) :
\[
\begin{equation*}
\frac{1}{\pi}=12 \sum_{k=0}^{\infty} \frac{(-1)^{k}(6 k)!(13591409+545140134 k)}{(3 k)!(k!)^{3} 640320^{3 k+3 / 2}} \tag{2}
\end{equation*}
\]

Each term of (2) adds 14 correct digits.
The brothers used (2) several times --- culminating in a 1994 calculation to over four billion decimal digits. Their remarkable story was told in a Pulitzer-winning New Yorker article.

\section*{New Ramanujan-Like Identities}

Guillera has recently found Ramanujan-like identities, including:
\[
\begin{aligned}
\frac{128}{\pi^{2}} & =\sum_{n=0}^{\infty}(-1)^{n} r(n)^{5}\left(13+180 n+820 n^{2}\right)\left(\frac{1}{32}\right)^{2 n} \\
\frac{8}{\pi^{2}} & =\sum_{n=0}^{\infty}(-1)^{n} r(n)^{5}\left(1+8 n+20 n^{2}\right)\left(\frac{1}{2}\right)^{2 n} \\
\frac{32}{\pi^{3}} & \stackrel{?}{=} \sum_{n=0}^{\infty} r(n)^{7}\left(1+14 n+76 n^{2}+168 n^{3}\right)\left(\frac{1}{8}\right)^{2 n}
\end{aligned}
\]
where
\[
r(n)=\frac{(1 / 2)_{n}}{n!}=\frac{1 / 2 \cdot 3 / 2 \cdot \cdots \cdot(2 n-1) / 2}{n!}=\frac{\Gamma(n+1 / 2)}{\sqrt{\pi} \Gamma(n+1)}
\]

Guillera proved the first two using the Wilf-Zeilberger algorithm. He ascribed the third to Gourevich, who found it using integer relation methods.

It is true but has no proof.

\section*{As far as we can tell there are no higher-order analogues!}

\section*{Example of Use of Wilf-Zeilberger, I}

The first two recent experimentally-discovered identities are
\[
\begin{aligned}
\sum_{n=0}^{\infty} \frac{\binom{4 n}{2 n}\binom{2 n}{n}^{4}}{2^{16 n}}\left(120 n^{2}+34 n+3\right) & =\frac{32}{\pi^{2}} \\
\sum_{n=0}^{\infty} \frac{(-1)^{n}\binom{2 n}{n}}{2^{20 n}}\left(820 n^{2}+180 n+13\right) & =\frac{128}{\pi^{2}}
\end{aligned}
\]

Guillera cunningly started by defining
\(G(n, k)=\frac{(-1)^{k}}{2^{16 n} 2^{4 k}}\left(120 n^{2}+84 n k+34 n+10 k+3\right) \frac{\binom{2 n}{n}^{4}\binom{2 k}{k}^{3}\binom{4 n-2 k}{2 n-k}}{\binom{2 n}{k}\binom{n+k}{n}^{2}}\)
He then used the EKHAD software package to obtain the companion
\(F(n, k)=\frac{(-1)^{k} 512}{2^{16 n} 2^{4 k}} \frac{n^{3}}{4 n-2 k-1} \frac{\binom{2 n}{n}^{4}\binom{2 k}{k}^{3}\binom{4 n-2 k}{2 n-k}}{\binom{2 n}{k}\binom{n+k}{n}^{2}}\)

\section*{Wilf-Zeilberger, II}

When we define
\[
H(n, k)=F(n+1, n+k)+G(n, n+k)
\]

Zeilberger's theorem gives the identity
\[
\sum_{n=0}^{\infty} G(n, 0)=\sum_{n=0}^{\infty} H(n, 0)
\]
which when written out is

\[
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{\binom{2 n}{n}^{4}\binom{4 n}{2 n}}{2^{16 n}}\left(120 n^{2}+34 n+3\right)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{20 n+7}} \frac{(n+1)^{3}}{2 n+3} \frac{\binom{2 n+2}{n+1}^{4}\binom{2 n}{n}^{3}\binom{2 n+4}{n+2}}{\binom{2 n+2}{n}\binom{2 n+1}{n+1}^{2}} \\
& \quad+\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{20 n}}\left(204 n^{2}+44 n+3\right)\binom{2 n}{n}^{5}=\frac{1}{4} \sum_{n=0}^{\infty} \frac{(-1)^{n}\binom{2 n}{n}^{5}}{2^{20 n}}\left(820 n^{2}+180 n+13\right)
\end{aligned}
\]

A limit argument and Carlson's theorem completes the proof...

\section*{Searches for Additional Formulas}

We had no PSLQ over number fields so we searched for additional formulas of either the following forms:
\[
\begin{aligned}
\frac{c}{\pi^{m}} & =\sum_{n=0}^{\infty} r(n)^{2 m+1}\left(p_{0}+p_{1} n+\cdots+p_{m} n^{m}\right) \alpha^{2 n} \\
\frac{c}{\pi^{m}} & =\sum_{n=0}^{\infty}(-1)^{n} r(n)^{2 m+1}\left(p_{0}+p_{1} n+\cdots+p_{m} n^{m}\right) \alpha^{2 n}
\end{aligned}
\]
where \(c\) is some linear combination of
\[
\begin{array}{|l}
1,2^{1 / 2}, 2^{1 / 3}, 2^{1 / 4}, 2^{1 / 6}, 4^{1 / 3}, 8^{1 / 4}, 32^{1 / 6}, 3^{1 / 2}, 3^{1 / 3}, 3^{1 / 4}, 3^{1 / 6}, 9^{1 / 3} \\
27^{1 / 4}, 243^{1 / 6}, 5^{1 / 2}, 5^{1 / 4}, 125^{1 / 4}, 7^{1 / 2}, 13^{1 / 2}, 6^{1 / 2}, 6^{1 / 3}, 6^{1 / 4}, 6^{1 / 6}, \\
7,36^{1 / 3}, 216^{1 / 4}, 7776^{1 / 6}, 12^{1 / 4}, 108^{1 / 4}, 10^{1 / 2}, 10^{1 / 4}, 15^{1 / 2}
\end{array}
\]
where each of the coefficients \(p_{i}\) is a linear combination of
\[
1,2^{1 / 2}, 3^{1 / 2}, 5^{1 / 2}, 6^{1 / 2}, 7^{1 / 2}, 10^{1 / 2}, 13^{1 / 2}, 14^{1 / 2}, 15^{1 / 2}, 30^{1 / 2}
\]
and where \(\alpha\) is chosen as one of the following:
\[
\begin{aligned}
& 1 / 2,1 / 4,1 / 8,1 / 16,1 / 32,1 / 64,1 / 128,1 / 256, \sqrt{5}-2,(2-\sqrt{3})^{2} \\
& 5 \sqrt{13}-18,(\sqrt{5}-1)^{4} / 128,(\sqrt{5}-2)^{4},\left(2^{1 / 3}-1\right)^{4} / 2,1 /(2 \sqrt{2}), \\
& (\sqrt{2}-1)^{2},(\sqrt{5}-2)^{2},(\sqrt{3}-\sqrt{2})^{4}
\end{aligned}
\]

\section*{Relations Found by PSLQ}
- Including Guillera's three we found all known series for \(r(n)\) and no more. There are others for other pochhammer symbols
\[
\begin{aligned}
\frac{4}{\pi} & =\sum_{n=0}^{\infty} r(n)^{3}(1+6 n)\left(\frac{1}{2}\right)^{2 n} \\
\frac{16}{\pi} & =\sum_{n=0}^{\infty} r(n)^{3}(5+42 n)\left(\frac{1}{8}\right)^{2 n} \\
\frac{12^{1 / 4}}{\pi} & =\sum_{n=0}^{\infty} r(n)^{3}(-15+9 \sqrt{3}-36 n+24 \sqrt{3} n)(2-\sqrt{3})^{4 n} \\
\frac{32}{\pi} & =\sum_{n=0}^{\infty} r(n)^{3}(-1+5 \sqrt{5}+30 n+42 \sqrt{5} n)\left(\frac{(\sqrt{5}-1)^{4}}{128}\right)^{2 n} \\
\frac{5^{1 / 4}}{\pi} & =\sum_{n=0}^{\infty} r(n)^{3}(-525+235 \sqrt{5}-1200 n+540 \sqrt{5} n)(\sqrt{5}-2)^{8 n} \\
\frac{2 \sqrt{2}}{\pi} & =\sum_{n=0}^{\infty}(-1)^{n} r(n)^{3}(1+6 n)\left(\frac{1}{2 \sqrt{2}}\right)^{2 n} \\
\frac{2}{\pi} & =\sum_{n=0}^{\infty}(-1)^{n} r(n)^{3}(-5+4 \sqrt{2}-12 n+12 \sqrt{2} n)(\sqrt{2}-1)^{4 n} \\
\frac{2}{\pi} & =\sum_{n=0}^{\infty}(-1)^{n} r(n)^{3}(23-10 \sqrt{5}+60 n-24 \sqrt{5} n)(\sqrt{5}-2)^{4 n} \\
\frac{2}{\pi} & =\sum_{n=0}^{\infty}(-1)^{n} r(n)^{3}(177-72 \sqrt{6}+420 n-168 \sqrt{6} n)(\sqrt{3}-\sqrt{2})^{8 n}
\end{aligned}
\]


Baruah, Berndt, Chan, "Ramanujan Series for 1/r. A Survey." Aug 09, MAA Monthly

"What I appreciate even more than its remarkable speed and accuracy are the words of understanding and compassion I get from it."

\section*{III. A Cautionary Example}

These constants agree to 42 decimal digits accuracy, but are NOT equal:
\(\int_{0}^{\infty} \cos (2 x) \prod_{n=0}^{\infty} \cos (x / n) d x=\)
\(0.39269908169872415480783042290993786052464543418723 \ldots\)
\(\frac{\pi}{8}=\)
\(0.39269908169872415480783042290993786052464617492189 \ldots\)

Computing this integral is (or was) nontrivial, due largely to difficulty in evaluating the integrand function to high precision.

Fourier analysis explains this happens when a hyperplane meets a hypercube (LP) ...


\section*{IV. Some Conclusions}
- We like students of 2010 live in an information-rich, judgement-poor world
- The explosion of information is not going to diminish
- nor is the desire (need?) to collaborate remotely
- So we have to learn and teach judgement (not obsession with plagiarism)
- that means mastering the sorts of tools I have illustrated
- We also have to acknowledge that most of our classes will contain a very broad variety of skills and interests (few future mathematicians)
- properly balanced, discovery and proof can live side-by-side and allow for the ordinary and the talented to flourish in their own fashion
- Impediments to the assimilation of the tools I have illustrated are myriad
- as I am only too aware from recent experiences
- These impediments include our own inertia and
- organizational and technical bottlenecks (IT - not so much dollars)
- under-prepared or mis-prepared colleagues
- the dearth of good modern syllabus material and research tools
- the lack of a compelling business model (societal goods)
"The plural of 'anecdote' is not 'evidence'."
- Alan L. Leshner (Science's publisher)

\section*{Further Conclusions}

New techniques now permit integrals, infinite series sums and other entities to be evaluated to high precision (hundreds or thousands of digits), thus permitting PSLQ-based schemes to discover new identities.
These methods typically do not suggest proofs, but often it is much easier to find a proof (say via WZ) when one "knows" the answer is right.


Full details of all the examples are in Mathematics by Experiment or its companion volume Experimentation in Mathematics written with Roland Girgensohn. A "Reader's Digest" version of these is available at www.experimentalmath.info along with much other material.

> "Anyone who is not shocked by quantum theory has not understood a single word." - Niels Bohr

Experimental Mathematics in Action
David H. Bailey, Jonathan M. Borwein, Neil J. Calkin, Roland Girgensohn, D. Russell Luke, Victor H. Moll

"David H. Bailey et al. have done a fantastic job to provide very comprehensive and fruitful examples and demonstrations on how experimental mathematic acts in a very broad area of both pure and applied mathematical research, in both academic and industry. Anyone who is interest ed in experimental mathematics should, without any doubt, read this book!"
-Gazette of the Australian Mathematical Society

978-1-56881-271-7; Hardcover; \$49.00
| Experiments in Mathematics (CD
Jonathan M. Borwein, David H. Bailey, Roland Girgensohn
In the short time since the first edition of Mathematics by Experiment: Plausible Reasoning in the 21st Century and Experimentation in Mathematics: Computational Paths to Discovery, there has been a noticeable upsurge in interest in using computers to do real mathematics. The authors have updated and enhanced the book files and are now making them available in PDF format on a CD-ROM. This CD provides several "smart" features, including hyperlinks for all numbered equations, all Internet URLs,
 bibliographic references, and an augmented search facility assists one with locating a particular mathematical formula or expression.

978-1-56881-283-0; CD; \$49.00

Mathematics by Experiment Second Edition Plausible Reasoning in the 21st Century Jonathan M. Borwein, David H. Bailey

Experimentation in Mathematics
Computational Paths to Discovery
Jonathan M. Borwein, David H. Bailey, Roland Girgensohn
"These are such fun books to read! Actually, calling them books does not do them justice. They have the liveliness and feel of great Web sites, with their bite-size fascinating factoids and their many human- and math-interest stories and other gems. But do not be fooled by the lighthearted, immensely entertaining style. You are going to learn more math (experimental or otherwise) than you ever did from any two single volumes. Not only that, you will learn by osmosis how to become an experimental mathematician."
-American Scientist Online

978-1-56881-136-9; Hardcover; \(\$ 59.00\)

Communicating Mathematics in the Digital Era

Edited by J. M. Borwein, E. M. Rocha, J. F. Rodrigues


Digital technology has dramatically changed the ways in which scientif ic work is published, disseminated, archived, and accessed. This book is a collection of thought-provoking essays and reports on a number of projects discussing the paradigms and offering mechanisms for producing, searching, and exploiting scientific and technical scholarship in mathematics in the digital era.

The Computer as Crucible An Introduction to Experimental Mathematics Jonathan Borwein, Keith Devlin

Keith Devlin and Jonathan Borwein cover a variety of topics and examples to give the reader a good sense of the current state of play in the rapidly growing new field of experimental mathematics. The writing is clear and the explanations are enhanced by relevant historical facts and stories of mathematicians and their encounters with the field over time.


-American Scientist Online```


[^0]:    "The object of mathematical rigor is to sanction and legitimize the conquests of intuition, and there was never any other object for it." - Jacques Hadamard (1865-1963)

[^1]:    "All truths are easy to understand once they are discovered; the point is to discover them." - Galileo Galilei

