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Abstract

It is shown that various first and second order derivatives of the Fitzpatrick and Penot repre-
sentative functions for a maximal monotone operator T , in a reflexive Banach space, can be used
to represent differential information associated with the tangent and normal cones to the Graph T .
In particular we obtain formula for the Proto-derivative, as well as its polar, the normal cone to the
graph of T . First order derivatives are shown to be useful in recognising points of single-valuedness
of T . We show that a strong form of Proto-differentiability to the graph of T , is often associated
with single valuedness of T .

Dedicated to Boris Mordukhovich on the occasion of his 60th Birthday.

1 Introduction

A cornerstone of nonsmooth analysis is the construction of the limiting normal cone from more classi-
cal normal cone constructions. These robust, nonconvex limiting quantities are essential for practical
applications and their construction was first introduced by Mordukhovich [10]. For a detailed his-
tory of these developments see [11]. By now an extensive calculus has been developed [11]. Still the
construction of some basic quantities which are a starting point for the application of this powerful
mathematical machinery is a challenging problem. This is particularly true when considering second
order constructions where the normal cone to the graph of a multifunction is required. This program is
necessary for calculation the second order subdifferential as introduce by Mordukhovich [12] and further
developed in [13] and subsequent papers. In this paper we restrict attention to an important class of
multifunctions, namely maximal monotone operators. Of course this class includes the subdifferential
of a convex function but much more. Maximal monotone operators have wide application in optimiza-
tion, differential equations and other areas of mathematics. As shown in many recent papers [3], [5],
[17], [18] and many more, the representative function provides a powerful tool for the study of such
operators. Also the construction of the Fitzpatrick representative functions appears to be tractable in
many cases [7]. When T : X ⇒ X∗ is maximal monotone, we denote the Fitzpatrick representative
function, introduced in [6], by

FT (z, z∗) := sup
(x,x∗)∈Graph T

{〈z, x∗〉+ 〈x, z∗〉 − 〈x, x∗〉}

and the Penot representative function is given by PT (z, z∗) = F∗
T (y, y∗)† where (y, y∗)† = (y∗, y) is

the transpose operator.
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The Fitzpatrick function was developed precisely to provide a more transparent convex alternative to
the earlier saddle function construction due to Krauss [9]. At the time, Fitzpatrick’s interests were
more centrally in the differentiation theory for convex functions and monotone operators. The search
for results relating when a maximal monotone T is single-valued to differentiability of FT did not yield
fruit, and he put the function aside. This is still the one area where to the best of our knowledge FT has
so far proved of little help—in part because generic properties of domFT and of dom(T ) seem poorly
related. In this paper we make some progress towards a theory through which the differentiability
properties of the Fitzpatrick and its brother, the Penot representative function, yield insight into the
single valuedness of T and also the differentiability properties of T .
As a beginning we opt to study the construction of the so called contingent tangent cone to the graph
of T and its polar, the contingent normal cone. This quantity is of interest as a primitive for the
construction of limit normal cones. As the theory of representative functions is now sufficiently mature
in reflexive spaces, we assume for most part that X is a reflexive space. Suppose that (z, z∗) ∈ M :=
GraphT is a point where the Proto–derivative exists in the sense that the following limit exists:

TM (z, z∗) := b- lim
t↓0

1
t

(M − (z, z∗)) ,

where b-limt↓0 refers to convergence in the Attouch–Wetts sense [1]. This is somewhat a restrictive
assumption but the basic approach developed here is expected to be able to weakened as we develop
a better understanding of the transmission of certain set limits through the Fenchel conjugate when
applied to a specific class of nonconvex functions.
In this paper we show that the polar cone

TM (z, z∗)◦ := {(y∗, y) | 〈(y, y∗) , (h, h∗)〉 ≤ 0, ∀ (h, h∗) ∈ TM (z, z∗)}

is characterised by the identities

TM (z, z∗)◦ = ∂P ′′
T (z, z∗) (0, 0) = {(v, v∗) | F ′′

T (z, z∗) (v, v∗) ≤ 0}

where we show that the second order directional derivative given by

F ′′
T (z, z∗) (v, v∗) := b-e- lim

t↓0

1
t2
{FT ((z, z∗) + t (v, v∗))−FT (z, z∗)− t〈(v, v∗) , (z, z∗)〉}

= FTM (z,z∗) (v, v∗) for all (v, v∗) ∈ X ×X∗.

Similarly P ′′
T (z, z∗) (v, v∗) = PTM (z,z∗) (v, v∗) for all (v, v∗) ∈ X×X∗ under a strong Proto–differentiability

assumption along with
P ′′

T (z, z∗) (v, v∗) = (F ′′
T (z, z∗))∗ (v, v∗)† .

Moreover when M is strongly Proto-differentiable at (z, z∗) and FTM (z,z∗)+(z,z∗) is Fréchet differentiable
at (z, z∗) then T (z) = {z∗} with

d∗ (z∗, T (y)) = O (‖y − z‖) ,

a very strong form of single valuedness of T . In addition TM (z, z∗) must then be maximal monotone.
We also show that FTM (z,z∗)+(z,z∗) is Gâteaux differentiable at (z, z∗) for all (z, z∗) ∈ M when
(coTM (z, z∗))◦ ∩ coTM (z, z∗)† = {0}. Moreover the Fréchet differentiability of FTM (z,z∗)+(z,z∗) at
(z, z∗) ∈ M is equivalent to the condition

inf
(v,v∗)∈TM (z,z∗)/(0,0)

1
‖(v, v∗)‖2

〈v, v∗〉 > 0.

In general we have

diam {z∗ | (z∗, y) ∈ ∂FT (y, y∗)} ≤ ε =⇒ diam T (y) ≤ ε.
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2 The Subdifferential and Gradient of a Maximal Monotone
Operator

For most of this paper we assume X is a reflexive Banach space although the results of this first section
hold true in an arbitrary Banach space. We may view X× X∗ paired with X∗ ×X using the coupling
〈(y, y∗), (x∗, x)〉 = 〈y, x∗〉 + 〈x, y∗〉. For convenience we will use 〈(y, y∗), (x∗, x)〉 ≡ 〈(y, y∗), (x, x∗)〉.
The indicator function of a set C ⊆ X ×X∗ is denoted by δC and the Fenchel conjugate of a convex
function F : X ×X∗ → X∗ ×X is denote by F ∗ (x∗, x). The epi-graph of F corresponds to epiF :=
{(x, x∗, α) ∈ X ×X∗ ×R | α ≥ F (x, x∗)}. For a multi–function G : X ⇒ Y we denote its graph by
GraphG := {(x, y) ∈ X × Y | y ∈ G(x)}. Denote the class of closed, proper, convex functions on X×X∗

by Γ(X ×X∗).
We say T is a monotone operator when M := GraphT is a monotone set i.e.

(∀ (x, x∗) ∈ M) (∀ (y, y∗) ∈ M) 〈x− y, x∗ − y∗〉 ≥ 0. (1)

If M does not posses a proper extension that is still monotone then M is said to maximal monotone.
We say (y, y∗) is monotonically related to M when (∀ (x, x∗) ∈ M) we have 〈x− y, x∗− y∗〉 ≥ 0. When
M is maximal then (y, y∗) /∈ M implies the existence of (x, x∗) ∈ M such that 〈x− y, x∗ − y∗〉 < 0.

Definition 1 The Fitzpatrick function associated with an operator T : X ⇒ X∗ is defined by

FT (y, y∗) := sup
(x,x∗)∈Graph T

{〈y, x∗〉+ 〈x, y∗〉 − 〈x, x∗〉}

=
{
〈y, y∗〉 − inf

(x,x∗)∈Graph T
〈y − x, y∗ − x∗〉

}
From this definition it is easily see that when T is monotone for y∗ ∈ T (y) we have

FT (y, y∗) = 〈y, y∗〉. (2)

When T is maximal we have FT (y, y∗) ≥ 〈y, y∗〉 holding for all (y, y∗) with equality if and only
if y∗ ∈ T (y). Define the ’transpose’ operator †: (x∗, x) → (x, x∗). One can easily show that
(δGraph T (·) + 〈·, ·〉)∗ (y, y∗)† = FT (y, y∗). The second conjugate of δGraph T (·) + 〈·, ·〉 is of interest
in that

PT (y, y∗) := F∗
T (y, y∗)† = (δGraph T (·) + 〈·, ·〉)∗∗ (y, y∗) = pT (y, y∗) where

pT (y, y∗) = inf{
∑

i

λi〈xi, x
∗
i 〉 |

∑
i

λi (xi, x
∗
i , 1) = (y, y∗, 1), (xi, x

∗
i ) ∈ GraphT , λi ≥ 0}.

Recall that a representative of a monotone mapping T on X is a convex function HT on X ×X∗ such
that HT (y, y∗) ≥ 〈y, y∗〉 for all (y, y∗) ∈ X × X∗ with HT (y, y∗) = 〈y, y∗〉 when y∗ ∈ T (y). The
following is now well established.

Lemma 2 [3] For any monotone mapping T the function PT : X×X∗ → R is a representative convex
function for T .

When T is maximal then FT is the smallest representative functions and PT is the largest.
Next we define an important multi-function in our study. Let

MT (z, z∗) := {(a∗, a) ∈ X∗ ×X | FT (z, z∗) ≤ 〈z, a∗〉+ 〈a, z∗〉 − 〈a, a∗〉} .

Note that for all (z, z∗) ∈ GraphT we have (z∗, z) ∈ MT (z, z∗) (since FT (z, z∗) = 〈z, z∗〉). Recall
that the subdifferential is defined as

∂FT (z, z∗) := {(y∗, y) | FT (z, z∗) + PT (y, y∗) = 〈(z, z∗) , (y, y∗)〉} .

We intend to characterise the subdifferential of the Fitzpatrick function in terms of MT and T only
but we first include some elementary properties of the multifunction MT .

3



Lemma 3 Suppose T : X ⇒ X∗ is monotone and (a, a∗) ∈ GraphT . Then

MT (a, a∗) = {(z∗, z) ∈ X∗ ×X | 〈z − a, z∗ − a∗〉 ≤ 0}

and so

MT (a, a∗) ∩GraphT † =
{
(z∗, z) ∈ GraphT † | 〈z, a∗〉+ 〈a, z∗〉 − 〈z, z∗〉 = FT (a, a∗)

}
=
{
(z∗, z) ∈ GraphT † | 〈z − a, z∗ − a∗〉 = 0

}
⊆ {(z∗, z) ∈ X∗ ×X | 〈z − a, z∗ − a∗〉 = 0} .

Proof. If (z∗, z) ∈MT (a, a∗) then by definition

〈z, a∗〉+ 〈a, z∗〉 − 〈z, z∗〉 ≥ FT (a, a∗) = 〈a, a∗〉 (since (a, a∗) ∈ GraphT )
or 〈z, a∗〉+ 〈a, z∗〉 − 〈z, z∗〉 − 〈a, a∗〉 ≥ 0

equivalently 〈z, a∗ − z∗〉+ 〈a, z∗ − a∗〉 ≥ 0 or 〈z − a, z∗ − a∗〉 ≤ 0.

If (z, z∗) ∈ GraphT then 〈z − a, z∗ − a∗〉 ≥ 0 by monotonicity giving equality.
When T : X ⇒ X∗ is maximal monotone and (a, a∗) ∈ GraphT then the points (z, z∗) on the boundary
of MT (a, a∗) satisfy 〈z − a, z∗ − a∗〉 = 0.

Lemma 4 Suppose T : X ⇒ X∗ is maximal monotone. Then 〈z − a, z∗ − a∗〉 = 0 and (z∗, z) ∈
MT (a, a∗) imply (a, a∗) ∈ GraphT .

Proof. It follows that

〈a, a∗〉 ≤ FT (a, a∗) ≤ 〈(z, z∗) , (a, a∗)〉 − 〈z, z∗〉
= 〈z, a∗〉+ 〈a, z∗〉 − 〈z, z∗〉 = 〈a, a∗〉

implying 〈a, a∗〉 = FT (a, a∗) or (a, a∗) ∈ GraphT (by maximality).
To our knowledge the subdifferential of the Fitzpatrick functions has not yet been full characterised.
The next result is a step in that direction.

Proposition 5 Suppose T : X ⇒ X∗ is monotone and (z, z∗) ∈ X ×X∗. Then

MT (z, z∗) ∩ co GraphT † ⊇ ∂FT (z, z∗) ⊇ co
(
MT (z, z∗) ∩GraphT †)

⊇ ∂FT (z, z∗) ∩GraphT † = MT (z, z∗) ∩GraphT †.

Proof. Now (a∗, a) ∈ ∂FT (z, z∗) iff we have

FT (z, z∗) + PT (a, a∗) = 〈(z, z∗) , (a, a∗)〉. (3)

Next note that as FT (z, z∗) = (〈·, ·〉+ δT (·, ·))∗ (z, z∗) we have

PT (a, a∗) = {〈·, ·〉+ δT (·, ·)}∗∗ (a, a∗) = co {〈·, ·〉+ δT (·, ·)} (a, a∗) .

Note that (a, a∗) /∈ co Graph T then then PT (a, a∗) = +∞ which invalidates (3). If (a∗, a) ∈ ∂FT (z, z∗)
then

FT (z, z∗) ≤ 〈(z, z∗) , (a, a∗)〉 − PT (a, a∗)
≤ 〈(z, z∗) , (a, a∗)〉 − 〈a, a∗〉 (always as 〈a, a∗〉 ≤ PT (a, a∗)) (4)
≤ FT (z, z∗) (when (a, a∗) ∈ GraphT ).

The second inequality shows that MT (z, z∗) ⊇ ∂FT (z, z∗) and so

MT (z, z∗) ∩ co GraphT † ⊇ ∂FT (z, z∗).
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When (a∗, a) ∈ ∂FT (z, z∗) ∩GraphT † we have (a∗, a) ∈MT (z, z∗) ∩GraphT †. Conversely let

(a∗, a) ∈MT (z, z∗) ∩GraphT † = {(a∗, a) ∈ GraphT | FT (z, z∗) ≤ 〈z, a∗〉+ 〈a, z∗〉 − 〈a, a∗〉}

then as PT (a, a∗) = 〈a, a∗〉 we have

FT (z, z∗) ≤ 〈(y, y∗) , (a, a∗)〉 − 〈a, a∗〉 = 〈(y, y∗) , (a, a∗)〉 − PT (a, a∗)

and so
FT (z, z∗) + PT (a, a∗) ≤ 〈(y, y∗) , (a, a∗)〉

or (a∗, a) ∈ ∂FT (z, z∗) ∩GraphT †. From convexity of the subdifferential it follows that

∂FT (z, z∗) ⊇ co
(
MT (z, z∗) ∩GraphT †)

⊇ ∂FT (z, z∗) ∩GraphT † = MT (z, z∗) ∩GraphT †.

One is lead to conjecture that ∂FT (z, z∗) = co
(
MT (z, z∗) ∩GraphT †) but a proof is still allusive.

Remark 6 Note that when T is only monotone we can have the inequality FT (z, z∗) ≥ 〈z, z∗〉 failing for
some (z, z∗) /∈ GraphT . As ∂FT (z, z∗) ⊇ MT (z, z∗) ∩GraphT † and (z∗, z) ∈ MT (z, z∗) ∩GraphT †

whenever (z, z∗) ∈ GraphT then ∂FT (z, z∗) ⊇ {(z∗, z)} always when (z, z∗) ∈ GraphT .

Recall the fundamental inequality (see [17] or [3]) that

PT (y, z∗) + PT (z, y∗) ≥ 〈y, y∗〉+ 〈z, z∗〉. (5)

We may now draw an interesting implication for T (y).

Theorem 7 Suppose T : X ⇒ X∗ is monotone. If there exists (y, y∗), (y, z∗) ∈ GraphT with y∗ 6= z∗

(i.e. T (y) ⊇ {y∗, z∗} is not unique) then (y∗, y), (y∗, z) ∈ ∂FT (y, y∗) and so ∂FT (y, y∗) ∩ GraphT †

is also not a singleton. Consequently when (y, y∗) ∈ GraphT and ∇FT (y, y∗) exists then T (y) is a
singleton. More generally we have

diam {z∗ | (z∗, y) ∈ ∂FT (y, y∗)} ≤ ε

=⇒ diam
{
z∗ | (z∗, y) ∈MT (y, y∗) ∩GraphT †}

⇐⇒ diam
{
z∗ | (z∗, y) ∈ ∂FT (y, y∗) ∩GraphT †} ≤ ε

=⇒ diam {z∗ | (z∗, y) ∈ ∂FT (y, y∗) ∩ (T (y), y)} ≤ ε =⇒ diam T (y) ≤ ε. (6)

Proof. Suppose (y, z∗) ∈ GraphT then on using (5) and the fact that y∗ ∈ T (y) we have

〈y, y∗〉+ 〈y, z∗〉 − 〈y, z∗〉
= {PT (y, y∗) + PT (y, z∗)} − 〈y, z∗〉
≥ {〈y, y∗〉+ 〈y, z∗〉} − 〈y, z∗〉 = 〈y, y∗〉
= PT (y, y∗) ≥ FT (y, y∗)

implying (y∗, z) ∈ MT (y, y∗) ∩ GraphT † ⊆ ∂FT (y, y∗). We always have (y∗, y) ∈ ∂FT (y, y∗) when
(y, y∗) ∈ GraphT . Thus when ∇FT (y, y∗) = (y∗, y) we cannot have z∗, y∗ ∈ T (y) with z∗ 6= y∗ for
otherwise we have (y∗, y), (y∗, z) ∈ ∂FT (y, y∗), a contradiction. Finally note that due to Proposition 5
the first implication of (6) are obvious and then if diam {z∗ | (z∗, y) ∈ ∂FT (y, y∗) ∩ (T (y), y)} ≤ ε there
can’t exist T (y) ⊇ {y∗, z∗} with ‖y∗ − z∗‖ > ε.

Remark 8 When ∇FT (x, x∗) exists as a Fréchet derivative, ε > 0 and (y, y∗) is sufficiently close to
(x, x∗) then one can show that diam {z∗ | (z∗, y) ∈ ∂FT (y, y∗)} ≤ ε.

Corollary 9 Suppose T : X ⇒ X∗ is monotone and (y, y∗) ∈ GraphT . Suppose in addition ∇xFT (y, y∗)
exists then T (y) = {y∗} is a singleton.
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Proof. Suppose ∇xFT (y, y∗) exists. First note that we always have (y, y∗) ∈ MT (z, z∗) ∩ GraphT
and so by the subgradient inequality

〈y∗, v − y〉+ 〈y, v∗ − y∗〉 ≤ FT (v, v∗)−FT (y, y∗).

Placing v∗ = y∗ we obtain
〈y∗, v − y〉 ≤ FT (v, y∗)−FT (y, y∗)

and so y∗ ∈ ∂xFT (y, y∗) and so ∇xF(y, y∗) = {y∗}.
Now suppose PrX∗ ∂FT (y, y∗) ⊇ {z∗, y∗} then we have the existence of z such that (z∗, z) ∈ ∂FT (y, y∗)
and by the subgradient inequality for all (v, v∗) that

〈z∗, v − y〉+ 〈z, v∗ − y∗〉 ≤ FT (v, v∗)−FT (y, y∗).

Place v∗ = y∗ to obtain
〈z∗, v − y〉 ≤ FT (v, y∗)−FT (y, y∗)

and so z∗ ∈ ∂xFT (y, y∗) implying z∗ = y∗. Thus ∂FT (y, y∗) = {y∗} × ∂x∗FT (y, y∗).
If T (y) is not a singleton then there exists (y, y∗), (y, z∗) ∈ GraphT with y∗ 6= z∗ which implies by
Theorem 7 that

(y∗, y), (z∗, y) ∈ ∂FT (y, y∗) = {y∗} × ∂x∗FT (y, y∗)

in which case y∗ = z∗, a contradiction. Thus T (y) is a singleton.
Recall that in an Asplund space a finite convex function defined on a open convex subset is Fréchet
differentiable on a Gδ dense subset of its domain. Recall also that Asplund spaces include those that
admit a Fréchet differentiable equivalent norm and these include reflexive spaces. The difficulty in using
Lemma 9 to show generic single-valuednessis is that coGraphT does not necessarily have an interior.

3 The Fitzpatrick Function of the Tangent cone as a Derived
Fitzpatrick Function

In this section we discuss how one may use the Fitzpatrick function of a maximal monotone operator T
to obtain the Fitzpatrick function for the multifunction whose graph is the tangent cone to the graph
of T . The following characterisation of Mosco convergence follows from Proposition 5.4.8 of [2]. By
zβ → z we denote the strong convergence of a net and by z∗β →w z∗ weak convergence.

Definition 10 Let {Tβ}β∈Λ be a net of sets in a reflexive Banach space Z. Then T = M -limβ Tβ iff
both

1. lim infβ Tβ :=
{
z ∈ Z | ∀z ∈ T and subnet βγ , ∃zβγ

∈ Tβγ
with zβγ

→ z
}
⊇ T and

2. b-w- lim supβ Tβ

:= {z ∈ Z | ∃M > 0 and a subnet {βγ} with zβγ ∈ Tβγ ∩BM (0) s.t. zβγ →w z} ⊆ T .

Remark 11 When we replace 2. with the stronger limit supremum

lim sup
β

Tβ := {z ∈ Z | ∃ a subnet {βγ} with zβγ
∈ Tβγ

s.t. zβγ
→w z} ⊆ T

then we say that the Kuratowski–Painlevé limit exists.

Definition 12 Let {Tβ}β∈Λ be a net of sets in the Banach space X ×X∗. Then denote

b-s× w- lim sup
β

Tβ := {(x, x∗) ∈ X ×X∗ | ∃M > 0 and a subnet {βγ}

with (xβγ , x∗βγ
) ∈ Tβγ ∩BM (0) s.t. (xβγ , x∗βγ

) →sow (x, x∗)}.
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Alternatively one may define these limits via hit-miss topologies. Denote

V − := {W 6= ∅ | W closed and V ∩W 6= ∅}

for V norm open and (Kc)+ := {W 6= ∅ | W ⊆ Kc} for K weakly compact. The inclusion in 1. may be
expressed as: if T ∈ V − for some norm open set then Tβ ∈ V − eventually. The inclusion in 2. can be
expressed as: if T ∈ (Kc)+ then eventually Tβ ∈ (K)c i.e. T ∩K = ∅ implies Tβ ∩K = ∅ eventually.
In this paper we exclusively deal with families of sets parametrised by the positive number R+ i.e.
{Tt}t>0. As R+ is totally ordered the convergence of such families may be dealt with considering the
convergence of all subfamilies {Ttn

}n where tn ↓ 0.

Proposition 13 Let {Tβ}β∈Λ be a net of sets of X ×X∗ for a reflexive Banach space X.

1. Then T ⊇ b-s× w-lim supβ Tβ implies the property:

(P ): For all K weakly compact in X∗ and C strongly compact in X, such that (C ×K) ∩ T = ∅,
implies that eventually (C ×K) ∩ Tβ = ∅.

2. It {Tn}n∈N is a sequence of sets (i.e. Λ = N) then (P ) implies T ⊇ b-s× w-lim supn Tn.

Proof. Assume T ⊇ b-s × w-lim supβ Tβ . The contrapositive of the second proposition corresponds
to: If, for some K weakly compact in X∗ and C strongly compact in X, we have (C ×K) ∩ Tβ 6= ∅
infinitely often then (C ×K)∩T 6= ∅. By the supposed compactness there exists a subnet

(
xβγ , x∗βγ

)
∈

(C ×K) ∩ Tβγ such that
(
xβγ , x∗βγ

)
→s×w (x, x∗). As

(
xβγ , x∗βγ

)
∈ BM (0) ∩ Tβ for

M = sup {‖(v, v∗)‖ | (v, v∗) ∈ (C ×K)} < ∞

we have (x, x∗) ∈ T and (C ×K) ∩ Tβ 6= ∅.
Now suppose Λ = N and take

(x, x∗) ∈ b-s× w − lim sup
n

Tn.

Then, by definition, there exists a subsequence (xnm
, x∗nm

) ∈ Tnm
∩ BM (0) with (xnm

, x∗nm
) →sow

(x, x∗). Note that for all N

{(x, x∗)} ∪
{

(xβγn
, x∗βγn

) | n ≥ N
}

⊆
(
{x} ∪

{
xβγn

| n ≥ N
})
×
(
{x∗} ∪

{
x∗βγn

| n ≥ N
})

which is of the form CN ×KN with CN strongly compact and KN weakly compact due to the fact that
KN is bounded weakly and closed. Thus (CN ×KN ) ∩ Tβ 6= ∅ infinitely and so we may conclude that
(CN ×KN ) ∩ T 6= ∅, irrespective of the choice of N . Thus we conclude that (x, x∗) ∈ T .
Consider the following characterisation of the upper Mosco-limit. From [2] Proposition 5.4.8 that
M -lim supβ Tβ ⊆ T iff for every weakly compact set K ⊆ X ×X∗ we have

T ⊇ lim sup
β

(K ∩ Tβ)

:=
{

(x, x∗) | ∃ {βγ} and
(
xβγ , x∗βγ

)
∈ K ∩ Tβγ with

(
xβγ , x∗βγ

)
→w (x, x∗)

}
.

In particular this implies lim supβ

(
BM (0) ∩ Tβ

)
⊆ T for all M > 0. We may obtain a similar charac-

terisation of our convergence notion.

Proposition 14 Let {Tn}n∈N be a sequence of sets in X ×X∗ for a reflexive Banach space X. Then
T ⊇ b-s× w-lim supn Tn iff for all K weakly compact in X∗ and C strongly compact in X we have

lim sup
n

((K × C) ∩ Tn) ⊆ T . (7)
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Proof. The forward implication is obvious thus we only address the later and so assume (7) holds
for all choices of K and C. Suppose K weakly compact in X∗ and C strongly compact in X and
(K × C) ∩ Tn 6= ∅ frequently. By the compactness assumption b-s × w-lim supn (K × C) ∩ Tn is a
nonempty subset of K × C. Now suppose (7) fails for some K × C then take

(x, x∗) ∈
[
b-s× w- lim sup

n
(K × C) ∩ Tn

]
\T

and a s × w-closed neighbourhood U1 × U2 disjoint from T . Let K1 := K ∩ U1 and C1 := C ∩ U2.
Then K1 is weakly compact and C1 strongly compact with [K1 × C1] ∩ T = ∅. Yet by construction
((K1 × C1) ∩ Tn) 6= ∅ frequently contrary to property (P ) of Proposition 13.
Consequently we obtain the following:

Corollary 15 Let {Tβ}β∈Λ be a sequence of sets in X ×X∗ for a reflexive Banach space X. Then

b-s× w- lim sup
n

Tn ⊆ M - lim sup
n

Tn. (8)

As is usual in variational analysis when we have a net of functions {fα} we say

f ≤ b-s× w-e- lim inf
α

fα iff b-s× w- lim sup
α

epi fα ⊆ epi f . (9)

For a detailed account of such convergences one can consult [2], chapter 3 and also [16]. Consequently
(8) implies b-s× w-e-lim infα fα ≥ e-lim infα fα. We will say that

f = b-s× w-e- lim
α

fα

if in addition to (9) we have lim infα epi fα ⊇ epi f . We say the epi-limit e-limα fα = f exists iff

m- lim
α

epi fα = epi f .

It is clear that e-limα fα = f implies f = b-s× w-e-limα fα.
Recall that a monotone operator T is maximal monotone locally or of type VFP iff GraphT∩(U ×X∗) is
maximal monotone in U×X∗ for every open subset U of X. It is well known that all maximal monotone
operators are of type VFP in a reflexive space [3] and it has been recently been shown that this also is
true in a general Banach space when dom (T ) is either closed or has non-empty interior [5].

Proposition 16 Suppose T : X ⇒ X∗ is maximal monotone and (z, z∗) ∈ M := GraphT . Let

TM (z, z∗) := b-s× w- lim sup
t↓0

1
t

(M − (z, z∗)) . (10)

Then TM (z, z∗) is also a monotone set. If in addition T is norm to norm continuous at (z, z∗) then
TM (z, z∗) is also maximal monotone subset of X ×X∗.

Proof. When (h, h∗) ∈ TM (z, z∗) then for tβ ↓ 0 there exists a net
(
hi

β , hi∗
β

)
→s×w

(
hi, hi∗) (for

i = 1, 2) such that
∥∥∥(hi

β , hi∗
β

)∥∥∥ ≤ K and

(z, z∗) + tβ
(
hi

β , hi∗
β

)
=
(
z + tβhi

β , z∗ + tβhi∗
β

)
∈ M

As M is monotone

〈z + tβh1
β −

(
z + tβh2

β

)
, z∗ + tβh1∗

β −
(
z∗ + tβh2∗

β

)
〉 = t2β〈h1

β − h2
β , h1∗

β − h2∗
β 〉 ≥ 0 for all β

Let xβ := h1
β − h2

β , x := h1 − h2 and x∗β := h1∗
β − h2∗

β , x∗ := h1∗ − h2∗ then taking the strong limit in
X and the bounded weak limit in X∗ we have∣∣〈xβ , x∗β〉 − 〈x, x∗〉

∣∣ ≤ ∣∣〈xβ − x, x∗β〉
∣∣+ ∣∣〈x, x∗β − x∗〉

∣∣
≤
∥∥x∗β∥∥ ‖xβ − x‖+ ‖x‖

∥∥x∗β − x∗
∥∥ ≤ K

(
‖xβ − x‖+

∥∥x∗β − x∗
∥∥)→β 0.
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Thus we obtain
〈h1 − h2, h1∗ − h2∗〉 ≥ 0 for all

(
hi, hi∗) ∈ TM (z, z∗) .

Now suppose TM (z, z∗) is not maximal monotone. Then there exists (w,w∗) /∈ TM (z, z∗) such that
(w,w∗) is monotonically related to TM (z, z∗). As TM (z, z∗) is closed there exists a s×w compact set
N (w,w∗) = C×K containing (w,w∗) such that N (w,w∗)∩TM (z, z∗) = ∅ and a half-space H(y, y∗) :=
{(v, v∗) | 〈(y, y∗), (v, v∗)〉 > 0} such that TM (z, z∗)∩H (y, y∗) = ∅ and N (w,w∗) ⊆ H (y, y∗). Thus for
all (h, h∗) ∈ TM (z, z∗)

〈(w + δy)− h, (w∗ + δy∗)− h∗〉 = 〈(w − h) + δy, (w∗ − h∗) + δy∗〉
= 〈w − h, w∗ − h∗〉+ δ (〈w, y∗〉+ 〈y, w∗〉)

− δ (〈h, y∗〉+ 〈y, h∗〉) + δ2〈y, y∗〉
≥ δ{〈(w,w∗) , (y, y∗)〉+

− 〈(h, h∗) , (y, y∗)〉+ δ〈y, y∗〉} > 0 (11)

if δ > 0 fixed but sufficiently small. Also (w + δy, w∗ + δy∗) ∈ H (y, y∗) because

〈(y, y∗), (w + δy, w∗ + δy)〉 = 〈(y, y∗), (w,w∗)〉+ δ〈(y, y∗), (y, y∗)〉 > 0.

It follows that (z+t (w + δy) , z∗+t (w∗ + δy∗)) /∈ GraphT = M for t > 0 small otherwise (w+δy, w∗+
δy) ∈ TM (z, z∗) contradicting TM (z, z∗) ∩H (y, y∗) = ∅.
Now use the norm to norm continuity of T to take η > 0 sufficiently small such that for t = η and all
‖h‖ ≤ η with z + th ∈ dom T we have ‖h∗‖ ≤ 1 for all z∗ + th∗ ∈ T (z + th). Thus we have z ∈ dom T
and for all ‖h‖ ≤ η with z + th ∈ dom T that (h, h∗) ∈ Bη (0)× B1 (0) ∩ [GraphT − (z, z∗)] /t. Using
(10) the norm to norm continuity of T at (z, z∗), (11) and the weak compactness of the unit ball, we
have, for a possibly smaller value of η that

〈(w + δy)− h, (w∗ + δy∗)− h∗〉 > 0
for t = η and all ‖h‖ ≤ η with z + th ∈ dom T and z∗ + th∗ ∈ T (z + th)

or 〈z + t (w + δy)− x, z + t (w∗ + δy∗)− x∗〉 > 0 (12)
for all x∗ ∈ T (x) and x ∈ Bη2 (z) ∩ dom T .

As all maximal monotone operators in reflexive spaces are maximal monotone locally and (12) implies
(z + t (w + δy) , z + t (w∗ + δy∗)) is locally monotonically related to GraphT ∩

(
Bη2 (z)×X∗) we must

have z + t (w∗ + δy∗) ∈ T (z + t (w + δy)), a contradiction.
Question: Under what other assumptions is TM (z, z∗) maximally monotone?
If TM (z, z∗) is monotone then we immediately have from (0, 0) ∈ TM (z, z∗) that

(∀ (h, h∗) ∈ TM (z, z∗)) 〈h, h∗〉 ≥ 0.

We will proceed with only the presumption that TM (z, z∗) is a monotone set.

Definition 17 We say that M ⊆ X ×X∗ is Proto-differentiable at (z, z∗) if the following limit exists
with respect to strong-topology on X ×X∗ :

TM (z, z∗) := lim
t↓0

1
t

(M − (z, z∗)) .

One of the problems with dealing with convergence of Fitzpatrick functions is that of passing lim-
its through conjugation operations applied to nonconvex functions. Namely to the function 〈·, ·〉 +
δ 1

t (Graph T−(z,z∗)) (·, ·). The only study applicable to this situation may be found in [15] and is applied
in [16] to representative functions. These results only apply in reflexive space and also use stronger
convergence notions than those discussed here. It is noted that a uniform coercivity condition is critical
in obtaining these results.
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We must also introduce some coercivity in our approximates. We will assume from here on that by a
translation of the graph of T we have (0, 0) ∈ Tand 〈x, x∗〉 ≥ 0 for all (x, x∗) ∈ T . Denote

sλ (x, x∗) := 〈x, x∗〉+
λ

2

(
‖x‖2 + ‖x∗‖2

)
and

cT (x, x∗) := 〈x, x∗〉+ δM (x, x∗) .

Under our standing assumption we have

sλ (x, x∗) ≥ λ

2
‖(x, x∗)‖2 for all (x, x∗) ∈ T̄N

and so qλ
T (x, x∗) := (sλ + δT )∗∗ (x, x∗) ≥ λ

2
‖(x, x∗)‖2 for all (x, x∗) . (13)

The following is a small variation of Lemma 2.2 of [16].

Proposition 18 Let T be maximal monotone with (0, 0) ∈ T and let qλ
T := (sλ + δT )∗∗. Then

δT + sλ ≥ qλ
T ≥ PT +

λ

2
‖·‖2 ≥ FT +

λ

2
‖·‖2 ≥ sλ (14)

and FT =
(
qλ
T − λ

2 ‖·‖
2
)∗

with PT =
(
qλ
T − λ

2 ‖·‖
2
)∗∗

. In particular qλ
T is coercive for all λ > 0 and

qλ
T (0, 0) = 0.

Finally
T =

{
(x, x∗) | qλ

T (x, x∗) = sλ (x, x∗)
}

.

Proof. The inequalities (14) follows as in [16] which we reproduce for completeness. The first inequality
of (10) is clear while the second is due to δT + sλ ≥ PT + λ

2 ‖·‖
2 with PT + λ

2 ‖·‖
2 ∈ Γx×bw∗ (X ×X∗).

The other two use PT ≥ FT ≥ cT . The first inequality in (14) implies
(
qλ
T − λ

2 ‖·‖
2
)∗
≤ c∗T = F†

T with

equality ensuing. As PT = (F∗
T )† we have PT =

(
qλ
T − λ

2 ‖·‖
2
)∗∗

. The coercivity follows from (13)

along with qλ
T (0, 0) ≥ 0. As (sλ + δT ) (0, 0) = 0 and qλ

T is the largest convex function dominated by
sλ + δT we have qλ

T (0, 0) ≤ 0.
Suppose (x, x∗) is such that qλ

T (x, x∗) = sλ (x, x∗) then qλ
T (x, x∗)− λ

2 ‖(x, x∗)‖2 = 〈x, x∗〉 ≥ PT (x, x∗)
but as PT is always representative 〈x, x∗〉 = PT (x, x∗) implying (x, x∗) ∈ GraphT . Conversely when
(x, x∗) ∈ M one has sλ (x, x∗) + δGraph T (x, x∗) = sλ (x, x∗) and so the inequalities (14) are equalities.

The function qλ
T is more easily studied from a variational view point so we must relate this back to the

Fitzpatrick function.

Corollary 19 Let T be maximal monotone with (0, 0) ∈ T and let qλ
T := (sλ + δT )∗∗ : X ×X∗ → R.

1. For all λ > 0(
FT �̂

1
2λ

‖·‖2
)

(x, x∗) := inf
{
FT (v, v∗) +

1
2λ

‖(x, x∗)− (v, v∗)‖2
}

=
(
qλ
T

)∗
(x∗, x) ≥

(
(δM + 〈·, ·〉) +

λ

2
‖·‖2

)∗
(x∗, x) .

2. For all λ > 0

FT (x, x∗) =
(

qλ
T −

λ

2
‖·‖2

)∗
(x, x∗)

=
((

qλ
T

)∗
�̌

1
2λ

‖·‖2
)

(x, x∗) := sup
(v∗,v∗∗)

{(
qλ
T

)∗
((x, x∗) + (v, v∗))− 1

2λ
‖(v, v∗)‖2

}
.

(15)
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Proof. By (10) we have (
PT +

λ

2
‖·‖2

)∗
≥
(
qλ
T

)∗ ≥ (δT + sλ)∗

=
(

(δT + 〈·, ·〉) +
λ

2
‖·‖2

)∗
.

Since λ
2 ‖·‖

2 is a finite continuous convex function with domain X ×X∗ we have (see page 253 of [2])

(
qλ
T

)∗ ≤ (PT +
λ

2
‖·‖2

)∗
= P∗

T �̂

(
λ

2
‖·‖2

)∗
=
(
FT �̂

1
2λ

‖·‖2
)

as
(

λ
2 ‖·‖

2
)∗

= 1
2λ ‖·‖

2.

The first and second inequalities in (10) imply

(δM + 〈·, ·〉)∗ = FT ≤
(

qλ
T −

λ

2
‖·‖2

)∗
≤ P∗

T = FT .

Then (15) is implied by the Toland–Singer formula [22] for the dual of a difference of functions i.e.(
qλ
T −

λ

2
‖·‖2

)∗
=
(
qλ
T

)∗
�̌

1
2λ

‖·‖2 .

Finally consider(
FT �̂

1
2λ

‖·‖2
)

(x, x∗) =
{((

qλ
T

)∗
�̌

1
2λ

‖·‖2
)

�̂
1
2λ

‖·‖2
}

(x, x∗)

= inf
(v,v∗)

{
sup

(w,w∗)

{(
qλ
T

)∗
((x, x∗)− (v, v∗) + (w,w∗))− 1

2λ
‖(w,w∗)‖2

}
+

1
2λ

‖(v, v∗)‖2
}

≤ sup
(w,w∗)

({(
qλ
T

)∗
((x, x∗)− (w,w∗) + (w,w∗))− 1

2λ
‖(w,w∗)‖2

}
+

1
2λ

‖(w,w∗)‖2
)

=
(
qλ
T

)∗
(x, x∗) .

The study in [16] uses a stronger form of convergence, namely the epi–distance or Attouch–Wetts topol-
ogy. We would rather stay with Mosco–convergence but currently the literature lacks the machinery to
achieve this end. Thus, following [16] we say a net of sets {Mα} boundedly converges to M iff both

M ⊆ b- lim inf
α

Mα or equivalently

∀ {(xα, x∗α)} ⊆ M uniformly bounded we have d ((xα, x∗α) ,Mα) →α 0

and

M ⊇ b- lim sup
α

Mα or equivalently

∀ (xα, x∗α) ∈ Mα such that {(xα, x∗α)} uniformly bounded we have d ((xα, x∗α) ,M) →α 0.

We write Tα →b T to mean that GraphTα →b GraphT . It is clear that Tα →b T implies T = m-
limα Tα.

The following requires very minor change to Proposition 3.1 of [16] and follows by the same proof
method.
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Proposition 20 ([16]) Suppose {Tn} is a sequence of maximal monotone operators with graphs
Mn := GraphTn such that (0, 0) ∈ Mn for all n. Then the following hold:

1. M ⊇ b-lim supn Mn ⇐⇒ qλ
M ≤ b-lim infn qλ

Mn
for any λ > 0.

2. M ⊆ b-lim infn Mn ⇐⇒ qλ
M ≥ b-lim supm qλ

Mn
for any λ > 0.

3. Mn →b M ⇐⇒ qλ
M = b-limn qλ

Mn
for any λ > 0.

We will denote

b- lim sup
n

epi fn = epi f by e-b- lim inf
n

fn = f

and b- lim inf
n

epi fn = epi f by e-b- lim sup
n

fn = f .

Also when f ≤ e-b-lim infn fn ≤ e-b-lim supn fn ≤ f we write

b-e- lim
n

fn = f

Definition 21 We say that M ⊆ X×X∗ is strongly Proto-differentiable at (z, z∗) if the following limit
exists:

TM (z, z∗) := b- lim
t↓0

1
t

(M − (z, z∗)) .

We now relate FB (z, z∗) back to the more fundamental Fitzpatrick function FM (z, z∗) and its conjugate
F∗

A (z∗, z)† = PA(y, y∗).

Theorem 22 Suppose T : X ⇒ X∗ is maximal monotone, M := GraphT and (z, z∗) ∈ M . Suppose
in addition that M is strongly Proto-differentiable at (z, z∗) then for all (y, y∗) ∈ X ×X∗ we have

FTM (z,z∗) (y, y∗) = b-e- lim
t↓0

1
t2
{FT ((z, z∗) + t (y, y∗))−FT (z, z∗)− t〈(y, y∗) , (z, z∗)〉} (16)

:= F ′′
T (z, z∗) (y, y∗) .

That is, FTM (z,z∗) (y, y∗) corresponds to the second order epi–derivative of FM at (z, z∗) in the direction
(y, y∗). It also follows that

PTM (z,z∗) (y, y∗) = b-e- lim
t↓0

1
t2
{PT ((z, z∗) + t (y, y∗))− PT (z, z∗)− t〈(y, y∗) , (z, z∗)〉} (17)

:= P ′′
T (z, z∗) (y, y∗) .

Proof. We use the bi–continuity of the Fenchel conjugate with respect to epi–convergence and the
Toland-Singer duality formula for the difference of convex functions. Note that (0, 0) ∈ 1

t (M − (z, z∗))
for all t > 0 when (z, z∗) ∈ M . Also

{
1
t (M − (z, z∗))

}
t>0

is a parametrised set of maximal monotone
operators (inheriting its maximality from that of M). We assume that

TM (z, z∗) := b- lim
t↓0

1
t

(M − (z, z∗))

and so
δTM (z,z∗) (y, y∗) = b-e- lim

t↓0
δ 1

t (M−(z,z∗)) (y, y∗) .

By [2] Theorem 7.1.5 we have for all λ > 0

sλ (·, ·) + b-e- lim
t↓0

δ 1
t (M−(z,z∗))(·, ·) = b-e- lim

t↓0

(
sλ (·, ·) + δ 1

t (M−(z,z∗))(·, ·)
)

.
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On applying Proposition 20 and Corollary 19 we have for any λ > 0(
qλ
TM (z,z∗)

)∗
(y∗, y) =

(
sλ (·, ·) + b-e- lim

t↓0
δ 1

t (M−(z,z∗))(·, ·)
)∗

(y∗, y)

= b-e- lim
t↓0

(
sλ (·, ·) + δ 1

t (M−(z,z∗))(·, ·)
)∗

(y∗, y) .

= b-e- lim
t↓0

(
qλ

1
t (M−(z,z∗))

)∗
(y∗, y) .

Applying the second part of Corollary 19 we have

FTM (z,z∗) (x, x∗) =
((

qλ
TM (z,z∗)

)∗
�̌

1
2λ

‖·‖2
)

(x, x∗)

=
(

b-e- lim
t↓0

(
qλ

1
t (M−(z,z∗))

)∗
�̌

1
2λ

‖·‖2
)

(x, x∗)

and on applying [2] Theorem 7.3.8 and Corollary 19 again it follows that

FTM (z,z∗) (x, x∗) = b-e- lim
t↓0

((
qλ

1
t (M−(z,z∗))

)∗
�̌

1
2λ

‖·‖2
)

(x, x∗)

= b-e- lim
t↓0

F 1
t (M−(z,z∗)) (x, x∗) . (18)

Now consider δ 1
t (M−(z,z∗))(w,w∗) = δM ((z, z∗) + t (w,w∗)). Then placing (v, v∗) = (z + tw, z∗ + tw∗)

〈w,w∗〉+ δ 1
t (M−(z,z∗))(w,w∗) = 〈1

t
(v − z) ,

1
t

(v∗ − z∗)〉+ δM (v, v∗)

=
1
t2
{δM (v, v∗) + 〈v, v∗〉 − (〈z, v∗〉+ 〈v, z∗〉 − 〈z, z∗〉)} .

Consequently(
〈·, ·〉+ δ 1

t (M−(z,z∗))(·, ·)
)∗

(y∗, y)

= sup
(w,w∗)

{
〈(w,w∗) , (y, y∗)〉 −

[
〈w,w∗〉+ δ 1

t (M−(z,z∗))(w,w∗)
]}

= sup
(v,v∗)

{〈
(

1
t

(v − z) ,
1
t

(v∗ − z∗)
)

, (y, y∗)〉

−
[

1
t2
{δM (v, v∗) + 〈v, v∗〉 − (〈z, v∗〉+ 〈v, z∗〉 − 〈z, z∗〉)}

]
}

=
1
t2

sup
(v,v∗)

{t〈v − z, y∗〉+ t〈y, v∗ − z∗〉

− [δM (v, v∗) + 〈v, v∗〉 − (〈z, v∗〉+ 〈v, z∗〉 − 〈z, z∗〉)]}

=
1
t2

( sup
(v,v∗)

{〈(v, v∗) , t(y, y∗)〉 − [δM (v, v∗) + 〈v, v∗〉 − (〈z, v∗〉+ 〈v, z∗〉 − 〈z, z∗〉)]}

− 〈t (y, y∗) , (z, z∗)〉)

=
1
t2
{
(δM (·, ·) + 〈·, ·〉 − (〈z, ·〉+ 〈·, z∗〉 − 〈z, z∗〉))∗ (t(y, y∗))− t〈(y, y∗) , (z, z∗)〉

}
.

Next apply the Toland-Singer duality formula [22] to the conjugate of the difference of the two functions
g and h where g (x, x∗) := δM (x, x∗) + 〈x, x∗〉 and h (x, x∗) := 〈z, x∗〉+ 〈x, z∗〉 − 〈z, z∗〉. Thence

(g − h)∗ (t(y∗, y)) = sup
(v,v∗)

{g∗ (t(y∗, y) + (v∗, v))− h∗ (v∗, v)} .
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Note that this formula does not require g to be convex, only h to be proper and convex. By direct
calculation h∗ (v, v∗) = 〈v∗, v〉+ δ(z∗,z) (v∗, v) and clearly g∗ (t(y∗, y) + (v∗, v)) = FT ((v∗, v) + t(y∗, y))
thus

F 1
t (M−(z,z∗)) (y, y∗) =

(
〈·, ·〉+ δ 1

t (M−(z,z∗))(·, ·)
)∗

(y∗, y)

=
1
t2

(
sup

(v,v∗)

{
FT ((v, v∗) + t(y, y∗))−

{
〈v, v∗〉+ δ(z,z∗) (v, v∗)

}}
− t〈(y, y∗) , (z, z∗)〉

)

=
1
t2

(FT ((z, z∗) + t(y∗, y))− 〈z, z∗〉 − t〈(y, y∗) , (z, z∗)〉)

=
1
t2

(FT ((z, z∗) + t(y, y∗))−FT (z, z∗)− t〈(y, y∗) , (z, z∗)〉) ,

using the fact that (z, z∗) ∈ M and so FT (z, z∗) = 〈z, z∗〉. Applying (18) gives the result (16).
The second observation follows from the well known fact (see [14] and reference contained therein) that
for (

∆2
tFT

)
(z,z∗)

(y, y∗) :=
1
t2

(FT ((z, z∗) + t(y, y∗))−FT (z, z∗)− t〈(y, y∗) , (z, z∗)〉)

we have [
∆2

tFT (z, z∗)
]∗

(y∗, y) =
(
∆2

tF∗
T (z, z∗)

)
(y∗, y)

=
(
∆2

tPT (z, z∗)
)
(y, y∗).

Applying the bi-continuity of the Fenchel conjugate we obtain

F∗
TM (z,z∗)(y, y∗)† = b-e- lim

t↓0

(
∆2

tPT

)
(z,z∗)

(y, y∗).

We are now able to use the formula relating Proto-derivative of a subgradient and the subdifferential
of an second order epi-derivative, see [14].

Proposition 23 Suppose T : X ⇒ X∗ is maximal monotone, M := GraphT and (z, z∗) ∈ M . Suppose
in addition that M is strongly Proto-differentiable at (z, z∗). Then

∂FTM (z,z∗) (y, y∗) = lim
t↓0

1
t
{∂FT ((z, z∗) + t (y, y∗))− (z, z∗)} . (19)

Proof. We note that ∂FTM (z,z∗) (y, y∗) = ∂
(

1
2F

′′
T (z, z∗)

)
(y, y∗) corresponds to the subdifferential of a

second order epi–derivative and the right hand side of (19) corresponds to a strong Proto-derivative of
the subdifferential. Now recall that the bounded strong epi-limit in (16) implies the existence of and
coincidence with the corresponding Mosco epi-limit. Using Theorem 3.9 of [14] we deduce that

∂

(
1
2
F ′′

T (z, z∗)
)

(y, y∗) = lim
t↓0

1
t
{∂FT ((z, z∗) + t (y, y∗))− (z, z∗)}

where the limit on the right corresponds to a Kuratowski–Painlevé limit with respect to the strong
topology.

4 Single-valuedness of T and Proto–Differentiability

Can we succeed in reducing the question of the differentiability of a monotone mapping to that of a
convex function? For the remainder of this section let M := Graph T where T : X ⇒ X∗ is maximal
monotone. Define another monotone set as

B(z, z∗) := TM (z, z∗) + (z, z∗) .
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Note that we now have (z, z∗) ∈ B(z, z∗). When no confusion occurs we will suppress reference to
(z, z∗) i.e. B(z, z∗) ≡ B. We note that as

FT+(z,z∗) (y, y∗) = FT (y − z, y∗ − z∗)− (〈y − z, y∗ − z∗〉 − 〈y, y∗〉)

results stated in terms of B (z, z∗) may be restated in terms of TM (z, z∗). For example,

∂FB(z,z∗) (y, y∗) = ∂FTM (z,z∗) (y − z, y∗ − z∗) + (z∗, z) . (20)

Example 24 A simple instructive example is f (x) := |x|. Here it is easily shown that FT (z, z∗) = |z|
for T = ∂f and PT (z, z∗) = |z|+δR×[−1,1] (z, z∗). Then for (0, 0) ∈ ∂f (0, 0) we have FTM (0,0) (y, y∗) =
δR×{0} (y, y∗) and PTM (0,0) (y, y∗) = δ{0}×R (y, y∗). Thus differentiability is not assured.

Recall
MB (z, z∗) := {(a, a∗) ∈ X ×X∗ | FB (z, z∗) = 〈z, a∗〉+ 〈a, z∗〉 − 〈a, a∗〉} .

Note that (z, z∗) ∈MB (z, z∗) since FB (z, z∗) = 〈z, z∗〉 as (z, z∗) ∈ B which is a monotone set.

Lemma 25 Suppose T : X ⇒ X∗ is maximal monotone, M := GraphT and (z, z∗) ∈ M . Then

∂FB (z, z∗) ∩ B =
{
(TM (z, z∗))◦ +(z, z∗)

}
∩ B† (21)

=
{
(TM (z, z∗))◦ +(z∗, z)

}
∩
{

TM (z, z∗)† +(z∗, z)
}

= MB (z, z∗) ∩ B.

If in addition B is maximal monotone (which is the case when ∇FT exists as a Fréchet derivative at
(z, z∗)) then

(TM (z, z∗))◦ ⊆MB (z, z∗)− (z∗, z) . (22)

Proof. Suppose (a, a∗)− (z, z∗) ∈ (TM (z, z∗))◦ with (z, z∗) ∈ M and so (z, z∗) ∈ B (z, z∗) := B. Then
for all (y, y∗) ∈ B =TM (z, z∗) + (z, z∗)

〈(a, a∗)− (z, z∗), (y, y∗)− (z, z∗)〉 ≤ 0.

That is

〈a∗, y〉+ 〈a, y∗〉 − 〈y, y∗〉 − (〈z∗, y〉+ 〈z, y∗〉 − 〈z, z∗〉) + 〈y, y∗〉 − 〈a, a∗〉
≤ 〈a∗, z〉+ 〈a, z∗〉 − 〈a, a∗〉 − 〈z, z∗〉

holds for all (y, y∗) ∈ B. Thus, for all (y, y∗) ∈ B we have (because (z, z∗) ∈ B)

{〈a∗, y〉+ 〈a, y∗〉 − 〈y, y∗〉 − 〈a, a∗〉} − {FB (y, y∗)− 〈y, y∗〉}
≤ {〈a∗, z〉+ 〈a, z∗〉 − 〈a, a∗〉} − 〈z, z∗〉

As (y, y∗) ∈ B and B is monotone we have FB (y, y∗) = 〈y, y∗〉. Taking the supremum over (y, y∗) ∈ B

FB (a, a∗)− 〈a, a∗〉 ≤ {〈a∗, z〉+ 〈a, z∗〉 − 〈a, a∗〉} − 〈z, z∗〉. (23)

When (a, a∗) ∈ B we have FB (a, a∗) = 〈a, a∗〉 and so

FB (z, z∗) = 〈z, z∗〉 ≤ 〈a∗, z〉+ 〈a, z∗〉 − 〈a, a∗〉

implying (a, a∗) ∈MB (z, z∗) ∩ B. That yeilds by Proposition 5{
(TM (z, z∗))◦ + (z, z∗)

}
∩ B ⊆MB (z, z∗) ∩ B = ∂FB (z, z∗) ∩ B (24)

and on combining this with (25) we obtain (21).
When we assume B is maximal monotone then we may relax the assumption that (a, a∗) ∈ B. To
establish that (a, a∗) ∈ MB (z, z∗) we need to establish that FB (a, a∗) − 〈a, a∗〉 ≥ 0 in (23). But this
is always true for all (a, a∗) when B is maximal monotone and hence (22) holds in this case.
In the final section we will extend to this analysis in order to characterise (TM (z, z∗))◦. We next show
that Gateau differentiability of FB occurs at all (z, z∗) ∈ M .
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Lemma 26 Suppose T : X ⇒ X∗ is maximal monotone and (z, z∗) ∈ M . Then

∂FB (z, z∗)− (z, z∗) ⊆ (TM (z, z∗))◦ ∩
(
coB†− (z∗, z)

)
(25)

= (coTM (z, z∗))◦ ∩ coTM (z, z∗)† .

In particular ∂FB (z, z∗) = {(z, z∗)} when (coTM (z, z∗))◦ ∩ coTM (z, z∗)† = {0}.

Proof. Assuming (a∗, a) ∈ ∂FB (z, z∗) then

〈(a, a∗), (y, y∗)− (z, z∗)〉 ≤ FB (y, y∗)−FB (z, z∗) (26)

and placing (y, y∗) = (z, z∗) + t (h, h∗) ∈ B for arbitrary member (h, h∗) ∈ TM (z, z∗) and t > 0 we
obtain from (26) that

t〈(a, a∗), (h, h∗)〉 ≤ 〈z + t∗h, z∗ + th∗〉 − 〈z, z∗〉
= t (〈h, z〉+ 〈h∗, z〉) + t2〈h, h∗〉.

Letting t ↓ 0 we obtain

〈(a, a∗), (h, h∗)〉 ≤ 〈(z, z∗), (h, h∗)〉
or 〈(a, a∗)− (z, z∗), (h, h∗)〉 ≤ 0 for all (h, h∗) ∈ TM (z, z∗) ,

establishing (25) when we take Proposition 5 into account.

Example 27 For the simple example with f (x) := |x| and M = Graph ∂f at (0, 0) ∈ M we have
(coTM (z, z∗))◦∩coTM (z, z∗)† = R×{0} with ∂PTM (0,0) (0, 0) = R×{0} and ∂FTM (0,0) (0, 0) = {0}×R.
In contrast suppose that f : R → R with M = Graph ∂f and TM (z, z∗) is a tangent line of the form
{(y, y∗) | y∗ = cy} with c > 0. Then a simple calculation gives FTM (0,0) (y, y∗) = 1

4c (cy + y∗)2 which is
clearly Fréchet differentiable.

Of course in finite dimensions ∂FB (z, z∗) = {(z, z∗)} is enough to ensure Fréchet differentiability. If we
are able to assure Fréchet differentiability of FB at (z, z∗) ∈ M then a strong form of single valuedness
holds for T at z when M is strongly Proto-differentiable at (z, z∗). In the next section we supply
conditions that ensure the Fréchet differentiability of FB.

Theorem 28 Suppose T : X ⇒ X∗ is maximal monotone, M := GraphT and (z, z∗) ∈ M . Suppose
in addition that M is strongly Proto-differentiable at (z, z∗) and FB(z, z∗) is Fréchet differentiable at
(z, z∗). Then T (z) = {z∗} with d∗ (z∗, T (y)) = O (‖y − z‖) and in addition TM (z, z∗) is maximal
monotone.

Proof. From Lemma 26 we know that ∇FB(z, z∗) = (z, z∗) and hence by (19) it follows that for all
(y, y∗) ∈ Bδ (0) we have

b- lim
t↓0

1
t
{∂FT ((z, z∗) + t(y, y∗))− (z, z∗)} = ∂FTM (z,z∗)(y, y∗). (27)

Using (20) we have
∂FTM (z,z∗)(y, y∗) = ∂FB(z,z∗)(y + z, y∗ + z∗)− (z, z∗)

and so by (27) and the Fréchet differentiability of FB at (z, z∗) we have for δ > 0 small

∂FT ((z, z∗) + t(y, y∗))− (z, z∗) ⊆ t
[
∂FB(z,z∗)(y + z, y∗ + z∗)− (z, z∗)

]
+ o (t) B1 (0) .

As FB is Fréchet differentiable at (z, z∗) we have norm to norm upper semi–continuity of ∂FB at
(z, z∗). Thus

d∗
(
(z, z∗) , ∂FB(z,z∗)(y + z, y∗ + z∗)

)
= O (‖(y, y∗)‖)

and so
d∗ ((z, z∗) , ∂FT ((z, z∗) + t(y, y∗))) = tO (‖(y, y∗)‖) + o (t) = O (‖t (y, y∗)‖) .

On applying Theorem 7 we deduce that d∗ (z∗, T (y)) = O (‖y − z‖), implying T (z) = z∗. Now we
apply Proposition 16.
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Remark 29 In finite dimensions we have the rather strong conclusion that Proto-differentiability of
M = GraphT at (z, z∗) ∈ M implies that d∗ (z∗, T (y)) = O (‖y − z‖) and that TM (z, z∗) is maximal
monotone.

5 Fréchet Differentiability FB
We now address the issue of when FB (z, z∗) is Fréchet differentiable. This requirement appears in some
of the previous results and is not immediate in infinite dimensions. We note that from Lemma 26 we
have Fréchet differentiability of FB at every (z, z∗) ∈ M when X is finite dimensional. The following
homogeneity property is useful.

Lemma 30 Suppose T : X ⇒ X∗ is maximal monotone, M := GraphT and (z, z∗) ∈ M . Then for
all (h, h∗) ∈ X ×X∗ we have

FTM (z,z∗)(t(h, h∗)) = t2FTM (z,z∗)(h, h∗) (28)

and PTM (z,z∗)(t(h, h∗)) = t2PTM (z,z∗)(h, h∗) (29)

Proof. We use the fact that TM is a cone. Let ε, t > 0 and (xi, x
∗
i ) ∈ TM (z, z∗), λi ≥ 0 for i = 1, . . . , N

satisfy
∑N

i=1 λi (xi, x
∗
i , 1) = (h, h∗, 1) and

pTM (z,z∗)(h, h∗) +
ε

t2
≥

N∑
i=1

λi〈xi, x
∗
i 〉.

Then it follows that (txi, tx
∗
i ) ∈ TM (z, z∗) and

∑N
i=1 λi (txi, tx

∗
i ) = t (h, h∗). Consequently

N∑
i=1

λi〈txi, tx
∗
i 〉 ≥ pTM (z,z∗)(th, th∗).

Hence

t2pTM (z,z∗)(h, h∗) + ε ≥
N∑

i=1

λi〈txi, tx
∗
i 〉 ≥ pTM (z,z∗)(th, th∗).

As ε > 0 is arbitrary we have

pTM (z,z∗)(t(h, h∗)) = t2pTM (z,z∗)(h, h∗).

The reverse inequality follows immediately on replacing (h, h∗) by 1
t (h, h∗) and t by 1

t . On taking
closures we get (29).
For (28) we use duality. Let (h, h∗) ∈ dom ∂FTM (z,z∗). Then for (y, y∗) (y, y∗) ∈ ∂FTM (z,z∗) (h, h∗) we
have

PTM (z,z∗) (y, y∗) + FTM (z,z∗) (h, h∗) = 〈(y, y∗) , (h, h∗)〉

and so for all t > 0 we have

PTM (z,z∗) (ty, ty∗) + t2FTM (z,z∗) (h, h∗) = 〈t (y, y∗) , t (h, h∗)〉. (30)

Using the Fenchel inequality

PTM (z,z∗) (ty, ty∗) + FTM (z,z∗) (th, th∗) ≥ 〈t (y, y∗) , t (h, h∗)〉 (31)

and subtracting (30) and (31) we have

FTM (z,z∗) (th, th∗) ≥ t2FTM (z,z∗) (h, h∗) .
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Now replace (h, h∗) with γ (h, h∗) and t by 1
γ for γ > 0. We then have γ2FTM (z,z∗) (h, h∗) ≥ FTM (z,z∗) (γh, γh∗)

implying equality. As dom ∂FTM (z,z∗) is dense in domFTM (z,z∗) the result follows from the results on
page 168 of [8] where it is shown that one may recover a closed convex functions from its values at
points of subdifferentiability.
Note that the last results imply that domPTM (z,z∗) and domFTM (z,z∗) are convex cones. The next
result is singles out an important property that figures in Fréchet differentiability of FB (z, z∗).

Proposition 31 Suppose T : X ⇒ X∗ is maximal monotone, M := GraphT and (z, z∗) ∈ M . Suppose
(z, z∗) ∈ M and B(z, z∗) := TM (z, z∗)+(z, z∗). If ∇FB (z, z∗) = (z, z∗) then for all (v, v∗) ∈ TM (z, z∗)
we have 〈v, v∗〉 > 0 for all (v, v∗) 6= 0. When ∇FB (z, z∗) = (z, z∗) is a Fréchet derivative we have
inf(v,v∗)∈TM (z,z∗)/(0,0)

1
‖(v,v∗)‖2 〈v, v∗〉 > 0.

Proof. Consider the harder case of FB (z, z∗) being Fréchet differentiable. By definition we need to
show for all (h, h∗) ∈ X ×X∗ that

lim
t↓0

(ht,h
∗
t )→(h,h∗)

1
t

(FB ((z, z∗) + t (ht, h
∗
t ))−FB (z, z∗)) = 〈(z, z∗) , (h, h∗)〉.

Now

1
t

(FB ((z, z∗) + t (h, h∗))−FB (z, z∗))

=
1
t

{
〈z + th, z∗ + th∗〉 − inf

(x,x∗)∈B
{〈z + th− x, z∗ + th∗ − x∗〉} − 〈z, z∗〉

}
= 〈(z, z∗), (h, h∗)〉+ t〈h, h∗〉 − 1

t

{
inf

(x,x∗)∈B
{〈z + th− x, z∗ + th∗ − x∗〉}

}
. (32)

Consequently we require the following to converge to zero as t ↓ 0 for any (h, h∗) ∈ X ×X∗;

− 1
t

{
inf

(x,x∗)∈B
{〈z + th− x, z∗ + th∗ − x∗〉}

}
+ t〈h, h∗〉

= sup
(x,x∗)∈B

{
〈x− z, h∗〉+ 〈h, x∗ − z∗〉 − 1

t
〈x− z, x∗ − z∗〉

}
.

Now if inf(v,v∗)∈TM (z,z∗)/(0,0)
1

‖(v,v∗)‖2 〈v, v∗〉 = 0 then there exists a sequence tn > 0 with tn → 0 and
(vn, v∗n) ∈ TM (z, z∗) with ‖(vn, v∗n)‖ = 1 while

1 ≥ 2
tn
〈vn, v∗n〉 ≥

1
2
.

We may now choose (hn, h∗n) ∈ X ×X∗ such that 〈vn, h∗n〉+ 〈hn, v∗n〉 = 1 and then

sup
(x,x∗)∈B

{
〈x− z, h∗n〉+ 〈hn, x∗ − z∗〉 − 1

t
〈x− z, x∗ − z∗〉

}
≥ 〈vn, h∗n〉+ 〈hn, v∗n〉 −

1
tn
〈vn, v∗n〉 ≥

1
tn
〈vn, v∗n〉 ≥

1
4

> 0

a contradiction.
We now give our basic condition for Fréchet differentiability. We need to impose a condition on
TM (z, z∗) in order to characterise Fréchet differentiability of FB (z, z∗). When T is Proto-diffentiable at
(z, z∗) this condition implies TM (z, z∗) is contained in a connected component of the set {(v, v∗) | 〈v, v∗〉 > 0}.

Theorem 32 Suppose T : X ⇒ X∗ is maximal monotone, M := GraphT and (z, z∗) ∈ M . Then
∇FB (z, z∗) = (z, z∗) is a Fréchet derivative iff inf(v,v∗)∈TM (z,z∗)/(0,0)

1
‖(v,v∗)‖2 〈v, v∗〉 > 0.
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Proof. Because of Proposition 31 we only need show that δ := inf(v,v∗)∈TM (z,z∗)/(0,0)
1

‖(v,v∗)‖2 〈v, v∗〉 > 0
implies ∇FB (z, z∗) = (z, z∗) is a Fréchet derivative.
First we show that this assumption implies (h, h∗) 7→ FTM (z,z∗)(h, h∗) is bounded above in a neigh-
bourhood of (0, 0). Now we note that as TM is a cone then for fixed (v, v∗) ∈ TM (z, z∗) and any γ > 0
we have γ(v, v∗) ∈ TM (z, z∗) and so

d

dγ

{
γ〈(v, v∗), (h, h∗)〉 − γ2〈v, v∗〉

}
= 0

implies γ = 〈(v,v∗),(h,h∗)〉
2〈v,v∗〉 and so we have

FTM (z,z∗)(h, h∗) = sup
(v,v∗)∈TM (z,z∗)

1
4
〈(v, v∗), (h, h∗)〉2

〈v, v∗〉

≤ 1
4

sup
(v,v∗)∈TM (z,z∗)

‖(h, h∗)‖2(
〈v, v∗〉/ ‖(v, v∗)‖2

) ≤ 1
4δ
‖(h, h∗)‖2 < +∞. (33)

From (32) we have

1
t
(FB((z, z∗) +t (h, h∗))−FB (z, z∗))

= 〈(z, z∗), (h, h∗)〉+ sup
(x,x∗)∈B

{
〈x− z, h∗〉+ 〈h, x∗ − z∗〉 − 1

t
〈x− z, x∗ − z∗〉

}
= 〈(z, z∗), (h, h∗)〉+ sup

(v,v∗)∈TM (z,z∗)

{
〈(v, v∗), (h, h∗)〉 − 1

t
〈v, v∗〉

}
= 〈(z, z∗), (h, h∗)〉+

1
t

sup
(v,v∗)∈TM (z,z∗)

{〈(v, v∗), t(h, h∗)〉 − 〈v, v∗〉}

= 〈(z, z∗), (h, h∗)〉+
1
t
FTM (z,z∗)(t(h, h∗)).

Now consider

1
t

(FB ((z, z∗) + t (h, h∗)) + FB ((z, z∗)− t (h, h∗))− 2FB (z, z∗))

=
1
t

(
FTM (z,z∗)(t(h, h∗)) + FTM (z,z∗)(t(−h,−h∗))

)
= t
(
FTM (z,z∗)(h, h∗) + FTM (z,z∗)(−h,−h∗)

)
≤ t max

{
FTM (z,z∗)(h, h∗),FTM (z,z∗)(−h,−h∗)

}
. (34)

We note that as (h, h∗) 7→ FTM (z,z∗)(h, h∗) is bounded above in a neighbourhood of (0, 0) (and con-
sequently is globally finite being positively homogeneous of degree two) then for all ‖(h, h∗)‖ ≤ 1 we
have from (33) that

FTM (z,z∗) (±h,±h∗) ≤ 1
4δ

.

Thus from (34) we have

FB ((z, z∗) + t (h, h∗)) + FB ((z, z∗)− t (h, h∗))− 2FB (z, z∗) ≤ t2
1
2δ

≤ εt

for t ≤ δ := 2δε. Proposition 1.23 of [19] now applies and the Fréchet differentiability follows.

Corollary 33 Suppose T : X ⇒ X∗ is maximal monotone, M := GraphT , (z, z∗) ∈ M and M
is strongly Proto–differentiable at (z, z∗) with Proto-derivative TM (z, z∗). Suppose in addition that
inf(v,v∗)∈TM (z,z∗)/(0,0)

1
‖(v,v∗)‖2 〈v, v∗〉 > 0. Then T (z) = {z∗} with d∗ (z∗, T (y)) = O (‖y − z‖) and also

TM (z, z∗) is maximal monotone.

Proof. This follows from Theorem 28 and Theorem 32.
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6 A Characterisation of the normal cone TM (z, z∗)◦

We finish this study by demonstrating that the normal cone TM (z, z∗)◦ at (z, z∗) ∈ M has a rather nice
characterisation in terms of Fitzpatrick functions. When these results are married with those of Section
3 we have the machinery to actually calculate such normal cones, at least at points of strong Proto-
differentiability when we have at hand the Fitzpatrick function. The calculation of the Fitzpatrick
function is not as intractable as one might first conjecture. A number of examples may be found in [7].
First we note that in view of Lemma 3 the inclusion in (22) may be restated in the following form:

TM (z, z∗)◦ ⊆ {(v, v∗) | 〈v, v∗〉 ≤ 0} .

We may strengthen this inclusion in the following form.

Lemma 34 Suppose T : X ⇒ X∗ is maximal monotone, M := GraphT , (z, z∗) ∈ M . Then

TM (z, z∗)◦ ⊆
{
(v, v∗) | FTM (z,z∗) (v, v∗) ≤ 0

}
and when TM (z, z∗) is maximal we have{

(v, v∗) | FTM (z,z∗) (v, v∗) ≤ 0
}
⊆ {(v, v∗) | 〈v, v∗〉 ≤ 0} .

Proof. Note that as TM (z, z∗) is monotone and (0, 0) ∈ TM (z, z∗) we have 〈w,w∗〉 ≥ 0 for all
(w,w∗) ∈ TM (z, z∗). Thus

FTM (z,z∗) (v, v∗) = sup
(w,w∗)∈TM (z,z∗)

{〈(v, v∗) , (w,w∗)〉 − 〈w,w∗〉}

≤ sup
(w,w∗)∈TM (z,z∗)

{〈(v, v∗) , (w,w∗)〉} ≤ 0 ,∀ (v, v∗) ∈ TM (z, z∗)◦ .

When TM (z, z∗) is maximal we have 〈v, v∗〉 ≤ FTM (z,z∗) (v, v∗) providing the last inclusion.
We now require an alternative expression for the zero level-set of the Fitzpatrick function FTM (z,z∗).

Proposition 35 Suppose T : X ⇒ X∗ is maximal monotone, M := GraphT , (z, z∗) ∈ M . Then

∂PTM (z,z∗) (0, 0) =
{
(v, v∗) | FTM (z,z∗) (v, v∗) ≤ 0

}
.

Proof. Take (w,w∗) ∈ ∂PTM (z,z∗) (0, 0) then

PTM (z,z∗) (y, y∗)− PTM (z,z∗) (0, 0) ≥ 〈(w,w∗) , (y, y∗)〉. (35)

Now (0, 0) ∈ TM (z, z∗) and monotonicity implies 〈v, v∗〉 ≥ 0 for all (v, v∗) ∈ TM (z, z∗) and so
PTM (z,z∗) (y, y∗) ≥ 0. As (0, 0) ∈ co TM (z, z∗) ⊆ domPTM (z,z∗) we may take t > 0 and note that
the positive homegenuity gives

0 = lim inf
t↓0

t2PTM (z,z∗) (0, 0) = lim inf
t↓0

PTM (z,z∗) (t× 0, t× 0) ≥ PTM (z,z∗) (0, 0) ≥ 0. (36)

Thus PTM (z,z∗) (0, 0) = 0 and (35) gives for all (y, y∗) ∈ TM (z, z∗) that

〈y, y∗〉 = PTM (z,z∗) (y, y∗) ≥ 〈(w,w∗) , (y, y∗)〉.

Consequently

0 ≥ sup
(y,y∗)∈TM (z,z∗)

{〈(w,w∗) , (y, y∗)〉 − 〈y, y∗〉} = FTM (z,z∗) (w,w∗)

and so ∂PTM (z,z∗) (0, 0) ⊆
{
(w,w∗) | FTM (z,z∗) (w,w∗) ≤ 0

}
.
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Now take (w,w∗) with FTM (z,z∗) (w,w∗) ≤ 0. Consequently

〈y, y∗〉 ≥ 〈(w,w∗) , (y, y∗)〉 for all (y, y∗) ∈ TM (z, z∗)

implying
∑

i

λi〈yi, y
∗
i 〉 ≥ 〈(w,w∗) , (y, y∗)〉 for all (y, y∗) ∈ co TM (z, z∗) .

It follows that pTM (z,z∗) (y, y∗) ≥ 〈(w,w∗) , (y, y∗)〉 and, on taking closures, we have via continuity of
(y, y∗) 7→ 〈(w,w∗) , (y, y∗)〉 that

PTM (z,z∗) (y, y∗) ≥ 〈(w,w∗) , (y, y∗)〉
or PTM (z,z∗) (y, y∗)− PTM (z,z∗) (0, 0) ≥ 〈(w,w∗) , (y, y∗)− (0, 0)〉,

giving (w,w∗) ∈ ∂PTM (z,z∗) (0, 0).
We are now able to characterise TM (z, z∗)◦. We note that at points where M is strongly Proto-
differentiable we may perform a calculation that follows directly from the original Penot or Fitzpatrick
function of T itself.

Theorem 36 Suppose T : X ⇒ X∗ is maximal monotone, M := GraphT , (z, z∗) ∈ M . Then

TM (z, z∗)◦ = ∂PTM (z,z∗) (0, 0) =
{
(v, v∗) | FTM (z,z∗) (v, v∗) ≤ 0

}
. (37)

Moreover suppose in addition that M is strongly Proto-differentiable at (z, z∗) then

TM (z, z∗)◦ = ∂P ′′
T (z, z∗) (0, 0) = {(v, v∗) | F ′′

T (z, z∗) (v, v∗) ≤ 0} . (38)

Proof. We only need show (37) as (38) then follows immediately from Theorem 22. From Lemma
34 and Proposition 35 we have the left hand side of (37) contained in the right hand side. Now take
(w,w∗) ∈ ∂PTM (z,z∗) (0, 0) then by duality (0, 0) ∈ ∂FTM (z,z∗) (w,w∗) and so for all (y, y∗)

FTM (z,z∗) (y, y∗)−FTM (z,z∗) (w,w∗) ≥ 0.

Thus, by definition

FTM (z,z∗) (y, y∗) ≥ 〈(w,w∗) , (v, v∗)〉 − 〈v, v∗〉 for all (v, v∗) ∈ TM (z, z∗) .

Let (y, y∗) ∈ ∂PTM (z,z∗) (0, 0) . Then FTM (z,z∗) (y, y∗) ≤ 0 and so

〈v, v∗〉 ≥ 〈(w,w∗) , (v, v∗)〉 for all (v, v∗) ∈ TM (z, z∗) .

As TM (z, z∗) is a cone we may take t > 0 and have t (v, v∗) ∈ TM (z, z∗). Consequently

t2〈v, v∗〉 ≥ t〈(w,w∗) , (v, v∗)〉 for all (v, v∗) ∈ TM (z, z∗)

and on letting t ↓ 0 we obtain

0 = lim
t↓0

t〈v, v∗〉 ≥ 〈(w,w∗) , (v, v∗)〉 for all (v, v∗) ∈ TM (z, z∗)

or (w,w∗) ∈ TM (z, z∗)◦.

7 Conclusion

Much of the literature on representative functions has concerned itself with providing shorter proofs
for the preservation of maximal monotonicity under various operations such as sums and compositions.
We have shown that the Fitzpatrick function is not only a useful tool in studying these issues but is also
useful in studying the differentiability properties of maximal monotone operators. The characterisation
of the Proto- normal cone to the graph of a maximal monotone operators, via representative functions,
provides a very concise and elegant formula for these important differential objects.
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