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Abstract

We give thirty-two diverse proofs of a small math-
ematical gem—the fundamental Euler sum identity

ζ(2,1) = ζ(3) = 8 ζ(2,1).

We also discuss various generalizations for multiple
harmonic (Euler) sums and some of their many con-
nections, thereby illustrating both the wide variety
of techniques fruitfully used to study such sums and
the attraction of their study.

J&G

REFERENCE. J.M. Borwein and D.M. Bradley,
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1. Introduction

There are several ways to introduce and make at-

tractive a new or unfamiliar subject. We choose to

do so by emulating Glenn Gould’s passion for Bach’s

Goldberg variations.

We shall illustrate most of the techniques used to

study Euler sums by focusing almost entirely on the

identities of (2) and (5) below, viz

∞∑
n=1

1

n2

n−1∑
m=1

1

m
=

∞∑
n=1

1

n3
= 8

∞∑
n=1

(−1)n

n2

n−1∑
m=1

1

m

and some of their many generalizations. In doing

so we make a tour through a large variety of topics.
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1.1 Euler, Goldbach and the birth of ζ

What follows is a transcription of correspondence
between Euler and Goldbach that led to the origin
of the zeta-function and multi-zeta values:

59. Goldbach an Euler, Moskau, 24.
Dez. 1742.∗ [. . . ]Als ich neulich die ver-
meinten summas der beiden letzteren se-
rierum in meinem vorigen Schreiben wieder
betrachtet, habe ich alsofort wahrgenom-
men, daß selbige aus einem bloßem Schreibfehler
entstanden, von welchem es aber in der Tat
heißet: Si non errasset, fecerat ille minus.†

This is the letter in which Goldbach precisely formu-
lates the series which sparked Euler’s investigations
into what became the zeta-function. These inves-
tigations were due to a serendipitous mistake.

The above translates:
∗AAL: F.136, Op. 2, Nr.8, Blatt 54–55.
†Frei zitiert nach Marcus Valerius Martialis, I, 21,9.
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When I recently considered further the in-
dicated sums of the last two series in my
previous letter, I realized immediately that
the same series arose due to a mere writing
error, from which indeed the saying goes,
“Had one not erred, one would have achieved
less.”∗ Goldbach continues...

Ich halte dafür, daß es ein problema prob-
lematum ist, die summam huius:

/54r/1+
1

2n

(
1+

1

2m

)
+

1

3n

(
1+

1

2m
+

1

3m

)
+

1

4n

(
1+

1

2m
+

1

3m
+

1

4m

)
+ etc.

in den casibus zu finden, wo m et n nicht
numeri integri pares et sibi aequales sind,
doch gibt es casus, da die summa angegeben
werden kann, exempli gr[atia], si m = 1, n =
3, denn es ist

1 +
1

23

(
1+

1

2

)
+

1

33

(
1+

1

2
+

1

3

)
+

1

43

(
1+

1

2
+

1

3
+

1

4

)
+ etc. =

π4

72
.

∗Opera Omnia, vol. IVA4, Birkhäuser Verlag.
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1.2. The Modern Language of Euler Sums

For positive integers s1, . . . , sm and signs σj = ±1,

consider the m-fold Euler sum

ζ(s1, . . . , sm;σ1, . . . , σm) :=
∑

k1>···>km>0

m∏
j=1

σ
kj
j

k
sj
j

.

We combine strings of exponents and signs by re-

placing sj by sj in the argument list if and only if

σj = −1, and denote n repetitions of a substring

S by {S}n. Thus, for example, ζ(1) = − log 2,

ζ({2}3) = ζ(2,2,2) = π6/7! and

ζ(s1, . . . , sm) =
∑

k1>···>km>0

m∏
j=1

k
−sj
j . (1)

The identity

ζ(2,1) = ζ(3) (2)

goes back to Euler and has been repeatedly redis-

covered. In this language Goldbach had found

ζ(3,1) + ζ(4) =
π4

72
.
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The more general formula

2ζ(m,1) = mζ(m+1)−
m−2∑
j=1

ζ(j +1)ζ(m− j), (3)

for m ≥ 2 is also due to Euler.

• Nielsen obtained (3) and related results based

on partial fractions. Formula (3) has also been

discovered many times.

Study of the multiple zeta function (1) led to the

discovery of a new generalization of (2), involving

nested sums of arbitrary depth:

ζ({2,1}n) = ζ({3}n), n ∈ Z+. (4)

• Although numerous proofs of (2) and (3) are

known (we give many), the only proof of (4)

of which we are aware involves making a simple

change of variable in a multiple iterated integral

(see (31) below).
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An alternating version of (2) is

8ζ(2,1) = ζ(3), (5)

which has also resurfaced from time to time.

Equation (5) hints at the generalization:

8nζ({2,1}n) ?
= ζ({3}n), n ∈ Z+, (6)

we originally conjectured in 1996, and which re-

mained open until 2008—despite abundant, even

overwhelming, evidence. Zhao’s 2008 proof (see

also Math by Experiment, ed. 2) relies on double

shuffles (below) and while very clever adds little in-

sight.

• The first 85 instances of (6) were recently af-

firmed to 1000 decimal place accuracy by Petr

Lisonek. He also checked the case n = 163, a

calculation that required ten hours run time on

a 2004-era computer.
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1.3. Hilbert and Hardy Inequalities

Much of the early 20th century history - and phi-
losophy - of the “ ‘bright’ and amusing” subject
of inequalities charmingly discussed in G.H. Hardy’s
retirement lecture as London Mathematical Society
Secretary.

He comments that Harald Bohr is reported to have
remarked “Most analysts spend half their time hunt-
ing through the literature for inequalities they want
to use, but cannot prove.” Central to Hardy’s essay
are:

Theorem 1 (Hilbert) For non-negative sequences
(an) and (bn), not both zero, and for
1 ≤ p, q ≤ ∞ with 1/p+1/q = 1 one has

∞∑
n=1

∞∑
m=1

an bm

n+m
< π csc

(
π

p

)
∥an∥p ∥bn∥q. (7)

Theorem 2 (Hardy) For a non-negative sequence
(an) and for p > 1

∞∑
n=1

(
a1 + a2 + · · ·+ an

n

)p
≤
(

p

p− 1

)p ∞∑
n=1

apn. (8)
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• We return to these inequalities in Section six.

Hardy remarks that his “own theorem was discov-

ered as a by-product of my own attempt to find a

really simple and elementary proof of Hilbert’s.”

He reproduces Elliott’s proof of (8), writing “it can

hardly be possible to find a proof more concise or

elegant” and also “I have given nine [proofs] in a

lecture in Oxford, and more have been found since

then.”

We wish to emulate Hardy

and to present proofs that

are either elementary, bright

and amusing, concise or ele-

gant - ideally all at the same

time!
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1.4. Further Motivation and Intentions

In doing so we note that: ζ(3), while provably ir-

rational, is still quite mysterious. Hence, exposing

more relationships and approaches can only help.

• We certainly hope one of them will lead to an

intuitive proof of conjecture (6).

Identities for ζ(3) are abundant and diverse. We

give three, each of which is the entry-point to a

fascinating set:

A first favourite is a binomial sum that played a

role in Apéry’s 1976 proof of the irrationality of

ζ(3):

ζ(3) =
5

2

∞∑
k=1

(−1)k+1

k3
(
2k
k

) . (9)
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A second favourite is Broadhurst’s BBP formula

ζ(3) =

1

672

∞∑
k=0

1

212k

[
2048

(24k+1)3
−

11264

(24k+2)3
−

1024

(24k+3)3
+

11776

(24k+4)3

−
512

(24k+5)3
+

4096

(24k+6)3
+

256

(24k+7)3
+

3456

(24k+8)3
+

128

(24k+9)3

−
704

(24k+10)3
−

64

(24k+11)3
−

128

(24k+12)3
−

32

(24k+13)3
−

176

(24k+14)3

+
16

(24k+15)3
+

216

(24k+16)3
+

8

(24k+17)3
+

64

(24k+18)3
−

4

(24k+19)3

+
46

(24k+20)3
−

2

(24k+21)3
−

11

(24k+22)3
+

1

(24k+23)3

]
.

• This discovery led Bailey & Crandall to their
recent work on normality of BBP constants.

A third favourite due to Ramanujan is the hyper-
bolic series approximation

ζ (3) =
7π3

180
− 2

∞∑
k=1

1

k3
(
e2π k − 1

),
with ‘error’ is ζ(3)−7π3/180 ≈ −0.003742745. To
our knowledge this is the ‘closest’ one gets to writ-
ing ζ(3) as a rational multiple of π3.
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• Often results about ζ(3) are really results about
ζ(2,1) or ζ(2,1), as we shall exhibit.

• Double and multiple sums are still under-studied
and under-appreciated. We should like to par-
tially redress that.

• One can now prove these seemingly analytic
facts in an entirely finitary manner via words
over alphabets, dispensing with notions of infin-
ity and convergence.

• Many subjects are touched upon—from com-
puter algebra, integer relation methods, gen-
erating functions and techniques of integration
to polylogarithms, hypergeometric and special
functions, non-commutative rings, combinato-
rial algebras and Stirling numbers.

• For example, there has been an explosive recent
interest in q-analogs, see §, and in quantum field
theory, algebraic K-theory and knot theory.
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1.5. Further Notation

For positive N , we write

HN :=
N∑
n=1

1/n.

We use ψ = Γ′/Γ for digamma, the logarithmic
derivative of Euler’s Gamma. Then ψ(N+1)+γ =
HN , where γ = 0.5772156649 . . . is Euler’s con-
stant. The Pochhammer symbol (a)n = a(a +
1) · · · (a+n−1) for complex a and integer n > 0, and
the Kronecker δm,n is 1 if m = n and 0 otherwise.

We organize proofs by technique, though this is
somewhat arbitrary as many proofs fit well within
more than one category. Broadly their sophistica-
tion increases as we move through the talk.
We invite additions to a collection which for us has
all the beauty of Blake’s grain of sand∗:

“To see a world in a grain of sand
And a heaven in a wild flower,

Hold infinity in the palm of your hand
And eternity in an hour.”

∗William Blake from Auguries of Innocence.
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2. Telescoping and Partial Fractions

2.1. A first quick proof of (2) considers

S : =
∑

n,k>0

1

nk(n+ k)
=

∑
n,k>0

1

n2

(
1

k
−

1

n+ k

)

=
∞∑
n=1

1

n2

n∑
k=1

1

k
= ζ(3) + ζ(2,1).

On the other hand,

S =
∑

n,k>0

(
1

n
+

1

k

)
1

(n+ k)2

=
∑

n,k>0

1

n(n+ k)2
+

∑
n,k>0

1

k(n+ k)2
= 2ζ(2,1),

by symmetry.

c⃝

• The above argument goes back at least to Stein-
berg and Klamkin.
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2.2. A second proof runs as follows:

ζ(2,1) + ζ(3) (10)

=
∞∑
n=1

(−1)n

n2

n∑
k=1

(−1)k

k
=

∞∑
n=1

(−1)n

n2

∞∑
k=1

(
(−1)k

k
−

(−1)n+k

n+ k

)
=

∞∑
n=1

(−1)n

n2

∞∑
k=1

(−1)k
(
n+ k − (−1)nk

k(n+ k)

)
=
∑
n,k>0

(−1)n+k

nk(n+ k)
+
∑
n,k>0

(−1)n+k

n2(n+ k)
−
∑
n,k>0

(−1)k

n2(n+ k)

=
∑
n,k>0

(
1

n
+

1

k

)
(−1)n+k

(n+ k)2
+ ζ(1,2)−

∑
n,k>0

(−1)n(−1)n+k

n2(n+ k)

=
∑
n,k>0

(−1)n+k

n(n+ k)2
+
∑
n,k>0

(−1)n+k

k(n+ k)2
+ ζ(1,2)− ζ(1,2)

= 2ζ(2,1) + ζ(1,2)− ζ(1,2). (11)
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Similarly we write

ζ(2,1) + ζ(3) (12)

=
∞∑
n=1

1

n2

n∑
k=1

(−1)k

k
=

∞∑
n=1

1

n2

∞∑
k=1

(
(−1)k

k
−

(−1)n+k

n+ k

)
=

∞∑
n=1

1

n2

∞∑
k=1

(−1)k
(
n+ k − (−1)nk

k(n+ k)

)
=
∑
n,k>0

(−1)k

nk(n+ k)
+
∑
n,k>0

(−1)k

n2(n+ k)
−
∑
n,k>0

(−1)n+k

n2(n+ k)

=
∑
n,k>0

(
1

n
+

1

k

)
(−1)k

(n+ k)2
+
∑
n,k>0

(−1)n(−1)n+k

n2(n+ k)
− ζ(1,2)

=
∑
n,k>0

(−1)n(−1)n+k

n(n+ k)2
+
∑
n,k>0

(−1)k

k(n+ k)2
+ ζ(1,2)− ζ(1,2)

= ζ(2,1) + ζ(2,1) + ζ(1,2)− ζ(1,2). (13)
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Adding equations (11) and (13) now gives

2ζ(2,1) = ζ(3) + ζ(3), (14)

That is,

8ζ(2,1) = 4
∞∑
n=1

1+ (−1)n

n3
(15)

= 4
∞∑

m=1

2

(2m)3

= ζ(3), (16)

which is (5). c⃝

W&B
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3. Finite Series Transformations

Lemma. For any positive integer N , we have

N∑
n=1

1

n3
−

N∑
n=1

1

n2

n−1∑
k=1

1

k
=

N∑
n=1

1

n2

n∑
k=1

1

N − k+1

(17)

by induction. c⃝

Alternatively, consider

T :=
N∑

n,k=1
k ̸=n

1

nk(k − n)
=

N∑
n,k=1
k ̸=n

(
1

n
−

1

k

)
1

(k − n)2
= 0.

E&R
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On the other hand

T =
N∑

n,k=1
k ̸=n

1

n2

(
1

k − n
−

1

k

)

=
N∑
n=1

1

n2

( n−1∑
k=1

1

k − n
+

N∑
k=n+1

1

k − n
−

N∑
k=1

1

k
+

1

n

)

=
N∑
n=1

1

n3
−

N∑
n=1

1

n2

n−1∑
k=1

1

n− k

+
N∑
n=1

1

n2

( N∑
k=n+1

1

k − n
−

N∑
k=1

1

k

)
.

H&L
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Since T = 0, this implies that

N∑
n=1

1

n3
−

N∑
n=1

1

n2

n−1∑
k=1

1

k
=

N∑
n=1

1

n2

( N∑
k=1

1

k
−
N−n∑
k=1

1

k

)

=
N∑
n=1

1

n2

n∑
k=1

1

N − k+1
,

which is (17). c⃝

Now the right hand side satisfies

HN

N
=

N∑
n=1

1

n2
·
n

N

≤
N∑
n=1

1

n2

n∑
k=1

1

N − k+1

≤
N∑
n=1

1

n2
·

n

N − n+1

=
1

N +1

N∑
n=1

(
1

n
+

1

N − n+1

)
=

2HN

N +1
.

Letting N grow without bound now gives (2), since

lim
N→∞

HN
N

= 0.

c⃝
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4. Geometric Series

4.1 Convolution of Geometric Series

Let 2 ≤ m ∈ Z, and consider

m−2∑
j=1

ζ(j +1)ζ(m− j) = lim
N→∞

N∑
n=1

N∑
k=1

m−2∑
j=1

1

nj+1

1

km−j

= lim
N→∞

{ N∑
n,k=1
k ̸=n

(
1

nm−1(k − n)k

−
1

n(k − n)km−1

)
+

N∑
n=1

m− 2

nm+1

}
= (m− 2)ζ(m+1)

+ 2 lim
N→∞

N∑
n,k=1
k ̸=n

1

nm−1k(k − n)
.

• As suggested by Williams (also Bracken)
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Thus, we find that

(m− 2)ζ(m+1)−
m−2∑
j=1

ζ(j +1)ζ(m− j)

= 2 lim
N→∞

N∑
n=1

1

nm

N∑
k=1
k ̸=n

(
1

k
−

1

k − n

)

= 2 lim
N→∞

N∑
n=1

1

nm

{ n−1∑
k=1

1

k
−

1

n
+

n∑
k=1

1

N − k+1

}
= 2ζ(m,1)− 2ζ(m+1)

+ 2 lim
N→∞

N∑
n=1

1

nm

n∑
k=1

1

N − k+1
,

and hence

2ζ(m,1) = mζ(m+1)−
m−2∑
j=1

ζ(j +1)ζ(m− j)

− 2 lim
N→∞

N∑
n=1

1

nm

n∑
k=1

1

N − k+1
.
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But, in light of

N∑
n=1

1

nm

n∑
k=1

1

N − k+1
≤

N∑
n=1

1

nm
·

n

N − n+1

≤
1

N +1

N∑
n=1

(
1

N − n+1
+

1

n

)

=
2HN
N +1

,

the identity (3) now follows. c⃝

4.2. A Sum Formula

• Equation (2) is the case n = 3 of the following

summation.
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Theorem 3 If 3 ≤ n ∈ Z then

ζ(n) =
n−2∑
j=1

ζ(n− j, j). (18)

Proof. Summing the geometric series (in j) on the

right hand side gives

n−2∑
j=1

∞∑
h=1

∞∑
m=1

1

hj(h+m)n−j

=
∞∑

h,m=1

[
1

hn−2m(h+m)
−

1

m(h+m)n−1

]

=
∞∑
h=1

1

hn−1

∞∑
m=1

(
1

m
−

1

h+m

)
− ζ(n− 1,1)

=
∞∑
h=1

1

hn−1

h∑
k=1

1

k
− ζ(n− 1,1)

=
∞∑
h=1

1

hn
+

∞∑
h=1

1

hn−1

n−1∑
k=1

1

k
− ζ(n− 1,1)

= ζ(n).

c⃝
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4.3. A q-Analog

Following Zudilin, for s > 1, 0 < q < 1 begin with

uv2

(1− v)(1− uv)s

=
uv

(1− u)(1− v)s
−
s−1∑
j=1

uv2

(1− v)j+1(1− uv)s−j
.

Put u = qm, v = qn and sum over m,n > 0. Thus,∑
m,n>0

qm+n

(1− qm)(1− qm+n)s
+
∑
m,n>0

qm+2n

(1− qn)(1− qm+n)s

=
∑
m,n>0

qm+n

(1− qm)(1− qn)s
−
∑
m,n>0

qm+2n

(1− qn)s(1− qm+n)

−
s−2∑
j=1

∑
m,n>0

qm+2n

(1− qn)j+1(1− qm+n)s−j

=
∑
m,n>0

qn

(1− qn)s

[
qm

1− qm
−

qm+n

1− qm+n

]
−

s−2∑
j=1

∑
m,n>0

qm+2n

(1− qn)j+1(1− qm+n)s−j

=
∑
n>0

qn

(1− qn)s

n∑
m=1

qm

1− qm
−

s−2∑
j=1

∑
m,n>0

qm+2n

(1− qn)j+1(1− qm+n)s−j

=
∑
n>0

q2n

(1− qn)s+1
+
∑
n>m>0

qn+m

(1− qn)s(1− qm)

−
s−2∑
j=1

∑
m,n>0

qm+2n

(1− qn)j+1(1− qm+n)s−j

26



Cancelling the second double sum on the left with

the corresponding sum on the right and replacing

m+ n by k in the remaining sums yields

∑
k>m>0

qk

(1− qk)s(1− qm)
=

∑
n>0

q2n

(1− qn)s+1

−
s−2∑
j=1

∑
k>m>0

qk+m

(1− qm)j+1(1− qk)s−j
,

or equivalently, that

∑
k>0

q2k

(1− qk)s+1
=

∑
k>m>0

qk

(1− qk)s(1− qm)

+
s−2∑
j=1

∑
k>m>0

qk+m

(1− qk)s−j(1− qm)j+1
. (19)

Multiplying (19) through by (1 − q)s+1 and letting

q → 1 gives

ζ(s+1) = ζ(s,1) +
s−2∑
j=1

ζ(s− j, j +1),

which is just a restatement of (18). Taking s = 2

gives (2) again. c⃝
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The q-analog of an integer n ≥ 0 is

[n]q :=
n−1∑
k=0

qk =
1− qn

1− q
,

and the multiple q-zeta function

ζ[s1, . . . , sm] :=
∑

k1>···>km>0

m∏
j=1

q(sj−1)kj

[kj]
sj
q

, (20)

for real numbers with s1 > 1 and sj ≥ 1, 2 ≤ j ≤ m.

Multiplying (19) by (1 − q)s+1 with s = 2 gives
ζ[2,1] = ζ[3] — a q-analog of (2) (i.e., the latter
follows as q → 1−.) Also, s = 3 in (19) gives

ζ[4] + (1− q)ζ[3] = ζ[3,1] + (1− q)ζ[2,1] + ζ[2,2],

so ζ[2,1] = ζ[3] implies ζ[3,1] = ζ[4]− ζ[2,2].

Bradley shows ζ[2,2] reduces to depth 1 multiple q-
zeta values. Indeed, by the q-stuffle multiplication
rule, ζ[2]ζ[2] = 2ζ[2,2] + ζ[4] + (1− q)ζ[3]. Thus,

ζ[3,1] = ζ[4]−ζ[2,2] = 3
2ζ[4]−

1
2 (ζ[2])2+1

2(1−q)ζ[3],
which is a q-analog of the evaluation

ζ(3,1) =
π4

360
.
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5. Integral Representations

5.1. Single Integrals I

We use the fact that∫ 1

0
uk−1(− logu) du =

1

k2
, k > 0. (21)

Thus ∑
k>n>1

1

k2n
=

∞∑
n=1

1

n

∑
k>n

∫ 1

0
uk−1(− logu) du

=
∞∑
n=1

1

n

∫ 1

0
(− logu)

∑
k>n

uk−1 du

=
∞∑
n=1

1

n

∫ 1

0
(− logu)

un

1− u
du

= −
∫ 1

0

logu

1− u

∞∑
n=1

un

n
du

=
∫ 1

0

(− logu) log(1− u)

1− u
du. (22)
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• Interchanges of sum and integral are justified by

Lebesgue’s monotone convergence theorem.

After making the change of variable t = 1 − u, we

obtain ∑
k>n>1

1

k2n
=
∫ 1
0 log(1− t) (− log t) dtt (23)

=
∫ 1
0 (− log t)

∑∞
n=1

tn−1

n dt.

• Again, since all terms of the series are posi-

tive, Lebesgue’s monotone convergence theo-

rem permits us to interchange the order of sum-

mation and integration.

Thus, invoking (21) again, we obtain

∑
k>n>1

1

k2n
=

∞∑
n=1

1

n

∫ 1

0
(− log t) tn−1 dt =

∞∑
n=1

1

n3
,

which is (2). c⃝
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5.2. Single Integrals II

The Laplace transform∫ 1

0
xr−1(− logx)σ dx =

∫ ∞

0
e−ru uσ du =

Γ(σ+1)

rσ+1
,

(24)
for r > 0, σ > −1 generalizes (21) and yields the
representation

ζ(m+1) =
1

m!

∞∑
r=1

Γ(m+1)

rm+1
=

1

m!

∞∑
r=1

∫ 1

0
xr−1(− logx)m dx

=
(−1)m

m!

∫ 1

0

logm x

1− x
dx.

Interchange is valid if m > 0, so x 7→ 1− x yields

ζ(m+1) =
(−1)m

m!

∫ 1

0
logm(1−x)

dx

x
, 1 ≤ m ∈ Z.

(25)

Farnum used (24) with clever changes of variable
and integration by parts, to prove the identity

k! ζ(k+2) =
∞∑

nj=1

1

n1n2 · · ·nk

∑
p=1+

∑
nj

1

p2
, 0 ≤ k ∈ Z.

(26)
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• The case k = 1 of (26) is again (2). We give a

simpler proof of (26), dispensing with integra-

tion by parts.

From (24), k! ζ(k+2) =

=
∞∑
r=1

1

r
·
Γ(k+1)

rk+1
=

∞∑
r=1

1

r

∫ 1

0
xr−1(− logx)k dx

=
∫ 1

0
(− logx)k log(1− x)−1 dx

x

=
∫ 1

0
logk(1− x)−1(− logx)

dx

1− x

=
∑ 1

n1n2 · · ·nk

∫ 1

0

xn1+n2+···+nk

1− x
(− logx) dx

=
∑ 1

n1n2 · · ·nk

∑
p>n1+n2+···+nk

∫ 1

0
xp−1(− logx) dx

=
∞∑

n1=1

∞∑
n2=1

· · ·
∞∑

nk=1

1

n1n2 · · ·nk

∑
p>n1+n2+···+nk

1

p2
.

c⃝
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5.3. Double Integrals I

Write

ζ(2,1) =
∑

k,m>0

1

k(m+ k)2

=
∫ 1

0

∫ 1

0

∑
k>0

(xy)k

k

∑
m>0

(xy)m−1 dx dy

= −
∫ 1

0

∫ 1

0

log(1− xy)

1− xy
dx dy.

Make the change of variable u = xy, v = x/y with

Jacobian 1/(2v), obtaining

ζ(2,1) = −
1

2

∫ 1

0

log(1− u)

1− u

∫ 1/u

u

dv

v
du

=
∫ 1

0

(logu) log(1− u)

1− u
du,

which is (22). Now continue as in §5.1. c⃝
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5.4. Double Integrals II

Let ε > 0. Expand the integrand as a geometric

series. One gets:

∞∑
n=1

1

(n+ ε)2
=
∫ 1

0

∫ 1

0

(xy)ε

1− xy
dx dy.

Differentiate wrt ε and let ε = 0:

ζ(3) = −
1

2

∫ 1

0

∫ 1

0

log(xy)

1− xy
dx dy

= −
1

2

∫ 1

0

∫ 1

0

logx+ log y

1− xy
dx dy

= −
∫ 1

0

∫ 1

0

logx

1− xy
dx

by symmetry. Now integrate with respect to y to

get

ζ(3) =
∫ 1

0
(logx) log(1− x)

dx

x
. (27)

Comparing (27) with (23) yields (2). c⃝

• This was reconstructed from a conversation with

Krishna Alladi.
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5.5. Integration by Parts

Start with (27) and integrate by parts to obtain

2ζ(3) = 2
∫ 1

0
(logx) log(1− x)

dx

x

=
∫ 1

0

log2 x

1− x
dx

=
∫ 1

0
log2(1− x)

dx

x

=
∑

n,k>0

∫ 1

0

xn+k−1

nk
dx

=
∑

n,k>0

1

nk(n+ k)
= 2 ζ(2,1),

on appealing to the first telescoping result of §2. c⃝

E&C
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5.6. Triple Integrals I

Instead of (21) we use the identity

1

k2n
=
∫ 1

0
y−1
1

∫ y1
0

yk−n−1
2

∫ y2
0

yn−1
3 dy3 dy2 dy1,

for k > n > 0. This yields∑
k>n>0

1

k2n
=
∫ 1

0
y−1
1

∫ y1
0

(1−y2)−1
∫ y2
0

(1−y3)−1 dy3dy2dy1.

(28)
The change of variables yi = 1−xi (i = 1,2,3) gives∑
k>n>0

1

k2n
=
∫ 1

0
(1− x1)

−1
∫ 1

x1
x−1
2

∫ 1

x2
x−1
3 dx3 dx2 dx1

=
∫ 1

0
x−1
3

∫ x3
0

x−1
2

∫ x2
0

(1− x1)
−1 dx1 dx2 dx3.

Expand (1−x1)−1 and interchange sum and integral:∑
k>n>0

1

k2n
=

∞∑
n=1

∫ 1

0
x−1
3

∫ x3
0

x−1
2

∫ x2
0

xn−1
1 dx1 dx2 dx3

=
∞∑
n=1

1

n3
,

which is is (2) again. c⃝

• Additionally:

36



ζ(s1, . . . , sk) =
∑

n1>···>nk>0

k∏
j=1

n
−sj
j (29)

=

∫ k∏
j=1

( sj−1∏
r=1

dt(j)r

t(j)r

)
dt(j)sj

1− t(j)sj
,

where the integral is over the simplex

1 > t
(1)
1 > · · · > t

(1)
s1 > · · · > t

(k)
1 > · · · > t

(k)
sk > 0,

and is abbreviated by∫ 1

0

k∏
j=1

asj−1b, a =
dt

t
, b =

dt

1− t
. (30)

Using t 7→ 1 − t at each level switches the forms a
and b, yielding the duality formula

ζ(s1 +2, {1}r1, . . . , sn+2, {1}rn)
= ζ(rn+2, {1}sn, . . . , r1 +2, {1}s1), (31)

for all si, ri ∈ N. Then s1 = 0, r1 = 1 = n is (2).

• More generally, (4) can be restated as∫ 1

0
(ab2)n =

∫ 1

0
(a2b)n

and (4) is recovered with sj ≡ 0, rj ≡ 1 in (31).
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D. ZAGIER’S CONJECTURE

For r ≥ 1 and n1, . . . , nr ≥ 1, consider:

L(n1, . . . , nr;x) :=
∑

0<mr<...<m1

xm1

m
n1
1 . . . mnr

r
.

Thus

L(n;x) =
x

1n
+

x2

2n
+

x3

3n
+ · · ·

is the classical polylogarithm, while

L(n, m;x) =
1

1m

x2

2n
+ (

1

1m
+

1

2m
)

x3

3n
+ (

1

1m
+

1

2m
+

1

3m
)

x4

4n

+ · · · ,

L(n, m, l;x) =
1

1l

1

2m

x3

3n
+ (

1

1l

1

2m
+

1

1l

1

3m
+

1

2l

1

3m
)

x4

4n
+ · · · .

• The series converge absolutely for |x| < 1 and

conditionally on |x| = 1 unless n1 = x = 1.
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These polylogarithms

L(nr, . . . , n1;x) =
∑

0<m1<...<mr

xmr

mnr
r . . . m

n1
1

,

are determined uniquely by the differential equa-

tions

d

dx
L(nr, . . . , n1;x) =

1

x
L(nr − 1, . . . , n2, n1;x)

if nr ≥ 2 and

d

dx
L(nr, . . . , n2, n1;x) =

1

1− x
L(nr−1, . . . , n1;x)

if nr = 1 with the initial conditions

L(nr, . . . , n1; 0) = 0

for r ≥ 1 and

L(∅;x) ≡ 1.
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Set s := (s1, s2, . . . , sN). Let {s}n denotes concate-

nation, and w :=
∑

si.

Then every periodic polylogarithm leads to a function

Ls(x, t) :=
∑
n

L({s}n;x)twn

which solves an algebraic ordinary differential equa-

tion in x, and leads to nice recurrences.

A. In the simplest case, with N = 1, the ODE is

DsF = tsF where

Ds :=
(
(1− x)

d

dx

)1 (
x

d

dx

)s−1

and the solution (by series) is a generalized hyperge-

ometric function:

Ls(x, t) = 1 +
∑

n≥1

xn ts

ns

n−1∏

k=1

(
1 +

ts

ks

)
,

as follows from considering Ds(xn).
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B. Similarly, for N = 1 and negative integers

L−s(x, t) := 1 +
∑

n≥1

(−x)n ts

ns

n−1∏

k=1

(
1 + (−1)k ts

ks

)
,

and L−1(2x− 1, t) solves a hypergeometric ODE.

I Indeed

L−1(1, t) =
1

β(1 + t
2, 1

2 − t
2)

.

C. We may obtain ODEs for eventually periodic Euler

sums. Thus, L−2,1(x, t) is a solution of

t6 F = x2(x− 1)2(x + 1)2 D6F

+ x(x− 1)(x + 1)(15x2 − 6x− 7)D5F

+ (x− 1)(65x3 + 14x2 − 41x− 8)D4F

+ (x− 1)(90x2 − 11x− 27)D3F

+ (x− 1)(31x− 10)D2F + (x− 1)DF.
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• This leads to a four-term recursion for F =
∑

cn(t)xn

with initial values c0 = 1, c1 = 0, c2 = t3/4, c3 =

−t3/6, and the ODE can be simplified.

We are now ready to prove Zagier’s conjecture. Let

F (a, b; c;x) denote the hypergeometric function. Then:

Theorem 1 (BBGL) For |x|, |t| < 1 and integer n ≥
1

∞∑

n=0

L(3,1,3,1, . . . ,3,1︸ ︷︷ ︸
n−fold

;x) t4n

= F

(
t(1 + i)

2
,
−t(1 + i)

2
; 1;x

)
(17)

× F

(
t(1− i)

2
,
−t(1− i)

2
; 1;x

)
.
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Proof. Both sides of the putative identity start

1 +
t4

8
x2 +

t4

18
x3 +

t8 + 44t4

1536
x4 + · · ·

and are annihilated by the differential operator

D31 :=
(
(1− x)

d

dx

)2 (
x

d

dx

)2
− t4 .

QED

• Once discovered — and it was discovered af-

ter much computational evidence — this can be

checked variously in Mathematica or Maple (e.g.,

in the package gfun)!

Corollary 2 (Zagier Conjecture)

ζ(3,1,3,1, . . . ,3,1︸ ︷︷ ︸
n−fold

) =
2π4n

(4n + 2)!
(18)
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Proof. We have

F (a,−a; 1; 1) =
1

Γ(1− a)Γ(1 + a)
=

sinπa

πa

where the first equality comes from Gauss’s evalua-

tion of F (a, b; c; 1).

Hence, setting x = 1, in (17) produces

F

(
t(1 + i)

2
,
−t(1 + i)

2
; 1; 1

)
F

(
t(1− i)

2
,
−t(1− i)

2
; 1; 1

)

=
2

π2t2
sin

(
1 + i

2
πt

)
sin

(
1− i

2
πt

)

=
coshπt− cosπt

π2t2
=

∞∑

n=0

2π4nt4n

(4n + 2)!

on using the Taylor series of cos and cosh. Comparing

coefficients in (17) ends the proof. QED
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I What other deep Clausen-like hypergeometric fac-

torizations lurk within?

• If one suspects that (2) holds, once one can com-

pute these sums well, it is easy to verify many

cases numerically and be entirely convinced.

♠ This is the unique non-commutative analogue of

Euler’s evaluation of ζ(2n).
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For alternations we add the differential form
c := −dt/(1 + t) to obtain the generating function

∞∑
n=1

z3nζ({2,1}n) =

∞∑
n=0

{
z6n+3

∫ 1

0
(ac2ab2)nac2 + z6n+6

∫ 1

0
(ac2ab2)6n+6

}
.

A lengthy calculation shows the only changes of
variables preserving [0,1] and sending the non- com-
mutative polynomial ring Q⟨a, b⟩ into Q⟨a, b, c⟩ are

S(a, b) = S(a, b), t 7→ t, (32)

S(a, b) = R(b, a), t 7→ 1− t,

(33)

S(a, b) = S(2a, b+ c), t 7→ t2, (34)

S(a, b) = S(a+ c, b− c), t 7→
2t

1+ t
,

(35)

S(a, b) = S(a+2c,2b− 2c), t 7→
4t

(1 + t)2
,

(36)

and compositions thereof, such as
t 7→ 1− 2t/(1 + t) = (1− t)/(1 + t), etc.

38



• In (32)–(36), S(a, b) denotes a non-commutative

word on the alphabet {a, b} and R(b, a) denotes

the word formed by switching a and b and then

reversing the order of the letters.

Now view a, b and c as indeterminates. In light of

the polynomial identity

ab2 − 8ac2 = 2[ab2 − 2a(b+ c)2]

+ 8[ab2 − (a+ c)(b− c)2]

+ [(a+2c)(2b− 2c)2 − ab2]

in the non-commutative ring Z⟨a, b, c⟩ and the trans-

formations (34), (35) and (36) above, each brack-

eted term vanishes after the identifications a = dt/t,

b = dt/(1− t), c = −dt/(1+ t) and perform the req-

uisite iterated integrations.

Thus,

ζ(2,1)− 8ζ(2,1) =
∫ 1

0
ab2 − 8

∫ 1

0
ac2 = 0

which in light of (2) proves (5). c⃝
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5.7. Triple Integrals II

By expanding the integrands in geometric series and
integrating term by term,

ζ(2,1) = 8
∫ 1

0

dx

x

∫ x
0

y dy

1− y2

∫ y
0

z dz

1− z2
.

Now make the change of variable

x dx

1− x2
=

du

1+ u
,

y dy

1− y2
=

dv

1+ v
,

z dz

1− z2
=

dw

1+ w

to obtain the equivalent integral

ζ(2,1)

= 8
∫ ∞

0

(
du

2u
+

du

2(2 + u)
−

du

1+ u

) ∫ u
0

dv

1+ v

∫ v
0

dw

1+ w
.

The two inner integrals can be directly performed,
hence

ζ(2,1) = 4
∫ ∞

0

log2(u+1)

u(u+1)(u+2)
du.

Finally, the substitution u+1 = 1/
√
1− x yields

ζ(2,1) =
1

2

∫ 1

0

log2(1− x)

x
dx = ζ(3),

by (25). c⃝
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5.8. Complex Line Integrals I

Here we apply the Mellin inversion formula

1

2πi

∫ c+i∞
c−i∞

yz
dz

z
=


1, y > 1

0, y < 1
1
2, y = 1

which is valid for fixed c > 0.

It follows that if c > 0 and s−1 > c > 1− t then the

Perron-type formula

ζ(s, t) +
1

2
ζ(s+ t) (37)

=
∞∑
n=1

n−s
∞∑
k=1

k−t
1

2πi

∫ c+i∞
c−i∞

(
n

k

)z
dz

z

=
1

2πi

∫ c+i∞
c−i∞

ζ(s− z)ζ(t+ z)
dz

z
(38)

is valid.
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• We have not yet found a way to exploit (38) in

proving identities such as (2)

We do note that integrating around the rectangular

contour with corners (±c ± iM) and letting M →
+∞, establishes the stuffle formula in the form

ζ(s, t) +
1

2
ζ(s+ t) + ζ(t, s) +

1

2
ζ(t+ s) = ζ(s)ζ(t)

for s, t > 1 + c. The right hand side arises as the

residue contribution of the integrand at z = 0.

• One may also use (38) to establish

∞∑
s=2

[
ζ(s,1) + 1

2ζ(s+1)
]
xs−1 =

∑
n>m>0

x

mn(n− x)

+
1

2

∞∑
n=1

x

n(n− x)
,

but this is easy to prove directly.
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5.9. Complex Line Integrals II

Let λ(s) :=
∑
n>0 λn n

−s be a formal Dirichlet series

with real coefficients λn, and set s := σ + i τ with

σ = ℜ(s) > 0. We consider the following integral:

ιλ(σ) :=
∫ ∞

0

∣∣∣∣∣λ(s)s
∣∣∣∣∣
2

dτ =
1

2

∫ ∞

−∞

∣∣∣∣∣λ(s)s
∣∣∣∣∣
2

dτ, (39)

as a function of λ.

A useful variant of the Mellin inversion formula is∫ ∞

−∞

cos (at)

t2 + u2
dt =

π

u
e−au (40)

for u, a > 0, as follows by contour integration, from

a computer algebra system, or otherwise.

• This leads to:
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Theorem 4 For λ(s) =
∑∞
n=1 λn n

−s and s = σ+i τ

with fixed σ = ℜ(s) > 0 such that the Dirichlet

series is absolutely convergent it is true that

ιλ(σ) =
∫ ∞

0

∣∣∣∣∣λ(s)s
∣∣∣∣∣
2

dτ =
π

2σ

∞∑
n=1

Λ2
n − Λ2

n−1

n2σ
(41)

where Λn :=
∑n
k=1 λk and Λ0 := 0. More generally,

for absolutely convergent Dirichlet series α(s) :=∑∞
n=1 αn n

−s, β(s) :=
∑∞
n=1 βn n

−s

1

2

∫ ∞

−∞

α(s)β(s)

σ2 + τ2
dτ =

π

2σ

∞∑
n=1

AnBn −An−1Bn−1

n2σ
(42)

in which An =
∑n
k=1αk and Bn =

∑n
k=1 βk.

• Note that the right side of (41) is always a gen-

eralized Euler sum.

44



i. For the Riemann zeta function and for σ > 1,

Theorem 4 applies and yields

σ

π
ιζ(σ) = ζ(2σ − 1)−

1

2
ζ(2σ),

as λn = 1 and Λn = n−1/2. By contrast it is known

that on the critical line

1/2

π
ιζ

(
1

2

)
= log(

√
2π)−

1

2
γ.

• There are similar formulae for s 7→ ζ(s−k) with k

integral. For instance, applying (41) with ζ1 :=

t 7→ ζ(t+1) yields

1

π

∫ ∞

0

|ζ(3/2+ iτ)|2

1/4+ τ2
dτ =

1

π
ιζ1

(
1

2

)
= 2 ζ(2,1) + ζ(3)

= 3 ζ(3),

on using (2).
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ii. For the alternating zeta function,
α := s 7→ (1−21−s)ζ(s), the same approach via (42)
produces

1

π

∫ ∞

0

α(3/2+ iτ)α(3/2+ iτ)

1/4+ τ2
dτ =

2 ζ(2,1) + ζ(3) = 3 ζ(2) log(2) −
9

4
ζ(3),

and

1

2π

∫ ∞

−∞

α(3/2+ iτ) ζ(3/2+ iτ)

1/4+ τ2
dτ =

ζ(2,1) + ζ(2,1) + α(3) =
9

8
ζ(2) log(2) −

3

4
ζ(3),

since as we have seen repeatedly ζ(2,1) = ζ(3)/8;
while one can show

ζ(2,1) = ζ(3)−
3

2
ζ(2) log(2)

and

ζ(2,1) =
3

2
ζ(2) log(2)−

13

8
ζ(3).

• As in the previous subsection we have not been
able to directly obtain (5) or even (2), but we
have linked them to quite difficult line integrals.
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5.10. Contour Integrals and Residues

Let Cn (n ∈ Z+) be the square contour with vertices
(±1± i)(n+1/2). Using the asymptotic expansion

ψ(z) ∼ log z −
1

2z
−

∞∑
r=1

B2r

2rz2r
, | arg z| < π

in terms of the Bernoulli numbers

t

1− e−t
= 1+

t

2
+

∞∑
r=1

B2r

(2r)!
t2r, |t| < 2π

and the identity

ψ(z) = ψ(−z)−
1

z
− π cotπz,

we can show that for each integer k ≥ 2,

lim
n→∞

∫
Cn
z−k ψ2(−z) dz = 0.

J&D
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Then by the Cauchy residue theorem, we obtain:

Theorem 5 For every integer k ≥ 2,

2
∞∑
n=1

ψ(n)

nk
= kζ(k+1)− 2γζ(k)

−
k−1∑
j=1

ζ(j)ζ(k − j +1),

where γ = 0.577215664 . . . is Euler’s constant.

In light of the identity

ψ(n) + γ = Hn−1 =
n−1∑
k=1

1

k
, n ∈ Z+,

Theorem 5 is equivalent to (3). The case k = 2

thus gives (2). c⃝

• Flajolet and Salvy develop the residue approach

more systematically, and apply it to a number

of other Euler sum identities in addition to (3).
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6. Witten Zeta-functions

We recall that for r, s > 1/2:

W(r, s, t) :=
∞∑
n=1

∞∑
m=1

1

nrms (n+m)t

is a Witten ζ-function.∗ Ours are also called Torn-
heim double sums. There is a simple algebraic re-
lation

W(r, s, t) = W(r − 1, s, t+1)+W(r, s− 1, t+1). (43)

This is based on writing

m+ n

(m+ n)t+1
=

m

(m+ n)t+1
+

n

(m+ n)t+1
.

Also

W(r, s, t) = W(s, r, t), (44)

and

W(r, s,0) = ζ(r) ζ(s) while W(r,0, t) = ζ(t, r). (45)

Hence, W(s, s, t) = 2W(s, s− 1, t+1) and so

W(1,1,1) = 2W(1,0,2) = 2 ζ(2,1) = 2 ζ(3)

∗Zagier describes the uses of more general Witten ζ-functions.
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Note the analog to (43), viz.

ζ(s, t) + ζ(t, s) = ζ(s) ζ(t)− ζ(s+ t)

shows W(s,0, s) = 2 ζ(s, s) = ζ2(s) − ζ(2s). Thus,

W(2,0,2) = 2 ζ(2,2) = π4/36− π4/90 = π4/72.

• More generally, recursive use of (43) and (44),

along with initial conditions (45) shows that all

integer W(s, r, t) values are expressible in terms

of double (and single) Euler sums.

Again Γ(s)/(m+n)t =
∫ 1
0(− logσ)t−1 σm+n−1 dσ gives

W(r, s, t) =
1

Γ(t)

∫ 1

0
Lir(σ)Lis(σ)

(− logσ)t−1

σ
dσ.

For example, we recover an analytic proof of

2 ζ(2,1) = W(1,1,1) =
∫ 1

0

ln2(1− σ)

σ
dσ = 2 ζ(3),

Indeed S in the telescoping proof of §2.1 is precisely

W(1,1,1). c⃝
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• We may now discover many analytic as opposed

to algebraic relations.

For example, integration by parts yields

W(r, s+1,1) + W(r+1, s,1) (46)

= Lir+1(1)Lis+1(1) + ζ(r+1) ζ(s+1).

So, in particular, W(s+1, s,1) = ζ2(s+1)/2.

Symbolically, Maple immediately evaluates

W(2,1,1) =
π4

72
,

and while it fails directly with W(1,1,2), we know it

must be a multiple of π4 or equivalently ζ(4); and

numerically obtain

W(1,1,2)

ζ(4)
= .49999999999999999998 . . .
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6.1. The Hilbert Matrix

Letting an := 1/nr and bn := 1/ns, inequality (7) of
Section 1.3 yields

W(r, s,1) ≤ π csc

(
π

p

)
p
√
ζ(pr) q

√
ζ(qs). (47)

Indeed, the constant in (7) is best possible. Set

Rp(s) :=
W((p− 1)s, s,1)

π ζ(ps)

and observe that with

σpn(s) :=
∞∑

m=1

(n/m)−(p−1)s/(n+m) → π csc

(
π

q

)
,

we have

Lp : = lim
s→1/p

(ps− 1)
∞∑
n=1

∞∑
m=1

n−sm−(p−1)s

n+m

= lim
s→1/p

(ps− 1)
∞∑
n=1

1

nps
σpn(s)

= lim
s→1/p

(ps− 1)
∞∑
n=1

{
σ
p
n(s)− π csc (π/q))

}
nps

+ lim
s→1/p

(2s− 1)ζ(ps)π csc

(
π

q

)
= 0+ π csc

(
π

q

)
.
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Setting r := (p− 1)s, s→ 1/p+ we check that

ζ(ps)1/p ζ(qr)1/q = ζ(ps)

and hence the best constant in (47) is the one given.

• In terms of the celebrated infinite Hilbert matrix

H0 := {1/(m+ n)}∞m,n=1

we have actually recovered:

Theorem 6 Let 1 < p, q < ∞ have 1/p+ 1/q = 1.
The Hilbert matrix H0 determines a bounded linear
mapping on the sequence space ℓp with

∥H0∥p,p = lim
s→1/p

W(s, (p− 1)s,1)

ζ(ps)
= π csc

(
π

p

)
.

Proof. Appealing to the isometry between (ℓp)∗

and ℓq, and the evaluation Lp above, we compute
the operator norm of H0 as

∥H0∥p,p = sup
∥x∥p=1

∥H0x∥p

= sup
∥y∥q=1

sup
∥x∥p=1

⟨H0x, y⟩ = π csc

(
π

p

)
.

c⃝
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• A delightful operator-theoretic introduction to

the Hilbert matrix H0 is given by Choi in a Chau-

venet prize winning article.

One may also study the corresponding behaviour of

Hardy’s inequality (8).

For example, setting an := 1/n in (8) and again

denoting Hn =
∑n
k=1 1/k yields

∞∑
n=1

(
Hn

n

)p
≤
(

p

p− 1

)p
ζ(p).

Application of the integral test and the evaluation∫ ∞

1

(
logx

x

)p
dx =

Γ(1+ p)

(p− 1)p+1
,

for p > 1 easily shows the constant in (8) is again

best possible.
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7. A Stirling Number Generating Function

• Following Butzer, we begin with integral (25).

In terms of (unsigned) Stirling numbers of the first
kind (also called Stirling cycle numbers)

(−1)m

m!
logm(1− x) =

∞∑
n=0

u(n,m)
xn

n!

for integer m ≥ 0. This implies

ζ(m+1) =
∫ 1

0

{ ∞∑
n=1

u(n,m)
xn

n!

}
dx

x
=

∞∑
n=1

u(n,m)

n!n
,

for m > 0. Telescoping the known recurrence

u(n,m) = u(n−1,m−1)+(n−1)u(n−1,m), (48)

for 1 ≤ m ≤ n yields

u(n,m) = (n− 1)!

δm,1 +
n−1∑
j=1

u(j,m− 1)

j!

 . (49)

Iterating this gives the representation

ζ(m+1) = ζ(2, {1}m−1)

for m ≥ 1, the m = 2 case of which is (2). c⃝
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The alternating case begins by writing the recur-

rence (48) in the form

u(n+1, k) + (j − n)u(n, k) = u(n, k − 1) + j u(n, k).

Multiply both sides by (−1)n+k+1jk−m−1/(j − n)n,
where 1 ≤ n ≤ j − 1 and k,m ∈ Z+, yielding

(−1)k
{
(−1)n+1 u(n+1, k)

(j − n)n
−

(−1)n u(n, k)

(j − n+1)n−1

}
jk−m−1

=
(−1)n

(j − n)n

{
(−1)k−1 u(n, k − 1)jk−m−1 − (−1)k u(n, k)jk−m

}
.

Now sum on 1 ≤ k ≤ m and 1 ≤ n ≤ j−1, obtaining

m∑
k=1

(−1)k+j u(j, k)

j! jm−k −
1

jm
=

(−1)m+1

(j − 1)!

j−1∑
n=m

(−1)n(j−n−1)!u(n,m).

Finally, sum on j ∈ Z+ to obtain

ζ(m) =
m∑
k=1

∞∑
j=k

(−1)k+j u(j, k)

j! jm−k

=
∞∑

n=m
(−1)n+m u(n,m)

∞∑
j=n+1

(j − 1− n)!

(j − 1)!
.
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Noting that

∞∑
j=n+1

(j − 1− n)!

(j − 1)!
=

∞∑
k=0

k!

(k+ n)!

=
1

n!
2F1(1,1;n+1;1) =

1

(n− 1)! (n− 1)
,

we find that

ζ(m) =
m∑
k=1

∞∑
j=k

(−1)j+k u(j, k)

j! jm−k +
∞∑

n=m

(−1)n+m u(n,m)

(n− 1)! (n− 1)
.

Now employ the recurrence (48) again to get

ζ(m) =
m−2∑
k=1

∞∑
j=k

(−1)j+k u(j, k)

j! jm−k

+
∞∑

j=m−1

(−1)j+m−1 u(j,m− 1)

j! j
+

∞∑
j=m

(−1)j+m u(j,m)

j!

+
∞∑

n=m

(−1)n+m u(n− 1,m)

(n− 1)!
(50)

+
∞∑

n=m

(−1)n+m u(n− 1,m− 1)

(n− 1)! (n− 1)

=
m−2∑
k=1

∞∑
j=k

(−1)j+k u(j, k)

j! jm−k +2
∞∑

j=m−1

(−1)j+m−1 u(j,m− 1)

j! j
.
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Using (49) again, we find that the case m = 3 gives

ζ(3) =
∞∑
j=1

(−1)j u(j,1)

j! j2
+2

∞∑
j=2

(−1)j u(j,2)

j! j

=
∞∑
j=1

(−1)j+1

j3
+2

∞∑
j=2

(−1)j

j! j
(j − 1)!

j−1∑
k=1

u(k,1)

k!

=
∞∑
j=1

(−1)j+1

j3
+2

∞∑
j=2

(−1)j

j2

j−1∑
k=1

1

k

= 2ζ(2,1)− ζ(3),

which easily rearranges to give (14), shown by tele-

scoping to be trivially equivalent to (5). c⃝

M&P
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8. Polylogarithm Identities

8.1. Dilogarithm and Trilogarithm

Consider the power series

J(x) := ζx(2,1) =
∑

n>k>0

xn

n2k
, 0 ≤ x ≤ 1.

In light of (72), we have

J(x) =
∫ x
0

dt

t

∫ t
0

du

1− u

∫ v
0

dv

1− v
=
∫ x
0

log2(1− t)

2t
dt.

Maple readily evaluates∫ x
0

log2(1− t)

2t
dt = ζ(3) +

1

2
log2(1− x) log(x)

(51)

+ log(1− x)Li2(1− x)− Li3(1− x)

where Lis(x) :=
∑∞
n=1 x

n/ns is the classical polylog-
arithm.

• One can also verify (51) by differentiating both
sides by hand, and checking that (51) holds as
x→ 0+.
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Thus,

J(x) = ζ(3) +
1

2
log2(1− x) log(x)

+ log(1− x)Li2(1− x)− Li3(1− x).

Letting x→ 1− gives (2) again. c⃝

In Ramanujan’s Notebooks, we also find that

J(−z) + J(−1/z) = −1
6 log3 z − Li2(−z) log z

+Li3(−z) + ζ(3) (52)

and

J(1− z) = 1
2 log2 z log(z − 1) − 1

3 log3 z

−Li2(1/z) log z − Li3(1/z) + ζ(3). (53)

Putting z = 1 in (52) and employing the well-known

dilogarithm evaluation

Li2(−1) =
∞∑
n=1

(−1)n

n2
= −

π2

12

gives (5). c⃝
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Putting z = 2 in (53) and employing Euler’s dilog-

arithm evaluation

Li2

(
1

2

)
=

∞∑
n=1

1

n2 2n
=
π2

12
−

1

2
log2 2

along with Landen’s trilogarithm evaluation (see

Lewin)

Li3

(
1

2

)
=

∞∑
n=1

1

n3 2n
=

7

8
ζ(3)−

π2

12
log2+

1

6
log3 2

gives (5) again. c⃝

• These evaluations follow from

Li2(x)+Li2(1−x)−log(x) log(1−x) ≡ C = Li2(1)

and a similar trilogarithmic identity.
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Alternatively, differentiation shows that

J(−x) = −J(x)+
1

4
J(x2)+J

(
2x

x+1

)
−
1

8
J

(
4x

(x+1)2

)
.

(54)

Putting x = 1 gives 8J(−1) = J(1) immediately,

i.e. (5). c⃝

• Once the component functions in (54) are known,

the coefficients can be deduced by computing

each term to high precision with a common

transcendental value of x and employing a linear

relations finding algorithm.

We note next a harder (now guided) but more hu-

man method for arriving at (54). First, as in the

section on alternating iterated integrals one deter-

mines the fundamental transformations (32)–(36).
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This is not so difficult but is lengthy. Perform-

ing these transformations on the function J(x), one

finds that

J(x) =
∫ x
0
ab2, J

(
2x

1+ x

)
=
∫ x
0
(a+ c)(b− c)2,

J(−x) =
∫ x
0
ac2, J(x2) =

∫ x
0

2a(b+ c)2,

J

(
4x

(1 + x)2

)
=
∫ x
0
(a+2c)4(b− c)2.

We seek rationals r1, r2, r3 and r4 such that

ac2 = r1ab
2 +2r2 a(b+ c)2 + r3(a+ c)(b− c)2

+ r4(a+2c)4(b− c)2

is an identity in the non-commutative ring Q⟨a, b, c⟩.

Finding such rationals reduces to solving a finite

set of linear equations: comparing coefficients of

ab2 tells us that r1 +2r2 + r3 +4r4 = 0.

Coefficients of other monomials give us additional

equations, and we readily find that r1 = −1, r2 =

1/4, r3 = 1 and r4 = −1/8, thus proving (54) as

expected. c⃝
63



8.2. Convolution of Polylogarithms

For real 0 < x < 1 and integers s and t, consider

Ts,t(x) :=
∞∑

m,n=1
m ̸=n

xn+m

nsmt(m− n)
=

∞∑
m,n=1
m̸=n

xn+m(m− n+ n)

nsmt+1(m− n)

=
∞∑

m,n=1
m̸=n

xn+m

nsmt+1
+

∞∑
m,n=1
m̸=n

xn+m

ns−1mt+1(m− n)

=
∞∑
n=1

xn

ns

∞∑
m=1

(
xm

mt+1
−

xn

nt+1

)
+ Ts−1,t+1(x)

= Lis(x)Lit+1(x)− Lis+t+1(x
2) + Ts−1,t+1(x).

Telescoping this gives

Ts,t(x) = T0,s+t(x)−sLis+t+1(x
2)+

s∑
j=1

Lij(x)Lis+t+1−j(x),

for s ∈ N. With t = 0, this becomes

Ts,0(x) = T0,s(x)−sLis+1(x
2)+

s∑
j=1

Lij(x)Lis+1−j(x).
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But for any integers s and t, there holds

Ts,t(x) =
∞∑

m,n=1
m̸=n

xn+m

ntms(m− n)

= −
∞∑

m,n=1
m̸=n

xn+m

msnt(n−m)
= −Ts,t(x).

Therefore,

Ts,0(x) =
1

2

s∑
j=1

Lij(x)Lis+1−j(x)−
s

2
Lis+1(x

2).

(55)

On the other hand,

Ts,0(x) =
∞∑
n=1

xn

ns

∞∑
m=1
m̸=n

xm

m− n

=
∞∑
n=1

x2n

ns

∞∑
m=n+1

xm−n

m− n
−

∞∑
n=1

xn

ns

n−1∑
m=1

xm

n−m

= Lis(x
2)Li1(x)−

∞∑
n=1

xn

ns

n−1∑
j=1

xn−j

j
.

(56)

• Comparing (56) with (55) gives
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∞∑
n=1

xn

ns

n−1∑
j=1

xn−j

j
=

s

2
Lis+1(x

2)

−
[
Lis(x)− Lis(x

2)
]
Li1(x)−

1

2

s−1∑
j=2

Lij(x)Lis+1−j(x),

(57)

where we now require s > 2 because the terms j = 1
and j = s in (55) were separated, and assumed to
be distinct.

Now for n ∈ N and 0 < x < 1, 1−xn = (1−x)
∑n−1
j=0 x

j

< (1− x)n. Thus, if 2 ≤ s ∈ N and 0 < x < 1, then

0 <
[
Lis(x)− Lis(x

2)
]
Li1(x) = Li1(x)

∞∑
n=1

xn(1− xn)

ns

< (1− x)Li1(x)
∞∑
n=1

xn

ns−1
< (1− x) log2(1− x) → 0,

as x→ 1−, so the limit in (57) gives

ζ(s,1) =
1

2
s ζ(s+1)−

1

2

s−2∑
j=1

ζ(j +1)ζ(s− j),

which is (3). c⃝
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9. Fourier Series

The Fourier expansions

∞∑
n=1

sin(nt)

n
=
π − t

2
and

∞∑
n=1

cos(nt)

n
= − log |2 sin(t/2)|

are both valid in the open interval 0 < t < 2π. Mul-
tiplying these together, simplifying, and using a par-
tial fraction decomposition gives

∞∑
n=1

sin(nt)

n

n−1∑
k=1

1

k
=

1

2

∞∑
n=1

sin(nt)

n

n−1∑
k=1

(
1

k
+

1

n− k

)

=
1

2

∑
n>k>0

sin(nt)

k(n− k)

=
1

2

∞∑
m,n=1

sin(m+ n)t

mn

=
∞∑

m,n=1

sin(mt) cos(nt)

mn

= −
π − t

2
log |2 sin(t/2)| (58)

again for 0 < t < 2π.

• Integrating (58) term by term yields
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∞∑
n=1

cos(nθ)

n2

n−1∑
k=1

1

k
= ζ(2,1) +

1

2

∫ θ
0
(π − t) log |2 sin(t/2)| dt

(59)

valid for 0 ≤ θ ≤ 2π. Likewise for 0 ≤ θ ≤ 2π,

∞∑
n=1

cos(nθ)

n3
= ζ(3) +

∫ θ
0
(θ − t) log |2 sin(t/2)| dt.

(60)

Setting θ = π in (59) and (60) produces

ζ(2,1)− ζ(2,1) = −
1

2

∫ π
0
(π − t) log |2 sin(t/2)| dt

=
ζ(3)− ζ(3)

2
.

In light of (2), this implies

ζ(2,1) =
ζ(3) + ζ(3)

2
=

1

2

∞∑
n=1

1+ (−1)n

n3

=
∞∑

m=1

1

(2m)3
=

1

8
ζ(3),

which is (5). c⃝
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• Much more follows. For example:

Applying Parseval’s equation to (58) leads to the

integral evaluation

1

4π

∫ 2π

0
(π − t)2 log2(2 sin(t/2)) dt =

∞∑
n=1

H2
n

(n+1)2

=
11

4
ζ(4).

• A reason for valuing such integral representa-

tions is that they are frequently easier to use

numerically than the corresponding sums.

L&F
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10. Further Generating Functions

10.1. Hypergeometric Functions

First, ζ(2,1) is the coefficient of xy2 in

G(x, y) : =
∞∑

m=0

∞∑
n=0

xm+1yn+1ζ(m+2, {1}n)

= y
∞∑

m=0

xm+1
∞∑
k=1

1

km+2

k−1∏
j=1

(
1+

y

j

)
(61)

Thus,

y

k

k−1∏
j=1

(
1+

y

j

)
=

(y)k
k!

where (y)k := y(y + 1) · · · (y + k − 1) is the rising
factorial. Substituting this into (61), interchang-
ing order of summation, and summing the resulting
geometric series yields the hypergeometric series

G(x, y) =
∞∑
k=1

(y)k
k!

(
x

k − x

)

= −
∞∑
k=1

(y)k(−x)k
k!(1− x)k

= 1− 2F1

(
y,−x
1− x

∣∣∣∣∣1
)
.
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Now Gauss’s summation theorem for the hyperge-
ometric function and the series expansion for the
logarithmic derivative of the gamma function yield

2F1

(
y,−x
1− x

∣∣∣∣∣1
)
=

Γ(1− x)Γ(1− y)

Γ(1− x− y)

= exp

{ ∞∑
k=2

(
xk + yk − (x+ y)k

) ζ(k)
k

}
.

So, we obtain the generating function equality
∞∑
n=0

∞∑
m=0

xm+1yn+1ζ(m+2, {1}n) (62)

= 1− exp

{ ∞∑
k=2

(
xk + yk − (x+ y)k

) ζ(k)
k

}
.

Extracting coefficients of xy2 from both sides of (62)
yields (2). c⃝

Generalization (3) can be similarly derived: extract
the coefficient of xm−1y2 in (62). Also, the coeffi-
cients of xy2 in Kummer’s summation theorem

2F1

(
x, y

1+ x− y

∣∣∣∣∣− 1

)
=

Γ(1+ x/2)Γ(1 + x− y)

Γ(1 + x)Γ(1 + x/2− y)

yields (5). c⃝
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10.2. A Generating Function for Sums

Identity (2) also follows by setting x = 0 in the next

unlikely identity:

Theorem 7 If x is any complex number not equal

to a positive integer, then

∞∑
n=1

1

n(n− x)

n−1∑
m=1

1

m− x
=

∞∑
n=1

1

n2(n− x)
.

Proof. Fix x ∈ C \ Z+. Let Sx denote the left hand
side. By partial fractions,

Sx =
∞∑
n=1

n−1∑
m=1

(
1

n(n−m)(m− x)
−

1

n(n−m)(n− x)

)

=
∞∑

m=1

1

m− x

∞∑
n=m+1

1

n(n−m)
−

∞∑
n=1

1

n(n− x)

n−1∑
m=1

1

n−m

=
∞∑

m=1

1

m(m− x)

∞∑
n=m+1

(
1

n−m
−

1

n

)
−

∞∑
n=1

1

n(n− x)

n−1∑
m=1

1

m
.
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Now for fixed m ∈ Z+,

∞∑
n=m+1

(
1

n−m
−

1

n

)
= lim

N→∞

N∑
n=m+1

(
1

n−m
−

1

n

)

=
m∑
n=1

1

n
− lim
N→∞

m∑
n=1

1

N − n+1

=
m∑
n=1

1

n
,

since m is fixed. Therefore, we have

Sx =
∞∑

m=1

1

m(m− x)

m∑
n=1

1

n
−

∞∑
n=1

1

n(n− x)

n−1∑
m=1

1

m

=
∞∑
n=1

1

n(n− x)

( n∑
m=1

1

m
−

n−1∑
m=1

1

m

)
=

∞∑
n=1

1

n2(n− x)
.

c⃝

Theorem 7 is equivalent to the Ohno-Granville sum

formula∑∑
ai=s
ai≥0

ζ(a1+2, a2+1, . . . , ar+1) = ζ(r+s+1), (63)

valid for all integers s ≥ 0, r ≥ 1.
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10.3. An Alternating Generating Function

An alternating counterpart to Theorem 7 is:

Theorem 8 For all non-integer x
∞∑
n=1

(−1)n

n2 − x2

{
Hn +

∞∑
n=1

x2

n(n2 − x2)

}
=

∞∑
n=1

(−1)n

n2 − x2

{
ψ(n)− ψ(x)−

π

2
cot(πx)−

1

2x

}
=

∞∑
o>0odd

1

o (o2 − x2)
+

∞∑
n=1

(−1)n n

(n2 − x2)2

=
∞∑

e>0even

e

(x2 − e2)2
− x2

∞∑
o>0odd

1

o (x2 − o2)2
.

Setting x = 0 reproduces (5) in the form

ζ(2,1) =
∞∑
n>0

1

(2n)3
.
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We record that
∞∑
n=1

(−1)n

n2 − x2
=

1

2x2
−

π

2x sin(πx)
,

while

∞∑
n=1

(−1)n

n2 − x2

{
ψ(n)− ψ(x)−

π

2
cot(πx)−

1

2x

}

=
∞∑
n=1

(−1)n

n2 − x2

{
Hn+

∞∑
n=1

x2

n(n2 − x2)

}

=
∞∑
n=1

1

(2n− 1)((2n− 1)2 − x2)
+

∞∑
n=1

n(−1)n

(n2 − x2)2
.

D&R
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10.4. The Digamma Function

Define an auxiliary function Λ by

xΛ(x) := 1
2ψ

′(1− x)− 1
2 (ψ(1− x) + γ)2 − 1

2ζ(2).

(64)

It is easy to verify that

ψ(1− x) + γ =
∞∑
n=1

x

n(x− n)
,

ψ′(1− x)− ζ(2) =
∞∑
n=1

(
1

(x− n)2
−

1

n2

)
(65)

=
∞∑
n=1

2nx− x2

n2(n− x)2
,

and

∞∑
n=0

ζ(n+2,1)xn =
∞∑
n=1

1

n(n− x)

n−1∑
m=1

1

m
.

Hence,

Λ(x) =
∞∑
n=1

1

n2(n− x)
−x

∞∑
n=1

1

n(n− x)

n−1∑
m=1

1

m(m− x)
.
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Now,

∞∑
n=1

1

n2(n− x)
− x

∞∑
n=1

1

n(n− x)

n−1∑
m=1

1

m(m− x)

=
∞∑
n=1

1

n(n− x)

n−1∑
m=1

1

m

is directly equivalent to Theorem 7, and we have

proven

Λ(x) =
∞∑
n=0

ζ(n+2,1)xn,

so that comparing coefficients yields yet another

proof of Euler’s reduction (3).

In particular, setting x = 0 again produces (2). c⃝

K&K
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10.5. The Beta Function

The beta function is defined for positive real x and
y by

B(x, y) :=
∫ 1

0
tx−1(1− t)y−1 dt =

Γ(x)Γ(y)

Γ(x+ y)
.

We begin with the following easily obtained gener-
ating function:

∞∑
n=1

tnHn = −
log(1− t)

1− t

For m ≥ 2, the Laplace integral (24) now gives

ζ(m,1) =
(−1)m

(m− 1)!

∫ 1

0

logm−1(t) log(1− t)

1− t
dt

=
(m− 1)(−1)m

2(m− 1)!

∫ 1

0
logm−2(t) log2(1− t)

dt

t

=
(−1)m

2(m− 2)!
b
(m−2)
1 (0), (66)

where in terms of (64)

b1(x) :=
∂2

∂y2
B(x, y)

∣∣∣∣∣
y=1

= 2Λ(−x).
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Since

∂2

∂y2
B(x, y) = B(x, y)

×
[
(ψ(y)− ψ(x+ y))2 + ψ′(y)− ψ′(x+ y)

]
,

we derive

b1(x) =
(ψ(1)− ψ(x+1))2 + ψ′(1)− ψ′(x+1)

x
.

Now observe that from (66),

ζ(2,1) =
1

2
b1(0) = lim

x↓0
(−γ − ψ(x+1))2

2x

− lim
x↓0

ψ′(x+1)− ψ′(1)

2x
= −

1

2
ψ′′(1)

= ζ(3).

c⃝

• (66) is well suited to symbolic computation

We also note the pleasing identity

ψ′(x) =
Γ′′(x)

Γ(x)
− ψ2(x) (67)

In some informal sense (67) generates (3), but we
have been unable to make this sense precise.
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Continuing, from the following two identities, cog-

nate to (65)

(−γ − ψ(x+1))2 =

( ∞∑
m=1

(−1)mζ(m+1)xm
)2

=
∞∑

m=1

(−1)m
m−1∑
k=1

ζ(k+1)ζ(m− k+1)xm,

ζ(2)− ψ′(x+1) =
∞∑

m=1

(−1)m+1(m+1)ζ(m+2)xm,

we get

b1(x) = 2
∞∑

m=2

(−1)mζ(m,1)xm−2

=
∞∑

m=2

b(m−2)
1 (0)

(m− 2)!
xm−2 =

∞∑
m=1

(−1)m−1

(
(m+1)ζ(m+2)−

m−1∑
k=1

ζ(k+1)ζ(m− k+1)

)
xm−1,

from which Euler’s reduction (3) follows—indeed

this is close to Euler’s original path.
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11. A Decomposition Formula of Euler

For positive integers s and t and distinct non-zero

real numbers α and x, the partial fraction expansion

1

xs(x− α)t
= (−1)t

s−1∑
r=0

(t+ r − 1

t− 1

) 1

xs−rαt+r
(68)

+
t−1∑
r=0

(s+ r − 1

s− 1

) (−1)r

αs+r(x− α)t−r

implies Euler’s decomposition formula

ζ(s, t) = (−1)t
s−2∑
r=0

(t+ r − 1

t− 1

)
ζ(s− r, t+ r)

+
t−2∑
r=0

(−1)r
(s+ r − 1

s− 1

)
ζ(t− r)ζ(s+ r)

− (−1)t
(s+ t− 2

s− 1

){
ζ(s+ t) + ζ(s+ t− 1,1)

}
. (69)

The depth-2 sum formula (18) is obtained by setting

t = 1 in (69).

If we also set s = 2, the identity (2) results. c⃝
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To derive (69) from (68), separate the last terms
of sums on the right side of (68), obtaining

1

xs(x− α)t
= (−1)t

s−2∑
r=0

(t+ r − 1

t− 1

) 1

xs−rαt+r

+
t−2∑
r=0

(s+ r − 1

s− 1

) (−1)r

αs+r(x− α)t−r

− (−1)t
(s+ t− 2

s− 1

) 1

αs+t−1

(
1

x− α
−

1

x

)
.

Now sum over all integers 0 < α < x <∞. c⃝

• Nielsen states (68) which Markett proves by in-
duction. One may directly expand the left side
into partial fractions using residue calculus.

Alternatively, apply the partial derivative operator

1

(s− 1)!

(
−

∂

∂x

)s−1 1

(t− 1)!

(
−

∂

∂y

)t−1

to the identity

1

xy
=

1

(x+ y)x
+

1

(x+ y)y
,

and then set y = α− x to obtain (68).
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12. Equating Shuffles and Stuffles

We begin with an informal argument. By the
stuffle multiplication rule (‘sum’)

ζ(2)ζ(1) = ζ(2,1) + ζ(1,2) + ζ(3). (70)

On the other hand, the shuffle multiplication rule
(‘integral’) gives ab b = 2abb+ bab, whence

ζ(2)ζ(1) = 2ζ(2,1) + ζ(1,2). (71)

The identity (2) now follows immediately on sub-
tracting (70) from (71). c⃝

• This needs help—we cancelled divergent series.

To make the argument rigorous, we introduce
the multiple polylogarithm. For 0 ≤ x ≤ 1 and posi-
tive integers s1, . . . , sk with x = s1 = 1 excluded for
convergence, define

ζx(s1, . . . , sk) :=
∑

n1>···>nk>0

xn1
k∏

j=1

n
−sj
j (72)

=
∫ k∏
j=1

( sj−1∏
r=1

dt
(j)
r

t
(j)
r

)
dt

(j)
sj

1− t
(j)
sj

,
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where the integral is over the simplex

x > t
(1)
1 > · · · > t

(1)
s1 > · · · > t

(k)
1 > · · · > t

(k)
sk > 0,

and is abbreviated by∫ x
0

k∏
j=1

asj−1b, a =
dt

t
, b =

dt

1− t
. (73)

Then

ζ(2)ζx(1) =
∑
n>0

1

n2

∑
k>0

xk

k

=
∑

n>k>0

xk

n2k
+

∑
k>n>0

xk

kn2
+

∑
k>0

xk

k3
,

and

ζx(2)ζx(1) =
∫ x
0
ab
∫ x
0
b =

∫ x
0

(2abb+ bab)

= 2ζx(2,1) + ζx(1,2).

Subtracting the two equations gives

[
ζ(2)−ζx(2)

]
ζx(1) = ζx(3)−ζx(2,1)+

∑
n>k>0

xk − xn

n2k
.
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We now take the limit as x → 1 − . Uniform con-

vergence implies the right hand side tends to ζ(3)−
ζ(2,1). That the left hand side tends to zero follows

immediately from the inequalities

0 ≤ x
[
ζ(2)− ζx(2)

]
ζx(1)

= x
∫ 1

x
log(1− t) log(1− x)

dt

t

≤
∫ 1

x
log2(1− t) dt

= (1− x)
{
1+ (1− log(1− x))2

}
.

c⃝

The alternating case (5) is actually easier in this

approach, since the divergent sum ζ(1) is replaced

by the conditionally convergent sum ζ(1) = − log 2.

By the stuffle multiplication rule,

ζ(2)ζ(1) = ζ(2,1) + ζ(1,2) + ζ(3), (74)

ζ(2)ζ(1) = ζ(2,1) + ζ(1,2) + ζ(3). (75)
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On the other hand, the shuffle multiplication rule

gives ac c = 2ac2 + cac and ab c = abc+ acb+ cab,

whence

ζ(2)ζ(1) = 2ζ(2,1) + ζ(1,2), (76)

ζ(2)ζ(1) = ζ(2,1) + ζ(2,1) + ζ(1,2). (77)

Comparing (74) with (76) and (75) with (77) yields

the two equations

ζ(2,1) = ζ(1,2) + 2ζ(2,1)− ζ(1,2)− ζ(3),

ζ(2,1) = ζ(1,2)− ζ(1,2) + ζ(3).

Subtracting the latter two equations yields

2ζ(2,1) = ζ(3) + ζ(3),

i.e. (14), which was shown to be trivially equivalent

to (5) in by telescoping. c⃝
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13. Conclusion

There are doubtless other roads to Rome, and as

indicated in the introduction we should like to learn

of them.

We finish with the three open questions we are most

desirous of answers to.

• A truly combinatorial proof of ζ(2,1) = ζ(3).

• A direct proof that the appropriate line integrals

in Sections 5.8 and 5.9 evaluate to the appro-

priate multiples of ζ(3).

• An analytic or combinatoric proof of (6), or of

at least some additional cases of it, say n = 2,3

of:

8nζ({2,1}n) ?
= ζ({3}n), n ∈ Z+. (78)
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