## Digitally-assisted Discovery and Proof

## ICMI Study 19 <br> Proof and Proving in Mathematics Education (National Taiwan Normal University, May 10-15, 2009)

Jonathan Borwein, FRSC www.cs.dal.ca/~jborwein
 Canada Research Chair in Collaborative Technology Laureate Professor University of Newcastle, NSW

"intuition comes to us much earlier and with much less outside influence than formal arguments which we cannot really understand unless we have reached a relatively high level of logical experience and sophistication.

Therefore, I think that in teaching high school age youngsters we should emphasize intuitive insight more than, and long before, deductive reasoning." George Polya


## New ICMI Website



## Welcome

"What's New?" Archives »
"Mathematical proofs like diamonds should be hard and clear, and will be touched with nothing but strict reasoning." - John Locke
"Keynes distrusted intellectual rigour of the Ricardian type as likely to get in the way of original thinking and saw that it was not uncommon to hit on a valid conclusion before finding a logical path to it." - Sir Alec Cairncross, 1996

## ABSTRACT



Jonathan M. Borwein
Dalhousie and
Director Newcastle Centre for
Computer Assisted Research Mathematics and its Applications (CARMA)

I will argue that the mathematical community (appropriately defined) is facing a great challenge to re-evaluate the role of proof in light of the power of current computer systems, of modern mathematical computing packages and of the growing capacity to data-mine on the internet. With great challenges come great opportunities. I intend to illustrate the current challenges and opportunities for the learning and doing of mathematics.
"The object of mathematical rigor is to sanction and legitimize the conquests of intuition, and there was never any other object for it." - Jacques Hadamard


## THE COMPUTER AS CRUCIBLE <br> AN INTRODUCTION TO EXPERIMENTAL MATHEMATICS




## OUTLINE

- Working Definitions of:
- Discovery
- Proof
- Digital-Assistance
- Five (Tertiary) Core Examples:
" Number Theory: What is that number?
- Calculus: Why Pi is really not 22/7.
- Algebra: Making abstract algebra concrete.
- Physics: A more advanced foray into mathematical physics.
- Geometry: dynamics I can visualize but have no proof of.
- Making Some Tacit Conclusions Explicit
- Additional Examples (as time permits)
- Integer Relation Algorithms
- Wilf-Zeilberger Summation
"discovering a truth has three components. First, there is the independence requirement, which is just that one comes to believe the proposition concerned by one's own lights, without reading it or being told. Secondly, there is the requirement that one comes to believe it in a reliable way. Finally, there is the requirement that one's coming to believe it involves no violation of one's epistemic state. ...
In short, discovering a truth is coming to believe it in an independent, reliable, and rational way."

Marcus Giaquinto, Visual Thinking in Mathematics. An Epistemological Study, p. 50, OUP 2007

> "All truths are easy to understand once they are discovered; the point is to discover them." - Galileo Galilei

## Galileo was not alone in this view

"I will send you the proofs of the theorems in this book. Since, as I said, I know that you are diligent, an excellent teacher of philosophy, and greatly interested in any mathematical investigations that may come your way, I thought it might be appropriate to write down and set forth for you in this same book a certain special method, by means of which you will be enabled to recognize certain mathematical questions with the aid of mechanics. I am convinced that this is no less useful for finding proofs of these same theorems.
For some things, which first became clear to me by the mechanical method, were afterwards proved geometrically, because their investigation by the said method does not furnish an actual demonstration. For it is easier to supply the proof when we have previously acquired, by the method, some knowledge of the questions than it is to find it without any previous knowledge."

Archimedes to Eratosthenes in introduction to The Method in
Mario Livio, Is God a Mathematician? Simon and Schuster, 2009

## The Archimedes Palimpsest

- 1906 10th-century palimpsest was discovered in Constantinople (Codex C). 1998 bought at auction for $\$ 2$ million1998-2008 "reconstructed"
- contained works of Archimedes that, sometime before April 14th 1229, were partially erased, cut up, and overwritten by religious text
- after 1929 painted over with gold icons and left in a wet bucket in a garden. It included bits of 7 texts such as On Floating Bodies and of the Method of Mechanical Theorems, thought lost
- Archimedes used knowledge of levers and centres of gravity to envision ways of balancing geometric figures against one another which allowed him to compare their areas or volumes. He then used rigorous geometric argument to prove Method discoveries:
"... certain things first became clear to me by a mechanical method, although they had to be proved by geometry afterwards because their investigation by the said method did not furnish an actual proof. But it is of course easier, when we have previously acquired, by the method, some knowledge of the questions, to supply the proof than it is to find it without any previous knowledge." (The Method)
- Used Moore-Penrose inverses to reconstruct text and extract forgeries. See 2006 Google lecture at



## WHAT is a PROOF?

"PROOF, $n$. a sequence of statements, each of which is either validly derived from those preceding it or is an axiom or assumption, and the final member of which, the conclusion , is the statement of which the truth is thereby established. A direct proof proceeds linearly from premises to conclusion; an indirect proof (also called reductio ad absurdum) assumes the falsehood of the desired conclusion and shows that to be impossible. See also induction, deduction, valid. "

Borowski \& JB, Collins Dictionary of Mathematics
INDUCTION , n. 3. (Logic) a process of reasoning in which a general conclusion is drawn from a set of particular premises, often drawn from experience or from experimental evidence. The conclusion goes beyond the information contained in the premises and does not follow necessarily from them. Thus an inductive argument may be highly probable yet lead to a false conclusion; for example, large numbers of sightings at widely varying times and places provide very strong grounds for the falsehood that all swans are white.
"No. I have been teaching it all my life, and I do not want to have my ideas upset." - Isaac Todhunter (1820-1884) recording Maxwell's response when asked whether he would like to see an experimental demonstration of conical refraction.

## Decide for yourself



## WHAT is DIGITAL ASSISTANCE?

- Use of Modern Mathematical Computer Packages
- Symbolic, Numeric, Geometric, Graphical, ...
- Use of More Specialist Packages or General Purpose Languages
- Fortran, C++, CPLEX, GAP, PARI, MAGMA, ...
- Use of Web Applications
- Sloane's Encyclopedia, Inverse Symbolic Calculator, Fractal Explorer, Euclid in Java, Weeks' Topological Games, ...
- Use of Web Databases
- Google, MathSciNet, ArXiv, JSTOR, Wikipedia, MathWorld, Planet Math, DLMF, MacTutor, Amazon, ..., Wolfram Alpha (??)
- All entail data-mining ["exploratory experimentation" and "widening technology" as in pharmacology, astrophysics, biotech... (Franklin)]
- Clearly the boundaries are blurred and getting blurrier
- Judgments of a given source's quality vary and are context dependent
"Knowing things is very 20th century. You just need to be able to find things."
- Danny Hillis
- on how Google has already changed how we think in Achenblog, July 12008 - changing cognitive styles


## Changing User Experience and Expectations

## What is attention? (Stroop test, 1935)

| white green brown |
| :--- |
| green brown white |
| browh green red |
| red white green |
| bromin mhite red |
| white browh red |
| red brown green |

1. Say the color represented by the word.
2. Say the color represented by the font color.

High (young) multitaskers perform \#2 very easily. They are great at suppressing information.

## http://www.snre.umich.edu/eplab/demos/st0/stroop program/stroopgraphicnonshockwave.gif

Acknowledgements: Cliff Nass, CHIME lab, Stanford (interference and twitter?)

## Jon Borwein's Mathematics Portal

The following is a list of useful math tools. The distinction between categories is somewhat arbitrary.

## Utilities (General)

1. The On-Line Encyclopedia of Integer Sequences
2. ISC2.0: The Inverse Symbolic Calculator
3. 3D Function Grapher
4. Julia and Mandelbrot Set Explorer
5. The KnotPlot Site

## Utilities (Special)

6. EZ Face : Evaluation of Euler Sums and Multiple Zeta Values
7. GraPHedron: Automated and Computer Assisted Conjectures in Graph Theory
8. Embree-Trefethen-Wright Pseudospectra and Eigenproblems
9. Symbolic and Numeric Convex Analysis Tools

## Reference

10. NIST Digital Library of Mathematical Functions(X)
11. Experimental Mathematics Website
12. Numbers, Constants, and Computation
13. Numbers: the Competition
14. The Prime Pages

## Experimental Mathodology

1. Gaining insight and intuition
2. Discovering new relationships
3. Visualizing math principles
4. Testing and especially falsifying conjectures
5. Exploring a possible result to see if it merits formal proof
6. Suggesting approaches for formal proof
7. Computing replacing lengthy hand derivations
8. Confirming analytically derived results

## Example 1. What is that number? (1995-- 2008)

In I995 or so Andrew Granville emailed me the number

$$
\alpha:=1.433127426722312 \ldots
$$

and challenged me to identify it (our inverse calculator was new in those days).

Changing representations, I asked for its continued fraction? It was

$$
\begin{equation*}
[1,2,3,4,5,6,7,8,9,10,11, \ldots] \tag{1}
\end{equation*}
$$

I reached for a good book on continued fractions and found the answer

$$
\alpha=\frac{I_{0}(2)}{I_{1}(2)}
$$

where $I_{0}$ and $I_{1}$ are Bessel functions of the first kind. (Actually I knew that all arithmetic continued fractions arise in such fashion).

In 2009 there are at least three other strategies:

- Given (1), type "arithmetic progression", "continued fraction" into Google
- Type 1,4,3,3,1,2,7,4,2 into Sloane's Encyclopaedia of Integer Sequences I illustrate the results on the next two slides:


## In Google on October 152008 the first three hits were

## Continued Fraction Constant -- from Wolfram MathWorld

- 3 visits - 14/09/07Perron (1954-57) discusses continued fractions having terms even more general than the arithmetic progression and relates them to various special functions. ... mathworld.wolfram.com/ContinuedFractionConstant.html - 31k


## HAKMEM -- CONTINUED FRACTIONS -- DRAFT, NOT YET PROOFED

The value of a continued fraction with partial quotients increasing in arithmetic progression is I (2/D) A/D [A+D, A+2D, A+3D, .... www.inwap.com/pdp10/hbaker/hakmem/cf.html - 25k-

On simple continued fractions with partial quotients in arithmetic ...
0 . This means that the sequence of partial quotients of the continued fractions under. investigation consists of finitely many arithmetic progressions (with ...
www.springerlink.com/index/C0VXH713662G1815.pdf - by P Bundschuh - 1998

Moreover the MathWorld entry includes

$$
[A+D, A+2 D, A+3 D, \ldots]=\frac{I_{A / D}\left(\frac{2}{D}\right)}{I_{1+A / D}\left(\frac{2}{D}\right)}
$$

# Example 1: In the Integer Sequence Data Base 

# ATAT Integer Sequences research <br> Greetings from The On-Line Encyclopedia of Integer Sequences! 

```
1,4,3,3,1,2,7,4,2
Search
search: \(1,4,3,3,1,2,7,4,2\) Displaying \(1-1\) of 1 results found

Format: long | short | internal | text Sort: relevance | references | number Highlight: on | off A060997 Dedimal representation of continued fraction \(1,2,3,4,5,6,7, \ldots\)


\section*{The Inverse Calculator returns}
- We show the ISC on another number next
- Most functionality of ISC is built into "identify" in Maple
"The price of metaphor is eternal vigilance." - Arturo Rosenblueth \& Norbert Wiener quoted by R. C. Leowontin, Science p.1264, Feb 16, 2001 [Human Genome Issue].

Calculator (ISC) uses a combination of lookup tables and integer relation algorithms in order to associate with a user-defined, truncated decimal expansion (represented as a floating point expression) a closed form representation for the real number.
[10)Drive

\section*{NSERC CRSMG \\ Maplesoft}


Standard lookup results for \(\mathbf{1 2 . 5 8 7 8 8 6 2 2 9 5 4 8 4 0 3 8 5 4}\)

accepts either floating point expressions or correct Maple syntax as input. However, for Maple syntax requiring too long for
evaluation, a timeout has been implemented.

Visit
Jon Bonwein's
Webpage
David Bailey's Webpage

Math Resources Portal

19.99909998 Tryit!

- ISC+ runs on Glooscap
- Less lookup \& more algorithms than 1995

\section*{Example 2. Pi and 22/7 (Year dot through 2008)}

The following integral was made popular in a 1971 Eureka article
\[
0<\int_{0}^{1} \frac{(1-x)^{4} x^{4}}{1+x^{2}} \mathrm{~d} x=\frac{22}{7}-\pi
\]
- Set on a 1960 Sydney honours final it perhaps originated in 1941 with the author of the 1971 article [Dalzeil did not reference himself!]
Why trust the evaluation? Well Maple and Mathematica both 'do it'
- A better answer is to ask Maple for
- It will return
\[
\int_{0}^{t} \frac{(1-x)^{4} x^{4}}{1+x^{2}} d x
\]
\[
\int_{0}^{t} \frac{x^{4}(1-x)^{4}}{1+x^{2}} \mathrm{~d} x=\frac{1}{7} t^{7}-\frac{2}{3} t^{6}+t^{5}-\frac{4}{3} t^{3}+4 t-4 \arctan (t)
\]
and now differentiation and the Fundamental theorem of calculus proves the result.
- Not a conventional proof but a totally rigorous one. (An 'instrumental use' of the computer)

\section*{Example 3. Multivariate Zeta Values}

In April 1993, Enrico Au-Yeung, then an undergraduate at the University of Waterloo, brought to my attention the result
\[
\sum_{k=1}^{\infty}\left(1+\frac{1}{2}+\cdots+\frac{1}{k}\right)^{2} k^{-2}=4.59987 \ldots \approx \frac{17}{4} \zeta(4)=\frac{17 \pi^{4}}{360}
\]

I was very skeptical, but Parseval's identity computations affirmed this to high precision. This is a effectively a special case of the following class:
\[
\zeta\left(s_{1}, s_{2}, \cdots, s_{k}\right)=\sum_{n_{1}>n_{2}>\cdots>n_{k}>0} \prod_{j=1}^{k} n_{j}^{-\left|s_{j}\right|} \sigma_{j}^{-n_{j}}
\]
where \(\mathrm{s}_{\mathrm{j}}\) are integers and \(\sigma_{\mathrm{j}}=\) signum \(\mathrm{s}_{\mathrm{j}}\). These can be rapidly computed as implemented at www.cecm.sfu.ca/projects/ezface+.
In the past 20 years they have become of more and more interest in number theory, combinatorics, knot theory and mathematical physics.

A marvellous example is Zagier's conjecture (found experimentally and now proven).
\[
\zeta(\overbrace{3,1,3,1, \cdots, 3,1}^{n})=\frac{2 \pi^{4 n}}{(4 n+2)!}
\]

\section*{Example 3. Related Matrices (1993-2008)}

In the course of studying such multiple zeta values we needed to obtain the closed form partial fraction decomposition for
\[
\frac{1}{x^{s}(1-x)^{t}}=\sum_{j \geq 0} \frac{a_{j}^{s, t}}{x^{j}}+\sum_{j \geq 0} \frac{b_{j}^{s, t}}{(1-x)^{j}}
\]
\[
a_{j}^{s, t}=\binom{s+t-j-1}{s-j}
\]

This was known to Euler but is easily discovered in Maple. We needed also to show that \(\mathrm{M}=\mathrm{A}+\mathrm{B}-\mathrm{C}\) was invertible where the n by n matrices \(\mathrm{A}, \mathrm{B}, \mathrm{C}\) respectively had entries
\[
(-1)^{k+1}\binom{2 n-j}{2 n-k}, \quad(-1)^{k+1}\binom{2 n-j}{k-1}, \quad(-1)^{k+1}\binom{j-1}{k-1}
\]

Thus, \(A\) and \(C\) are triangular and \(B\) is full.
After messing with many cases I thought to ask for M's minimal polynomial
\[
\begin{array}{ll}
\hline>\operatorname{linalg}[\text { minpoly }](\mathrm{M}(12), \mathrm{t}) ; & -2+t+t^{2} \\
>\operatorname{linalg}[\text { minpoly }](\mathrm{B}(20), \mathrm{t}) ; & -1+t^{3} \\
>\operatorname{linalg}[\text { minpoly }](\mathrm{A}(20), \mathrm{t}) ; & -1+t^{2} \\
>\operatorname{linalg}[\text { minpoly }](\mathrm{C}(20), \mathrm{t}) ; & -1+t^{2}
\end{array}
\]
\[
M(6)=\left[\begin{array}{cccccc}
1 & -22 & 110 & -330 & 660 & -924 \\
0 & -10 & 55 & -165 & 330 & -462 \\
0 & -7 & 36 & -93 & 162 & -210 \\
0 & -5 & 25 & -56 & 78 & -84 \\
0 & -3 & 15 & -31 & 35 & -28 \\
0 & -1 & 5 & -10 & 10 & -6
\end{array}\right]
\]

\section*{Example 3. The Matrices Conquered}

Once this was discovered proving that for all \(\mathrm{n}>2\)
\[
A^{2}=I, \quad B C=A, \quad C^{2}=I, \quad C A=B^{2}
\]
is a nice combinatorial exercise (by hand or computer). Clearly then
\[
B^{3}=B \cdot B^{2}=B(C A)=(B C) A=A^{2}=I
\]
and the formula
\[
M^{-1}=\frac{M+I}{2}
\]
is again a fun exercise in formal algebra; as is confirming that we have discovered an amusing representation of the symmetric group \(S_{3}\).
- characteristic and minimal polynomials --- which were rather abstract for me as a student --- now become members of a rapidly growing box of symbolic tools, as do many matrix decompositions, etc ...
- a typical matrix has a full degree minimal polynomial

\section*{Example 4. Numerical Integration (2006-2008)}

The following integrals arise independently in mathematical physics in Quantum Field Theory and in Ising Theory:
\[
C_{n}=\frac{4}{n!} \int_{0}^{\infty} \cdots \int_{0}^{\infty} \frac{1}{\left(\sum_{j=1}^{n}\left(u_{j}+1 / u_{j}\right)\right)^{2}} \frac{d u_{1}}{u_{1}} \cdots \frac{d u_{n}}{u_{n}}
\]

We first showed that this can be transformed to a 1-D integral:
\[
C_{n}=\frac{2^{n}}{n!} \int_{0}^{\infty} t K_{0}^{n}(t) d t
\]
where \(\mathrm{K}_{0}\) is a modified Bessel function. We then computed 400 -digit numerical values, from which we found these results (now proven):
\[
\begin{aligned}
C_{3} & =\mathrm{L}_{-3}(2)=\sum_{n \geq 0}\left(\frac{1}{(3 n+1)^{2}}-\frac{1}{(3 n+2)^{2}}\right) \\
C_{4} & =14 \zeta(3) \\
\lim _{n \rightarrow \infty} C_{n} & =2 e^{-2 \gamma}
\end{aligned}
\]

The limit discovery showed the Bessel function representation to be fundamental

\section*{Example 4: Identifying the Limit Using the Inverse Symbolic Calculator (2.0)}

We discovered the limit result as follow. We first calculated:
\[
C_{1024}=0.630473503374386796122040192710878904354587 \ldots
\]

We then used the Inverse Symbolic Calculator, the online numerical constant recognition facility, available at:
http://ddrive.cs.dal.ca/~isc/portal
Output: Mixed constants, 2 with elementary transforms. \(6304735033743867=\operatorname{sr}(2)^{\wedge} 2 / \exp (\text { gamma })^{\wedge} 2\)

In other words
\[
C_{1024} \approx 2 e^{-2 \gamma}
\]


References. Bailey, Borwein and Crandall, "Integrals of the Ising Class," J. Phys. A., 39 (2006)

Bailey, Borwein, Broadhurst and Glasser, "Elliptic integral representation of Bessel moments," J. Phys. A, 41 (2008) [loP Select]

\section*{Example 5. Phase Reconstruction}

Projectors and Reflectors: \(\mathrm{P}_{\mathrm{A}}(\mathrm{x})\) is the metric projection or nearest point and \(R_{A}(x)\) reflects in the tangent: \(x\) is red


\section*{Example 5. Why does it work?}

In a wide variety of problems (protein folding, 3SAT, Sudoku) B is nonconvex but "divide and concur" works better than theory can explain. It is:
\[
R_{A}(x):=2 P_{A}(x)-x \text { and } x \rightarrow \frac{x+R_{A}\left(R_{B}(x)\right)}{2}
\]

Consider the simplest case of a line A of height \(\alpha\) and the unit circle B .
With \(z_{n}:=\left(x_{n}, y_{n}\right)\) the iteration becomes
\[
x_{n+1}:=\cos \theta_{n}, y_{n+1}:=y_{n}+\alpha-\sin \theta_{n}, \quad\left(\theta_{n}:=\arg z_{n}\right)
\]

For \(\mathrm{h}=0\) I can prove convergence to one of the two points in \(\mathrm{A} \cap \mathrm{B}\) iff we do not start on the vertical axis (where we have chaos). For \(h>1\) (infeasible) it is easy to see the iterates go to infinity (vertically). For \(h=1\) we converge to an infeasible point. For \(h\) in \((0,1)\) the pictures are lovely but proofs escape me. Two representative pictures follow:

An ideal problem
 to introduce early under-graduates to research, with many accessible extensions in 2 or 3 dimensions

\section*{Interactive Phase Recovery in Cinderella}

Recall the simplest case of a line A of height h and the unit circle B . With
\[
z_{n}:=\left(x_{n}, y_{n}\right) \quad \text { the iteration becomes }
\]
\[
x_{n+1}:=\cos \theta_{n}, y_{n+1}:=y_{n}+\alpha-\sin \theta_{n}, \quad\left(\theta_{n}:=\arg z_{n}\right)
\]

The pictures are lovely but proofs escape me. A Cinderella picture of two steps from (4.2,-0.51) follows:


\section*{CAS+IGP: the Grief is in the GUI}


"What I appreciate even more than its remarkable speed and accuracy are the words of understanding and compassion I get from it."

\section*{Conclusions}
- We like students of 2010 live in an information-rich, judgement-poor world
- The explosion of information is not going to diminish
- nor is the desire (need?) to collaborate remotely
- So we have to learn and teach judgement (not obsession with plagiarism)
- that means mastering the sorts of tools I have illustrated
- We also have to acknowledge that most of our classes will contain a very broad variety of skills and interests (few future mathematicians)
- properly balanced, discovery and proof can live side-by-side and allow for the ordinary and the talented to flourish in their own fashion
- Impediments to the assimilation of the tools I have illustrated are myriad
- as I am only too aware from recent experiences
- These impediments include our own inertia and
- organizational and technical bottlenecks (IT - not so much dollars)
- under-prepared or mis-prepared colleagues
- the dearth of good modern syllabus material and research tools
- the lack of a compelling business model (societal goods)
"The plural of 'anecdote' is not 'evidence'."
- Alan L. Leshner (Science's publisher)

\section*{A Sad Story (UK)}
1. Teaching Maths In 1970 A logger sells a lorry load of timber for \(£ 1000\). His cost of production is \(4 / 5\) of the selling price. What is his profit?
2. Teaching Maths In 1980 A logger sells a lorry load of timber for \(£ 1000\). His cost of production is \(4 / 5\) of the selling price, or \(£ 800\). What is his profit?
3. Teaching Maths In 1990 A logger sells a lorry load of timber for \(£ 1000\). His cost of production is \(£ 800\). Did he make a profit?
4. Teaching Maths In 2000 A logger sells a lorry load of timber for \(£ 1000\). His cost of production is \(£ 800\) and his profit is \(£ 200\). Underline the number 200.
5. Teaching Maths In 2008 A logger cuts down a beautiful forest because he is a totally selfish and inconsiderate bastard and cares nothing for the habitat of animals or the preservation of our woodlands. He does this so he can make a profit of \(£ 200\). What do you think of this way of making a living?
Topic for class participation after answering the question: How did the birds and squirrels feel as the logger cut down their homes? (There are no wrong answers. If you are upset about the plight of the animals in question counselling will be available.)

\section*{A Sidebar: New Ramanujan-Like Identities}

Guillera has recently found Ramanujan-like identities, including:
\[
\begin{aligned}
\frac{128}{\pi^{2}} & =\sum_{n=0}^{\infty}(-1)^{n} r(n)^{5}\left(13+180 n+820 n^{2}\right)\left(\frac{1}{32}\right)^{2 n} \\
\frac{8}{\pi^{2}} & =\sum_{n=0}^{\infty}(-1)^{n} r(n)^{5}\left(1+8 n+20 n^{2}\right)\left(\frac{1}{2}\right)^{2 n} \\
\frac{32}{\pi^{3}} & \stackrel{?}{=} \sum_{n=0}^{\infty} r(n)^{7}\left(1+14 n+76 n^{2}+168 n^{3}\right)\left(\frac{1}{8}\right)^{2 n}
\end{aligned}
\]
where
\[
r(n)=\frac{(1 / 2)_{n}}{n!}=\frac{1 / 2 \cdot 3 / 2 \cdots \cdots(2 n-1) / 2}{n!}=\frac{\Gamma(n+1 / 2)}{\sqrt{\pi} \Gamma(n+1)}
\]

Guillera proved the first two using the Wilf-Zeilberger algorithm. He ascribed the third to Gourevich, who found it using integer relation methods.

It is true but has no proof.

\section*{As far as we can tell there are no higher-order analogues!}

\section*{Further Conclusions}

New techniques now permit integrals, infinite series sums and other entities to be evaluated to high precision (hundreds or thousands of digits), thus permitting PSLQ-based schemes to discover new identities.
These methods typically do not suggest proofs, but often it is much easier to find a proof (say via WZ) when one "knows" the answer is right.


Full details of all the examples are in Mathematics by Experiment or its companion volume Experimentation in Mathematics written with Roland Girgensohn. A "Reader's Digest" version of these is available at http://www.experimentalmath.info along with much other material.

> "Anyone who is not shocked by quantum theory has not understood a single word." - Niels Bohr

Experimental Mathematics in Action
David H. Bailey, Jonathan M. Borwein, Neil J. Calkin, Roland Girgensohn, D. Russell Luke, Victor H. Moll

"David H. Bailey et al. have done a fantastic job to provide very comprehensive and fruitful examples and demonstrations on how experimental mathematics acts in a very broad area of both pure and applied mathematical research, in both academic and industry. Anyone who is interested in experimental mathematics should, without any doubt, read this book!"
-Gazette of the Australian Mathematical Society

978-1-56881-271-7; Hardcover; \$49.00
| Experiments in Mathematics (CD)
Jonathan M. Borwein, David H. Bailey, Roland Girgensohn
In the short time since the first edition of Mathematics by Experiment: Plausible Reasoning in the 21st Century and Experimentation in Mathematics: Computational Paths to Discovery, there has been a noticeable upsurge in interest in using computers to do real mathematics. The authors have updated and enhanced the book files and are now making them available in PDF format on a CD-ROM. This CD provides several "smart" features, including hyperlinks for all numbered equations, all Internet URLs,
bibliographic references, and an augmented search facility assists one with locating a particular mathematical formula or expression.

978-1-56881-283-0; CD; \$49.00

\section*{Mathematics by Experiment}
 Second Edition

\section*{Plausible Reasoning in the 21st Century}

Jonathan M. Borwein, David H. Bailey

"These are such fun books to read! Actually, calling them books does not do them justice. They have the liveliness and feel of great Web sites, with their bite-size fascinating factoids and their many human- and math-interest stories and other gems. But do not be fooled by the lighthearted, immensely entertaining style. You are going to learn more math (experimental or otherwise) than you ever did from any two single volumes. Not only that, you will learn by osmosis how to become an experimental mathematician."
-American Scientist Online


978-1-56881-136-9; Hardcover; \$59.00

Communicating Mathematics in the Digital Era

Edited by J. M. Borwein, E. M. Rocha, J. F. Rodrigues


Digital technology has dramatically changed the ways in which scientif ic work is published, disseminated, archived, and accessed. This book is a collection of thought-provoking essays and reports on a number of projects discussing the paradigms and offering mechanisms for producing, searching, and exploiting scientific and technical scholarship in mathematics in the digital era.

The Computer as Crucible An Introduction to Experimental Mathematics Jonathan Borwein, Keith Devlin

Keith Devlin and Jonathan Borwein cover a variety of topics and examples to give the reader a good sense of the current state of play in the rapidly growing new field of experimental mathematics. The writing is clear and the explanations are enhanced by relevant historical facts and stories of mathematicians and their encounters with the field over time.

\title{
ADDITIONAL EXAMPLES of PSLQ and WILF-ZEILBERGER in ACTION
}

\section*{JM Borwein and DH Bailey}

"Anyone who is not shocked by quantum theory has not understood a single word." - Niels Bohr

\section*{The PSLQ Integer Relation Algorithm}

Let \(\left(x_{n}\right)\) be a vector of real numbers. An integer relation algorithm finds integers \(\left(a_{n}\right)\) such that
\[
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=0
\]
- At the present time, the PSLQ algorithm of mathematician-sculptor Helaman Ferguson is the bestknown integer relation algorithm.
- PSLQ was named one of ten "algorithms of the century" by Computing in Science and Engineering.
- High precision arithmetic software is required: at least \(\mathrm{d} \times \mathrm{n}\) digits, where d is the size (in digits) of the largest of the integers \(\mathrm{a}_{\mathrm{k}}\).

Peter Borwein in front of Helaman Ferguson's work

CMS Meeting
December 2003 SFU Harbour Centre

Ferguson uses high tech tools and micro engineering at NIST to build monumental math sculptures


\section*{Decrease of \(\min _{j}\left|A_{j} \mathbf{x}\right|\) in PSLQ: self-diagnosing}


\section*{Peter Borwein's Observation}

In 1996, Peter Borwein of SFU in Vancouver observed that the following well-known formula for \(\log _{\mathrm{e}} 2\)
\[
\log 2=\sum_{n=1}^{\infty} \frac{1}{n 2^{n}}=0.69314718055994530942 \ldots
\]
leads to a simple scheme for computing binary digits at an arbitrary starting position (here \(\}\) denotes fractional part):
\[
\begin{aligned}
\left\{2^{d} \log 2\right\} & =\left\{\sum_{n=1}^{d} \frac{2^{d-n}}{n}\right\}+\sum_{n=d+1}^{\infty} \frac{2^{d-n}}{n} \\
& =\left\{\sum_{n=1}^{d} \frac{2^{d-n} \bmod n}{n}\right\}+\sum_{n=d+1}^{\infty} \frac{2^{d-n}}{n}
\end{aligned}
\]

\section*{Fast Exponentiation Mod \(\mathbf{n}\)}

The exponentiation \(\left(2^{\mathrm{d}-\mathrm{n}} \bmod \mathrm{n}\right)\) in this formula can be evaluated very rapidly by means of the binary algorithm for exponentiation, performed modulo n :
Example:
\[
3^{17}=\left(\left(\left(3^{2}\right)^{2}\right)^{2}\right)^{2} \times 3=129140163
\]

In a similar way, we can evaluate:
```

$3^{17} \bmod 10=\left(\left(\left(\left(3^{2} \bmod 10\right)^{2} \bmod 10\right)^{2} \bmod 10\right)^{2} \bmod 10\right) \times 3 \bmod 10$
$3^{2} \bmod 10=9$
$9^{2} \bmod 10=1$
$1^{2} \bmod 10=1$
$1^{2} \bmod 10=1$
$1 \times 3=3$
Thus $3^{17} \bmod 10=3$.

```

Note: we never have to deal with integers larger than 81.

\section*{Is There a BBP-Type Formula for Pi?}

The "trick" for computing digits beginning at an arbitrary position in the binary expansion of \(\log (2)\) works for any constant that can be written with a formula of the form
\[
\alpha=\sum_{n=1}^{\infty} \frac{p(n)}{2^{n} q(n)}
\]
where p and q are polynomial functions with integer coefficients, and \(q\) has no zeroes at positive integer values.
- In 1995, no formula of this type was known for \(\pi\).

Note however that if \(\alpha\) and \(\beta\) have such a formula, then so does \(\gamma=r \alpha+s \beta\), where \(r\) and \(s\) are integers. This suggests using PSLQ to find a formula for \(\pi\).

\section*{The BBP Formula for Pi}

In 1996, Simon Plouffe, using DHB’s PSLQ program, discovered this formula for \(\pi\) :
\[
\pi=\sum_{k=0}^{\infty} \frac{1}{16^{k}}\left(\frac{4}{8 k+1}-\frac{2}{8 k+4}-\frac{1}{8 k+5}-\frac{1}{8 k+6}\right)
\]

Indeed, this formula permits one to directly calculate binary or hexadecimal (base-16) digits of \(\pi\) beginning at an arbitrary starting position n , without needing to calculate any of the first \(\mathrm{n}-1\) digits.

\section*{Proof of the BBP Formula}
\[
\int_{0}^{1 / \sqrt{2}} \frac{x^{j-1} d x}{1-x^{8}}=\int_{0}^{1 / \sqrt{2}} \sum_{k=0}^{\infty} x^{8 k+j-1} d x=\frac{1}{2^{j / 2}} \sum_{k=0}^{\infty} \frac{1}{16^{k}(8 k+j)}
\]

Thus
\[
\begin{aligned}
\sum_{k=0}^{\infty} \frac{1}{16^{k}} & \left(\frac{4}{8 k+1}-\frac{2}{8 k+4}-\frac{1}{8 k+5}-\frac{1}{8 k+6}\right) \\
& =\int_{0}^{1 / \sqrt{2}} \frac{\left(4 \sqrt{2}-8 x^{3}-4 \sqrt{2} x^{4}-8 x^{5}\right) d x}{1-x^{8}} \\
& =\int_{0}^{1} \frac{16\left(4-2 y^{3}-y^{4}-y^{5}\right) d y}{16-y^{8}} \\
& =\int_{0}^{1} \frac{16(y-1) d y}{\left(y^{2}-2\right)\left(y^{2}-2 y+2\right)} \\
& =\int_{0}^{1} \frac{4 y d y}{\left.y^{2}-2\right)}-\int_{0}^{1} \frac{(4 y-8) d y}{y^{2}-2 y+2} \\
& =\pi
\end{aligned}
\]

\section*{Calculations Using the BBP Algorithm}
\begin{tabular}{ll} 
Position & Hex Digits of Pi Starting at Position \\
\(10^{6}\) & 26 C 65 E 52 CB 4593 \\
\(10^{7}\) & 17AF5863EFED8D \\
\(10^{8}\) & ECB840E21926EC \\
\(10^{9}\) & 85895585 A 0428 B \\
\(10^{10}\) & 921 C 73 C 6838 FB 2 \\
\(10^{11}\) & 9 C 381872 D 27596 \\
\(1.25 \times 10^{12}\) & 07 E 45733 CC 790 B \\
\(2.5 \times 10^{14}\) & E6216B069CB6C1
\end{tabular}
[1] Fabrice Bellard, France, 1999
[2] Colin Percival, Canada, 2000

\section*{Some Other Similar New Identities}
\[
\begin{aligned}
& \pi \sqrt{3}= \frac{9}{32} \sum_{k=0}^{\infty} \frac{1}{64^{k}}\left(\frac{16}{6 k+1}-\frac{8}{6 k+2}-\frac{2}{6 k+4}-\frac{1}{6 k+5}\right) \\
& \pi^{2}= \frac{1}{8} \sum_{k=0}^{\infty}\left(\frac{1}{64^{k}}\left(\frac{144}{(6 k+1)^{2}}-\frac{216}{(6 k+2)^{2}}-\frac{72}{(6 k+3)^{2}}-\frac{54}{(6 k+4)^{2}}+\frac{9}{(6 k+5)^{2}}\right)\right. \\
& \pi^{2}= \frac{2}{27} \sum_{k=0}^{\infty} \frac{1}{729^{k}}\left(\frac{243}{(12 k+1)^{2}}-\frac{405}{(12 k+2)^{2}}-\frac{81}{(12 k+4)^{2}}-\frac{27}{(12 k+5)^{2}}\right. \\
&\left.-\frac{72}{(12 k+6)^{2}}-\frac{9}{(12 k+7)^{2}}-\frac{9}{(12 k+8)^{2}}-\frac{5}{(12 k+10)^{2}}+\frac{1}{(12 k+11)^{2}}\right) \\
& 6 \sqrt{3} \arctan \left(\frac{\sqrt{3}}{7}\right)=\sum_{k=0}^{\infty} \frac{1}{27^{k}}\left(\frac{3}{3 k+1}+\frac{1}{3 k+2}\right) \\
& \frac{25}{2} \log \left(\frac{781}{256}\left(\frac{57-5 \sqrt{5}}{57+5 \sqrt{5}}\right)^{\sqrt{5}}\right)=\sum_{k=0}^{\infty} \frac{1}{5^{5 k}}\left(\frac{5}{5 k+2}+\frac{1}{5 k+3}\right)
\end{aligned}
\]
\[
\sum_{n=0}^{\infty} \frac{1}{(-27)^{n}}\left(\frac{6}{6 n+1}-\frac{2}{6 n+3}+\frac{2 / 3}{6 n+5}\right)=\sqrt{3} \pi
\]

Stan Wagon May 2009

\section*{Is There a Base-10 Formula for Pi ?}

Note that there is both a base-2 and a base-3 BBP-type formula for \(\pi^{2}\). Base-2 and base-3 formulas are also known for a handful of other constants.

Question: Is there any base-n BBP-type formula for \(\pi\), where n is NOT a power of 2?
Answer: No. This is ruled out in a 2004 paper by Jon Borwein, David Borwein and Will Galway.

This does not rule out some completely different scheme for finding individual non-binary digits of \(\pi\).

\section*{PSLQ and Sculpture}

The complement of the figure-eight knot, when viewed in hyperbolic space, has finite volume
\(2.029883212819307250042 \ldots\)
David Broadhurst found, using PSLQ, that this constant is given by the formula:
\[
\begin{aligned}
V= & \frac{\sqrt{3}}{9} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{27^{n}}\left(\frac{18}{(6 n+1)^{2}}-\frac{18}{(6 n+2)^{2}}\right. \\
& \left.-\frac{24}{(6 n+3)^{2}}-\frac{6}{(6 n+4)^{2}}+\frac{2}{(6 n+5)^{2}}\right)
\end{aligned}
\]


\section*{Apery-Like Summations}

The following formulas for \(\zeta(\mathrm{n})\) have been known for many decades:
\[
\begin{aligned}
\zeta(2) & =3 \sum_{k=1}^{\infty} \frac{1}{k^{2}\binom{2 k}{k}} \\
\zeta(3) & =\frac{5}{2} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^{3}\binom{2 k}{k}} \\
\zeta(4) & =\frac{36}{17} \sum_{k=1}^{\infty} \frac{1}{k^{4}\binom{2 k}{k}}
\end{aligned}
\]

The RH in Maple


These results have led many to speculate that
\[
Q_{5}:=\zeta(5) / \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^{5}\binom{2 k}{k}}
\]
might be some nice rational or algebraic value.
Sadly, PSLQ calculations have established that if \(Q_{5}\) satisfies a polynomial with degree at most 25 , then at least one coefficient has 380 digits.

\section*{Nothing New under the Sun}

Margo Kondratieva found a formula of Markov in 1890:
\[
\begin{aligned}
\sum_{n=1}^{\infty} \frac{1}{(n+a)^{3}}= & \frac{1}{4} \sum_{n=0}^{\infty} \frac{(-1)^{n}(n!)^{6}}{(2 n+1)!} \\
& \times \frac{\left(5(n+1)^{2}+6(a-1)(n+1)+2(a-1)^{2}\right)}{\prod_{k=0}^{n}(a+k)^{4}} .
\end{aligned}
\]

Note: Maple establishes this identity as
\[
-1 / 2 \Psi(2, a)=-1 / 2 \Psi(2, a)-\zeta(3)+5 / 4_{4} F_{3}([1,1,1,1],[3 / 2,2,2],-1 / 4)
\]

Hence
\[
\zeta(4)=-\sum_{m=1}^{\infty} \frac{(-1)^{m-1}}{\binom{2 m}{m} m^{4}}+\frac{10}{3} \sum_{m=1}^{\infty} \frac{(-1)^{m-1} \sum_{k=1}^{m} \frac{1}{k}}{\binom{2 m}{m} m^{3}}
\]

The case a=0 above is Apery's formula for \(\zeta(3)\) !

\section*{Example Usage of Wilf-Zeilberger}

Two recent experimentally-discovered identities are
\[
\begin{aligned}
\sum_{n=0}^{\infty} \frac{\binom{4 n}{2 n}\binom{2 n}{n}^{4}}{2^{16 n}}\left(120 n^{2}+34 n+3\right) & =\frac{32}{\pi^{2}} \\
\sum_{n=0}^{\infty} \frac{(-1)^{n}\binom{2 n}{n}^{5}}{2^{20 n}}\left(820 n^{2}+180 n+13\right) & =\frac{128}{\pi^{2}}
\end{aligned}
\]

Guillera cunningly started by defining
\(G(n, k)=\frac{(-1)^{k}}{2^{16 n} 2^{4 k}}\left(120 n^{2}+84 n k+34 n+10 k+3\right) \frac{\binom{2 n}{n}^{4}\binom{2 k}{k}^{3}\binom{4 n-2 k}{2 n-k}}{\binom{2 n}{k}\binom{n+k}{n}^{2}}\)
He then used the EKHAD software package to obtain the companion
\(F(n, k)=\frac{(-1)^{k} 512}{2^{16 n} 2^{4 k}} \frac{n^{3}}{4 n-2 k-1} \frac{\binom{2 n}{n}^{4}\binom{2 k}{k}^{3}\binom{4 n-2 k}{2 n-k}}{\binom{2 n}{k}\binom{n+k}{n}^{2}}\)

\section*{Example Usage of W-Z, II}

When we define
\[
H(n, k)=F(n+1, n+k)+G(n, n+k)
\]

Zeilberger's theorem gives the identity
\(\sum_{n=0}^{\infty} G(n, 0)=\sum_{n=0}^{\infty} H(n, 0)\)

which when written out is
\[
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{\binom{2 n}{n}^{4}\binom{4 n}{2 n}}{2^{16 n}}\left(120 n^{2}+34 n+3\right)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{20 n+7}} \frac{(n+1)^{3}}{2 n+3} \frac{\binom{2 n+2}{n+1}^{4}\binom{2 n}{n}^{3}\binom{2 n+4}{n+2}}{\binom{2 n+2}{n}\binom{2 n+1}{n+1}^{2}} \\
& \quad+\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{20 n}}\left(204 n^{2}+44 n+3\right)\binom{2 n}{n}^{5}=\frac{1}{4} \sum_{n=0}^{\infty} \frac{(-1)^{n}\binom{2 n}{n}^{5}}{2^{20 n}}\left(820 n^{2}+180 n+13\right)
\end{aligned}
\]

A limit argument completes the proof of Guillera's identities.

\section*{A Cautionary Example}

These constants agree to 42 decimal digits accuracy, but are NOT equal:
\(\int_{0}^{\infty} \cos (2 x) \prod_{n=1}^{\infty} \cos (x / n) d x=\)
\(0.39269908169872415480783042290993786052464543418723 \ldots\)
\(\frac{\pi}{8}=\)
\(0.39269908169872415480783042290993786052464617492189 \ldots\)
Computing this integral is (or was) nontrivial, due largely to difficulty in evaluating the integrand function to high precision.

Fourier analysis explains this happens when a hyperplane meets a hypercube (LP) ...
```

