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The companion paper to this talk is:

J.M. Borwein, “Maximum entropy and feasibility methods

for convex and non-convex inverse problems.”

Optimization, 61 (2012), 1–33.
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I SHALL FOLLOW BRAGG

I feel so strongly about the wrongness

of reading a lecture that my language

may seem immoderate. · · · The spoken

word and the written word are quite dif-

ferent arts.

· · ·

I feel that to collect an audience and

then read one’s material is like inviting

a friend to go for a walk and asking him

not to mind if you go alongside him in

your car.

Sir Lawrence Bragg

(1890-1971)

Nobel Crystallography

(Adelaide)
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AND SANTAYANA

If my teachers had begun by telling me that mathematics

was pure play with presuppositions, and wholly in the air,

I might have become a good mathematician. But they

were overworked drudges, and I was largely inattentive,

and inclined lazily to attribute to incapacity in myself or

to a literary temperament that dullness which perhaps was

due simply to lack of initiation. George Santayana

In Persons and Places, 1945, 238–239.
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FOUR ‘FINE’ BOOK REFERENCES:

BZ J.M. Borwein and Qiji Zhu, Techniques of Variational
Analysis, CMS/Springer, 2005.

BL1 J.M. Borwein and A.S Lewis, Convex Analysis and
Nonlinear Optimization, CMS/Springer, 2nd expanded edi-
tion, 2005.

BLu J.M. Borwein and R.L. Luke, “Duality and Convex
Programming,” pp. 229–270 in Handbook of Mathemati-
cal Methods in Imaging, O. Scherzer (Ed.), Springer, 2010.

BV J.M. Borwein and J.D. Vanderwerff, Convex Func-
tions: Constructions, Characterizations and Counterexam-
ples, Cambridge Univ Press, 2010.
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OUTLINE

I shall discuss in “tutorial mode” the formalization of in-

verse problems such as signal recovery and option pricing:

first as (convex and non-convex) optimization problems

and second as feasibility problems—each over the infinite

dimensional space of signals. I shall touch on∗:

1. The impact of the choice of “entropy”

(e.g., Boltzmann-Shannon, Burg entropy, Fisher informa-

tion, ...) on the well-posedness of the problem and the

form of the solution.

∗More is an unrealistic task!
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2. Convex programming duality:

– what it is and what it buys you.

3. Algorithmic consequences: for both design and imple-
mentation.

and as time permits

4. Non-convex extensions & feasibility problems: life is
hard. Entropy methods, used directly, have little to offer.

– But sometimes we observe that more works than we
yet understand why it should.

• See also http://docserver.carma.newcastle.edu.au
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THE GENERAL PROBLEM

Many applied problems reduce to “best” solving (under-

determined) systems of linear (or non-linear) equations:

Find x such that A(x) = b

where b ∈ IRn, and the unknown x lies in some appropriate

function space.

The infinite we shall do right away. The finite may

take a little longer. Stan Ulam

• In D. MacHale, Comic Sections (Dublin 1993)
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Discretization reduces this to a finite-dimensional setting

where A is now a m× n matrix.

In most cases, I believe it is better to address the

problem in its function space home, discretizing

only as necessary for numerical computation. And

guided by our analysis.

• Thus, the problem often is how do we estimate x from

a finite number of its ‘moments’? This is typically an

under-determined inverse problem (linear or nonlin-

ear) where the unknown is most naturally a function,

not a vector in IRm.
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EXAMPLE 1. AUTOCORRELATION

• Consider, extrapolating an autocorrelation function from

given sample measurements:

R(t) :=
E

[
(Xs − µ)(Xt+s − µ)

]
σ

⋄ (Wiener-Khintchine) Fourier moments of the power

spectrum S(σ) are samples of the autocorrelation func-

tion, so values of R(t) computed directly from the data

yields moments of S(σ).

R(t) =
∫
R
e2πitσS(σ)dσ S(σ) =

∫
R
e−2πitσR(t)dt
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• Hence, we may compute a finite number of moments

of S; use them to make an estimate Ŝ of S;

• We may then estimate more moments from Ŝ by direct

numerical integration. So we dually extrapolate R ...

• This avoids hav-

ing to compute

R directly from

potentially noisy

(unstable) larger

data series.
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PART ONE: THE ENTROPY APPROACH

• Following [BZ] I sketch a maximum entropy approach

to under-determined systems where the unknown, x, is

a function, typically living in a Hilbert space, or more

general space of functions.

This technique picks a “best” representative from

the infinite set of feasible functions (functions that

possess the same n moments as the sampled func-

tion) by minimizing an (integral) functional, f(x),

of the unknown x.
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⋄ The approach finds applications in countless fields:

Including (to my personal knowledge) Acous-

tics, actuarial science, astronomy, biochem-

istry, compressed sensing, constrained spline

fitting, engineering, finance, image recon-

struction, inverse scattering, optics, option

pricing, multidimensional NMR (MRI), to-

mography, statistical moment fitting, and

time series analysis, ...

(Many thousands of papers)

However, the derivations and mathematics are fraught with

subtle — and less subtle — errors.
13



www.carma.newcastle.edu.au

I will next discuss some of the difficulties inher-

ent in infinite dimensional calculus, and provide a

simple theoretical algorithm for correctly deriving

maximum entropy-type solutions.
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WHAT is
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WHAT is ENTROPY?

Despite the narrative force that the concept of entropy ap-

pears to evoke in everyday writing, in scientific writing en-

tropy remains a thermodynamic quantity and a mathemat-

ical formula that numerically quantifies disorder. When the

American scientist Claude Shannon found that the mathe-

matical formula of Boltzmann defined a useful quantity in

information theory, he hesitated to name this newly discov-

ered quantity entropy because of its philosophical baggage.

The mathematician John von Neumann encouraged Shan-

non to go ahead with the name entropy, however, since

“no one knows what entropy is, so in a debate you will

always have the advantage.”
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CHARACTERIZATIONS of ENTROPY

Boltzmann (1844-1906) Shannon (1916-2001)

• 19C: Ludwig Boltzmann — thermodynamic disorder

• 20C: Claude Shannon — information uncertainty

• 21C: JMB — potentials with superlinear growth

• Information theoretic characterizations abound.
A nice example is:
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Theorem. Up to a positive multiple,

H(−→p ) := −
N∑
k=1

pk log pk

is the unique continuous function on finite

probabilities such that:
[I.] Uncertainty grows:

H


n︷ ︸︸ ︷

1

n
,
1

n
, · · · ,

1

n


increases with n.

[II.] Subordinate choices are respected: for distributions −→p1
and −→p2 and 0 < p < 1,

H
(
p−→p1, (1− p)−→p2

)
= pH(−→p1) + (1− p)H(−→p2).

18



ENTROPIES FOR US

Let X be our function space, typically Hilbert space L2(Ω),

or the function space L1(Ω) (or a Sobolev space).

⋄ For +∞ ≥ p ≥ 1,

Lp(Ω) =
{
x measurable :

∫
Ω
|x(t)|pdt <∞

}
.

Recall that L2(Ω) is a Hilbert space with inner prod-

uct

⟨x, y⟩ :=
∫
Ω
x(t)y(t)dt,

(with variations in Sobolev space).
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A bounded linear map A : X → IRn is determined by

(Ax)i =
∫
x(t)ai(t) dt

for i = 1, . . . , n and ai ∈ X∗ the ‘dual’ of X(L2 in the Hilbert

case, L∞ in the L1 case).

Lebesgue’s continuous function with divergent Fourier series at 0.
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To pick a solution from the infinitude of possibilities, we

may freely define “best”.

⊗
The most common approach is to find the minimum

norm solution∗ by solving the Gram system:

Find λ such that AATλ = b .

⊕
The primal solution is then x̂ = ATλ. Elaborated, this

recaptures all of Fourier analysis, e.g., Lebesgue’s example!

• This solved the following variational problem:

inf
{∫

Ω
x(t)2dt : Ax = b x ∈ X

}
.

∗Even in the (realistic) infeasible case.
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We generalize the norm with a strictly convex functional
f as in

min {f(x) : Ax = b, x ∈ X}, (P )

where f is what we call, an entropy functional, f : X →
(−∞,+∞].

• Here we suppose f is a strictly convex integral func-
tional∗ of the form

f(x) = Iϕ(x) =
∫
Ω
ϕ(x(t))dt.

• The functional f can be used to include other con-
straints†.

∗Essentially ϕ′′(t) > 0.
†Including nonnegativity, by appropriate use of +∞.
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For example, the constrained L2 norm functional (‘positive

energy’),

f(x) :=

{ ∫ 1
0 x(t)

2 dt if x ≥ 0
+∞ else

is used in constrained spline fitting.

• Entropy constructions abound: two useful classes follow.

– Bregman (based on ϕ(y)− ϕ(x)− ϕ
′
(x)(y − x)); and

– Csizar distances (based on xϕ(y/x))

• Both model statistical divergences.
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Two popular choices for f are the (negative of) Boltzmann-
Shannon entropy (in image processing),

f(x) :=
∫
x logx (−x) dµ,

(changes dramatically with µ) and the (negative of) Burg
entropy (in time series analysis),

f(x) := −
∫

logx dµ.

△ Includes the log barrier and log det functions from in-
terior point theory.

⋄ Both implicitly impose a nonnegativity constraint (pos-
itivity in Burg’s non-superlinear case).
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There has been much information-theoretic debate about

which entropy is best.

This is more theology than science !

• Use of the Csizar distance based Fisher Information

f(x, x′) :=
∫
Ω

x′(t)2

2x(t)
µ(dt)

(jointly convex) has become more usual as it penalizes

large derivatives; and can be argued for physically (‘hot’

over past ten years).
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WHAT ‘WORKS’ BUT CAN GO WRONG?

• Consider solving Ax = b, where, b ∈ IRn and x ∈ L2[0,1].

Assume further that A is a continuous linear map, hence

represented as above.

• As L2 is infinite dimensional, so is N(A).

That is, if Ax = b is solvable, it is under-determined.

We pick our solution to minimize

f(x) =
∫
ϕ(x(t))µ(dt)

⊙
ϕ(x(t), x′(t)) in Fisher-like cases [BN1, BN2, BV10].
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• We introduce the Lagrangian

L(x, λ) :=
∫ 1

0
ϕ(x(t))dt+

n∑
i=1

λi (bi − ⟨x, ai⟩)

and the associated dual problem

max
λ∈IRn

min
x∈X

{L(x, λ)}. (D)

• So we formally have a “dual pair” (BL1)

min {f(x) : Ax = b, x ∈ X} = min
x∈X

max
λ∈IRn

{L(x, λ)}, (P )

and its dual

max
λ∈IRn

min
x∈X

{L(x, λ)}. (D)
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• Moreover, for the solutions x̂ to (P ), λ̂ to (D), the deriva-
tive (w.r.t. x) of L(x, λ̂) should be zero, since

L(x̂, λ̂) ≤ L(x, λ̂),

∀x ∈ X. As

L(x, λ̂) =
∫ 1

0
ϕ(x(t))dt+

n∑
i=1

λ̂i (bi − ⟨x, ai⟩)

this implies

x̂(t) = (ϕ′)−1

 n∑
i=1

λ̂iai(t)

 = (ϕ′)−1
(
AT λ̂

)
.

• We can now reconstruct the primal solution (qualita-
tively and quantitatively) from a presumptively easier
dual computation.
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A DANTZIG (1914-2005) ANECDOTE

“The term Dual is not new. But surprisingly the
term Primal, introduced around 1954, is. It came
about this way. W. Orchard-Hays, who is respon-
sible for the first commercial grade L.P. software,
said to me at RAND one day around 1954: ‘We
need a word that stands for the original problem
of which this is the dual.’ I, in turn, asked my fa-
ther, Tobias Dantzig, mathematician and author,
well known for his books popularizing the history
of mathematics. He knew his Greek and Latin.
Whenever I tried to bring up the subject of lin-
ear programming, Toby (as he was affectionately
known) became bored and yawned.
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But on this occasion he did give the matter some

thought and several days later suggested Primal as

the natural antonym since both primal and dual

derive from the Latin. It was Toby’s one and only

contribution to linear programming: his sole con-

tribution unless, of course, you want to count the

training he gave me in classical mathematics or his

part in my conception.”

A lovely story. I heard George recount this a few

times and, when he came to the “conception” part,

he always had a twinkle in his eyes. (Saul Gass,

2006)

George wrote in “Reminiscences about the origins of linear programming,” 1 and 2,
Oper. Res. Letters, April 1982 (p. 47):
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In a Sept 2006 SIAM book review about

dictionariesa, I asserted George assisted

his father with his dictionary — for rea-

sons I still believe but cannot recon-

struct.

I also called Lord Chesterfield, Lord

Chesterton (gulp!). Donald Coxeter

used to correct such errors in libraries.
aThe Oxford Users’ Guide to Mathematics,
Featured SIAM REVIEW, 48:3 (2006), 585–
594.
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PITFALLS ABOUND

There are 2 major problems to this approach.

1. The assumption that a solution x̂ exists. For example,
consider the problem

inf
x∈L1[0,1]

{∫ 1

0
x(t)dt :

∫ 1

0
tx(t) dt = 1, x ≥ 0

}
.

⋄ The optimal value is not attained. As we will see, ex-
istence can fail for the Burg entropy with three-dim trig
moments. Additional conditions on ϕ are needed to insure
solutions exist.∗ [BL2]
∗The solution is actually the absolutely continuous part of a measure
in C(Ω)∗
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2. The assumption that the Lagrangian

is differentiable. In the above problem, f is

+∞ for every x negative on a set of positive

measure.

⋄ Thus, for 1 ≤ p < +∞ the Lagrangian

is +∞ on a dense subset of L1, the set

of functions not nonnegative a.e.

99K 99K 99K
• The Lagrangian is nowhere continuous,

much less differentiable.

3. A third problem, the existence of λ̂, is less difficult to

surmount.
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FIXING THE PROBLEM

One way to get continuity/differentiability of f , is to:

• work in L∞(Ω), or C(Ω) using essentially bounded, or

continuous, functions.

But, even with such side qualifications, solutions to (P )

may still not exist.

∇ Consider Burg entropy maximization in L1[T3]:
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sup

∫
T 3

log(x)dV s.t.

∫
T 3

xdV = 0

and ∫
T 3

x cos(a)dV =

∫
T 3

x cos(b)dV

=

∫
T 3

x cos(c)dV = α.

For 1 > α > α, solutions only exist in

(L∞)∗; α is a computable value [BL2].

For 0 < α < α the problem attains its

infimum in L1.

Werner Fenchel (1905-1988)

• Minerbo, e.g., posed tomographic reconstruction in C(Ω), with
Shannon entropy. But, his moments are characteristic functions
of strips across Ω, and the solution is piecewise constant.
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CONVEX ANALYSIS (AN ADVERT)

We will give a theorem that guarantees the form of solution

found in the above faulty derivation

x̂ = (ϕ′)−1(AT λ̂)

is, in fact, correct. (Full derivation in [BL2, BZ].)

• We introduce the Fenchel (Legendre) conjugate [BL1]

of a function ϕ : IR → (−∞,+∞]:

ϕ∗(u) = sup
v∈IR

{uv − ϕ(v)}.
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• Often this can be (pre-)computed explicitly

– using Newtonian calculus. Thus,

ϕ(v) = v log v − v,− log v and v2/2

yield

ϕ∗(u) = exp(u),−1− log(−u) and u2/2

respectively. Red is the log barrier of interior point fame!

• The Fisher case is also explicit

— via an integro-differential equation.
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PRIMALS AND DUALS

The three entropies below and their conjugates.

ϕ(v) := v log v − v,− log v and v2/2

and

ϕ∗(u) = exp(u),−1− log(−u) and u2/2.
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EXAMPLE 2. CONJUGATES & NMR

The Hoch and Stern information measure, or neg-entropy,
is defined in complex n−space by

H(z) :=
n∑

j=1

h(zj/b),

where h is convex and given (for scaling b) by:

h(z) , |z| log
(
|z|+

√
1+ |z|2

)
−

√
1+ |z|2

for quantum theoretic (NMR) reasons.

• Recall the Fenchel-Legendre conjugate

f∗(y) := sup
x

⟨y, x⟩ − f(x).
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Our symbolic convex analysis package (see [BH] and Chris

Hamilton’s Dalhousie thesis package) produced:

h∗(z) = cosh(|z|)

⋄ Compare the Shannon entropy:

(|z| log |z| − |z|)∗ = exp(|z|).

The NMR entropy and its conjugate.
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FENCHEL DUALITY THEOREM (1951)

Theorem 1 (Utility Grade). Suppose f : X → R ∪ {+∞}
and g : Y → R∪{+∞} are convex while A : X → Y is linear.

Then

p := inf
X
f + g ◦A = max

Y ∗
−g∗(−·)− f∗ ◦A∗,

if int A(dom f) ∩ dom g ̸= ∅, (or if f, g are polyhedral).

• indicator function ιC(x) := 0 if x ∈ C and +∞ else.

• support function σC(x
∗) := (ιC)

∗ (x∗) = supx∈C⟨x∗, x⟩.
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EXAMPLES include:

(i) A := I is equivalent to Hahn-Banach theorem.

(ii) g := ι{b} yields

p := inf{f(x): Ax = b}.

– specializes to LP if f := ι
R+
n
+ c.

(iii) f := ιC, g := σD yields minimax theorem:

inf
C

sup
D

⟨Ax, y⟩ = sup
D

inf
C

⟨Ax, y⟩.
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FENCHEL DUALITY (SANDWICH)

infX f(x)− g(x) = maxY ∗ g∗(y∗)− f∗(y∗)

2

0–0.5 1 1.50.5

1

–1

Figure 2.6 Fenchel duality (Theorem 2.3.4) illustrated for x
2/2+ 1 and −(x − 1)2/2− 1/2.

The minimum gap occurs at 1/2 with value 7/4.

• Using the concave conjugate: g∗ := −(−g)∗(−).

43



COERCIVITY AND PROOF OF DUALITY

• We say ϕ possesses regular growth if either d = ∞, or

d <∞ and k > 0, where

d := lim
u→∞ϕ(u)/u, k := lim

v↑d
(d− v)(ϕ∗)′(v).

Then v → v log v, v → v2/2 and the positive energy all

have regular growth but -log does not.

• The domain of a convex function is

dom(ϕ) = {u : ϕ(u) < +∞};

ϕ is proper if dom(ϕ) ̸= ∅.
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• Let ı := inf dom(ϕ) and σ := supdom(ϕ).

Our constraint qualification,∗ (CQ), reads:

∃x ∈ L1(Ω), such that Ax = b,
f(x) ∈ IR, ı < x < σ a.e.

⋄ In many cases, (CQ) reduces to feasibility

– e.g., spectral estimation, and trivially holds.

• The Fenchel dual problem for (P ) is now:

sup
{
⟨b, λ⟩ −

∫
Ω
ϕ∗(ATλ(t))dt

}
. (D)

∗To ensure dual solutions. Standard Slater condition fails. Fenchel
missed need for a (CQ) in his 1951 Princeton Notes.
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Theorem 2 (BL2). Let Ω be a finite interval, µ Lebesgue

measure, each ak continuously differentiable (or just lo-

cally Lipschitz) and ϕ proper, strictly convex with regular

growth.

Suppose (CQ) holds and also∗

(1) ∃ τ ∈ IRn such that
n∑
i=1

τiai(t) < d ∀t ∈ [a, b],

then the unique solution to (P ) is given by

(2) x̂(t) = (ϕ∗)′(
n∑
i=1

λ̂iai(t))

where λ̂ is any solution to dual problem (D) (such λ̂ must

exist).

∗This is trivial if d = ∞.
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♠ We have obtained a powerful functional reconstruction

for all t ∈ Ω.

• This generalizes to cover Ω ⊂ IRn, and more elaborately

in Fisher-like cases [BL2], [BN1], etc.

‘Bogus’ differentiation of a discontinuous function becomes

the delicate conjugacy formula:

(
∫
Ω ϕ)

∗ (x∗) =
∫
Ω ϕ

∗(x∗).

Thus, the form of the maxent solution can be legitimated

by validating the easily checked conditions of Thm. 2.
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♠ Also, any solution to Ax = b of the form in (2) is au-
tomatically a solution to (P ).

So solving (P ) is equivalent to finding λ ∈ IRn with

(3) ⟨ai, (ϕ∗)′(ATλ)⟩ = bi, i = 1, . . . , n

which is a finite dimensional set of non-linear equations.
When ϕ(t) = t2/2 this is the Gram system.

One can then apply a standard ‘industrial strength’
nonlinear equation solver, based say on Newton’s
method, to this system, to find the optimal λ.
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Often (ϕ′)−1 = (ϕ∗)′

• So the ‘dubious’ solution and ‘honest’ solution agree.

• Importantly, we may tailor (ϕ′)−1 to our needs:

– For Shannon entropy, the solution is strictly positive
(ϕ′)−1 = exp.

– For positive energy, we can fit zero intervals (ϕ′)−1(t) = t+.

– For Burg, we can locate the support well (ϕ′)−1(t) = 1/t.

• These are excellent methods with relatively few mo-
ments (say 5 to 50 ...).
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Note that discretization is only needed to compute terms
in evaluation of (3).

Indeed, these integrals can sometimes be computed ex-
actly (e.g., in some tomography and option estimation
problems). This is the gain of not discretizing early.

By waiting to see the form of dual, one can cus-
tomize one’s integration scheme to the problem at
hand.

• Even when this is not the case one can often use
the shape of the dual solution to fashion very efficient
heuristic reconstructions that avoid any iterative steps
(see [BN2] and Huang’s 1993 thesis).
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EXAMPLE 3. OPTION PRICING

For European option portfolio pricing the constraints are

based on ‘hockey-sticks’ of the form:

ai(x) := max{0, x− ti}

• In this case the dual can be computed exactly and leads

to a relatively small and explicit nonlinear equation to

solve the problem (see [BCM]).

The more nonlinear the optimization problem the more

dangerous it is to treat it purely formally.
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FROM FENCHEL’S ACORN . . .

• in Canad. J. Math, volume 1, #1.

52



53



. . . a MODERN OAK

Theorem 2 works by relaxing the problem to
(
L1

)∗∗
—

where solutions always exist — and using Lebesgue de-

composition.

• Regular growth rules out a non-trivial singular part via

analysis with the formula:

Iϕ∗∗ =
(
Iϕ

)∗∗
|X .

More generally, for Ω an interval, we can work with

Iϕ(x) :=
∫
Ω
ϕ(x) dµ

as a function on L1(Ω).
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We say Iϕ is strongly rotund (very well posed) if it is (i)

strictly convex with (ii) weakly compact lower level sets

(Dunford-Pettis) and (iii) Kadec-Klee:

Iϕ(xn) → Iϕ(x), xn ⇀ x⇒ xn →1 x.

Theorem 3 (BV). Iϕ is strongly rotund as soon as ϕ∗ is

everywhere finite and differentiable on R; and conversely if

µ is not purely atomic.

• Easy to check (holds for Shannon and energy but not

Burg) and is the best surrogate for the properties of a

reflexive norm on L1.
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MomEnt+

An old interface: MomEnt+ (www.cecm.sfu.ca/interfaces/)

provided code for entropic reconstructions as above.

Moments (including wavelets), entropies and dimension are

easily varied. It also allows for adding noise and relaxation

of the constraints.

Several methods of solving the dual are possible, in-

cluding Newton and quasi-Newton methods (BFGS,

DFP), conjugate gradients, and the suddenly sexy

Barzilai-Borwein line-search free method.
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COMPARISON OF ENTROPIES

We compare the positive L2, Boltzmann-Shannon and Burg

entropy reconstruction of the characteristic function of

[0,1/2] using 10 algebraic moments

bi =
∫ 1/2

0
ti−1 dt

on Ω = [0,1].

Burg over-oscillates since (ϕ∗)′(t) = 1/t. But is still often

the ‘best’ solution (with a closed form for Fourier mo-

ments)!
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

chi(0,.5,t)
Boltzmann-Shannon

Burg
Positive L2

Solution: x̂(t) = (ϕ∗)′(
∑n
i=1 λ̂it

i−1).
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PART TWO: THE NON-CONVEX CASE

For iterative methods as below, I recommend:

BaB H.H. Bauschke and J.M. Borwein, “On projection
algorithms for solving convex feasibility problems,” SIAM
Review, 38 (1996), 367–426 (aging well with over 390 ISI
cites).

BaC H.H. Bauschke and P.L. Combettes, Convex Analysis
and Monotone Operator Theory in Hilbert Spaces, CMS-
Springer Books, 2012.

• In general, non-convex optimization is a much less sat-
isfactory pursuit. We can usually hope only to find
critical points (f ′(x) = 0) or local minima.
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– Thus, problem-specific heuristics dominate.



EXAMPLE 4. CRYSTALLOGRAPHY

We wish to estimate x in L2(IRn)∗ and can suppose the
modulus c = |x̂| is known (here x̂ is the Fourier transform
of x).†

Now {y : |ŷ| = c}, is not convex. So the issue is to find x
given c and other convex information.

An appropriate problem extending the previous one is

min {f(x) : Ax = b, ∥Mx∥ = c, x ∈ X}, (NP )

where M models the modular constraint, and f is as in
Theorem 2.
∗Here n = 2 for images, 3 for holographic imaging, etc.
†Observation of the modulus of the diffracted image in crystallography.
Similarly, for optical aberration correction.
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Most optimization methods rely on a two-stage (easy con-
vex, hard non-convex) decoupling schema — the following
is from Decarreau-Hilhorst-LeMaréchal [D].

They suggest solving

min {f(x) : Ax = y, ∥Bky∥ = bk, (k ∈ K) x ∈ X}, (NP ∗)

where ∥Bky∥ = bk, (k ∈ K) encodes the hard modular con-
straints.

• They solve formal first-order Kuhn-Tucker conditions
for a relaxed form of (NP ∗). The easy constraints are
treated by Thm. 2.

I am obscure, mainly because the results were largely neg-
ative:
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They applied these ideas to a

prostaglandin molecule (25 atoms),

with known structure, using quasi-

Newton (which could fail to find a local

min), truncated Newton (better) and

trust-region (best) numerical schemes.

• They observe that the “reconstructions were often mediocre”

and highly dependent on the amount of prior informa-

tion — a small proportion of unknown phases — to be

satisfactory.
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“Conclusion. It is fair to say that the entropy
approach has limited efficiency, in the sense that
it requires a good deal of information, especially
concerning the phases. Other methods are wanted
when this information is not available.”

• I had similar experiences with non-convex medical im-
age reconstruction.

“Another thing I must point out is that you cannot
prove a vague theory wrong. ... Also, if the pro-
cess of computing the consequences is indefinite,
then with a little skill any experimental result can
be made to look like the expected consequences.”
Richard Feynman (1964)
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GENERAL PHASE RECONSTRUCTION

The basic setup — more details follow.

• Electromagnetic field: u : R2 → C ∈ L2

• DATA: Field intensities for m = 1,2, . . . ,M :

ψm : R2 → R+ ∈ L1 ∩ L2 ∩ L∞

• MODEL: Functions Fm : L2 → L2, are modified Fourier

Transforms, for which we can measure the modulus (in-

tensity)

|Fm(u)| = ψm ∀m = 1,2, . . . ,M.
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ABSTRACT INVERSE PROBLEM

Given transforms

Fm

and measured field in-

tensities

ψm

(for m = 1, . . . ,M), find a

robust estimate of the

underlying field function

u.
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EXAMPLE 5. SOME HOPE FROM HUBBLE

The (human-ground) lens was

mis-assembled by 1.33mm.

The perfect back-up (com-

puter -ground) lens stayed on

earth!

• NASA challenged ten teams to devise algorithmic fixes.

• Optical aberration correction, using the Misell algo-
rithm, a method of alternating projections, works much
better than it should — given that it is being applied
to:
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PROBLEM. Find a member of a version of

Ψ :=
M∩
k=1

{x : Ax = b, ∥Mkx∥ = ck, x ∈ X},

(NCFP )

which is a M-set non-convex feasibility problem

as examined more below.

• Is there hidden convexity to explain good behaviour?
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HUBBLE IS ALIVE AND KICKING

Hubble reveals most distant planets yet
Last Updated: Wednesday, October 4, 2006 | 7:21 PM ET
CBC News

Astronomers have discovered the farthest planets from Earth yet found, including one with a year as short as 10 hours — the

fastest known.

Using the Hubble space telescope to peer deeply into the centre of the galaxy, the scientists found as many as 16 planetary 

candidates, they said at a news conference in Washington, D.C., on Wednesday.

The findings were published in the journal Nature.

Looking into a part of the Milky Way known as the galactic bulge, 26,000 light years from Earth, Kailash Sahu and his team 

of astronomers confirmed they had found two planets, with at least seven more candidates that they said should be planets.

The bodies are about 10 times farther away from Earth than any planet previously detected.

A light year is the distance light travels in one year, or about 9.46 trillion kilometres.

Continue Article
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• From Nature Oct 2006. Hubble has since been reborn
twice and exoplanet discoveries have become quotidian.

• There were 228 listed at www.exoplanets.org in March
09 and 432 a year later, 563 as of 22/6/11. (More
according to Kepler. There is an iPad Exoplanet app.)

• How reliable are these determinations (velocity, imag-
ing, transiting, timing, micro-lensing)? The one above
has been withdrawn!

69



THE KEPLER SATELLITE

5 Facts About Kepler (launch March 6)

-- Kepler is the world's first mission with the ability to find true Earth analogs -- planets that 

orbit stars like our sun in the "habitable zone." The habitable zone is the region around a star 

where the temperature is just right for water -- an essential ingredient for life as we know it -- to 

pool on a planet's surface. 

-- By the end of Kepler's three-and-one-half-year mission, it will give us a good 

idea of how common or rare other Earths are in our Milky Way galaxy. This will be

an important step in answering the age-old question: Are we alone? 

-- Kepler detects planets by looking for periodic dips in the brightness of stars. 

Some planets pass in front of their stars as seen from our point of view on Earth; 

when they do, they cause their stars to dim slightly, an event Kepler can see. 

-- Kepler has the largest camera ever launched into space, a 95-megapixel array

of charge-coupled devices, or CCDs, as in everyday digital cameras. 

-- Kepler's telescope is so powerful that, from its view up in space, it 

could see one person in a small town turning off a porch light at night. 

NASA 05.03.2009
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TWO RECONSTRUCTION APPROACHES

I. Error reduction of a nonsmooth objective (an ‘en-

tropy’): for fixed βm > 0

⊙
we attempt to solve

minimize E(u) :=
M∑

m=0

βm

2
dist2(u,Qm)

over u ∈ L2.

– Many variations on this theme are possible.
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II. Non-convex (in)feasibility problem: Given ψm ̸= 0,

define Q0 ⊂ L2 convex, and

Qm :=
{
u ∈ L2 | |Fm(u)| = ψm a.e.

}
(nonconvex)

we wish to find u ∈
∩M
m=0Qm = ∅.

⊙
via an alternating projection method: e.g., for two sets

A and B, repeatedly compute

x→ PB(x) =: y → PA(y) =: x.
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EXAMPLE 6. INVERSE SCATTERING

Central problem: determine the location and shape of

buried objects from measurements of the scattered field

after illuminating a region with a known incident field.

Recent techniques determine if a point z is inside or out-

side of the scatterer by determining solvability of the linear

integral equation:

Fgz
?
= φz

where F → X is a compact linear operator constructed

from the observed data, and φz ∈ X is a known function

parameterized by z [BLu].
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• F has dense range, but if z is on the exterior of the
scatterer, then φz /∈ Range(F) (which has a Fenchel
conjugate characterization).

• Since F is compact, any numerical implementation to
solve the above integral equation will need some regu-
larization scheme.

• If Tikhonov regularization is used—in a restricted phys-
ical setting—the solution to the regularized integral
equation, gz,α, has the behaviour

∥gz,α∥ → ∞ as α→ 0

if and only if z is a point outside the scatterer.
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• An important open problem is to determine behavior
of regularized solutions gz,α under different regulariza-
tion strategies.

– In other words, when can these techniques fail?
(Ongoing work with Russell Luke [BLu]: also men-
tioned Experimental Math in Action, AKP, 2007.)

A heavy warning used to be given [by lecturers]
that pictures are not rigorous; this has never had
its bluff called and has permanently frightened its
victims into playing for safety. Some pictures, of
course, are not rigorous, but I should say most are
(and I use them whenever possible myself). J.E.
Littlewood (1885-1977)

75



A SAMPLE RECONSTRUCTION (via I)

The object and its spectrum

Top row: data
Middle: reconstruction

Bottom: truth and error
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ALTERNATING PROJECTIONS

ALTERNATING PROJECTIONS FOR CIRCLE AND RAY
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The alternating projection method — discovered by

Schwarz, Wiener, Von Neumann, ... — is fairly well un-

derstood when all sets are convex.

• If A∩B ̸= ∅ and A,B are closed convex then weak con-

vergence (only 2002) is assured—von Neumann (1933)

in norm for subspaces, Bregman (1965).

• First shown that norm convergence can fail by Hundal

(2002) – but only for an ‘artificial’ example.
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II: NON-CONVEX PROJECTION CAN FAIL

QUESTION. If A is finite codimension, closed and

affine, B is the nonnegative cone in ℓ2(N) and A ∩
B ̸= ∅, is the method norm convergent?

Consider the alternating projection method to find the

unique red point on the line-segment A (convex) and the

blue circle B (non-convex).

• The method is ‘myopic’.
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A

B

• Starting on line-segment outside red circle, we

converge to unique feasible solution.

• Starting inside the red circle leads to a period-two

locally ‘least-distance’ solution.
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THE PROJECTION METHOD OF CHOICE

• For optical abberation correction this is the alternating
projection method: x→ PA (PB(x))

x

PA(x)

RA(x)

A

• For crystallography it is better to use (HIO) over-relax
and average: reflect to RA(x) := 2PA(x)− x and use

x→
x+RA (RB(x))

2
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Both parallelize neatly: A :=diag, B :=
∏
iBi.

Both are non-expansive in the convex case.

Both need new theory in the non-convex case.
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NAMES CHANGE WHEN FIELDS DO. . .

• The optics community calls projection algorithms
“Iterative Transform Algorithms”.

- Hubble used Misell’s Algorithm, which is just av-
eraged projections. The best projection algorithm
Luke∗ found was cyclic projections (with no relax-
ation).

• For the crystallography problem the best known method
is called the Hybrid Input-Output algorithm in the op-
tical setting.

∗My former PDF, he was a Hubble Graduate student.

83



Bauschke-Combettes-Luke (JMAA, 2004) showed HIO, Lions-

Mercier (1979), Douglas-Rachford (1959), Feinup (1982),

and divide-and-concur coincide.

• When u(t) ≥ 0 is imposed, Feinup’s method no longer

coincides, and DR (‘HPR’) is still better.
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ELSER, QUEENS and SUDOKU

2006 Veit Elser, see [E1] and [E2], at Cornell has had huge

success (and press) using divide-and-concur onprotein fold-

ing, sphere-packing, 3SAT, Sudoku (R2916), and more.

Given a partially completed grid, fill it so that each
column, each row, and each of the nine 3× 3 regions
contains the digits from 1 to 9 only once.
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2008 Bauschke and Schaad likewise study Eight queens
problem (R256) and image-retrieval (Science News, 08).

This success (a.e.?) is not seen with alternating projec-
tions and cries out for explanation. Brailey Sims and I
[BS] and then Fran Aragon and I [AB] have made some
progress, as follows:
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FINIS: DOUGLAS-RACHFORD IN THE SPHERE

Dynamics for B the unit circle and A the blue line at height
α ≥ 0 are already fascinating. Steps are for

T :=
I +RA ◦RB

2
.

• With θn the argument this becomes set
xn+1 := cos θn, yn+1 := yn+ α− sin θn.

0 ≤ α ≤ 1: converges (‘globally’ (2012) and locally expo-
nentially asymptotically (2011)) iff start off y-axis (‘chaos’):
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α > 1 ⇒ y → ∞, while α = 0.95 (0 < α < 1) and α = 1
respectively produce:

• The result remains valid for a sphere and any affine
manifold in Euclidean space.
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GLOBAL CONVERGENCE

A lot of hard work proved the result in Figure 5 [AB]:
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Figure 5: The picture in the left shows the regions of convergence in Theorem 2.1 for the

Douglas-Rachford algorithm. The picture in the right illustrates an example of a convergent

sequence generated by the algorithm.
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DYNAMIC GEOMETRY

• I finish with a Cinderella demo built with Chris Maitland
and based on the recent work with Brailey Sims [BS].
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The applets are at:

www.carma.newcastle.edu.au/~jb616/composite.html

www.carma.newcastle.edu.au/~jb616/expansion.html
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